
1 YEAR UPGRADE
B U Y E R P R O T E C T I O N P L A N

Mesbah Ahmed

Chris Garrett

Jeremy Faircloth

Chris Payne

DotThatCom.com

Wei Meng Lee Series Editor

Jonothon Ortiz Technical Editor

A S P. N E T
We b D e ve l o p e r ’s G u i d e

http://www.syngress.com/solutions
http://access.globalknowledge.com/syngress

solutions@s y n g r e s s . c o m

With more than 1,500,000 copies of our MCSE, MCSD, CompTIA, and Cisco
study guides in print, we continue to look for ways we can better serve the
information needs of our readers. One way we do that is by listening.

Readers like yourself have been telling us they want an Internet-based ser-
vice that would extend and enhance the value of our books. Based on
reader feedback and our own strategic plan, we have created a Web site
that we hope will exceed your expectations.

Solutions@syngress.com is an interactive treasure trove of useful infor-
mation focusing on our book topics and related technologies. The site
offers the following features:

■ One-year warranty against content obsolescence due to vendor
product upgrades. You can access online updates for any affected
chapters.

■ “Ask the Author” customer query forms that enable you to post
questions to our authors and editors.

■ Exclusive monthly mailings in which our experts provide answers to
reader queries and clear explanations of complex material.

■ Regularly updated links to sites specially selected by our editors for
readers desiring additional reliable information on key topics.

Best of all, the book you’re now holding is your key to this amazing site.
Just go to www.syngress.com/solutions, and keep this book handy when
you register to verify your purchase.

Thank you for giving us the opportunity to serve your needs. And be sure
to let us know if there’s anything else we can do to help you get the
maximum value from your investment. We’re listening.

www.syngress.com/solutions

166_ASPNET_FM.qxd 11/26/01 1:40 PM Page i

http://www.syngress.com/solutions
http://www.syngress.com/solutions

166_ASPNET_FM.qxd 11/26/01 1:40 PM Page ii

1 YEAR UPGRADE
B U Y E R P R O T E C T I O N P L A N

Mesbah Ahmed

Chris Garrett

Jeremy Faircloth

Chris Payne

DotThatCom.com

Wei Meng Lee Series Editor

Jonothon Ortiz Technical Editor

A S P. N E T
We b D e ve l o p e r ’s G u i d e

166_ASPNET_FM.qxd 11/26/01 1:40 PM Page iii

Syngress Publishing, Inc., the author(s), and any person or firm involved in the writing, editing, or
production (collectively “Makers”) of this book (“the Work”) do not guarantee or warrant the results to be
obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents.The Work is
sold AS IS and WITHOUT WARRANTY. You may have other legal rights, which vary from state to state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or other
incidental or consequential damages arising out from the Work or its contents. Because some states do not
allow the exclusion or limitation of liability for consequential or incidental damages, the above limitation
may not apply to you.

You should always use reasonable care, including backup and other appropriate precautions, when working
with computers, networks, data, and files.

Syngress Media®, Syngress®,“Career Advancement Through Skill Enhancement®,” and “Ask the Author
UPDATE®,”are registered trademarks of Syngress Publishing, Inc. “Mission Critical™,”“Hack Proofing™,”
and “The Only Way to Stop a Hacker is to Think Like One™” are trademarks of Syngress Publishing, Inc.
Brands and product names mentioned in this book are trademarks or service marks of their respective
companies.
KEY SERIAL NUMBER
001 ANVE48952P
002 WNBN9433ET
003 7BANL4P2WR
004 QNV984UTAP
005 KVAW939RE4
006 6JSE4FHU9W
007 4MAS8TYGF2
008 DAUTGFLRGT
009 2983K74SLF
010 VFR4MHY7Q2

PUBLISHED BY
Syngress Publishing, Inc.
800 Hingham Street
Rockland, MA 02370
ASP.NET WEB DEVELOPER’S GUIDE

Copyright © 2002 by Syngress Publishing, Inc.All rights reserved. Printed in the United States of America.
Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced or
distributed in any form or by any means, or stored in a database or retrieval system, without the prior
written permission of the publisher, with the exception that the program listings may be entered, stored,
and executed in a computer system, but they may not be reproduced for publication.

Printed in the United States of America

1 2 3 4 5 6 7 8 9 0

ISBN: 1-928994-51-2
Technical Editor: Jonothan Ortiz Freelance Editorial Manager: Maribeth Corona-Evans
Series Editor:Wei Meng Lee Cover Designer: Michael Kavish
Co-Publisher: Richard Kristof Page Layout and Art by: Shannon Tozier
Acquisitions Editor: Catherine B. Nolan Copy Editors: Janet Zunkel and Michael McGee
Developmental Editor: Kate Glennon Indexer: Robert Saigh
CD Production: Michael Donovan

Distributed by Publishers Group West in the United States and Jaguar Book Group in Canada.

166_ASPNET_FM.qxd 11/26/01 1:40 PM Page iv

http://www.syngress.com/solutions

v

Acknowledgments

v

We would like to acknowledge the following people for their kindness and support
in making this book possible.

Richard Kristof and Duncan Anderson of Global Knowledge, for their generous
access to the IT industry’s best courses, instructors, and training facilities.

Ralph Troupe, Rhonda St. John, and the team at Callisma for their invaluable insight
into the challenges of designing, deploying, and supporting world-class enterprise
networks.

Karen Cross, Lance Tilford, Meaghan Cunningham, Kim Wylie, Harry Kirchner,
Kevin Votel, Kent Anderson, and Frida Yara of Publishers Group West for sharing
their incredible marketing experience and expertise.

Mary Ging, Caroline Hird, Simon Beale, Caroline Wheeler,Victoria Fuller, Jonathan
Bunkell, and Klaus Beran of Harcourt International for making certain that our
vision remains worldwide in scope.

Annabel Dent of Harcourt Australia for all their help.

David Buckland,Wendi Wong, Daniel Loh, Marie Chieng, Lucy Chong, Leslie Lim,
Audrey Gan, and Joseph Chan of Transquest Publishers for the enthusiasm with
which they receive our books.

Kwon Sung June at Acorn Publishing for his support.

Ethan Atkin at Cranbury International for his help in expanding the Syngress
program.

166_ASPNET_FM.qxd 11/26/01 1:40 PM Page v

vi

Contributors

Todd Carrico (MCDBA, MCSE) is a Senior Database Engineer for
Match.com. Match.com is a singles portal for the digital age. In addition
to its primary Web site, Match.com provides back-end services to AOL,
MSN, and many other Web sites in its affiliate program.Todd specializes
in design and development of high-performance, high-availability data
architectures primarily on the Microsoft technology. His background
includes designing, developing, consulting, and project management for
companies such as Fujitsu,Accenture, International Paper, and
GroceryWorks.com.Todd resides in Sachse,TX, with his wife and two
children.

Jeremy Faircloth (CCNA, MCSE, MCP+I,A+) is a Systems Analyst for
Gateway, Inc. In this position, he develops and maintains enterprise-wide
client/server and Web-based technologies. He also acts as a technical
resource for other IT professionals, using his expertise to help others
expand their knowledge.As a Systems Analyst with over 10 years of real-
world IT experience, he has become an expert in many areas of IT
including Web development, database administration, enterprise security,
network design, and project management. Jeremy currently resides in
North Sioux City, SD and wishes to thank Christina Williams for her
support in his various technical endeavors.

Mesbah Ahmed (PhD and MS, Industrial Engineering) is a Professor of
Information Systems at the University of Toledo. In addition to teaching
and research, he provides technical consulting and training for IT and
manufacturing industries in Ohio and Michigan. His consulting experi-
ence includes systems design and implementation projects with Ford
Motors, Dana Corporation, Riverside Hospital, Sears, and others.
Currently, he provides IT training in the areas of Java Server, XML, and
.NET technologies. He teaches graduate level courses in Database
Systems, Manufacturing Systems, and Application Development in
Distributed and Web Environment. Recently, he received the University

166_ASPNET_FM.qxd 11/26/01 1:40 PM Page vi

vii

of Toledo Outstanding Teaching award, and the College of Business
Graduate Teaching Excellence award. His current research interests are in
the areas of data warehousing and data mining. He has published many
research articles in academic journals such as Decision Sciences, Information
& Management, Naval Research Logistic Quarterly, Journal of Operations
Management, IIE Transaction, and International Journal of Production Research.
He has also presented numerous papers and seminars in many national
and international conferences.

Patrick Coelho (MCP) is an Instructor at The University of Washington
Extension, North Seattle Community College, Puget Sound Center, and
Seattle Vocational Institute, where he teaches courses in Web
Development (DHTML,ASP, XML, XSLT, C#, and ASP.NET). Patrick is
a Co-Founder of DotThatCom.com, a company that provides consulting,
online development resources, and internships for students. He is cur-
rently working on a .NET solution with contributing author David
Jorgensen and nLogix. Patrick holds a bachelor’s of Science degree from
the University of Washington, Bothell. Patrick lives in Puyallup,WA with
his wife Angela.

David Jorgensen (MCP) is an Instructor at North Seattle Community
College, University of Washington Extension campus, and Puget Sound
Centers. He is also developing courses for Seattle Vocational Institute,
which teach .NET and Web development to the underprivileged in the
Seattle area. David also provides internship opportunities through his
company DotThatCom.com, which does online sample classes and chap-
ters of books. David holds a bachelor’s degree in Computer Science from
St. Martin’s College and resides in Puyallup,WA with his wife Lisa and
their two sons Scott and Jacob.

Adam Sills is an Internet Programmer at GreatLand Insurance, a small
insurance company parented by Kemper Insurance. He works in a small
IT department that focuses on creating applications to expedite business
processes and manage data from a multitude of locations. Previously, he
had a small stint in consulting and also worked at a leading B2B

166_ASPNET_FM.qxd 11/26/01 1:40 PM Page vii

viii

eCommerce company designing and building user interfaces to interact
with a large-scale enterprise eCommerce application.Adam’s current
duties include building and maintaining Web applications, as well as
helping to architect, build, and deploy new Microsoft .NET technologies
into production use.Adam has contributed to the writing of a number of
books for Syngress and is an active member of a handful of ASP and
ASP.NET mailing lists, providing support and insight whenever he can.

Chris Garrett is the Technical Manager for a large European Web
agency. He has been working with Internet technologies since 1994 and
has provided technical and new media expertise for some of the world’s
biggest brands. Chris lives in Yorkshire, England, with his wife Clare and
his daughter Amy.

Chris Payne, author of Teach Yourself ASP.NET in 21 Days, is the Co-
Founder and CIO of Enfused Media, Inc., which designs and develops
applications to automate and facilitate business processes. Chris has taught
ASP and solution techniques through articles and tutorials and has a
background in writing both technical and nontechnical material. Chris
holds a bachelor’s degree in Engineering from Boston University and is
currently lives with his wife, Eva, in Orlando, FL.

166_ASPNET_FM.qxd 11/26/01 1:40 PM Page viii

ix

Technical Editor and Contributor

Jonothon Ortiz is Vice President of Xnext, Inc. in Winter Haven, FL.
Xnext, Inc. is a small, privately owned company that develops Web sites
and applications for prestigious companies such as the New York Times.
Jonothon is the head of the programming department and works together
with the CEO on all company projects to ensure the best possible solu-
tion. Jonothon lives with his wife Carla in Lakeland, FL.

Wei Meng Lee is Series Editor for Syngress Publishing’s .NET
Developer Series. He is currently lecturing at The Center for Computer
Studies, Ngee Ann Polytechnic, Singapore.Wei Meng is actively involved
in Web development work and conducts training for Web developers and
Visual Basic programmers. He has co-authored two books on WAP. He
holds a bachelor’s degree in Information Systems and Computer Science
from the National University of Singapore.The first book in the .NET
series, VB.NET Developer’s Guide (ISBN: 1-928994-48-2), is currently
available from Syngress Publishing.

Series Editor and Contributor

166_ASPNET_FM.qxd 11/26/01 1:40 PM Page ix

x

This CD-ROM contains the code files that are used in each chapter of this book.
The code files for each chapter are located in a “chXX” directory. For example, the
files for Chapter 8 are in ch08.Any further directory structure depends on the pro-
jects that are presented within the chapter.

Chapters 4, 6, and 9 contain code that apply to the situations described in their
sections.This code will be extremely useful for understanding and enhancing the way
you use ASP.NET. Specifically, Chapter 4 has various examples on dealing with the
internal configuration of ASP.NET while Chapter 6 deals with how to optimize the
various caching methods available through ASP.NET and Chapter 9 contains code
on how to work with the debugging system of .NET with ASP.NET.

Chapters 3 and 8 contain code that deal with improved technologies in
ASP.NET. Chapter 3 discusses examples on how to work with ASP Server Controls
while Chapter 8 deals with a concise introduction to what XML is and how XML
affects .NET.

Chapters 7, 11, 12, and 13 contain low-to-heavy duty applications, exactly in that
order. Chapter 7 will introduce you to a sample application that deals with an address
book, from start to finish.This example code will also introduce you to how code
looks and operates in ASP.NET. Chapter 11, our XML.NET Guestbook, will show
you how XML in .NET can easily be worked with by using the standard classes
within ADO.NET, bridging the gap between XML and ADO. Chapters 12 and 13
take XML and ADO to the next level by introducing a Shopping Cart (Chapter 11)
and a Message Board (Chapter 13). Both applications in Chapters 12 and 13 require
an SQL Server backend, but either of these databases can be easily converted to an
Access database.

Look for this CD icon to obtain files used
in the book demonstrations.

About the CD

166_ASPNET_FM.qxd 11/26/01 1:40 PM Page x

Contents

xi

Foreword xxv

Chapter 1 Introducing ASP.NET 1
Introduction 2
Learning from the History of ASP 2

The Origins of ASP 2
Why ASP Was Needed 3
Why ASP Was Not Originally Embraced 4

Developing ASP 1.x 5
Developing ASP 2.x 6

Major Changes with ASP 2 6
Weaknesses in the ASP 2 Model 7

Developing ASP 3.0 7
Final Changes to Original ASP Model 8
Weaknesses in the ASP 3 Model 8
The Need for a New ASP Model 9

The ASP Timeline 10
Reviewing the Basics of the ASP.NET Platform 11

Utilizing the Flexibility of ASP.NET 12
Converting Code into Multiple Languages 13

Comparing Improvements in ASP.NET to
Previous ASP Models 14

How Web Servers Execute ASP Files 15
Client-Server Interaction 16
Server-Side Processing 17

Compiling and Delivering ASP.NET Pages 18
Running ASP.NET Web Pages 19

Obtaining and Installing .NET 19
Creating Your First ASP.NET Application 20

Debugging ASP.NET
Applications

Debugging under classic
ASP was a hit-and-miss
affair, usually forcing the
developer to add
Response.Write
statements through the
code until he or she found
the failure point. ASP.NET
introduces much better
debugging, thanks to the
.NET Framework and
Common Language
Runtime (CLR).

166_ASPNET_toc.qxd 11/27/01 1:13 PM Page xi

xii Contents

Upgrading from Classic ASP 26
Taking Security Precautions 28
Summary 29
Solutions Fast Track 29
Frequently Asked Questions 32

Chapter 2 ASP.NET Namespaces 35
Introduction 36
Reviewing the Function of Namespaces 36

Using Namespaces 37
Using the Microsoft.VisualBasic Namespace 38
Understanding the Root Namespace: System 38

Supplied Functionality 38
Integral Numbers 39
Floating-Point Numbers 39
Dates 40
Strings 40
Booleans 40
Objects 40

Grouping Objects and Data Types with the
System.Collections Namespace 43

Supplied Functionality 43
Enabling Client/Browser Communication

with the System.Web Namespace 45
Supplied Functionality 45

System.Web.UI Namespace Set 46
System.Web.Services Namespace Set 51

Working with Data Sources Using the
System.Data Namespace 52

Supplied Functionality 52
Processing XML Files Using the System.XML

Namespace 53
Supplied Functionality 53

Summary 55
Solutions Fast Track 56
Frequently Asked Questions 58

Reviewing the
Function of
Namespaces

To use a namespace in an
ASP.NET page, you must
use the Import directive.
Unlike in classic ASP,
ASP.NET pages are
compiled before they are
run. You build ASP.NET
pages using a compiled
language, such as VB.NET
or C#.

166_ASPNET_toc.qxd 11/27/01 1:13 PM Page xii

Contents xiii

Chapter 3 ASP Server Controls 61
Introduction 62
Major Features of ASP.NET Server Controls 62

Collecting Data Using HTML Forms 63
Server-Side Processing in ASP.NET 65

A Simple Application Using
Conventional HTML Controls 66

A Simple Application Using ASP Server
Controls 68

Mapping Server Controls and Preserving
Their States 69

Including Scripts in an .aspx File 69
Loading a List Box via Script 70

Using the IsPostBack Property of a Page 72
AutoPostBack Attributes of Server Controls 73

Structure of an ASP.NET Web Form 75
Page Directives 76
The Order of Event Execution 77

Code-Behind versus In-Page Coding 77
Using Code-Behind without Compilation 79
Using Code Behind with Compilation 81
Using VS.Net for Developing a Web
Application 84

Using HTML Server Controls 87
Using the HtmlAnchor Control 88
Using the HtmlTable Control 88
Using HtmlInputText and HtmlTextArea

Controls 90
Using HtmlButton and HtmlImage Controls 91
Using the HtmlInputFileControl 93
Using the HtmlSelect Control with

Data Binding to a SortedList Structure 95
Creating and Loading the SortedList 97

Using HtmlCheckBox and
HtmlInputRadioButton Controls 98

Using ASP.NET Web Controls 100

Developing ASP.NET
Web Forms

When you develop an
ASP.NET Web form, you
can use the following type
of controls:

■ HTML Server Controls

■ Web Server Controls
(also known as Web
Controls or ASP.NET
Web Form Controls)

■ Validation Controls

■ Custom Controls

166_ASPNET_toc.qxd 11/27/01 1:13 PM Page xiii

xiv Contents

Basic Web Controls 101
Using Labels, TextBoxes, RadioButtons,

CheckBoxes, and DropDownLists 103
Using the ListControl Abstract Class 106
Using HyperLink Controls 110
Binding a ListControl to an ArrayList 111

Validation Controls 113
The RequiredFieldValidator Control 114
The RegularExpressionValidator Control 115
The CompareValidator Control 117
The RangeValidator Control 118
The CustomValidator Control 118
CustomValidator with Explicit

Client-Side Validation Function 120
Displaying the Error Message with Style 122
The ValidationSummary Control 123
Validating Patterned Strings, Passwords,

and Dates 126
</form></body></html> The

Databound ListControls Family 130
Using the Repeater Server Control 132
Using the DataList Control 139
Using the DataGrid Control 144
Providing Paging in DataGrid 152
Navigating to a Selected Page 154
Providing Data Editing Capability in

a DataGrid Control 157
Creating Custom ASP Server User Controls 161

Creating a Simple Web User Control 161
Exposing Properties of a User Control 163

Developing the Payroll User Control 164
Consuming the Payroll User Control 166

Summary 168
Solutions Fast Track 168
Frequently Asked Questions 171

166_ASPNET_toc.qxd 11/27/01 1:13 PM Page xiv

Contents xv

Chapter 4 Configuring ASP.NET 173
Introduction 174
Overview of ASP.NET Configuration 174
Uses for a Configuration File 177

Application Configuration 179
Setting Static Variables Using the

<appSettings> Tag 179
Providing Global Support Using the

<globalization> Tag 180
Configuring Application Identity

Using the <identity> Tag 181
Setting Page-Specific Attributes

Using the <pages> Tag 181
Configuring the Tracing

Service Using the <trace> Tag 183
System Configuration 184

Determining Client Capabilities
Using the <browserCaps> Tag 184

Setting Compilation Options
Using the <compilation> Tag 187

Controlling Connections Using the
<connectionManagement> Tag 190

Defining Custom Errors
Using the <customErrors> Tag 191

Mapping Requests Using the
<httpHandlers> Tag 192

Configuring HTTP Modules
Using the <httpModules> Tag 193

Setting Runtime Options
Using the <httpRuntime> Tag 194

Setting Process Model Options
Using the <processModel> Tag 195

Configuring the Session State
Using the <sessionState> Tag 200

Configuring Request Modules Using
the <webRequestModule> Tag 202

SECURITY ALERT!

With the standard
ASP.NET
machine.config file, all
configuration files are
secured and cannot be
downloaded by a
client system. This
allows for some pro-
tection of critical infor-
mation such as user
IDs and passwords for
DSN sources, but keep
in mind that any
system can be hacked
with enough time and
effort. Always keep
security in mind when
planning your Web
application.

166_ASPNET_toc.qxd 11/27/01 1:13 PM Page xv

xvi Contents

Configuring Web Services
Using the <webServices> Tag 203

Security 204
Authenticating Users Using the

<authentication> Tag 205
Configuring Security Modules Using

the <authenticationModules> Tag 207
Controlling Access Using the

<authorization> Tag 208
Configuring Encryption Keys

Using the <machineKey> Tag 209
Mapping Security Policies

Using the <securityPolicy> Tag 210
Applying Trust Levels Using the

<trust> Tag 211
Anatomy of a Configuration File 211

Creating a Configuration File 215
Retrieving Settings 220

Summary 223
Solutions Fast Track 223
Frequently Asked Questions 224

Chapter 5 An ASP.NET Application 227
Introduction 228
Understanding ASP.NET Applications 228
Managing State 229
Analzying Global.asax 231
Understanding Application State 232

Using Application State 232
Application Cache Object 233
Static Variables 234

State Example 234
Using Application Events 236

Supported Application Events 236
More Events 237

Working with Application Events 238
Threading Use 239

Working with
Application Events

To use application events
in your project, you must
do the following:

■ Create a Web
application folder using
the MMC.

■ Create a file called
Global.asax in the
directory you marked
as an application.

■ Within the Global.asax,
enter script tags with
the language you are
using (e.g., VB).

■ Insert subroutines
using the name of the
event you wish to use.
Any code you add to
this subroutine will run
when the event fires.

166_ASPNET_toc.qxd 11/27/01 1:13 PM Page xvi

Contents xvii

Understanding Session State 240
Configuring Sessions 241
Using Session Events 243

Working with Session Events 245
Comparing Application and Session States 246

Static Values 249
Caching Data 252
Expiring the Cache 258

Summary 259
Solutions Fast Track 259
Frequently Asked Questions 262

Chapter 6 Optimizing Caching Methods 265
Introduction 266
Caching Overview 266
Output Caching 269

Using the @ OutputCache Directive 269
Using the HttpCachePolicy Class 275
Advantages of Using Output Caching 276

Fragment Caching 277
Advantages of Using Fragment Caching 281

Data Caching 281
Using the Cache Method 282
Using the cache.add and cache.insert

Methods 285
Using the Dependency Option 285
Using the Expiration Policy Option 287
Using the Priority Options 288
Using the CacheItemRemovedCallback

Delegate 289
</HTML>Using the Cache.Remove

Method 292
Advantages of Using Data Caching 292

Best Uses for Caching 293
Output Caching 294
Fragment Caching 294
Data Caching 294

Answers to Your
Frequently Asked
Questions

Q: I have been asked to
migrate an application
from ASP to ASP.NET.
In the ASP application,
several third-party
utilities have been used
to provide for caching.
Should I use these or
use ASP.NET’s internal
caching?

A: Use ASP.NET’s caching
when possible. With
automatic scavenging
features and integrated
memory management,
ASP.NET provides a
more tightly integrated
caching system than
existing third-party
utilities.

166_ASPNET_toc.qxd 11/27/01 1:13 PM Page xvii

xviii Contents

Summary 295
Solutions Fast Track 296
Frequently Asked Questions 297

Chapter 7 Introduction to ADO.NET:
A Simple Address Book 299

Introduction 300
Understanding the Changes in ADO.NET 300

Supported Connectivity 305
The System.Data Namespace 305
The System.Data.Common Namespace 307

The System.Data.OleDb Namespace 307
The System.Data.SqlClient Namespace 308
The System.Data.SqlTypes Namespace 308

Creating Connection Strings 310
Where to Put the Connection String 312

Creating an Address Book Application 314
Connecting to a Database: Exercise 319
Browsing a Database: Exercise 323
Adding to a Database: Exercise 330
Updating Data in a Database: Exercise 335
Deleting from a Database: Exercise 339

Summary 342
Solutions Fast Track 343
Frequently Asked Questions 345
Frequently Asked Questions 345

Chapter 8 Using XML in the
.NET Framework 347

Introduction 348
An Overview of XML 348

What Does an XML Document Look Like? 349
Creating an XML Document 350

Creating an XML Document
in VS.NET XML Designer 351

Components of an XML Document 352
Well-Formed XML Documents 355

The tblAddress Layout

166_ASPNET_toc.qxd 11/27/01 1:13 PM Page xviii

Contents xix

Schema and Valid XML Documents 356
Structure of an XML Document 360

Processing XML Documents Using .NET 361
Reading and Writing XML Documents 362
Storing and Processing XML Documents 363

Reading and Parsing Using the
XmlTextReader Class 364

Parsing an XML Document: 365
Navigating through an XML Document

to Retrieve Data 367
Writing an XML Document Using the

XmlTextWriter Class 370
Generating an XML Document Using

XmlTextWriter 370
Exploring the XML Document Object Model 373

Navigating through an XmlDocument
Object 374

Parsing an XML Document Using the
XmlDocument Object 376

Using the XmlDataDocument Class 378
Loading an XmlDocument and

Retrieving the Values of Certain Nodes 379
Using the Relational View of

an XmlDataDocument Object 381
Viewing Multiple Tables of

a XmlDataDocument Object 383
Querying XML Data Using XPathDocument

and XPathNavigator 388
Using XPathDocument and

XPathNavigator Objects 390
Using XPathDocument and XPathNavigator

Objects for Document Navigation 392
Transforming an XML Document Using XSLT 396

Transforming an XML Document
to an HTML Document 397

Exploring the
Components of an
XML Document

An XML document
contains a variety of
constructs. Some of the
frequently used ones are
as follows:

■ Declaration

■ Comment

■ Schema or Document
Type Definition (DTD)

■ Elements

■ Root Element

■ Attributes

166_ASPNET_toc.qxd 11/27/01 1:13 PM Page xix

xx Contents

Transforming an XML Document
into Another XML Document 400

Working with XML and Databases 405
Creating an XML Document

from a Database Query 406
Reading an XML Document into a DataSet 408

Summary 410
Solutions Fast Track 410
Frequently Asked Questions 414

Chapter 9 Debugging ASP.NET 417
Introduction 418
Handling Errors 418

Syntax Errors 419
Compilation Errors 419
Runtime Errors 420

Unstructured Error Handling 421
Structured Error Handling 423

Logic Errors 426
Page Tracing 426

Using the Trace Class 427
Sorting the Trace Information 430
Writing the Trace Information to the
Application Log 432

Application Tracing 432
Using Visual Studio .NET Debugging Tools 434

Setting Breakpoints 434
Enabling and Disabling Debug Mode 435
Viewing Definitions Using the Object

Browser 436
Using the Class Viewer 436

Summary 438
Solutions Fast Track 438
Frequently Asked Questions 439

Properties in the Trace
Class

Property Description

IsEnabled Indicates
whether
tracing is
enabled for
the current
request.

TraceMode Sets the trace
mode:
sortByCategory
or sortByTime.

166_ASPNET_toc.qxd 11/27/01 1:13 PM Page xx

Contents xxi

Chapter 10 Web Services 441
Introduction 442
Understanding Web Services 443

Communication between Servers 448
.asmx Files 450
WSDL 455

Using XML in Web Services 460
An Overview of the System.Web.Services

Namespace 461
The System.Web.Services.Description

Namespace 461
The System.Web.Services.Discovery

Namespace 461
The System.Web.Services.Protocols

Namespace 462
Type Marshalling 464
Using DataSets 466
Summary 469
Solutions Fast Track 469
Frequently Asked Questions 471

Chapter 11 Creating an XML.NET
Guestbook 473

Introduction 474
Functional Design Requirements of the XML

Guestbook 475
Constructing the XML 476

Adding Records to the Guestbook 478
Understanding the pnlAdd Panel 482
Adding a Thank-You Panel with PnlThank 484
Exploring the Submit Button Handler Code 484

Viewing the Guestbook 488
Displaying Messages 488

Advanced Options for the Guestbook Interface 490
Manipulating Colors and Images 491
Modifying the Page Output 495

Understanding Web
Services

Web Services are objects
and methods that can be
invoked from any client
over HTTP. Web Services
are built on the Simple
Object Access Protocol
(SOAP) which enables
messaging over HTTP on
port 80 (for most Web
servers) and uses a
standard means of
describing data.

166_ASPNET_toc.qxd 11/27/01 1:13 PM Page xxi

xxii Contents

Summary 498
Solutions Fast Track 498
Frequently Asked Questions 500

Chapter 12 Creating an ADO.NET
Shopping Cart 501

Introduction 502
Setting Up the Database 502

Setting Up the Table “Books” 505
Setting Up the Table “Categories” 505
Setting Up the Table “Customer” 505
Setting Up the Table “Orders” 505
Setting Up the Table “BookOrders” 506
Creating an Access Database 506
SQL Server Database 510

Creating the Stored Procedures 512
Creating the Web Services 518

Overview of the Book Shop Web Services 518
Creating the Data Connection 520
Creating a Web Service 521
Testing a Web Service 527

Using WSDL Web References 531
Building the Site 533
Site Administration 533

Creating the Administration Login
(adminLogin.aspx) 535
Creating the Administrator Page

(adminPage.aspx) 537
Retrieving the Data: Creating the
getBooks.AllBooks Web Method 537
Displaying the Data: Binding a

DataGrid to the DataSet 540
Adding New Books to the Database:

Creating the allBooks.addItem Web
Method 541

Deleting Books: Deleting from
the DataGrid and the Database 541

Using WSDL Web
References

■ Disco, or vsdisco,
written in WSDL,
enables access to all
Web Services and
methods for that site.
This provides a one-
stop shop, if you will,
into the server's
cupboards.

■ Proxy classes can easily
be generated using
WSDL, which enables
code to access remote
services as if they were
local classes.

166_ASPNET_toc.qxd 11/27/01 1:13 PM Page xxii

Contents xxiii

Updating Book Details: Updating
the DataGrid and the Database 542

Creating the addBook Page (addBook.aspx) 543
Customer Administration 543

Creating the Customer Admin Section 543
Creating the loginCustomer Page 544
Creating the updateCustomerInfo Page 545

Creating an ADOCatalog 547
Creating the BookCatalog Class 548

Creating the CreateSummaryTable
Method 549

Creating the InitCatalog Method 550
Creating the Catalog Method 550
Creating the catalogItemDetails,

catalogRange, and catalogByCategory
Methods 550

Creating the catalogRangeByCategory
Method 551

Building an XMLCart 553
Creating the User Interface 556

Creating the start.aspx Page 556
Rendering the Catalog 558
Rendering the Cart 559
Creating the Code 559

Summary 562
Solutions Fast Track 562
Frequently Asked Questions 566

Chapter 13 Creating a Message
Board with ADO and XML 567

Introduction 568
Setting Up the Database 568

MSAccess Database 569
SQL Server Database 572

Designing Your Application 576
Designing Your Objects 579
Creating Your Data Access Object 579

166_ASPNET_toc.qxd 11/27/01 1:13 PM Page xxiii

xxiv Contents

Designing the User Class 581
Designing the Board Class 591

Designing the ThreadList Class 599
Designing the Thread class 603
Designing the PostList Class 606
Designing the Post Class 608
Designing the MessageBoard Class 611

Designing the User Interface 612
Setting Up General Functions 614
Building the Log-In Interface 621
Designing the Browsing Interface 628

Board Browsing 628
Thread Browsing 631
Message Browsing 635

Creating the User Functions 638
Editing the Member Profile 638
Creating Threads and Posts 641

Building the Administrative Interface 645
Summary 658
Solutions Fast Track 658
Frequently Asked Questions 661

Index 663

Setting Up the
Database

Setting up the database is
one of the most important
parts of any application.
How do you represent
your ideas in a structured,
well-formed way? The first
and most important step
is to break down what you
know you want your
application to do, analyze
those tasks, and then
extract the important
parts.

166_ASPNET_toc.qxd 11/27/01 1:13 PM Page xxiv

Since 1996,ASP programmers have faced one upgrade after another, often with no
extremely visible advantages until version 3.x—it’s been quite a wild ride. Now we
have the first significant improvement in ASP programming within our grasp—
ASP.NET. Our reliance on a watered-down version of Visual Basic has been allevi-
ated now that ASP.NET pages may be programmed in both Microsoft’s new and
more powerful version of Visual Basic or the latest version of C++: C#, which is
more Web friendly.ASP.NET allows programmers and developers to work with both
VB.NET and C# within the same ASP.NET page. .NET itself is a milestone for
Microsoft; it marks Microsoft’s entry into the “run once, run everywhere” compiler
market alongside Java and Ruby. .NET is also notable for its extreme flexibility;
unlike the other choices available, .NET allows the programmer to use any number
of .NET-compliant languages to create its code (however, as of this writing, only
VB.NET and C# are allowed for ASP.NET) and have it run anywhere through the
robust .NET Framework.Visual Basic and C++ have undergone changes as well;
Visual Basic was already somewhat Web-oriented through its sibling,Visual Basic
Script (VBS).

Since VBS was not visually orientated, like Visual Basic, this meant that a lot of
the prewritten code employed by Visual Basic did not create performance issues.This
did mean, however, that VBS was not graced with an IDE to debug or troubleshoot
with, making the server logs and the browser error messages a programmer’s only
hope of figuring out what went wrong and where.The lack of an IDE led to several
complications and eventually programmers had to create their own error-handling
system, usually consisting of a log file and e-mail notification.

xxv

Foreword

166_ASPNET_fore.qxd 11/26/01 5:12 PM Page xxv

xxvi Foreword

VBS had another obstacle to overcome in attempting to offer programmers more
than what originally was basically a scaled-down version of Visual Basic.VBS lacked
many of Visual Basic’s strong features due to the way that the IIS was limited at the
time, especially with object creation and cleanup. Programmers experienced code or
objects locking up before destruction, rampant memory leaks, and even buffer over-
flows that were caused by IIS, not by the code itself.

With .NET in general,Visual Basic and VBS are now one and the same.All of
the Web-oriented abilities of VBS have been given to Visual Basic and it has received
a significant retooling of the language and syntax. Many previous problems, such as
poor memory management and object control, have been resolved by the .NET
Common Language Runtime (CLR) and internal programming additions, such as
the inclusion of the Try/Catch error-handling system and more low-level abilities
than before.All in all,Visual Basic can now be called a true programming language.

C++ retained all the aspects that made it a powerful programming language, such
as its excellent object control and error-handling techniques, in its new version, C#.
It has now gained a very good IDE as well as being more Web-based, a trait that can
be attributed to the .NET Framework and ASP.NET. It is expected that many pro-
grammers will still use C# for object control while combining it with Visual Basic’s
ease of use for GUI and presentation.

This book is meant to show all ASP programmers, new and old, just how pow-
erful ASP.NET now is. Unlike ASP 1.x through 3.x, which worked in Windows 95
through the Personal Web Server tool, you will need at least Windows 2000, all the
latest service packs, Internet Explorer 6, IIS 5.x (up to date), and the .NET SDK
installed.As of this writing, the latest version of .NET is Beta 2, which covers the
framework,ASP, and its programming languages. Remember, this book is meant to
be an introduction to ASP.NET, not VB.NET or C#. If you need a good book on
VB.NET or C#, I recommend looking to two other books published by Syngress
Publishing: The VB.NET Developer’s Guide (ISBN 1-928994-48-2) and The C#.NET
Web Developer’s Guide (ISBN 1-928994-50-4).

Chapter 1 of this book will give you a brief overview of the history of ASP and
offer insights into why and how it has evolved in its particular fashion.We’ll take a
look at its inception from Microsoft, the ups and downs of previous ASP versions,
and how ASP.NET will change the way we look at ASP from this point forward.
From there, we’ll start getting into the foundations of ASP.NET by looking at how
client-side and server-side viewing takes place. However, since this is still a beta
release, we will mention any possible security precautions that should be taken with

www.syngress.com

166_ASPNET_fore.qxd 11/26/01 5:12 PM Page xxvi

Foreword xxvii

ASP.NET. Chapter 2 will add to our .NET foundation by introducing us to name-
spaces (special attention will be given to the most commonly used namespaces):

■ System

■ System.Collections

■ System.Web

■ System.Data

■ System.XML

ASP.NET makes heavy use of these namespaces; therefore, it is vital we under-
stand their purpose!

With this foundation well in place, we can start looking at the innovations
ASP.NET brings with it. In Chapter 3, we will concentrate on ASP Server Controls.
Server Controls are used by ASP instead of the standard HTML form objects, such as
text boxes and select items.This allows for greater flexibility in your code design by
allowing for the creation of “forms,” which can be considered the ASP.NET method
of coding <DIV> layers.ASP Server Controls also allow you to call specific func-
tions as a response to particular actions within the form displayed, allowing for
greater programming control and flexibility.

Another innovation to ASP.NET is the usage of configuration files. Chapter 4
will describe how ASP.NET uses configuration files, how to edit them, and how
configuration files add to the flexibility of the way ASP.NET deals with data and
options. Chapter 5 continues this by introducing us to the layout of a standard
ASP.NET application. In many ways, the manner in which we look at an ASP appli-
cation hasn’t changed structurally, even though its inner workings have changed
greatly.We will also cover how Application State and Server State have changed in
.NET and the differences between the two. Managing the two states in ASP.NET is a
vital part of application creation and can literally make or break your program.
Chapter 6 introduces us to one of the more commonly misunderstood concepts of
ASP.NET: caching. Caching in ASP.NET retains ASP’s caching method (output
caching), but also adds fragment caching and data caching, as well as the capability to
pick and choose between the two within the application at any time.

Chapter 7 provides you with an in-depth look at one of the more common
namespaces, System.Data. System.Data is the .NET equivalent of ADO and contains
all the necessary functions for database control and creation as well as basic XML
control.We’ll first see how the System.Data namespace is structured, and then, by

www.syngress.com

166_ASPNET_fore.qxd 11/26/01 5:12 PM Page xxvii

xxviii Foreword

working with a basic address book, our first general-use ASP.NET application, we
will take a look at how System.Data allows us to do the following:

■ Connect to a database

■ Browse a database

■ Add to a database

■ Delete from a database

We will start coding this little application after we have had an opportunity to
fully understand the System.Data namespace. Basic XML support is provided through
System.Data.We will take a look at the basics of XML in Chapter 8. In general, XML
is structured similarly to HTML but it’s free from any type of tag rule—the tags are
totally arbitrary. However, we have to provide the tag names, content, and so on.This
means that we also have to sometimes do more work with XML than what
System.Data allows. XML provides us with various other tools, such as XSL and
XPath, to properly query and work with XML.While System.XML provides the tools
to work with XSL and XPath, they cannot help us much if we don’t understand
what the tools are for, so this is what Chapter 8 focuses on.

The .NET Framework provides ASP.NET with a powerful new debugging tool
through the Visual Studio .NET IDE. Chapter 9 shows us how to debug in
ASP.NET, also covering error handling, tracing, and how to work with the SDK
debugger. Many ASP programmers will tell you that these abilities were missing in
ASP and sorely needed! ASP threw error messages that were sometimes even more
arcane than Visual Basic and required checking of both IIS and the ASP error mes-
sages in order to track down the problem.

ASP.NET can also use .NET’s Web Services.Web Services allow ASP greater
flexibility over the Internet by allowing it to work with other applications through
the Internet as if it was a standard LAN network. It uses XML to transmit the data to
and from different sources.Web Services can also be considered as a connectivity
tool—objects, data sets, and even cached objects can be passed to and from other
servers.

We will finally walk through the development of three different sample applica-
tions so we can use what we’ve learned in the book. Chapter 11 will show us a
guestbook with a couple of nice touches; it is easy to implement, design, and
upgrade, using a combination of System.Data and System.XML. Chapter 12 will move
our programming up a notch by walking us through a simple ASP.NET shopping

www.syngress.com

166_ASPNET_fore.qxd 11/26/01 5:12 PM Page xxviii

Foreword xxix

cart, using most of ADO.NET’s capabilities. Lastly, Chapter 13 will round things out
by showing the development of a threaded ASP.NET message board that relies on
both ADO.NET and System.XML.

So, what we are looking at here is a huge new version of ASP within .NET.We’ll
be able to go through the basics, understand more of the innovations, and even have
a good grounding in what .NET is all about when it comes to the Web and ASP.
Let’s get started with Chapter 1.

—Jonothon Ortiz,Technical Editor

www.syngress.com

166_ASPNET_fore.qxd 11/26/01 5:12 PM Page xxix

166_ASPNET_fore.qxd 11/26/01 5:12 PM Page xxx

Introducing ASP.NET

Solutions in this chapter:

■ Learning from the History of ASP

■ Reviewing the Basics of the
ASP.NET Platform

■ How Web Servers Execute ASP Files

■ Taking Security Precautions

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 1

1

166_ASPNET_01.qxd 11/21/01 2:39 PM Page 1

2 Chapter 1 • Introducing ASP.NET

Introduction
With the advent of ASP.NET we see a shift from traditional scripting to the
beginning of full-fledged programming online.VBScript isn’t the only option
anymore, as programmers can now employ the full power that lies behind both
Visual Basic (VB) and C within their ASP.NET assemblies.

There is no denying the widespread acceptance that .NET received from the
developer community. It’s proven itself to be a well-developed framework with
solid ideas on how the programming world should continue to change.The
introduction of a software solution that enables anyone to code in any language
that is compatible with the framework is groundbreaking to say the least.

In this chapter we will take a look at how Active Server Pages (ASP) itself
began just a couple of years ago and how it has captivated programmers ever
since. It has had some problems, of course, but the .NET architecture seems to
have found solutions to many preexisting programming problems.There have also
been changes with how ASP works with the server and client, to provide the user
with the information that you want to provide.

Even though this is a stable beta, and many people are assuming already that
what we are seeing within Beta 2 is basically the “freeze” for many features, it still
has a couple of caveats, due to its beta nature. Learning from these problems
within the framework can allow for preparation against it.

Learning from the History of ASP
You can trace the history of ASP right back to 1995 and the momentous occa-
sion when Microsoft realized they were falling behind in a fundamental shift in
the industry by not embracing the Internet. Up until that point Microsoft had
been developing their proprietary technologies, tools, and network protocols for
the Microsoft Network; all of a sudden they needed an Internet strategy and fast.

Microsoft has gone from a position of playing catch-up to one close to domi-
nance, with the Internet Explorer Web browser having a strangle-hold on the
Web browsing market, and Internet Information Server (IIS) installed at the
majority of Fortune 1000 companies.

The Origins of ASP
Back in the mid ‘90s, when the commercial Web world was still young, there was
not a great deal of choice of tools for the Web developer who wanted to make
his or her Web site a truly useful place to do business.The choices were limited

www.syngress.com

166_ASPNET_01.qxd 11/21/01 2:39 PM Page 2

www.syngress.com

in both available server-side programming platforms and also desktop develop-
ment tools to produce the solutions. In the end, the programmer was stuck with
clumsy Common Gateway Interface (CGI) programs using compiled languages
such as C, Delphi, and Visual Basic, or interpreted scripting languages like Perl or
Rexx, and operating system shell scripts on systems such as UNIX.

In early 1996 Microsoft had a first stab at improving the situation by
including the Internet Server Application Programming Interface (ISAPI) tech-
nology as part of Internet Information Server. ISAPI is an extension to the
Windows Win32 API. It was developed as a way to create Web server software
that interacts with the inner workings of Internet Information Server, bringing
what was claimed to be a five-fold increase in performance.As you can well
imagine from this description, as well as the immediate performance increase, it
also had a side effect of increasing the complexity of the development for the
programmer. It wasn’t for the faint hearted, and it takes some serious hardcore
programming knowledge to do ISAPI applications right.As well as ISAPI,
Microsoft encouraged developers to embrace their Internet Database Connector
(IDC) technology.This was a new way to connect Web sites to back-end
databases through Open Database Connectivity (ODBC).

The ISAPI and IDC technologies lifted Microsoft’s youthful and as yet
unproven Web server from being a glorified file server to being a basic interactive
application server platform for the first time.

Other vendors had tools out there, and several were very popular, such as
Netscape Livewire. Livewire was a technology that ran under Netscape’s Web
server and used a version of JavaScript for page logic, and also used Java compo-
nents. Unfortunately, Livewire had similar limitations to ISAPI in that it was a
compiled technology and the server needed stopping and starting to make
changes visible.

Why ASP Was Needed
Not all Web developers have the programming skills needed to write ISAPI
applications, and because ISAPI requires the compilation of programs, there are
extra steps in producing an ISAPI-based site that slow development down.
Novice and intermediate programmers found the need to learn an industrial-
strength language, such as C++, and compile even the simplest of their page logic
into .dll files a real barrier.

Visual Basic programs, although easier to develop, when used for CGI, per-
formed poorly and the overhead hogged resources. Other languages such as Perl
require the Web server to launch a separate command-line program to interpret

Introducing ASP.NET • Chapter 1 3

166_ASPNET_01.qxd 11/21/01 2:39 PM Page 3

4 Chapter 1 • Introducing ASP.NET

and execute the requested scripts, increasing page-load time and reducing server
performance. CGI itself hogs resources because every page request forces the Web
servers to launch and kill new processes and communicate across these processes.
This is time consuming and also uses up precious RAM.

Another problem facing development teams in the mid ‘90s was the fact that
a Web site is a mixture of Hypertext Markup Language (HTML) and logic.They
needed a way to mix the programmer’s code with the designer’s page-layout
HTML and designs without one messing up the other.There were many solu-
tions to this problem, ranging from custom template systems to Sever Side
Include (SSI) statements that told the server to execute code based on special
HTML comment tags.

Database-driven interactivity was another challenge.The demand for complex
Web sites had just kicked off, and developers needed to supply that demand in a
manageable fashion, but the tools available did not make this an easy task.Those
who could achieve it demanded rewards that matched the difficulty of what they
were being asked to do.

What was needed was a solution for the rest of us. It needed to be a simple
scripted text-based technology like Perl, so developers could tweak and alter their
pages without compilation and with simple text-editing tools such as Notepad. It
needed to have low resource requirements while keeping high performance;
therefore it needed to be executed within the server environment just like ISAPI,
but without the complexity. Designers and cross-discipline teams demanded that
it should include SSI and template features to make integrating page layouts sim-
pler to manage.To be truly popular, it should run off a language that would be
easy to pick up and was familiar to a large community of developers. Enter Active
Server Pages!

Why ASP Was Not Originally Embraced
Active Server Pages was not an overnight success, though understandably it did
capture the imagination of a large sector of the development community, particu-
larly those already well versed in Visual Basic programming or Visual Basic for
applications scripting.

Others who did not have an investment in Visual Basic knowledge found the
limitations of Visual Basic, and by extension Visual Basic Scripting, reasons to
avoid the technology. Faults included poor memory management, the lack of
strong string management abilities, such as Regular Expressions, found in other
established languages.When compared to CGI with Perl,ASP was found lacking.

www.syngress.com

166_ASPNET_01.qxd 11/21/01 2:39 PM Page 4

Introducing ASP.NET • Chapter 1 5

At that time, Internet Information Server was in its infancy, and take-up was
low, despite Microsoft’s public relations juggernaut going into full flow after the
company’s much-reported dramatic turnaround. In comparison to current versions
of the software it seems very poor, but it was still competitive on performance.

Until 1997, back-end Web programming was pretty much owned by CGI
and Perl. High-performance Web sites usually had a mix of C-compiled programs
for the real business engine, and Perl for the more lightweight form processing.

There was a fair amount of doubt and suspicion around Microsoft’s Internet
efforts, including IIS and Internet Explorer, and ISAPI had not done all that
much to bring across a huge sector of the development community. Despite this
uncertain atmosphere, Microsoft saw many Windows NT 4 licenses being bought
specifically for Web hosting and development increasing.Third-party support for
anything other than small components was initially slow, but, as with all Microsoft
products, after the first couple of releases they usually get things right, and ASP
was no exception.

Whereas Perl had a huge community of developers led by the heroic figure
of Larry Wall, the ASP developer was not yet well supported.A Perl programmer
was encouraged from the top to share and make his or her code open, so the
community thrived, with every conceivable solution or library just a few clicks
away at the Comprehensive Perl Archive Network (CPAN) site, or at one of the
many other Web sites and news groups. Contrast this with the ingrained compet-
itive and financially led philosophies of the third-party component vendors in the
Windows Distributed Internet Applications (DNA) world. Of course, it did not
take the ASP community long to grow to be the loving, sharing success it is now.

Developing ASP 1.x
ASP 1 was an upgrade to Internet Information Server 2, bringing it up to ver-
sion 3, and was installed as an optional downloaded component.The public beta
was first made available in October 1996 and the final release was a factor in IIS
quickly overtaking Netscape in the server market.

Around the same period, Microsoft had purchased and further developed a
Web site authoring tool called FrontPage that brought with it a new organiza-
tional and hosting concept of the FrontPage Web, enabling the developer to
deploy Web applications in drag and drop style without using the File Transfer
Protocol (FTP).This concept would be carried through into Microsoft Visual
Interdev, Microsoft’s new HTML and ASP editing environment.

ASP 1 was surprisingly feature-rich for a version 1 product. It included much
of the revolutionary functionality ASP that today’s programmers take for granted,

www.syngress.com

166_ASPNET_01.qxd 11/21/01 2:39 PM Page 5

6 Chapter 1 • Introducing ASP.NET

such as ActiveX Data Objects that shield the programmer from differences in
database implementations, with record sets to easily access and navigate database
query results, and the ability to mix and match logic and presentation code in the
same page. Programmers found the limitations of some areas frustrating, for
example, options for reading and writing to the file system; but overall,ASP 1
was a breath of fresh air, and many developers quickly and eagerly adopted it.

Developing ASP 2.x
Once ASP 1 had settled and become established, Microsoft released a new ver-
sion of Internet Information Server and an upgrade to ASP, with a combined
download called the Windows NT 4 Option Pack.This time,ASP was built in to
the Web server setup and was not seen as an extra.The Web server was a big
improvement, with better support and functionality all round and the addition of
a Simple Mail Transfer Protocol (SMTP) Mail service.

With ASP 2, the technology matured to the point where developers could
really implement powerful, large-scale solutions. Big-name companies adopted
the Microsoft platform for their high traffic transactional sites and the technology
proved itself time and again against the demands of serving up millions of page
views.

From launch,ASP 2 showed improvements across the board, such as increased
file system functionality, added components, and language improvements.Third-
party developers released components into the market place that filled in every
conceivable gap in functionality, and developers were producing their own
bespoke components through ASP’s Component Object Model (COM)-based
architecture.

Developer tools also had upgrades, with Visual Interdev becoming much
improved and better integrated into the Visual Studio suite, with access to Visual
Source Safe for source control.Third-party tool vendors had also developed their
own solutions, with many wizard-style developers’ toolkits and integrated envi-
ronments coming to market, such as the popular Macromedia Ultradev.

More recently, Microsoft extended the language code with incremental
releases of the language runtime Scripting Engines, allowing for improvements in
the languages, such as support for Regular Expressions, without the need for full
new versions of Active Server Pages.

Major Changes with ASP 2
Moving to Active Server Pages 2 brought the developer into a more stable and
feature-rich environment.All aspects of the technology were tuned and tweaked,

www.syngress.com

166_ASPNET_01.qxd 11/21/01 2:39 PM Page 6

Introducing ASP.NET • Chapter 1 7

and programmers really felt that things had settled into a stable technology.This
newfound confidence was in part due to the evidence of successful transactional
sites actually showing that the platform could deliver, but also the fact that the
technology had been boosted under the hood with tighter integration with
Microsoft Transaction Server (MTS). In fact, IIS 4 was rebuilt to be a MTS appli-
cation, and so ASP and MTS components were actually running in the same pro-
cesses.Another improvement was the work with Microsoft Message Queue.This
allowed ASP and components to communicate across networks, ideal for large-
scale applications with complex backend requirements, for example, e-commerce
systems integrating with existing legacy enterprise resource planning (ERP)
infrastructures.

Weaknesses in the ASP 2 Model
Failings in the ASP 2 model were most noticeable when the platform was con-
trasted against newcomers and developments in other technologies, such as Java
Server Pages (JSP), Perl 5, PHP, and ColdFusion.

The main contender for ASP mind-share in Microsoft’s most-needed market-
place, large-scale blue chip projects, was Java Server Pages. Microsoft could dismiss
the others as low-rent small to medium business and hobbyist technologies, and
had an army of certified solutions companies and consultants to take care of
those. On the other hand, products from Microsoft’s biggest competitors, such as
IBM, Oracle, and Sun, supported Java, and these companies had massive opinion-
forming clout in the world’s largest corporations.As well as products such as IBM
Net.Commerce (now Websphere), other vendors such as ATG and Broadvision
were releasing application servers based around Java.To make matters worse,
Microsoft could not claim to have the better technology.

JSP was outperforming and out-scaling ASP, plus the application servers and
host operating systems proved time and again to be more robust and stable, and
had lower cost of ownership and higher uptime!

The Java Server Pages and Servlets technologies allowed performance gains
against ASP 2 partly because the code is compiled before execution.The Java lan-
guage also had better error handling, object orientation, housekeeping, and vari-
able typing.ASP, on the other hand, was based around interpreted scripting and
languages that were compromised shadows of their already flawed parents.

Developing ASP 3.0
With the release of Windows 2000,Active Server Pages 3 was available.
Performance was increased considerably by the addition of a step in the execution

www.syngress.com

166_ASPNET_01.qxd 11/21/01 2:39 PM Page 7

8 Chapter 1 • Introducing ASP.NET

of the pages that checked for a previously cached version of the compiled page, and
the compiler checking for script elements rather than always processing the page
line by line.

The Windows 2000 operating system and features in IIS5 that included
the option to selectively separate out Web applications and processes addressed
stability issues.

Functionally, it did not have many revolutionary additions (perhaps they were
waiting for .NET, which was already on the drawing board at Microsoft), but
developers did get several features they had been asking for, such as server-side
redirects to replace the Hypertext Transfer Protocol (HTTP)-header client-side
implementation, better error handling, and dynamic includes.

Final Changes to Original ASP Model
With version 3, Microsoft introduced the concept of server scriptlets.These were
COM objects that were developed as Extensible Markup Language (XML)-based
text files.This enabled programmers to rapidly prototype multi-tiered application
business logic without the “change, recompile, upload, stop the server, register,
test, change” cycle of component development.

ASP and ActiveX Data Objects (ADO) were given a boost in capability with
the addition of XML-processing abilities. XML was, at this point, a massive deal
in the developer community, and Microsoft wanted to appear to be fully
embracing it, and so the whole of Microsoft’s product line seemed to be
receiving an XML makeover.

As well as the new script execution changes mentioned earlier, it included
many other performance improvements, such as the ability of the Web server to
self-tune, checking adding threads when needed, and having response buffering
on by default.

Weaknesses in the ASP 3 Model
Despite the great achievements of Active Server Pages, particularly in the areas of
speed and stability, the platform was still based on incomplete scripting languages
of VBScript and JScript, and third-party languages such as Perl.

Scripting languages required the developer to compromise coding standards
and bolster the application with components written in a second language, usu-
ally C++ or VB.The languages were not properly object oriented, although they
were object-aware, and could never perform very well whenever they required an
interpreter to execute.

www.syngress.com

166_ASPNET_01.qxd 11/21/01 2:39 PM Page 8

Introducing ASP.NET • Chapter 1 9

The reliance on the systems administrator for Web server configurations was
also a problem; the administrator must register components, settings, and permis-
sions on the server, and so deployment was not as simple as just uploading your
files. Programmers were bound to ask, after several years of Java programmer col-
leagues evangelizing Java Server Pages,“What is Microsoft going to do?”

The Need for a New ASP Model
It was evident that Microsoft would require a fundamental change to bring ASP
up to the standard of industrial-strength programming.Active Server Pages was a
technology based on the foundations of COM.ActiveX and COM technology
provided much of its strength, but also many of its limitations. Microsoft would
need to have a long hard look at COM to see how it could improve, and these
changes would be bound to affect ASP.At the same time, Microsoft realized that
the developers’ playing field was changing, with new standards arriving all the
time, particularly in information-sharing and distributed applications using XML,
such as Simple Object Access Protocol (SOAP) and XML-RPC.Web services
were becoming all the rage; Java was everywhere, and XML was taking the devel-
oper community by storm.A new version of ASP was not going to be enough to
meet these demands; the changes must be more far-reaching if they were not just
going to catch up but also take the lead against such tough challenges.

ASP and Windows DNA, being based on early 1990’s COM and Win32 API
technologies, did not provide a very coherent technical architecture roadmap for
modern distributed applications, whereas with Java 2 Enterprise Edition (J2EE),
Sun had a suite of technologies that developers could follow, starting small with
Standard Edition projects and scaling up to full Enterprise JavaBeans.

In today’s world, we do not have to contend just with different Web browsers
but also with different distribution channels and modes of operation, with mobile
phones and computers, interactive digital TV, intelligent appliances, digitally net-
worked homes, and possibly moving from Web pages to disposable applications
and Web services.

No doubt, as Microsoft was looking at their own technologies they must have
analyzed the competition.As they announced the .NET framework, they also
introduced a new language for the twenty-first century, C#. C# and .NET
would address all of the criticisms, provide for a whole new way of looking at
applications and the Web, and replace everything that had gone before, including
Microsoft’s flagships Visual C++,Visual Basic, and Active Server Pages.

www.syngress.com

166_ASPNET_01.qxd 11/21/01 2:39 PM Page 9

10 Chapter 1 • Introducing ASP.NET

The ASP Timeline
Before looking at ASP.NET, let’s briefly take a look at the short but eventful his-
tory of Active Server Pages to see how we got to where we are today:

■ December 1995 Microsoft makes a dramatic U-turn and announces
that their whole product lineup will be refocused to embrace the
Internet. Up until this point they had largely ignored the Internet
market and had fallen dangerously behind the competition.

■ February 1996 Microsoft releases Internet Information Server to the
public for free download. Microsoft spokespeople claim that the server
offers a four-fold increase in performance over Netscape Netsite server.
IIS includes ISAPI and IDC technologies.

■ With the release of Windows NT 4, IIS version 2 is bundled, while
IIS 1 is available for Windows NT 3.51.

■ October 1996 Microsoft releases the public beta for IIS 3 as an
optional upgrade to IIS 2.The major change with this version is the
inclusion of a new development environment called Active Server Pages,
formerly known under its project name of “Denali.”As part of their
public relations campaign, Microsoft claims they are beating Netscape 2-
1 in the server market. IIS no longer supports MIPS and NT 3.51.

■ August 1997 Microsoft releases ASP 2 with IIS 4. IIS now includes the
Microsoft Management Console (MMC) to make administering the
server more straightforward, and the SMTP server is now bundled,
having previously been a part of the Commercial package. IIS and ASP
are now tightly integrated with Microsoft Transaction Server, and this is
seen as a real step forward in making the platform a credible choice for
large-scale deployment.

■ 1998–2000 Microsoft started releasing incremental versions of the lan-
guage Scripting Engines, adding language features and functionality
without the need for full ASP version updates, such as the addition of
Regular Expressions for VBScript programmers.

■ With the release of Windows 2000 with IIS 5,Active Server Pages 3
became available.ASP 3 allowed for server-side redirects, better error
support,ADO 2.5 with support for XML, and caching of compiled
code. IIS 5 enabled the administrator to finely separate processes to
prevent crashing of the server.

www.syngress.com

166_ASPNET_01.qxd 11/21/01 2:39 PM Page 10

Introducing ASP.NET • Chapter 1 11

■ July 2000 .NET makes their first public announcement, revealing their
new C# language, promising to deliver better functionality and flexi-
bility than ever before, and promising support for a wide variety of
Internet standards.

Reviewing the Basics
of the ASP.NET Platform
Microsoft has done a great job of bringing ASP and their older languages into
the twenty-first century with .NET.ASP.NET, using VB.NET, is now a full-
fledged object-oriented Web application development platform, and has seen
many improvements; but the past legacy languages should not hold back a new
initiative as massive as .NET, so Microsoft developed a new headline-grabbing
language for the .NET Framework, called C#.

C# was built from scratch as the .NET language.While it has features familiar
to C programmers, and it has some of the great RAD features so beloved by
Visual Basic programmers, it is completely new. Some have said that C# is
Microsoft’s “me too” language to compete with Sun’s Java.

If Microsoft does one thing well, that is building developer tools, (remember,
the product that first put Microsoft on the map was their version of Basic), and
C# with Visual Studio.NET certainly lives up to expectations. C# is a truly
modern language with all the features you could wish for, such as full object-ori-
entation (unlike the C++ bolted-on approach), automatic memory management,
and housekeeping.

The following are some key points about ASP.NET:

■ ASP.NET is a key part of the wider Microsoft .NET initiative,
Microsoft’s new application development platform.

■ .NET is both an application architecture to replace the Windows DNA
model and a set of tools, services, applications and servers based around
the .NET Framework and common language runtime (CLR).

■ Rather than just being ASP 4 or an incremental upgrade,ASP.NET is a
complete rewrite from the ground up, using all the advanced features
.NET makes available.

■ ASP.NET can take advantage of all that .NET has to offer, including
support for around 20 or more .NET languages from C# to Perl.NET,
and the full set of .NET Framework software libraries.

www.syngress.com

166_ASPNET_01.qxd 11/21/01 2:39 PM Page 11

12 Chapter 1 • Introducing ASP.NET

■ Web applications written in ASP.NET are fast, efficient, manageable,
scalable, and flexible, but, above all, easy to understand and to code!

■ Components and Web applications are all compiled .NET objects
written in the same languages, and they offer the same functionality, so
no need to leave the ASP environment for purely functional reasons.

■ You’ll have less need for third-party components.With a few lines of
code,ASP.NET can talk to XML, serve as or consume a Web service,
upload files,“screen scrape” a remote site, or generate an image.

Utilizing the Flexibility of ASP.NET
With the .NET Framework and ASP.NET, Microsoft has not just shown itself to
be a contender in Web development technologies, but many commentators also
believe Microsoft has taken the lead.ASP.NET is well equipped for any task you
want to put to it, from building intranets to e-business or e-commerce mega-
sites. Microsoft has been very careful to include the functionality and flexibility
developers will require, while maintaining the easy-to-use nature of ASP.

■ With ASP.NET you now have a true choice of languages.All the .NET
languages have access to the same foundation class libraries, the same
type of systems, equal object orientation and inheritance abilities, and
full interoperability with existing COM components.

■ You can use the same knowledge and code investment for everything
from Web development to component development or enterprise sys-
tems, and developers do not have to be concerned about differences in
APIs or variable type conversions, or even deployment.

■ ASP.NET incorporates all the important standards of our time, such as
XML and SOAP, plus with ADO.NET and the foundation class libraries,
they are arguably easier to implement than in any other technology,
including Java.

■ An ASP.NET programmer still only needs a computer with Notepad
and the ability to FTP to write ASP code, but now with the .NET
Framework command-line tools and the platform’s XML-based configu-
ration, this is truer than before!

■ Microsoft has included in the .NET Framework an incredibly rich fea-
ture set of library classes, from network-handling functions for dealing
with Transmission Control Protocol/Internet Protocol (TCP/IP) and

www.syngress.com

166_ASPNET_01.qxd 11/21/01 2:39 PM Page 12

Introducing ASP.NET • Chapter 1 13

Domain Name System (DNS), through to XML data and Web Services,
to graphic drawing.

■ In the past, the limitations of ASP scripting meant components were
required for functionality reasons, not just for architectural reasons.
ASP.NET has access to the same functionality and uses the same lan-
guages in which you would create components, so now components are
an architectural choice only.

■ A .NET developer is shielded from changes in the underlying operating
system and API, as the .NET technologies deal with how your code is
implemented; and with the Common Type System, you don’t have to
worry whether the component you are building uses a different imple-
mentation of a string or integer to the language it will be used in.

Converting Code into Multiple Languages
As supplied by Microsoft,ASP.NET and the .NET Framework consist of three
main languages: JScript.NET,VB.NET, and C#. Other vendors have available or
have announced many more, such as Perl.NET, COBOL.NET, and a version of
Python.

www.syngress.com

Deploying ASP.NET Applications
In previous ASP versions, deploying your application required careful plan-
ning, particularly if the system was large and complex. This was because
of various factors, including the requirement to upload, install, and reg-
ister components, necessitating stopping and starting the Web server and
ensuring that you had the correct version. You had to configure Web
servers through Microsoft Management Console, ADSI, or command-line
tools, also often requiring you to stop and restart services.

With ASP.NET, this has all been simplified. ASP files, components,
and configuration options are all files that you upload together. You do
not need to register components, and you can specify nearly all config-
uration changes using XML format text files. ASP.NET has even simplified
software version dependencies by enabling you to host several versions
of a component on the same system.

Developing & Deploying…

166_ASPNET_01.qxd 11/21/01 2:39 PM Page 13

14 Chapter 1 • Introducing ASP.NET

JScript has been updated to be a full-fledged language and to take account of
the object-oriented nature of .NET. Experienced JScript developers should feel
very at home and be pleasantly surprised at the new additions.

VB.NET replaces VBScript support, but is similar enough in operation that it
isn’t too steep a learning curve for VBScript programmers, and as with JScript
above, it provides you with full access to all that .NET has to offer, including, for
the first time, full object orientation.

C# has been (perhaps unfairly) described as J++ mark 2.There is more to it
than that. C# is effectively C++ built from scratch.The problems with C++ are
well documented, so there is no need to go into them here, but suffice it to say
that in C++, object orientation was an optional bolted-on afterthought, whereas
in C#, it was built in from the ground up.

All the functionality and support of the .NET Framework is available to any
of the .NET languages, and in addition, objects written under one language can
be used, inherited, and extended under any of the others.This is a very powerful
concept and introduces the idea of language independence.This is achieved
through the Common Language Runtime technology.

The CLR takes your .NET language code and converts it into an interme-
diate language (Microsoft Intermediate Language [MSIL]), and this intermediate
language is then compiled to target machine-specific binary code.The
Intermediate Language specification is one of the many .NET technologies that
have been submitted to standards bodies, and several projects are under way to
transport the software over to non-windows platforms, such as Mono and
Portable.NET in the open source community, and to developments from Corel
and Borland.

Comparing Improvements in
ASP.NET to Previous ASP Models
The first difference an experienced ASP developer will notice is that VBScript
support has been dropped in favor of VB.NET.This is not as much of a hurdle as
it sounds like, as the syntax is quite similar, and VB.NET is a full-fledged language
and so provides a lot richer environment than VBScript ever could.

As described above, all ASP.NET languages are object oriented, event driven,
and server compiled.This brings many benefits, especially where improvements
were needed most, namely performance, stability, scalability, and manageability.

With Classic ASP, you pretty much had to code your whole application from
scratch.ASP.NET has several labor-saving additions to make life easier.Web forms

www.syngress.com

166_ASPNET_01.qxd 11/21/01 2:39 PM Page 14

Introducing ASP.NET • Chapter 1 15

introduce a new Visual Basic Rapid Development-style way of looking at forms
in Web pages.With Web Forms, the developer uses new form components that
you can add in the traditional way or through code, and they enable the pro-
grammer to call on server-side event-driven programming and true separation of
layout and logic.You can separate the layout code and functions by using code
behind pages that use inheritance to add methods to the form. .NET form con-
trols maintain the session state so the users input remains when the page is sub-
mitted, and the controls’ property values are available to the ASP code without
resorting to querying the request object.

The framework foundation class libraries contain exciting new features, previ-
ously only available from third parties such as the System.Drawing tools, which
enable you to build dynamic images on the fly, built-in browser-based file upload
and system network services for working with TCP/IP and DNS.

With Web Services and built-in support for SOAP you can distribute code
and applications.Your ASP.NET scripts can consume services across the Web, and
publish and expose routines as services just as easily.

Deployment, including server configuration, is mostly just a matter of trans-
ferring files with configuration that was previously only available from the MMC
now implemented with XML files. Now you do not need to register and unreg-
ister components, and the server can handle multiple versions of the same com-
ponent without conflicts.

Mission critical services has increased support with load balancing and several
state-management options, including the ability to store state information in an
SQL Server database and pass the session ID on the URL to avoid requiring the
user to have cookies.

How Web Servers Execute ASP Files
When a site visitor requests a Web page address, the browser contacts the Web
server specified in the address URL and makes a request for the page by formu-
lating a HTTP request, which is sent to the Web server.The Web server on
receiving the request determines the file type requested and passes processing to
the appropriate handler.ASP.NET files are compiled, if necessary, into .NET Page
classes and then executed, with the results sent to the client’s browser.

Compilation means that on first load ASP.NET applications take longer to dis-
play than previous versions of ASP, but once compiled they are noticeably faster.

www.syngress.com

166_ASPNET_01.qxd 11/21/01 2:39 PM Page 15

16 Chapter 1 • Introducing ASP.NET

Client-Server Interaction
ASP.NET applications are a mixture of client side markup and code, and server
side processing.When an ASP.NET Web form page is downloaded to the visitor’s
Web browser, additional code is included to previous ASP versions.This extra
code enables richer form functionality, including server and client side events,
validation, and the ability to maintain form value state.The server determines the
visitor’s browser type and sends markup to match the browser’s abilities.

Some client interactions will be dealt with within the visitor’s browser, while
others will require information to be posted to the server for processing and the
altered page returned.

As form responses are received, the form values are maintained in a new
facility of ASP.NET “State Bags” and are compressed into a hidden form element
containing the page “Viewstate.”This allows the form elements that the visitor
has interacted with to maintain the same values as when the page was submitted.

As illustrated in Figure 1.1, the browser can request information from and
send information to the server using two HTTP methods, GET and POST.

GET is simply the method in which the browser compiles a URL.A typical
URL in this context will consist of a protocol, for example, HTTP for hypertext or
FTP for file transfer, a fully qualified domain name, such as “www.aspalliance.com,”
followed by a path, such as “/chrisg/”, and then the page to GET, such as

www.syngress.com

Figure 1.1 How the Client and Server Communicate

Web Server

File
System

ASP.NET

Request

Response

File System

ADO.NET

Response

GET
POST

Database

166_ASPNET_01.qxd 11/21/01 2:39 PM Page 16

Introducing ASP.NET • Chapter 1 17

“default.asp” or “index.html.” You can add information as parameters, called a
querystring.This is separated from the rest of the URL with a question mark, and
the parameters take the form of keywords and values such as “keyword=value,” for
example,“article=5.” Multiple parameters are separated with ampersands, so if we
have two parameters, foo and bar, they would be presented like foo=a&bar=z. So, a
full GET request including querystring could be http://www.abcxyz123.com/
site/index.asp?page=5.

When a browser sends information using the POST method, the parameters
are compiled in the same way but sent separately in the HTTP header, and so are
not seen in the URL portion of the browser like GET requests are. Forms often
use POST for this very reason.

Other information goes into the HTTP request header, such as what browser
the user is using and so on.As you will see later, your ASP can pick up this
header information and the querystring parameter values.

Server-Side Processing
When the server receives this request, it will find the page that was requested
using the path information specified, and the relevant system will process the
page. In the case of Classic ASP, there was not much to this process, although a
certain amount of caching happened.As you will see in Figure 1.2, with
ASP.NET the process is a fair amount more involved but provides for much faster
processing and delivery.

www.syngress.com

Figure 1.2 The Server-Side Compilation and Delivery Process

Server
Finds File

ASP.NET
Process

Changed?

Execute

Save

Compile
Yes

No

Response

Request

Compilation
Errors

166_ASPNET_01.qxd 11/21/01 2:39 PM Page 17

http://www.abcxyz123.com/

18 Chapter 1 • Introducing ASP.NET

The server will process the ASP.NET page using a special .dll especially for
ASP.NET.As with previous versions of ASP,ASP.NET has a large collection of
objects that deal with processing certain functions such as the HTTP request,
databases, the file system, and forming the response.

When the response is complete, it is flushed back out to the user’s browser,
usually as HTML but not necessarily, and the browser renders this page as it
arrives as the page on screen.

Compiling and Delivering ASP.NET Pages
The process of compiling and delivering ASP.NET pages goes through the fol-
lowing stages:

1. IIS matches the URL in the request against a file on the physical file
system (hard disk) by translating the virtual path (for example, /site/
index.aspx) into a path relative to the site’s Web root (for example,
d:\domains\thisSite\wwwroot\site\index.aspx).

2. Once the file is found, the file extension (.aspx) is matched against a list
of known file types for either sending on to the visitor or for processing.

3. If this is first visit to the page since the file was last changed, the ASP
code is compiled into an assembly using the Common Language
Runtime compiler, into MSIL, and then into machine-specific binary
code for execution.

4. The binary code is a .NET class .dll and is stored in a temporary location.

5. Next time the page is requested the server will check to see if the code
has changed. If the code is the same, then the compilation step is skipped
and the previously compiled class code is executed; otherwise, the class is
deleted and recompiled from the new source.

6. The compiled code is executed and the request values are interpreted,
such as form input fields or URL parameters.

7. If the developer has used Web forms, then the server can detect what
software the visitor is using and render pages that are tailored to the visi-
tors requirements, for example, returning Netscape specific code, or
Wireless Markup Language (WML) code for mobiles.

8. Any results are delivered back to the visitor’s Web browser.

9. Form elements are converted into client side markup and script, HTML
and JavaScript for Web browsers, and WML and WMLScript for mobiles,
for example.

www.syngress.com

166_ASPNET_01.qxd 11/21/01 2:39 PM Page 18

Introducing ASP.NET • Chapter 1 19

Running ASP.NET Web Pages
In order to run and host ASP.NET Web pages, you will need to have installed the
.NET Framework onto a machine already running Windows 2000 professional or
server and Internet Information Server 5. Microsoft recommends that you develop
under Windows 2000, although it is possible to use Windows XP. Unfortunately,
Windows 98 and Windows NT 4 are not supported at the time of this writing,
although you can use Visual Studio.

There are two versions of the software development kit (SDK): the standard
.NET Framework download and the premium version.The main difference
between the two is that the premium edition provides support for multiple pro-
cessors,Web farms, and sandbox security.

Obtaining and Installing .NET
You can get the .NET Framework Software Development Kit on CD-ROM
from Microsoft by request or via their developer’s network subscription service. If
you do not have access to an installation CD-ROM, be prepared for a hefty
download (almost 20 MB).

■ The SDK is available for download from www.asp.net and www.got-
dotnet.com as well as from Microsoft’s corporate site, but look out for
other mirrors appearing closer to home to improve download time.

■ Installation is really simple and it is advisable that you install all compo-
nents including the ADO update (version 2.7) and the samples, if you
are installing on your own development machine.The documentation is
excellent, so it would be a shame to leave it out, although it is available
to view on the Web.

■ You can install sample applications, a set of databases in a desktop ver-
sion of Microsoft SQL Server, called the Microsoft Data Engine (or
Microsoft SQL Server Desktop Edition according to the installation
program), as part of the full installation by selecting the option once all
SDK files are set up.

■ Several Internet Service Providers (ISPs) are already supporting
ASP.NET with beta 2, such as www.Orcsweb.com, and even providing
free hosting, for example, www.brinkster.com.

www.syngress.com

166_ASPNET_01.qxd 11/21/01 2:39 PM Page 19

20 Chapter 1 • Introducing ASP.NET

Creating Your First ASP.NET Application
For your first sample ASP.NET projects, let’s take a look at some very simple
examples, first using VB.NET, and then, for comparison, the same project built
with C#.As you will see,ASP.NET is very easy, and you will be up and running
in no time at all.

1. Start a new document in either Visual Studio.NET or the text editor of
your choice.

2. Enter the code from Figure 1.3 into the document, and then go to File
| Save As and name it HelloWorld.ASPX in your Web root folder.

Figure 1.3 Hello World Example

<html>

<head>

<title>Example 1: Hello World</title>

</head>

<body bgcolor=white>

<h1>

<% response.write("Hello World") %>

</h1>

</body>

</html>

3. Launch your Web browser and enter the location of the new file (e.g.,
localhost/helloworld.aspx).You should see something like the screenshot
in Figure 1.4.

This HTML markup should all be familiar; it is just a basic Web page.The
main difference you will notice is the addition of code within <% and %> tags.
This is our ASP.NET code. By default,ASP.NET uses VB.NET language (we will
look at C# later).

<% response.write("Hello World") %>

www.syngress.com

166_ASPNET_01.qxd 11/21/01 2:39 PM Page 20

Introducing ASP.NET • Chapter 1 21

This code tells the server to output the text “Hello World” to the user’s
browser.Alternative shorthand for outputting values is to use the following form,
where value is the variable or literal you wish to output.

<%=value%>

Since that is not much of an example, and nothing you couldn’t do as well in
classic ASP, or HTML for that matter, let’s expand the example a bit.With the
code in Figure 1.5, we will use the ASP.NET browser capability function of the
Request object.

Figure 1.5 Hello World with Browser Capabilities Example

<html>

<head>

<title>Example 1: Hello World</title>

</head>

<body bgcolor=white>

www.syngress.com

Figure 1.4 Script from Figure 1.3 Displayed in a Browser

Continued

166_ASPNET_01.qxd 11/21/01 2:39 PM Page 21

22 Chapter 1 • Introducing ASP.NET

<%

dim strUsersBrowser as string

strUsersBrowser&=request.browser.browser

strUsersBrowser&=cstr(request.browser.majorversion)

strUsersBrowser&="."

strUsersBrowser&=cstr(request.browser.minorversion)

response.write("<h1>Your web browser is " & strUsersBrowser & "</h1>")

%>

</body>

</html>

Within this code, you can see that we first declare we want to use a new
string variable, which we will use to store and display the user’s browser type:

dim strUsersBrowser as string

Next, we add the result of the Request.Browser.Browser object property
to our string.This method returns the name of the visitor’s browser:

strUsersBrowser+=request.browser.browser

Then, we use the .majorversion and .minorversion properties converted
to strings using CStr, which will return the version numbers of the browser:

strUsersBrowser+=cstr(request.browser.majorversion)

Finally, we output the result to the user with Response.Write.
In Classic ASP we would have had to create a reference to a browser capabili-

ties component and ensured that our browsecap.ini configuration file was up to
date.With the new in-built browser capabilities feature, we simply have to request
the values, and in theory at least the browser name and version should always be
up to date as the browser version is detected by using regular expressions. Figures
1.6 and 1.7 show the script display in IE6 and Netscape 6.

As explained earlier, Microsoft has introduced a new language especially for
.NET, called C#.As this is now Microsoft’s flagship language, and the most likely
language to be supported by Open Source projects, it is probably useful to show
you now how our previous example looks when coded in C#.

www.syngress.com

Figure 1.5 Continued

166_ASPNET_01.qxd 11/21/01 2:39 PM Page 22

Introducing ASP.NET • Chapter 1 23

www.syngress.com

Figure 1.6 Browser Detect with IE6

Figure 1.7 Browser Detect with Netscape 6.0

166_ASPNET_01.qxd 11/21/01 2:39 PM Page 23

24 Chapter 1 • Introducing ASP.NET

Figure 1.8 takes the browser detection example and simply recodes it into the
C# syntax.The very first line shows the first distinction between this and the
VB.NET version.VB.NET is the default language of ASP.NET, and, therefore, to
use that language you just start coding. On the other hand, if you want to use
C#, you must declare this with the language declaration.

Another major difference is that C# is case sensitive. If you had entered
request rather than Request, the compiler will return with “The type or
namespace name ‘request’ could not be found.”This is a common source of errors
for VBScript programmers learning C#; as in VBScript, case is largely a matter of
personal programming style.

The third difference is how lines of code are terminated. In C#, lines end with
a semicolon, while in VBScript and VB.NET the lines end with a carriage return.

Comments in C# take the form of two forward slashes (“//”). In VB.NET
and VBScript it was an apostrophe.This form of comment must not flow over
more than one line. If you require multi-line comments, then either enter double
slashes at the beginning of each line or use the alternative form of “/*” at the
beginning of the comment and “*/” at the end.

Remaining differences are the variable declaration where we use “string vari-
ablename” rather than “dim variablename” and we use “.ToString()” instead of
“CStr,” and strings are concatenated with a plus symbol instead of the ampersand
in VB.

C# will of course be familiar to C programmers, but also should be quite
familiar to anyone who has programmed in Java, JavaScript, and so on. It is a nice,

www.syngress.com

Running in Parallel
You are not forced into changing to ASP.NET just by installing the .NET
Framework. ASP.NET pages and applications will run quite happily along-
side classic ASP scripts. ASP.NET and Global files use new file extensions
and run under new runtime environments. You can continue to use your
old COM components in your ASP.NET applications; plus, any new .NET
components you create you may use as COM components within your
Classic ASP projects. Interestingly, Microsoft states that you will be able to
run any future versions of .NET in parallel with previous versions, too.

Migrating…

166_ASPNET_01.qxd 11/21/01 2:39 PM Page 24

Introducing ASP.NET • Chapter 1 25

fresh, clean language, with all of the best bits of C++ and Visual Basic without
the clumsy baggage. Even though VB.NET will be many programmers’ bread and
butter language, C# is well worth the effort to learn.

Figure 1.8 Example C# Code

<%@ page language="c#" %>

<html>

<head>

<title>Chapter 1</title>

</head>

<body bgcolor=white>

<%

/*

comments are either entered with slashes like below

or multi-line comments can be entered like this

*/

// # we declare string variables with string rather than dim

string strUsersBrowser = "";

// # make sure you use the correct case!

strUsersBrowser+=Request.Browser.Browser;

strUsersBrowser+=Request.Browser.MajorVersion.ToString();

strUsersBrowser+=".";

strUsersBrowser+=Request.Browser.MinorVersion.ToString();

// # strings are concatenated with + in C#

Response.Write("<h1>Your web browser is " + strUsersBrowser + "</h1>");

%>

www.syngress.com

Continued

166_ASPNET_01.qxd 11/21/01 2:39 PM Page 25

26 Chapter 1 • Introducing ASP.NET

</body>

</html>

Upgrading from Classic ASP
Many ASP developers will have years and years’ worth of historical code, and
thousands of live Web sites are running happily.As mentioned previously, the
installation of the .NET Framework will not stop anything from working, so just
by installing the software you are not forcing a decision to upgrade.What do you
do, though, if you want to upgrade?

You may not need to actually upgrade, but instead add new .NET-based
modules piecemeal.This is probably preferable from a simplicity point of view.
This approach has a couple of problems. First problem is that your new ASP.NET
programs will not be able to share built-in application or session state informa-
tion.You will need to find some sort of bespoken workaround or compromise
solution.The second problem is the possible performance penalty, but depending
on the project, this may or may not be so noticeable.

If you do want to upgrade your Classic ASP projects and applications to run
under .NET, then you will need to make quite a few changes to your code.The
first change you must make is to rename all .asp files to the new .aspx extension
and “Global.asa” to “Global.asax.”

The upgrade will be less painful for JScript programmers as very little has
changed (although much has been improved) in the language.VB.NET is broadly
similar to VBScript as they share common ancestry, but several important points
need to be taken into account:

■ ASP.NET pages support only a single language per page, whereas ASP
enabled you to mix and match, provided each language was in its own
script blocks.

■ Page functions must be declared in script blocks; they cannot be declared
in scriptlet sections.

■ HTML displaying functions are not supported; that is, you cannot have a
subroutine that displays HTML using %> <% script style. HTML must be
sent to the browser using Response unless outside a function definition.

www.syngress.com

Figure 1.8 Continued

166_ASPNET_01.qxd 11/21/01 2:39 PM Page 26

Introducing ASP.NET • Chapter 1 27

■ Set and Let assignments are no longer supported. In VB.NET, object
assignments are done directly.

■ Nonindexed default properties are not supported in VB.NET; you must
address an object’s property values directly.

■ Parentheses are required for calling all methods in VB.NET, whether
they are functions or not.

■ If statements must always start a new line after then, whereas with ASP
you could just continue straight into the command to execute.

■ ASP.NET pages can use COM and COM+ components. .NET objects
can interact with classic ASP scripts as if they are using COM. In order
for all projects to see a component, the component must be registered in
the Global Assembly Cache, as by default they are only visible to the
application they were deployed to.Visual Studio.NET has a wizard for
upgrading COM component projects to .NET components that should
simplify migrating business logic, and there is an ASP Page Compatibility
directive to allow for better compatibility with components that use ASP
intrinsic objects.

■ The ASPError object has been removed.

■ By default, Option Explicit is set to true, so you must either declare all
variables or set it to false in your script, or within Web.config, to prevent
compilation errors.

Debugging ASP.NET Applications
Debugging under classic ASP was a hit-and-miss affair, usually forcing
the developer to add Response.Write statements through the code until
he or she found the failure point. ASP.NET introduces much better
debugging, thanks to the .NET Framework and Common Language
Runtime (CLR). Visual Studio.NET and the command-line tools provide
much more debugging functionality, almost comparable to the tools
available when developing desktop applications. The server has a debug
mode enabling the developer to switch on a trace that will output all the
server’s variables when the page is requested.

Debugging…

166_ASPNET_01.qxd 11/21/01 2:39 PM Page 27

28 Chapter 1 • Introducing ASP.NET

Taking Security Precautions
As with all new technologies or software systems,ASP.NET will require a bed-
ding-in period before we can fully call it a stable technology.While Beta 2 is
widely considered to be the full final release, it may still have bugs and security
holes waiting to be discovered.The buzz surrounding the .NET technologies will
attract the unethical as well as, or maybe more than, the ethical, and some are
sure to try to exploit everything they can to their own ends.
It is well worth developing your applications with .NET; there are already ISPs
who will host and support .NET-based sites, and Microsoft has a program in
which you can already launch your site under the Beta 2.

Having said this, you would be well advised to be cautious.As with all Beta
software, Microsoft programmers will be constantly developing and bug-fixing
right up until launch.This makes the .NET Framework a bit of a moving target
from a security point of view.

If you do intend to host a .NET site on a live environment, make sure you
have not inadvertently included any of the example sites or codes in your upload.
As well as being an unnecessary additional upload, the code may have vulnerabil-
ities that could be exploited, and the code will have been well researched by now.
Secondly, as part of the .NET Framework installation, a slimmed-down devel-
oper’s version of Microsoft SQL Server is included, called Microsoft Data Engine
(MSDE), which is a desktop edition of SQL Server scaled down to five concur-
rent users.This acts as a working SQL Server installation, including support for
stored procedures. Unfortunately, an administration user named “SA” is installed
by default without a password.This means that a remote user can log into a .NET-
equipped host using the SQL Query Analyzer as SA and, using built-in stored
procedures, gain access to your systems command line—nasty!

Another area the developer should be aware of is the debug tracing that the
server can now perform. In the past, programmers would add parameters into the
application memory to conveniently store things like database connection strings,
usernames, and passwords. Unfortunately, now this is not practical, as a page fault
or a developer manually switching on tracing would cause these values to be
output to the screen.An alternative method is available by adding these parame-
ters into the applications configuration files instead, and they are just as easily
accessible.

In order to be forewarned and to avoid these security problems, and keep up
to date in general, it would be a good idea to subscribe to one or more of the
many e-mail discussion lists and newsletters out there that are covering ASP.NET.

www.syngress.com

166_ASPNET_01.qxd 11/21/01 2:39 PM Page 28

Introducing ASP.NET • Chapter 1 29

Summary
ASP has come a long way in a very short time. It is not difficult to see why it is
so popular, when the languages are so easy to learn and novice developers do not
need any special software or platform knowledge, just notepad and their current
desktop operating system. Contrast this against, say, Java Server Pages, where the
language can be tricky for new programmers, and the application server installa-
tion can seem daunting.

Over the few years since version 1, consecutive versions have improved the
technology into a platform large businesses can trust to host their Web applica-
tions and perform reliably around the clock. Now with ASP.NET, those applica-
tions can be even more reliable, scalable, robust, and manageable, with better
functionality, while adhering to the popular standards of our time.

The playing field has been leveled; now developers have freedom to choose
the languages that suit them, and each .NET language has equal access to the full
.NET functionality and abilities.

It is an exciting time to be a Web developer, and it will be interesting to see
where .NET will take us next. Several Open Source projects are under way to
bring .NET to non-Windows platforms, and you can be guaranteed that
Microsoft already has work under way on .NET version 2.

Solutions Fast Track

Learning from the History of ASP

Before Active Server Pages (ASP), developers had to use Common
Gateway Interface (CGI) programs and scripts to achieve server-side
interactivity and database-driven content.

ASP offered Web site developers the tools that could quickly and
efficiently provide them with effective Web solutions.

Internet Information Server (IIS) releases upgraded ASP from version 1
to version 3.

Each release from Microsoft improved on the last without any dramatic
changes to the underlying structure until finally being completely rebuilt
with ASP.NET.

www.syngress.com

166_ASPNET_01.qxd 11/21/01 2:39 PM Page 29

30 Chapter 1 • Introducing ASP.NET

Reviewing the Basics of the ASP.NET Platform

ASP.NET is part of the wider Microsoft .NET initiative.

.NET is a set of tools, services, applications, and servers based around the

.NET Framework and common language runtime (CLR).

VBScript support has been dropped in favor of VB.NET.The CLR
enables you to use a choice of full-fledged object-oriented and event-
driven server-compiled languages for the first time.

.NET languages are compiled using an intermediate language and then
into machine-specific code, so language differences are now more a
matter of style and personal preference rather than functionality and
performance. Objects can interact and inherit from components written
in any language.

ASP.NET pages are built with (and are) .NET components, providing all
the benefits of an object-oriented approach.

Web forms introduce a new Visual Basic forms-style way of looking at
Web pages, allowing for server-side event-driven coding and true
separation of layout and logic with code behind. .NET form controls
maintain session state, and the controls properties are available to the
ASP code without resorting to querying the request object.

The functionality available has been increased to encompass such
exciting features as building dynamic images on the fly, browser-based
file upload, and network services without the need for third-party
components.

You can now distribute code and applications easily and effectively with
.NET Web services and standards-based protocols.

Deployment, including server configuration, is mostly just a matter of
transferring files with configuration implemented with Extensible
Markup Language (XML) files. Now you do not need to register and
unregister components.

Mission critical services now have increased support, with load balancing
and several state management options, including the ability to store state
information in an SQL Server database.

www.syngress.com

166_ASPNET_01.qxd 11/21/01 2:39 PM Page 30

Introducing ASP.NET • Chapter 1 31

How Web Servers Execute ASP.NET Files

The site visitor requests a page URL from the Web server.

IIS matches the URL against a file on the physical file system (hard disk).

If this is the first visit to the page since the file was last changed, the
code is compiled.

The compiled code is executed, and the parameters, events, and form
submissions are processed.

Results are delivered to the visitor’s browser as HTML,WML, and so on.

Taking Security Precautions

Do not install the example code on a live-hosted environment.

Configure your development environment to not allow requests from
outside the network with user or IP security.

Keep sensitive information such as usernames and passwords out of
application variables and files in the Web root.

Ensure the file system and Web server security is locked down; too strict
is better than not strict enough.

Keep sensitive or vulnerable computers (such as databases storing
personal data) inaccessible from the public Internet, for example, behind
a firewall.

Change the SA password on any MSDE installations.

www.syngress.com

166_ASPNET_01.qxd 11/21/01 2:39 PM Page 31

32 Chapter 1 • Introducing ASP.NET

Q: What do I need to get my scripts up and running?

A:You will need a Windows 2000 server or Windows XP development machine,
IIS configured, and the .NET Framework SDK downloaded and installed
from www.asp.net.

Q: Will I have to recode my old ASP Scripts?

A: Classic ASP pages will happily run alongside ASP.NET scripts.

Q: Can I rename my ASP files to ASPX files?

A: If you want to upgrade your scripts to run under .NET, you will first need to
make some syntactical changes to your code.

Q: Will my existing investment in third-party components be wasted?

A: Not necessarily,ASP.NET pages can use COM components to give you a
transition period, but many of the functions you previously looked to
bought-in components to perform, you can now achieve within the .NET
framework for free.

Q: Will I be able to deploy on non-Windows platforms?

A: Currently ASP.NET requires IIS. Having said that, several Open Source pro-
jects are under way to port .NET to non-windows platforms, but as yet, none
are complete enough to be certain what functionality will be brought across
and how successful they are. One intriguing project aims to deliver .NET
functionality by running the CLR within the Java Virtual Machine, meaning
that you will be able to deploy .NET on any platform where a Java Virtual
Machine is available. Most of these development efforts are concentrating on
core .NET services, such as a C# compiler and so on, though at the time of
this writing, none have announced support for ASP yet.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

166_ASPNET_01.qxd 11/21/01 2:40 PM Page 32

Introducing ASP.NET • Chapter 1 33

Q: Are there any ASP.NET hosting companies?

A: More companies are coming out to support ASP.NET all the time.Two are
Orcsweb (www.orcsweb.com), who host several ASP community Web sites
such as www.aspalliance.com, and Brinkster (www.brinkster.com), who even
provide free hosting!

www.syngress.com

166_ASPNET_01.qxd 11/21/01 2:40 PM Page 33

166_ASPNET_01.qxd 11/21/01 2:40 PM Page 34

ASP.NET
Namespaces

Solutions in this chapter:

■ Reviewing the Function of Namespaces

■ Using the Microsoft.VisualBasic
Namespace

■ Understanding the Root Namespace:
System

■ Grouping Objects and Data Types with
the System.Collections Namespace

■ Enabling Client/Browser Communication
with the System.Web Namespace

■ Working with Data Sources Using the
System.Data Namespace

■ Processing XML Files Using the
System.XML Namespace

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 2

35

166_ASPNET_02.qxd 11/21/01 2:41 PM Page 35

36 Chapter 2 • ASP.NET Namespaces

Introduction
Microsoft defines namespaces as “a logical naming scheme for grouping related
types.”What that means to us is that all objects used in ASP.NET are grouped by
type, making them easy to find and to use. Imagine the .NET namespaces as a
file cabinet.You use file cabinets to group related things to make finding them
easier, and to preserve your sanity. For example, you may place the deed to your
house and your mortgage coupons in one folder, while college loan papers and
stubs go in another. Namespaces represent exactly the same concept. Like objects
are grouped together: an HTMLInputTextBox object is grouped in the same
namespace as the HTMLAnchor object, because they both represent HTML-user
interface controls displayed to the user. In subsequent sections we’ll be looking at
all the major namespaces that ASP.NET will take advantage of.

System is the root of the namespaces.Within each namespace we can find
anywhere from one to several other subnamespaces that provide programmers
with the functionality needed to create and provide Web-based applications.

System.Web is a great example.Within its namespace it contains over 10 dif-
ferent sub-namespaces that fulfill many of the basic Web functions and then
some. System.Data contains various database connectivity methods, such as com-
munication with SQL databases and some limited Extensible Markup Language
(XML) connectivity. For specialized XML connectivity we can use System.XML,
which can provide everything from parsing to translating XML schemas.

Reviewing the Function of Namespaces
As mentioned in the introduction, namespaces are logical collections of objects.
You’ll reference many namespaces and their objects throughout your ASP.NET
development, so it’s helpful to dig a bit deeper into the technology.

You should already have a grasp on the conceptual ideas behind namespaces—
that they are containers for objects. However, how is this represented physically on
your computer? A namespace is usually contained in a file called an assembly.These
files look outwardly just like dynamically linked libraries (DLLs), and they even end
in the .dll extension. If you are familiar with DLLs, then you’ll know that prior to
.NET, they were used to supply additional functionality and objects for your appli-
cations. In .NET, they do exactly the same thing, except that everything within the
DLL file belongs to a specified namespace.

The main difference between .NET and non-.NET DLLs is that .NET DLLs
are not compiled into machine language. Rather, they are compiled into the

www.syngress.com

166_ASPNET_02.qxd 11/21/01 2:41 PM Page 36

www.syngress.com

Microsoft Intermediate Language (MSIL), which is understood by the Common
Language Runtime (CLR).Therefore, the two types of DLLs are not interchange-
able (although you can build wrappers around non-.NET DLLs to make them
compatible—see the .NET Framework Documentation under the tlbimp.exe tool).

Note that you can also create your own namespaces, or add to existing ones.
See “Programming with Assemblies” in the .NET Framework Documentation for
more information.

Using Namespaces
To use a namespace in an ASP.NET page, you must use the Import directive. For
example, the following statement placed at the top of your ASP.NET page
enables you to use the objects in the System.Data namespace:

<%@ Import Namespace="System.Data" %>

'more code

That’s all you need to do. Behind the scenes, this instruction tells the CLR to
reference this namespace when it compiles your ASP.NET application.The
objects in the namespace then are dynamically loaded when they are called in
your pages.

Namespaces are a very powerful tool for developers. Because everything is
grouped logically, you’ll be able to find and infer an object’s functionality much
more easily than before. Often, just by knowing what namespace an object
belongs to, you’ll be able to use it without having to refer to documentation.
Now let’s take a look at the major namespaces available to ASP.NET.

ASP.NET Namespaces • Chapter 2 37

Compiling ASP.NET Pages
If you’re familiar with classic ASP, the beginning of this section may have
confused you. Classic ASP pages were not compiled—they were built
with scripting languages (such as VBScript) and interpreted by the
ASP.NET engine when they were called.

ASP.NET pages, however, are compiled before they are run. You
build ASP.NET pages using a compiled language, such as VB.NET or C#.
This serves to increase performance and strength tremendously over
classic ASP.

Migrating…

166_ASPNET_02.qxd 11/21/01 2:41 PM Page 37

38 Chapter 2 • ASP.NET Namespaces

Using the Microsoft
.VisualBasic Namespace
The Microsoft.VisualBasic namespace, which is exclusive to Microsoft’s Visual Basic,
contains just one class, VBCodeProvider, and provides access to the Visual
Basic.NET runtime, enabling you to interact with the compiler directly.

You won’t be using this namespace often in your dealings with ASP.NET,
unless you need to change the way ASP.NET pages are compiled (which is a very
rare occurrence), so we’ll move on. However, if you are interested in working
more with VB.NET outside of ASP.NET, you should definitely explore this
namespace further.

Understanding the Root
Namespace: System
The System namespace is the root namespace for the entire .NET Framework;
thus, it contains all the basic and generic classes you’ll use in ASP.NET.These
include the primitives (integers, strings, and so on), as well as all of the other
namespaces in .NET. Since it is the root namespace, it is necessary to explore
some of the major objects in this collection because they’ll be used throughout
all your future applications.

Supplied Functionality
Most of the functionality you’ll be accessing from the System namespace involves
the primitive data types, which the following sections will cover specifically.
These include integral numbers, floating point numbers, date and time structures,
string values, and Booleans, and additionally, the Object data type, which is
generic.Table 2.1 describes the data types available.

Table 2.1 .NET Primitives

Primitive Category Description

Byte Integers 1-byte integral number (System.Int)
Short Integers 2-byte integral number (System.Int16)
Integer Integers 4-byte integral number (System.Int32)
Long Integers 8-byte integral number (System.Int64)

www.syngress.com

Continued

166_ASPNET_02.qxd 11/21/01 2:41 PM Page 38

ASP.NET Namespaces • Chapter 2 39

Single Floating-points 4-byte number with decimal point
(System.Single)

Double Floating-points 8-byte number with decimal point
(System.Double)

Decimal Floating-points 12-byte number with decimal point
(System.Decimal)

Char Strings A single Unicode character (System.Char)
Date Dates Date and/or time value (System.DateTime)
Boolean Booleans True or false value (System.Boolean)

Integral Numbers
Integral numbers are whole numbers that do not have decimal values. For instance:
1, 12353, and –10. If you are familiar with computer programming, you’ll prob-
ably recognize the Byte, Short, Integer, and Long data types.These are 8, 16, 32, and
64 bit integers respectively, and each requires different amounts of memory. In
other words, they can hold different ranges of values. For example, the Integer data
type can hold values from –2,147,483,648 to 2,147,483,647.

You can reference these data types by the names in the preceding paragraph,
or by the .NET names: System.Int, System.Int16, System.Int32, and System.Int64.
Either name will work—the choice is up to you.

Floating-Point Numbers
Floating-point numbers are numbers with fractions or decimal points, such as
3.141592654 or –0.45.The specific data types are: Single (System.Single, 4 byte),
Double (System.Double, 8 byte), and Decimal (System.Decimal, 12 byte). Let’s take a
look at a simple example.The following code illustrates the difference between
integers and floating-point numbers:

1: dim intA, intB as Integer

2: dim fltA, fltB as Single

3:

4: intA = 4

5: fltA = 5.6

6: intB = intA * fltA

www.syngress.com

Table 2.1 Continued

Primitive Category Description

166_ASPNET_02.qxd 11/21/01 2:41 PM Page 39

40 Chapter 2 • ASP.NET Namespaces

Line 6 should return the value 22.4, but since we’ve assigned it to intB, an
Integer, the returned value is 22—ASP.NET has dropped the decimal point.The
following line, however, will return the correct answer:

7: fldB = intA * fltA

Be sure to use the proper data type for your applications!

Dates
A DateTime data type can be in many formats:“5/6/01,”“Wednesday, July 4th,
2001,” or “8:30:34 PM,” for example.This provides you with great flexibility in
representing your date values, and enables you to perform simple arithmetic (such
as adding or subtracting days or hours) on your values.As you move through this
book, you’ll encounter many of these operations.

There is another date data type that you won’t use as often, but is helpful to
know: the TimeSpan data type, which represents a time interval such as “8 hours”
or “13 days.” Note that it cannot be used to hold specific times, such as “8 PM.”
Use the DateTime type for these values instead.

Strings
The String data type that most programmers are familiar with is actually a class in
VB.NET, rather than a primitive.This enables you to create new instances, over-
ride, and inherit from a String, which gives the programmer a lot of power when
designing applications.This is probably one of the most common classes you’ll be
using in your ASP.NET applications.

There is also the Char data type, which represents a single Unicode character.
Because it is Unicode, it can represent a lot more than just the alphanumeric
characters, in case you ever need to use them.You’ll see methods that will enable
you to convert from Chars to Strings.

Booleans
Booleans are simply true-or-false values, such as 1/0, yes/no, and so on.Although
the Boolean data type in VB.NET strictly uses true/false to represent data, you can
easily convert it to the other pairs of values.

Objects
Finally, the Object data type is a generic type that’s used for a variable if no other
type is specified. For example, if you use the VB.NET statement, then you’ll be
creating an Object data type:

www.syngress.com

166_ASPNET_02.qxd 11/21/01 2:41 PM Page 40

ASP.NET Namespaces • Chapter 2 41

Dim strMyVariable

NOTE

It is generally a good practice to always explicitly declare your variable
types. This saves you the trouble of having to convert later, as well as pro-
viding you with more functionality that can be used with your variables.

Your ASP.NET pages automatically import the System namespace, so you
needn’t import it explicitly. For example, the ASP.NET page shown in Figure 2.1
is equivalent to Figure 2.2—the latter is probably easier for the developer, and
doesn’t hurt performance at all.

Figure 2.1 Importing the System Namespace Explicitly

1: <%@ Page Language="VB" %>

2: <%@ Import Namespace="System" %>

3: <script runat="server">

4: dim MyInt as System.Integer

5: </script>

Figure 2.2 Allowing ASP.NET to Implicitly Import the System Namespace

1: <%@ Page Language="VB" %>

2: <script runat="server">

3: dim MyInt as Integer

4: </script>

The System namespace also includes one more object that is very useful for
ASP.NET developers: the Array. Even though this class belongs to the System
namespace, we’ll discuss it in the next section, under System.Collections.

Table 2.2 lists all of the namespaces directly under the System namespace—it’s
quite a long list, and each of these namespaces often have even more subname-
spaces.We’ll cover a few of the more important ones (when dealing with
ASP.NET) in the subsequent sections.

www.syngress.com

166_ASPNET_02.qxd 11/21/01 2:41 PM Page 41

42 Chapter 2 • ASP.NET Namespaces

Table 2.2 The Namespace Collection

Namespaces Description

CodeDom Contains objects that represent the elements of a source
code document.

Collections Contains collection objects, such as lists, queues, and
hash tables.

ComponentModel Contains the classes that enable you to control the run
and design-time behavior of components and controls.

Configuration Provides methods and objects that enable you to access
.NET configuration settings.

Data Contains classes that enable you to interact with data
sources; constitutes ADO.NET.

Diagnostics Contains classes that enable you to debug and follow
the execution of your applications.

DirectoryServices Provides access to Active Directory services.
Drawing Contains classes that enable you to use basic, graphical

display interface (GDI) capabilities.
EnterpriseServices Contains objects that enable you to control how

components behave on a server.
Globalization Contains classes that define culture-related information.
IO Contains classes that enable you to read and write to

data streams and files.
Management Provides classes used to interface with WMI events and

objects.
Messaging Contains classes to interact with messages over a network.
Net Provides classes to work with network protocols.
Reflection Contains classes that enable you to view information

about other types in the .NET Framework.
Resources Contains classes that enable you to manage culture-

specific resources.
Security Provides access to the .NET security framework.
ServiceProcess Enables you to interact with services.
Text Contains classes that represent ASCII, Unicode, UTF-7,

and UTF-8 character encodings.
Threading Contains classes that enable multi-threaded programming.
Timers Contains classes to raise events on specified time intervals.

www.syngress.com

Continued

166_ASPNET_02.qxd 11/21/01 2:41 PM Page 42

ASP.NET Namespaces • Chapter 2 43

Web Provides client/browser communications; represent the
bulk of objects that will be used with ASP.NET.

Xml Contains classes that process XML data.

Grouping Objects and Data Types with
the System.Collections Namespace
The System.Collections namespace contains much of the functionality you’ll need
for grouping objects and data types into collections.These include lists, arrays,
hash tables, and dictionaries, as well as some collections that you won’t see as
often in ASP.NET: stacks, comparers, and queues.

Supplied Functionality
The classes in the System.Collections namespace are often very useful, but unfortu-
nately are often not in the spotlight in ASP.NET.They each have specific uses
that just may come in handy for your applications.They are listed in Table 2.3.

Table 2.3 The System.Collections Classes

Name Description

ArrayList Creates an array whose size is dynamically
increased as necessary.

BitArray Provides an array of bits (Boolean values).
CaseInsensitiveComparer Provides case-insensitive comparison of

two objects.
CaseInsensitiveHashCodeProvider Creates hash codes for objects, ignoring

cases for strings.
CollectionBase The base class for a strongly typed collec-

tion. This class must be inherited from—it
cannot be directly instantiated.

Comparer A case-sensitive object comparison class.
DictionaryBase The base class for a strongly typed collec-

tion of key/value pairs. This class must also
be inherited from.

www.syngress.com

Table 2.2 Continued

Namespaces Description

Continued

166_ASPNET_02.qxd 11/21/01 2:41 PM Page 43

44 Chapter 2 • ASP.NET Namespaces

Hashtable A collection of key/value pairs organized by
the hash value of the key.

Queue A first-in, first-out collection of objects.
ReadOnlyCollectionBase Just like the CollectionBase class, but the

values are read-only.
SortedList A collection of key/value pairs sorted by

the key value.
Stack A last-in, first-out collection of objects.

In addition to the classes outlined in Table 2.3, there is the System.Array class,
which holds collections of values. Let’s take a look at an example.The following
code creates an array of integers, initialized to the numbers 1 to 5:

Dim arrIntegers() As Integer = {1, 2, 3, 4, 5}

The size of this array is 5, and the index values are 0 to 4. For example, to
access the number 3 in this array, you would use this:

arrIntegers(2)

Note that you cannot declare a size for an array and assign values at the same
time.The following code would produce an error:

Dim arrIntegers(5) As Integer = {1, 2, 3, 4, 5}

Instead, separate the declaration and assignation into two steps:

Dim arrIntegers(5)

arrIntegers(0) = 1

arrIntegers(1) = 2

'and so on

The Array class has quite a few useful methods and properties as well, such as
the Copy and Sort methods, and the Length and Rank properties.You’ll examine
these more as you progress through the book.

www.syngress.com

Table 2.3 Continued

Name Description

166_ASPNET_02.qxd 11/21/01 2:41 PM Page 44

ASP.NET Namespaces • Chapter 2 45

Enabling Client /Browser Communication
with the System.Web Namespace
Perhaps one of the most important namespace for ASP.NET, the System.Web
namespace contains most of the functionality for building ASP.NET pages.You’ll
be covering the classes and functionality of this namespace extensively in later
chapters (you’ll have to, in order to learn ASP.NET!), so we’ll only touch on its
members here.

Supplied Functionality
Specifically, the System.Web interface provides the functionality that enables
client/browser communication, which is key for ASP.NET pages.The
System.Web.HttpResponse class encapsulates Hypertext Transfer Protocol (HTTP)
response information. Likewise, the System.Web.HttpRequest object encapsulates
HTTP values sent from a client.

In addition, you now have the HttpServerUtility object, which provides helper
methods that parse HTTP information and return server variables.

www.syngress.com

Response and Request Objects
If you are familiar with classic ASP, the Response and Request objects
should sound familiar to you. The Request and Response objects in ASP
3.0 are used for exactly the same functionality, and have most of the
same methods as the new ASP.NET objects, such as the all-too-familiar
Response.Write method.

In fact, ASP.NET makes it easy for you by enabling you to use the
same names for these objects as previous versions of ASP. When an
ASP.NET page is created, the Common Language Runtime (CLR) creates
HttpResponse and HttpRequest object variables named Response and
Request respectively. Thus, you can use Response.Write just as you did
in classic ASP.

The HttpServerUtility is also instantiated as an object variable
named Server. It contains all the familiar methods as well, such as
Server.MapPath and Server.HTMLEncode.

Migrating…

Continued

166_ASPNET_02.qxd 11/21/01 2:41 PM Page 45

46 Chapter 2 • ASP.NET Namespaces

This namespace also has classes for dealing with many common HTTP
related functions: the HttpCookie object lets you create and read cookies; the
HttpApplication class provides control over the ASP.NET application itself;
HttpCachePolicy is used to set HTTP headers that specify how you can cache
ASP.NET pages; and the HttpFileCollection class provides access to files uploaded
by clients.There are quite a few other useful classes in this namespace as well—
see the .NET Framework SDK Documentation for more information.

System.Web.UI Namespace Set
In the System.Web namespace, the System.Web.UI subnamespace is probably the
most used collection of objects in ASP.NET. It provides all the functionality you’ll
need to create, render, and display user interface (UI) elements to the end user.

The System.Web.UI.Control object is the base class for almost all of the UI
objects you’ll be using in ASP.NET. It provides methods and properties that are
common to all ASP.NET server controls, thus making it easy to learn how each
control works. Figure 2.3 shows the hierarchy of objects based on this class.

www.syngress.com

These objects in ASP.NET are much more powerful, however, than
their older counterparts. They are fully object-oriented, which means
you can inherit or extend them, and they also provide a multitude of
new methods and properties that will be useful for ASP.NET developers.

Note, however, that the Request and Response objects hearken
back to the days of the Request/Response model of Internet communi-
cation. One of the main benefits of ASP.NET is that it abstracts this older
model with an event-driven model, which allows for more intuitive
application programming. In general, you’ll want to use an event-driven
method to interact with data rather than using Request or Response. For
example, rather than using the following code snippet to display text to
the user:

Response.Write("Hello World!")

You should use something like this:

lblText.Text = "Hello World!"

Where lblText is a label object in the UI.

166_ASPNET_02.qxd 11/21/01 2:41 PM Page 46

ASP.NET Namespaces • Chapter 2 47

The System.Web.UI.HtmlControls and System.Web.UI.WebControls subnamespaces
provide the classes that render actual UI elements such as HTML input text boxes
and forms.You’ll learn more about these in Chapter 3. For example, Figure 2.3
shows the HTMLAnchor object in the System.Web.UI.HtmlControls namespace.The
minimum amount of ASP.NET code that would utilize this object is shown in
Figure 2.4.

Figure 2.4 Using Objects in the System.Web.UI Namespace

1: <%@ Page Language="VB" %>

2:

3: <html><body>

4: Click me!

5: </body></html>

This listing simply displays an anchor in the Web page, as shown in Figure 2.5.
Notice that it looks just like a regular HTML page with the exception of the
@Page and runat=“server” attributes.The runat=“server” tells ASP.NET that this
control isn’t just a normal HTML anchor, but rather an instance of the server
object HTMLAnchor, which contains properties and methods.You can easily turn
most HTML controls into their ASP.NET object counterparts simply by adding
the runat=“server” attribute.

Using objects from the WebControls namespace is a bit different, but no more
difficult. Figure 2.6 shows an example.

www.syngress.com

Figure 2.3 The Hierarchy of UI Objects

System.Web.UI Namespace

System.Web.UI.Control Object

TemplateControl

LiteralControl

DataBoundLiteralControl

Page

UserControl

WebControls Namespace

WebControl

AdRotator

Button
. . .

HtmlControls Namespace

HtmlControl

HtmlAnchor

HtmlButton
. . .

All objects belong to System.Web.UI namespace.

166_ASPNET_02.qxd 11/21/01 2:41 PM Page 47

48 Chapter 2 • ASP.NET Namespaces

Figure 2.6 A TextBox Web Control

1: <%@ Page Language="VB" %>

2:

3: <html><body>

4: <asp:TextBox value="Welcome to ASP.NET!" runat="server"/>

5: </body></html>

This syntax is a bit different than normal HTML, but is one that you’ll be
seeing very often in ASP.NET pages, as well as later in this book.Again notice
the runat=“server” on line 4—this attribute is vital for ASP.NET controls to func-
tion correctly.Without it,ASP.NET believes that you are just trying to create a
customized tag that it doesn’t recognize, and so it will just send it as is to the
browser, which won’t produce the right results. Figure 2.6 produces the result
shown in Figure 2.7.

It is necessary to mention a subset of ASP.NET controls that deal with data,
as they are very important in ASP.NET: the Repeater, DataList, and DataGrid con-
trols.These controls have no specific counterparts in HTML, but rather present a
complex UI consisting of HTML tables and lists.Any time you have a data
source, you can simply bind it to these objects (you can actually bind data to any
type of ASP.NET controls, but more on that in later chapters) and the object will

www.syngress.com

Figure 2.5 A Simple HTMLAnchor Control

166_ASPNET_02.qxd 11/21/01 2:41 PM Page 48

ASP.NET Namespaces • Chapter 2 49

provide the UI for you, no matter how complex it may be. Figure 2.8 shows an
example of the DataGrid in action.

The code to generate Figure 2.8 is shown in Figure 2.9.

www.syngress.com

Figure 2.7 An ASP.NET TextBox Control

Figure 2.8 The DataGrid Web Control

166_ASPNET_02.qxd 11/21/01 2:41 PM Page 49

50 Chapter 2 • ASP.NET Namespaces

Figure 2.9 Using a DataGrid Control in ASP.NET

1: <%@ Page Language="VB" %>

2: <%@ Import Namespace="System.Data" %>

3: <%@ Import Namespace="System.Data.SqlClient" %>

4:

5: <script runat="server">

6: Sub Page_Load(Src As Object, e As EventArgs)

7: Dim myConnection As SqlConnection

8: Dim myCommand As SqlDataAdapter

9:

10: myConnection = new _

11: SqlConnection("server=localhost;uid=sa;pwd=;" _

12: & "database=pubs")

13: myCommand = new SqlDataAdapter("SELECT * FROM Authors", _

14: myConnection)

15:

16: Dim ds As DataSet = new DataSet()

17: myCommand.Fill(ds)

18:

19: MyDataGrid.DataSource = ds

20: MyDataGrid.DataBind()

21: End Sub

22: </script>

23:

24: <html><body>

25: <h3>

26: Simple Select to a DataGrid Control.

27: </h3>

28: <ASP:DataGrid id="MyDataGrid" runat="server"

29: Width="700"

30: BackColor="#ccccff"

31: BorderColor="black"

32: ShowFooter="false"

33: CellPadding=3

www.syngress.com

Continued

166_ASPNET_02.qxd 11/21/01 2:41 PM Page 50

ASP.NET Namespaces • Chapter 2 51

34: CellSpacing="0"

35: Font-Name="Verdana"

36: Font-Size="8pt"

37: HeaderStyle-BackColor="#aaaadd"

38: MaintainState="false"

39: />

40: </body></html>

You can see that there is no code to loop through any data. Simply assign the
DataGrid a data source, as shown on line 19, call the DataBind method, and
you’re set to go!

System.Web.Services Namespace Set
Web services are a new feature to ASP.NET.They enable anyone to access your
application over the Internet, just as if it were on their local machine. For example,
Microsoft could maintain one copy of Microsoft Office on their servers, and when
you need to run Word, you could just connect to their servers and run it like
normal.Web services promise a lot of benefits for both clients and developers.

Web services enable you to do this because they are based on existing, non-
proprietary standards such as XML and Simple Object Access Protocol (SOAP).
Using these protocols, a Web service client communicates with the Web service
over the Internet, sending commands and data back and forth as plain XML.This
means that such applications can work even across firewalls. Figure 2.10 illustrates
this process; note that both Web service and client can be ASP.NET pages, as well
as traditional applications.
When the Web service on the server receives a command, it processes it just as if
it were a local application.The server can access databases, local files, user lists, or
even other Web services.Any data that needs to be returned is then sent back to
the client as XML.

You may be wondering how this is different than regular ASP.NET pages. First,
ASP.NET pages usually require a UI—a Web service does not. It simply provides
functionality that another application can take advantage of.The second difference
is that any application can use a Web service, from an ASP.NET page to a desktop-
based calculator.ASP.NET pages have to be served up through a Web server. Don’t
think, however, that Web services are a replacement for ASP.NET pages—each
technology simply provides different functionality for different situations.

www.syngress.com

Figure 2.9 Continued

166_ASPNET_02.qxd 11/21/01 2:41 PM Page 51

52 Chapter 2 • ASP.NET Namespaces

Working with Data Sources Using
the System.Data Namespace
The System.Data namespace contains most of the objects associated with
ADO.NET, such as DataReaders and DataSets.These objects enable you to inter-
face with all sorts of data sources, from text files to Microsoft SQL Server, to
Oracle, or even with custom data sources you create yourself.You’ll be spending a
large amount of time dealing with ADO.NET in Chapter 7 and in subsequent
chapters.

Supplied Functionality
Any time you need to deal with an outside data source, you’ll likely use objects
in the System.Data namespace. One of the most important classes in this names-
pace is the DataSet. It provides a complete, disconnected representation of any
data source, whether a traditional database, an XML file, or even a file system.As
you start building data-enabled ASP.NET pages, you’ll see just how powerful
both this object and ADO.NET are.

The System.Data namespace also provides objects to interact with connected
data sources, such as streams.These objects are usually more efficient than the dis-
connected data objects such as the DataSet, because they don’t have to represent
a complete database with keys, constraints, and other objects. However, due to
that limited representation, they are also limited in functionality.

There are a few Web controls that are often associated with ADO.NET: the
Repeater, DataList, and DataGrid controls.Though these controls are not part of
the System.Data namespace, they are often associated with ADO.NET because of
the way they interact with data sources. See the “System.Web.UI Namespace Set”
section earlier in the chapter for more information.

Finally, the System.Data object also provides limited functionality to interact
with XML data sources.You can load XML data and write it to a database, and
vice versa. However, if you want to examine XML data in more depth, you
should use the objects in the System.Xml namespace, which we’ll discuss next.

www.syngress.com

Figure 2.10 How a Web Service Works

Web Service Client

Internet

Web ServiceReturn Data/Results

Send Commands

166_ASPNET_02.qxd 11/21/01 2:41 PM Page 52

ASP.NET Namespaces • Chapter 2 53

Processing XML Files Using
the System.XML Namespace
The System.Xml namespace provides all of the methods to process XML files—
creating, parsing, transforming, searching, and so on. XML is a large part of
ASP.NET (and ADO.NET, as discussed in the previous section), so you’ll spend
quite a bit of time with it later in the book.

Supplied Functionality
XML files are essentially pure text databases. Using a system of tags (like HTML),
you can declare any type of data you’d like. For example, the following code
shows a simple book database:

www.syngress.com

ADO.NET from ADO
Though much of ADO.NET is similar to ADO, a few things have changed.
Most notably, the move from Recordset to Dataset objects, and the
inclusion of XML data representation.

There are a lot of similarities between the Recordset and DataSet
objects, but there are several things to be aware of. First, a Recordset
was a simple representation of a table—it did not contain information
on relationships, constraints, keys, and so on. A DataSet, however, does
contain this information, as well as being able to contain more than one
table of data at a time. This makes it much more functional than the
Recordset.

Secondly, a DataSet is a completely separate entity from the
database. You can even fill it manually without using a data source. This
disconnected data provides a large performance boost over the con-
nected data in a Recordset by not requiring extensive locks and active
connections on data.

Finally, a DataSet represents its data internally with XML. Thus, you
can easily retrieve data from a database with a DataSet, and then write
it directly to an XML file. Or, conversely, you can load an XML file into a
DataSet, and then insert it into a database. The Recordset object had no
such capability.

Migrating…

166_ASPNET_02.qxd 11/21/01 2:41 PM Page 53

54 Chapter 2 • ASP.NET Namespaces

<?xml version=1.0?>

<library>

<book>

<title>To Kill A Mockingbird</title>

<author>Harper Lee</author>

</book>

</library>

You could easily insert this data into a database such as Microsoft SQL Server,
but then you’d lose the readability and portability of the data.Thus, XML is
designed to make any type of data universally available.

The XmlTextReader and XmlTextWriter objects are two of the most used
objects in System.Xml because they provide lightweight and easy access to the
data in XML files.You can navigate through an XML file with these objects just
as you would a DataSet in ADO.NET.There are also objects that represent each
part of an XML file, such as an XmlNode and XmlElement.

Also of interest are the System.Xml.Schema, System.Xml.Serialization,
System.Xml.XPath, and System.Xml.Xsl sub-namespaces.These groups of
objects provide additional functionality that will be very useful when dealing
with XML data.

www.syngress.com

166_ASPNET_02.qxd 11/21/01 2:41 PM Page 54

ASP.NET Namespaces • Chapter 2 55

Summary
Microsoft.VisualBasic is a Microsoft specific namespace that provides access to the
VB.NET compiler and code generator.You probably won’t spend much time in
this namespace unless you’re interested in the inner workings of VB.NET.

The System namespace provides all of the foundations for the other name-
spaces, including the various data types and the Array.You’ll be using the objects
in this namespace quite a bit, and often without even realizing it.

System.Collections provides the base classes for the other collection objects in
the .NET Framework, as well as a few useful regular classes, such as the HashTable
and BitArray.You cannot use all of the base classes directly—they must be inher-
ited from a custom class, or you can use one of the many existing classes that
already inherit from them.

System.Web is a very important namespace for ASP.NET. It contains all of the
functionality required to communicate between client and server; in essence, it is
the heart of ASP.NET.The HttpRequest and HttpResponse objects enable you to
examine data returned from a client (such as data from a form) and send infor-
mation back to the client (for example, by using Response.Write).You can access
the HttpServerUtility object through the Server object variable, and it provides
additional functionality that helps when dealing with Internet communications.

Under the System.Web namespace are two very important subnamespaces:
System.Web.UI.HtmlControls and System.Web.UI.WebControls.These two name-
spaces provide all of the objects you’ll use to display user interfaces to the client
browser.Without these, you could not interact properly with users, if at all.

System.Data is essentially ADO.NET. In this namespace you’ll find all of the
tools you’ll need to communicate with any type of data that ADO.NET can
access.These classes can even interact with XML.

Finally, System.Xml enables you to handle and manipulate XML data. Note
that System.Xml and System.Data are highly intertwined; you can use each name-
space’s classes to read and write each type of data, so the choice of which to use
is often up to you.

You will be working with these namespaces throughout this book. For deeper
information about these namespaces, the .NET Framework Documentation is an
excellent resource.

www.syngress.com

166_ASPNET_02.qxd 11/21/01 2:41 PM Page 55

56 Chapter 2 • ASP.NET Namespaces

Solutions Fast Track

Reviewing the Function of Namespaces

Namespaces are logical collections of objects.A namespace is usually
contained in a file called an assembly.These files outwardly look just like
dynamically linked libraries (DLLs), and even end in the .dll extension.

The main difference between .NET and non-.NET DLLs is that .NET
DLLs are not compiled into machine language. Rather, they are
compiled into the Microsoft Intermediate Language (MSIL), which is
understood by the Common Language Runtime (CLR).

To use a namespace in an ASP.NET page, you must use the Import
directive. Unlike in classic ASP,ASP.NET pages are compiled before they
are run.You build ASP.NET pages using a compiled language, such as
VB.NET or C#.

Using the Microsoft.VisualBasic Namespace

The Microsoft.VisualBasic namespace provides access to the VB.NET
runtime.

It enables you to access the compiler and code generator.

Understanding the Root Namespace: System

The System namespace contains the foundation for the .NET
Framework.

It contains classes and structures representing the primitive data types
(Integers, Strings, and so on).

It also contains the very useful Array class.

Grouping Objects and Data Types with
the System.Collections Namespace

The System.Collections namespace provides the base classes for all other
collection objects in the .NET Framework.

www.syngress.com

166_ASPNET_02.qxd 11/21/01 2:41 PM Page 56

ASP.NET Namespaces • Chapter 2 57

It contains the HashTable object, which you may notice quite often in
ASP.NET.

Enabling Client/Browser Communication
with the System.Web Namespace

The System.Web namespace is the foundation for all ASP.NET pages.

It contains the System.Web.UI.WebControls and
System.Web.UI.HtmlControls subnamespaces, which provide the objects
used to build UIs.

It also contains the System.Web.Services namespace, which encapsulates
the functionality needed to create and consume Web services.

Working with Data Sources
Using the System.Data Namespace

The classes in System.Data make up ADO.NET.

It uses XML to represent data internally, enabling you to use XML files
just as if they were a traditional data source.

Processing XML Files Using
the System.XML Namespace

The System.XML namespace provides access to XML files just as
ADO.NET does with databases.

XmlTextReader and XmlTextWriter objects allow for easy, lightweight
manipulation of XML data.

It provides tight integration with the objects in System.Data
(ADO.NET).

www.syngress.com

166_ASPNET_02.qxd 11/21/01 2:41 PM Page 57

58 Chapter 2 • ASP.NET Namespaces

Q: Where are the namespaces located? How do I find them?

A: All of the .NET namespaces are located in assemblies (previously known as
dynamically linked libraries, or DLLs). For example, System is located in the
file System.dll. Note, however, that namespace names do not always represent
the DLL files they are located in. For example, System.Web.UI is located in
System.Web.dll, not in System.Web.UI.dll.

Q: What namespaces are automatically imported into ASP.NET pages?

A: System, System.Collections, System.IO, System.Web, System.Web.UI,
System.Web.UI.HtmlControls, and System.Web.UI.WebControls all are imported
implicitly by ASP.NET; you do not need to make explicit references to these.

Q: Do I have to import namespaces not included in the previous list?

A: No, there is no requirement to import additional namespaces. If you like, you
can just reference an object not imported by default by its full namespace
name. For example, if you don’t import the System.Drawing namespace, you
could use the following line in your code:

Dim objColor as System.Drawing.ColorConverter

Had you imported the System.Drawing namespace, you could simply use
the following:

Dim objColor as ColorConverter

Q: Does importing namespaces add overhead to my applications?

A: Simply importing namespaces does not add overhead.The objects within the
namespace are loaded only if they are needed, so you could import every
namespace in the .NET Framework and notice no performance hit.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

166_ASPNET_02.qxd 11/21/01 2:41 PM Page 58

ASP.NET Namespaces • Chapter 2 59

Q: Is there a way to view an assembly’s methods and objects without program-
ming or using the System.Reflection objects?

A: Absolutely! The Intermediate Language Disassembler enables you to view the
technical details of any .NET assembly.You can run it from the command
prompt with the command ildasm.exe.You can also use the object browser in
Visual Studio .NET, which provides a more user-friendly listing of the
objects and their methods/properties. Both of these methods are excellent
tools for examining namespaces that you are curious about.

Q: How can I deploy custom namespaces?

A: Thanks to the .NET Framework, deploying namespaces and applications is
very easy: all that is required is to copy the files to the target computer.There
is no need to install or register assemblies or applications because the
Common Language Runtime handles everything for you.There is one
requirement, however, if you want the CLR to make custom assemblies auto-
matically available to your applications: Place them in a \bin directory in your
application folder.Assemblies in this folder are automatically loaded by the
.NET runtime, though you can manually load assemblies that are not in this
directory. See the .NET Framework Documentation for more details.

www.syngress.com

166_ASPNET_02.qxd 11/21/01 2:41 PM Page 59

166_ASPNET_02.qxd 11/21/01 2:41 PM Page 60

ASP Server Controls

Solutions in this chapter:

■ Major Features of ASP.NET Server Controls

■ Server-Side Processing in ASP.NET

■ Code-Behind versus In-Page Coding

■ Using HTML Server Controls

■ Using ASP.NET Web Controls

■ Creating Custom ASP Server User Controls

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 3

61

166_ASPNET_03.qxd 11/26/01 2:57 PM Page 61

62 Chapter 3 • ASP Server Controls

Introduction
ASP.NET supplies ASP.NET programmers with a much-needed solution to an
age-old problem—HTML form controls. Up until .NET,ASP programmers had
to move back and forth between HTML and ASP in order to provide interac-
tivity between Web pages.This also meant that an ASP page was not as dynamic
as it could be if it were done through Java or through some extensive
JavaScript/Cascading Style Sheet (CSS) coding.

In short,ASP had the short end of the stick as far as Web interactivity went.
With the advent of ASP server controls, all that will change. Imagine being able
to do real-time value verification and having the Web page instantly spit out an
error when someone tries to skip a required field. Imagine being able to dynami-
cally replace data on a Web page without having to force the user to access
another page or restart completely.With ASP.NET, all this and more is possible!
The exercises illustrated in this chapter will demonstrate to you the power of
ASP.NET.

Major Features of
ASP.NET Server Controls
When you develop an ASP.NET Web Form, you can use the following type of
controls:

■ HTML Server Controls You can manipulate these controls at the
server-side. Before dispatching a form to the client, the ASP Engine
converts them to the equivalent HTML elements.These controls are
included in the System.Web.UI.HtmlControls namespace.

■ Web Server Controls (also known as Web Controls or ASP.NET
Web Form Controls) These are the new generation’s controls devel-
oped by Microsoft.They have many useful built-in features, and a stan-
dard set of properties. In the HTML or .aspx file, these are typically
referenced with an asp: prefix such as asp:Label, asp:Button, or
asp:TextBox. Besides the form-type server controls such as labels, button,
and dropdown, there are a number of special-purpose controls like the
Calendar and AdRotator controls.The ASP Engine also maps these con-
trols to standard HTML equivalent controls before dispatching the page
to the client.These Web server controls are available in the
System.Web.UI.WebControls namespace.

www.syngress.com

166_ASPNET_03.qxd 11/26/01 2:57 PM Page 62

www.syngress.com

■ Validation Controls This set of controls provides Rapid Application
Development (RAD) features for automatically checking the specified
validity of user inputs.These controls are available in the System.Web.UI
.WebControls namespace.

■ Custom Controls You can develop your own server controls by
extending an existing control or group of controls to provide additional
functionalities.There are two versions of custom controls:Web User
Controls and Web Custom Controls.The Web User Controls are easy to
develop, and are typically stored as .ascx files.The Web Custom Controls
require in-depth knowledge of Object Oriented Programming and the
Common Language Runtime (CLR).These are stored in compiled form
as assemblies.

In this chapter we will provide an overview of these controls. Before we intro-
duce you to the ASP.NET server controls, we need to focus your attention on a
number of procedural issues involved in developing a Web form.These issues are
the following: Collecting Data using HTML Forms, State-less ASP controls versus State-
full ASP Net controls, the role of PostBack, and In-Page Code versus Code-Behind.

NOTE

In an IIS environment, the ASP and ASP.NET can run side by side. If you
install ASP.NET, your existing ASP applications will continue running. The
IIS uses the ASP Engine to process the .asp files, whereas it uses the
ASP.NET Engine to process the .aspx files. Session states and application
states are not shared between ASP and ASP.NET pages.

Collecting Data Using HTML Forms
HTML uses the Hypertext Transfer Protocol (HTTP) to transmit Web pages.
When you enter a URL of a page in your browser, it sends an HTTP message to
the server, requesting the desired page.This message is typically known as the
Request message. If the desired page has a *.html or *.htm extension, the Web
server simply retrieves the page from the server’s disk and sends it back to your
computer (client) via a new HTTP message, known as the Response message. It is
your browser that interprets the mark-up codes in the Response object and pre-
sents the page on your monitor.

ASP Server Controls • Chapter 3 63

166_ASPNET_03.qxd 11/26/01 2:57 PM Page 63

64 Chapter 3 • ASP Server Controls

In an HTML document, you can use an HTML form element to collect data
from the user.Typically, other HTML elements like buttons, checkboxes, or
textboxes are imbedded in an HTML form. It also provides an HTML Submit
button in the form.With one click of the Submit button, the browser packages
the user’s given data in a Request message and then sends it to the server.An
HTTP message has two parts: the HTTP Header and the HTTP Body.Thus, the
browser can package the user-given data in the Request object in one of two
ways. It may augment the URL with the name-value pairs of submitted data.
Alternatively, it can package the submitted data inside the body part of the Request
message.Which of the alternative methods will it use? The answer depends on the
specifications in the HTML form element.A typical form tag is shown in Figure
3.1.The Method parameter is used to specify the mode of data transmission. If it is
“Get”, the browser sends the data in the header section of the HTTP message. If it
is “Post”, the data are sent in the body section.The Action parameter can be used to
request a specified html or other documents like .asp or .aspx files.

To demonstrate the data-passing mechanism using the Get method, we will
present a simple example. Consider the Sample1.html document as shown in
Figure 3.2, which is included on the CD that accompanies this book. In this
code, we have included a HTML form named myForm. It has a Submit button,
and a textbox.The user will enter a hobby and click the Submit button. On
click of the Submit button, the browser will request the html document named
Sample1.html and pass the submitted data to the server in the augmented URL.
In this particular example, the browser will actually request the same html docu-
ment (named Sample1.html). Figure 3.3 shows the URL of the requested form as
submitted by the browser to the Web server.You will see that the browser has
augmented the URL, and the new URL is http://ahmed2/Chapter3/sample1
.html?txtHobby=Fishing. That means the data are submitted as a name=value pair
in the URL itself.The first such pair is prefixed with a question mark.

www.syngress.com

Figure 3.1 Major Parameters (Attributes) of an HTML Form Element

<form name= "myForm" Action="Sample1.html" Method="Get">

Name of the Current Form Requested Page Send Data via URL

166_ASPNET_03.qxd 11/26/01 2:57 PM Page 64

http://ahmed2/Chapter3/sample1

ASP Server Controls • Chapter 3 65

Figure 3.2 A Simple Data Collection HTML Form (Sample1.html)

<!— Chapter3\Sample1.html —>

<html><head></head><body>

<form name="myForm" Action="Sample1.html" Method="Get">

Your Hobby? <input type="text" name="txtHobby" size=10>

<input type="submit" Value="Submit">

</form></body></html>

If we specify Method=“Post” in the form tag, the data are packaged as name-
value pairs in the body section of the HTTP message. Unfortunately, we cannot
have a peak inside the body section, and thus it cannot be shown. Once the data
are submitted, what do we do with it? Well, that is where the server-side scripting
comes into the scenario.We will briefly discuss the ASP.NET server-side pro-
cessing in the next section.

Server-Side Processing in ASP.NET
An ASP.NET file has an *.aspx extension.Typically, it contains HTML elements,
server-side codes and client-side codes.As shown in Figure 3.4, when a user
requests an ASPX page, the server retrieves it from the disk and then sends it to
the ASPX Engine for further processing.The ASPX Engine compiles the server
side codes and generates the page class file. It then instantiates the class file and
executes the instructions to develop the response object. During the execution
stage, the system follows the programmatic instructions (in the server-side code)
to process the data submitted by the user. Finally, the server transmits the response
object to the client. In short, the major steps in processing a request for an ASPX
page are as follows:

1. The server receives a request for a desired ASPX page.

2. The server locates the page in the disk.

www.syngress.com

Figure 3.3 Submitting Data in the Augmented URL: Get Method

166_ASPNET_03.qxd 11/26/01 2:57 PM Page 65

66 Chapter 3 • ASP Server Controls

3. The server gives the page to the ASP.NET Engine.

4. The ASP.NET Engine compiles the page and generates the page class. If
the class had already been loaded, it simply provides a thread to the run-
ning class instead of regenerating the class. During compilation, it may
require other code classes, such as code-behind classes and component
classes.These are assembled during this step.

5. The ASP.NET instantiates the class, performs necessary processing, and it
generates the Response object.

6. The Web server then sends the Response object to the client.

Now that we know about the HTML Forms and Web server environment,
we will start discussing the server controls.To demonstrate the basic principles of
server controls, we will kick off this section by presenting a simple application
using conventional HTML controls.Then we will develop the same application
using the ASP.NET Web controls and highlight the major differences.

A Simple Application Using
Conventional HTML Controls
As shown in Figure 3.5, we will display some flower names using conventional
HTML controls. On click of a command button we will request the same form
from the server.The code for this form is shown in Figure 3.6 and can be found
on the CD that accompanies this book.

www.syngress.com

Figure 3.4 Major Steps in Serving an ASPX Page

Web Server

.html
.asp
.aspx
.xml

Other
Required
Classes

Response

Request Instantiate,
Process,

and
Render

ASPX Engine

5

Compile and
Generate

Page Class,
If Needed

43

2

1

6

166_ASPNET_03.qxd 11/26/01 2:57 PM Page 66

ASP Server Controls • Chapter 3 67

Figure 3.6 A Simple .aspx File Using Conventional HTML Controls
(Conventiona1.aspx)

<!— Chapter3\Conventional1.aspx —>

<html><head</head>

<form action="htmlListbox.aspx" method="post">

<body>Select a flower and then either click on the

submit button or refresh the page.

You will see that your selection has been lost

in successive requests of the page.

<select name="lstFlowers" size="3">

<option value="Tulip">Tulip</option>

<option value="Poppy">Poppy</option>

<option value="Iris">Iris</option>

</select>

<input type="submit" value="Submit"/>

</body></form></html>

Once the form is displayed, we will select a flower from the list box, and
either click on the Submit button or refresh the page. In both cases, the system
will return the same form, but we will see that our selection has been lost.This is
due to the state-less nature of HTTP protocol. On each request, the server serves
the requested page, however, it does not remember the values of the controls
assigned in its prior invocation. In ASP days, we had to include a good amount of
codes to preserve the states of the controls.Well,ASP.NET has made life easier! It
preserves the states of controls automatically.

www.syngress.com

Figure 3.5 Conventional HTML Form and Controls

166_ASPNET_03.qxd 11/26/01 2:57 PM Page 67

68 Chapter 3 • ASP Server Controls

A Simple Application Using ASP Server Controls
In this example, we will develop the same application using ASP.NET Server
Controls.At this stage, we have two choices.We may either use HTML Server con-
trols or Web Server controls. Just for the sake of experimentations, we will use the
<asp:listbox> Web Server Control, and the <input type=“button”> HTML Server
Control. Irrespective of which type of controls we use, we will need to add a new
attribute in the tags for these controls.When we create an instance of these con-
trols, we will specify its runat attribute to be “server” such as <asp:listbox id=
“lstFlowers” runat=“server”/>. The output is shown in Figure 3.7. Its revised code is
shown in Figure 3.8 and can be found on the CD that accompanies this book.

Once a flower is selected and the command button is clicked, the client will
receive a new instance of the form from the server, however, the selected value of
the list box will persist.This phenomenon is known as state-full.This is because
the ASP.NET controls maintain their states in spite of the state-less nature of the
HTTP protocol.

Figure 3.8 The Code for ServerControl1.aspx (ServerControl1.aspx)

<!— Chapter3\ServerControl1.aspx —>

<html><head></head><body>

<form runat="server" action ="ServerControl1.aspx">

Select a flower, and then click the submit button please. You

will see that the page remembers your selection.

<asp:ListBox runat="server" rows="3">

<asp:ListItem>Tulip</asp:ListItem>

<asp:ListItem>Poppy</asp:ListItem>

<asp:ListItem>Iris</asp:ListItem>

www.syngress.com

Figure 3.7 The Flower Selection Application Using ASP.NET Server Controls

Continued

166_ASPNET_03.qxd 11/26/01 2:57 PM Page 68

ASP Server Controls • Chapter 3 69

</asp:ListBox>

<input type="submit" value="Submit" runat="server"/>

</body></form></html>

Mapping Server Controls
and Preserving Their States
In our previous example, we have preserved the state of the list box. Of course,
the ASP.NET framework has assisted us in doing so. Now, how does the system
map the server controls, and how does it preserve the states of the controls?
Answers to both of these questions are actually available in the source document
received by the client. Once we run the application, we may view the source
code received by our browser using the View | Source menu of Internet
Explorer.The contents of the source code are shown in Figure 3.9. In this figure,
please note that the system has mapped our asp:listbox control to a conventional
HTML <select name=“ctrl1” size=“3”> tag.The system has also added an
<input type=“hidden”> tag with many attributes.

It is via this hidden field that the system transfers the user-given values to the
server. In summary, the server controls are mapped to standard HTML controls,
and the ASP.NET employs hidden fields to maintain the states of the controls.

Including Scripts in an .aspx File
So far our examples have been very simple, and we have not yet included any
script in the examples. In the previous exercise (Figure 3.8), we have hard-coded

www.syngress.com

Figure 3.8 Continued

Figure 3.9 The Source Code of the Document Received by the Browser

166_ASPNET_03.qxd 11/26/01 2:57 PM Page 69

70 Chapter 3 • ASP Server Controls

the values of the list box in its definition. Suppose that we need to load the list
box via code.We will need to do that when the values to be loaded are unknown
during the design time, and would come from an external source like a text file,
an XML document, or from a database query.Although we will not venture into
the XML or database topics right now, it is still beneficial to know how to load
the list box programmatically.This is what we will do in our next example.

Loading a List Box via Script
In this example we will accomplish two objectives. First, we will load the list box
via code. Secondly, we will provide a command button.The user will select a
flower and then click the button. On the click() event of the button we will dis-
play his or her selection.The output of the example is shown in Figure 3.10.

The complete listing of the code is shown in Figure 3.11, which can also be
found on the CD that accompanies this book. In the code, the following state-
ments are of major interests:

■ We have added a Page Declaration:

<%@ page language="VB" debug="true" %>

■ At the initial stage, the debug=“true” helps us a lot by providing detailed
explanations of our errors during the run-time.The debug=“true” speci-
fication drains the system’s resources, and hence, we should delete it
from our finished work.

■ We have defined an asp:button and “wired up” its click event with a sub-
procedure named showSelection() as the following:

<asp:button id="btnSubmit" runat="server" text="Submit"

onclick="showSelection" />

www.syngress.com

Figure 3.10 The Output Generated by Figure 3.11

166_ASPNET_03.qxd 11/26/01 2:57 PM Page 70

ASP Server Controls • Chapter 3 71

■ The list box is loaded in the Page_Load event as follows:

Sub Page_Load(source As Object, e As EventArgs)

lstFlowers.Items.Add(New ListItem("Tulip"))

lstFlowers.Items.Add(New ListItem("Poppy"))

lstFlowers.Items.Add(New ListItem("Iris"))

lstFlowers.SelectedIndex=0 'Selection by default

End Sub

As you can see from the previous code, we are setting “Tulip” as the
default selection in the list box.

■ Finally, we are displaying the selection in the showSelection procedure:

Sub showSelection(sender As Object, e As EventArgs)

lblMessage.Text ="You have selected " + _

lstFlowers.SelectedItem.Text

End Sub

Figure 3.11 ServerControl2.aspx (ServerControl2.aspx)

<!— Chapter3\ServerControl2.aspx —>

<%@ page language="VB" debug="true" %>

<html><head></head><body><form runat="server">

Select a flower, and then click the submit button please:

<asp:listbox id="lstFlowers" runat="server" rows="3" />

<asp:button id="btnSubmit" runat="server" text="Submit" onclick

="showSelection" />

<asp:label id=lblMessage runat="server"></asp:Label>

</body></form></html>

<script language="VB" runat="server">

Sub Page_Load(source As Object, e As EventArgs)

lstFlowers.Items.Add(New ListItem("Tulip"))

lstFlowers.Items.Add(New ListItem("Poppy"))

lstFlowers.Items.Add(New ListItem("Iris"))

lstFlowers.SelectedIndex=0 'Selection by default

End Sub

www.syngress.com

Continued

166_ASPNET_03.qxd 11/26/01 2:57 PM Page 71

72 Chapter 3 • ASP Server Controls

Sub showSelection(sender As Object, e As EventArgs)

lblMessage.Text ="You have selected " +

lstFlowers.SelectedItem.Text

End Sub

</script>

The code appears to be very simple. However, the code still has some inten-
tional bugs.When we run this application, we will observe that the page behaves
very erratically. First, irrespective of the selection we make, it will always display
“You have selected Tulip”. Secondly, on repeated clicks of the command button,
the list box will continue growing with duplicate entries. Now, that is a surprise,
isn’t it? Let us try to figure out this strange behavior of the application in our
next section!

Using the IsPostBack Property of a Page
An ASPX page is loaded upon each request. In our previous example, when we
click the command button, it submits the form back to the server and requests
the same page.This phenomenon is known as PostBack.The system will load the
page again, and hence, the Page_Load event will take place on every request.That
is why, if we run the code shown in Figure 3.11, our list box will keep on
growing in size.This is also why the SelectedItem property of the list box will keep
on being reset to “Tulip” on each post back.

In this case, we should rather load the list box only once during the first
invocation of the page.Wait a minute! If we do not load the list box again, how
would it get populated when the page is reloaded? Well, therein lies the beauty of
ASP.NET.The server controls automatically retain their values (state-full and not
state-less), thus we do not need to load the list box repetitively on successive
requests of the page. How do we achieve that? In the Page_Load event, we may
use the Page.IsPostBack property as shown in Figure 3.12.You can also find this
code for Figure 3.12 (SeverControl3.aspx) on the accompanying CD.

Figure 3.12 Loading a List Box Correctly (ServerControl3.aspx)

<script language="VB" runat="server">

Sub Page_Load(source As Object, e As EventArgs)

If Not Page.IsPostBack Then

www.syngress.com

Figure 3.11 Continued

Continued

166_ASPNET_03.qxd 11/26/01 2:57 PM Page 72

ASP Server Controls • Chapter 3 73

lstFlowers.Items.Add(New ListItem("Tulip"))

lstFlowers.Items.Add(New ListItem("Poppy"))

lstFlowers.Items.Add(New ListItem("Iris"))

lstFlowers.SelectedIndex=0 'Selection by default

End If

End Sub

Sub showSelection(sender As Object, e As EventArgs)

lblMessage.Text ="You have selected "+ _

lstFlowers.SelectedItem.Text

End Sub

</script>

Now, go ahead and replace the script in Figure 3.11 with the previous script
shown in Figure 3.12.The application will work fine! The complete code for this
application is available in ServerControl3.aspx in the CD.

AutoPostBack Attributes of Server Controls
In this section, we will illustrate an important behavior of certain server-side con-
trols. Some server-side controls can generate automatic postbacks on selected events.
That means, to submit a form, we may not have to wait until the user clicks the
submit button. For example, the SelectedIndexChange event of an asp:ListBox is an
event that is capable of triggering a postback. If we want this mechanism to work,
we will have to set the AutoPostBack property of the List box to “True.”

To illustrate the AutoPostBack attribute of an asp control, we will revise our
flower selection example.We will remove the Submit button (although we could
have kept it, too, without any loss of functionality).We will set the AutoPostBack
attribute of the list box to be True, and we will attach the showSelectionVB func-
tion on its onSelectedIndexChanged attribute.When you run this form, every time
you select a new flower, the system will display your selection in the label.We do
not need the Submit button because the onSelectedIndexChanged event will gen-
erate a postback.The output of this application is shown in Figure 3.13, and its
code is shown in Figure 3.14 (which is also available on the CD that accompa-
nies this book).

www.syngress.com

Figure 3.12 Continued

166_ASPNET_03.qxd 11/26/01 2:57 PM Page 73

74 Chapter 3 • ASP Server Controls

Figure 3.14 Complete Code (ServerControl4.aspx)

<!— Chapter3\ServerControl3.aspx —>

<%@ Page Language="VB" Debug="true" %>

<html><head></head><body><form runat="server">

Select a flower, and then click the submit button please:

<asp:listbox id="lstFlowers" runat="server" rows="3"

AutoPostBack="true" onSelectedIndexChanged="showSelection"/>

<asp:Label id=lblMessage runat="server" />

</body></form></html>

<script language=vb runat="server">

Sub Page_Load(source As Object, e As EventArgs)

If Not Page.IsPostBack Then

lstFlowers.Items.Add(New ListItem("Tulip"))

lstFlowers.Items.Add(New ListItem("Poppy"))

lstFlowers.Items.Add(New ListItem("Iris"))

lstFlowers.SelectedIndex=0

End If

End Sub

Sub showSelection(source As Object, e As EventArgs)

lblMessage.Text="You have selected " + _

lstFlowers.SelectedItem.Text

End Sub

</script>

www.syngress.com

Figure 3.13 A List Box with Its AutoPostBack Property Set to True

166_ASPNET_03.qxd 11/26/01 2:57 PM Page 74

ASP Server Controls • Chapter 3 75

NOTE

While using the AutoPostBack attribute, we need to be careful. An
AutoPostBack submits the form to the server; thus, the system will eventu-
ally slow down significantly if we use too many of these AutoPostBacks.

Structure of an ASP.NET Web Form
A Web Form is an ASP.NET technology that we use to create a programmable
Web page. It can present information, using any markup language, to the user in
any browser, and can use code on the server to implement application logic. In
.NET documentation, Microsoft has outlined the following characteristics of a
Web form:

■ A Web form of your design can run on a specific browser of your
choice, or it can run on any browser and automatically render the
browser-compliant HTML.

■ It is built on the Common Language Runtime, thereby providing a
managed execution environment, type safety, inheritance, and dynamic
compilation. It can be programmed in any CLR-supported language.

■ It supports WYSIWYG editing tools and development tools such as
VS.NET.

■ It supports a rich set of controls that enables you to encapsulate page
logic into reusable components and declaratively handle page events.

■ It allows for separation between code and content on a page.

■ It provides a set of state management features that preserves the view
state of a page between requests.

As shown in Figure 3.15, a Web form may contain directives, server-side
scripts, client-side scripts, static texts,Web controls, HTML controls, and many
others. In the remainder of this section, we will provide an overview of ASP.NET
Page directives.

www.syngress.com

166_ASPNET_03.qxd 11/26/01 2:57 PM Page 75

76 Chapter 3 • ASP Server Controls

Page Directives
Page directives are used to set various attributes about a page.The ASP Engine
and the compiler follow these directives to prepare a page.There are many kinds
of directives.The most frequently ones are the following: @ Page, @ Import, @
Implements, @ Register, @ OutputCache and @ Assembly directives.These
directives can be placed anywhere in a page, however, these are typically placed at
the top.Table 3.1 briefly describes the major use of these directives.

Table 3.1 Page Directives and Their Functions

Page Directive Description and Example

@ Page We may use this directive to declare many page-related
attributes about a particular page. For example, we use
this directive to declare the language to be used in a page,
such as <%@ Page Language=”VB” Debug=”true” %>
page. There are numerous attributes of this directive.
Some of the frequently used ones are these:
AutoEventWireup, Buffer, ClientTarget, EnableSessionState,
ErrorPage, Debug, Trace, TraceMode, and so on.

@ Import We use this directive to import a namespace in the page
class file. For example, in the following directive, we are
importing the System.Data.OleDb namespace in our page:
<%@ Import Namespace=”System.Data.OleDb” %>.

www.syngress.com

Figure 3.15 Typical Contents of a Web Form

<% Page Language="VB" %>

<html><body><form runat="server">
 Enter you hobby:
 <asp:TextBix id="txtHobby" runat="server"/
>
 <input type="submit">
 </form></body>
<script runat="server>
 Sub Page_Load(…, …)
 … …
 End Sub
</script>
<script lanuguage="javascript">
function --- ----
{ ---
}
</script></html>

Page Directives

Server-Side Code

Static Text

Client-Side Code

Web Control Tag

Html Control

Continued

166_ASPNET_03.qxd 11/26/01 2:57 PM Page 76

ASP Server Controls • Chapter 3 77

@ OutputCache We can use this directive to specify how to cache the
page. In the following example, we are setting the dura-
tion that a page or user control is output cached:
<%@ OutputCache Duration=”10” /%>.

@ Register This directive is used to register a custom control in a
page. In the following example, we are registering one of
our user custom controls in page:
<%@ Register tagprefix =”utoledo” tagname=”Time”
Src=”TimeUserControl.ascx”%>.

@ Assembly We use this directive to link to an assembly to the current
page or user control. The following example shows how to
link to an assembly-named payroll:
<%@ Assembly Name=”Payroll” %>.

@ Implements This directive enables us to implement an interface in our
page. In the following example, we are implementing the
IpostBackEventHandler interface in one of our user controls:
<%@ Implements Interface=”System.Web.UI
.IPostBackEventHandler” %>.

The Order of Event Execution
One of the novel offerings of ASP.NET is that it enables us to write server-side
code to handle events that are triggered at the client.When a postback occurs, the
page is reloaded, and the events are handled by the system. However, it is worth-
while to know the sequence of these activities.As shown in Figure 3.16, the
order of execution is Page_Init, Page_Load, Change events,Action events, and finally
the Page_Unload event. The Page_Init does not completely load all of the controls.
In the Page_Load event, the states of the controls are set.Then the system takes
care of the change and action events that occurred at the client’s site.These are
executed only in case of a postback.

Code-Behind versus In-Page Coding
In our previous example, we have placed a certain amount of VB code inside the
.aspx file.We will refer to this practice as In-Page coding (also referred to as inline
coding by some programmers). In ASP days, all ASP applications had to be devel-
oped using in-page coding because that was the only way to develop an ASP

www.syngress.com

Table 3.1 Continued

Page Directive Description and Example

166_ASPNET_03.qxd 11/26/01 2:57 PM Page 77

78 Chapter 3 • ASP Server Controls

page. (In those days, the ASP developers envied the VB developers, because the
VB developers had a nice way to split their codes and visual presentation.)

Often, the intermixed HTML and scripting codes in a large page become
cryptic and difficult to read and maintain. Fortunately,ASP.NET provides a way
out of this problem.We may develop the html code in a file with an .aspx exten-
sion, and then we may write the necessary code in a separate C# or VB code file.
This practice is known as Code-Behind. Basically, the Code-Behind follows the
Visual Basic model of developing an application. Here, we develop an .aspx file
where we define the layout of the controls in a page, and then we include the
code in a separate VB or C# class file.As shown in Figure 3.17, this mechanism
separates the page layout design activities from the code development activities.
When we develop an ASP.NET application using VS.NET, we are automatically
forced to use Code-Behind.

Obviously, the .aspx file has to be somehow linked to the class file.We may
link the .aspx file with the code file in one of two ways:

■ Develop the class file and save it without compilation in the same direc-
tory of the .aspx file, or

■ Compile the class file and save the .dll file in the bin subdirectory of our
virtual directory.

It is intuitively assumed that the former will execute more slowly than the
latter. Here, we will provide two examples. In both of these cases, we will develop
our flower selection page using alternative Code-Behind techniques. First, we will

www.syngress.com

Figure 3.16 Event Execution Sequence

Page_Init

Change Events, such as
TxtCity_Changed

Page_Unload

Action Events, such as
btnCompute_Click

Form_Load

On PostBack

166_ASPNET_03.qxd 11/26/01 2:57 PM Page 78

ASP Server Controls • Chapter 3 79

demonstrate an example using VB.NET without compilation and then we will
present a code behind example using C# with compilation.

Using Code-Behind without Compilation
The output of this application is shown in Figure 3.18.

In this method, you do not need to compile the VB or C# source file. Just
save the source file and the .aspx file in the same virtual directory.You will need
to enter the following Page Declarative statement at the top of your .aspx file.
Here, the Src attribute specifies the name of the source file, and the Inherits
attribute specifies the name of the class to inherit. In the following illustration,
we assume that the VB source file named vbCb.vb has a class named VbCb in a

www.syngress.com

Figure 3.17 In-Page Code versus Code Behind

Traditional ASP Way (In-Line Coding)

A Bowl of Soup Made of HTML and
Embedded Scripts

New ASP. NET Way:
Separate the Page Layout from the Code

ASPX Page
(HTML and Page
Directives Only)

Code Behind Page
(C# or VB.NET Code)

Figure 3.18 Run-Time Display of the VB Code-Behind Application

166_ASPNET_03.qxd 11/26/01 2:57 PM Page 79

80 Chapter 3 • ASP Server Controls

namespace myVbCodeBehind.The complete listing for Figure 3.19 is also available
in the CodeBehind.aspx file in the accompanying CD.

<%@ page language="VB" src="vbCb.vb" inherits="myVbCodeBehind.vbCb" %>

1. Develop the page layout in an .aspx file (shown in Figure 3.19). Be sure
to include the page directive.

Figure 3.19 The .aspx File for the Code-Behind Example (CodeBehindVB.aspx)

<!— Chapter3\CodeBehindVb.aspx —>

<%@ page language="VB" debug="true" src="vbCb.vb"

inherits="myVbCodeBehind.vbCb" %>

<html><head></head><body>

<form runat="server">

Select a flower, and click the submit button please:

<asp:ListBox id="lstFlowers" runat="server" rows="3">

</asp:ListBox>

<asp:Button id="btnSubmit" runat="server"

text="Submit" onclick="showSelection" />

<asp:Label id=lblMessage runat="server" />

</body></form></html>

2. Develop the VB class file (shown in Figure 3.20) and save it in the same
directory. In this particular application, we need to import the System
and the System.WebUI.WebControls namespaces. Depending on the
nature of your applications, you may need to import other namespaces,
too.The code for Figure 3.20 is also available in the accompanying CD.

Figure 3.20 The VB Class File for the Code-Behind Example (vbCb.vb)

' Chapter3\vbCb.vb

Option Strict Off

Imports System

Imports System.Web.UI.WebControls

Namespace myVbCodeBehind

Public Class vbCb : Inherits System.Web.UI.Page

Public lstFlowers As System.Web.UI.WebControls.ListBox

www.syngress.com

Continued

166_ASPNET_03.qxd 11/26/01 2:57 PM Page 80

ASP Server Controls • Chapter 3 81

Public lblMessage As System.Web.UI.WebControls.Label

Public btnSubmit As System.Web.UI.WebControls.Button

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)

If Not IsPostBack Then

lblMessage.Text="No Selection Yet"

lstFlowers.Items.Add(new ListItem("Tulip"))

lstFlowers.Items.Add(new ListItem("Rose"))

lstFlowers.Items.Add(new ListItem("Redbud"))

lstFlowers.SelectedIndex=0

End If

End Sub

Protected Sub showSelection(ByVal obj As Object, ByVal e As

EventArgs)

lblMessage.Text="You have selected " + _

lstFlowers.SelectedItem.Text

End Sub

End Class

End Namespace

3. Test the ASPX application. It should work fine.

Using Code Behind with Compilation
In this method, you will need to compile your VB or C# source file to a .dll file
first.Then copy the .dll file and save it in the bin subdirectory of your virtual
directory. Rather than manually copying the .dll file to the bin directory, you may
also use the /out parameter of the compilation command to save the .dll file
directly to your bin directory, as follows:

G:\MyAspNets\CodeBehind>vbc /out:..\bin\vbCb.dll /t:library vbCb.vb

In the compilation command, we assume that the name of the VB file is
vbCb.vb.This command will create the vbCb.dll file in the bin directory directly
upon compilation. Now we need to enter a page declarative at the top of our
ASPX page as follows. Here, the name of the source file (cs or vb) should be

www.syngress.com

Figure 3.20 Continued

166_ASPNET_03.qxd 11/26/01 2:57 PM Page 81

82 Chapter 3 • ASP Server Controls

specified in the Code-Behind attribute.The Inherits attribute should include the
namespace.className of the class file:

<%@ page language="VB" codebehind="vbCb.vb"

inherits="myCodeBehind.vbCb" %>

Although we are staging this example using C#, you may change the VB
code shown in the previous example very easily to implement this application in
VB.The output of this example would appear exactly similar to the one shown
in Figure 3.18.

1. Develop the .aspx file (Figure 3.21). Here, we assume that you will
develop the C# class in a file named CsharpCodeBehind.cs. We further
assume that the name of the class will be cSharpCb in a namespace
myCsCodeBehind.Thus, be sure to include the Code-Behind attribute to
link the page to the code behind class file as follows.The code shown in
Figure 3.21 is also available in the accompanying CD in a file named
CodeBehindCS.aspx.

<%@ page language="cs" debug="true"codebehind="CSharpCodeBehind.cs"

inherits="myCsCodeBehind.cSharpCb" %>

Figure 3.21 Complete Listing (CodeBehindCS.aspx)

<!— Chapter3\CodeBehindCS.aspx —>

<%@ page language="cs" Debug="true" codebehind="CSharpCodeBehind.cs"

inherits="myCsCodeBehind.cSharpCb" %>

<html><head></head><body>

<form runat="server">

Select a flower, and click the submit button please:

<asp:ListBox id="lstFlowers" runat="server" rows="3">

</asp:ListBox>

<asp:Button id="btnSubmit" runat="server"

text="Submit" onclick="showSelection" />

<asp:Label id=lblMessage runat="server" />

</body></form></html>

www.syngress.com

166_ASPNET_03.qxd 11/26/01 2:57 PM Page 82

ASP Server Controls • Chapter 3 83

2. Develop the Code-Behind class file as shown in Figure 3.22.The code
shown in Figure 3.22 is also available in the accompanying CD in a file
named CsharpCodeBehindCS.cs.

Figure 3.22 Complete Listing for CSharpCodeBehind.cs

// Chapter\CSharpCodeBehind.cs

namespace myCsCodeBehind

{ using System;

using System.Web.UI.WebControls;

public class cSharpCb : System.Web.UI.Page

{ public System.Web.UI.WebControls.ListBox lstFlowers;

public System.Web.UI.WebControls.Label lblMessage;

public System.Web.UI.WebControls.Button btnSubmit;

protected void Page_Load(object sender, EventArgs e)

{ if (!IsPostBack)

{ lblMessage.Text="No Selection Yet";

lstFlowers.Items.Add(new ListItem("Tulip"));

lstFlowers.Items.Add(new ListItem("Redbud"));

lstFlowers.Items.Add(new ListItem("Poppy"));

}

}

protected void showSelection(object obj, EventArgs e)

{ lblMessage.Text="You have selected " +

lstFlowers.SelectedItem.Text;

}

}

}

3. Compile the class file as follows. Note: If you are using the VB version,
just replace the csc keyword with vbc, and change the name of the
source file.

csc /t:library /r:System.dll /r:System.Web.dll CSharprpCodeBehind.cs

4. Copy the .dll file in the bin directory of your virtual directory.
You are done.

www.syngress.com

166_ASPNET_03.qxd 11/26/01 2:57 PM Page 83

84 Chapter 3 • ASP Server Controls

When we develop Web applications using VS.Net, it forces us to implement
the code-behind methodology. In the next section we will walk you through the
steps for developing a simple application using VS.Net.

Using VS.Net for Developing a Web Application
In this section we will provide a step-by-step procedure to develop a simple Web
page using VS.Net. Our finished page will be displayed in the browser as shown
in Figure 3.23.

1. Start a new Visual Basic ASP.NET project as shown in Figure 3.24. Be
sure to provide a name for your project.

2. After you click OK, the system will display the VS.Net IDE screen. Do
not get intimidated by the complex appearance of the screen.With some
practice, you will start loving the environment.You will see an empty
Web page with two tabs at the bottom: Design and HTML. If the
toolbox is not visible, use the View | ToolBox of the system menu to

www.syngress.com

Figure 3.23 The Flower Selection Page Developed Using VS.Net

Figure 3.24 Starting a New VB ASP.NET Web Application

166_ASPNET_03.qxd 11/26/01 2:57 PM Page 84

ASP Server Controls • Chapter 3 85

display the toolbox. Click on the Web Forms tab of the toolbox.You
will see all of the server controls in the toolbox. Draw a Label. If the
Property Window is not visible, use F4 (or View | Property
Window menu) to display the property window of the label. Change its
Text property to Select a Flower Please as shown in Figure 3.25.
Please note that the system is building the WebForm1.aspx file automati-
cally for you.

3. Draw a ListBox control. Change its ID property and Rows property
lstFlower and 3, respectively.You may also change its background Color
and Font to your taste. Be sure to set its AutoPostBack property to True.
Now double-click on any empty place of the form.The system will
bring the code screen as shown in Figure 3.26. Please note that the
system has already generated the VB Code-Behind. It has named it
WebForm1.aspx.vb. In the Page_Load event, enter the necessary code for
loading the list box.

4. You are almost done. Go back to the design view of the WebForm1.aspx.
Draw a label at the bottom of the list box, and change its ID property to
lblMessage. Now double-click the list box.The system will bring the
code screen with the template for the lstFlower_SelectedIndexChanged
event procedure. Enter the following code in this event:

lblMessage.Text="You have selected " + _

lstFlowers.SelectedItem.Text

www.syngress.com

Figure 3.25 The VS.Net IDE Screen

166_ASPNET_03.qxd 11/26/01 2:57 PM Page 85

86 Chapter 3 • ASP Server Controls

You are done. Go ahead and test it. Before you test it, you may use the Build
menu to build your project (compile the code), and then use the Start icon or
Debug | Start of the main menu to run the application. Knowingly or
unknowingly, you have developed an ASP.NET Web application.The VS.Net has
created a virtual directory in your IIS. If you display the Solution Explorer window,

www.syngress.com

Figure 3.26 Code-Behind Screen in VS.Net

ASP Skills Are Not Obsolete
If you are an experienced ASP developer, your skills are not lost. The new
ASP.NET programming model will seem very familiar to you. However,
most of your existing ASP pages will have to be modified if you want to
run them under ASP.NET. The modifications would be quite simple.
Some of the VB Script codes would have to be changed to VB.NET code,
and the new ADO.NET would replace your ADO-related codes. In most
cases, though, the necessary changes will involve only a few lines of
code. You may choose to rewrite existing ASP applications to gain the
performance, readability, and maintainability improvements of the new
development environment. However, because a Web application can
contain both ASP and ASP.NET pages, the conversion does not neces-
sarily have to be carried out all at once.

Migrating…

166_ASPNET_03.qxd 11/26/01 2:57 PM Page 86

ASP Server Controls • Chapter 3 87

you will see that the VS.Net has done a lot of work for you. By the way, if you
look at the HTML code in the WebForm1.aspx file, you will see that VS.Net has
styled the list box as follows (only selected attributes are shown):

<asp:ListBox id="lstFlowers" runat="server" Rows="3"

BackColor="#FFE0C0" Font-Bold="True" AutoPostBack="True"

Font-Names="Book Antiqua" Font-Size="Medium" ForeColor="#C04000">

</asp:ListBox>

That means when we develop our .aspx files manually, we can also use these
attributes to style our controls.

Using HTML Server Controls
Conventional HTML elements are not programmable at the server side.Their
values do not persist in postbacks.These are essentially treated as opaque texts
that are passed to the browser. In ASP.NET, we may convert an HTML element
to an HTML server control by adding an attribute runat=“server.” This notifies
the ASP Engine to create an instance of the control during parsing.We will, of
course, need to specify an ID of the element so that we can manipulate it pro-
grammatically at the server side.These controls are particularly useful for
migrating ASP applications to ASP.NET applications.

HTML server controls have been derived directly or indirectly from the base
class System.Web.UI.HtmlControls.HtmlControl and map directly to HTML ele-
ments.The hierarchy of HTML server control classes is shown in Figure 3.27.
Basically, the hierarchy divides the classes into three major categories: the classes
that mimic the HTML <input> tag, the classes that may act as container classes,
and finally the HtmlImage class. Several classes in the second category also employ
the HTML <input> tag. HTML server controls must reside within a containing
<form> control with the runat=“server” attribute.

In this section, we will present a number of examples of HTML server con-
trols. If you are relatively new to ASP, be sure to go through these examples. Most
of these examples can also be enhanced using the Web controls. Most impor-
tantly, the concepts learned in this section will enable you to develop better
applications using Web controls.

www.syngress.com

166_ASPNET_03.qxd 11/26/01 2:57 PM Page 87

88 Chapter 3 • ASP Server Controls

Using the HtmlAnchor Control
You can use the HtmlAchor control (<a>) to navigate from a page to another
page.This basically works almost like the Html anchor tag; the only difference is
that it works on the server. It has the following attributes:

<a runat="server" id="programmaticID" href= "linkurl"

name="bookmarkname" OnServerClick="onserverclickhandler"

target="linkedcontentframeorwindow" title="titledisplayedbybrowser">

If necessary, we can use this control to dynamically modify the attributes and
properties of the <a> element and display hyperlinks from a data source.The href
attribute contains the URL of the page to be linked to.We have shown an
example of anchor controls in Figure 3.28.

Using the HtmlTable Control
The HtmlTable control mimics the Html <table> tag.We may define rows using
<tr> tags.Table cells are defined using <td> tags.This control is a container con-
trol, and so we can embed other controls in its cells. It has the following
attributes:

www.syngress.com

Figure 3.27 HTML Server Controls Hierarchy

System.Web.UI.Control

HtmlControl

HtmlInputControl HtmlContainerControl HtmlImage

HtmlInputText

HtmlInputCheckBox

HtmlInputButton

HtmlInputImage

HtmlInputHidden

HtmlInputFile

HtmlInputRadioButton HtmlTextArea

HtmlButton

HtmlAnchor

HtmlTable

HtmlSelect

HtmlForm

HtmlGenric Control

166_ASPNET_03.qxd 11/26/01 2:57 PM Page 88

ASP Server Controls • Chapter 3 89

<table runat="server" id="programmaticID" align=left | center | right

bgcolor="bgcolor" border="borderwidthinpixels"

bordercolor="bordercolor" cellpadding="spacingwithincellsinpixels"

cellspacing="spacingbetweencellsinpixels" height="tableheight"

rows="collectionofrows" width="tablewidth" >

</table>

In the following example, as you can see in Figure 3.28, we will build an
HtmlTable with two rows and two columns. Each cell of the table will contain an
HtmlAnchor control.

The code for this application, as shown in Figure 3.29, is self-explanatory.
Each pair of <tr> and </tr> entries enable us to define a row, and within each
row, we nest a pair of <td> </td> to define the table’s data (cell). In this
example, we have embedded an HtmlAnchor control in each cell.The code shown
in Figure 3.29 is available in the accompanying CD in a file named
HtmlAnchor1.aspx.

Figure 3.29 HtmlAnchor1.aspx

<!— Chapter3\HtmlAnchor1.aspx —>

<html><head></head><form runat="server">

<table style= width: 170px; height: 50px" cellSpacing="0"

cellPadding="5" width="170" border="4">

<tr><td><a id="anchor1" runat="server"

href="http://www.syngress.com">Syngress Home

</td>

<td><a id="acnhor2" runat="server"

href="http://www.syngress.com/book_catalog/index.htm">

www.syngress.com

Figure 3.28 Embedded HTMLAnchor Controls in an HtmlButton Control

Continued

166_ASPNET_03.qxd 11/26/01 2:57 PM Page 89

http://www.syngress.com">Syngress
http://www.syngress.com/book_catalog/index.htm

90 Chapter 3 • ASP Server Controls

Syngress Catalog

</td>

</tr>

<tr><td><a id="anchor3" runat="server"

href="http://www.syngress.com/demo/index.htm">

Syngress Demo

</td>

<td><a id="anchor4" runat="server"

href="http://www.syngress.com/specials/index.htm">

Syngress Specials

</td>

</tr>

</table></form></html>

Using HtmlInputText and HtmlTextArea Controls
You can use both of these controls to collect text data from the user.You can use
the HtmlInputText control to implement server-side code against the HTML
<input type=text> and <input type=password> tags. Its major attributes are these:
type (text or password), runat, id, maxlength, size , and value.The HtmlTextArea
control enables the user to enter multi-line text.Thus, it is the server-side equiva-
lent to the HTML <textarea> element. Its rows and cols properties can be used to
define its size.You can use its onserverchange attribute to run an event handling
function.

We will illustrate the usage of these controls with an example. In this applica-
tion, the user will enter a short story in a text area, and then he or she will enter
the name in a textbox, and the password in a password-type textbox. On the click
event of a button, we will check the password and display the appropriate mes-
sage in an html element.The run-time view of the application is shown
in Figure 3.30.The code (shown in Figure 3.31) for this application is pretty
straightforward and more or less self-explanatory.The code shown in Figure 3.31
is also available in the accompanying CD in a file named HtmlText1.aspx.

www.syngress.com

Figure 3.29 Continued

166_ASPNET_03.qxd 11/26/01 2:57 PM Page 90

http://www.syngress.com/demo/index.htm
http://www.syngress.com/specials/index.htm

ASP Server Controls • Chapter 3 91

Figure 3.31 HtmlText1.aspx

<!— Chapter3/HtmlText1.aspx —>

<html><form method="post" runat="server">

Your Story:

<TextArea id="txtAreaStory" runat="server" cols="20" rows="3"/>

Name?<input type="text" id="txtName" size="12" runat="server"/>

Password? <input type="password" id="txtPwd" runat="server" size="12"/>

<input type="Button" runat="server" value="Enter"

OnServerClick="CheckPassword"/>

 </h2>

</form></html>

<script language="VB" runat="server">

Sub checkPassword(source As Object, e As EventArgs)

If txtName.Value="Pepsi" And txtPwd.Value="Beagle" Then

spnMessage.InnerHtml="Password Correct: Story Accepted!!"

Else

spnMessage.InnerHtml="Bad Password: Story Rejected!!"

End If

End Sub

</script>

Using HtmlButton and HtmlImage Controls
You will find two of these controls: HtmlInputButton and HtmlButton. The
HtmlInputButton supports the HTML Reset and Submit button types. On the

www.syngress.com

Figure 3.30 Using HtmlInputText and HtmlTextArea Controls

166_ASPNET_03.qxd 11/26/01 2:57 PM Page 91

92 Chapter 3 • ASP Server Controls

other hand, the HtmlButton control can be used to develop server-side code
against the HTML <button> element.We can provide custom code for the
OnServerClick event.You can customize its appearance and imbed other controls
in it.We have used HtmlButton controls in many of our previous examples. In our
next example, we will embed an HTML element inside a button.We have
used the OnMouseOver and OnMouseOut attributes of a button control to provide
rollover effects.We have also shown how to use an in-line style attribute that you
can use to format many of the controls.The run-time view of the application
and its code listing are shown in Figure 3.32 and Figure 3.33, respectively.The
relevant code is also available on the accompanying CD in a file named
HtmlButton1.aspx.

NOTE

To run this code, you will need to copy the SmallSpinReel1.jpg in the
Images folder of your virtual directory.

Figure 3.33 HtmlButton1.aspx

<html><form runat="server">

<h4>

HtmlButton Sample With Embedded Tag And Rollover

</h4>

<p>

<Button id="btnReel"

www.syngress.com

Figure 3.32 Using the HtmlImage Control in an HtmlButton Control

Continued

166_ASPNET_03.qxd 11/26/01 2:57 PM Page 92

ASP Server Controls • Chapter 3 93

OnServerClick="btnReel_OnClick"

OnMouseOver="this.style.backgroundColor='yellow'"

OnMouseOut="this.style.backgroundColor='white'"

style="font: 8pt verdana; background-color:lightgreen;

border-color:blue; height:100; width:170"

runat="server">

 Bass Master!

</Button><p>

</form></body></html>

<script language="VB" runat="server">

Sub btnReel_OnClick(Source As Object, e As EventArgs)

span1.InnerHtml="You clicked Bass Master"

End Sub

</script>

Using the HtmlInputFile Control
The HtmlInputFile control has been designed to program against the HTML
<input type=file> element.We can use this control to enable users to upload
binary or text files from a browser to a directory that we specify in our Web
server. Its major attributes are as follows:

<input type=file runat="server" id="programmaticID"

accept="MIMEencodings" maxlength="maxfilepathlength"

size="widthoffilepathtextbox" postedfile="uploadedfile"

>

When this control is rendered, it automatically displays a Browse button for
directory browsing. Figure 3.34 illustrates the usage of an HtmlInputFile control.
The user may upload a file from his or her machine to our c:\temp directory of
the Web server.The code for this application is shown in Figure 3.35 and is avail-
able on the CD in a file named HtmlFile1.aspx.As you will observe from this
code, we have used the fileControl.PostedFile.SaveAs((“c:\temp\” + targetName.Value))
statement to accomplish the objective.

www.syngress.com

Figure 3.33 Continued

166_ASPNET_03.qxd 11/26/01 2:57 PM Page 93

94 Chapter 3 • ASP Server Controls

Figure 3.35 HtmlFile1.aspx

<!— HtmlFile1.aspx —><html><head></head>

<h3>Using Html File Control</h3>

<form enctype="multipart/form-data" runat="server">

Select a file to upload:

<input type="file" id="fileControl" runat="server">

Save as: (Just the name only please):

<input id="txtTargetName" type="text" runat="server">

<input type=button id="btnLoad" value="Upload"

OnServerClick="btnLoad_Click" runat="server">

</form></html>

<script language="VB" runat="server">

Sub btnLoad_Click(s As Object, e As EventArgs)

If txtTargetName.Value="" Then

span1.InnerHtml="Error: you must enter a file name"

Return

End If

If Not (fileControl.PostedFile Is Nothing) Then

Try

fileControl.PostedFile.SaveAs(("c:\temp\" + targetName.Value))

span1.InnerHtml="Done: File loaded to c:\temp\" + _

txtTargetName.Value & " on the Web server"

Catch err As Exception

www.syngress.com

Figure 3.34 Using the HtmlFile Control for Uploading Files to the Server

Continued

166_ASPNET_03.qxd 11/26/01 2:57 PM Page 94

ASP Server Controls • Chapter 3 95

span1.InnerHtml="Error saving file c:\temp\" + _

txtTargetName.Value & "
" & err.ToString()

End Try

End If

End Sub

</script>

Using the HtmlSelect Control with
Data Binding to a SortedList Structure
The HtmlSelect control has been offered to program against the HTML <select>
element. Basically, it enables us to develop a combo box (dropdown list) or a list
box. If the size attribute is set to 1, then it behaves like a dropdown list.We may
allow the selection of multiple items by using its Multiple property. If we allow
multiple selections, we will need to use its Items(i).Selected property to test if its
element i has been selected.An HtmlSelect control can be bound to an external
data source. Figure 3.36 shows an example of a bound HtmlSelect control.

At first sight, the example will appear to be very simple. However, we have
employed a number of common ASP.NET techniques here. Please review the
example carefully as it will become very handy when you deal with more chal-
lenging applications using Web server controls. Our objective is to bind an
HtmlSelect control with a field of a commonly used structure named SortedList.
The SortedList structure, like the ArrayList and HashTable, is an offering in the
Net SDK Collection Class.We may use a SortedList to store a collection of
objects in alphabetic order of a key field. Subsequently, we may retrieve a desired

www.syngress.com

Figure 3.35 Continued

Figure 3.36 Binding an HtmlSelect Control to a SortedList Object

166_ASPNET_03.qxd 11/26/01 2:57 PM Page 95

96 Chapter 3 • ASP Server Controls

value either by using array-like addressing or by its key.The complete code for
this application is shown in Figure 3.37 (and can also be found in the accompa-
nying CD in a file named HtmlSelect1.aspx).

Figure 3.37 HtmlSelect1.aspx

<!— Chapter3\HtmlSelect1.aspx —>

<%@ page language="VB" debug="true" %>

<html><head></head><form runat="server">

<select id= "lstFlowers" size="3" runat="server" />

<input id="btnSubmit" type="button" runat="server" value="Submit"

onServerClick="showSelection">

</form></html>

<script language="VB" runat="server">

Sub Page_Load(source As Object, e As EventArgs)

If Not IsPostBack Then

Dim sortedList1 As New SortedList()

' Load the SortedList object

sortedList1.Add("Tulip", 10.75)

sortedList1.Add("Poppy",20.22)

sortedList1.Add("Azalea",30.33)

Dim i As Integer

' Bind the HtmlSelect control (list box) with the key values

' of the SortedList object

lstFlowers.DataSource=sortedList1.Keys

lstFlowers.DataBind()

Session.Timeout=10 'Set the session timeout to 10 minutes

' Save the populated SortedList in the session

Session("savedList")=sortedList1

End If

End Sub

Sub showSelection(sender As Object, e As EventArgs)

Dim sortedList1 As New SortedList()

' Load the Session’s savedList into an instance of a SortedList

www.syngress.com
Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 96

ASP Server Controls • Chapter 3 97

sortedList1=Session("savedList")

Dim i As Integer

Dim msg As String

Dim dblPrice as Double

dblPrice=sortedList1.GetValueList(lstFlowers.SelectedIndex)

spnMessage.InnerHtml="You have selected " + lstFlowers.Value

spnPrice.InnerHtml="Its price is: " + FormatCurrency(dblPrice)

End Sub

</script>

Creating and Loading the SortedList
In the Page_Load event, we have loaded the SortedList as follows:

Dim sortedList1 As New SortedList()

sortedList1.Add("Tulip", 10.75)

sortedList1.Add("Poppy",20.22)

sortedList1.Add("Azalea",30.33)

By default, the name of a flower (the first parameter) will be loaded in the
sorted list as the key-field.The price of the flower (the second parameter) will be
stored as its value.After the sorted list object is loaded, we have bound the
HtmlSelect control to the key-field of the sorted list as follows:

lstFlowers.DataSource=sortedList1.Keys

lstFlowers.DataBind()

On the click event of the button, our intention is to display the price of the
selected flower.Where will we get the price? Obviously, we want to retrieve it from
the sorted list object. However, there is a minor problem.Whereas the values of the
controls in an ASP.NET page are state-full, the values of the variables are state-less.
Hence, on postback, the sorted list would not be available.We may solve this
problem in many ways.The easiest way is to load the sorted list again. Placing the
relevant code outside the If Not IsPostBack block can do that. But that will cause
repetitive loading of the sorted list object on each postback.Therefore, we have
instead saved the sorted list in a Session object. Subsequently, we have retrieved the
sorted list object from the session variable in the showSelection procedure.The value
of the sorted list has been retrieved using its GetValueList method.

www.syngress.com

Figure 3.37 Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 97

98 Chapter 3 • ASP Server Controls

Using HtmlCheckBox and
HtmlInputRadioButton Controls
We can use the HtmlInputCheckBox control to develop server-side code against the
HTML <input type=checkbox> element.This is done using the Checked property of
this control.The HtmlInputRadioButton control can be used to provide server-side
programmability to an HTML <input type=radio> element.We can group these
controls together by specifying a name property common to all <input type=radio>
elements within the group. Only one radio button in a group can be checked at a
time. Figure 3.38 shows a simple example of these controls.The complete code is
shown in Figure 3.39.The code, shown in Figure 3.39, is self-explanatory and can
be found in a file named HtmlInputCheck1.aspx in the accompanying CD.

Figure 3.39 HtmlInputCheck1.aspx

<!— Chapter3\HtmlInputCheck1.aspx —>

<%@ page language="VB" debug="true" %>

<html><head></head><form runat="server">

Select a room type

<input type="radio" id="radOceanFront" name="rgrView"

runat="server"/>Ocean Front: $600.00

<input type="radio" id="radOceanView" name="rgrView"

runat="server"/>Ocean View: $400.00

Select one or more special facilities:

<input type="checkbox" id= "chkFishing"

runat="server"/> Deep Sea Fishing: $450.00

www.syngress.com

Figure 3.38 Using HtmlCheckBox and HtmlInputRadioButton Controls

Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 98

ASP Server Controls • Chapter 3 99

<input type="checkbox" id= "chkGolf"

runat="server" />Golf at Diamond's Head: $150.00

<input id="btnSubmit" type="button" runat="server" value="Submit"

onServerClick="showPrice">

</form></html>

<script language="VB" runat="server">

Sub showPrice(sender As Object, e As EventArgs)

Dim totalPrice As Double=0

If radOceanFront.Checked Then

totalPrice += 600.00

End If

If radOceanView.Checked Then

totalPrice += 400.00

End If

If chkFishing.Checked Then

totalPrice += 450.00

End If

If chkGolf.Checked Then

totalPrice += 150.00

End If

spnPrice.InnerHtml="Total Price is: " + FormatCurrency(totalPrice)

End Sub

</script>

www.syngress.com

Figure 3.39 Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 99

100 Chapter 3 • ASP Server Controls

Using ASP.NET Web Controls
The ASP.NET Web controls are also known as Web form controls. Microsoft has
included a plethora of Web controls in the System.Web.UI.WebControls namespace.
For discussion purposes, we will divide these controls into three major categories:

■ Basic Web Controls These Web controls are similar to HTML server
controls but have additional features.These controls have a richer and
more consistent object model.

■ Validation Controls These controls have been developed exclusively
for input validation (to be discussed later in this chapter).

■ Databound ListControls These belong to the new generation of con-
trols that provide additional power and development speed.These are
also typically referred to as Templated Web Controls.

All Web controls are derived from the generic class named WebControl. Thus,
the Web controls inherit a common set of class members. Some of the frequently

www.syngress.com

HTML Server Controls versus Web Controls
At first sight, the parallel existence of these two sets of controls may
appear questionable. However, these two types of controls have their
advantages and disadvantages. HTML server controls make it easy to
convert an existing HTML or ASP page to a Web Form. By converting
individual HTML elements to HTML server controls, we can quickly add
Web Forms functionality to the page without affecting the rest of the
page. Furthermore, if we plan to use a heavy amount of client-side
scripts, the HTML server control is the way to go! However, all values in
HTML server controls are essentially of string type, and thus there is no
type safety.

On the other hand, the Web server controls have a richer and more
consistent object model. They automatically generate correct HTML for
down-level (HTML 3.2) and up-level (HTML 4.0) browsers. You will need
them when you prefer a VB-like programming model, and when you are
creating applications with nested controls. However, with server controls
we have less direct control over how a server control is rendered in a
Response object. We can mix these controls in the same page.

Developing & Deploying…

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 100

ASP Server Controls • Chapter 3 101

used members include BackColor, BorderColor, BorderStyle BorderWidth, DataBind,
Enabled, Font, ForeColor, Height, Page, Parent, Site,TabIndex,ToolTip,Visible, Init,
Load, Unload, Dispose,ToString, OnInit, OnLoad, and OnDataBinding.

Basic Web Controls
Table 3.2 briefly describes several server controls that we have classified as basic
Web controls. Some of these controls behave similarly. For example, the usages
and characteristics of a CheckBoxList control are almost identical to those of a
RadioButtonList control.This is why we have grouped these controls under single
captions in Table 3.2.

Table 3.2 Basic Server Controls

Server Control Characteristics

Label A Label is used to display text. If we want to display static
text, we do not need a Label server control; we should
instead use HTML. We should use a Label server control
only if we need to change its properties via server code.

TextBox A TextBox control enables the user to enter text. By
default, the TextMode property is SingleLine, but it can
also be set to Multiline or Password. In case of Multiline
text box, the Rows property determines the height. If its
AutoPostBack property is set to True, it generates a
PostBack on its Text_Changed() event.

Buttons: All three types of buttons cause PostBacks when the user
clicks them.

■ Button Button controls can be placed inside other container
controls, such as DataList, DataGrid and Repeater.

■ LinkButton The LinkButton renders a hyperlink in the page.
■ ImageButton The ImageButton displays an image that responds to

mouse clicks. We can also use it as an image map. Thus,
we may pinpoint where in the graphic the user has clicked.

CheckBox It enables the user to input Boolean data: true or false, yes
or no. Its Checked property can also be bound to a data
field of a data source. Its CheckedChanged event can be
used for AutoPostBack.

ListControls: These controls are derived from the ListControl abstract
■ CheckBoxList class. Note: these controls will be discussed in detail in a
■ DropDownList later section of this chapter.
■ ListBox
■ RadioButtonList

www.syngress.com

Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 101

102 Chapter 3 • ASP Server Controls

HyperLink It displays a link to another page. It is typically displayed
as text specified in its Text property. It can also be dis-
played as an image specified in the ImageUrl property. If
both the Text and ImageUrl properties are set, the
ImageUrl property is displayed. If the image does not exist,
then the text in the Text property is shown. Internet
Explorer uses the Text property to display ToolTip.

Image We may use the Image control to display an image on the
Web page. The ImageUrl property specifies the path to the
displayed image. When the image does not exist, we can
specify the text to display in place of the image by setting
the AlternateText property. The Image control only displays
an image. If we need to capture mouse clicks on the
image, we should instead use the ImageButton control.

Panel This can be used as a container of other controls. This
control is rendered as an HTML <div> element.

RadioButton It creates an individual radio button on the page. We can
group them to present mutually exclusive choices.

Table It enables us an HTML table. A table can be built at design
time with static content, but the Table control is often
built programmatically with dynamic contents.
Programmatic additions or modifications to a table row
or cell do not persist on PostBack. Changes to table rows
or cells must be reconstructed after each post to the
server. In these cases, better alternatives are DataList or
DataGrid controls.

Xml This control can be used to transform XML documents.

Many of the basic server controls work very similarly to their HTML server
control counterparts.All of the Web controls are prefixed with asp: in their tags.
For example, the tag for a label Web control is <asp:Label>.Their uses are also
mostly intuitive.All of the examples illustrated in the HTML server control sec-
tion can also be effectively developed using Web controls. In this section we will
present a number of additional examples to demonstrate the uses of Web controls.

www.syngress.com

Table 3.2 Continued

Server Control Characteristics

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 102

ASP Server Controls • Chapter 3 103

Using Labels, TextBoxes, RadioButtons,
CheckBoxes, and DropDownLists
In this example, we will develop a simple payroll estimation application to
demonstrate Labels,TextBoxes, RadioButtons, CheckBoxes and a DropDownList.We
will use a button control to submit a user’s given data to the server.We will col-
lect data on hours worked, and hourly rate using two textboxes. Insurance-related
data will be collected using two radio buttons:“No Insurance ($0.00),” and
“Family Coverage ($40.00).”We will group these two radio buttons in a group
named rgrInsurance.The objective of grouping buttons is to enable the user to
select at most one button from the group.

We will provide two check boxes to collect data on company facility use.We
will assume that there are two facilities: Parking ($15.00) and Swimming Pool
($10.00).The user should be able to check both items. Finally, we will provide a
DropDownList box to collect data on employee status.There will be two types
of employees:White-Collar and Workhorse.A white-collar worker will receive a
bonus of $100, whereas the bonus for a workhorse is assumed to be $65.88.The
run-time view of the application is shown in Figure 3.40.The code for the appli-
cation is pretty much straightforward.We have shown the code in Figure 3.41.
The code is also available in a file named BasicServerControls1.aspx in the
accompanying CD.

www.syngress.com

Figure 3.40 Using Label, TextBox, RadioButton, CheckBox, and
DropDownList Web Controls

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 103

104 Chapter 3 • ASP Server Controls

Figure 3.41 Complete Code for BasicServerControls1.aspx

<!— Chapter3\BasicServerControls1.aspx —>

<html><head</head><body><form runat="server">

How many hours have you worked?

<asp:TextBox id="txtH" rows="1" width="50" runat="server"/>

Your Hourly Rate?

<asp:TextBox id="txtR" rows="1" width="80" runat="server" />

Please select one of the following:

<asp:RadioButton id="rbtnNoCov" groupName="rgrInsurance"

text="No Insurance Coverage" checked="true" runat="server"/>

<asp:RadioButton id="rbtnFamCov" groupName="rgrInsurance"

text="Family Coverage" runat="server"/>

Which of the company facilities do you use?

<asp:CheckBox id="chkPark" text="Parking" runat="server"/>

<asp:CheckBox id="chkPool" text="Swimming Pool" runat="server"/>

Select your employee status:

<asp:DropDownList id="ddLStatus" runat="server">

<asp:ListItem> White Collar</asp:ListItem>

<asp:ListItem> Workhorse</asp:ListItem>

</asp:DropDownList><p>

<asp:Button id="btnCompute" runat="server"

text="Compute Pay" onclick="computePay"/>

<asp:Label id="lblPayMsg" runat="server"/>

<asp:Label id="lblPay" runat="server"/>

<asp:Label id="lblInsMsg" runat="server"/>

<asp:Label id="lblInsCharge" runat="server"/>

<asp:Label id="lblFacilityMsg" runat="server"/>

<asp:Label id="lblFacilityCharge" runat="server"/>

<asp:Label id="lblBonusMsg" runat="server"/>

<asp:Label id="lblBonusPay" runat="server"/>

<asp:Label id="lblNetWageMsg" runat="server"/>

<asp:Label id="lblNetWage" runat="server"/>

</form></body></html>

<script language=vb runat="server">

www.syngress.com

Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 104

ASP Server Controls • Chapter 3 105

Sub computePay (Sender As Object, E As EventArgs)

Dim h, r, g, netWage, insCharge As Single

Dim facilityCharge, bonus As Single

h=CSng(txtH.Text)

r=CSng(txtR.Text)

lblPayMsg.Text="Your Gross Wage is : "

g=h * r ' Compute gross wage

' Compute Insurance Deduction

If rbtnNoCov.Checked Then

insCharge=0 ' No Insurance Charge

Else

insCharge=40.00

End If

' Compute Facility Usage Charge

facilityCharge=0

If chkPark.Checked Then

facilityCharge += 15 ' Parking

End If

If chKPool.Checked Then

facilityCharge += 10 ' Swimming Pool

End If

' Compute Bonus

Select Case ddlStatus.SelectedIndex

Case 0

bonus=100.00 ' White Collar

Case 1

bonus= 65.88 ' Workhorse

End Select

netWage=g + bonus - insCharge – facilityCharge

' Display Results

lblPay.Text=FormatCurrency(g)

lblInsMsg.Text="Your Insurance Deduction is :"

lblInsCharge.Text=FormatCurrency(insCharge)

www.syngress.com

Figure 3.41 Continued

Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 105

106 Chapter 3 • ASP Server Controls

lblFacilityMsg.Text= "Your Facility Usage Charge is :"

lblFacilityCharge.Text=FormatCurrency(facilityCharge)

lblBonusMsg.Text="Your Bonus Pay is : "

lblBonusPay.Text=FormatCurrency(bonus)

lblNetWagemsg.Text="Your Net Wage is :"

lblNetWage.Text=FormatCurrency(netWage)

End Sub

</script>

Using the ListControl Abstract Class
A number of basic Web controls have been derived from the ListControl abstract
class.These are CheckBoxList, DropDownList, ListBox, and RadioButtonList. Their
usages and characteristics follow a common pattern. If warranted, each of these can
be used as a container control. For example, a CheckBoxList control can contain a
collection of CheckBoxes.We can set their AutoPostBack properties to true to trigger
postbacks on their SelectedIndexChanged events. Each of them has a property named
Item.Count that contains the number of items in the collection.The Items(i).Selected
property can be used to check if the user has selected an item in the list. Finally, the
Items(i).Text property enables us to extract the text of the selected item.

To demonstrate the identical behavior of the controls in the ListControl
family, we will develop a simple example.We will load a ListBox control with
certain flower names, a RadioButtonList control with some state names, and a
CheckBoxList control with some facility names. Just for demonstration purposes,
we will set the AutoPostBack properties of all of these controls to true. On click of
each of these controls, we will display the user’s selections.We will enable the
user to select multiple entries from our list box. Of course, by default, the
CheckBoxList control will enable the user to select more than one entry.The
complete application, when displayed in IE, will appear as shown in Figure 3.42.

We have developed this application using VS.Net.The design time view of
the form is shown in Figure 3.43.As you can observe from this figure, we have
applied a certain amount of styling in the controls.

The VS.Net created a virtual directory and generated a Web application for this
work. It has also generated two major files: WebForm1.aspx and WebFrom1.aspx.vb
(the code-behind). It has compiled the WebForm1.aspx.vb to a .dll file and has saved
it in the bin directory automatically.The entire application is available in the

www.syngress.com

Figure 3.41 Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 106

ASP Server Controls • Chapter 3 107

Chapter3\TestingWebControls directory of the accompanying CD.To test the applica-
tion, you will need to copy the TestingWebControls directory to your Inetpub\wwwroot
directory.Then use the following URL to display the page in your browser:
http://localhost/TestingWebControls/WebForm1.aspx.

We will not reproduce the entire code here. In short, we have created three
list controls.The RepeatDirection attribute of the CheckBoxList control has been set
to “Horizontal” to align the check boxes horizontally.A truncated version of the
WebForm1.aspx file as generated by VS.Net is shown in Figure 3.44.

Figure 3.44 Truncated Code Listing for WebForm1.aspx File: VS.NET
(TestWebControls directory)

<%@ Page Language="vb" AutoEventWireup="false"

Codebehind="WebForm1.aspx.vb"

www.syngress.com

Figure 3.42 Displaying and Manipulating Various List Controls

Figure 3.43 Design Time View of the ListControl Demonstration in VS.Net

Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 107

http://localhost/TestingWebControls/WebForm1.aspx

108 Chapter 3 • ASP Server Controls

Inherits="TestingWebControls.WebForm1"%>

<body MS_POSITIONING="GridLayout">

<form id="Form1" method="post" runat="server">

<asp:RadioButtonList id="rblStates" style="Z-INDEX: 103; LEFT: 22px;

POSITION: absolute; TOP: 69px" runat="server" AutoPostBack="True"

Width="93px" Height="77px" BorderStyle="Ridge"

BorderColor="#E0E0E0"></asp:RadioButtonList>

<asp:CheckBoxList id="cblServices" style="Z-INDEX: 104; LEFT: 21px;

POSITION: absolute; TOP: 154px" runat="server" AutoPostBack="True"

Width="200px" Height="35px" BorderStyle="Inset" RepeatDirection

="Horizontal" BorderColor="#E0E0E0"></asp:CheckBoxList>

--- --- Similar Code for the asp:ListBox id="lstFlowers" --- ---

<asp:Label id="lblState" style="Z-INDEX: 105; LEFT: 134px; POSITION:

absolute; TOP: 87px" runat="server" Width="66px" Height="19px"

Font-

Bold="True" Font-Italic="True"></asp:Label>

--- --- Similar Codes for other Labels --- ---

</form></body>

In the WebForm1.aspx.vb code-behind file, we have loaded all of the
ListControls in the Page_Load event. In the appropriate events of these controls, we
included the instructions to display the selections in respective labels.The user
may select more than one entry in the CheckBoxList. Hence, we used a loop to
iterate through each of the items. If the item was selected, we included its text in
the output. Identical procedures were used to display the selected values in the
list box.A truncated version of the relevant code for WebForm1.aspx.vb file is
shown in Figure 3.45.

Figure 3.45 Partial Listing of WebForm1.aspx.vb

Private Sub Page_Load(ByVal sender As System.Object, ByVal e As _

System.EventArgs) Handles MyBase.Load

'Put user code to initialize the page here

If Not Page.IsPostBack Then

' Load the CheckBoxList

www.syngress.com

Figure 3.44 Continued

Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 108

ASP Server Controls • Chapter 3 109

cblServices.Items.Add(New ListItem("Golf"))

cblServices.Items.Add(New ListItem("Parking"))

cblServices.Items.Add(New ListItem("Pool"))

' Load the RadioButtonList

rblStates.Items.Add(New ListItem("Alabama"))

rblStates.Items.Add(New ListItem("Kentucky"))

rblStates.Items.Add(New ListItem("Ohio"))

' Load ListBox

lstFlowers.Items.Add(New ListItem("Tulip"))

lstFlowers.Items.Add(New ListItem("Poppy"))

lstFlowers.Items.Add(New ListItem("Iris"))

End If

End Sub

Private Sub rblStates_SelectedIndexChanged(ByVal sender As _

System.Object, ByVal e As System.EventArgs) Handles _

rblStates.SelectedIndexChanged

lblState.Text=rblStates.SelectedItem.Text

End Sub

Private Sub cblServices_SelectedIndexChanged(ByVal sender As _

System.Object, ByVal e As System.EventArgs) Handles _

cblServices.SelectedIndexChanged

Dim i As Integer

lblService.Text=" "

For i=0 To cblServices.Items.Count - 1

If cblServices.Items(i).Selected Then

lblService.Text += cblServices.Items(i).Text + " "

End If

Next

End Sub

' Similarly, develop the SelectedIndexChanged event procedure for the

' other controls.

www.syngress.com

Figure 3.45 Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 109

110 Chapter 3 • ASP Server Controls

Using HyperLink Controls
The HyperLink server control enables us to link to a different page. Its Text prop-
erty is displayed on the screen as a hyperlink. On click of the hyperlink, it links
to a page specified in its NavigateUrl property.The displayed text can be replaced
by an image by specifying the ImageUrl property. In our next example, we will
develop a page with two HyperLink controls. One of them will display text, and
the other will display an image.We will specify the “http://ahmed2/Chapter3/
ServerControl4.aspx” in both of their NavigateUrl properties.The completed appli-
cation will be displayed in IE as shown in Figure 3.46.When the user clicks any
of the controls, the system will display the specified page.The complete code for
the application is shown in Figure 3.47 and is also available in a file named
HyperLink1.aspx in the accompanying CD.

Figure 3.47 Complete Listing for HyperLink1.aspx

<!— Chapter3\HyperLink1.aspx —>

<%@ Page Language="VB" Debug="true" %>

<html><head></head><body>

<form runat="server">

<asp:HyperLink id="HyperLink1" runat="server"

NavigateUrl="http://ahmed2/Chapter3/ServerControl4.aspx"

Text="Go to a simple page"/>

<asp:HyperLink id="HyperLink2" runat="server"

NavigateUrl="http://ahmed2/Chapter3/ServerControl4.aspx"

ImageUrl="http://ahmed2/Chapter3/BaitcastReel1.jpg"

www.syngress.com

Figure 3.46 Illustration of the HyperLink Server Control

Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 110

http://ahmed2/Chapter3/
http://ahmed2/Chapter3/ServerControl4.aspx
http://ahmed2/Chapter3/ServerControl4.aspx
http://ahmed2/Chapter3/BaitcastReel1.jpg

ASP Server Controls • Chapter 3 111

Text="World's Best Fishing Reel"/>

</body></form></html>

Binding a ListControl to an ArrayList
In most of our previous examples, we loaded a list box via code in the Page_Load
event. In this section, we will introduce an important concept of a typical
ASP.NET development practice. Rather than populating a specific control via
code, we may bind a control to a data source (something that contains data). In
this case, the control will automatically assume the value or values contained in
the data source.At this stage, you may not see the benefit of this approach, but it
will shine like a jewel when we learn how to display and manipulate data from
databases. In the example shown in Figure 3.36 and Figure 3.37, we have shown
a similar example of binding an HtmlSelect control to a SortedList). Since the
ArrayList object is also very common in ASP.NET framework, we will bind our
ListControl to an ArrayList in our next example.

Often we create and load a collection of objects into certain structures.These
structures are known as collection objects. For example, an ArrayList is a collection
object. It is actually very similar to a dynamic array of objects. Suppose that one
of these ArrayList objects contains the names of some flowers. If needed, we may
bind one or more controls to this ArrayList.That way, the controls will be auto-
matically loaded with the values in the ArrayList. Don’t worry! We will not
deprive you of binding controls to databases.Those examples will appear later in
this chapter.

Binding a control to a data source is very simple. Rather than developing a
data loading procedure, we just set the DataSource property of a control to a data
source.Then we employ the DataBind() method of the control to accomplish the
binding task. In our example, we will first create an ArrayList of flowers, and then
we will bind a list box (lstFlower) with the ArrayList. Figure 3.48 shows the run-
time view of the application.The complete listing of the code is shown in Figure
3.49 (also available in the accompanying CD in a file named DataBind1.aspx).

www.syngress.com

Figure 3.47 Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 111

112 Chapter 3 • ASP Server Controls

Figure 3.49 Complete Listing of DataBind1.aspx

<!— Chapter3\DataBind1.aspx —>

<%@ Page Language="VB" Debug="true" %>

<html><head></head><title></title><body>

<form runat="server">

Select a flower, and then click the submit button please:

<asp:ListBox id="lstFlowers" runat="server" rows="3"

AutoPostBack="True" onSelectedIndexChanged="showSelection"/>

</asp:ListBox>

<asp:Label id=lblMessage runat="server"></asp:Label></p>

</body></form></html>

<script language=vb runat="server">

Sub Page_Load(source As Object, e As EventArgs)

If Not Page.IsPostBack Then

Dim myArrayList As New ArrayList

' Populate the ArrayList: This will be a data source

myArrayList.Add("Azalea")

myArrayList.Add("Tulip")

myArrayList.Add("Rose")

' Step 1: Specify the Datasource property of the list control

lstFlowers.DataSource= myArrayList

' Step 2: Employ the DataBind() method to load the

' list control from its DataSource automatically

lstFlowers.DataBind()

lstFlowers.SelectedIndex=0

www.syngress.com

Figure 3.48 Binding a ListControl to an ArrayList

Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 112

ASP Server Controls • Chapter 3 113

End If

End Sub

Sub showSelection(sender As Object, e As EventArgs)

lblMessage.Text="You have selected "+lstFlowers.SelectedItem.Text

End Sub

</script>

Validation Controls
A validation control enables us to validate an input and display an error message
if necessary. It is very much like other server-side controls with certain additional
methods and properties. First, the server treats it as an invisible control.After the
user has entered erroneous data, it becomes visible. It is a powerful, rapid applica-
tion development feature; however, a developer needs to understand its behavior
and the methods thoroughly before he or she can appreciate it.There are certain
rough edges in the Beta 2 version, which hopefully will be polished in the final
product.The best strategy to learn the family of controls is to learn them one at a
time, and finally to apply the summary validation.

Various types of validation controls are as follows:

■ RequiredFieldValidator Checks if the input control has any value.

■ RegularExpressionValidator Checks the value against a regular
expression (pattern).

■ CompareValidator Checks if the value is acceptable compared to a
given value or compared to the content of another control.

■ RangeValidator Checks if the input control’s value is within a
specified range.

■ CustomValidator Allows you to develop custom validation.

■ ValidationSummary Reports a summary of all errors.

By default, each of the validation controls performs the validation task at the
client-side as well as at the server-side. Except for the RequiredFieldValidator, all
other validation controls treat an empty field as a valid field.Therefore, we will
need to apply a RequiredFieldValidator to every input field that we want to vali-
date.You can attach more than one validation control to an input. For example,

www.syngress.com

Figure 3.49 Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 113

114 Chapter 3 • ASP Server Controls

we may use a RequiredFieldValidator and a RangeValidator to ensure that an input
is not empty and falls within a specified range.

There are a number of common properties in these controls.The major
ones are:

■ ErrorMessage In case of an error, the system displays this message at
the location of the control, and in the summary report, if any.

■ Display A validation control is kept invisible until a bad input is
entered. In case of a bad input, the system has to display the error mes-
sage.The display mechanism can be handled in one of three ways.

■ Display= “static” Initially, enough room in the page is reserved
for the expected error message.

■ Display= “dynamic” No room is initially reserved. In case of an
error, the message is displayed by displacing existing contents of the
page.

■ Display=“none” The message won’t be displayed at the location
of the control; however, it will be reported in the summary report,
if any.

The RequiredFieldValidator Control
In the following example, the user is expected to enter two values. If he or she
skips any one of the values and clicks the Submit button, the system will report
the error. Please notice that we do not require any extra code for performing this
validation.When the Submit button is clicked, the form will be sent to the
server, and the server will do the automatic validation.The run-time view of this
application is shown in Figure 3.50.The code for this application, as shown in
Figure 3.51, is self-explanatory and is also available in the accompanying CD in a
file named Validator1.aspx.

www.syngress.com

Figure 3.50 Using the RequiredFieldValidator Control

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 114

ASP Server Controls • Chapter 3 115

Figure 3.51 Validator1.aspx

<!—- Chapter3\Validator1.aspx —>

<!— Required Field Validator —>

<html><head</head>

<title>Example on Required Field validator</title><body>

<form runat="server">
 Enter Your Name:

<asp:TextBox id="txtName" rows="1 " width="50" runat="server"/>

<asp:RequiredFieldValidator id="validTxtName"

runat="server" controlToValidate="txtName"

errorMessage="Name must be entered" display="static">

</asp:RequiredFieldValidator></br>

Hours worked?

<asp:TextBox id="txtH" width ="30" runat="server" />

<asp:RequiredFieldValidator id="validTxtH" runat="server"

controlToValidate="txtH" errorMessage="Hours must be entered"

display="static">

</asp:RequiredFieldValidator></br>

<asp:Button id="btnSubmit" runat="server" text="Submit" />

</form></body></html>

The RegularExpressionValidator Control
The RegularExpressionValidator control is typically used to match an input pattern.
As an example, let us assume that the value of hours-worked field must have one
to three digits. In this case, we will add a RegularExpressionValidator to the txtH
control. In the RegularExpression property of the RegularExpressionValidator, we
will specify a pattern /d{1,3}. This will force the system to raise an error if the
user input is not one-to-three digits long.The output of this application is shown
in Figure 3.52.The code for this example is shown in Figure 3.53 and is also
available on the accompanying CD in a file named Validator2.aspx.

www.syngress.com

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 115

116 Chapter 3 • ASP Server Controls

Figure 3.53 Validator2.aspx

<!—- Chapter3\Validator2.aspx —>

<%@ Page Language="VB" Debug="true" %>

<html><head</head><body>

<form runat="server">

Enter Your Name:

<asp:TextBox id="txtName" rows="1 " width="60" runat="server"/>

<asp:RequiredFieldValidator id="validTxtName" runat="server"

controlToValidate="txtName" errorMessage="Name must be entered"

display="static">

</asp:RequiredFieldValidator></br>

Hours worked?

<asp:TextBox id="txtH" width ="40" runat="server" />

<asp:RequiredFieldValidator id="validTxtH" runat="server"

controlToValidate="txtH" errorMessage="Hours must be entered"

display="static">

</asp:RequiredFieldValidator>

<asp:RegularExpressionValidator id="regvH"

runat="server" display="static" controlToValidate="txtH"

errorMessage="Hours must be 1-3 digits only"

validationExpression="\d{1,3}">

</asp:RegularExpressionValidator></br>

<asp:Button id="btnSubmit" runat="server" text="Submit" />

</form></body></html>

www.syngress.com

Figure 3.52 Using RegularExpressionValidator Controls

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 116

ASP Server Controls • Chapter 3 117

NOTE

The details of regular expressions can be found in any Perl book. You
may also review http://msdn.microsoft.com/scripting/default.htm?/
scripting/JScript/doc/jsobjregexpression.htm.

We have found the following source to be adequate:
www.microsoft.com/mind/defaulttop.asp?page=/mind/1098/jscript/
jscript.htm&nav=/mind/1098/inthisissuecolumns1098.htm.

The CompareValidator Control
The CompareValidator control compares an input to a specified value or to the
value of another control.You can also use it to check if the input is of any partic-
ular data type. In our next example, we will add a textbox named txtR. In this
textbox, the user will enter the hourly rate. Suppose that we want the data-type
of this field to be Double.We will apply a CompareValidator control to test the
data-type of the txtR. Note that if the data entered is convertible to the desired
data-type, the validation will succeed.The run-time view of the application is
shown in Figure 3.54.

We have added the code following code to accomplish this objective (you
may review the complete code in the file named Validator3.aspx on the CD).
Please notice that we have set the type property to “Double,” and the operator
property to “DataTypeCheck.”

<asp:CompareValidator id="comvR" runat="server" display="static"

controlToValidate="txtR" errorMessage="Rate must be numeric"

type="Double" operator="DataTypeCheck">

</asp:CompareValidator></br>

www.syngress.com

Figure 3.54 Using the CompareValidator Control

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 117

http://msdn.microsoft.com/scripting/default.htm?/

118 Chapter 3 • ASP Server Controls

In the type property of the CompareValidator, we may specify: String, Integer,
Double, DateTime, and Currency. In the operator property, we may specify: Equal,
NotEqual, GreaterThan, LessThan, GreaterThanEqual, LessThanEqual, and
DataTypeCheck.

The RangeValidator Control
You can use this control to check if an input is within an acceptable range.
Suppose that we want to provide a textbox for collecting data on “number of
dependents.”We want to enforce a constraint that this field should be from 0 to
10. Figure 3.55 illustrates the use of a RangeValidator in this particular situation.

In our code, we have used the type, minimumValue, and maximumValue proper-
ties of a RangeValidator to apply the constraint.We have applied the RangeValidator
as follows: (The complete code is available in Validator4.aspx.)

<asp:RangeValidator id="ranvDependents" runat="server"

display="static" controlToValidate="txtDependents"

errorMessage="Must be from 0 to 10"

type="Integer" minimumValue=0 maximumValue=10>

</asp:RangeValidator></br>

The CustomValidator Control
In many situations, we may not be able to use the existing validators to validate a
complex rule. In that case, we may apply a CustomValidator. When applying a
CustomValidator, we may provide our own functions that will return true or false.
We may develop the code for server-side validation only, or we may develop the
code for server-side as well as the client-side validation. Suppose that the user
will enter the data about his or her department number.Also suppose that the

www.syngress.com

Figure 3.55 Using the RangeValidator Control

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 118

ASP Server Controls • Chapter 3 119

department number must be evenly divisible by 10.We will develop a simple
custom validator to enforce this rule at the server-side.The run-time display of
this application is shown in Figure 3.56.

We have developed a VB function named validateDeptNum to perform the
check.We have also specified its name in the onServerValidate property of the
CustomValidator control.An excerpt from the complete code for this application is
shown in Figure 3.57.The complete code is available on the CD in the file
named Validator5.aspx.

Figure 3.57 The Code for CustomValidator (Validator5.aspx)

What is your Department Number?

<asp:TextBox id="txtDeptNum" width ="40" runat="server" />

<asp:CustomValidator id="cusvDeptNum" runat="server"

display="static" controlToValidate="txtDeptNum"

onServerValidate="validateDeptNum"

errorMessage="Must be in multiples of 10" >

</asp:CustomValidator></br>

<asp:Button id="btnSubmit" runat="server" text="Submit" />

</form></body></html>

<script language="VB" runat="server">

Sub validateDeptNum(source As Object, s as ServerValidateEventArgs)

If (CInt(s.Value) Mod 10)=0 Then

s.IsValid= True

Else

www.syngress.com

Figure 3.56 Using the CustomValidator Control

Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 119

120 Chapter 3 • ASP Server Controls

s.IsValid=False

End If

End Sub

</script>

Although this example illustrates the server-side validation,ASP.NET auto-
matically writes client-side code to perform the validation.There are various
options available to prevent this from occurring and also not to display the code
that shows the client-side JavaScript validation.We will not be going into these in
detail. In the server-side custom validation, the validation function is included in
the server-side script tag <script language=“VB” runat=“server”>. We need to
specify the name of the validation function in the OnServerValidate property of
the CustomValidator control.The validator control calls this function with two
parameters: the first parameter is the control itself, whereas the second parameter
is an instance of the ServerValidateEventArgs class.This object encapsulates the
methods and properties that enable us to access the value of the control being
validated and to return whether the control has been validated or not.

NOTE

If the client-side validation is active (which is the default), the browser
does not submit the form back to the server until all corrections have
been made on the client-side. If you have a “server-side-only” custom
validator along with some other fields that employ client-side validation,
then on click of the submit button, the form may not appear to work
properly. That is expected because the browser will not submit the form
until all client-side validated fields are correct.

CustomValidator with Explicit
Client-Side Validation Function
In the CustomValidator, we may specify a twin client-side validation function.
To employ the client-side validation, we will have to specify the name of the
client-side validation function in the ClientValidationFunction property of the
CustomValidator control.The client-side function needs to be coded in JavaScript,

www.syngress.com

Figure 3.57 Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 120

ASP Server Controls • Chapter 3 121

and it should also return true or false. Obviously, the client-side validation should
perform the same checks that are done by the server-side validation function.

We will revise our previous example to include a client-side validation func-
tion.We have already developed the server-side validation function for the
department number textbox. Now we will implement the client-side validation.
The run-time display of the application is shown in Figure 3.58.

The part of the code that is pertinent to our example is shown in Figure
3.59. In this code, you will notice that we have specified the name of the
JavaScript validation function in the ClientValidationFunction property of the con-
trol to be validated.The complete code is available in Validator6.aspx in the CD.

Figure 3.59 Partial Listing of Validator6.aspx

<asp:CustomValidator id="cusvDeptNum" runat="server"

display="dynamic" controlToValidate="txtDeptNum"

onServerValidate="validateDeptNum"

ClientValidationFunction="checkModTen"

errorMessage="Dept. Number must be a multiple of 10" >

</asp:CustomValidator></br>

<script language="javascript" >

function checkModTen(source, s)

{ var y=parseInt(s.Value);

if ((y % 10) == 0 && !(isNaN(y)))

s.IsValid=true;

else

s.IsValid=false;

www.syngress.com

Figure 3.58 Using CustomValidator with Explicit Client-Side Validation

Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 121

122 Chapter 3 • ASP Server Controls

}

</script>

Displaying the Error Message with Style
In this example, we will set various properties of the validation controls to display
its message with style.The output of the application is shown in Figure 3.60.We
have set a number of properties, such as forecolor, bordercolor, tooltip, and so on, to
our number of dependent validators.

The part of the code that is relevant to format the validator is shown in Figure
3.61.The complete code is available in the file named Validator7.aspx on the CD.

Figure 3.61 Validator7.aspx

<asp:RangeValidator id="ranvDependents" runat="server"

backcolor="salmon" forecolor="blue" bordercolor="green"

borderstyle=Solid borderwidth=5 font-bold=True font-italic=True

font-size="14" height="20"

tooltip="Cannot have more than 20 dependents."

text="Bad Number. Must be less than 21"

width="250" display="dynamic" controlToValidate="txtDependents"

errorMessage="Number of dependents must be from 0 to 20"

type="Integer" minimumValue=0 maximumValue=10>

</asp:RangeValidator></br>

www.syngress.com

Figure 3.59 Continued

Figure 3.60 Displaying Error Message with Style

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 122

ASP Server Controls • Chapter 3 123

The ValidationSummary Control
The ValidationSummary control enables us to display all errors in a given location.
It displays the “errorMessage” properties of respective controls in the summary
report. Since the error messages are displayed in the summary, often we suppress
the detailed error message in the individual ValidatorControls by placing an
asterisk (*) or a short message right after the validator control’s start-tag. Major
properties of the ValidationSummary control are the following:

■ headerText This is simply a header.

■ displayMode Displays the errors in one of the following ways:

■ List

■ BulletList (default)

■ Singleparagraph

■ ShowSummary: (True or False) This property can be used to display
or hide the summary report programmatically.

Figure 3.62 illustrates the use of a ValidationSummary control. In our example,
we have defined the ValidationSummary control as follows.

<asp:ValidationSummary id="valSummary" runat="server"

headerText="Please correct the following errors"

display="static" showSummary= "True" />

www.syngress.com

Figure 3.62 Using the ValidationSummary Control

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 123

124 Chapter 3 • ASP Server Controls

The complete code for the application is shown in Figure 3.63 and is avail-
able in the file named Validator8.aspx on the CD.

Figure 3.63 The Complete Code for the Application (Validator8.aspx)

<!—- Chapter3\Validator8.aspx —>

<%@ Page Language="VB" Debug="true" %>

<html><head</head>

<title>Example on ValidationSummary control </title>

<body><form runat="server">

Enter Your Name:

<asp:TextBox id="txtName" rows="1" width="100" runat="server"/>

<asp:RequiredFieldValidator id="validTxtName" runat="server"

controlToValidate="txtName" errorMessage="Name must be entered"

display="static">*

</asp:RequiredFieldValidator></br>

Hours worked?

<asp:TextBox id="txtH" width ="60" runat="server" />

<asp:RequiredFieldValidator id="validTxtH" runat="server"

controlToValidate="txtH" errorMessage="Hours must be entered"

display="static">*

</asp:RequiredFieldValidator>

<asp:RegularExpressionValidator id="regvH" runat="server"

display="static" controlToValidate="txtH"

errorMessage="Hours must be 1-3 digits only"

validationExpression="\d{1,3}">*

</asp:RegularExpressionValidator></br>

Hourly Rate?

<asp:TextBox id="txtR" width ="60" runat="server" />

<asp:CompareValidator id="comvR" runat="server" display="static"

controlToValidate="txtR" errorMessage="Rate must be numeric"

type="Double" operator="DataTypeCheck">*

</asp:CompareValidator></br>

Number of Dependents:

<asp:TextBox id="txtDependents" width ="60" runat="server" />

<asp:RangeValidator id="ranvDependents" runat="server"

www.syngress.com
Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 124

ASP Server Controls • Chapter 3 125

www.syngress.com

backcolor="salmon" forecolor="blue" bordercolor="green"

borderstyle="Solid" borderwidth="5" font-bold="True"

font-italic="True" font-size="14" height="20"

tooltip="Cannot have more than 20 dependents."

text="Bad Number. Must be less than 21" width="250"

display="dynamic" controlToValidate="txtDependents"

errorMessage= "Number of dependents must be from 0 to 20"

type="Integer" minimumValue="0" maximumValue="10">*

</asp:RangeValidator>

What is your Department Number?

<asp:TextBox id="txtDeptNum" width ="60" runat="server" />

<asp:CustomValidator id="cusvDeptNum" runat="server"

display="dynamic" controlToValidate="txtDeptNum"

onServerValidate="validateDeptNum"

ClientValidationFunction="checkModTen"

errorMessage= "Dept. Number must be a multiple of 10" >*

</asp:CustomValidator>

<asp:Button id="btnSubmit" runat="server" text="Submit"/>

<asp:ValidationSummary id="valSummary" runat="server"

headerText="Please correct the following errors" display="static"

showSummary= "True" />

</form></body></html>

<script language="VB" runat="server">

Sub validateDeptNum(source As Object, s as ServerValidateEventArgs)

If (CInt(s.Value) Mod 10)=0 Then

s.IsValid= True

Else

s.IsValid =False

End If

End Sub

</script>

<script language="javascript">

function checkModTen(source, s)

Figure 3.63 Continued

Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 125

126 Chapter 3 • ASP Server Controls

{ var y=parseInt(s.Value);

if (isNaN(y) && !((y % 10) == 0))

s.IsValid=false;

else

s.IsValid=true;

}

</script>

Validating Patterned Strings, Passwords, and Dates
Suppose that we want the user to enter the phone number, date of birth, hire-
date, password, and confirmation of password.Also suppose that the business envi-
ronment dictates that we enforce the following constraints:

■ The phone number must follow a pattern like (ddd)ddd-dddd for
employees in the USA. It should match dd.dd.dd.dd for employees in
France.

■ The date of birth must be between 1/1/1940 and 1/12/1985.

■ Hire date must be after the date of birth and before 6/15/2001.

■ The user should enter the password twice, and both entries must be
identical.

We have developed an application to enforce these business rules.The output
of the application is shown in Figure 3.64.

www.syngress.com

Figure 3.63 Continued

Figure 3.64 Validating Patterned Strings and Passwords

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 126

ASP Server Controls • Chapter 3 127

The complete code for this application is shown in Figure 3.65 and is avail-
able on the CD in the file named Validator9.aspx.We have enforced the under-
lying constraints as follows:

Constraint 1. We will use a regular expression to implement this con-
straint.The following regular expressions are identical. Both of these
expressions will test the pattern (ddd)ddd-ddd:

ValidationExpression="\(\d\d\d\)\d\d\d\-\d\d\d\d">

ValidationExpression="\(\d{3}\)\d{3}\-\d{4}"

However, for French employees we must also test a pattern like
dd.dd.dd.dd.The regular expression for this pattern would be this:

ValidationExpression="\d{2}\.\d{2}\.\d{2}\.\d{2}"

We may parenthesize these two expressions and connect them with a
pipe (|) symbol to specify that any one of the expressions needs to be
satisfied, as follows:

ValidationExpression="(\(\d{3}\)\d{3}\\d{4})|

(\d{2}\.\d{2}\.\d{2}\.\d{2})"

Constraint 2. We have used a RangeValidator to enforce this rule.

Constraint 3. We have used a combination of the CompareValidator and
the RangeValidator.The CompareValidator checks whether the date in
txtDateHired is greater than that in txtDateOfBirth.The code for that is as
follows:

Hire Date?

<asp:TextBox id="txtDateHired" rows="1" width="100" runat="server"/>

<asp:CompareValidator id="compDateHired" runat="server"

display="dynamic"

controlToValidate="txtDateHired"

controlToCompare="txtDateOfBirth"

errorMessage="Hire Date must be after Date of Birth"

type="String" operator="GreaterThan">

</asp:CompareValidator>

The RangeValidator checks whether the date in txtDateHired is less
than “6/15/2001.”The minimumValue is set to “1/1/1900” because the

www.syngress.com

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 127

128 Chapter 3 • ASP Server Controls

RangeValidator will not work unless both the minimumValue and
maximumValue are both present.The code snippet follows:

<asp:RangeValidator id="ranvDateHired" runat="server" type="Date"

display="dynamic" controlToValidate="txtDateHired"

errorMessage="Hire date must be before 6/1/2001"

minimumValue="1/1/1900" maximumValue="6/15/2001" >

</asp:RangeValidator>

Constraint 4. Two asp:TextBox controls have been used.The TextMode
properties have been set to “Password”. CompareValidator has been
attached to the txtConfirmPassword. Its ControlToCompare property has
been set to “txtPassword.”:

controlToValidate="txtConfirmPassword" controlToCompare="txtPassword"

type="String" operator="Equal"

Figure 3.65 Validator9.aspx

<!—- Chapter3\Validator9.aspx —>

<html><head</head><body><form runat="server">

Phone Number? (ddd)ddd-dddd or dd.dd.dd.dd

<asp:TextBox id="txtPhone" rows="1 " width="100" runat="server"/>

<asp:RequiredFieldValidator id="validTxtName" runat="server"

controlToValidate="txtPhone" errorMessage="Name must be entered"

display="dynamic">

</asp:RequiredFieldValidator>

<asp:RegularExpressionValidator id="regvPhone" runat="server"

display="dynamic" controlToValidate="txtPhone"

errorMessage="Incorrect Phone Number"

validationExpression=

"(\(\d{3}\)\d{3}\-\d{4})|(\d{2}\.\d{2}\.\d{2}\.\d{2})">

</asp:RegularExpressionValidator>

Date of Birth? (mm/dd/yyyy) :

<asp:TextBox id="txtDateOfBirth" rows="1" width="100" runat="server"/>

<asp:RangeValidator id="ranvDob" runat="server" type="Date"

display="dynamic" controlToValidate="txtDateOfBirth"

www.syngress.com

Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 128

ASP Server Controls • Chapter 3 129

errorMessage= "Must be within 1/1/1940 and 12/1/1985"

minimumValue="1/1/1940" maximumValue="12/1/1985">

</asp:RangeValidator></br>

Hire Date?

<asp:TextBox id="txtDateHired" rows="1 " width="100" runat="server"/>

<asp:CompareValidator id="compDateHired" runat="server"

display="dynamic" controlToValidate="txtDateHired"

controlToCompare="txtDateOfBirth"

errorMessage="Hire Date must be after Date of Birth" type="String"

operator="GreaterThan">

</asp:CompareValidator>

<asp:RangeValidator id="ranvDateHired" runat="server" type="Date"

display="dynamic" controlToValidate="txtDateHired"

errorMessage="Hire date must be before 6/1/2001"

minimumValue="1/1/1900" maximumValue="6/15/2001" >

</asp:RangeValidator>

Password?

<asp:TextBox id="txtPassword" textmode="password" width="100"

runat="server"/>

Confirm Password:

<asp:TextBox id="txtConfirmPassword" textMode="password" width="100"

runat="server" />

<asp:CompareValidator id="comvConfirmPassword" runat="server"

display="static" controlToValidate="txtConfirmPassword"

controlToCompare="txtPassword"

errorMessage="Both passwords must be same" type="String"

operator="Equal">

</asp:CompareValidator>

<asp:Button id="btnSubmit" runat="server" text="Submit"/>

www.syngress.com

Figure 3.65 Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 129

130 Chapter 3 • ASP Server Controls

</form></body></html> The
Databound ListControls Family
In this section, we will discuss the Databound ListControls.This family of controls
is new to ASP developers.These controls provide rapid application development
to display and manipulate data from any data source.The following controls
shown in Table 3.3 belong to this family.

Table 3.3 The Databound ListControls Family

CheckBoxList DataGrid DataList DropDownList

HtmlSelect ListBox RadioButtonList Repeater

In earlier sections of this chapter, we illustrated data binding examples on
HtmlSelectControl (Figure 3.36), and asp:ListBox control (Figure 3.48).We may use
similar techniques to bind data to a CheckBoxList, DropDownList, or a
RadioButtonList control. In this section, we will instead introduce three of the
most prominent members of this family: Repeater, DataList, and DataGrid.

In our demonstrations, we will use a sample database named Products.mdb,
which you can find on the CD accompanying this book. It is a Microsoft Access
2000 database. It contains only one table, named Products. Figure 3.66 shows some
sample records in this table. Basically, the table has four columns: ProductId
(AutoNumbered Long Integer), ProductName (Text 50), ImagePath (Text 150) and
Price (Currency).The ImagePath column contains the name and location of an
image relative to a virtual directory.

You will learn database connectivity issues in Chapter 7.When we connect to
a database, we typically run a query and populate a data table of a data set with
the results of the query. In this chapter, we will not discuss the mechanics of how
to connect to a database.To understand the remainder of this chapter, it will be
sufficient to know that we can bind a ListControl to a data table of a data set. In
most of the examples, we will use a subprocedure to populate a DataSet named

www.syngress.com

Figure 3.66 Sample Records in the Products Table

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 130

ASP Server Controls • Chapter 3 131

myDataSet. The listing of a similar subprocedure is shown in Figure 3.67.
Temporarily, we will treat this code as a black box (until you have read Chapter
7).This code will populate a data set and subsequently bind a specific ListControl
to the data set.

Figure 3.67 Populating myDataSet and Binding a ListControl

1. Sub bindListControl()

2. Dim myConn As OleDbConnection

3. Dim myOleDbAdapter As OleDbDataAdapter

4. Dim connStr, sqlStr As String

5. Dim myDataSet As New Dataset

6. connStr="Provider=Microsoft.Jet.OLEDB.4.0;" _

7. + "Data Source=D:\Products.mdb"

8. sqlStr="SELECT ProductId, ProductName, Price, ImagePath " _

9. + "FROM Products WHERE Price>45.00 ORDER BY Price"

10. myConn= New OleDbConnection(connStr)

11. myConn.Open()

12. myOleDbAdapter =New OleDbDataAdapter(sqlStr,myConn)

13. myOleDbAdapter.Fill(myDataSet,"dtProducts")

14. repeater1.DataSource=myDataSet.Tables("dtProducts")

15. repeater1.DataBind()

16. End Sub

NOTE

To try the examples in the remainder of this chapter, you will need to do
the following:

1. Copy the Products.mdb in your hard drive. In each sample pro-
gram, locate the bindListControl subprocedure (shown in Figure
3.67), and adjust its line number 7 to specify your drive. For
example, if you have loaded Products.mdb in your C drive, then
change line number 7 of the bindListControl procedure to Data
Source=C:\Products.mdb.

2. Copy the image files from Chapter3/Images directory of the
CD and paste them in the Images subdirectory of your virtual
directory.

www.syngress.com

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 131

132 Chapter 3 • ASP Server Controls

Actually, the preceding code is not difficult to understand. First we have
defined the necessary object variables to connect to a database. In lines 6 and 7,
we have provided the information about the driver to be used, and the location
of the database.A SQL statement is constructed in lines 8 and 9.We have instan-
tiated the connection object in line 10, and opened the connection in line 11.An
OleDbDataAdapter object was instantiated using the SQL string and connection
string.The dtProducts data table of the myDataSet data set is populated in line 14.
Then we set the DataSource property of a repeater control to the dtProducts.
Finally, in line 15, we have bound the repeater to its data source.We will be using
similar logic in each of our ListControl examples with minor variations in the
SQL statement.

Using the Repeater Server Control
The Repeater is essentially a template-driven data-bound list.The Repeater control
allows fragments of html tags inside the templates. For example, we may start a
<table> in the Header template and end the table (</table>) in the Footer tem-
plate, if necessary.The control binds its Item collection to the its DataSource.We
may use the Item Command event to process events that are raised from the tem-
plates of the control.

We may specify the following templates for a Repeater control:

■ Item Template Specifies the DataItem fields to be displayed, and the
layout (required).

■ AlternatingItemTemplate Defines the layout of the zero-based odd
indexed items (optional).

■ SeparatorTemplate In this template, we can specify the separator such
as <hr> or
 between repeating items (optional).

■ HeaderTemplate Specifies the header of the list (optional).

■ FooterTemplate Specifies the footer of the list (optional).

We will provide two examples to illustrate the behavior of a repeater control.
In the first example, we will display our product information using a repeater
control. In the second example, we will illustrate how to capture an event from a
control residing inside a repeater control (known as Event Bubbling).

Displaying Data in a Repeater Control
Suppose that we want to display our products data for the products that cost more
than $45.00.The expected display for this application is shown in Figure 3.68.The

www.syngress.com

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 132

ASP Server Controls • Chapter 3 133

code for this application is shown in Figure 3.69 and is also available in the accom-
panying CD in a file named Repeater1.aspx.

In this application we have defined three templates for our repeater.The
Header template starts an HTML table with a <table> tag.The Footer template
completes the table with a </table> tag.The ItemTemplate contains the table cells
to house the data values.We will extract data from the Products table from the
Products.mdb database. First we will populate a data set object, and then we will
bind the repeater to this data set. Detailed code for populating the data set and
binding the repeater is shown in Figure 3.69.

Figure 3.69 Repeater1.aspx

<!— Chapter3/Repeater1.aspx —>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.OleDb" %>

<html><head></head>

<script language="VB" Debug="true" runat="server">

Sub Page_Load(src As Object, e As EventArgs)

If Not IsPostBack

bindListControl

End If

End Sub

Sub bindListControl()

Dim myConn As OleDbConnection

www.syngress.com

Figure 3.68 Displaying Data in a Repeater Control

Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 133

134 Chapter 3 • ASP Server Controls

Dim myOleDbAdapter As OleDbDataAdapter

Dim connStr, sqlStr As String

Dim myDataSet As New Dataset

connStr="Provider=Microsoft.Jet.OLEDB.4.0;" _

+ "Data Source=D:\Products.mdb"

sqlStr="SELECT ProductId, ProductName, Price, ImagePath " _

+ "FROM Products WHERE Price>45.00 ORDER BY Price"

myConn= New OleDbConnection(connStr)

myConn.Open()

myOleDbAdapter =New OleDbDataAdapter(sqlStr,myConn)

myOleDbAdapter.Fill(myDataSet,"dtProducts")

repeater1.DataSource=myDataSet.Tables("dtProducts")

repeater1.DataBind()

End Sub

</script>

<body><h2><center>Cathy's E-Shop</h2>

<asp:Repeater id="repeater1" runat="server" >

<HeaderTemplate><table></HeaderTemplate>

<ItemTemplate><tr>

<td><asp:Image height=100 width=100

Img src='<%# Container.DataItem("ImagePath")%>'

runat="server"/>

</td>

<td>Product ID:

<%# Container.DataItem("ProductId")%>

Description: <i>

<%# Container.DataItem("ProductName")%><i>

Unit Price:

<%# FormatCurrency(Container.DataItem("Price"))%>

</td></tr>

</ItemTemplate>

<FooterTemplate>

</table>

www.syngress.com

Figure 3.69 Continued

Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 134

ASP Server Controls • Chapter 3 135

</FooterTemplate>

</asp:Repeater>

</center></body></html>

Once a data table has been populated, only two statements are required to
bind a repeater.We need to set its DataSource property to the appropriate data
table, and then we can apply its DataBind() method to accomplish the job.These
two statements are as follows:

repeater1.DataSource=myDataSet.Tables("dtProducts").DefaultView

repeater1.DataBind()

We know that the dtProducts table of our data set will contain columns like
ProductId, ProductName, etc. Our objective is to develop an ItemTemplate where
we want to specify which column should be shown in what format. For each
row of the table in the data set, the repeater will employ this template to display
the data.A typical way to display a desired field is to use the <%# Container
.DataItem(“columnName”)%> syntax. For example, the following ItemTemplate will
display the ProductId in a cell of a table (assuming that the <table> tag has been
specified in the HeaderTemplate):

<ItemTemplate>

<tr><td><%# Container.DataItem("ProductId") %>

</td></tr>

</ItemTemplate>

Similarly, as shown in the following statement, an Img control can also be
specified to render an image:

Img src='<%# Container.DataItem("ImagePath") %>'

Using Event Bubbling and Capturing
Events in a Repeater Control
You can use the Repeatercontrol to accomplish much more than just displaying
data. In its templates, we may insert other controls. In this example, we will place
an asp:Button control in the ItemTemplate of our repeater.As shown in Figure
3.70, the repeater will display a button for every record in its data source.We may
capture the click event of this button and perform appropriate processing. In this

www.syngress.com

Figure 3.69 Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 135

136 Chapter 3 • ASP Server Controls

example, we will just display the selected ProductId.Would it not be an excellent
way to enable the users to select items in a shopping cart application? On each
selection, we could have written the selected data in a database.

The complete code for this application is shown in Figure 3.71 (and is also
available in a file named Repeater2.aspx, in the accompanying CD).A repeater is
essentially a container control.When we defined the repeater, we set its
OnItemSelection attribute to a function named “showSelection” as follows:

<asp:Repeater id=repeater1 OnItemCommand="showSelection" runat="server">

Whenever a child control in a repeater raises an event, it will report it to its
parent, the repeater.The repeater will fire the showSelection function.This phe-
nomenon of a child reporting an event to its parent is known as Event Bubbling.A
Repeater (or any such parent) may receive events from many embedded child con-
trols; hence, it may not clearly identify which of the children raised the event.
Therefore, the child needs to pass certain information about itself when reporting
an event.This is accomplished by the second parameter of the event procedure.
The second parameter is defined as e As RepeaterCommandEventArgs. Naturally, the
parameter e will be of a RepeaterCommandEventArgs object type (data type), and
its CommandSource will identify the child raising the event. Similar event bubbling
is employed in many cases where a parent control contains child controls.That is
how, as shown in the following code excerpt, we are displaying the value of the
ProductId in our message:

Sub showSelection(s As Object, e As RepeaterCommandEventArgs)

lblMessage.Text="You have selected ProductID : " _

www.syngress.com

Figure 3.70 Event Bubbling in a Repeater Control

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 136

ASP Server Controls • Chapter 3 137

+ e.CommandSource.Text

End Sub

But, wait a minute! How did we get the ProductId value displayed on a button
anyway? Well, that is actually very easy.As shown in the following code excerpt,
the button was placed inside the ItemTemplate, and we set its text property to the
“<%# Container.DataItem(“ProductId”)%>”.

<ItemTemplate><tr>

<td>Product ID:

<asp:Button text=<%# Container.DataItem("ProductId")%>

runat="server"/>

</ItmpTemplate

The remainder of the code is self-explanatory.

Figure 3.71 Repeater2.aspx

<!— Chapter3/Repeater2.aspx —>

<%@ Import Namespace="System.Data"%>

<%@ Import Namespace="System.Data.OleDb"%>

<html><head></head>

<script language="VB" Debug="true" runat="server">

Sub Page_Load(src As Object, e As EventArgs)

If Not IsPostBack Then

bindListControl

End If

End Sub

Sub bindListControl()

Dim myConn As OleDbConnection

Dim myOleDbAdapter As OleDbDataAdapter

Dim connStr, sqlStr As String

Dim myDataSet As New Dataset

connStr="Provider=Microsoft.Jet.OLEDB.4.0; " _

+ "Data Source=D:\Products.mdb"

sqlStr="SELECT ProductId, ProductName, Price, ImagePath " _

+ "FROM Products WHERE Price>79.00 ORDER BY Price"

myConn= New OleDbConnection(connStr)

www.syngress.com

Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 137

138 Chapter 3 • ASP Server Controls

myConn.Open()

myOleDbAdapter =New OleDbDataAdapter(sqlStr,myConn)

myOleDbAdapter.Fill(myDataSet,"dtProducts")

repeater1.DataSource=myDataSet.Tables("dtProducts")

repeater1.DataBind()

End Sub

Sub showSelection(s As Object, e As RepeaterCommandEventArgs)

lblMessage.Text="You have selected ProductID : " _

+ e.CommandSource.Text

' Some references convert the CommandSource object to a button object

' first as shown below. It is not necessary though.

' CType(e.CommandSource, Button).Text

End Sub

</script>

<body><form runat= "server"><center>

<asp:Repeater id=repeater1 OnItemCommand="showSelection" runat="server">

<HeaderTemplate><table></HeaderTemplate>

<ItemTemplate><tr>

<td><asp:Image height=100 width=100

Img src='<%# Container.DataItem("ImagePath") %>' runat="server"/>

</td><td> Product ID:

<asp:Button text=<%# Container.DataItem("ProductId")%>

runat="server"/>
Description: <i>

<%# Container.DataItem("ProductName")%></i>

Unit Price:

<%# FormatCurrency(Container.DataItem("Price"))%>

<td></tr>

</ItemTemplate>

<FooterTemplate></table></FooterTemplate>

</asp:Repeater>

<asp:Label id=lblMessage runat="server" ForeColor="Brown"

Font-Size="14pt" Font-Weight="700" Font-Name="Arial Black,Arial">

</asp:Label></center>

</form></body></html>

www.syngress.com

Figure 3.71 Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 138

ASP Server Controls • Chapter 3 139

Using the DataList Control
The DataList control is similar to the Repeater control. However, it has some addi-
tional properties and templates that you can use to display its data in a diverse
fashion.The Repeater control does not have any built-in layout or style.We are
forced to specify all formatting-related HTML elements and style tags. On the
other hand, a DataList control provides more flexibility to display data in a
desired layout. It also provides data selection and editing capabilities. How does it
do it? Well, in addition to the five templates that a repeater has, the DataList con-
trol has two more templates: SelectedItemTemplate, and EditItemTemplate. These
templates are useful for allowing data selection and data editing functionalities.
Furthermore, the RepeatDirection and RepeatColumns properties of a DataList con-
trol can be exploited to lay out the data in horizontal or vertical fashions.

In this section, we will present two examples.The first example will illustrate
the use of the RepeatDirection and RepeatColumns properties.The second example
will demonstrate how to enable the user to select a particular data being displayed
using a DataList.

Using RepeatDirection and RepeatColumn
Properties of a DataList
In this example, our objective is to display the product’s data in a fashion as
shown in Figure 3.72.A data table in a data set is essentially a relational database-
like table in the computer’s cache. It has rows (records) and columns (fields) of
data extracted from the database.When we bind a ListControl to a data table, each
record of the data table becomes an Item in the ItemList collection of the
ListControl. In this particular example, we want to display three of these Items in
each row of our display (horizontally).This is why we have defined the
DataControl as follows:

<asp:DataList id="dataList1" border=0

RepeatDirection="Horizontal" RepeatColumns="3" runat="server">

The remainder of the code for this application, as shown in Figure 3.73, is
straightforward.The code is also available in a file named DataList1.aspx in the
accompanying CD.

www.syngress.com

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 139

140 Chapter 3 • ASP Server Controls

Figure 3.73 Listing of DataList1.aspx

<!— Chapter3\DataList1.aspx —>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.OleDb" %>

<html><head></head>

<script language="VB" Debug="true" runat="server">

Sub Page_Load(src As Object, e As EventArgs)

If Not IsPostBack Then

bindListControl

End If

End Sub

Sub bindListControl()

Dim myConn As OleDbConnection

Dim myOleDbAdapter As OleDbDataAdapter

Dim connStr, sqlStr As String

Dim myDataSet As New Dataset

connStr="Provider=Microsoft.Jet.OLEDB.4.0;Data Source=D:\Products.mdb"

sqlStr="SELECT ProductId, ProductName, Price, ImagePath " _

+ "FROM Products ORDER BY Price"

www.syngress.com

Figure 3.72 Displaying Data Using RepeatDirection and
RepeatColumn Properties

Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 140

ASP Server Controls • Chapter 3 141

myConn= New OleDbConnection(connStr)

myConn.Open()

myOleDbAdapter =New OleDbDataAdapter(sqlStr,myConn)

myOleDbAdapter.Fill(myDataSet,"dtProducts")

dataList1.DataSource=myDataSet.Tables("dtProducts")

dataList1.DataBind()

End Sub

</script>

<body bgcolor="white">

<asp:DataList id="dataList1" border=0

RepeatDirection="Horizontal" RepeatColumns="3" runat="server">

<ItemTemplate><table><tr>

<td> <asp:Image height=80 width=80

ImageURL='<%# Container.DataItem("ImagePath") %>'

runat="server" />

</td></tr><tr>

<td> Product ID:

<%# Container.DataItem("ProductId")%>

Description:<i><%# Container.DataItem("ProductName")%>

</i>
Unit Price: $

<%# Container.DataItem("Price")%>

</td></tr></table>

</ItemTemplate>

</asp:DataList></body></html>

Capturing Selected Items in a DataList Control
In this example, we will use a DataList control to display the product names in a
tabular fashion.Within the DataList control, the product names are displayed
using link buttons.The output of this application is shown in Figure 3.74. Once
the user selects a particular product name, our objective is to display the name of
the selected product.We will also display the index number of the selected item.
What index number? Well, you already know that when a ListControl is bound to
a data table, all rows of the table are included as Items in the ItemList collection of

www.syngress.com

Figure 3.73 Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 141

142 Chapter 3 • ASP Server Controls

the ListControl. The first such Item will have an index value of 0, the second item
will have an index value of 1, and so on…! It is the value of that index which we
will display.

The definition of the DataList is itself very simple.We have included the
OnItemCommand attribute of the DataList to the showSelection procedure, as follows:

<asp:DataList id="dataList1" gridlines="both" cellpadding="10"

RepeatColumns="3" RepeatDirection="Horizontal"

onItemCommand="showSelection"

runat="server">

Subsequently, we have embedded a LinkButton control in the ItemTemplate of
the DataList. On the click event of this LinkButton, it will send the ProductName
as the CommandArgument to the showSelection function.These are accomplished as
follows:

<ItemTemplate>:

<asp:LinkButton id="myLinkBtns"

text='<%# Container.DataItem("ProductName")%>'

CommandArgument='<%# Container.DataItem("ProductName")%>'

runat ="server"/>

</ItemTemplate>

In the showSelection procedure, we are simply displaying the desired informa-
tion as shown in the following code excerpt:

Sub showSelection(s As Object, e As DataListCommandEventArgs)

lblSelectedIndex.Text ="Selected Index is: " + " " + _

e.Item.ItemIndex.toString()

lblSelectedProductName.Text="You have selected " + e.CommandArgument

www.syngress.com

Figure 3.74 Capturing Selected Items in a DataList Control

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 142

ASP Server Controls • Chapter 3 143

The complete code for this application is shown in Figure 3.75 (and is also
available in a file named DataList2.aspx in the accompanying CD).

Figure 3.75 DataList2.aspx

<!— Chapter3\DataList2.aspx —>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.OleDb" %>

<html><head></head>

<script language="VB" Debug="true" runat="server">

Sub Page_Load(src As Object, e As EventArgs)

If Not IsPostBack Then

bindListControl

End If

End Sub

Sub bindListControl()

Dim myConn As OleDbConnection

Dim myOleDbAdapter As OleDbDataAdapter

Dim connStr, sqlStr As String

Dim myDataSet As New DataSet

connStr="Provider=Microsoft.Jet.OLEDB.4.0;Data Source=D:\Products.mdb"

sqlStr="SELECT ProductId, ProductName, Price " _

+ " FROM Products WHERE Price > 40 ORDER BY Price"

myConn= New OleDbConnection(connStr)

myConn.Open()

myOleDbAdapter=New OleDbDataAdapter(sqlStr,myConn)

myOleDbAdapter.Fill(myDataSet,"dtProducts")

dataList1.DataSource=myDataSet.Tables("dtProducts")

dataList1.DataBind()

myConn.Close()

End Sub

Sub showSelection(s As Object, e As DataListCommandEventArgs)

lblSelectedIndex.Text ="Selected Index is: " + " " + _

e.Item.ItemIndex.toString()

lblSelectedProductName.Text="You have selected " + e.CommandArgument

End Sub

www.syngress.com
Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 143

144 Chapter 3 • ASP Server Controls

</script>

<form runat="server">

<asp:DataList id="dataList1" gridlines="both" cellpadding="10"

RepeatColumns="3" RepeatDirection="Horizontal"

onItemCommand="showSelection"

runat="server">

<ItemTemplate><asp:LinkButton id="myLinkBtns"

text='<%# Container.DataItem("ProductName")%>'

CommandArgument='<%# Container.DataItem("ProductName")%>'

runat ="server"/>

</ItemTemplate>

</asp:DataList>

<asp:Label id="lblSelectedProductName" runat="server" ForeColor="Brown"

Font-Size="12pt" Font-Weight="500" Font-Name="Arial Black,Arial"/>

<asp:Label id="lblSelectedIndex" runat="server" ForeColor="Brown"

Font-Size="12pt" Font-Weight="500" Font-Name="Arial Black,Arial"/>

</form></html>

Using the DataGrid Control
The DataGrid Control happens to be the most versatile and powerful member of
the data-bound control family. In addition to the functionalities offered by a
DataList, the DataGrid control offers sorting and paging capabilities.We can
employ its <AllowSorting> property to dynamically sort and re-display data on
selection of a column header. In case of very large data source, we can use its
<Allow Paging> property to display a selected page of data.

Essentially, a DataGrid control can be used to display bound data in tab-
ular format. Each record in the data source is displayed as a row in the grid. By
default, the data grid maps each field of the data source as a column in the grid.
Obviously, we may override the default value of its AutoGenerateColumn property
to display selected columns in a particular order. In this section, we will present
five examples to demonstrate various features of a DataGrid.

www.syngress.com

Figure 3.75 Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 144

ASP Server Controls • Chapter 3 145

Displaying Data in a DataGrid Control
Using Default Column Mapping
In this example, we will use the default layout of a data grid to display the bound
data.The expected output of this example is shown in Figure 3.76. Exactly like a
Repeater, or a DataList control, the DataGrid control also requires binding to an
appropriate data source. Besides the binding chore, the specification of the data
grid, particularly in this example, is extremely simple as follows:

<asp:DataGrid id="dataGrid1" runat="server" />

The complete listing of the application is shown in Figure 3.77.The code is
also available in the accompanying CD in the file named DataGrid1.aspx.

Figure 3.77 DataGrid1.aspx

<!— Chapter3/DataGrid1.aspx —>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.OleDb" %>

<html><head></head>

<script language="VB" Debug="true" runat="server">

Sub Page_Load(Source As Object, E As EventArgs)

If Not IsPostBack Then

bindListControl

End If

End Sub

Sub bindListControl()

Dim myConn As OleDbConnection

www.syngress.com

Figure 3.76 Displaying Data in a DataGrid Control

Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 145

146 Chapter 3 • ASP Server Controls

Dim myOleDbAdapter As OleDbDataAdapter

Dim connStr, sqlStr As String

Dim myDataSet As New Dataset

connStr="Provider=Microsoft.Jet.OLEDB.4.0;Data Source=D:\Products.mdb"

sqlStr="SELECT ProductId, ProductName, Price " _

+ "FROM Products WHERE Price > 40 ORDER BY Price"

myConn= New OleDbConnection(connStr)

myConn.Open()

myOleDbAdapter =New OleDbDataAdapter(sqlStr,myConn)

myOleDbAdapter.Fill(myDataSet,"dtProducts")

DataGrid1.DataSource=myDataSet.Tables("dtProducts")

DataGrid1.DataBind()

myConn.Close()

End Sub

</script>

<body bgcolor="white">

<asp:DataGrid id="dataGrid1" runat="server" />

</center></body></html>

Displaying Formatted Data with Styles
In this example, we will illustrate how to format and style the contents of a
DataGrid.We will also demonstrate how to lay out the columns in a different
order other than the original order of the columns in the data source.The run-
time view of the application is shown in Figure 3.78.The complete code is
shown in Figure 3.79. Please notice that our SQL statement for the data extrac-
tion procedure is “SELECT ProductID, ProductName, Price FROM Products
WHERE Price > 40 ORDER BY Price”.That means the data table “dtProducts”
will contain three columns exactly in that order. However, the sequence of the
columns displayed in the data grid is ProductId, Price and ProductName.
Furthermore, we have formatted the Price field.We have also changed the cap-
tions in the column headings.

www.syngress.com

Figure 3.77 Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 146

ASP Server Controls • Chapter 3 147

First, we have to set the AutoGenerateColumn property to False to sup-
press the automatic generation of the columns in the DataGrid.The DataGrid
has a <Column> collection property. Inside the <Column> tag, we can
include the column names of the desired columns using the <BoundColumn>
property.We do not have to necessarily include all of the columns, and we can
list the columns in the desired order.The necessary formatting instructions for a
column can be specified inside the <BoundColumn> tag.We can also include
the <ItemStyle> property of a <BoundColumn> object to specify the align-
ment of the text. For example, we have formatted the Price column as follows:

<asp:BoundColumn HeaderText="Unit Price" DataField="price"

DataFormatString="{0:c}">

<ItemStyle HorizontalAlign="Right"/>

</asp:BoundColumn>

We have used the <HeaderStyle> property to define the look of the header.
Finally, the <AlternatingItemStyle> property has been used to display the rows in
alternating background colors.The complete code for this application is shown in
Figure 3.79 and can be found on the CD that accompanies this book in the file
named DataGrid2.aspx.

Figure 3.79 DataGrid2.aspx

<!— Chapter3/DataGrid2.aspx —>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.OleDb" %>

<html><head></head>

<script language="VB" Debug="true" runat="server">

www.syngress.com

Figure 3.78 Displaying Formatted Data with Styles

Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 147

148 Chapter 3 • ASP Server Controls

Sub Page_Load(Source As Object, E As EventArgs)

If Not IsPostBack Then

bindListControl

End If

End Sub

Sub bindListControl()

Dim myConn As OleDbConnection

Dim myOleDbAdapter As OleDbDataAdapter

Dim myDataSet As New DataSet

Dim connStr, sqlStr As String

connStr="Provider=Microsoft.Jet.OLEDB.4.0;Data Source=D:\Products.mdb"

sqlStr="SELECT ProductId, ProductName, Price " _

+ " FROM Products WHERE Price > 40 ORDER BY Price"

myConn= New OleDbConnection(connStr)

myConn.Open()

myOleDbAdapter =New OleDbDataAdapter(sqlStr,myConn)

myOleDbAdapter.Fill(myDataSet,"dtProducts")

DataGrid1.DataSource=myDataSet.Tables("dtProducts")

DataGrid1.DataBind()

myConn.Close()

End Sub

</script>

<asp:DataGrid runat="server" id="DataGrid1" AutoGenerateColumns="false"

Width="75%" BackColor="White" BorderWidth="1px" BorderStyle="Solid"

CellPadding="2" CellSpacing="0" BorderColor="Salmon"

Font-Name="Verdana" Font-Size="8pt">

<HeaderStyle Font-Size="8" Font-Names="Arial" Font-Bold="True"

BackColor="Yellow" HorizontalAlign="center">

</HeaderStyle>

<Columns>

<asp:BoundColumn HeaderText="Product ID" DataField="ProductId" >

<ItemStyle HorizontalAlign="Right"/>

</asp:BoundColumn>

www.syngress.com

Figure 3.79 Continued

Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 148

ASP Server Controls • Chapter 3 149

<asp:BoundColumn HeaderText="Unit Price" DataField="price"

DataFormatString="{0:c}">

<ItemStyle HorizontalAlign="Right"/>

</asp:BoundColumn>

<asp:BoundColumn HeaderText="Description" DataField="ProductName">

<ItemStyle Width="130"/>

</asp:BoundColumn>

</Columns>

<AlternatingItemStyle BackColor="Beige"/>

</asp:DataGrid>

</center></body></html>

Sorting DataGrid
Yes, on click of any of the column headers, we can dynamically sort the records
of a data grid. However, please bear in mind that the DataGrid itself does not
provide the sorting algorithm. It rather provides a mechanism to enable us to call
a sorting routine. Fortunately, in our example (as shown in Figure 3.80), we do
not need to implement a sorting algorithm ourselves.We have used the SQL
ORDER BY clause to automatically sort the retrieved data.

The code for this application is shown in Figure 3.81.The code is also avail-
able on the CD that accompanies this book in the file named DataGrid3.aspx.
On the click event of a column header, our intention is to exploit the SQL’s
ORDER BY clause to perform the sorting.This forces us to recreate the data set

www.syngress.com

Figure 3.79 Continued

Figure 3.80 Sorting Data in a DataGrid Control

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 149

150 Chapter 3 • ASP Server Controls

and subsequently to rebind the data grid. Please observe that we have designed
the bindDataGrid routine slightly differently from the similar procedures in our
previous examples.We included an optional parameter to this procedure so that
we can pass a column name when we call this routine.This subprocedure will
then extract the data from the database in the ascending order of the passed
column. In the DataGrid tag, we have specified its AllowSorting property to be true.
We have also set its OnSortCommand to a subprocedure named sortGrid. On the
click event of any of the column header, the sortGrid subprocedure will be called.

Figure 3.81 DataGrid3.aspx

<!— Chapter3/DataGrid3.aspx —>

<%@ Page Language="VB" Debug="true" %>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.OleDb" %>

<script language="VB" Debug="true" runat="server">

Sub Page_Load(Source As Object, E As EventArgs)

If Not IsPostBack Then

bindDataGrid

End If

End Sub

Sub bindDataGrid(Optional sortField As String="ProductId")

Dim myConn As OleDbConnection

Dim myOleDbAdapter As OleDbDataAdapter

Dim connStr, sqlStr As String

Dim myDataSet As New Dataset

connStr="Provider=Microsoft.Jet.OLEDB.4.0;Data Source=D:\Products.mdb"

sqlStr="SELECT ProductId, ProductName, Price " _

+ " FROM Products WHERE Price > 40 ORDER BY " +

sortField

myConn= New OleDbConnection(connStr)

myConn.Open()

myOleDbAdapter =New OleDbDataAdapter(sqlStr,myConn)

myOleDbAdapter.Fill(myDataSet,"dtProducts")

dataGrid1.DataSource=myDataSet.Tables("dtProducts")

dataGrid1.DataBind()

www.syngress.com

Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 150

ASP Server Controls • Chapter 3 151

myConn.Close()

End Sub

Sub sortGrid(s As Object, e As DataGridSortCommandEventArgs)

bindDataGrid(e.sortExpression)

End Sub

</script>

<html><head></head><body><form runat="server"><center>

<h4>Click a column heading to sort</h4>

<asp:DataGrid runat="server" id="dataGrid1"

AutoGenerateColumns="true"

AllowSorting="true"

OnSortCommand="sortGrid"

Width="75%"

BackColor="White"

BorderWidth="1px" BorderStyle="Solid"

CellPadding="2" CellSpacing="0"

BorderColor="Salmon"

Font-Name="Verdana" Font-Size="8pt">

<HeaderStyle Font-Size="8" Font-Names="Arial"

Font-Bold="True" BackColor="Yellow"

HorizontalAlign="center">

</HeaderStyle>

<AlternatingItemStyle BackColor="Beige"/>

</asp:DataGrid>

</center></form></body></html>

NOTE

If needed, we may also use the Sort method of a DataView object to sort
the columns of the underlying data table. In this case we may use the
following types of code:

Dim myDataView As DataView

myDataView=myDataSet.Tables("dtProducts").DefaultView

www.syngress.com

Figure 3.81 Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 151

152 Chapter 3 • ASP Server Controls

myDataView.Sort=sortField

dataGrid1.DataSource=myDataView

dataGrid1.DataBind()

Providing Paging in DataGrid
In case of a large data table, we may want to provide paging capability to the
user.We may implement the paging functionality in many different ways. In this
context, we will present two examples. First, we will illustrate how to provide a
pair of VCR style icons to enable the user to navigate to the previous or the next
page of the data displayed in a data grid. Later, we will present an example that
will show how to enable the user to navigate to a particular desired page.

Using Previous Page and Next Page Icons
The run-time view of this application is shown Figure 3.82.To accomplish the
paging, we have set the following properties of the data grid:

■ AllowPaging=“true”

■ PageSize=“5”

■ PagerStyle-HorizontalAlign=“Center”

■ OnPageIndexChanged=“doPaging”

The data grid automatically generates the previous page and next page icons.
When any one of these icons is clicked, the doPaging subprocedure is triggered.
The click event passes a DataGridPageChangedEventArgs parameter to the sub-
procedure. In the doPaging procedure we have set the currentPageIndex property of
the data grid to the newPageIndex property of this parameter.Then we issued a
call to the bindDataGrid procedure as shown in the following code excerpt.The

www.syngress.com

Figure 3.82 Using VCR Style Icons for Page Navigation

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 152

ASP Server Controls • Chapter 3 153

complete code for this application is shown in Figure 3.83 and can be found on
the CD that accompanies this book in the file named DataGrid4.aspx.

Sub doPaging(s As Object, e As DataGridPageChangedEventArgs)

dataGrid1.CurrentPageIndex=e.NewPageIndex

bindDataGrid

End Sub

Figure 3.83 DataGrid4.aspx

<!— Chapter3/DataGrid4.aspx —>

<%@ Page Language="VB" Debug="true" %>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.OleDb" %>

<script language="VB" Debug="true" runat="server">

Sub Page_Load(Source As Object, E As EventArgs)

If Not IsPostBack Then

bindDataGrid

End If

End Sub

Sub bindDataGrid

Dim myConn As OleDbConnection

Dim myOleDbAdapter As OleDbDataAdapter

Dim connStr, sqlStr As String

Dim myDataSet As New Dataset

connStr="Provider=Microsoft.Jet.OLEDB.4.0; " _

+ "Data Source=D:\Products.mdb"

sqlStr="SELECT ProductId, ProductName, Price " _

+ "FROM Products ORDER BY ProductId"

myConn= New OleDbConnection(connStr)

myConn.Open()

myOleDbAdapter=New OleDbDataAdapter(sqlStr,myConn)

myOleDbAdapter.Fill(myDataSet,"dtProducts")

dataGrid1.DataSource=myDataSet.Tables("dtProducts")

dataGrid1.DataBind()

myConn.Close()

www.syngress.com

Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 153

154 Chapter 3 • ASP Server Controls

End Sub

Sub doPaging(s As Object, e As DataGridPageChangedEventArgs)

dataGrid1.CurrentPageIndex=e.NewPageIndex

bindDataGrid

End Sub

</script>

<html><head></head><form runat="server">

<asp:DataGrid runat="server" id="dataGrid1" AutoGenerateColumns="true"

AllowPaging="true" PageSize="5" PagerStyle-HorizontalAlign="Center"

OnPageIndexChanged="doPaging" BackColor="White" BorderWidth="1px"

BorderStyle="Solid" Width="100%" BorderColor="Salmon"

CellPadding="2" CellSpacing="0" Font-Name="Verdana" Font-Size="8pt">

<HeaderStyle Font-Size="8" Font-Names="Arial" Font-Bold="True"

BackColor="Yellow" HorizontalAlign="center">

</HeaderStyle>

<AlternatingItemStyle BackColor="Beige"/>

</asp:DataGrid>

</center></form></html>

NOTE

Every time we navigate to a different page, the entire data table is popu-
lated again, even we if are viewing only five records. Thus, for a very
large data table, the speed of execution will slow down significantly. In
that case, an alternative technique would involve keeping track of the
page numbers programmatically. That can be accomplished by operating
on the underlying data table’s rows in the cache. We may also employ a
Parameterized Stored Procedure to alleviate this problem.

Navigating to a Selected Page
In our previous example, we could only move to the previous or next page.We
can sure do better than that! We can display a list of page numbers, and the user

www.syngress.com

Figure 3.83 Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 154

ASP Server Controls • Chapter 3 155

can click any one of these page numbers to move to the desired page. In this
example we will illustrate how to accomplish this objective.The run-time view
of the application is shown in Figure 3.84.The code for the application is shown
in Figure 3.85 and can be found on the CD that accompanies this book in the
file named DataGrid5.aspx.There is actually nothing much new in the code,
except that we have set several paging related properties as follows:

AllowPaging="true" PageSize="5" PagerStyle-Mode="NumericPages"

PagerStyle-HorizontalAlign="Center" OnPageIndexChanged="doPaging"

Figure 3.85 DataGrid5.aspx

<!— Chapter3/DataGrid5.aspx —>

<%@ Page Language="VB" Debug="true" %>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.OleDb" %>

<script language="VB" Debug="true" runat="server">

Sub Page_Load(Source As Object, E As EventArgs)

If Not IsPostBack Then

bindDataGrid

End If

End Sub

Sub bindDataGrid

Dim myConn As OleDbConnection

Dim myOleDbAdapter As OleDbDataAdapter

Dim connStr, sqlStr As String

Dim myDataSet As New Dataset

connStr="Provider=Microsoft.Jet.OLEDB.4.0; " _

www.syngress.com

Figure 3.84 Paging in a DataGrid Control

Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 155

156 Chapter 3 • ASP Server Controls

+ "Data Source=D:\Products.mdb"

sqlStr="SELECT ProductId, ProductName, Price " _

+ "FROM Products ORDER BY ProductId"

myConn= New OleDbConnection(connStr)

myConn.Open()

myOleDbAdapter =New OleDbDataAdapter(sqlStr,myConn)

myOleDbAdapter.Fill(myDataSet,"dtProducts")

dataGrid1.DataSource=myDataSet.Tables("dtProducts")

dataGrid1.DataBind()

myConn.Close()

End Sub

Sub doPaging(s As Object, e As DataGridPageChangedEventArgs)

dataGrid1.CurrentPageIndex=e.NewPageIndex

bindDataGrid

End Sub

</script>

<html><head></head><form runat="server">

<asp:DataGrid runat="server" id="dataGrid1" AutoGenerateColumns="true"

AllowPaging="true" PageSize="5" PagerStyle-Mode="NumericPages"

PagerStyle-HorizontalAlign="Center" OnPageIndexChanged="doPaging"

BackColor="White" BorderWidth="1px" BorderStyle="Solid"

Width="100%" BorderColor="Salmon" CellPadding="2" CellSpacing="0"

Font-Name="Verdana" Font-Size="8pt">

<HeaderStyle Font-Size="8" Font-Names="Arial" Font-Bold="True"

BackColor="Yellow" HorizontalAlign="center">

</HeaderStyle>

<AlternatingItemStyle BackColor="Beige"/>

</asp:DataGrid>

</center></form></html>

www.syngress.com

Figure 3.85 Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 156

ASP Server Controls • Chapter 3 157

Providing Data Editing
Capability in a DataGrid Control
We can enable the user to edit data in a DataGrid or DataList control. Typically,
we accomplish this by employing the OnEditCommand, OnCancelCommand, and
OnUpdateCommand properties. If needed, we can also use the OnDeleteCommand
property of a DataGrid control to allow deletion of a selected record.The
OnDeleteCommand property is not available in a DataList. In this example, we will
illustrate how to allow data editing capability to the user.The run-time view of
the application is shown in Figure 3.86.

The code for this application is shown in Figure 3.87.The code is also avail-
able in the CD that accompanies this book in the file named DataGrid6.aspx.We
have a number of major issues to cover here. First, we have used four additional
properties of the DataGrid as shown in the following code excerpt:

DataKeyField="ProductId" OnEditCommand="setEditMode"

OnCancelCommand="cancelEdit" OnUpdateCommand="updateDataBase"

As you can see from the previous code, we have set the OnEditCommand
property to a subprocedure named setEditMode.When we specify such a property,
the data grid automatically places a ButtonList control captioned as “Edit” in the
first column of the displayed table. On the click of this ButtonList, the control
triggers the OnEditCommandEvent and passes a DataGridCommandEventArgs
parameter to the wired-up event procedure (in this case, to the setEditMode pro-
cedure). In our setEditMode subprocedure, we have simply placed the clicked row
in the edit mode as follows:

Sub setEditMode(s As Object, e As DataGridCommandEventArgs)

dataGrid1.EditItemIndex= e.Item.ItemIndex

www.syngress.com

Figure 3.86 Editing Data in a DataGrid Control

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 157

158 Chapter 3 • ASP Server Controls

bindDataGrid

End Sub

When the Edit button is clicked, the data grid also displays the Update and
Cancel buttons automatically. Furthermore, the editable columns in the clicked
row (item) are replaced with textboxes.The user can enter appropriate data in
these textboxes and subsequently click the Update or Cancel button.

Second, on the click event of the Update button, we need to update the
database. But how would we know which record in the database to update? This is
why we have used the DataKeyField property (in the DataGrid tag) to identify the
ProductId field as the key field. Our primary objective is to prepare an appropriate
SQL Update statement like UPDATE Products SET ProductName=‘givenName’,
Price=‘givenPrice’ WHERE ProductID=‘selectedProductId’.When the Update proce-
dure is triggered, it is passed with a DataGridCommandEnentArgs-type parameter.We
can retrieve the key value of the clicked row as dataGrid1.EditItemIndex=
e.Item.ItemIndex.

Getting the value of the key field is not enough.We will also have to know
the new values of the other edited columns.The desired values can be retrieved
using the DataGridCommandEventArgs, too. For example, the ProductName field
happens to be the second cell of the selected row.The Controls(0) of a given Cell
of an Item object contains the value. But the parameter was passed to the routine
as an object.Thus, we need to cast the Controls(0) to a textbox type, so that we
can extract its Text data.The following statement will capture the new data in the
ProductName column and will place it in a string varianble. Once we have done
all these things, it is just a matter of building the necessary SQL string for the
appropriate UPDATE query.

strPName=(CType(e.Item.Cells(2).Controls(0), Textbox)).Text

An UPDATE query is typically executed by using the ExecuteNonQuery
method of a Command object (to be learned in the database chapter).This is what
we did here. Finally, we need to set the edit-mode off.We have done this with
the dataGrid1.EditItemIndex= –1 statement. Obviously, we do not want the user
to edit the primary key.Therefore, we have set the ReadOnly property of the
ProductID column to True.

Figure 3.87 Editing in DataGrid (DataGrid6.aspx)

<!— Chapter3/DataGrid6.aspx —>

<%@ Import Namespace="System.Data" %>

www.syngress.com

Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 158

ASP Server Controls • Chapter 3 159

<%@ Import Namespace="System.Data.OleDb" %>

<script language="VB" Debug="true" runat="server">

Sub Page_Load(Source As Object, E As EventArgs)

If Not IsPostBack Then

bindDataGrid

End If

End Sub

Sub bindDataGrid

Dim myConn As OleDbConnection

Dim myOleDbAdapter As OleDbDataAdapter

Dim connStr, sqlStr As String

Dim myDataSet As New Dataset

connStr="Provider=Microsoft.Jet.OLEDB.4.0; Data Source=D:\Products.mdb"

sqlStr="SELECT ProductId, ProductName, Price " _

+ " FROM Products WHERE Price > 40 ORDER BY ProductId"

myConn= New OleDbConnection(connStr)

myConn.Open()

myOleDbAdapter =New OleDbDataAdapter(sqlStr,myConn)

myOleDbAdapter.Fill(myDataSet,"dtProducts")

dataGrid1.DataSource=myDataSet.Tables("dtProducts")

dataGrid1.DataBind()

myConn.Close()

End Sub

Sub setEditMode(s As Object, e As DataGridCommandEventArgs)

dataGrid1.EditItemIndex= e.Item.ItemIndex

bindDataGrid

End Sub

Sub cancelEdit(s As Object, e As DataGridCommandEventArgs)

dataGrid1.EditItemIndex=-1

bindDataGrid

End Sub

Sub updateDatabase(s as Object, e As DataGridCommandEventArgs)

Dim myConn As OleDbConnection

www.syngress.com

Figure 3.87 Continued

Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 159

160 Chapter 3 • ASP Server Controls

Dim connStr, sqlStr, strPName As String

Dim myUpdateCommand As OleDbCommand

Dim intPid As Integer

Dim dblPrice As Double

' Get the key-value of the clicked row

intPid=dataGrid1.DataKeys.Item(e.Item.ItemIndex)

' Get the new value of ProductName

strPName=(CType(e.Item.Cells(2).Controls(0), Textbox)).Text

' Get the new value of Price

dblPrice=cDbl((CType(e.Item.Cells(3).Controls(0), Textbox)).Text)

' Build the SQL

sqlStr="UPDATE Products SET ProductName=' " + strPName _

+ " ', Price=" + dblPrice.ToString _

+ " WHERE ProductID=" + intPid.ToString

connStr="Provider=Microsoft.Jet.OLEDB.4.0;Data Source=D:\Products.mdb"

myConn= New OleDbConnection(connStr)

myConn.Open()

myUpdateCommand=New OleDbCommand(sqlStr, myConn)

' Execute the Update SQL statement

myUpdateCommand.ExecuteNonQuery

myConn.Close()

dataGrid1.EditItemIndex=-1

BindDataGrid

End Sub

</script>

<html><head></head><form runat="server">

<asp:DataGrid id="dataGrid1" AutoGenerateColumns="False"

DataKeyField="ProductId" OnEditCommand="setEditMode"

OnCancelCommand="cancelEdit" OnUpdateCommand="updateDataBase"

CellPadding="2" Font-Name="Verdana" Font-Size="8pt" runat="server">

<HeaderStyle Font-Size="8" Font-Names="Arial" Font-Bold="True"

BackColor="Yellow" HorizontalAlign="center"></HeaderStyle>

<Columns>

www.syngress.com

Figure 3.87 Continued

Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 160

ASP Server Controls • Chapter 3 161

<asp:EditCommandColumn EditText="Edit"

UpdateText="Update" CancelText="Cancel">

</asp:EditCommandColumn>

<asp:BoundColumn HeaderText="Product ID" DataField="ProductId"

ReadOnly="True" />

<asp:BoundColumn HeaderText="Description" DataField="ProductName"/>

<asp:BoundColumn HeaderText="Unit Price" DataField="price"

DataFormatString="{0:c}" />

</Columns>

</asp:DataGrid></form></html>

Creating Custom ASP
Server User Controls
We may develop our own server controls by extending an existing control or a
group of controls to provide additional functionalities.As stated earlier, there are
two versions of custom controls: Web User Controls and Web Custom Controls.The
Web User Controls are easy to develop and these are typically stored as ascx files.
The Web Custom Controls require in-depth knowledge of Object Oriented
Programming and CLR.These are stored in compiled form as assemblies.

A user control, if developed correctly, functions like any other controls. It can
be placed inside any other host ASP page (often called the “Consumer” of a con-
trol). In this section we will provide two examples on how to develop and use a
Web User Control. In the first example, we will develop a very simple user control.
In the second example, we will develop a user control that will expose some of
its properties to its host page class.

Creating a Simple Web User Control
Suppose that we want to build the control as shown in Figure 3.88. If a host page
embeds this control, it will automatically display the current time in the server’s
time zone. Once we build this control, we can use it in any subsequent page.We
will provide a step-by-step procedure to build this control.

www.syngress.com

Figure 3.87 Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 161

162 Chapter 3 • ASP Server Controls

1. Develop the necessary code for the control.The code for this example is
shown in Figure 3.89 and can be found on the CD that accompanies
this book in the file named TimeUserControl.ascx.The code is essen-
tially very simple.We are using use a <table> tag with an embedded
<asp:Label> control. In the Page_Load event, we will display the current
time in the label.

Figure 3.89 The Code for the User Control (TimeUserControl.ascx)

<!— Chapter3/TimeUserControl.ascx —>

<table border ="5" cellpadding="5" rules="none"

bgcolor="lightyellow" bordercolor="orange">

<tr valign="middle"><td><h3>The time in server land is</h3></td>

<td><h3><asp:Label id="lblDateTime" runat="server"/></h3></td>

</tr>

</table>

<script Language="vb" runat ="server">

Sub Page_Load(s As Object, e As EventArgs)

If Not Page.IsPostBack Then

' lblDateTime.Text=System.DateTime.Now.ToLongTimeString()

lblDateTime.Text=Format(Now,"hh:mm:ss")

End If

End Sub

</script>

2. Save the code with an extension of *.ascx in your virtual directory.

3. Test the User Control:A control cannot be tested unless it is hosted in
an ASPX page.Thus, start a new page, and enter the code shown in
Figure 3.90.The code can be found on the CD that accompanies this
book in the file named TestTimeUserCntrol1.aspx. First, a host page
needs to register a user control using the Register directive.The Register
directive has three major attributes.We provide a prefix in the tagprefix

www.syngress.com

Figure 3.88 A Sample User Control

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 162

ASP Server Controls • Chapter 3 163

attribute (it can be any prefix of your choice).Then we need to provide
a name of the registered control in the tagname attribute. Finally, we must
also specify the name of the source code (of the .ascx file) using the Src
attribute. Can you believe that you are done? Go ahead and open the
page in your browser.You will see a page very similar to the one shown
in Figure 3.91.

Figure 3.90 Testing the User Control (TestTimeUserCntrol1.aspx)

<!— Chapter3/TestTimeUserControl1.aspx —>

<%@ Register tagprefix ="utoledo" tagname="Time"

Src="TimeUserControl.ascx" %>

<html><head></head><form><body>

I am a host page. Suppose that I don't know how to show the time.

Hence, I will use the TimeUserControl. I am using an instance of the

TimeUserControl below:<p>

<utoledo:Time runat="server" />

Now I can do my other work...

</body></form></html>

Exposing Properties of a User Control
Obviously, the control developed in our previous example does not do much
more than display the current time. If judiciously designed, a user control can
actually play an extremely crucial role in systems development practice.We can
develop user controls to encapsulate standard business processes.A user control is

www.syngress.com

Figure 3.91 Using a User Control

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 163

164 Chapter 3 • ASP Server Controls

essentially a visual component (almost like ActiveX controls and visual
JavaBeans), except that it is much easier to develop. Once we develop the com-
ponent, it can be plugged in many applications, thereby making it easy for the
front-end application developers. More importantly, it provides the mechanism to
implement standard business processes and maintain their integrity.

We will illustrate this concept with an example. In this example, we will
encapsulate a simple business rule for computing gross wage.The interesting fea-
ture of this control is that it will pass the result of its computation to the host
page for further processing. It will also accept a title from the host page and dis-
play it within itself.That means we will provide two-way communication
between the control and the host page.The run-time view of the control when
hosted in a page is shown in Figure 3.92.

Developing the Payroll User Control
The code for this user control is shown in Figure 3.93 and can be found on the
CD that accompanies this book in the file named UserControlPayroll.ascx.As
can be observed in the listing, we have provided number of labels, two textboxes,
and a button in this user control.These are named lblTitle, txtH, txtR, and
cmdCompute. In the script, we have provided two properties: Title and grossWage.
The grossWage property is defined as ReadOnly, so the host page will not be able
to change its value.The Title property simply returns the content of the lblTitle.
However, the host page will be able to set its value during the run-time.

www.syngress.com

Figure 3.92 Exposing Properties of a User Control

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 164

ASP Server Controls • Chapter 3 165

Figure 3.93 UserControlPayroll.ascx

<!-- AspNet/UserControls/UserControlPayroll.ascx -->

<table border='2' bordercolor="blue"><tr><td>

Here is a title that is loaded from the parent Form:

<asp:Label id="lblTitle" backcolor="yellow" Height=15 runat="server"/>

How many hours have you worked?

<asp:TextBox id="txtH" rows="1 " width="50" runat="server"/></br>

Your Hourly Rate? <asp:TextBox id="txtR" rows="1" width="80"

runat="server"/>

<asp:Button id="btnCompute" runat="server" text="Compute Pay"

onclick="computePay"/>

<p/><asp:Label id="lblPayMsg" runat="server"/>

<asp:Label id="lblPay" runat="server"/>
</tr></td></table>

<script language=vb runat="server">

Public Property Title() As String

Set

lblTitle.Text=value

End Set

Get

return lblTitle.Text

End Get

End Property

Private grWage As Single

Public ReadOnly Property grossWage() As Single

Get

return cSng(lblPay.Text)

End Get

End Property

Protected Sub computePay (Sender As Object, E As EventArgs)

Dim h, r, g As Single

h=CSng(txtH.Text)

r=CSng(txtR.Text)

lblPayMsg.Text="Your Gross Wage is : "

g=h * r

www.syngress.com

Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 165

166 Chapter 3 • ASP Server Controls

lblPay.Text=FormatCurrency(g)

grWage=g

End Sub

</script>

Consuming the Payroll User Control
We have tested the previous user custom control in a page named
UserControlPayrollTest.aspx.The code for this page is shown in Figure 3.94,
and can be found on the CD that accompanies this book in the file named
UserControlPayrollTest.aspx. First, we have registered the user control with a
tagprefix of userCtrlPayroll and a tagname of payroll.We inserted one of these con-
trols in our page using the runat=“server” attribute.This will ensure that the con-
trols in the user control persist during postbacks. We have set the Title property of
the control to “The University of Toledo” as follows:

<usrCtrlPayroll:payroll id="usrPayCtrl" runat="server"

Title="University of Toledo"/>

After the user enters the data in the user control, he or she will click the
Compute Pay button inside the user control.The user control will apply its
own business logic (comptePay procedure) to compute the gross wage.As a con-
sumer of the user control, we do not need to know the details of how the gross
wage is being computed. However, we need its value to compute appropriate tax
in our own application (page). Fortunately, the user control has exposed the value
of the gross wage as a property.Thus, we have developed the following code to
compute the value of tax:

Sub computeTax (s As Object, e As EventArgs)

Dim t, gWage As Single

gWage=usrPayCtrl.grossWage()

t=gWage * 0.10

--- ---

End Sub

In this example, we have demonstrated how to develop a user control and
expose its properties.We have maintained the states of the properties of the user
control.This was accomplished by exploiting the controls embedded in the

www.syngress.com

Figure 3.93 Continued

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 166

ASP Server Controls • Chapter 3 167

custom control and by using the runat=“server” attribute. In an advanced custom
control, we may avoid this trait by maintaining the states of the variables using
objects similar to the old ActiveX Controls “PropertyBags”. However, that topic is
not within the bounds of this chapter.

Figure 3.94 Consuming the Payroll User Control (UserControllPayrollTest.aspx)

<!-- Chapter3\UserControlPayrollTest.aspx -->

<!-- Uses the UserControlPayroll.ascx -->

<%@ Register tagprefix="usrCtrlPayroll" Tagname="payroll"

src="UserControlPayroll.ascx" %>

<html><head</head><title>Example on User Controls</title>

<body><form runat="server">

Hello there, here we are in our main page.

Now, let us instantaite the payroll user control

<usrCtrlPayroll:payroll id="usrPayCtrl" runat="server"

Title="University of Toledo"/>

<asp:Button id="btnShowTax" runat="server" text="Show Tax"

onclick="computeTax" />

<asp:Label id="lblTaxMsg" runat="server"/>

<asp:Label id="lblTax" runat="server"/>

</form></body></html>

<script language=vb runat="server">

Sub computeTax (s As Object, e As EventArgs)

Dim t, gWage As Single

gWage=usrPayCtrl.grossWage()

t=gWage * 0.10

lblTaxMsg.Text="Your Tax is : "

lblTax.Text=FormatCurrency(t)

End Sub

</script>

www.syngress.com

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 167

168 Chapter 3 • ASP Server Controls

Summary
This chapter has been about ASP.NET Web Controls.The ASP.NET controls are
placed in Web pages.Thus, we cannot isolate them and discuss them without
knowing how the ASP.NET Engine works, and how it maintains the states of the
server controls. Hence, we presented brief overviews of various concepts like
HTML Forms, server-side processing, and in-page coding vs. code-behind.We
have also given a step-wise procedure to develop a simple ASP.NET project using
VS.NET.

We have essentially covered almost all of the HTML server and Web server
controls in this chapter.We have also introduced you to a very promising tech-
nology named Custom User Control.We have not presented two special purpose
controls, namely the Calendar and the AdRotator controls in this chapter. Detail
examples of these controls are available in plenty of sources (including the SDK
documentations).After you practice the examples presented in this chapter, you
will not have much difficulties in tackling these two controls.

The ASP.NET server controls are here to stay.They provide exceptional func-
tionalities and abilities to develop server-side codes just like the VB 6 codes we
used to develop in the old days.The bound controls make it easy for us to
develop powerful data-oriented applications on the Web very fast.We have illus-
trated many of these controls with simple examples. However, each of these con-
trols has many properties and events beyond the materials presented in this
chapter.A complete book can be written on data-bound list controls, and still the
richness of these controls would not be covered in full.The details of the beauties
and the beasts behind these controls are anxiously waiting for you in the SDK
documentation.After you complete this chapter, be sure to go and grab them
from the SDK documentation! Pretty soon, you will be one of the most suc-
cessful ASP.NET developers.

Solutions Fast Track

Major Features of ASP.NET Server Controls

There are four types of ASP.NET server controls: HTML Server Controls,
Web Server Controls,Validation Controls, and Custom Controls. HTML
server controls can be used to run server-side code against conventional
HTML controls.The Web server controls follow standard object-
oriented programming model and provide rich functionalities. Custom

www.syngress.com

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 168

ASP Server Controls • Chapter 3 169

controls enable users to develop their own controls.The Validation
controls allow data validation.

HTML uses HTTP protocol. HTTP is state-less.

The client can submit data to the server using the GET or POST
method.The GET method transmits the data by augmenting the data in
the URL.The POST method packages the data inside the BODY of a
HTTP massage.

Server-Side Processing in ASP.NET

When a server receives a request for a page, it retrieves the page from
the disk and gives it to the ASP Engine.The ASP Engine compiles the
page and creates a page class. Subsequently, the class is instantiated and
executed, thereby providing a Response object.The server sends this
Response object back to the client.

ASP.NET server controls are state-full.The system maintains the states of
the controls automatically.All server controls are typically defined with a
runat=“server” attribute.

When a user enters data and submits a form back to the server, it is
known as PostBack. On a PostBack, the server reloads the form, and the
events generated at the client-side are handled at the server. In
conventional HTML, typically a Submit button is used to submit data
from the client to the server. However, many Web server controls can
also trigger PostBacks.

When a page is loaded and executed, the sequence of events are: Page_Init,
Page_Load, Change events, Action events, and finally the Page_Unload.

Code-Behind versus In-Page Coding

In an ASP page, scripts and HTML tags are usually intermixed.This is
known as In-Page Coding.ASP.NET pages can be developed using this
procedure. However,ASP.NET provides an alternative methodology to
develop a page. It enables separation of HTML tags (presentation) from
the processing logic (code).This is known as Code-Behind. It is essentially
very similar to the VB development model.

www.syngress.com

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 169

170 Chapter 3 • ASP Server Controls

VS.NET follows Code-Behind methodology for ASP.NET development.

Using HTML Server Controls

HTML controls are not programmable at the server-side.Their values do
not persist.The HTML server controls have been developed both of
these problems.The ASP Engine maps the HTML server controls to
HTML controls before a page is sent to the client.

Certain HTML server controls can be bound to a data source. For
example, if a list box is bound to a data source, it is automatically loaded
with the data in the data source.This is known as data binding.

If necessary, we can mix HTML server controls and Web server controls
in the same page.

Using ASP.NET Web Controls

These controls are similar to the HTML server controls; however, these
controls have a richer and more consistent object model.

Some of the new and powerful Web controls are: Repeater, DataList, and
DataGrid.These are also known as Data-Bound Templated control.These
controls allow displaying data from a data source almost automatically.The
DataGrid and DataList controls allow data selection and data editing.

A validation control enables us to validate an input and display an error
message if necessary.

There are six Validation Controls: RequiredFieldValidator, RangeValidator,
CompareValidator, RegularExpressionValidator, CustomValidator, and
ValidationSummary.

The Validation controls automatically generates client-side and server-
side validation code. If necessary, you can also develop custom validation
functions.

Creating Custom ASP Server User Controls

Custom controls are similar to ActiveX controls, except that these are
much easier to develop.

www.syngress.com

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 170

ASP Server Controls • Chapter 3 171

There are two types of custom controls: Web User Controls and Web
Custom Controls.

A custom control can be used exactly like any other Web server controls.

Q: How much will ASP syntax change during the transition from Beta 2 to the
final version?

A: Microsoft has “predicted” that there will be no syntactical changes.This
should be good news to developers who were faced with some confusion
when certain classes were dropped, added, and modified during the last tran-
sition from Beta 1 to Beta 2.

Q: What happens to the existing ASP applications when the .Net Beta 2 SDK is
installed and .aspx files enter the picture?

A: Nothing! The good news is that files extensions used by ASP (.asp, .asa, etc.)
are completely separate from the ones used by ASP.NET (.aspx, .asax, .ascx,
etc.) and do not override each other even in the same directory.The bad
news is that settings made in the global.asa file are not accessible to those
made in the global.asax file, and therefore you have to redo some setting to
get some consistency.

Q: Are paths such as HREFs in user controls relative to the user control or to the
host page that they are in?

A: The paths are relative to the user control and not to the host page.This makes
it much easier for the user control to find things irrespective of what direc-
tory the calling .aspx file is.Another interesting feature in paths is that you
can use the “~” to represent the application root to shortcut the use of the
Request Application path.This really makes the building of large Web sites
more manageable.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 171

166_ASPNET_03.qxd 11/26/01 2:58 PM Page 172

Configuring ASP.NET

Solutions in this chapter:

■ Overview of ASP.NET Configuration

■ Uses for a Configuration File

■ Anatomy of a Configuration File

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 4

173

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 173

174 Chapter 4 • Configuring ASP.NET

Introduction
As applications became more complex and started offering more configurable
features, a natural progression was to use configuration files to store these values.
It has since become a required feature of any application to support the use of
configuration files to control various aspects of itself and to avoid hard-coding of
variable data. Most Windows applications support this with the use of .ini files or
entries in the Windows registry.ASP.NET includes this support by the use of
machine.config and web.config files.These files are standard text files written
using XML formatting and can be edited with any text editor such as Notepad
or an XML parser.With the use of these files,ASP.NET provides the ability to
modify many standard settings used within Web applications as well as allowing
the creation of custom settings.

The configuration of a given Web application is computed in a hierarchical
manner when the application is first accessed and then cached to speed up future
references to the configuration.ASP.NET then monitors the configuration files
for any changes, and if a change is detected, the cached configuration is flushed
and recomputed.

In this chapter, we will go over the way ASP.NET uses its configuration files
and how we can best take advantage of this feature.We will also discuss the appli-
cation, system, and security aspects of the configuration files and work through
the creation of a web.config file.

Overview of ASP.NET Configuration
The configuration files used by ASP.NET are processed in a hierarchical manner.
This means that the files located at a higher level of the hierarchy can override
the options set within each file.An exception to this rule is provided to allow for
locking down some settings.This exception uses the allowOverride attribute and
the <location> tag to lock down the settings.The use of this option is explained
in the “Anatomy of a Configuration File” section later in this chapter.

The machine.config file is used on a per-server basis and controls the base
configuration of ASP.NET on the system.The machine.config is located in the
C:\winnt\Microsoft.NET\Framework\version\CONFIG\ directory and is the highest-
level configuration file.The web.config file can be located in your root applica-
tion directory as well as in any subdirectories below it in order to set Web
application specific configuration. If a value is not explicitly defined in a lower
level configuration file and is defined in a higher-level file, the value will be

www.syngress.com

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 174

www.syngress.com

inherited from the higher level configuration file.This process is outlined in
Figure 4.1.

Figure 4.1 illustrates several important points regarding ASP.NET’s use of
configuration files. Let’s walk through what this illustration shows.

First, the order in which the configuration files are processed is shown.The
machine.config file is processed first.Any values specified within the machine
.config file are inherited throughout every ASP.NET application on your Web
server.The web.config file in each consecutive subdirectory is then processed
with each lower-level file overriding the configuration files above it unless other-
wise instructed.

Secondly, if a value is not explicitly defined in a lower-level configuration file,
the value is inherited from the higher-level file.This is a very important feature
to keep in mind as values set in a higher-level file may cause problems with an
application stored at lower level.

Configuring ASP.NET • Chapter 4 175

Figure 4.1 Configuration Inheritance

machine.config
value=true

wwwroot\
web.config
value not set

wwwroot\
application1\
web.config
value=false

allowOverride=false

wwwroot\
application2\
web.config
value=false

allowOverride=true

wwwroot\
application1\

subapp
value=true

wwwroot\
application2\

subapp
value=true

ASP.NET cached
configuration

value=false

ASP.NET cached
configuration

ERROR

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 175

176 Chapter 4 • Configuring ASP.NET

SECURITY ALERT!
With the standard ASP.NET machine.config file, all configuration files are
secured and cannot be downloaded by a client system. This allows for
some protection of critical information such as user IDs and passwords
for DSN sources, but keep in mind that any system can be hacked with
enough time and effort. Always keep security in mind when planning
your Web application.

Finally, we can see how the use of the allowOverride attribute affects an applica-
tion’s configuration.The default value for the allowOverride attribute is true, which
allows any lower level configuration file to override the configuration specified in a
higher-level file.You can change this behavior by setting the allowOverride attribute

www.syngress.com

Configuration Hierarchy
An important note to keep in mind when planning your usage of con-
figuration files is the hierarchical manner in which ASP.NET computes
the effective configuration of your application. When ASP.NET reads in
the web.config in each consecutive directory, it goes from each physical
subdirectory to the next.

Virtual directories cause this processing to occur somewhat differ-
ently. Let us assume as an example that you have a web.config file phys-
ically located in E:\wwwroot\mainapp and have the virtual directory app
assigned to this directory.

Later you add another application in E:\wwwroot\mainapp\subapp
and assign the virtual directory subapp to this directory. If you access
your sub-application by using http://localhost/app/subapp/myapp.aspx,
the settings in the machine.config as well as the web.config stored in
the mainapp are applied. However, if your sub-application is accessed via
http://localhost/subapp/myapp.aspx, only the settings configured in the
machine.config are applied.

This caveat of configuration inheritance is very important to keep in
mind when designing your virtual directory structure. If structured incor-
rectly, your applications could experience errors, or could fail.

Debugging…

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 176

http://localhost/app/subapp/myapp.aspx
http://localhost/subapp/myapp.aspx

Configuring ASP.NET • Chapter 4 177

to false, which prevents lower- level configuration files from overriding configura-
tion options set at a higher level. If a lower-level configuration file attempts to
override this setting, an error will occur.We will go into more detail on the
allowOverride attribute for the <location> tag later in the chapter.

Uses for a Configuration File
When examining the uses for ASP.NET’s configuration files, we must look at the
machine.config file as well as the web.config file.The main difference between
these two files is that the machine.config file is applied system-wide while the
web.config is applied to each application based on the inheritance rules. Each con-
figuration option set within the machine.config file is applied to every application
and by using the allowOverride attribute in conjunction with the <location> tag;
you can prevent individual web.config files from overriding these settings.

When ASP.NET is initially installed, a default machine.config file is set up for
your system with the standard configuration section handlers used within
ASP.NET as well as many other configuration items.You can edit this default file
to tailor your ASP.NET configuration to your requirements.You can also con-
figure the same options in the lower-level web.config files in order to give you
more granular control over individual applications.

You can configure almost all functional items of ASP.NET through the con-
figuration files.The options available to you using the default ASP.NET
machine.config file include everything from browser compatibility options to
secure authentication options.Table 4.1 details the standard tags available through
the ASP.NET configuration files; however, you can define additional tags by
defining new configuration section handlers.

Table 4.1 Standard Configuration Tags

Configuration Tag Description Group

<appSettings> Allows the configuration of Application
custom settings for your
applications.

<authentication> Allows configuration of ASP.NET’s Security
authentication support.

<authenticationModules> Allows the definition of modules Security
necessary for ASP.NET’s authen-
tication support.

www.syngress.com

Continued

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 177

178 Chapter 4 • Configuring ASP.NET

<authorization> Allows configuration of ASP.NET’s Security
authorization support.

<browserCaps> Allows configuration of settings System
for the browser capabilities
component.

<compilation> Allows configuration of all System
ASP.NET compilation settings.

<connectionManagement> Allows configuration of client System
connection options.

<customErrors> Allows the definition of custom System
error messages for your application.

<defaultProxy> Allows the configuration of proxy System
server usage by ASP.NET.

<globalization> Allows the configuration of Application
globalization settings for your
applications.

<httpHandlers> Allows mapping of incoming System
URL requests to appropriate
IHttpHandler classes or
IhttpHandlerFactory classes.

<httpModules> Allows the configuration of HTTP System
modules used within an application.

<httpRuntime> Allows the configuration of HTTP System
runtime settings.

<identity> Controls the identity used by Application
your application.

<machineKey> Allows configuration of keys Security
for encryption and decryption
of form’s authentication cookie
data.

<pages> Allows configuration of page- Application
specific settings.

<processModel> Allows configuration of ASP.NET System
process model settings.

<securityPolicy> Allows the mapping of defined Security
security levels to policy files.

www.syngress.com

Continued

Table 4.1 Continued

Configuration Tag Description Group

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 178

Configuring ASP.NET • Chapter 4 179

<sessionState> Allows configuration of the System
session state HTTP module.

<trace> Allows configuration of the ASP.NET Application
trace service.

<trust> Allows configuration of the code Security
access security permission set
used to run your application.

<webRequestModules> Allows configuration of ASP.NET’s System
use of modules for request
processing based on the prefix.

<webServices> Allows configuration of ASP.NET System
Web Services settings.

You can break up these standard configuration tags into three main configu-
ration groups:

■ ASP.NET Application Configuration

■ ASP.NET System Configuration

■ ASP.NET Security Configuration

Each standard tag in Table 4.1 has been categorized as belonging to one of
these three configuration groups, and we will review each option and its function
in the following sections. Many of these tags do overlap between the configura-
tion groups, but this breakdown serves as a general guideline for defining your
configuration.

Application Configuration
The application configuration tags are generally used to control application-spe-
cific settings.You can set all of these tags either within the machine.config file or
a web.config file at any level.

Setting Static Variables Using the <appSettings> Tag
The <appSettings> tag supports only two attributes, a key and a value.This setting
enables you to set static variables for your application. One excellent use for this
configuration setting is to set all of your application specific variables in a single
location.This gives you the ability to completely control your application

www.syngress.com

Table 4.1 Continued

Configuration Tag Description Group

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 179

180 Chapter 4 • Configuring ASP.NET

through a single configuration file. In previous ASP versions, these options were
set through the use of application variables, but ASP.NET’s utilization of this fea-
ture is much more efficient.The following code shows the use of this tag in set-
ting a data source name for your application.

<configuration>

<appSettings>

<add key="dsn" value="localhost;uid=readonly;pwd=user"/>

</appSettings>

</configuration>

Providing Global Support
Using the <globalization> Tag
The <globalization> tag enables you to configure your application to accept
requests or respond to requests using different encoding options. Using this
configuration setting will allow your site to respond in the specific encoding
used by any country accessing your site.The default for requestEncoding and
responseEncoding within the machine.config file is utf-8 for English-language sys-
tems, and if this setting is removed,ASP.NET defaults to your system’s locale set-
ting.This tag supports five attributes as shown in Table 4.2.

Table 4.2 <globalization> Tag Attributes

Attribute Description

requestEncoding Specifies the assumed encoding for incoming requests.
responseEncoding Specifies the encoding for Web application responses.
fileEncoding Specifies the default encoding for .aspx, .asmx, and

.asax file parsing.
culture Specifies the default culture for processing incoming

requests.
uiCulture Specifies the default culture for processing locale-

dependent resource searches.

The following code is an example of how to use this tag to set the globaliza-
tion options to a different encoding format such as Japanese:

<configuration>

<system.web>

www.syngress.com

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 180

Configuring ASP.NET • Chapter 4 181

<globalization

requestEncoding="Shift-JIS"

responseEncoding="Shift-JIS"

/>

</system.web>

</configuration>

Configuring Application Identity
Using the <identity> Tag
The <identity> tag enables you to configure the application identity for your
Web application.You can then use this identity throughout your application for
access to resources without explicitly including the user id and password else-
where.This can be very useful when accessing a remote database or databases.
You also have the option of setting the application identity to impersonate the
client.The default within the machine.config is to set the impersonate attribute to
false.The <identity> tag supports only three attributes.The impersonate attribute
can be set to either true or false. If the impersonate attribute is false, you can set the
userName and password attributes to a specific user id and password for your appli-
cation to use.This is shown in the following code example:

<configuration>

<system.web>

<identity impersonate="false" userName="mainapp"

password="mainpass" />

</system.web>

</configuration>

Setting Page-Specific Attributes
Using the <pages> Tag
The <pages> tag presents several page-specific attributes that you can configure.
These are used to set response buffering options, session, and view states, code-behind
classes, and page events options. By changing these options, you can control the
way pages act within your site.As an example, if you wish to disable page events,
you can set the autoEventWireup tag to false. These attributes and their options are
detailed in Table 4.3.

www.syngress.com

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 181

182 Chapter 4 • Configuring ASP.NET

Table 4.3 <pages> Tag Attributes

Attribute Options Description

buffer On/Off/ReadOnly Specifies whether the page uses
response buffering. You can turn
response buffering on or off. The
ReadOnly option allows an appli-
cation to read, but not modify
session state variables.

enableSessionState true/false This specifies whether session
state is enabled or disabled.

enableViewState true/false This specifies whether view state
is enabled or disabled.

pageBaseType This option allows you to specify
a code-behind class that .aspx
pages inherit.

userControlBaseType This option allows you to specify
a code-behind class that user
controls inherit.

autoEventWireup true/false This specifies whether page events
are automatically enabled or
disabled.

The following code is an example usage of the <pages> tag:

<configuration>

<system.web>

<pages

buffer="true"

enableSessionState="true"

enableViewState="true"

autoEventWireup="true"

/>

</system.web>

</configuration>

www.syngress.com

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 182

Configuring ASP.NET • Chapter 4 183

Configuring the Tracing
Service Using the <trace> Tag
The <trace> tag enables you to configure the ASP.NET tracing service. By
enabling this service, you are able to obtain extensive debugging information
about your application.This is extremely useful when you are developing an
application and want to view all of the information related to the compile or
other trace information.This tag supports five attributes as detailed in Table 4.4.

Table 4.4 <trace> Tag Attributes

Attribute Options Description

enabled true/false Specifies whether the tracing service is enabled
or disabled. The default setting in your
machine.config is false.

localOnly true/false Specifies whether you can view trace results
only from local host or remotely. The default
is true.

pageOutput true/false Specifies whether trace results are appended
to the end of a page or available only through
the trace utility. The default is false.

requestLimit This is a numeric value that places a limit on
the number of trace requests to store on the
server. The default is 10.

traceMode SortByTime/ Specifies whether to sort trace results by time
SortByCategory or by category. The default is SortByTime.

The description field in Table 4.4 shows the default settings for the <trace>
tag in ASP.NET’s machine.config.The code below is an example of how to
enable tracing and append it to the page output.

<configuration>

<system.web>

<trace

enabled="true"

localOnly="true"

pageOutput="true"

requestLimit="15"

traceMode="SortByTime"

www.syngress.com

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 183

184 Chapter 4 • Configuring ASP.NET

/>

</system.web>

</configuration>

System Configuration
The system configuration options are generally best applied when set in the
machine.config and applied system-wide. Most of these options control the way
ASP.NET itself functions, and enables you to add additional system-level capabili-
ties to your application. In some cases, these configuration options are restricted
as to what level they can be applied at.As we examine each option, the levels at
which the option is applicable will be defined.

Determining Client Capabilities
Using the <browserCaps> Tag
The <browserCaps> tag enables you to configure the browser capabilities compo-
nent.This tag enables you to determine the type and version of browser and oper-
ating system that the remote client is using and define the capabilities that the
client has based on this information. Using this enables you to tailor your dynamic
page to only include features that the browser is capable of using. For example, if
you’re using tables within your document and the browser doesn’t support tables,
the document could end up formatted differently than what you intended. By
using this, you would never have sent a table to the browser.The actual data used to
obtain this information is pulled by using the HTTP_USER_AGENT variable.You
can specify this by using the <use> subtag with the <browserCaps> tag.The
<result>, <filter>, and <case> subtags are supported in order to populate the
<browserCaps> attributes.The settings for most major browsers currently on the
market are defined in the default ASP.NET machine.config file.These attributes are
detailed in Table 4.5 along with the input data types that they support.

Table 4.5 <browserCaps> Tag Attributes

Attribute Data Type

browser string
version numeric
majorversion numeric
minorversion numeric

www.syngress.com

Continued

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 184

Configuring ASP.NET • Chapter 4 185

frames boolean
tables boolean
cookies boolean
backgroundsounds boolean
vbscript boolean
javascript boolean
javaapplets boolean
activexcontrols boolean
win16 boolean
win32 boolean
beta boolean
ak boolean
sk boolean
aol boolean
crawler boolean
cdf boolean
gold boolean
authenticodeupdate boolean
tagwriter object
ecmascriptversion numeric
msdomversion numeric
w3cdomversion numeric
platform string
clrVersion numeric
css1 boolean
css2 boolean
xml boolean

The following code shows an example of the <browserCaps> tag as it would
be used to specify some default browser capabilities:

<configuration>

<system.web>

www.syngress.com

Table 4.5 Continued

Attribute Data Type

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 185

186 Chapter 4 • Configuring ASP.NET

<browserCaps>

<result type="System.Web.HttpBrowserCapabilities" />

<use var="HTTP_USER_AGENT" />

browser="Unknown"

version=0.0

minorversion=0

majorversion=0

frames=false

tables=false

win16=false

win32=false

<filter>

<case match="Windows 95|Win95">

platform=Win95

</case>

<case match="Windows 98|Win98">

platform=Win98

</case>

</filter>

<filter>

<case match="16bit|Windows 3.1|Win16">

win16=true

</case>

<case match="Windows 95|Win95|Windows 98|Win98|Windows

NT|WinNT|Win32">

win32=true

</case>

</filter>

</browserCaps>

</system.web>

</configuration>

www.syngress.com

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 186

Configuring ASP.NET • Chapter 4 187

Setting Compilation Options
Using the <compilation> Tag
You set all of ASP.NET’s compilation options by using the <compilation> tag.This
allows for a very detailed level of control over the compilation of your application.
The default settings in the machine.config are usually sufficient for most applica-
tions.The only time when these options would need to be changed would be to
modify the compilation of your ASP.NET application.The <compilation> tag sup-
ports seven attributes and three subtags.The attributes are explained in Table 4.6.

Table 4.6 <compilation> Tag Attributes

Attribute Options Description

debug true/false Specifies whether to compile
retail or debug binaries. By set-
ting this to true, debug binaries
are compiled. The default
option is false.

defaultLanguage Specifies a list of language
names to be used in dynamic
compilation files. Multiple
names are separated by semi-
colons. The default for this is vb.

explicit true/false Specifies the setting of the
Visual Basic explicit compile
option. The default is true.

batch true/false Specifies whether batching is
supported as a compile option.
This is not defined in the default
machine.config.

batchTimeout Specifies a timeout period for
batch compilation. If the batch
compile is unable to complete
before this timeout period
expires, ASP.NET reverts to
single compilation mode. This is
not defined in the default
machine.config.

www.syngress.com

Continued

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 187

188 Chapter 4 • Configuring ASP.NET

numRecompilesBeforeApprestart Specifies the number of recom-
piles that can occur before
ASP.NET restarts the application.
NOTE: This attribute is not sup-
ported at the directory level.
This is not defined in the default
machine.config.

strict true/false Specifies the setting of the
Visual Basic strict compile
option. This is not defined in
the default machine.config.

The <compilation> tag also supports three subtags: <compilers>,
<assemblies>, and <namespaces>. Each of these supports its own subtags
in order to give a more granular level of control over the compilation options.

The <compilers> subtag exists only to encapsulate one or more <compiler>
subtags.This subtag is used to define a new compiler option.The <compiler>
subtag supports five attributes, which are illustrated in Table 4.7.

Table 4.7 <compiler> Subtag Attributes

Attribute Description

language Specifies a list of language to be used within dynamic
compilation files. You can specify multiple languages by
separating them with semicolons.

extension Specifies file extensions used for dynamic code-behind files.
You can specify multiple extensions by separating them
with semicolons.

type Specifies a class/assembly combination that indicates the
.NET Framework class used to compile all resources using
the specified language(s) or extension(s). You can specify
multiple classes by separating them with semicolons.

warningLevel Specifies compiler warning levels for the specified type.
compilerOptions Any additional compiler-specific options that need to be

passed to the .NET Framework class are specified with this
attribute.

www.syngress.com

Table 4.6 Continued

Attribute Options Description

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 188

Configuring ASP.NET • Chapter 4 189

The <assemblies> subtag enables you to specify ASP.NET processing direc-
tives. It supports three subtags that act as the processing directives: <add>,
<remove>, and <clear>.The use of these three subtags is detailed in table 4.8.

Table 4.8 <assemblies> Subtags

Subtag Description

<add> Enables you to add an assembly reference for use when a
dynamic resource is compiled. This assembly is automatically
linked to the resource by ASP.NET when each code module is
compiled. The <add> subtag uses the same attributes and
syntax as the AssemblyName class.

<remove> Enables you to remove an assembly reference previously speci-
fied by using the <add> tag. The assembly name used in the
<remove> tag must match the name used in the <add> tag,
and wildcards are not supported.

<clear> Removes all assembly references whether they were explicitly
defined or inherited.

The <namespaces> subtag enables you to specify additional ASP.NET pro-
cessing directives.The subtags supported by the <namespaces> subtag are identical
to the <assemblies> subtag and perform the same function, using namespaces
instead of assemblies.

These <compilation> subtags and attributes are illustrated in the following
code sample.

<configuration>

<system.web>

<compilation

defaultLanguage="VB"

debug="true"

numRecompilesBeforeAppRestart="15">

<compilers>

<compiler

language="VB;VBScript"

extension=".cls"

type="Microsoft.VB. VBCodeProvider,System" />

<compiler

language="C#;Csharp"

www.syngress.com

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 189

190 Chapter 4 • Configuring ASP.NET

extension=".cs"

type="Microsoft.CSharp. CSharpCodeProvider,System" />

<compiler

language="js;jscript;javascript"

extension=".js"

type="Microsoft.JScript.JScriptCodeProvider,

Microsoft.JScript" />

</compilers>

<assemblies>

<add assembly="ADODB" />

<add assembly="mscorlib" />

</assemblies>

<namespaces>

<add namespace="System.Web" />

<add namespace="System.Web.UI" />

<add namespace="System.Web.UI.WebControls" />

<add namespace="System.Web.UI.HtmlControls" />

</namespaces>

</compilation>

</system.web>

</configuration>

Controlling Connections Using the
<connectionManagement> Tag
The <connectionManagement> tag enables you to control the number of simulta-
neous connections allowed per address on your system. By using this tag, you can
control the optimization of your pages.As an example, if you want to speed up
access to a smaller number of users, then increase the number of simultaneous con-
nections.This tag supports the <add>, <remove>, and <clear> subtags.The <add>
subtag specifies the address(es) to set connection limits on. It has two attributes,
address and maxconnection. Proper usage of the <add> subtag is illustrated in the
following code sample.The <remove> subtag only accepts the address attribute and
is used to remove addresses previously specified with the <add> subtag.Wildcards
are also supported with the <remove> tag.The <clear> subtag removes all
addresses from the configuration whether explicitly defined or inherited.

www.syngress.com

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 190

Configuring ASP.NET • Chapter 4 191

<configuration>

<system.net>

<connectionManagement>

<add

address="*"

maxconnection="2"

/>

</connectionManagement>

</system.net>

</configuration>

Defining Custom Errors
Using the <customErrors> Tag
By using the <customErrors> tag, you have the ability to define custom error
messages for your application.This is generally used to point users to a friendlier
message than the default error messages.This tag supports only two attributes and
one subtag.The two attributes supported are defaultRedirect and mode.The
defaultRedirect attribute accepts a string value representing the default URL to
redirect the browser to when an error occurs.The mode attribute has three
options: On, Off, and RemoteOnly.These options allow you to enable or disable
custom error support or enable custom error support only for remote clients.

The <error> subtag supported by the <customErrors> tag enables you to set
pages to redirect specific errors to.The <customErrors> tag supports the use of
multiple <error> subtags, enabling you to redirect many different errors to the
appropriate URL.The usage of these tags are outlined in the following code
example:

<configuration>

<system.web>

<customErrors

defaultRedirect="error/unspecifiederror.aspx"

mode="RemoteOnly">

<error

statusCode="500"

redirect="error/internalerror.aspx"

/>

www.syngress.com

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 191

192 Chapter 4 • Configuring ASP.NET

<error

statusCode="404"

redirect="error/notfound.aspx"

/>

</customErrors>

</system.web>

</configuration>

Mapping Requests Using the <httpHandlers> Tag
The <httpHandlers> tag is used to map incoming requests to the appropriate
IHttpHandler or IhttpHandlerFactory class.This is done based on the URL
requested and the verb used to request it. Some example verbs used by this are
GET, POST, and PUT.You would use this if you had a custom handler that you
wanted to implement when files with a certain extension are requested.As an
example, you could use this if you had a custom virus scanner needed to be run
against all files sent with a PUT request that have the .ZIP extension.You could
develop a custom handler to do this and assign the handler to the .ZIP extension
in combination with the PUT verb.This can also be used to restrict certain files
from being viewed, by pointing them to the System.Web.HttpForbiddenHandler
handler.The <httpHandlers> tag supports three subtags to control this configura-
tion option: <add>, <remove>, and <clear>.

The <add> subtag is used to add new entries to the list and supports three
attributes.The first is the verb attribute, which specifies specific verbs to apply this
IHttpHandler or IhttpHandlerFactory to.This attribute does accept wildcards.The
second attribute is path, which specifies either a specific URL path or a wildcard
string.The final attribute is type, which specifies the class/assembly combination.
ASP.NET has a specific search order for finding the appropriate DLL. It first
checks in the application’s “bin” directory, and then in the system assembly cache.

The <remove> subtag accepts only the path and type attributes and is used to
remove a previously specified mapping from the list.The <clear> subtag removes
all mappings from the list whether they are explicitly defined or inherited.

The following code sample illustrates the use of the <httpHandlers> tag by
adding a mapping for all .tmp files to be forbidden:

<configuration>

<system.web>

<httpHandlers>

www.syngress.com

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 192

Configuring ASP.NET • Chapter 4 193

<add verb="*" path="*.tmp" type="System.Web

.HttpForbiddenHandler, System.Web, Version=1.0.2411.0,

Culture=neutral />

</httpHandlers>

</system.web>

</configuration>

Configuring HTTP Modules
Using the <httpModules> Tag
The <httpModules> tag enables you to configure the HTTP modules used
within your application.This tag supports the <add>, <remove>, and <clear>
subtags.The <add> subtag specifies the HTTP module class to add to your
application. It has two attributes, type and name. Proper usage of the <add>
subtag is illustrated in the following code sample.The <remove> subtag accepts
the same attributes of type and name and is used to remove HTTP modules pre-
viously specified with the <add> subtag.Wildcards are also not supported with
the <remove> tag.The <clear> subtag removes all addresses from the configura-
tion whether explicitly defined or inherited.

<configuration>

<system.web>

<httpModules>

<add

name="OutputCache"

type="System.Web.Caching.OutputCacheModule"

/>

<add

name="Session"

type="System.Web.SessionState.SessionStateModule"

/>

<add

name="WindowsAuthentication"

type="System.Web.Security.WindowsAuthenticationModule"

/>

</httpModules>

www.syngress.com

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 193

194 Chapter 4 • Configuring ASP.NET

</system.web>

</configuration>

Setting Runtime Options
Using the <httpRuntime> Tag
The <httpRuntime> tag enables you to set various runtime options for
ASP.NET’s HTTP processing.These options are represented by the three avail-
able attributes for the <httpRuntime> tag. By changing these attributes, you can
control the way ASP.NET functions when performing operations requested by
the user.

The first attribute is useFullyQualifiedRedirectUrl.This attribute supports a
boolean value of true or false, and configures whether ASP.NET uses fully quali-
fied client-side redirects or relative redirects.The default is false, which specifies
relative redirects. Fully qualified redirects are only used for some mobile controls
or very early-stage Web browsers.

The second available attribute is executionTimeout, which specifies the max-
imum amount of time that a request is allowed to process before being termi-
nated by ASP.NET.This is used both to terminate hung applications as well as to
prevent badly coded applications from using up all your system resources.This
attribute accepts a numeric value specified in seconds.

The final attribute for the <httpRuntime> tag is maxRequestLength.This
attribute specifies a maximum file size that ASP.NET will accept as an upload.This
is primarily used to prevent users from performing a denial of service attack by
uploading large files to your server. In addition, it can help manage your disk
capacity by limiting the size of the files your server accepts.This attribute accepts a
numeric value in megabytes.These attributes are illustrated in the following code:

<configuration>

<system.web>

<httpRuntime

executionTimeout="90"

maxRequestLength="4096"

useFullyQualifiedRedirectUrl="false"

/>

</system.web>

</configuration>

www.syngress.com

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 194

Configuring ASP.NET • Chapter 4 195

Setting Process Model Options
Using the <processModel> Tag
The <processModel> tag is used to set various options for the ASP.NET process
model.These options are represented by the 15 attributes supported by the
<processModel> tag and are described in Table 4.9.The <processModel> tag can
only be used within the machine.config file.

Table 4.9 <processModel> Tag Attributes

Attribute Options Description Default

enable true/false Allows you to true
enable or disable
the process model.

timeout Infinite/hh:mm:ss Allows you to Infinite
specify a timeout
period at the end
of which ASP.NET
will launch a new
worker process.
This value is
expressed as
hh:mm:ss or a
special value of
Infinite.

idleTimeout Infinite/hh:mm:ss Enables you to Infinite
specify a timeout
period based on
inactivity at the end
of which ASP.NET
will automatically
shut down the
worker process. This
value is expressed
as hh:mm:ss or a
special value of
Infinite.

shutdownTimeout Infinite/hh:mm:ss Enables you to 00:00:05
specify a length of
time for the worker
process to shut itself
down. When this
time period runs

www.syngress.com
Continued

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 195

196 Chapter 4 • Configuring ASP.NET

out, the worker
process will be
terminated by
ASP.NET. This value
is expressed as
hh:mm:ss or a s
pecial value of
Infinite.

requestLimit Infinite/numeric Enables you to Infinite
specify the max-
imum number of
requests to process
before ASP.NET re-
starts the worker
process.

requestQueueLimit Infinite/numeric Enables you to 5000
specify the number
of requests to store
in the queue before
ASP.NET starts
responding with
an error message.

memoryLimit Infinite/numeric Enables you to 60
specify the max-
imum amount of
memory that a
worker process can
consume before
ASP.NET starts a new
worker process and
begins reassigning
requests. This value
is a numeric value
representing the per-
centage of the total
system memory.

cpuMask decimal bitmask Enables you to 0xffffffff
assign specific pro-
cessors in a multi-
processor system to

www.syngress.com

Table 4.9 Continued

Attribute Options Description Default

Continued

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 196

Configuring ASP.NET • Chapter 4 197

run ASP.NET pro-
cesses. This enables
you to dedicate pro-
cessors completely
to just process
ASP.NET threads.
The value for this
attribute is the dec-
imal conversion of
the binary represent-
ation of processors
that you wish to
specify. For example,
in a four-processor
system, let’s assume
that you wish to
dedicate processors
0 and 1 to ASP.NET.
The binary mask for
this would be 0011.
Translated to dec-
imal, the value is 3.
Processors 2 and 3
exclusively would be
masked as 1100,
which is 12 in
decimal. This attri-
bute is only valid
on multi-processor
systems that have
the webGarden
attribute set to
false.

webGarden true/false Enables you to false
specify whether to
control processor
utilization on multi-
processor systems
by using the operat-
ing system or spec-
ific processor masks

www.syngress.com

Table 4.9 Continued

Attribute Options Description Default

Continued

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 197

198 Chapter 4 • Configuring ASP.NET

defined in the
cpuMask attribute.
A value of false sign-
ifies to use the
cpuMask attribute,
and a value of true
signifies usage of the
operating system.

userName string Enables you to System
specify a specific
user id to start the
worker process
under. This attribute
accepts the value
of a valid user
account or two
special names,
System and Machine.
The System name
runs the worker pro-
cess under the
system account.
The Machine name,
when used with a
password of
Autogenerate, runs
the worker process
under an unprivi-
leged system
account.

password AutoGenerate/ Enables you to AutoGenerate
string specify a password

to use with the user
id specified in the
userName attribute.
This attribute
accepts either a valid
password or a value
of AutoGenerate for
use with the
Machine user id.

www.syngress.com

Table 4.9 Continued

Attribute Options Description Default

Continued

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 198

Configuring ASP.NET • Chapter 4 199

logLevel All/None/Errors Enables you to Errors
specify the ASP.NET
logging level for
debugging infor-
mation. This value
specifies the events
to log to the system
event log.
Supported values
are All, None, or
Errors.

clientConnectedCheck hh:mm:ss Enables you to 0:00:05
specify a default
length of time for
a request to be
queued before
ASP.NET checks to
make sure that the
client is still con-
nected. This value
is formatted as
hh:mm:ss.

comAuthenticationLevel Default/None/ Enables you to Connect
Connect/ specify the authen-
Call/Pkt/ tication level for
PktIntegrity/ DCOM security.
PktPrivacy The available values

listed in the Options
column enables you
to control what
level of authen-
tication you wish
to use.

comImpersonationLevel Default/ Enables you to Impersonate
Anonymous/ specify the authen-
Identify/ tication level for
Impersonate/ COM security. The
Delegate available options

are shown in the
Options column.

www.syngress.com

Table 4.9 Continued

Attribute Options Description Default

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 199

200 Chapter 4 • Configuring ASP.NET

The following code shows the use of these options as they could be config-
ured for a multiprocessor system:

<configuration>

<system.web>

<processModel

enable="true"

timeout="Infinite"

idleTimeout="Infinite"

shutdownTimeout="0:00:10"

requestLimit="Infinite"

requestQueueLimit="8000"

restartQueueLimit="10"

memoryLimit="70"

webGarden="true"

cpuMask="13"

userName="SYSTEM"

password="AutoGenerate"

logLevel="All"

clientConnectedCheck="0:00:10"

comAuthenticationLevel="Connect"

comImpersonationLevel="Impersonate"

/>

</system.web>

</configuration>

Configuring the Session State
Using the <sessionState> Tag
The <sessionState> tag enables you to configure the session state HTTP module.
This tag supports five attributes, which are detailed in Table 4.10. For further
information on session state, please refer to Chapter 5.

www.syngress.com

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 200

Configuring ASP.NET • Chapter 4 201

Table 4.10 <sessionState> Tag Attributes

Attribute Options Description Default

mode Off/InProc/ Enables you to specify InProc
StateServer/ where to store the
SqlServer session state. The Off

value disables session
state, the InProc value
stores the session state
locally, the StateServer
stores the session state
on a remote server,
and the SqlServer value
stores the session state
on a SQL server.

cookieless true/false Enables you to specify false
whether sessions
without cookies should
be used to identify
client sessions with a
value of true, indicating
that sessions without
cookies should be
used.

timeout Enables you to specify 20
the amount of time in
minutes before an idle
session is abandoned.

stateConnectionString Enables you to specify tcpip=
the server name and 127.0.0.1:42424
port to use when the
session state is stored
remotely, as specified
with the StateServer
value under the mode
attribute.

sqlConnectionString Enables you to specify data source=
a SQL connection 127.0.0.1;
string to use when the user id=
session state is stored sa;password=
on a SQL server, as spec-
ified with the SqlServer
value under the mode
attribute.

www.syngress.com

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 201

202 Chapter 4 • Configuring ASP.NET

An example use of this tag is illustrated in the following code sample:

<configuration>

<system.web>

<sessionState>

mode="SqlServer"

sqlConnectionString="data source=10.10.10.1;user

id=sa;password=mypass"

cookieless="false"

timeout="25"

</sessionState>

</system.web>

</configuration>

Configuring Request Modules Using
the <webRequestModule> Tag
The <webRequestModules> tag enables you to configure the request modules
used within your application.These modules control the way that ASP.NET will
respond to different requests.As an example, one of the default modules is the
System.Net.FileWebRequestCreator module.Whenever a request prefaced with
“file://” is sent to the server, the System.Net.FileWebRequestCreator module is
called to handle the request.

This tag supports the <add>, <remove>, and <clear> subtags.The <add>
subtag specifies the request module class to add to your application. It has two
attributes, prefix and type. Proper usage of the <add> subtag is illustrated in the
following code sample.The <remove> subtag accepts the same attributes of prefix
and type and is used to remove request modules previously specified with the
<add> subtag.Wildcards are not supported with the <remove> tag.The <clear>
subtag removes all request modules from the configuration whether explicitly
defined or inherited.

<configuration>

<system.net>

<webRequestModules>

<add

prefix="http"

type="System.Net.HttpRequestCreator"

www.syngress.com

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 202

Configuring ASP.NET • Chapter 4 203

/>

<add

prefix="https"

type="System.Net.HttpRequestCreator"

/>

<add

prefix="file"

type="System.Net.FileWebRequestCreator"

/>

</webRequestModules>

</system.net>

</configuration>

Configuring Web Services
Using the <webServices> Tag
The <webServices> tag enables you to configure aspects of ASP.NET’s web ser-
vices and how they function.Web services are explained in detail in Chapter 10.
By using various subtags, you can add protocol types, writer and reader types, as
well as configure many other options.All of the subtags supported by the
<webServices> tag support the three attributes of add, remove, and clear.There are
two different styles of subtags supported, standard subtags, and type subtags.When
using a standard subtag, the add and remove attributes use the name value.When
using a type subtag, these attributes use the type value.

There are many subtags supported by the <webServices> attribute.Table 4.11
contains a partial list of these subtags and describes the style of each subtag.

Table 4.11 <webServices> Tag Subtags

Subtag Style

protocolTypes type
protocols standard
returnWriterTypes type
returnWriters standard
parameterReaderTypes type
parameterReaders standard

www.syngress.com

Continued

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 203

204 Chapter 4 • Configuring ASP.NET

protocolReflectorTypes type
protocolReflectors standard
mimeReflectorTypes type
mimeReflectors standard
protocolImporterTypes type
protocolImporters standard
mimeImporterTypes type
mimeImporters standard
protocolInfoTypes type
protocolInfo standard
mimeInfoTypes type
mimeInfo standard
referenceResolverTypes type
referenceResolvers standard
discoverySearchPatternTypes type
discoverySearchPatterns standard
soapExtensionTypes type
soapExtensions standard
soapExtensionReflectorTypes type
soapExtensionReflectors standard
soapExtensionImporterTypes type
soapExtensionImporters standard

Security
Security is a very important area of configuration for ASP.NET.The tags pro-
vided in this section enable you to configure several aspects of ASP.NET security
including encryption and authentication.When planning any application, you
should always keep security in mind and make sure that all aspects of your appli-
cation are as secure as possible.These tags, when configured properly, can assist in
reaching the goal of a secure application.

www.syngress.com

Table 4.11 Continued

Subtag Style

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 204

Configuring ASP.NET • Chapter 4 205

Authenticating Users Using the <authentication> Tag
Authentication refers to the portion of ASP.NET, which verifies that the users
accessing your application are indeed who they say they are.This should be used
to verify the identity of your users for security reasons as well as personalization
of the application.The mode attribute specifies the type of authentication to use.
Table 4.12 shows the available options for this attribute and what they mean.
When Windows authentication is referred to, this includes all forms of authenti-
cation supported by IIS such as basic, digest, NTLM/kerberos, or certificates.

Table 4.12 mode Attribute Options

Option Description

Windows Specifies Windows/IIS authentication mode.
Forms Specifies an ASP.NET forms-based authentication mode.
Passport Specifies the use of Microsoft Passport authentication mode.
None No authentication specified. This should only be used for

anonymous access-based applications or applications designed
with their own authentication scheme.

The <authentication> tag also supports two subtags, <forms> and <pass-
port>.The <forms> tag is used to specify configuration information for using
ASP.NET’s forms-based authentication mode.This subtag supports five attributes
and one subtag.These attributes are shown in Table 4.13.

Table 4.13 <forms> Subtag Attributes

Attribute Options Description

name Enables you to specify a cookie name to
use for authentication. ASP.NET defaults
to .ASPXAUTH.

loginUrl If the specified cookie is not found, the
user will be redirected to the URL specified
in this attribute to log in. ASP.NET defaults
to default.aspx.

protection All/None/Encryption/ The All option specifies that the applica-
Validation tion uses both validation and encryption

to protect the authentication cookie. This
is the default value. The None option spec-
ifies that neither validation nor encryption

www.syngress.com

Continued

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 205

206 Chapter 4 • Configuring ASP.NET

is used, and therefore the cookie is not
secure. This should only be used when
there are no security requirements and the
authentication features are only being
used for personalization.

timeout Enables you to specify a maximum length
of time for the authentication cookie to
remain valid. This value is in seconds and
the default is 30.

path Enables you to specify a specific path for
storing cookies used by your application.
The default is /.

The <forms> subtag supports the <credentials> subtag.This subtag enables
you to specify user id and password credentials within the configuration file.This
is done by using the passwordFormat attribute and the <user> subtag.The
passwordFormat attribute accepts three values, which specifies the password
encryption.These values are as follows:

■ Clear No encryption

■ MD5 Encrypted with the MD5 hash algorithm

■ SHA1 Encrypted with the SHA1 hash algorithm

The <user> subtag supports the use of the name and password attributes.These
values are simply text values containing the user’s id and password.

The second subtag supported by the <authentication> tag is <passport>.This
subtag has a single attribute of redirectUrl, and enables you to specify a default URL
to redirect the user to if the passport mode is used and the user has not signed on
with passport.The following code sample shows the use of these options:

<configuration>

<system.web>

<authentication

mode="Forms">

<forms

name=".ASPXAUTH"

loginUrl="authenticate.aspx"

www.syngress.com

Table 4.13 <forms> Subtag Attributes

Attribute Options Description

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 206

Configuring ASP.NET • Chapter 4 207

protection="All"

timeout="45"

path="/">

<credentials

passwordFormat="SHA1">

<user

name="myuser"

password="mypass"

/>

</credentials>

</forms>

</authentication>

</system.web>

</configuration>

Configuring Security Modules Using
the <authenticationModules> Tag
The <authenticationModules> tag enables you to add or remove the security
modules used within ASP.NET for authentication.This will only be used if you
wish to add some other form of authentication to ASP.NET.This may evolve in
the future with the use of smart cards and biometric authentication.This tag sup-
ports the <add>, <remove>, and <clear> subtags.The <add> subtag specifies
the authentication module class to add to your application. It uses the type
attribute to specify the class. Proper usage of the <add> subtag is illustrated in
the following code sample.The <remove> subtag accepts the same attribute of
type and is used to remove authentication modules previously specified with the
<add> subtag.Wildcards are not supported with the <remove> tag.The <clear>
subtag removes all authentication modules from the configuration whether
explicitly defined or inherited.

<configuration>

<system.net>

<authenticationModules>

<add type="System.Net.DigestClient" />

<add type="System.Net.NegotiateClient" />

<add type="System.Net.KerberosClient" />

www.syngress.com

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 207

208 Chapter 4 • Configuring ASP.NET

<add type="System.Net.NtlmClient" />

<add type="System.Net.BasicClient" />

</authenticationModules>

</system.net>

</configuration>

Controlling Access Using the <authorization> Tag
The <authorization> tag is used to control access to specific resources based on
permissions granted to the user or role. For any application, you want only
authorized users to access your application in certain ways. Historically this has
been controlled by the use of user databases, but for small applications this works
well. In addition, if a method of access is needed, should the backend database
fail, this provides a good failsafe.

This is done by using the two subtags, <allow> and <deny>.The <allow>
subtag controls which users or roles are granted access, and the <deny> subtag
controls which users or roles to which access is denied. Both subtags support the
same three attributes.These are described in Table 4.14.All permissions specified
through this configuration are read and applied by ASP.NET from the top down;
therefore the order in which you specify your permissions is very important.

Table 4.14 <allow> and <deny> Subtag Attributes

Attribute Description

users Enables you to designate a list of users to either be allowed or
denied access. User names should be separated with a comma.
The ? and * symbols are used to specify anonymous or all users,
respectively.

roles Enables you to designate a list of roles to either be allowed or
denied access. You should separate roles with a comma.

verbs Enables you to specify a list of verbs to either allow or deny
access to. These include GET, HEAD, POST, and DEBUG. You
should separate verbs with a comma.

The following code sample illustrates the use of these tags:

<configuration>

<system.web>

<authorization>

<allow

www.syngress.com

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 208

Configuring ASP.NET • Chapter 4 209

users="austin,bobby,chris,dave"

roles="Admins"

/>

<deny

users="*"

/>

</authorization>

</system.web>

</configuration>

Configuring Encryption Keys
Using the <machineKey> Tag
The <machineKey> tag enables you to configure encryption keys for use with
encryption and decryption of forms authentication cookie data.This is very
important to use when high security is necessary for your application.When this
is in place, cookies used for forms authentication are encrypted. Forms authenti-
cation is explained in the earlier section of this chapter on the <authentication>
tag.The <machineKey> tag supports three attributes as shown in Table 4.15.You
can specify this tag on any level with exception of the subdirectory level.

Table 4.15 <machineKey> Tag Attributes

Attribute Options Description

validationKey AutoGenerate/value Specifies the key used for validation.
decryptionKey AutoGenerate/value Specifies the key used for decryption.
validation SHA1/MD5/3DES Specifies the type of encryption being

used for validation.

As shown in Table 4.15, the validationKey and decryptionKey attributes can
either be set to AutoGenerate a key or have a specific value set.This value must be
at least 40 characters long and have a maximum limit of 128 characters.The rec-
ommended length is 128 hexadecimal characters, for maximum security. If you
are using multiple Web servers with your application in a Web farm environment,
these keys must match between all Web servers. If you use AutoGenerate with a
Web farm, your keys will not match, and your application will not work cor-
rectly.The following sample code illustrates the usage of this tag.

www.syngress.com

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 209

210 Chapter 4 • Configuring ASP.NET

<configuration>

<system.web>

<machineKey validationKey="AutoGenerate"

decryptionKey="AutoGenerate"

validation="SHA1"/>

</system.web>

</configuration>

Mapping Security Policies
Using the <securityPolicy> Tag
The <securityPolicy> tag enables you to map policy files to specific security
level names. By doing so, you can then easily implement your own custom secu-
rity configuration throughout your application.This tag accepts the subtag of
<trustLevel>. Multiple <trustLevel> subtags can be placed within a
<securityPolicy> tag.The <trustLevel> subtag accepts two attributes, name and
policyFile.The name attribute is used to specify a logical name to designate the
policy, and the policyFile attribute specifies the policy file.The default names set
up with ASP.NET are Full, High, Low, and None.The following code shows these
names as well as one custom name and their associated policy files:

<securityPolicy>

<trustLevel

name="Full"

policyFile="internal"

/>

<trustLevel

name="High"

policyFile="web_hightrust.config"

/>

<trustLevel

name="Low"

policyFile="web_lowtrust.config"

/>

<trustLevel

name="None"

policyFile="web_notrust.config"

www.syngress.com

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 210

Configuring ASP.NET • Chapter 4 211

/>

<trustLevel

name="MyLevel"

policyFile="web_mypolicy.config"

/>

</securityPolicy>

Applying Trust Levels Using the <trust> Tag
The <trust> tag enables you to apply specific trust levels to your application. By
using this tag, you are able to use security policy files with your Web applications.
This tag accepts only two attributes, level and originUrl.The level attribute is used to
reference a trust level previously specified with the <trustLevel> tag.The originUrl
tag specifies an application’s origin URL.This is used for certain permissions that
allow connectivity back to the origin host, such as Socket and WebRequest. If the
permissions that you are applying require a host to function correctly, then you
must specify this attribute.The use of this tag is illustrated in the following code:

<configuration>

<system.web>

<trust

level="High"

originUrl="http://localhost/myapp/default.aspx"

/>

</system.web>

</configuration>

Anatomy of a Configuration File
The machine.config and web.config files are written using standard XML for-
matting.These files consist of a hierarchy of tags and subtags. Each tag or subtag
contains attributes that contain the actual configuration values.All of the tags,
subtags, and attributes in the configuration files are case-sensitive, and your appli-
cation will generate errors if a tag or attribute is formatted incorrectly.

Fortunately, there are specific rules that XML uses to help in getting the case
correct.All tags, subtags, and attributes are camel-cased, which means that the first
“word” of the name is lower case and any additional “words” in the name are
capitalized. For example, take the tag <webRequestModules>.This tag consists of

www.syngress.com

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 211

http://localhost/myapp/default.aspx

212 Chapter 4 • Configuring ASP.NET

the three words: web, request, and modules.The first word is all lower case, and
the remaining two are capitalized.

XML, much like HTML, requires that each tag have a beginning and an end.
This can be accomplished within a single statement by opening the tag and
closing with a “/>” at the end.The example code for the <machineKey> tag
uses this method:

<machineKey validationKey="AutoGenerate" decryptionKey="AutoGenerate"

validation="SHA1"/>

When a tag contains subtags, you cannot begin and end a tag within the same
statement.You must use a separate beginning and ending tag in this situation.A
good example for this is the <configuration> tag itself:

<configuration>

<system.web>

<machineKey validationKey="AutoGenerate"

decryptionKey="AutoGenerate"

validation="SHA1"/>

</system.web>

</configuration>

The first part of the machine.config file is the definition of configuration section
handlers.These are the classes used by the tags within the rest of the configuration
file to apply configuration settings.The default configuration section handlers are
detailed in the previous section, so we are now going to look at how to create
additional handlers.These are generally created in the machine.config file for use
between all applications, but can also be created within web.config files for appli-
cation-specific configuration section handlers.

You can create your own .NET Framework class for this by creating a class
that supports the IconfigurationSectionHandler interface. For our example, we will be
using the System.Configuration.NameValueFileSectionHandler class, which is the same
class used by the <appSettings> tag.

All configuration section handlers are specified within the <configSections>
tag.They are then defined by using the <section> tag.This tag accepts the name
and type attributes.The name attribute specifies the tag that you will later be using
to reference this class, and the type attribute contains the actual class/assembly
combination.

www.syngress.com

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 212

Configuring ASP.NET • Chapter 4 213

NOTE

You cannot define any new configuration section handlers beginning
with the keyword “config.”

In addition, you can group configuration section handlers into sections by
using the <sectionGroup> tag.This tag accepts the name attribute, which specifies
the tag you will later use to reference this section. So, we can put this all together
as shown in the following sample code:

<configuration>

<configSections>

<sectionGroup name="myAppSettings.group">

<section

name="myAppSettings"

type="System.Configuration.NameValueFileSectionHandler,

System"

/>

</sectionGroup>

</configSections>

<myAppSettings.group>

<myAppSettings>

<add

key="tableBackgroundColor"

value="lightyellow"

/>

<add

key="tableForegroundColor"

value="brown"

/>

</myAppSettings>

</myAppSettings.group>

</configuration>

www.syngress.com

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 213

214 Chapter 4 • Configuring ASP.NET

We have one more tag to go over before we go through the creation of a
configuration file.This tag is the <location> tag and is used to designate certain
configuration options to apply only to specific files or directories.This tag can
also be used to lock down configuration options so that they cannot be changed
at a lower level.The <location> tag accepts the path and allowOverride attributes.
The path attribute enables you to specify a location to apply a set of configura-
tion options to. If you are using the <location> tag within a machine.config file,
the path attribute can specify either virtual directories or applications. If you are
using it within a web.config file, the path attribute enables you to specify a direc-
tory, subdirectory, application, or file.The allowOverride attribute accepts a value of
either true or false and enables you to lock down the configuration options.This
tag is illustrated in the following code sample:

<configuration>

<location path="myapp.aspx">

<appSettings>

<add

key="mykey"

value="myvalue"

/>

</appSettings>

</location>

<location path="secureapp.aspx" allowOverride="false">

<system.web>

<identity

impersonate="false"

userName="dbaccess"

password="seCur1e"

/>

</system.web>

<appSettings>

<add

key="secured"

value="true"

/>

</appSettings>

www.syngress.com

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 214

Configuring ASP.NET • Chapter 4 215

</location>

</configuration>

Creating a Configuration File
At this point, we’ve covered the default tags provided with ASP.NET, learned
how to create our own configuration section handlers, and have gone over how
to assign configuration options to specific locations. Now, let’s create a configura-
tion file for an application.We’ll call our application “TestConfig” and store it
within its own virtual directory to avoid inheriting any configuration other than
the machine.config.

We’ll start off our web.config file by opening the <configuration> tag and
defining a new configuration section handler.We’ll place this handler within a
new section group, just in case we need to add more handlers to the application
at some point in the future.

<configuration>

<configSections>

<sectionGroup name="testConfig.group">

<section

name="mainAppSettings"

type="System.Configuration.NameValueFileSectionHandler,

System"

/>

</sectionGroup>

</configSections>

Next, we’ll go ahead and define some custom settings for this section group:

<testConfig.group>

<mainAppSettings>

<add

key="tableBackgroundColor"

value="lightyellow"

/>

<add

key="tableForegroundColor"

value="brown"

www.syngress.com

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 215

216 Chapter 4 • Configuring ASP.NET

/>

</mainAppSettings>

</testConfig.group>

Now let’s assume that we have another page within our application located in
a subdirectory that should use different settings for its tables.We also want to lock
this setting down so that it can’t be changed by a web.config file that another
developer may place in the subdirectory.We’ll accomplish this by using the
<location> tag:

<location path="execreports" allowOverride="false">

<configTest.group>

<mainAppSettings>

<add

key="tableBackgroundColor"

value="lightyellow"

/>

<add

key="tableForegroundColor"

value="red"

/>

</mainAppSettings>

</configTest.group>

We want to make sure that this page uses resource buffering as well as the
session and view states.We also want to enable page events automatically.These
should be all the special configuration options that we need to specify for this
application, so we’ll also go ahead and close our <location> tag as well.

<system.web>

<pages

buffer="true"

enableSessionState="true"

enableViewState="true"

autoEventWireup="true"

/>

</system.web>

</location>

www.syngress.com

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 216

Configuring ASP.NET • Chapter 4 217

Let’s also set our application to require Windows authentication, and allow
access only to a couple of individuals for testing purposes. Just to be sure, we’ll
also explicitly deny access to everyone else.

<system.web>

<authentication mode="Windows" />

<authorization>

<allow

users="faircjer,devtest,devtest2"

/>

<deny

users="*"

/>

</authorization>

As this is our test application, we’re also going to enable tracing so we can see
what’s happening as we go along:

<trace

enabled="true"

localOnly="true"

pageOutput="true"

requestLimit="15"

traceMode="SortByTime"

/>

That should do it for configuration on this application, so let’s close off
our tags:

</system.web>

</configuration>

So, what’s our end result? The web.config file we created is shown in Figure
4.2 and can be found on the included CD as web.config.

Figure 4.2 Sample File (web.config)

<configuration>

<configSections>

<sectionGroup name="testConfig.group">

www.syngress.com

Continued

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 217

218 Chapter 4 • Configuring ASP.NET

<section

name="mainAppSettings"

type="System.Configuration.NameValueFileSectionHandler,

System"

/>

</sectionGroup>

<sectionGroup name="sectiontest.group">

<section

name="mainAppSettings"

type="System.Configuration.NameValueFileSectionHandler,

System"

/>

</sectionGroup>

</configSections>

<testConfig.group>

<mainAppSettings>

<add

key="tableBackgroundColor"

value="lightyellow"

/>

<add

key="tableForegroundColor"

value="brown"

/>

</mainAppSettings>

</testConfig.group>

<location path="execreports" allowOverride="false">

<testConfig.group>

<mainAppSettings>

<add

key="tableBackgroundColor"

value="lightyellow"

/>

www.syngress.com
Continued

Figure 4.2 Continued

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 218

Configuring ASP.NET • Chapter 4 219

<add

key="tableForegroundColor"

value="red"

/>

</mainAppSettings>

</testConfig.group>

<system.web>

<pages

buffer="true"

enableSessionState="true"

enableViewState="true"

autoEventWireup="true"

/>

</system.web>

</location>

<system.web>

<authentication mode="Windows" />

<authorization>

<allow

users="faircjer,devtest,devtest2"

/>

</authorization>

<trace

enabled="true"

localOnly="true"

pageOutput="true"

requestLimit="15"

traceMode="SortByTime"

/>

</system.web>

</configuration>

www.syngress.com

Figure 4.2 Continued

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 219

220 Chapter 4 • Configuring ASP.NET

Retrieving Settings
Many of the settings used within the web.config and machine.config files simply
modify the way that ASP.NET works. Others enable us to dynamically customize
our applications based on many factors. In order to customize our applications,
we have to be able to retrieve settings from the configuration.

When we retrieve data, we are not retrieving it from any specific configura-
tion file, but from the cached configuration.This cached configuration includes
all inherited configuration and any location specific configuration information.
For the examples used in this section, we will be using the “TestConfig” applica-
tion that we designed the preceding web.config file for.

ASP.NET exposes intrinsic static methods for some configuration options.An
example of this is the Session method.When you have set session state configura-
tion by using the <sessionState> tag, you can read this in by using the Session
method.This process is shown in the following code sample:

Dim nocookies As Boolean = Session.Cookieless

The second method of retrieving settings is only applicable to settings config-
ured using the <appSettings> tag.To retrieve these settings, you simply use the
ConfigurationSettings.AppSettings method and supply the key.This method will
return the value stored under that keyname.This method is shown in the following
code sample:

Dim myvalue As String = ConfigurationSettings.AppSettings("mykey")

You can use the final retrieval method to obtain any value within the config-
uration.This is the ConfigurationSettings.GetConfig method. In order to use this,
you must know the exact path to the configuration setting that you wish to
retrieve.The syntax for this method is shown in Figure 4.3.This code is available
on the included CD as testconfig.aspx.

Figure 4.3 Application (TestConfig.aspx)

<html>

<script language="VB" runat="server">

Public tblBack As String = ""

Public tblFore As String = ""

www.syngress.com
Continued

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 220

Configuring ASP.NET • Chapter 4 221

Sub Page_Load(source As Object, E As EventArgs)

dim config As NameValueCollection=

ConfigurationSettings.GetConfig

("testConfig.group/mainAppSettings")

dim strTblBack as string = config("tableBackgroundColor")

dim strTblFore as string = config("tableForegroundColor")

if strTblBack <> nothing then

tblBack=strTblBack

else

tblBack="lightgreen"

end if

if strTblFore <> nothing then

tblFore=strTblFore

else

tblFore="purple"

end if

End Sub

</script>

<head>

<title>Test Configuration</title>

</head>

<body>

<table border=1 bgcolor=<%=tblBack%> bordercolor=<%=tblFore%>>

<tr>

<td>Some</td>

<td>Important</td>

<td>Data</td>

www.syngress.com

Continued

Figure 4.3 Continued

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 221

222 Chapter 4 • Configuring ASP.NET

</tr>

<tr>

<td>Some</td>

<td>More</td>

<td>Data</td>

</tr>

</table>

</body>

</html>

This code uses configuration sections that we defined within our web.config
file in the previous section.The full possibilities of this configuration can be real-
ized by first running the code in its own virtual directory, and then running the
same code within an “execreports” subdirectory.This will show you how the
configuration options change based on the <location> tag.

www.syngress.com

Figure 4.3 Continued

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 222

Configuring ASP.NET • Chapter 4 223

Summary
The configuration capabilities provided by ASP.NET enable you to configure
almost every aspect of ASP.NET and the way that your applications are processed.
It provides this ability through the use of the machine.config file and web.config
files.These files are processed in a hierarchical manner with each higher-level file
overriding previous settings.All settings are cached, and when a change is
detected in the configuration files, the configuration is then recached.

When using the configuration files to configure ASP.NET, various tags, sub-
tags, attributes, and options are used. Each of these enables you to control built-in
configuration options or create new configuration options as you see fit. By using
the available options, you can control everything from application variables down
to compilation options.

The configuration files used by ASP.NET are formatted in XML and are
case-sensitive. Using the correct formatting for these files is critical if you want
your configuration to work correctly.All values within your configuration are
accessible by using one of the three methods listed in the “Retrieving Settings”
section.

Solutions Fast Track

Overview of an ASP.NET Configuration

ASP.NET configuration settings are stored in the machine.config and
the web.config files.

ASP.NET processes the configuration settings in a hierarchical manner.
It does this by processing the machine.config first, and then processing
all web.config files.

You can override the hierarchal method of configuration file processing
by the use of the allowOverride attribute and the <location> tag.

Uses for a Configuration File

By using the machine.config file as well as web.config files, you can
configure ASP.NET at a very granular level.

You can use configuration files to control most aspects of ASP.NET
including application, security, and system-related options.

www.syngress.com

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 223

224 Chapter 4 • Configuring ASP.NET

You can configure additional configuration tags by creating new
configuration section handlers.

Anatomy of a Configuration File

The ASP.NET configuration files are configured using XML formatting.

Tags and subtags contain attributes that control the various configuration
options available in ASP.NET.

You can retrieve all configuration settings within ASP.NET at any time
from within your application.

Q: Should I modify the machine.config file or create a web.config file for my
application?

A: That depends on the situation. If you have multiple applications running on a
server, and several configuration options need to be shared between them,
then place the shared configuration settings in the machine.config and any
application specific settings in individual web.config files. If you only have
one application on your server, just create a web.config file with all your con-
figuration settings.

Q: Why should I use configuration files at all? Can’t I just define everything in
my application?

A: Some options available within the configuration files are not available within
an application. One good example of this is the use of compilation options. If
you aren’t working at this level of configuration, then there are still several
advantages to using the configuration files:They provide a single reference
point for configuration, configuration options are cached and load quickly,

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 224

Configuring ASP.NET • Chapter 4 225

and they enable you to distribute changes to static variables within your
application easily.

Q: I don’t understand what some of the configuration options do. How can I
find out more about them?

A: There are two resources that I highly recommend.The first is Microsoft’s
MSDN site, which contains all of the ASP.NET documentation.The second
is hands-on practice. If want to learn everything about a configuration
option, try it yourself in as many ways as possible.

Q: Are the configuration files case-sensitive?

A:Yes! Make sure that you follow the case guidelines for working with your
configuration files. If your configuration isn’t working correctly, a good thing
to look at is the case formatting of your configuration files.

www.syngress.com

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 225

166_ASPNET_04.qxd 11/26/01 3:51 PM Page 226

An ASP.NET
Application

Solutions in this chapter:

■ Understanding ASP.NET Applications

■ Managing State

■ Analyzing Global.asax

■ Understanding Application State

■ Using Application Events

■ Understanding Session State

■ Configuring Sessions

■ Using Session Events

■ Comparing Application and Session States

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 5

227

166_ASPNET_05.qxd 11/21/01 2:42 PM Page 227

228 Chapter 5 • An ASP.NET Application

Introduction
ASP.NET applications have not changed a great deal through ASP’s development.
Granted, the actual inner workings have definitely changed dramatically, but the
application concept itself has not; an ASP.NET application is still defined as the
developer-created files and directories that can be requested, invoked, and pro-
cessed through ASP.NET within its local directory structures.

Each application can have within its own local subdirectory a file named
Global.asax that defines application parameters to Internet Information Server
(IIS), and to the ASP.NET Web application scripts local to it. Global.asax tells IIS
what to do when the application is started and how to handle processing,
depending on the state of the application.

An application can have both an application state and a session state.They are
both very useful and versatile facilities when used knowledgably, reflecting the
functionality that .NET has provided them. Each of these states can be further
customized to contain the information needed to refine the application to your
purposes.

In this chapter we will look at how you can implement application and ses-
sion functionality, and will work through examples of using state in ASP.NET
projects.

Understanding ASP.NET Applications
As previously outlined,ASP.NET applications collect Web site resources into
manageable organizational units within the Web server’s file system hierarchy. But
what exactly does this mean to the programmer?

A user expects a Web site to simply serve up the pages the visitor has asked
for. He or she may be pleasantly surprised that the Web site knows who they are
and personalizes their experience, but they will not necessarily expect it. If they
choose to use a Web application, on the other hand, their expectations will be
very different.

Examples of a Web application could be a multi-page bank account sign-up
form.The user would expect to be able to navigate to the next and previous
pages without reentering information.Another example may be an intranet.
Once logged in, the user would expect the intranet to remember who they are
and what they have access to without repeatedly entering the same information.

As well as user-centric information, it is also useful to remember that Web
applications are multi-user. It can be handy for the application to be aware of its

www.syngress.com

166_ASPNET_05.qxd 11/21/01 2:42 PM Page 228

www.syngress.com

own application settings and values and all of its logged-in users, especially in
some sort of multi-user environment, such as a live chat application or multi-user
adventure game.

Managing State
State management has always been a subject of much debate since Web develop-
ment began. For smaller projects, state is a little easier to manage and you can
pretty much do whatever works best for you, but Web architects still disagree on
the subject when discussing multi-million-dollar mega-projects.What is state, and
why is the subject so difficult?

One of the first things that strike an experienced programmer coming to the
Web for the first time is the odd fact that from one transaction to the next, the
Web server, and therefore application, forgets who you are. On a desktop applica-
tion, clicking buttons affects only the action you wish to achieve; it is very easy
for the programmer to track what you have done before and what you are likely
to do next.With a Web application, each request appears to the server as if it
came from a new user, as the connection between the client and server is closed
once the request has been processed.A desktop application maintains state by
default, whereas the Web is stateless.

An ASP.NET Application • Chapter 5 229

Creating Your Application
Unfortunately, applications are one of the few areas that must still be
managed initially by your Web server administrator through the
Microsoft Management Console (MMC). By default, the Web root folder
is considered the only application (the default application), and all sub-
directories of that can access the application variables of their parent. If
you require a new application, you must go into the MMC and either
create a new virtual directory, or get the properties of the folder in
which you wish to make an application by right-clicking and selecting
Properties and then clicking the Create button. Any scripts in this new
application will now access application variables for this application only
and will not have access to those of its parent.

Developing & Deploying…

166_ASPNET_05.qxd 11/21/01 2:42 PM Page 229

230 Chapter 5 • An ASP.NET Application

Actually, statelessness is one of the many advantages of the Web. If you think
for a minute about what would happen if the Web was not stateless, you would
see what I mean. Imagine all those millions of Hotmail users logging on to their
mailbox first thing in the morning and not logging off until last thing in their
work or school day.That would be far too much for even the largest Web farm to
cope with.The Web was designed around very short conversations between Web
browsers, such as,“Hello, can I have this page please” answered by,“Sure, here you
go, goodbye”; there was no need for the connection to be maintained, and this
allows for one server to provide pages for thousands of requests per second.

It is only when we try to make our Web applications work in a familiar
desktop-style way that we run into problems. For example if you go to a cash
machine and enter your personal identification number (PIN), you expect to not
have to reenter that number any time within your session unless you have
entered it incorrectly.With a Web site, without some means of managing session
state, it is quite possible you will have to keep reentering your login details on
every page you go to.

Many ways of getting around this problem have been used through the Web’s
short history, and all of them have advantages and disadvantages.All state manage-
ment solutions center around storing and persisting information about the site
user in some way, and many sites use a mix-and-match approach to achieve these
objectives.

The most low-tech solution is to resubmit the information you need to keep
alive on the site visitor’s behalf, kind of like entering the person’s username and
password for them but still entering it on every page.This is usually done by
putting the information into hidden fields on the Web form so that when the user
clicks the Submit button, the receiving page gets the old values along with the
new, freshly entered information. Of course, this means that every page download
and submit is carrying extra data, slowing the page load each time; plus it is more
difficult for the programmer and page designer, as they need to keep track of all
the data that has been entered before and replicate it in the current page.

The next solution is to set a cookie on the user’s browser. Netscape invented
cookies as a browser-based state solution; they are a way that information can be
set in small text files on the visitor’s machine.The Web site and Web browser send
information backward and forward in the HTTP headers. Cookies are used a lot
on the Web, but unfortunately they are not always reliable, as in some circum-
stances the browser will turn off cookies.Also, you need to be aware of the
inherent privacy and security concerns, as the information is visible to anyone
else who uses the machine.

www.syngress.com

166_ASPNET_05.qxd 11/21/01 2:42 PM Page 230

An ASP.NET Application • Chapter 5 231

If you can uniquely identify a user, then you can store that user’s information
on the server or in a database; this is the technique that ASP.NET uses.A new
user is provided a unique ID, either in a cookie or optionally as part of the URL,
and from then on, until the end of the user’s visit, the programmer can set and
access information about them.

Analyzing Global.asax
The Global.asax is a special file that tells the server certain information about an
application, such as what to do when the application is first started, or when the
application is ended.The file affects the whole of the application and any subdi-
rectories and files under it that do not come under another application of their
own.While the Global.asax is very useful, the presence of a global file does not
make a folder an application, and any configuration of the application is done
separately on the server or in the separate web.config file.

If you have used ASP applications in the past, you will recognize this concept
as the old Global.asa. Global.asax does not replace any ASP application you have,

www.syngress.com

Comparing ASP and ASP.NET Applications
Most of this chapter may seem familiar to experienced ASP gurus, but
watch out, because there are one or two subtle differences. The most
obvious change is the filename Global.asax to replace the old
Global.asa. This is partly because you may wish to keep your old ASP
scripts running for a time. This allows the two to continue in parallel.
Next is the new bin folder. This is where your .NET components are
stored, rather than registering into the Windows registry; this can some-
times cause confusion, as these components are now only available to
the application and to the scripts under it, whereas COM objects were
accessible from anywhere. The last big change is that an application can
have its own unique configuration by changing an XML file, called
web.config. These application settings are done independently of the
MMC and only require FTP write access on the part of the developer,
easing the burden on the stressed server administrator.

Migrating…

166_ASPNET_05.qxd 11/21/01 2:42 PM Page 231

232 Chapter 5 • An ASP.NET Application

and they will run quite happily in parallel. Unfortunately, they will run only in
parallel; they cannot directly share application or session information.

Global.asax files contain directives and code, much like .aspx files. Much of
the information in a Global.asax is optional, and a default file is created along
with the application, if built as a Visual Studio project.

With directives, you can set certain values such as a description of the appli-
cation, much like the description HTML metatag. Or, more usefully, the Import
directive instructs the server to import specific .NET namespaces.

You can enter code into the Global.asx as events or object declarations, or
include them with server-side Include statements.When the application is
launched, like other pages in ASP.NET, the Global.asax is compiled into a .NET
component, so the same rules for other components follow, enabling the
Global.asax to inherit from other components, declare methods and events, and
hold property values.

Understanding Application State
ASP.NET application state management is far improved over the previous ASP
incarnations. In addition to the previous application variables, there are also two
new facilities, the Cache and Static variables.

Application variables are values that are available to any user or page within
an application. For the first time, they can be any value you wish to store. In pre-
vious versions of ASP, due to threading limitations, Visual Basic objects should not
have been stored in application variables.VB.NET components do not have this
limitation.

In this section we will take a look at the way we can use application state in
our ASP.NET projects, with examples using application variables and the new
cache functionality.

Using Application State
You use application variables like hashes or dictionaries, as it is a special type of
collection, using the following method, where “strKeyword” is the name of the
key as a string, and value is whatever you want to store in it:

' set an application variable

Application("strKeyword")=value

' output the contents of the variable

Response.write(application("strKeyword"))

www.syngress.com

166_ASPNET_05.qxd 11/21/01 2:42 PM Page 232

An ASP.NET Application • Chapter 5 233

Because application variables are effectively global variables for the whole
application, you should carefully consider what the full implications on the
system will be:

■ The memory taken up by an application state variable is not readily
freed up like the variables that you declare in a page or object, so you
must free it up in code by deleting it. Carefully determine if what you
store will be necessary and if storing it in application memory is pru-
dent.As well as the memory implications, also remember that application
state is in the server process memory only. If you want the information
to persist, you should store it in a database or file system.

■ Application state is not shared outside of the process in which the appli-
cation is running. Each application process has its own set of values, on
the same server in a multi-process environment, or in a Web farm of
multiple machines, so use an external data store to persist state if your
application relies on the validity of the data.

■ The more locking and unlocking of application state that takes place, the
more you risk tying up the server with delays in processing.

If you keep in mind these issues, then you can effectively use application state
to give you a dramatic improvement in performance, as requests do not require
filesystem, database, or network communication.

Application Cache Object
The cache can be thought of much like the application variable facility, in that it
is shared storage that is accessible by the whole application, but the cache goes a
fair bit further.

Cache values have some very powerful aspects that extend the application
state concept much further than previous implementations, such as the ability to
detect when a dependant object has changed and to automatically refresh.

Microsoft realized one of the popular uses for application state was to store
frequently used information that would be useful for future users, such as option
values from database tables to populate drop-down list boxes. Often these values
would only be set when the application was started, so if the source information
changed, then the application must be reset to refresh from the data source.

With the cache, you can expire information based on dependencies such as a
timestamp (for example, set the data to refresh every day), and if the server finds
that information is rarely used, then the data is expired automatically to free up
resources.

www.syngress.com

166_ASPNET_05.qxd 11/21/01 2:42 PM Page 233

234 Chapter 5 • An ASP.NET Application

As you can see from the following code excerpt, at their most basic, cache
values are set in the same way as application variables. One major exception is
that cache values are self-locking, so we do not have to worry about concurrent
accesses as much as with the application values.

' set a cache value

cache("strKeyword")=value

' output cache value

response.write(cache("strKeyword"))

Static Variables
Static variables are values that are also available across the whole application, but
have some performance advantages and fewer overheads.

The main difference to static variables and the previous examples is the fact
that static variables are a side benefit of ASP.NET being object-oriented and the
global being a .NET class, where as the other two methods are simply special
collections. Static variables are declared in the Global.asax by first giving the
global itself a class name and then declaring the variables.

We will come back to static variables later. For the moment, remember that
using application variables and cache to store information does not require you
to write your own Global.asax, but if you want to use static variables, then you
must write your own Global.asax.

State Example
The following simple example, shown in Figures 5.1 and 5.2, demonstrates using
application variables to count page views in an application. One of the major
traps a programmer can fall into with application variables is errors and conflicts,
where two processes try to write to the same value simultaneously; our example
also shows how to use locking to overcome this.

Figure 5.1 Application State

<html>

<head>

<title>Chapter 5</title>

</head>

www.syngress.com
Continued

166_ASPNET_05.qxd 11/21/01 2:42 PM Page 234

An ASP.NET Application • Chapter 5 235

<body bgcolor="white">

<%

'# lock the application to prevent clashes

Application.Lock()

'# increment application counter

Application(page.ToString) += 1

'# unlock application

Application.UnLock()

%>

<p>

This page has been visited <%=application(page.toString)%> times

since the application started

</body>

</html>

www.syngress.com

Figure 5.1 Continued

Testing and Error-Checking Your Application
Be very careful to not store sensitive information in session and applica-
tion variables. A new feature of the ASP.NET environment is the ability
to dump tracing information to the Web browser. If this is inadvertently
triggered through an error or by switching to debug mode, the server
will output all the user’s current variable information to screen, possibly

Debugging…

Continued

166_ASPNET_05.qxd 11/21/01 2:42 PM Page 235

236 Chapter 5 • An ASP.NET Application

Using Application Events
As stated previously,ASP.NET is object-oriented and event-driven; therefore, you
should not be surprised to see that applications are no exception. In total, there
are 18 standard events that the programmer can use, plus, if these do not cover
what you want, then you can define your own.You do not have to set any event
code if you do not want to, though, as you will see, they do bring some inter-
esting and useful functionality to your application.

Supported Application Events
Table 5.1 displays a selection of events you will probably come across.We doubt
you will need to use many of these very often, but knowing what they are could
come in handy!

www.syngress.com

including your database connection information, usernames, and pass-
words. Rather than store this information in application or session vari-
ables, it would be better to store them elsewhere; you could possibly use
the new options found in the Web configuration files.

Figure 5.2 Application State at Work

166_ASPNET_05.qxd 11/21/01 2:42 PM Page 236

An ASP.NET Application • Chapter 5 237

Table 5.1 Useful Events Supported by the ASP.NET Application

Event Description

Application_OnStart This event is processed when the application
or server is started or rebooted. This event is
useful for initializing values that will be
useful for the whole application, setting up
database utility objects and functions, and
preloading the cache.

Application_OnEnd OnEnd is complementary to OnStart, and is
mainly used for cleaning up and freeing up
resources by closing down database connec-
tions, destroying objects, and clearing the
cache.

Application_OnError If an error is raised but not handled, this
event can be called upon. It could be used to
alert the administrator or write to a log, for
example.

Application_OnBeginRequest OnBeginRequest is executed on and before
every page request. This is useful for any pro-
cessing that needs to take place for every
page before any output is generated.

More Events
Table 5.2 shows some examples of the other events you may want to use.

Table 5.2 Less Commonly Used Application Events

Event Description

Application_OnAcquireRequestState We can use this event to fill ses-
sion values using our own state
management routines, if we
wanted to not use the default
ASP.NET state management.

Application_OnAuthenticateRequest This event enables us to add
code to authenticate a request
when using IIS/ASP.NET authenti-
cation, such as querying a
database or XML file.

www.syngress.com

Continued

166_ASPNET_05.qxd 11/21/01 2:42 PM Page 237

238 Chapter 5 • An ASP.NET Application

Application_OnAuthorizeRequest AuthorizeRequest is raised when
the above request has been
authorized. We could use this
for logging purposes or perhaps
to allow additional permissions
to the user based on a security
database.

Application_OnEndRequest This is the last event before the
browser receives the output from
our ASP.NET page. We can use
this to add tracking code to the
page or perhaps a standard
copyright message.

Application_OnPostRequestHandlerExecute PostRequestHandlerExecute is
raised when the response has all
the data to send to the client.

Application_OnPreRequestHandlerExecute This enables us to perform pro-
cedures before the HTTP handler
gets the request.

Application_OnReleaseRequestState After this event is processed, we
can no longer gain access to the
session state data. This is our last
opportunity to persist any
required values to permanent
storage such as a database or
filesystem.

Application_OnResolveRequestCache This event fires when ASP.NET
determines if a page might be
provided from the cache.

Application_OnUpdateRequestCache UpdateRequestCache event is
raised when the output cache is
to be updated.

Working with Application Events
To use application events in your project, you must do the following (Figures 5.5
and 5.9 later in the chapter show examples of Global.asax files that demonstrate
how to implement these events in your projects):

www.syngress.com

Table 5.2 Continued

Event Description

166_ASPNET_05.qxd 11/21/01 2:42 PM Page 238

An ASP.NET Application • Chapter 5 239

■ Create a Web application folder using the MMC.

■ Create a file called Global.asax in the directory you marked as an
application.

■ Within the Global.asax, enter script tags with the language you are using
(e.g.,VB).

■ Insert subroutines using the name of the event you wish to use.Any
code you add to this subroutine will run when the event fires.

For example, if you only wanted to use the Application_OnStart event you
could create a Global.asax like the following:

<script language="VB" runat="server">

Sub Application_OnStart()

End Sub

</script>

Threading Use
As application level values are accessible and writeable by any or all scripts and
users within an application, you must be careful when writing values to an appli-
cation variable, as multiple threads may request the same object. If two processes
try to write to the same value simultaneously, you could get unpredictable results
and errors.

The application object has methods to get around this. Before writing to the
value, you can call the lock method that will stop or delay any other process from
changing the value. Once the value is locked, you can go ahead and write to the
variable without worrying that another process will attempt to write to it.After
you have done writing to the variable you must unlock it so others can write
their data.

Application locking must be used carefully as it can introduce delays into
your application, but it is far safer than hoping for the best.

Another aspect where threads have an impact is the fact you can now safely
use Visual Basic objects in your application variables. In the past with ASP, you
were not able to do this properly because the Visual Basics threading model
would cause unwanted affects. Now with ASP.NET and Visual Basic .NET com-
ponents, you can happily store your objects in the application state.

www.syngress.com

166_ASPNET_05.qxd 11/21/01 2:42 PM Page 239

240 Chapter 5 • An ASP.NET Application

Understanding Session State
When a visitor first logs on to your Web application, they are said to have started
a new session with your application, and it generates a unique Session ID.This
session ID is usually stored in a cookie, but the server can be instructed to use an
alternative method of passing the session ID around as part of the URL.ASP ses-
sions enable the developer to store information for that user’s session in Session
variables. Session variables are a lot like dictionary values in that they are a key-
word and value pair; in an astrology application, a keyword such as “starsign”
could have the value “Leo.”

You have the option of storing session values in the Web server’s memory,
specifying one server in a Web farm to maintain the values or specifying the loca-
tion of a database. Many developers will be glad for the many improvements this
brings; the new ASP.NET solutions are broadly how many programmers over-
came the limitations of ASP state management in the past.

Despite the solution provided in ASP.NET being greatly improved over the
situation we have had in the past, we are still not in a position where everybody
is happy. Using server memory has long been criticized, as this hogs a lot of
memory resource per user, so does not scale well.Writing to a database moves
the load out of memory, but adds a burden to your database management system
and relies on connections being made and broken over your network.Think very
carefully about what you want to achieve and what effect this will have on your
system now and in the future, and, above all, do whatever works for you. If you
have a few hundreds of thousands of visitors a month or less, you can probably
handle using a few session variables without much concern. Our session state
example is shown in Figures 5.3 and 5.4.

Figure 5.3 Session State

<html>

<head>

<title>Chapter 5</title>

</head>

<body bgcolor="white">

<%

www.syngress.com

Continued

166_ASPNET_05.qxd 11/21/01 2:42 PM Page 240

An ASP.NET Application • Chapter 5 241

'# lock the application to prevent clashes

Application.Lock()

'# increment application counter

Application(page.ToString) += 1

'# unlock application

Application.UnLock()

'# increment session counter

Session(page.ToString) += 1

%>

<p>

This page has been visited

<%=application(page.toString)%>

times since the application started

You have visited this page

<%=session(page.toString)%>

times in this session

</body>

</html>

Configuring Sessions
Each user session in ASP.NET is allocated a unique random 120-bit session ID
that is communicated across server requests in a cookie or a modified URL,
depending on how you choose to work it. If you want the application to not rely

www.syngress.com

Figure 5.3 Continued

166_ASPNET_05.qxd 11/21/01 2:42 PM Page 241

242 Chapter 5 • An ASP.NET Application

on cookies, then you can set the application to put the ID in the URL using the
following web.config setting:

<sessionstate cookieless="true" />

By default, the session will expire due to the user’s inactivity after a period of
20 minutes.This is usually a reasonable figure, but there are cases where you
would want to change this behavior to another duration, either to a lower
amount of time because you require higher security, in case the user walks away
from the browser, or change to a longer period.You can set the figure with the
following web.config setting:

<sessionstate timeout="5" />

It is possible to switch off session state management.You may wonder why
you would want to do this after reading how useful and easy it can be to use ses-
sion state management. Session state demands additional processing by your server
that may not be necessary, and the default setting sets a cookie on the clients
browser that may not be ever used.

You can turn off session state in a single page with the following directive:

<%@ Page EnableSessionState="false" %>

www.syngress.com

Figure 5.4 Application and Session State

166_ASPNET_05.qxd 11/21/01 2:42 PM Page 242

An ASP.NET Application • Chapter 5 243

To turn off session state for the whole application, put the following in the
web.config file:

<sessionstate mode="off">

Using Session Events
Just as applications have events, the session has related events also: session_OnStart
and session_OnEnd. Figures 5.5, 5.6, and 5.7 demonstrate how to implement ses-
sion and application events within your Global.asax files.

Figure 5.5 Session Events in Global.asax

<script runat=server>

Sub Session_onStart(ByVal sender As Object, ByVal e As EventArgs)

'# lock the application to prevent clashes

Application.Lock()

'# increment application counter

Application("cntApplication") += 1

'# unlock application

Application.UnLock()

End Sub

</script>

Figure 5.6 Using Session Events

<html>

<head>

<title>Chapter 5</title>

</head>

www.syngress.com
Continued

166_ASPNET_05.qxd 11/21/01 2:42 PM Page 243

244 Chapter 5 • An ASP.NET Application

<body bgcolor="white">

<%

'# lock the application to prevent clashes

Application.Lock()

'# increment application counter

Application(page.ToString) += 1

'# unlock application

Application.UnLock()

'# increment session counter

Session(page.ToString) += 1

%>

<p>

The application has been visited

<%=application("cntApplication")%>

times since the application started

This page has been visited

<%=application(page.toString)%>

times since the application started

You have visited this page

<%=session(page.toString)%>

times in this session

</body>

</html>

www.syngress.com

Figure 5.6 Continued

166_ASPNET_05.qxd 11/21/01 2:42 PM Page 244

An ASP.NET Application • Chapter 5 245

Working with Session Events
As an example of how you might implement Session events in your projects, if
you wanted to use the Session_OnStart event, then you could create a Global.asax
like the following:

<script language="VB" runat="server">

Sub Session_OnStart()

session("sessionStart")=DateTime.Now

End Sub

Sub Session_OnEnd()

End Sub

</script>

In this example, we have added code for the OnStart, but we do not need to
process anything at session end, so we have left that subroutine blank.

www.syngress.com

Figure 5.7 Application Variable Updated Using Session Events

166_ASPNET_05.qxd 11/21/01 2:42 PM Page 245

246 Chapter 5 • An ASP.NET Application

Comparing Application
and Session States
Application State deals with application-wide issues.Application state impacts
every page for every user currently live in the Web application. Session State is
only relevant to one user, for the duration of the particular session they are cur-
rently taking part in. One user’s session does not have any impact on any other,
whereas one user can affect values that another user can see and interact with.

As you can see from the code examples and in Figure 5.8, both states com-
plement each other, and you will probably have used many Web applications that
demonstrate examples of both.

So far in this chapter, all the example code has been in Visual Basic .NET, so
in Figures 5.9 and 5.10 we have reworked the existing application example in
C# so that you can see the differences in syntax.

Figure 5.9 C# Global.asax

<script language="c#" runat=server>

public void Session_onStart()

{

// lock the application to prevent clashes

Application.Lock();

www.syngress.com

Figure 5.8 Relationship between Sessions and Applications

Web Site

Application

Session Session

Session

Web Server

Continued

166_ASPNET_05.qxd 11/21/01 2:42 PM Page 246

An ASP.NET Application • Chapter 5 247

// increment application counter

if(Application["cntApplication"] == null)

{

Application["cntApplication"] = 0;

}

Application["cntApplication"]=((int)Application["cntApplication"])+1;

// unlock application

Application.UnLock();

}

</script>

Much of the change in code is due to the fact that C# is much more con-
scious about variable types and conversion of one type to another than in Visual
Basic .NET.

In the VB example, we did not have to worry what the application variable
contained; we simply incremented whatever was there.Visual Basic would worry
about if it was empty, and would simply convert the empty object to be a number.

C# would have an error in this scenario, both because we were trying to
increment an object instead of an integer, and also because the object at that
point would contain Null.

To get around this, we have had to add a check to see what the variable con-
tains.We know if the variable contains Null, then this is the first run through the
procedure since the application was started. If this is the case, then we initialize
the variable to be a number—zero, to be exact.

We now know that by the time we get to incrementing the counter, there will
always be a valid number there.This is where we encounter our next difficulty.

Where in the Visual Basic .NET example we simply incremented whatever
was there, using the “+=” facility, in C# it’s not that simple.The application vari-
able would not be allowed to simply increment by one; we have to make the
variable equal to one plus whatever is currently there, converted to an integer.We do
this by preceding the application variable with “(int),” which means to the com-
piler:“Treat the following as an integer.”

www.syngress.com

Figure 5.9 Continued

166_ASPNET_05.qxd 11/21/01 2:42 PM Page 247

248 Chapter 5 • An ASP.NET Application

Other notable differences are that C# syntax, for arrays and collections, uses
square brackets rather than the curved brackets used in Visual Basic .NET, and has
curly brackets around functions.

Figure 5.10 Example in C#

<%@page language="c#" %>

<html>

<head>

<title>Chapter 5</title>

</head>

<body bgcolor="white">

<%

// lock the application to prevent clashes

Application.Lock();

// increment application counter

if(Application[Page.ToString()] == null)

{

Application[Page.ToString()] = 0;

}

Application[Page.ToString()]=((int)Application[Page.ToString()])+1;

// unlock application

Application.UnLock();

// increment session counter

if(Session[Page.ToString()]==null) Session[Page.ToString()] = 0;

Session[Page.ToString()]=((int)Session[Page.ToString()]) + 1;

www.syngress.com
Continued

166_ASPNET_05.qxd 11/21/01 2:42 PM Page 248

An ASP.NET Application • Chapter 5 249

%>

<p>

The application has been visited

<%=Application["cntApplication"]%>

times since the application started

This page has been visited

<%=Application[Page.ToString()]%>

times since the application started

You have visited this page

<%=Session[Page.ToString()]%>

times in this session

</body>

</html>

Static Values
To return to the subject of the alternatives to application, which is caching and
static variables, let us look first at an example of how static variables can make
our code cleaner and make it perform better (Figure 5.11).

Figure 5.11 A C# Global.asax Class

<%@ Application Classname="Chapter5" %>

<script language="c#" runat=server>

public static int cntApplication = 0;

public void Session_onStart()

{

www.syngress.com

Figure 5.10 Continued

Continued

166_ASPNET_05.qxd 11/21/01 2:42 PM Page 249

250 Chapter 5 • An ASP.NET Application

// increment application counter

cntApplication++;

}

</script>

Compare this code to the previous Global.asax. Isn’t it much cleaner? The
best thing is that it performs faster in many cases, too!

To use our static variable, “cntApplication,” we must first name our class.We
do this with the very first line.We have called this class “Chapter5” in honor of
this very chapter you are reading.

Once the class is named, we then declare our static variable. For the variable
to be used outside the class, we must make it public. Static means that it retains
its value from one access to another, and we have declared this variable as an
integer number.

All that remains is to increment the value whenever a new session starts, using
the C-like shorthand “++” increment operation.Whereas in the other examples,
when we first locked the application before doing our increment and then
unlocked the application, here you will see that we do not need to worry about
locking at all, as the application class does this for us. Figure 5.12 shows the
example C# static variable page.

Figure 5.12 C# Static Variable Page

<%@page language="c#" %>

<html>

<head>

<title>Chapter 5</title>

</head>

<body bgcolor="white">

<%

www.syngress.com

Figure 5.11 Continued

Continued

166_ASPNET_05.qxd 11/21/01 2:42 PM Page 250

An ASP.NET Application • Chapter 5 251

// lock the application to prevent clashes

Application.Lock();

// increment application counter

if(Application[Page.ToString()]==null) Application[Page.ToString()]=0;

Application[Page.ToString()]=((int) Application[Page.ToString()])+1;

// unlock application

Application.UnLock();

// increment session counter

if(Session[Page.ToString()] == null) Session[Page.ToString()] = 0;

Session[Page.ToString()] = ((int) Session[Page.ToString()]) + 1;

%>

<p>

The application has been visited

<%=Chapter5.cntApplication%>

times since the application started

This page has been visited

<%=Application[Page.ToString()]%>

times since the application started

You have visited this page

<%=Session[Page.ToString()]%>

times in this session

</body>

</html>

www.syngress.com

Figure 5.12 Continued

166_ASPNET_05.qxd 11/21/01 2:42 PM Page 251

252 Chapter 5 • An ASP.NET Application

For the other counters we still use application variables, as we do not know
what the names will be beforehand, or how many there will be, as we could use
this script for many pages and the code picks up the name of the page as the
application key.To display the value of our static variable counter, we use the
name of our class, “Chapter5” and the name of the variable, “cntApplication.” As
we are outputting the value using response.write (or the shorthand version at least),
the variable knows to convert the integer to a string before passing out the value.

Caching Data
Storing frequently used data in memory can give you immediate and large per-
formance gains, and can reduce load on your network and servers immensely. In
this example, we will demonstrate how the new ASP.NET caching facility can be
implemented in your scripts to improve performance by storing data in a cache
object on the first user page request, and then using this cached copy of the data
for future requests.The code for this example is shown in Figure 5.13, and the
outputs are shown in Figures 5.14, 5.15, and 5.16.

Figure 5.13 Caching Example

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.SqlClient" %>

<%@ page debug=true %>

<html>

<head>

<title>

Chapter 5: Caching

</title>

</head>

<body>

<form runat="server">

<p>

<!— a label to display status info —>

<asp:label id="oLabel" runat="server"/>

www.syngress.com
Continued

166_ASPNET_05.qxd 11/21/01 2:42 PM Page 252

An ASP.NET Application • Chapter 5 253

<p>

<!— a button to force a cache refresh —>

<asp:Button

text="Refresh Cache"

id="oRefresh"

OnClick="ReCache"

runat="server"

/>

<p>

<!— a link to reload the page —>

Reload Page

<p>

<!— our data grid to display data —>

<ASP:DataGrid

id="oDataGrid"

runat="server"

BorderColor="silver"

CellPadding=2

CellSpacing=2

Font-Name="Verdana"

Font-Size="10pt"

HeaderStyle-BackColor="gray"

/>

</form>

</body>

</html>

<script runat="server">

www.syngress.com

Figure 5.13 Continued

Continued

166_ASPNET_05.qxd 11/21/01 2:42 PM Page 253

254 Chapter 5 • An ASP.NET Application

Sub Page_Load(Src As Object, E As EventArgs)

'# show the data grid with data

call ShowGrid()

End Sub

Sub ReCache(Src As Object, E As EventArgs)

'# force the cache to refresh from db

call RefreshCache()

response.redirect("cache.aspx")

end sub

Sub ShowGrid()

'# check to see if we have cache data

If Cache("gridData") Is Nothing

'# cache is empty so read from db

oLabel.Text = "Reading data from Database"

call RefreshCache()

Else

'# ok, we have cached data

oLabel.Text = "Reading data from Cache"

End If

'# set the data grid contents to

'# whatever is in the cache

oDataGrid.DataSource=Cache("gridData")

www.syngress.com

Figure 5.13 Continued

Continued

166_ASPNET_05.qxd 11/21/01 2:42 PM Page 254

An ASP.NET Application • Chapter 5 255

oDataGrid.DataBind()

End Sub

sub RefreshCache()

'# load data from the db into

'# our cache

Dim cn As SqlConnection

Dim da As SqlDataAdapter

'# set up db connection

Dim dsn as String

dsn="server=(local)\NetSDK;"

dsn+="database=pubs;"

dsn+="Trusted_Connection=yes"

cn = New SqlConnection(dsn)

'# load sql query

Dim sql as String

sql="select getDate() as Refreshed,"

sql+=" au_fname + ' ' + au_lname as Name from Authors"

da = New SqlDataAdapter(sql, cn)

'# fill dataset

Dim ds As New DataSet

da.Fill(ds, "Authors")

'# cache the data

Cache("gridData") = New DataView(ds.Tables("Authors"))

end sub

</script>

www.syngress.com

Figure 5.13 Continued

166_ASPNET_05.qxd 11/21/01 2:42 PM Page 255

256 Chapter 5 • An ASP.NET Application

www.syngress.com

Figure 5.14 Screenshot Showing First Request

Figure 5.15 Screenshot Showing Subsequent Requests

166_ASPNET_05.qxd 11/21/01 2:42 PM Page 256

An ASP.NET Application • Chapter 5 257

As you can see, using the cache is really easy to implement; the majority of
this page deals with loading data from the database or displaying results.

First the page is set up, and we display the usual HTML head and body infor-
mation, plus some server-side Web form components.After this, we check to see
if a copy of the data has been previously cached. If we are on our first request of
the page, then the cache will be empty, so we must extract and store the data in
the cache.We fill a datagrid with the data that the cache contains.We know for
testing purposes whether the data has been refreshed from the database by setting
a label caption.We can force the data to refresh by pushing the button that calls
the same routine used when the page is first loaded, to retrieve the database data.

This is fine for circumstances where the data is sure not to change, or, like in
our example, we can trust the user to push a button to force a refresh. But what
if this is not acceptable?

The cache functionality includes the facility to enable you to expire content
based on a time delay, another value, or a dependency on an external file.The
next example shows how you can use the timed expiry to make the application
refresh the data periodically, and enforce up-to-date values.

www.syngress.com

Figure 5.16 Screenshot Showing Forcing Cache Refresh

166_ASPNET_05.qxd 11/21/01 2:42 PM Page 257

258 Chapter 5 • An ASP.NET Application

Expiring the Cache
The cache has two methods of time expiring a cache value, absoluteExpiration and
slidingExpiration.Absolute expiration is when the cache is deleted at a certain date
or time, and sliding expiration is a time after the cache entry was last accessed.
Syntax for the Cache Insert method is as follows, with the parameters shown in
Table 5.3:

Cache.insert(key, value, dependencies, absoluteExpiration,

slidingExpiration)

Table 5.3 Parameters of the Cache Insert Method

Parameter Description

key Identifying key for cache item
value The data to store
dependencies Check for changes in this value or file to expire content
absoluteExpiration Remove the cache value at a specific plan
slidingExpiration Delete so long after the cache value was last accessed

To change our example so that the content is expired at a specific time
interval of 10 minutes, we replace the cache-filling statements with the following:

'# cache the data

Dim MyData = New DataView(ds.Tables("Authors"))

Cache.insert("gridData", myData, nothing, _

DateTime.Now.AddMinutes(10),TimeSpan.Zero)

www.syngress.com

166_ASPNET_05.qxd 11/21/01 2:42 PM Page 258

An ASP.NET Application • Chapter 5 259

Summary
ASP.NET provides an excellent framework for building Web applications. Now
even more than in the past,ASP equips the programmer with excellent tools for
dealing with application events and maintaining state. State is a very important
subject when dealing with Web applications, and Microsoft has clearly looked
carefully at how they can help the programmer out in this area.

All through this book you will see references to how Microsoft has built
ASP.NET and the .NET framework as a fully object-oriented technology;
ASP.NET applications carry this through to great effect, making the application
Global.asax a class definition in its own right and allowing its member contents
to be accessible to the rest of the application—its static variables especially.As
well as application variables and the static variables, there is the new functionality
of the cache object, enabling us to avoid lengthy delays over and over again for
often-used data, by preloading and caching or caching on first hit.The cache also
has the powerful ability to expire at a certain time and detect changes in the
source it is dependant upon so that data can be refreshed.

Solutions Fast Track

Understanding ASP.NET Applications

ASP.NET applications collect Web site resources into manageable
organizational units.

An application is made up of the files and directories within its parent
folder.

Applications can store values that are accessible to the whole application
and all the users of that application.

Events can be used to run procedures at certain points in the
applications lifecycle.

Managing State

State management allows the application to “remember” values from one
transaction to the next.

www.syngress.com

166_ASPNET_05.qxd 11/21/01 2:42 PM Page 259

260 Chapter 5 • An ASP.NET Application

ASP.NET state management is improved over previous versions by not
solely relying on cookies.

Data can now be persisted using a database, and it offers more flexibility
in load balancing situations.

Analyzing Global.asax

Each application has its own Global.asax.

Global.asax sets the event code and values for an application using script
blocks and directives.

When executed, Global.asax is a .NET component with events, values,
and inheritance abilities.

What is set in the Global.asax affects the whole of the application and
scripts contained within it.

To use application, session, and cache values, you do not need to write
your own Global.asax, but you must if you wish to use static variables.

Understanding Application State

The whole of the application code and all application users currently
active can access application variables.

ASP.NET introduces two new facilities to extend the application
functionality, the Cache object and static variables.

Cache values enable the programmer to preload content and data, with
automatic expiry and dependencies.

Static variables are the Global.asax application class member variables
and are accessible to the whole application; and as they are not object
collections, they do not have the overhead of application variables and so
they have, in many cases, higher performance.

Using Application Events

Application event code is written into the Global.asax as subroutines.

Most commonly used events are those that deal with the application
starting and ending, errors, or processing a request.

www.syngress.com

166_ASPNET_05.qxd 11/21/01 2:42 PM Page 260

An ASP.NET Application • Chapter 5 261

Other events deal with authentication and cache issues.

Understanding Session State

Session state deals with the information relating to one user for the
duration of his or her active session, and any script within the
application the user visits has access to all of the user’s values.

ASP.NET improves on previous versions of ASP session state solutions
by allowing centralized state storage and on the ability to allow state
management for users without cookies.

A server will usually expire a session after 20 minutes of inactivity, but
this can be set to a different value by the programmer.

Configuring Sessions

Sessions are configured using web.config.

Cookies are now no longer a requirement, and sessions can be set to be
“cookieless.”

Using the timeout attribute, you can reduce or increase the session
timeout value from the default.

Pages and applications can turn off session state completely by setting
the session-state mode to “off.”

Using Session Events

Session events deal with the processing of one user’s session.

Using session_OnStart and session_OnEnd, you can add code to run
when the user enters and leaves a site.

The session may end when the user closes his or her browser or the
session has timed out.

www.syngress.com

166_ASPNET_05.qxd 11/21/01 2:42 PM Page 261

262 Chapter 5 • An ASP.NET Application

Comparing Application and Session States

Application state is the management of information relating to the
whole application and all of the currently live users.

Session state relates to each user separately.

All users and scripts have access to the same application values, whereas
one user can only access his or her own session information and can not
see another’s session variables.

Q: Must I have a Global.asax?

A: A Global.asax is not required; only use one if you need to.You will not need a
Global.asax unless you want to use events or static variables, for example.
Application, session, and cache values do not depend on your writing a
Global.asax.

Q: Are there any security risks associated with session and application variables?

A: As the state information is stored in storage (server memory or a database)
that the user has no direct access to, providing databases are secured, there is
no direct security risk. Having said that, ensure that application variables do
not contain sensitive information, as they are accessible to the whole applica-
tion and to all users within it.

Q: Should I use application, cache, or static variables?

A: Use whichever is appropriate for your situation; if in doubt, use application
variables. For simple values where the names are known beforehand and do
not change, you may find static variables give you cleaner code and faster
processing. Cached values are excellent for situations where users will fre-
quently need to read the same data or where the application occasionally

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

166_ASPNET_05.qxd 11/21/01 2:42 PM Page 262

An ASP.NET Application • Chapter 5 263

needs to refresh this data while the application is running.Application vari-
ables are probably best in cases where users might need to both read and
write values to the variables often, and the variable names are not necessarily
known beforehand.

Q: Can I use application state in a Web farm?

A:Yes, but your application data will only be visible to the process in which it is
running. If you want this data to be shared, then you should store it in an
external store instead, such as a database. For this reason, application state
should not be used in a Web farm or a load-balanced environment when crit-
ical values are required.

Q: Can I use session state in a Web farm?

A:Yes, but carefully consider all the implications. Storing session state either puts
a load on your servers, or network, or both.

www.syngress.com

166_ASPNET_05.qxd 11/21/01 2:42 PM Page 263

166_ASPNET_05.qxd 11/21/01 2:42 PM Page 264

Optimizing Caching
Methods

Solutions in this chapter:

■ Caching Overview

■ Output Caching

■ Fragment Caching

■ Data Caching

■ Best Uses for Caching

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 6

265

166_ASPNET_06.qxd 11/26/01 3:05 PM Page 265

266 Chapter 6 • Optimizing Caching Methods

Introduction
Data caching was introduced with Internet Information Server (IIS) in order to
optimize the transfer of Web pages and speed up the user’s access to these pages.
ASP 2.x did not have any native caching ability and simply made use of the
caching provided by IIS.Third-party utilities could also be used to increase the
caching abilities of ASP 2.x and provide a greater level of control over the IIS
cache.

Caching is now available natively within ASP.NET and has three new faces:
output, data, and fragment caching. Each of these methods provides new and pow-
erful methods of optimizing the utilization of system resources and increasing
application performance.

Output caching is more like the old method of caching provided by IIS; a
single page is stored within memory for a small period of time, for any reason
that the programmer sees fit.While this model is troublesome in some instances,
it can be helpful to the end-user at times.This allows for faster access to pages
that contain some dynamic content without having to regenerate the entire page.

Fragment caching is an innovation to output caching; it enables the pro-
grammer to determine which parts of a page should be cached for future refer-
ence.This is done by breaking the code into separate user controls and then
caching the control.This new feature greatly expands on our caching options.

Data caching enables the programmer to have full control over the caching at
the object level.You can define which objects and which areas are to be cached
and for what length of time, as you see fit.This detailed level of control enables
you to save any object to memory that you wish, in order to speed up access to
that object.

In this chapter, we are going to go over the three methods of caching that are
available in ASP.NET.We will also discuss how and why to use each method and
in what situations each method should be used.The options and parameters for
each method will be discussed and illustrated. By using this information, you can
greatly increase the performance of your application.This objective is key in cre-
ating an application that fits well with the needs of your users.

Caching Overview
Caching is a technique used in various aspects of computing to increase perfor-
mance by decreasing access times for obtaining data.This is accomplished by
retaining frequently accessed data within memory.This technique is used by

www.syngress.com

166_ASPNET_06.qxd 11/26/01 3:05 PM Page 266

www.syngress.com

many operating systems to cut down on the number of times that a hard drive
must be accessed or a network connection utilized, by storing the needed data in
the system’s memory. It is also used by some databases to store data retrieved from
queries that may be needed again later.As it pertains to a Web application, data is
retained from across multiple HTTP requests, and can then be reused without
incurring additional access times that would normally be necessary to recreate
the data.

ASP.NET makes available three different types of caching, which, when used
properly, can greatly increase the overall performance of your application.These
types are as follows:

■ Output Caching

■ Fragment Caching

■ Data Caching

We will go into detail in this chapter on each of these caching types, but they
all are based off of the basic concept of saving all or a portion of the data gener-
ated by your application, with the purpose of presenting the same data again at a
later time.

Output caching basically caches the entire content of an output Web page.
This can be very useful when the content of your pages changes very little.
Programmers familiar with ASP 2.x should be familiar with this concept, as it was
the only available caching method for ASP.This method provides the greatest
performance increase, but can only be used when nothing on the output page is
expected to change within the valid timeframe of the cache.

Fragment caching, which is new in ASP.NET, allows for the caching of por-
tions of your output page.This is an excellent improvement in caching technique,
and is best used when your application’s output page has content that changes
constantly in addition to content that changes very little.While this method does
not provide as much of a performance increase as output caching, it does increase
performance for applications that would formerly have been unable to use any
caching at all due to the strict requirements of output caching.

Data caching, also new in ASP.NET, provides the ability to cache individual
objects. Placing objects into the cache in this manner is similar to adding items to
a dictionary. By using a simple dictionary-style interface, this method makes for
an easy-to-use temporary data storage area while conserving server resources by
releasing memory as cached objects expire.

Optimizing Caching Methods • Chapter 6 267

166_ASPNET_06.qxd 11/26/01 3:05 PM Page 267

268 Chapter 6 • Optimizing Caching Methods

A major consideration in planning your caching strategy is the appropriate
utilization of server resources.There is a trade-off when it comes to the use of
any kind of caching, in that for every item cached, less memory is available for
other uses.While output caching provides the greatest performance increase, it
also utilizes more memory than caching a few objects using data caching. On the
other hand, due to the overhead required to store multiple objects by using data
caching, it may be more logical to cache a portion of the output page by using
fragment caching. Suggested uses are listed in Table 6.1; however, the best caching
method for your specific application is dependant upon your output.

www.syngress.com

Table 6.1 Suggested Uses of Caching Types

Situation Suggested Caching Type

The generated page generally stays
the same, but there are several tables
shown within the output that change
regularly.

The generated page constantly
changes, but there are a few objects
that don’t change very often.
The generated page changes every
few hours as information is loaded
into a database through automated
processes.

Use Fragment Caching in this situa-
tion. Cache the portions of the page
that remain somewhat static, while
dynamically generating the table con-
tents. Also consider using Data
Caching for storing some individual
objects.
Use Data Caching for the objects.

Use Output Caching and set the dura-
tion to match the frequency of the
data changes.

Optimizing Cache versus
Optimizing Server Resources
When it comes to optimizing your Web application’s performance, there
are two factors that you must keep in mind. The first is the caching
method(s) that you choose, and the second is server resources. It is not
possible to implement a good performance plan without keeping both

Developing & Deploying…

Continued

166_ASPNET_06.qxd 11/26/01 3:05 PM Page 268

Optimizing Caching Methods • Chapter 6 269

Output Caching
Output caching provides the capability to cache response content generated from
dynamic pages for the purpose of increasing application performance.This form
of caching should be applied when the content of your page is somewhat static.
Various options can be set for output caching including the duration.

In order for a page to be cached using output caching, it must have a valid
expiration or validation policy.These options can be set either through the
@ OutputCache directive or through the HttpCachePolicy class.

Using the @ OutputCache Directive
When the @ OutputCache directive is used at the top of the page,ASP.NET basi-
cally uses the Page.InitOutputCache method to translate the directive parameters
into HttpCachePolicy class methods.These methods and properties can also be
accessed through the HttpResponse.Cache property, which will be discussed later in
this section.To set the expiration of a page you intend to cache, you can use the
following code at the top of the page:

<% @ OutputCache Duration="60" VaryByParam="None" %>

This sets the cache duration for this page to 60 seconds as well as setting the
VaryByParam attribute to not provide additional functions.The VaryByParam
attribute is required when using the @ OutputCache directive.The VaryByParam
attribute is one of three attributes used to control caching of multiple pages by
the @ OutputCache directive.These attributes are as follows:

www.syngress.com

factors in mind. The choice of caching method will depend on the
output of your page more than any other factor. For example, it doesn’t
matter if you have enough server resources to implement Output
Caching, if your output changes constantly.

When data is cached on the server, additional memory resources
are used for storage of the cached data. The cached data includes not
only the page output or the objects that you cache, but also header
information necessary to obtain the correct cached data again later. As
you cache more data, less memory is available for other uses. You may
need to add more memory to your server to compensate for this in order
to provide the highest performance increase. By testing your Web appli-
cation extensively, you will be able to find the right mix of caching and
hardware to provide the best performance at the right price.

166_ASPNET_06.qxd 11/26/01 3:05 PM Page 269

270 Chapter 6 • Optimizing Caching Methods

■ VaryByParam

■ VaryByHeader

■ VaryByCustom

When ASP.NET generates the content of your page, the output can vary
based on values that have been passed to the page. By using the VaryByParam
attribute, you can control the caching of these pages based on a GET query
string or POST parameters. By specifying the GET query string parameters or
POST parameters using this attribute, each request received for that parameter
using a different value will be cached. For example, if you specified the “name”
GET query string parameter, each request received with a different name value
will be cached separately.The syntax for setting a 60-second cache with the
“name” parameter is as follows:

<% @ OutputCache Duration="60" VaryByParam="name" %>

If you use the “name” parameter with the VaryByParam attribute as shown in
the previous code, and the requests shown in Figure 6.1 are received,ASP.NET
will cache three pages, each for a duration of 60 seconds.

Figure 6.1 Sample Page Requests

http://LocalHost/testing/mypage.aspx?name=bob

http://LocalHost/testing/mypage.aspx?name=bob&cube=C4

http://LocalHost/testing/mypage.aspx?name=charlie

http://LocalHost/testing/mypage.aspx?name=chris&cube=A4

http://LocalHost/testing/mypage.aspx?name=chris&ext=5555

If the requests arrived in the order specified in Figure 6.1, the first, third, and
fourth pages will be cached. For the duration of their time in the cache, any
request with the name parameter containing these three names will be satisfied by
redisplaying the cached data.

You can specify multiple parameters to the VaryByParam attribute by sepa-
rating them with a semicolon. For example, using the code:

<% @ OutputCache Duration="60" VaryByParam="name;cube" %>

would result in caching four pages instead of three, if the requests specified in
Figure 6.1 were received. In this case, the first, second, third, and fourth pages
would be cached. Figure 6.2 shows the source of a small application demonstrating

www.syngress.com

166_ASPNET_06.qxd 11/26/01 3:05 PM Page 270

http://LocalHost/testing/mypage.aspx?name=bob
http://LocalHost/testing/mypage.aspx?name=bob&cube=C4
http://LocalHost/testing/mypage.aspx?name=charlie
http://LocalHost/testing/mypage.aspx?name=chris&cube=A4
http://LocalHost/testing/mypage.aspx?name=chris&ext=5555

Optimizing Caching Methods • Chapter 6 271

the use of the VaryByParam attribute.This code is located on the CD that accompa-
nies this book as output_cache.aspx. Figures 6.3, 6.4, and 6.5 display the generated
page after clicking on each button. Each page is stored in cache for 60 seconds.

Figure 6.2 Output Cache Example Code (output_cache.aspx0

<% @ OutputCache Duration=60 VaryByParam="button" %>

<HTML>

<SCRIPT language="VB" runat="server">

Sub Page_Load(Src As Object, E As EventArgs)

TimeMsg.Text = DateTime.Now.ToString("G")

PageName.Text = request.querystring("button")

End Sub

</SCRIPT>

<BODY>

<H3>Output Cache Example</H3>

<FORM action=output_cache.aspx method=get>

<P><H4>Click a button</H4>

<INPUT type="submit" name="button" value="One">

<INPUT type="submit" name="button" value="Two">

<INPUT type="submit" name="button" value="Three">

</FORM>

<P>Page generated at: <asp:label id="TimeMsg" runat="server"/>

<P>Page Name: <asp:label id="PageName" runat="server"/>

</BODY>

</HTML>

www.syngress.com

166_ASPNET_06.qxd 11/26/01 3:05 PM Page 271

272 Chapter 6 • Optimizing Caching Methods

www.syngress.com

Figure 6.3 Output Cache Example Page 1

Figure 6.4 Output Cache Example Page 2

166_ASPNET_06.qxd 11/26/01 3:05 PM Page 272

Optimizing Caching Methods • Chapter 6 273

The second available attribute, VaryByHeader, enables you to control output
caching based on the HTTP header that is passed to the page during a request.
This opens up the option of caching multiple versions of pages based on any
header variable.A partial list of acceptable HTTP header values available in this
context is shown in Table 6.2.

Table 6.2 HTTP Headers

HTTP Headers Description

ACCEPT Acceptable media types
ACCEPT-CHARSET Acceptable character sets
ACCEPT-ENCODING Acceptable content coding values
ACCEPT-LANGUAGE Acceptable languages (based off ISO639-2

standards)
ACCEPT-RANGES Acceptable range requests
AGE The amount of time since the response was

generated
ALLOW Methods supported by the server
AUTHORIZATIOn Authorization credentials used for a request

www.syngress.com

Figure 6.5 Output Cache Example Page 3

Continued

166_ASPNET_06.qxd 11/26/01 3:05 PM Page 273

274 Chapter 6 • Optimizing Caching Methods

CACHE-CONTROL Cache control directives
CONNECTION Options that are specified for a particular connec-

tion and must not be communicated by proxies
over further connections

COOKIE Cookies associated with the request
DATE Date and time of request origination
FROM E-mail address of the requesting user (if provided)
HOST Address and port of the requested resource
MAX-FORWARDS Number of proxies or gateways allowed between

the requestor and the destination server
MIME-VERSION The version of MIME used to construct the message
MSTHEMECOMPATABLE Allow or disallow theme support (Only available in

IE6+)
REFERER URI of the user’s last request
REQUEST-METHOD The verb used for the request
SET-COOKIE Value of the cookie set for the request
TRANSFER-ENCODING Message body encoding type
USER-AGENT Information about the user agent (browser) making

the request

As an example, we could cache multiple versions of a page that differs based
on the accepted language of the requestor.This would be accomplished by speci-
fying the Accept-Language parameter to the VaryByHeader attribute as shown in the
following code:

<% @ OutputCache Duration="60" VaryByParam="none"

VaryByHeader="Accept-Language" %>

If three requests are then received with the Accept-Language header values
specified in Figure 6.6, two will be cached. Because the third request matches the
first, the third request will be fulfilled by the data that was previously cached by
the first request.

www.syngress.com

Table 6.2 Continued

HTTP Headers Description

166_ASPNET_06.qxd 11/26/01 3:05 PM Page 274

Optimizing Caching Methods • Chapter 6 275

Figure 6.6 Sample Header Values

en-us

en-uk

en-us

The final available attribute is VaryByCustom.This attribute enables you to
control caching of the page based on browser version or other custom strings
that you define. If you were to want to cache multiple versions of a page based
on the browser type of the requestor, you would use the “browser” parameter with
the VaryByCustom attribute.

<% @ OutputCache Duration="60" VaryByParam="none"

VaryByCustom="browser" %>

This code has the effect of caching a different version of the page for every
request coming from different browser types and versions based on the page’s
Request.Browser.Type property. If a request is made from an Opera browser and an
Internet Explorer browser, two versions of the page are made available in the
output cache for subsequent requests.

Using the HttpCachePolicy Class
Another method of setting the output cache for a page is to use the
HttpCachePolicy class.This property enables you to control the caching policy
at a much more granular level. In the first sample for the @ OutputCache direc-
tive, we set the cache for a duration of 60 seconds with no other parameters.
To perform the same function using the HttpCachePolicy class, you could use
this code:

Response.Cache.SetExpires(DateTime.Now.AddSeconds(60))

Response.Cache.SetCacheability(HttpCacheability.Public)

This sets the cache expiration to be 60 seconds from the current system time
and gives the page public cache visibility.There are several other properties that
can be set for the HttpCacheability method.These properties are listed and
explained in Table 6.3.

www.syngress.com

166_ASPNET_06.qxd 11/26/01 3:05 PM Page 275

276 Chapter 6 • Optimizing Caching Methods

Table 6.3 HttpCacheability Method Values

Value Description

NoCache This can be specified with or without an optional fieldname.
When no field name is specified, the value applies to the entire
request, and any shared cache such as a proxy server must
requery the Web server instead of sending the cached page.
When a field is specified, only the specified field will require a
requery, and the rest of the page can be sent from the shared
cache.

Private This is the default value. When this is specified, the page will be
cached only on the client end, and will not be cached by a shared
cache such as a proxy server.

Public By setting the public value, the page can be cached by a shared
cache as well as by the client cache.

Server This value specifies that the page has only to be cached on the
Web server and not the client or a shared cache.

If you would like the cache duration to be extended each time the page is
requested, the SetSlidingExpiration method can be set to true.This property
defaults to false, which sets the page to expire when the time set in the SetExpires
method lapses.

Response.Cache.SetSlidingExpiration(true)

It is generally best to use the @ OutputCache directive at the beginning of
your page and only use the HttpCachePolicy class when you need a lower level of
control over the caching header. Either of these methods can provide the same
functionality, and the only reasons to use one over the other is the level of con-
trol that you need and the ease of use.

Advantages of Using Output Caching
The primary advantage of output caching is speed.When a page is cached using
output caching, the entire page is stored in memory for the duration specified;
therefore, the response to a request for this page is almost instantaneous.
Implementing output caching within your application can increase the perfor-
mance by several hundred percent depending on your content. Consider the
access time difference between running a query against a remote database com-
pared to pulling a page directly from memory.

In addition, the usage of output caching cuts down on the number of
requests sent to your database server.When a page is dynamically generated for

www.syngress.com

166_ASPNET_06.qxd 11/26/01 3:05 PM Page 276

Optimizing Caching Methods • Chapter 6 277

the first time, the data necessary is queried and then presented to the user. If the
page is subsequently stored in cache, the database does not need to be queried in
order to present the requested information.This can increase performance of
your database server by eliminating many unnecessary queries.

Fragment Caching
In order to work with pages that have some dynamic content that needs to be
updated regularly, as well as content that remains relatively static, Microsoft has
provided the concept of fragment caching.This enables you to break your page
into separate sections (fragments) that can be cached individually with their own
caching options.

Using fragment caching is very similar to output caching. In fact, you call it
in the same way as output caching by using either the @ OutputCache directive
or the HttpCachePolicy class. Fragment caching is implemented by separating user
controls out of your main page, and assigning caching parameters to each user
control.This gives you a greater level of control over which portions of your
page are cached.

An example of a good use for fragment caching is when you have a table
within a page that has content generated from a database. In order to cut down on
the number of queries being sent to the database, you want to cache the data in
the table for a specified time period. However, the page that the table is displayed
in has a timestamp that must be updated.The way we would accomplish this is to
place the code used for generating the table into a user control and call the con-
trol from within the main page.This code is illustrated in Figures 6.7 and 6.8.

Figure 6.7 Fragment Cache Example Code Part 1 (fragment_cache.aspx)

<!— First we set up the user control —>

<%@ Register TagPrefix="Tag1" TagName="TestControl"

Src="fragment_cache.ascx" %>

<HTML>

<SCRIPT language="VB" runat="server">

Sub Page_Load(Src As Object, E As EventArgs)

' We'll just load the current date/time into a string

www.syngress.com

Continued

166_ASPNET_06.qxd 11/26/01 3:05 PM Page 277

278 Chapter 6 • Optimizing Caching Methods

TimeMsg.Text = DateTime.Now.ToString("G")

End Sub

</SCRIPT>

<BODY>

<H3>Fragment Cache Example</H3>

<!— We'll run the user control first —>

<Tag1:TestControl runat="server"/>

<!— Then show the time that this page was loaded —>

<P>Main page generated at: <asp:label id="TimeMsg" runat="server"

/>

</BODY>

</HTML>

Figure 6.8 Fragment Cache Example Code Part 2 (fragment_cache.ascx)

<!— We'll set the cache up for a two minute duration —>

<%@ OutputCache Duration="120" VaryByParam="none" %>

<SCRIPT language="VB" runat="server">

Sub Page_Load(Src As Object, E As EventArgs)

' We'll just load the current date/time into a string

TimeMsg.Text = DateTime.Now.ToString("G")

End Sub

</SCRIPT>

<P>

www.syngress.com

Figure 6.7 Continued

Continued

166_ASPNET_06.qxd 11/26/01 3:05 PM Page 278

Optimizing Caching Methods • Chapter 6 279

<!— In real use, we'd use data from a database for this. We'll just

make our

own table for the example. —>

<TABLE border=1 bordercolor=brown>

<TR bgcolor=lightyellow>

<TH>First Name</TH>

<TH>Last Name</TH>

<TH>Number</TH>

</TR>

<TR>

<TD>Bob</TD>

<TD>Marly</TD>

<TD>555-1234</TD>

</TR>

<TR>

<TD>Lee</TD>

<TD>Young</TD>

<TD>555-1235</TD>

</TR>

</TABLE>

<!— Show the time that this control was loaded —>

<P>Table last generated on: <asp:label id="TimeMsg" runat="server" />

These code fragments are on the included CD as fragment_cache.aspx and
fragment_cache.ascx. In the second code fragment, I am generating the table data
within the code; however, fragment caching in this style is best used when you
are pulling data from database tables.When this code is run, you will see two
timers as shown in Figure 6.9.The first will list the time that the table was built.
This is the time that the user control was called, and based on the @ OutputCache
directive, this user control will be cached for 120 seconds.The second timer will
show the time that the main page was generated.As no caching parameters were

www.syngress.com

Figure 6.8 Continued

166_ASPNET_06.qxd 11/26/01 3:05 PM Page 279

280 Chapter 6 • Optimizing Caching Methods

set for this page, it will not be cached. If you refresh this page after the initial
load, you will see that the first timer will not change if the cache duration has
not been passed, and the second timer is changed to the current time.

As with output caching, fragment caching can be used either through the
@ OutputCache directive or programmatically through the HttpCachePolicy class.
Fragment caching differs in that it only supports the VaryByParam attribute as
well as a new attribute named VaryByControl.The VaryByParam attribute is a
required attribute in fragment caching as well. Fragment caching does not sup-
port the VaryByHeader nor the VaryByCustom attributes.

The VaryByParam attribute works the same way in fragment caching as it does
in output caching. Using this attribute, a separate page can be generated and
cached for each argument provided to the user control. Just as in output caching,
this capability greatly increases the performance of your page.

The additional attribute provided for fragment caching, the VaryByControl
attribute, enables you to control the cache based on controls within the user con-
trol.This attribute can be used with the following syntax:

<% @ OutputCache duration="60" VaryByParam="none"

VaryByControl="name" %>

www.syngress.com

Figure 6.9 Fragment Caching Example

166_ASPNET_06.qxd 11/26/01 3:05 PM Page 280

Optimizing Caching Methods • Chapter 6 281

For example, if you have a control in your application that contains a select
box control named “name,” then ASP.NET would cache a separate version of the
page each time the value of the select box control changed.

There is one major aspect of fragment caching that must be kept in mind. If a
user control is cached, it can no longer be manipulated. Basically, when the user
control is cached, the instance for the control is only created on the first request,
and not on subsequent requests when the data is pulled from the cache. Because
of this, the logic necessary to create the content of a user control should be
stored within the control itself, and not within the calling page.This can be done
by using the Page_Load event or the Page_PreRender event.This enables you to
pass arguments to the control and generate new content based on those argu-
ments.This can be further enhanced by using fragment caching with the
VaryByControl attribute.

Advantages of Using Fragment Caching
The greatest advantage of fragment caching is the ability to cache only portions
of a page while generating the remainder of the page dynamically.While this
does not provide as much of a performance increase as output caching, it enables
you to take advantage of caching in situations when it would previously not be
possible to cache the page at all.

A second advantage of fragment caching is the possibility of better use of
memory resources.When caching an entire page, all of the data for that page is
stored in memory.With fragment caching, only the portions of the page you
specify are cached.This advantage is best presented when you have several pages
that call a common user control.After the user control is cached on the first
request, any subsequent request from any page presents the cached data.This
enables you to make the most of your system resources by caching commonly
used user controls.

Data Caching
Data caching provides the most granular control of cached data.The data cache is
a full-featured cache engine that enables you to store and retrieve data between
multiple HTTP requests and multiple sessions within the same application.As
with output caching and fragment caching, the cached data and objects are stored
in memory, providing fast access to cached information.Another similarity to
output caching and fragment caching is that the cache is cleared completely
when the application is reset.

www.syngress.com

166_ASPNET_06.qxd 11/26/01 3:05 PM Page 281

282 Chapter 6 • Optimizing Caching Methods

There are three different methods that you can use to add data or objects to
the cache.They all work in a very similar fashion, but offer different levels of con-
trol and usage.The cache method is used for fast and easy access to the data cache.
The cache.add and cache.insert methods are used to give you a greater amount of
control over the data that you cache. Each of these methods has its uses and we
will go into detail on each of them in the sections that follow.Table 6.4 outlines
the features of the different caching methods.

Table 6.4 Caching Method Features

Stores Data Dependency Expiration Priority Returns
Method in Cache Support Policy Settings Object

cache X
cache.insert X X X X
cache.add X X X X X

Using the Cache Method
Microsoft has provided a simple dictionary-style interface for using the data
cache. Because of this interface, you can store and retrieve data from the cache as
easily as you would store and retrieve data from a dictionary.The syntax for
storing data in this cache is as follows:

cache("keyname")=value

Caching data has never been so simple! The retrieval of your data is also a
very simple operation. In the following code, we will pull the value from the
cache based on the key we specified, and display it.

myvalue=cache("keyname")

if value <> null then

displaydata(myvalue)

end if

This method of caching works very well for providing fast access to your
objects. In addition to using the simple dictionary-style method of storing and
retrieving simple data, you can also use data caching to store arrays or any other
object.This technique is illustrated in Figures 6.10, 6.11, and 6.12.You can find
the source code in Figure 6.10 on the CD that accompanies this book as
data_cache1.aspx.

www.syngress.com

166_ASPNET_06.qxd 11/26/01 3:05 PM Page 282

Optimizing Caching Methods • Chapter 6 283

Figure 6.10 Data Caching Example Code (data_cache1.aspx)

<SCRIPT language="VB" runat=server>

Sub Page_Load(source As Object, e As EventArgs)

dim MyValue as string

MyValue=cache("MyKey")

if MyValue <> nothing then

output.text=MyValue & "<P>This data retrieved from cache"

else

Dim stringArray() As string ={"Amy", "Bob", "Chris", "Dave", _

"Eli", "Franklin", "Gerald"}

dim MyString as string

for each MyString in stringArray

output.Text=output.Text & MyString & "
"

next

cache("MyKey")=output.Text

end if

End Sub

</SCRIPT>

<HTML>

<HEAD>

</HEAD>

<BODY>

<P><asp:label id="output" runat="server"/>

</BODY>

</HTML>

Figure 6.11 shows the output of the code sample in Figure 6.10 on the first
page request.ASP.NET first checks the cache to see if the key name we specify
contains any data. Since at this point it does not, the array is generated and saved
to the cache.When the page is viewed a second time, as shown in Figure 6.12,
ASP.NET finds the data in cache and displays the cached data as well as the mes-
sage indicating that the source data is from the cache rather than being generated.

www.syngress.com

166_ASPNET_06.qxd 11/26/01 3:05 PM Page 283

284 Chapter 6 • Optimizing Caching Methods

www.syngress.com

Figure 6.11 Data Caching Example Page 1

Figure 6.12 Data Caching Example Page 2

166_ASPNET_06.qxd 11/26/01 3:05 PM Page 284

Optimizing Caching Methods • Chapter 6 285

Using the cache.add and cache.insert Methods
In the example code in Figure 6.10, we have used the cache method in the same
manner that we would use a dictionary. Using this method, the data remains in
cache for the lifetime of the application or until it is explicitly removed from the
cache. For greater control over the data we are storing in the cache, we can use
two other methods of storing the data.The first is the cache.add method and the
second is the cache.insert method.These are very similar, but they do differ, in that
the cache.add method returns an object that represents the cached data, and the
cache.insert method does not.The code used in the previous section to simply add
an object to the cache can be expressed in the following way, using either the
cache.add or the cache.insert method. For this example we will use the cache.insert
method.

cache.insert("keyname", value)

Using either the cache.add or the cache.insert methods, you have three primary
options available to us for the manner in which you can control the cached data.
The first option is to base the expiration of a cached object on dependency files,
directories, or other cached object keys.The second option is comprised of two
different methods of controlling the expiration policy of the cached object based
on time.The third option is comprised of two methods of controlling the cached
object’s cache priority, and the final option allows a method of obtaining notifi-
cation when an object is removed from the cache.

Using the Dependency Option
When you have a dependency object set for a cached object,ASP.NET monitors
the dependency object for changes.When a change is detected in the dependent
object, the cached item with the dependency option expires.The syntax for using
the cache.add and cache.insert methods with the dependency option is the same,
and for this example we will use the cache.insert method:

cache.insert("keyname", value, New

CacheDependency(Server.Mappath("data.xml")))

There are many ways to put this option to use. For example, if you wish for a
cached item to expire when another cached item changes, then set the second
cached object to be dependent on the first cached object’s key.

It is also possible to make a cached object dependent on multiple other
objects. For example, if you have multiple XML files that your page is pulling

www.syngress.com

166_ASPNET_06.qxd 11/26/01 3:05 PM Page 285

286 Chapter 6 • Optimizing Caching Methods

data from, and wish for a cached item to expire when any of the XML files
change, you can list these files in an array and make the array your dependent
object.An example of this usage is shown in Figure 6.13, and you can locate this
code on the CD that accompanies this book as data_cache2.aspx.

Figure 6.13 Data Caching with Multiple Dependencies Code
(data_cache2.aspx)

<SCRIPT language="VB" runat=server>

Sub Page_Load(source As Object, e As EventArgs)

dim MyValue as string

MyValue=cache("MyKey")

if MyValue <> nothing then

output.text=MyValue & "<P>This data retrieved from cache"

else

Dim StringArray() As string ={"Amy", "Bob", "Chris", "Dave", _

"Eli", "Franklin", "Gerald"}

dim DependentString() as string ={server.mappath _

("partofmydata.xml"), server.mappath("theotherpart.xml")}

dim MyString as string

for each MyString in StringArray

output.Text=output.Text & MyString & "
"

next

cache.insert("MyKey", output.text, new _

CacheDependency(DependentString))

end if

End Sub

</SCRIPT>

<HTML>

<HEAD>

</HEAD>

www.syngress.com

Continued

166_ASPNET_06.qxd 11/26/01 3:05 PM Page 286

Optimizing Caching Methods • Chapter 6 287

<BODY>

<P><asp:label id="output" runat="server"/>

</BODY>

</HTML>

Using the Expiration Policy Option
The second caching option sets the expiration policy of the cached object.There
are two ways to set the expiration policy.The first is to use an absolute expiration
time that sets the cached object to expire at a specific time.The syntax for this
statement is as follows:

cache.insert("keyname", value, nothing, _

datetime.now.addminutes(2), timespan.zero)

Even when using just one of the two expiration policy parameters, the other
must contain some value. In addition, when using either method, you must set
the dependency option to either an object or the nothing object. In the case of
the previous code, we have set a timespan of 0 for the second parameter, which
effectively disables it.This option is useful when you have a cached object that
you want to have refreshed on a regular basis regardless of how many times the
cached object has been accessed.

The second expiration policy option is to use a sliding expiration. Using this
method, the cached object’s absolute expiration time is increased by value of the
sliding expiration parameter. For example, to force the cached object to expire 10
seconds after the last request for the cached object, you could use the following
code:

cache.insert("keyname", value, nothing, _

datetime.maxvalue, timespan.fromseconds(10))

Again, as both parameters must contain some value, the absolute expiration
parameter has been set to the maxvalue of datetime, which effectively disables the
absolute expiration policy.

By using either of these expiration policy options, you can specify the duration
of your objects in cache. One caveat to keep in mind is that you must use either an
absolute expiration time or a sliding expiration, and ASP.NET does not support the
use of both on the same object.Therefore, when setting the expiration policy
option, you must use either the timespan.zero or the datetime.maxvalue option.

www.syngress.com

Figure 6.13 Continued

166_ASPNET_06.qxd 11/26/01 3:05 PM Page 287

288 Chapter 6 • Optimizing Caching Methods

Using the Priority Options
All of the options for specifying the duration of an object in cache are secondary
to ASP.NET’s method of conserving system resources. If your system begins to
run low on available memory, the first thing ASP.NET does is begin to clear out
the cache until the available system memory reaches a tolerable level. If we had
no control over this process, your Web application’s performance could be
severely degraded by the loss of critical cached items. Fortunately,ASP.NET pro-
vides the ability to control the purging of your cached data.This is set through
two options for the cache.add and cache.insert methods.

The first option available is the CacheItemPriority setting.This enables you to
set different priorities on cached objects based on how critical the cached data is
to the performance of your application.The default value is Normal, and objects
are purged in order of lowest priority to highest, leaving high priority objects in
the cache for as long as possible.Table 6.5 outlines the different priority settings
available for cached objects.

Table 6.5 CacheItemPriority Values

Value Definition

NotRemoveable Cached objects with this priority will never be removed
from memory when ASP.NET is purging due to a loss of
memory resources. Use this option sparingly, as negative
results can occur when ASP.NET is prevented from
obtaining needed memory resources due to too many
unremovable items in the cache.

High Objects with this priority level are the last to be purged.
ASP.NET will clear all lower-priority objects from memory
before clearing objects designated as High priority.

AboveNormal Objects with this priority level are less likely to be purged
than items left at the default level.

Normal This is the default priority level for cached objects. This
value is assigned to all cached objects that do not explic-
itly have a priority level designated.

BelowNormal Objects with this priority level are considered by ASP.NET
to be less critical to your application’s performance than
normally cached items.

Low Cached Objects with this priority level are the first to be
purged when system memory resources are low.

www.syngress.com

166_ASPNET_06.qxd 11/26/01 3:05 PM Page 288

Optimizing Caching Methods • Chapter 6 289

The second option for setting the priority of cached objects is the
CacheItemPriorityDecay setting.This option controls the purging of objects from
the cache when they are accessed infrequently.This differs from the
CacheItemPriority setting in that it controls the purging of cached objects based on
the frequency of their access, as compared to a loss of system memory resources.
As with the CacheItemPriority setting, this option has several different values.These
values are described in Table 6.6.

Table 6.6 CacheItemPriorityDecay Values

Value Definition

Never Objects set with a decay of Never will not be removed from the
cache if accessed infrequently.

Slow Objects with a decay of Slow are the last to be purged.
Medium This is the default setting for any objects without a differing

explicit setting.
Fast Objects with this setting are the first to be purged if they are not

frequently accessed.

When you choose to explicitly set the priority of a cached object, both pri-
ority options must be set as well as setting a CacheItemRemovedCallback delegate,
which will be discussed in the next section.To illustrate the use of the priority
options, let us assume that we have a dataset to cache.This dataset is very rarely
changed and is accessed very often.Although it is large, we have determined that
the application would suffer a greater performance loss by not having this data
cached than it would by reallocating the memory resources used by the cached
dataset. In this scenario, we would want to set the CacheItemPriority value to High
and the CacheItemPriorityDecay value to Slow. In addition, we will set the
CacheItemRemovedCallback delegate to OnRemove.We do want the data to be
refreshed occasionally, so we will also use an absolute expiration of one hour.

cache.insert("MyKey", mydataset, nothing, _

datetime.now.addminutes(60), timespan.zero, _

CacheItemPriority.High, CacheItemPriorityDecay.Slow, OnRemove)

Using the CacheItemRemovedCallback Delegate
The CacheItemRemovedCallback delegate is a function of the cache that allows the
application to be notified when an item is removed from the cache.The

www.syngress.com

166_ASPNET_06.qxd 11/26/01 3:05 PM Page 289

290 Chapter 6 • Optimizing Caching Methods

CacheItemRemovedCallback delegate returns three parameters that must be accepted
by your event handler: the cached item’s key, the value of the cached item when it
was removed, and the reason for removal.There are four valid reasons for an object
to be removed from the cache, and they are outlined in Table 6.7.

Table 6.7 CacheItemRemovedReason Values

Reason Definition

DependencyChanged When the files, directories, or keys specified in the
dependency option are changed, this reason is
reported upon the cached object’s removal.

Expired If an expiration policy is set for a cached object, this
reason is reported when the absolute expiration time
has been met.

Removed If a cached object is explicitly removed or replaced
due to the usage of the same key, this reason is
reported.

Underused If ASP.NET has removed the cached object due to a
lack of system resources or because the data is under-
utilized, the Underused reason is reported.

I have illustrated the use of all the caching options available for the cache.add
and cache.insert methods in the code shown in Figure 6.14. In this code, we first
check to see if there is any data stored in the cache under the key “MyKey.” If
data is there, then note that the data was retrieved from cache, remove the data
from the cache, and display the data. If no data is in the cache, then your array is
loaded into the cache.When you do remove the cached data, you fire an event
that adds the fact that the data was removed from cache as well as the reason
code to the array, and then recache the result.When you recache it the second
time, you do not add the CacheItemRemoved option; otherwise you would end up
in a loop.This code is located on the CD that accompanies this book as
data_cache3.aspx.

Figure 6.14 Data Caching Full Sample Code (data_cache3.aspx)

<SCRIPT language="VB" runat=server>

Private Shared OnRemove as CacheItemRemovedCallback = Nothing

Public Sub RemovedCallback(key as string, value as object, _

www.syngress.com
Continued

166_ASPNET_06.qxd 11/26/01 3:05 PM Page 290

Optimizing Caching Methods • Chapter 6 291

reason as CacheItemRemovedReason)

'At this point, place any code needing to be executed upon

'an item's removal. As an example, we will now recache the

'object after making a change.

value=value & " *recached due to reason code " & reason & "*
"

cache.insert(key, value, nothing, datetime.maxvalue, _

timespan.fromseconds(10))

End Sub 'RemovedCallback

Sub Page_Load(source As Object, e As EventArgs)

onRemove = New CacheItemRemovedCallback(AddressOf _

Me.RemovedCallback)

dim MyValue as string

MyValue=cache("MyKey")

if MyValue <> nothing then

output.text=MyValue & "<P>This data retrieved from cache"

'Now we'll remove the item from cache, just to trigger the

event'

Cache.Remove("MyKey")

else

Dim StringArray() As string ={"Amy", "Bob", "Chris", "Damien",

_

"Eli", "Franklin", "Gerald"}

dim DependentString() as string ={server.mappath("test.txt"), _

server.mappath("test2.txt")}

dim MyString as string

for each MyString in StringArray

output.Text=output.Text & MyString & "
"

next

cache.insert("MyKey", output.text, nothing, datetime.maxvalue, _

timespan.fromseconds(10), CacheItemPriority.Low, _

www.syngress.com

Figure 6.14 Continued

Continued

166_ASPNET_06.qxd 11/26/01 3:05 PM Page 291

292 Chapter 6 • Optimizing Caching Methods

CacheItemPriorityDecay.Fast, onRemove)

end if

End Sub

</SCRIPT>

<HTML>

<HEAD>

</HEAD>

<BODY>

<P><asp:label id="output" runat="server"/>

</BODY>

</HTML>Using the Cache.Remove Method
Removing data manually from the cache is a useful method of clearing up
resources or giving your end user the option of verifying that the data they are
viewing is up to date.The way this is done is similar to the simple dictionary
cache interface. I have used the cache.remove method in Figure 6.14, which illus-
trates its syntax:

cache.remove("MyKey")

Advantages of Using Data Caching
We have gone over the plethora of different options available for data caching,
and I believe that its many advantages are apparent.With the ability of caching
data at the object level, you are given the most granular control over ASP.NET’s
caching features possible. By using the dictionary interface, you have a simple
manner of adding and removing data from the cache. If, however, a greater
amount of control is necessary,ASP.NET provides for this with the expiration
features and priority levels.

By using all of these features in the best manner possible, you can increase the
overall speed of your application without the requirements of using a separate
user control or a semi-static page.While data caching does take up more memory
per saved object than object or fragment caching, its primary strength is that you

www.syngress.com

Figure 6.14 Continued

166_ASPNET_06.qxd 11/26/01 3:05 PM Page 292

Optimizing Caching Methods • Chapter 6 293

can store smaller amounts of data in the cache, thus opening the possibility of
saving memory resources overall.

Best Uses for Caching
When should you use caching? As often as possible. In order to make your applica-
tion viable in today’s fast-paced world, you have to make your data available as
quickly as possible and decrease the wait-time for your end user as much as pos-
sible. By using the various types of caching in the best manner possible, you can
change your application from slow yet effective to fast and amazing.When users
access an application created using ASP.NET’s caching features for the first time, the
first thing they will notice is the speed increase. In the overall user experience, this
is one of the most important impressions that you can make. In the following sec-
tion, I’ve listed several of the best uses for the different methods of caching.

www.syngress.com

Implementing Caching
When building your Web application, it is best to not implement caching
on the initial build. There are several reasons for this, the primary being
ease of debugging. You will find that it is much easier to get an appli-
cation completely debugged without having to deal with the question
of cached pages and data. When you have the application debugged,
begin adding in the caching features of ASP.NET where they are most
effective. You will see an immediate performance increase in your appli-
cation, as well as make your debugging process much faster by fol-
lowing this process.

A second advantage of this method is that you have an opportunity
to set a baseline for your application. As memory resources on the server
become scarce, cached data is dumped in order to conserve resources.
With this baseline performance data, you can provide a worst-case
scenario for your application.

Debugging…

166_ASPNET_06.qxd 11/26/01 3:05 PM Page 293

294 Chapter 6 • Optimizing Caching Methods

Output Caching
Output caching is best used when an entire page needs to be cached. Examples
are as follows:

■ A semi-static page with data pulled from multiple locations where the
data is known not to change too frequently, such as a message board.

■ A page that tends to take a long time to load due to its size and
complexity.

■ A page accessed very frequently even if it contains no dynamic data.

Fragment Caching
You can use fragment caching when only some portions of a page need to be
cached and other portions of the same page do not. Examples are as follows:

■ Any page that remains mostly static, with the exception of some data
pulls, should have those data pulls loaded into a user control and cached.

■ A page that must be constantly updated, with the exception of some
areas, should have those areas loaded into a user control and cached.

■ Any data accessed frequently between multiple pages within an applica-
tion can be loaded into a user control and cached so that any page can
access the cached data.

Data Caching
Data caching is best used for caching data at the object level. Examples are as
follows:

■ Any page too dynamic for output or fragment caching should have data
caching implemented where possible.

■ An application with objects that tend to be slow-loading should be
cached on first use and used from the cache thereafter.

■ Objects frequently accessed from multiple pages within an application
should be cached for simple access from any page in the application.

www.syngress.com

166_ASPNET_06.qxd 11/26/01 3:05 PM Page 294

Optimizing Caching Methods • Chapter 6 295

Summary
High performance is one of the most important aspects of any Web application.
With the use of ASP.NET’s caching features, you can dramatically increase the
performance of your application.Any application can benefit from the use of the
caching features; by using the correct types of caching in the correct locations,
you can optimize these benefits.

Output caching is used to cache entire pages. It is accessed either through the
@ OutputCache directive or programmatically through the HttpCachePolicy cache.
By setting the duration option, you can control the length of time that your page
is stored in the cache.The additional features provided by the use of the
VaryByParam, VaryByHeader, and VaryByCustom parameters enable you to control
the various versions of your page that are stored in the cache.

Fragment caching is used to cache portions of pages when an entire page is
unable to be cached, or in a situation where caching the entire page is inefficient.
Fragment caching is used by breaking out portions of your code into user con-
trols and including the @ OutputCache directive at the top of your user control.
You can also use the HttpCachePolicy to access the features of fragment caching.
The parameter of VaryByControl is included, in addition to VaryByParam, to give
you control over the versions of the user control stored in the cache.

Data caching is the lowest level of caching available and enables you to cache
data at the object level.Three methods are used to call the data caching functions.
The first is the cache method, which is used in the same method that you would
use a dictionary.There are no additional options available when using data
caching with this method.The second and third methods are cache.add and
cache.insert.The syntax and usage of these two methods are identical, and the dif-
ference between the two is that cache.add returns an object.

Accessing data caching by using the cache.add and cache.insert methods provides
you with several options to control the cached data.The first option is the speci-
fication of files, directories, and other cache keys that the cached object is depen-
dent upon.The second option is the use of two methods to specify the length of
time that the object is stored in the cache.The third is the setting of priority
levels for your cached data. By using priority levels, you control the order in
which cached data is removed when ASP.NET purges the cache due to a lack of
memory resources or infrequent access.The final option is the ability to specify a
callback delegate when the object is removed from cache.The reason the object
was removed from the cache as well as the value of the object at the time it was
removed are specified to the callback delegate, and you can take any actions
necessary based on this information.

www.syngress.com

166_ASPNET_06.qxd 11/26/01 3:05 PM Page 295

296 Chapter 6 • Optimizing Caching Methods

Solutions Fast Track

Caching Overview

Caching is used to increase performance of your Web application. It does
this by storing frequently accessed data in memory.

ASP.NET provides three different types of caching: output caching,
fragment caching, and data caching.

The proper balance of caching and usage of system resources is key to
increasing overall application performance.

Output Caching

Output caching caches an entire page, and you can cache multiple
versions of the page by the use of available parameters.

Output caching is accessed through either the @ OutputCache directive
or the HttpCachePolicy class.

The options to control data stored with output caching are:
VaryByParam,VaryByHeader, and VaryByCustom.

Fragment Caching

Fragment caching caches a portion of a page.This is done by breaking
your code out into user controls and caching the control.

Fragment caching enables you to take advantage of caching features
when you are unable to cache the entire page.

The options to control data stored with fragment caching are:
VaryByParam and VaryByControl.

Data Caching

Data caching caches individual objects.

There are three methods of putting data into the data cache: cache,
cache.add and cache.insert.

www.syngress.com

166_ASPNET_06.qxd 11/26/01 3:05 PM Page 296

Optimizing Caching Methods • Chapter 6 297

Using the cache.add and cache.insert methods provide you with options to
control cached data based on dependencies, duration, and priority as
well as specifying a callback delegate.

Best Uses for Caching

Use caching whenever possible to increase the performance of your
application.

Keep in mind the tradeoff between system memory resources and the
caching of data when planning your caching policy.

Use the correct type of caching at the correct points in your application
for the highest performance increase possible.

Q: I have been asked to migrate an application from ASP to ASP.NET. In the
ASP application, several third-party utilities have been used to provide for
caching. Should I use these or use ASP.NET’s internal caching?

A: Use ASP.NET’s caching when possible.With automatic scavenging features
and integrated memory management,ASP.NET provides a more tightly inte-
grated caching system than existing third-party utilities.

Q: Within my application, there is a table populated with data from several dif-
ferent databases. How could I best implement caching in order to share this
populated table between multiple pages of my application?

A: Use fragment caching to cache a user control that builds your table. Items
stored in the cache are accessible throughout the application.

Q: I am concerned about the use of memory on my server. Prior to imple-
menting caching, the memory utilization of the system was fairly low, but

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

166_ASPNET_06.qxd 11/26/01 3:05 PM Page 297

298 Chapter 6 • Optimizing Caching Methods

after adding the caching features to every page of my application, the
memory utilization has gone up quite a bit. Is it possible to add so many
items to the cache that I begin to run into a lack of memory resources?

A: This is possible if all of your items are cached using data caching with the
parameters set to never remove the data from cache. However, by caching any
data without this parameter opens the cached data up to be removed from
the cache if the system becomes low on resources.

Q: Which is the overall best method of caching?

A: There is no “best” method. Each of the different caching options apply
under different circumstances, and all of them provide an overall application
performance increase when used properly.

www.syngress.com

166_ASPNET_06.qxd 11/26/01 3:05 PM Page 298

Introduction to
ADO.NET: A Simple
Address Book

Solutions in this chapter:

■ Understanding the Changes in ADO.NET

■ Creating Connection Strings

■ Creating an Address Book Application

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 7

299

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 299

300 Chapter 7 • Introduction to ADO.NET: A Simple Address Book

Introduction
ADO.NET is the latest implementation of Microsoft’s universal data access strategy.
In the past few years we have gone through many changes to classic ADO as
Microsoft made changes, bug-fixes, and enhancements to the venerable libraries.
These libraries have made the foundation for many Web sites and applications that
are in place today.ADO.NET will be no different in this respect, as Microsoft is
positioning ADO.NET to be the primary data access technology for the .NET
Framework.This will ensure that the data access architecture is mature and robust,
since all the Common Language Runtime (CLR) languages will be using these
namespaces for their primary means of communicating with data providers.

Flexible and efficient data access technologies are at the heart of dynamic
Web sites and Web applications. Classic ADO serialized data in a proprietary pro-
tocol that limited its reach, and it could have been made more efficient.
ADO.NET serializes data using XML.This allows ADO.NET to take advantage
of a standards-based approach to moving data back and forth in your applications.
With rich support for any data source that can create or consume XML,
ADO.NET is truly the data access technology for current and future applications.
Through ADO.NET, you are able to connect to a myriad of data sources with
the speed and flexibility that today’s businesses require.

The goal for the developers of the ADO.NET architecture is to continue
the tradition of ADO by further removing the complexities of interacting with
different data providers, and shielding you from the intricacies that would inter-
fere with the primary mission—packing functionality and usefulness into your
applications.

This chapter will delve into the common strategies for viewing, editing, and
deleting data in the various ways that ADO.NET allows.The primary data source
for the examples will be SQL Server 2000, with Access 2002 as an alternative.
The sample application is a straightforward address book.The architecture of our
sample is very simple, in order to allow us to concentrate on the task at hand.We
will step through the application and discuss some of the best uses of ADO.NET.

Understanding the Changes in ADO.NET
As mentioned above,ADO.NET has a relatively long history.As far as software
development goes, if you are going to make dramatic enhancements, it is some-
times necessary to start from scratch, taking what you learned from the last
implementation and looking forward with wisdom and clairvoyance. More than

www.syngress.com

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 300

www.syngress.com

likely, it will result in a product that is not backward compatible and that requires
significant change to bring older applications up to par.

The same could be said for ADO.NET. It is a vast departure in some ways,
but not in others. Suffice to say that you will have to change your existing code
to make it work in the ADO.NET world.

To start with, let us talk about the foundation.ADO.NET has taken XML to
heart with rich support for XML data, both as a data consumer and as a data
provider. Later versions of classic ADO had some support for XML, but the
format was difficult to use unless you were exchanging it with another ADO
client.The XML documents that ADO.NET creates are consistent with the XML
specification and are what is known as “well-defined documents,” making them
suitable for consumption by any data access technology that understands XML.
You can take a plain XML document with just a root node and open it in
ADO.NET, add data to it, and save it back out.

The Recordset is dead.ADO.NET has a couple of new ways to serve data,
which made the Recordset obsolete.These new objects are the DataSet and the
DataReader. The DataSet has really made the classic ADO Recordset object obsolete
by providing functionality that goes far beyond what the Recordset was able to
provide.At the heart of the Recordset was the cursor.The classic ADO connection
and Recordset objects both had a property to set the location of the cursor, either
client-side or server-side.This provided a source for confusion, and enabled pro-
grammers to open scrolling, updatable cursors directly on the database server.This
type of cursor is very expensive for the server to create and maintain. Scrolling,
updatable cursors definitely have their uses, and will continue to fill a niche in
data access applications.

The DataSet is really an in-memory relational database.The block diagram in
Figure 7.1 shows the many collections in a DataSet, namely the DataTables col-
lection, DataViews collection, and DataRelations collection.A programmer will
create one or more DataTable objects in a DataSet and “fill” them with data.A
DataTable contains a collection of DataRows, each of which contains a collection
of DataColumns.We can optionally create DataViews based on these DataTables,
and even define relations to enforce data integrity.Again with all this function-
ality we really don’t have the need for a Recordset object.

The process of filling a DataTable with data is simple, and provides us with a
copy of the data from the data source.The DataSet does not maintain a connec-
tion to the data source.With this copy of our data, the application can enable the
user to add, edit, and remove data.The application can then enable the user to
save this data back to the original data source.As a matter of fact, this data can be

Introduction to ADO.NET: A Simple Address Book • Chapter 7 301

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 301

302 Chapter 7 • Introduction to ADO.NET: A Simple Address Book

saved to any other data source, persisted to disk, and/or transferred just as if it
were any other file.The key to this functionality is the reliance upon XML, and
the disconnected nature of ADO.NET.

The DataSet requires a DataAdapter to actually interact with a data source.The
DataAdapter represents the connection to a data source and the commands used to
communicate with the data source to “fill” a DataSet or update a data source.After
we are finished adding or updating data in the DataSet, the application would

www.syngress.com

Figure 7.1 Object Model for the DataSet

DataSet

Relations

Table Collection

DataTable

Rows

DataRelation

DefaultView

ChildRelations

ParentRelations

Constraints

Columns

DataColumn

DataRow

PrimaryKey

DefaultView

DataRelation

DataRelation

DataColumn

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 302

Introduction to ADO.NET: A Simple Address Book • Chapter 7 303

then call the Update method of the DataAdapter to INSERT, UPDATE, and
DELETE records as appropriate at the data source.

Note that you don’t have to commit your changes back to the original
source; that is, you can transfer data to another data source as long as you have a
DataAdapter that understands how to communicate between the DataSet and the
final data source.This really serves to emphasize the total and complete discon-
nected nature of ADO.NET.

The other thing to keep in mind, especially since we are developing for
ASP.NET, is that since a DataSet is a disconnected copy of our data, it is most
suitable for small amounts of data. For ASP.NET, one would expect to find most
of the work of retrieving data to be done using a DataReader, with DataSets being
used for relatively static data that must be retrieved often.A DataSet in this sce-
nario could be used at the session level to save some processing at the data
source. For example, a Web site might have a drop-down list that contains the 50
states in the United States. If this drop-down list is used more than once on a
page, and the number of states is static, we could fill a DataSet and bind every
instance of the drop-down list to this DataSet.This way we hit the database once
for all 50 states and for all instances of the drop-down list, thus saving many
database hits.

The DataReader can be thought of as a firehose Recordset.A firehose Recordset
was a nickname given to a read-only, forward-only Recordset in classic ADO. So, a
DataReader is a forward-only, non-updateable stream of data from the data
provider. Consider this as proof of a DataReader’s speed; a DataAdapter creates a
DataReader behind the scenes to populate a DataSet. Because of this simple fact,
the DataReader is very useful for ASP.NET work. In a stateless environment such
as the Internet, fast access to the data is very important. It may be wasteful to
retrieve this data into a DataSet, read through it once to render HTML, and then
discard it.The point here is to be aware of the overhead that the DataSet has and
use it when it makes sense.

The next item to discuss is the idea of Managed Providers. Managed Providers
are namespaces that are written specifically to take advantage of the strengths of a
particular data source.The ADO.NET Beta 2 release shipped with two Managed
Providers: System.Data.OleDb and System.Data.SqlClient.The idea of Managed
Providers is somewhat different from classic ADO where the Provider property
dictated the data source you were connecting to. For example, if you were con-
necting to a Microsoft access database, you would use the Microsoft.Jet.OLEDB.4.0
as the Provider attribute in your connection string. For SQL Server, you would use

www.syngress.com

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 303

304 Chapter 7 • Introduction to ADO.NET: A Simple Address Book

“SQLOLEDB.1” as the Provider attribute. Every thing else about the connection
object would be the same.

In the case of the System.Data.OleDb namespace, we select the OLEDB
provider in much the same way that we selected them in classic ADO.We specify
the Provider attribute in the connection string. In the case of the System.Data
.SqlClient namespace, Microsoft has written this namespace to bypass the OLEDB
protocol and instead use the Tabular Data Stream (TDS) protocol.The TDS pro-
tocol is much more efficient than the OLEDB protocol and allows for much
greater speed when working with data.The downside is that the System.Data
.SqlClient namespace can only be used to interact with SQL Server versions 7.0
and up; therefore, we do not need to specify the Provider attribute when using the
System.Data.SqlClient namespace.These providers are explained in more detail
later in the chapter.

For example, a connection to SQL Server in VB6 would look like this:

Dim oConn as ADODB.Connection

Dim strConn as String

strConn = "Provider=SQLOLEDB.1;Password=chapter7;User

ID=Chapter7;Initial _

Catalog=Chapter7;Data Source=localhost

SET oConn = New ADODB.Connection

It becomes this in VB.NET, using the OleDb namespace:

Dim oConn as OleDbConnection

Dim strConn as String

strConn = "Provider=SQLOLEDB.1;Password=chapter7;User

ID=Chapter7;Initial _

Catalog=Chapter7;Data Source=localhost

oConn = New OleDbConnection(strConn)

And it becomes this in VB.NET, using the SqlClient namespace:

Dim oConn as SqlConnection

Dim strConn as String

www.syngress.com

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 304

Introduction to ADO.NET: A Simple Address Book • Chapter 7 305

strConn = "Password=chapter7;User ID=Chapter7;Initial _

Catalog=Chapter7;Data Source=localhost

oConn = New SqlConnection(strConn)

Notice the difference in the connection strings in the previous examples.The
major difference in the OleDb connection string and the SqlClient connection
string was the absence of the Provider property in the SqlClient example. If you
leave the Provider property in the connection string for an SqlConnection object,
ADO.NET throws an exception.We discuss connection strings in great detail
later in this chapter.

Supported Connectivity
ADO.NET Beta 2 comes with two namespaces.The System.Data.SqlClient
namespace is used with Microsoft SQL Server version 7.0 and up.The
System.Data.OleDb namespace is more generic and provides services for MS
SQL, MS Access, Oracle, and any other data providers that implement the OLE
DB interfaces. Microsoft has tested the System.Data.OleDb namespace with SQL
Server, MS Access, and Oracle. If your application will be using SQL Server only,
then you can comfortably use the System.Data.SqlClient namespace and take
advantage of the tight integration to the Microsoft SQL Server APIs. If, on the
other hand, you are not sure, or you know for sure that your application will use
a variety of data sources, then you should use the System.Data.OleDb namespace.

With the namespaces explained, we can discuss connectivity.As stated above,
ADO.NET is connectionless by nature.That is, we do not open a connection and
maintain it.The DataReader is sort of a departure from this in the respect that a
DataReader is connected while it is streaming data, but when the DataReader gets to
the end of the data, it releases the connection. If you need truly connected scrolling
cursors to work with, then you are going to have to go back to classic ADO with
the Interop libraries and do things the old-fashioned way. Since we are building a
high-performance address book in our example in this chapter, we are not inter-
ested in maintaining a connection.We will concentrate on the DataReader object,
using the System.Data.SqlClient and the System.Data.OleDb namespaces.

The System.Data Namespace
The System.Data namespace is the foundation for ADO.NET.This namespace
contains the classes that form the ADO.NET architecture.The heart of the archi-
tecture is the DataSet, which contains a collection of DataTables.We will go into

www.syngress.com

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 305

306 Chapter 7 • Introduction to ADO.NET: A Simple Address Book

detail about these objects later in the chapter.The classes in this namespace are
data source agnostic; therefore they are independent of the data source and the
method used to connect to it.

The System.Data namespace is imported in the Code-Behind files in our
samples.This keeps us from having to fully qualify the objects in the class defini-
tion. For example, Figure 7.2 (A and B) shows the difference between fully quali-
fying an object name and using the Imports keyword for VB.NET, and the Using
keyword in C#.NET.

Figure 7.2 (A and B) Difference between Fully Qualified Namespace and
Using the Imports or Using Keywords

Figure 7.2A Fully Qualified Namespace in C#.NET

// Fully qualified SqlConnection

oConnection = System.Data.SqlClient.SqlConnection(strConn);

// Simplified

using System.Data.SqlClient;

oConnection = SqlConnection(strConn);

Figure 7.2B Fully Qualified Namespace in VB.NET

'Fully qualified SqlConnection

oConnection = System.Data.SqlClient.SqlConnection(strConn)

'Simplified

Imports System.Data.SqlClient

oConnection = SqlConnection(strConn)

Here are some of the common classes in the System.Data namespace:

■ DataSet

■ DataTable

■ DataView

■ DataColumn

■ DataException

System.Data namespace contains interfaces that are implemented by .NET
data providers.You can find more information on these interfaces in the Visual

www.syngress.com

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 306

Introduction to ADO.NET: A Simple Address Book • Chapter 7 307

Studio .NET Documentation, and I urge you to dig into the supplied documen-
tation. Microsoft has put a great deal of effort into the documentation effort.

The System.Data.Common Namespace
The classes in the System.Data.Common namespace are shared throughout the
ADO.NET by the various data providers.These classes form the base classes for
common objects in the SqlClient and the OleDb namespaces.This namespace
contains the general classes for connecting to data sources, filling DataSets,
column mapping, and some simple events. I have included it here for complete-
ness; however, you won’t be using it much.The following namespaces play a
much bigger role in managing data in ADO.NET.

The System.Data.OleDb Namespace
The System.OleDb namespace provides objects that enable us to connect to OLE-
DB providers. OLE-DB is an open specification for data providers that allow for
flexible access to many Microsoft and third-party data sources.This provides us
with one data access technology to connect to and manipulate data in several
database products, without having to change libraries.The System.Data.OleDb
namespace has been tested by Microsoft to work with Microsoft Access,
Microsoft SQL Server, and Oracle. In theory, any data provider that has an OLE-
DB interface can be used in ADO.NET.

ODBC or, Open Database Connectivity, is part of the OLE-DB specification,
but Microsoft did not include it with the Beta 2 release. Microsoft has subse-
quently released the ODBC namespace for download as a separate installation.
Microsoft considers OLE-DB to be the replacement for ODBC, and for the most
part it has replaced it. Our example here will use System.Data.OleDb to connect
to an Access 2002 version of the Address Book. More information can be found
on OLE-DB at www.microsoft.com/data/oledb/.

Some common classes in the System.Data.SqlClient namespace are as follows:

■ OleDbConnection

■ OleDbCommand

■ OleDbDataAdapter

■ OleDbDataReader

www.syngress.com

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 307

308 Chapter 7 • Introduction to ADO.NET: A Simple Address Book

The System.Data.SqlClient Namespace
The System.Data.SqlClient namespace inherits from the System.Data.Common
namespace, but uses the TDS protocol that is proprietary to Microsoft SQL
Server. Because of the tight integration with SQL Server, developers will only use
objects derived from the System.Data.SqlClient namespace to connect to and
manipulate data in Microsoft SQL Server.This namespace will connect to
Microsoft SQL Server versions 7.0 and higher.We will be using SQL Server
2000 for our example, but you could just as easily use SQL 7.0.

The System.Data.SqlClient classes have the same properties, methods, and
events as the System.Data.OleDb class, which makes switching back and forth
very easy.Add to this the disconnected nature of the System.Data namespace from
which most our data objects are derived, and you get the idea of how easy it is to
pull and replace one Managed Provider with another.

Some common classes in the System.Data.SqlClient namespace are as follows:

■ SqlConnection

■ SqlCommand

■ SqlDataAdapter

■ SqlDataReader

The System.Data.SqlTypes Namespace
The System.Data.SqlTypes namespace contains the classes that map .NET data
types to native SQL Server data types.This may sound trivial; however, there are
many issues with converting data from one type to another that can cause loss of
precision.The classes in the System.Data.SqlTypes provide a safe and more efficient
means of handling these conversion issues. Figure 7.3 (A, B, C, and D) is an
example of the different uses for the objects in the System.Data.SqlTypes name-
space, and the SqlDbType enumeration in the System.Data namespace.

Figure 7.3 (A, B, C, and D) Difference between SqlTypes Namespace and
the SqlDbType Enumeration

Figure 7.3A Using SqlTypes in C#.NET

System.Data.SqlTypes.SqlInt32 iAddrsID;

www.syngress.com

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 308

Introduction to ADO.NET: A Simple Address Book • Chapter 7 309

Figure 7.3B Using SqlTypes in VB.NET

Dim iAddrsID As System.Data.SqlTypes.SqlInt32

To create a command parameter with a VarChar data type:

Figure 7.3C Creating Command Parameters with C#.NET

oCmd.Parameters.Add("@FName", SqlDbType.VarChar, 50).Value = FName;

Figure 7.3D Creating Command Parameters with VB.NET

oCmd.Parameters.Add("@FName", SqlDbType.VarChar, 50).Value = FName

Do not confuse the SqlDbTypes enumeration in the System.Data namespace
with the System.Data.SqlTypes namespace.The SqlDbTypes enumeration is useful
for specifying the data type of a parameter that belongs to a Command object.The
classes in System.Data.SqlTypes are used for declaring variables.

The SqlDbType and the System.Data.SQLTypes may sound the same, but they
are very different in nature and in use. Refer to Table 7.1 for the mapping from
native SQL Server data types to the types provided in System.Data.SqlTypes and
to the SqlDbTypes enumeration.

Table 7.1 Data Type Mapping

SqlDbType from
Native SQL Server System.Data.SqlTypes System.Data

Bigint SqlInt64 BigInt
Binary SqlBinary Binary
Bit SqlBit Bit
Char SqlString Char
Datetime SqlDateTime DateTime
Decimal SqlNumeric Decimal
Float SqlDouble Float
Image SqlBinary Image
Int SqlInt32 Int
Money SqlMoney Money
Nchar SqlString NChar
Ntext SqlString NText

www.syngress.com
Continued

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 309

310 Chapter 7 • Introduction to ADO.NET: A Simple Address Book

Numeric SqlNumeric Numeric
Nvarchar SqlString NVarChar
Real SqlSingle Real
Smalldatetime SqlDateTime SmallDateTime
Smallint SqlInt16 SmallInt
Smallmoney SqlMoney SmallMoney
sql_variant Object Variant
Sysname SqlString VarChar
Text SqlString Text
Timestamp SqlBinary TimeStamp
Tinyint SqlByte TinyInt
Uniqueidentifier SqlGuid UniqueId
Varbinary SqlBinary VarBinary
Varchar SqlString VarChar

Creating Connection Strings
The first step to connecting to a data source, after choosing the Managed
Provider, is to create the connection string.The connection string is a list of
key/value pairs that the Connection object will parse; it will use the information to
find the Data Source, authenticate, and establish a connection. Depending on the
namespace used, the connection string will vary a little. Basically the connection
string for a SqlConnection does not have the Provider attribute, while the connec-
tion string for an OleDbConnection does.

Connection to SQL Server is done using the System.Data.SqlClient name-
space.This namespace contains the classes for the SqlConnection object.As
described earlier, the connection string is the hardest part of creating a connec-
tion.Table 7.2 lists some common keys, and the default values with some simple
explanations.

www.syngress.com

Table 7.1 Continued

SqlDbType from
Native SQL Server System.Data.SqlTypes System.Data

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 310

Introduction to ADO.NET: A Simple Address Book • Chapter 7 311

Table 7.2 Connection String Properties

Name Default Description

Connect Timeout 15 Seconds to try and make the con-
-or- nection. When these are up, an
Connection Timeout exception is thrown.
Data Source <User Defined> The name or IP address of the SQL
-or- Server to make the connection
Server with. For servers with multiple
-or- instances of SQL Server, this would
Address be <servername>\
-or- <instancename>.
Addr
-or-
Network Address
Initial Catalog <User Defined> The name of the database. If this is
-or- not specified you will get a connec-
Database tion to the default database

defined for the User ID.
Integrated Security ‘false’ Whether SQL Server will use the NT
-or- user credentials, or expect a SQL
Trusted_Connection Server username and password.
Password <User Defined> The password for the SQL Server
-or- account logging on. For integrated
Pwd security, this is not specified.
Persist Security Info ‘false’ When set to ‘false,’ security-

sensitive information, such as the
password, is not returned as part of
the connection if the connection is
open or has ever been in an open
state. Resetting the connection
string resets all connection string
values including the password.

User ID <User Defined> The SQL Server login account.

For example, this connection string could be used to connect to a SQL
Server that is named “Dataserver” with a user name of “Chapter7” and a pass-
word of “Chapter7.”The initial catalog, or database, to connect to is “Chapter7”:

strConn = "Password=chapter7;User ID=Chapter7;Initial _

Catalog=Chapter7;Data Source=Dataserver"

www.syngress.com

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 311

312 Chapter 7 • Introduction to ADO.NET: A Simple Address Book

Now you have a connection string that you can use with an SqlConnection
object.A trick you can use is to create a text file with .udl as the file extension.
Executing this file would start the connection wizard and enable you to step
through creating the connection string.When finished, open the file in notepad
and copy the completed connection string. For an SqlConnection you would
remove the Provider attribute.

Where to Put the Connection String
In the Address Book example, you are putting the connection string in the
web.config file.The web.config file has a root node named <configuration>.
Under this node is the <system.web> node and you will add another node at this
level called <AppSettings>.You then add a new key using the <add> tag.This new
item is a key/value pair that you refer to when you need a connection string.

The web.config is an XML document that belongs in the root of your Web
application. Figure 7.4 is the abbreviated text from the web.config in the sample
Address Book which is included on the CD that accompanies this book. Notice
the relationship of the system.web node and the AppSettings node; they are at the
same child level in the document.

Figure 7.4 web.config (cs\web.config)

<configuration>

<system.web>

……

</system.web>

<appSettings>

<add key="appStrConnection" value="PWD=pword;UID=webUser;…">

</AppSettings>

</configuration>

To retrieve the value in the data access layer or Code-Behind file, you use the
syntax in Figure 7.5 (A and B).

Figure 7.5 (A and B) Retrieving a Connection String from the web.config File

Figure 7.5A C#.NET

strConnection = ConfigurationSettings.AppSettings("appStrConnection");

www.syngress.com

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 312

Introduction to ADO.NET: A Simple Address Book • Chapter 7 313

Figure 7.5B VB.NET

strConnection = ConfigurationSettings.AppSettings("appStrConnection")

For ASP 2, and 3, Microsoft Developers Network—the help files for many
Microsoft development tools—has many examples of connection strings in the
Global.asa.The Global.asa could be compromised using a buffer overrun attack
with the end result of giving out the user name and password to your customers’
data.The managed code nature of the Common Language Runtime should elim-
inate the buffer overrun attack as a source of entry for unauthorized access.You
should feel secure with leaving the connection string in your web.config file;
however, heed the advice in the sidebar titled “Connection Strings and Security.”

www.syngress.com

Connection Strings and Security
In past versions of ASP, it was common to place the connection string in
the Global.asa. This had two problems. First, the file was well known.
Its name and location were dictated by the architecture of ASP. Second,
this file could be compromised using simple attacks. The attacks were
mitigated by patching IIS, but the fact remained that an incorrectly con-
figured server could allow access to this file.

Due the compiled nature of the Common Language Runtime and
ASP.NET it is unlikely that these problems will follow you into the future,
however, it is still recommended to leave all sensitive data out of the
AS(x)X files in ASP.NET. You do have a few options, such as the
web.config file in the Address Book example. You can create a compo-
nent that does nothing but return the connection string to a properly
authenticated caller. You could create a text file, and encrypt the con-
nection string in this file. Read it on application start and save it in a
variable. This is one area where creativity will pay off.

In addition to putting the connection string in a safe place, the
username you use for the application should have minimum access
rights to get the job done. In SQL Server this would entail creating a user
who has execute permissions to stored procedures but who does not
have select permissions to the tables. Then all data access and manipu-
lation is handled using stored procedures. This is a very simple example
but is very powerful, at least as far as SQL Server is concerned.

Developing & Deploying…

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 313

314 Chapter 7 • Introduction to ADO.NET: A Simple Address Book

Creating an Address Book Application
The example application is a simple address book.This example will explore the
major topics for data access.We will cover inserting, selecting, and updating data
using a simple ASP.NET page with a DataList and a couple of templates. Figure
7.6 contains the table layout for the application.This table has seven columns of
various data types plus a primary key that is of data type Int.The primary key is
an auto-incrementing field that will be used to uniquely identify a row.

The Web form consists of a DataList that is bound to the address table on
page load.A DataList is a server-side control that you format using templates.You
can bind data to a DataList from a DataReader or a DataSet. Our example uses a
DataReader, and this is the most common scenario you should expect to find.The
DataSet is a wonderful tool, with a lot of power. For our example we are going
stick to the DataReader; the basics of the DataSet will be explained at the end of
the chapter.

Address.aspx is the primary form for the Address Book. On load you bind the
data to the DataList and display the records in a read-only grid. Refer to Figure 7.7
for a screen shot of the standard view.

Notice the Edit link in the left-hand column of each row. Click this button
to activate the edit template. Several things are going on here. First, when we cre-
ated our DataList in the .aspx file, we specified an OnEditCommand.This com-
mand receives two parameters from the caller, or in this case, the edit link from
our row. Using these parameters in the subprocedure specified by the
OnEditCommand property of the DataList, we can interrogate the row and read its
values at runtime.We then set the editItemIndex of the DataList to the ItemIndex
of the arguments were passed into the subprocedure.This allows the DataList to
display the row we selected in our Edit template.The Edit template consists of a
table with textboxes and three buttons.These buttons enable us to delete, update,
and cancel.

www.syngress.com

Figure 7.6 tblAddress Layout

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 314

Introduction to ADO.NET: A Simple Address Book • Chapter 7 315

Figure 7.8 shows the resulting Edit template.The DataList enables us to specify
several templates.Table 7.3 is a listing of the templates and a basic description.

www.syngress.com

Figure 7.7 Standard View of Our Address Application

Figure 7.8 Editing a Record in Our Address Book

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 315

316 Chapter 7 • Introduction to ADO.NET: A Simple Address Book

Table 7.3 Templates Supported by the DataList

Template Name Description

HeaderTemplate Optional template provides for specifying the
layout and content of the header. If this template is
not defined, a header will not be displayed.

ItemTemplate This template is the default layout for each row in
the DataList. This template will be repeated for
each row in the Data that is bound to the DataList.
This template is required.

AlternatingItemTemplate This template is substituted on a configurable basis
for the ItemTemplate. It will default to replacing
every other ItemTemplate, but could be configured
to replace every 2, 3, 4, etc.

SelectedItemTemplate Optional template for displaying the selected row
in the DataList.

EditItemTemplate Optional template that will specify the format and
layout of the row to be edited in the DataList.

SeparatorTemplate Optional template to separate each row. If this
template is not specified, no separator will be
displayed.

FooterTemplate Optional template will provide layout for the footer
of the DataList. If a footer template is not specified,
then a footer will not be rendered.

To add records, insert a blank record with some default data and then bind
the DataList to the new record in edit mode.The stored procedure to add the
record returns the Identity of the new record.You use this new identity to call
the getByID function of the DAL, and bind the resulting DataReader to your
DataList.You then set the EditItemIndex to the first record in the DataReader and
let the Edit Template fill up with your new record. Figure 7.9 shows the DataList
with your new record in edit mode.After you finish adding your data, click the
Update button and the data is posted back to the database.The Page_OnLoad
event populates the DataList, and you see your new record.

To get started with the sample application, you can find the sample database
on the CD that accompanies this book. Follow the directions for your database as
outlined in the following steps.

www.syngress.com

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 316

Introduction to ADO.NET: A Simple Address Book • Chapter 7 317

To set up the Database in SQL 2000:

1. You must have SQL Server 2000 installed.You must have 4 MB of space.

2. Copy the following files from this book’s CD to your local hard drive.

■ db\Chapter_7.mdf

■ db\Chapter_7.ldf

3. Open the SQL Server Enterprise Manager and right-click on the
Databases node. Select All Tasks\Attach Database, and select the
Chapter_7.mdf from the files you copied to your hard drive.

To set up the database in SQL 7.0:

1. You must have SQL Server 7.0 installed.You must have 4MB of space.

2. Open the Query Analyzer. Choose File\Open, and navigate to the
Chapter7\DB Setup directory. Select the genDataBase.sql file and
click OK.

3. Edit the script by replacing the file path <your path here> with the
location you would like your database files.

4. Execute the script by pressing the F5 button.The script should have run
without errors.

www.syngress.com

Figure 7.9 Adding a Record to the Address Book

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 317

318 Chapter 7 • Introduction to ADO.NET: A Simple Address Book

To set up the database in Access:

1. Copy the Chapter7.mdb file from the db directory on the CD-ROM
that accompanies this book to your application directory.

The first step to create the Web application is to open Visual Studio .NET
and create a new application.We will call it Chapter7_cs (if you are using VB,
then name the application Chapter7_vb).Then we will copy the front-end code
into the project. Finally we will step through adding the DAL into our project
and tying it to the front end.

1. Copy the following files from the CD into the root of your application:

■ cs\Address.aspx (or vb\Address.aspx for VB)

■ cs\Address.aspx.cs (or vb\Address.aspx.vb for VB)

■ cs\Address.css (or vb\Address.css for VB)

2. Right-click on the Project name in the Solution Explorer, and select
Add\Class from the pop-up menu.

3. Name the class CDalAddress.cs(.vb for VB.NET) and click Open.
Visual Studio will create the file and open it in the visual designer
window.

4. Right-click on our new file in the solution explorer and select View
Code.

After you have performed the steps above, the code similar to Figure 7.10
(A and B) should have been generated for you.

Figure 7.10 (A and B) Empty Class Created Using the Visual Studio
Class Wizard

Figure 7.10A Empty Class in C#.NET

using System;

namespace Chapter7_cs

{

/// <summary>

/// Summary description for CDalAddress.

/// </summary>

public class CDalAddress

{

www.syngress.com
Continued

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 318

Introduction to ADO.NET: A Simple Address Book • Chapter 7 319

public CDalAddress()

{

//

// TODO: Add constructor logic here

//

}

}

}

Figure 7.10B Empty Class in VB.NET

Public Class CDalAddress

End Class

This will be our workspace.The presentation has already been taken care of
so we will only be concerning ourselves with the data access code in our
CDalAddress class.

Connecting to a Database: Exercise
Making a database connection in ADO.NET is really very simple.The most diffi-
cult part of creating the connection is the Connection string.This is a semi-colon
delimited string of name—value pairs that we discussed earlier in the chapter. If
you have worked with ODBC, or even OLE-DB, then they are basically the
same with a twist for the SqlConnection object.

It has become common to create what is referred to as the DAL, or Data
Access Layer.This implies a multi-tiered approach to application architecture, and
ADO.NET lends itself quite well for this purpose. Seeing as how the System.Data
namespace doesn’t really care about the data source or connection, the data con-
tainer objects such as the DataSet and the DataList can be populated from any
provider that can understand how to connect between them and the data source.
So, if our Web form has a page-level DataList, it can be populated from an
OleDbDataReader object, or the SqlDataReader object.We can decide on the data
source at runtime if we have to, with very little effort. But for now let’s focus on
the connection part of the DAL in our example.

www.syngress.com

Figure 7.10A Continued

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 319

320 Chapter 7 • Introduction to ADO.NET: A Simple Address Book

Create a new class file in Visual Studio and add the code in Figure 7.11 (A
and B) to the body of the file. Name this file CDalAddress.vb for VB.NET and
CDalAddress.cs for C#.NET.

Figure 7.11 (A and B) Implementing the Connection String Property in the
Data Access Layer

Figure 7.11A C#.NET (cs\CDalAddress.cs)

using System;

using System.Data;

using System.Data.SqlClient;

using System.Data.SqlTypes;

using System.Data.OleDb;

namespace Chapter7_cs

{

/// <summary>

/// Summary description for CDalAddress.

/// </summary>

public class CDalAddress

{

string strConStr;

string strError;

SqlConnection oConn;

// OleDbConnection oConn;

public string strConnection

{

get

{

return strConStr;

}

set

{

strConStr = value;

try

{

www.syngress.com
Continued

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 320

Introduction to ADO.NET: A Simple Address Book • Chapter 7 321

this.oConn = new SqlConnection(value);

// oConn = new OleDbConnection(value);

}

catch (Exception e)

{

throw e;

}

}

}

}

}

Figure 7.11B VB.NET (vb\CDalAddress.vb)

Option Explicit On

Imports System

Imports System.Data

Imports System.Data.SqlClient

Imports System.Data.OleDb

Public Class CdalAddress

'// a conneciton string

Private strConStr As String

Private oConn As SqlConnection

'Private oConn As OleDbConnection

Public Property strConnection() As String

Get

Return strConStr

End Get

Set(ByVal Value As String)

strConStr = Value

Try

oConn = New SqlConnection(Value)

'oConn = New OleDbConnection(Value)

www.syngress.com

Figure 7.11A Continued

Continued

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 321

322 Chapter 7 • Introduction to ADO.NET: A Simple Address Book

Catch oleE As OleDbException

Throw oleE

Catch e As SqlException

Throw e

End Try

End Set

End Property

End Class

We now have a class with one property. On the set operation of the
strConnection property, set the private variable strConStr to the Connection string,
and then create the connection with the new operator and the type of connec-
tion we are creating. Figure 7.12 (A and B) illustrates instantiating the Connection
object.

Figure 7.12 (A and B) Instantiating the Connection Object

Figure 7.12A C#.NET

// For a SQL Server only connection

oConn = New SqlConnection(Value);

// For an OleDb connection

oConn = New OleDbConnection(Value);

Figure 7.12B VB.NET

' For a SQL Server only conneciton

oConn = New SqlConnection(Value)

' For an OleDb connection

oConn = New OleDbConnection(Value)

The error handling is self-explanatory; basically you just bubble it back to the
caller.To recap, you set a reference to the namespace, declare a variable of type
SqlConnection, and then call the New operator and pass the connection string into
the constructor. So, creating the connection comes down to three lines of code.

www.syngress.com

Figure 7.11B Continued

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 322

Introduction to ADO.NET: A Simple Address Book • Chapter 7 323

In our sample, we commented out the lines responsible for creating the
OleDbConnection object.That and the different connection string are all it takes to
switch database connections.

Browsing a Database: Exercise
Now that you are connected to the database, you can retrieve some records. Data
retrieval is the most intensive thing that you will do to your database. Online
Transaction Processing, or OLTP, applications are designed for inserting and
updating data quickly.They are not designed for fast and efficient retrieval of
multi-dimensional data. Modern Relational Database technology does a good job
of satisfying most needs, but many people often find themselves needing faster
access to the data than they are currently getting. Faster is better, right? One of
the benefits of ASP.NET are the caching and state management features.They
enable you to connect to a database, return some results, and then cache this for a
specific period of time.This caching can improve performance dramatically, while
reducing the amount of load on the database. It is a true win-win situation.

Our example uses two methods that return data reader objects to the calling
procedure.A Data Reader is a read-only, forward-only cursor.You can bind it to a
DataGrid, a DataList, a DataRepeater, etc.You can only use it once due to its for-
ward-only nature.This is the workhorse for ADO.NET, and especially for data
access in ASP.NET.

Another object for browsing data is the DataSet.You can think of the DataSet
as an in-memory database.You can add DataTables, which are synonymous with
database tables; you can create DataViews, DataRelations, and constraints.The
DataSet is very useful when you are going to access the same data more than
twice in a page hit or session.The thing to keep in mind is that it is not con-
nected to the database. Once you fill the DataTable, it is disconnected from the
data source.The DataTable doesn’t know anything about the database.As far as
ASP.NET goes, DataTables are useful for populating drop-downs with data that
doesn’t change very often, but is used many times in a single session. If you place
a DataSet in a session, beware that the memory is taken up until the session times
out, not just when the user leaves the site. Our example doesn’t use the DataSet,
but a DataSet can be bound to the DataList in the same manner as the
DataReaders are.

Our example uses stored procedures extensively for SQL Server, and raw
SQL for Access. Not all Relational databases create and consume stored proce-
dures the same way; therefore their implementation is specific to the database. In
this example,T-SQL is used to create the stored procedures in SQL Server.

www.syngress.com

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 323

324 Chapter 7 • Introduction to ADO.NET: A Simple Address Book

The first stored procedure gets all the records and orders them Last Name,
First Name. Refer to Figure 7.13 for the code to create the stored procedure.

Figure 7.13 Selecting Data from the Database T-SQL

CREATE PROC usp_tblAddress_sel

AS

SELECT [AdrsID]

, [FName]

, [LName]

, [Phone]

, [EMail]

, [WebPage]

, [Age]

, [Comments]

FROM [dbo].[tblAddress]

ORDER BY [LName], [FName]

This stored procedure doesn’t take any parameters, so we have a couple of ways
to call it. In Access, we would not be able to create the stored procedure, so we will
just have to use the SQL Statement in place of the stored procedure name.We are
going to use the simpler Text CommandType refer to Figure 7.14 (A and B).

Figure 7.14 (A and B) Selecting Data from the Database

Figure 7.14A C#.Net (cs\CDalAddress.cs)

public SqlDataReader getAll()

{

string strSQL = "EXEC usp_tblAddress_sel";

SqlCommand oCmd = new SqlCommand(strSQL, oConn);

// OleDbCommand oCmd = new OleDbCommand(strSQL, oConn);

oCmd.CommandType = CommandType.Text;

try

{

if (oConn.State == ConnectionState.Closed)

{

oConn.Open();

www.syngress.com
Continued

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 324

Introduction to ADO.NET: A Simple Address Book • Chapter 7 325

}

return oCmd.ExecuteReader();

}

catch (Exception e)

{

throw e;

}

}

Figure 7.14B VB.NET (vb\CDalAddress.vb)

Public Function getAll() As SqlDataReader

'Public Function getAll() As OleDbDataReader

Dim oCmd As SqlCommand

'Dim oCmd As OleDbCommand

Dim strSQL As String

strSQL = "EXEC usp_tblAddress_sel"

oCmd = New SqlCommand(strSQL, oConn)

'oCmd = New OleDbCommand(strSQL, oConn)

oCmd.CommandType = CommandType.Text

Try

If oConn.State = ConnectionState.Closed Then

oConn.Open()

End If

Return oCmd.ExecuteReader

Catch oErr As Exception

Throw oErr

End Try

End Function

Notice in our Try Catch block that we are checking the current state of the
connection. If it is closed, then we want to open it.We can check for various
states;Table 7.4 lists the available states and gives a brief description of each one.
The ExecuteReader of our Command object returns a DataReader that we return to
the calling function.

www.syngress.com

Figure 7.14A Continued

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 325

326 Chapter 7 • Introduction to ADO.NET: A Simple Address Book

Table 7.4 Connection States

Connection
State Description

Open Object has located and authenticated the connection, and is
ready for commands.

Closed Not connection to the data source. Default state when a
connection object is created.

Connecting Object is in the process of connecting.
Executing Object is in the process of executing a command.
Fetching Object is retrieving, or fetching data.
Broken Can only happen after a connection is open. To recover from

this, a connection must be closed and the reopened.

In our earlier example, we set the SQL statement to EXEC usp_tblAddress_sel.
EXEC[UTE] is a Transact SQL command to execute a stored procedure and
return the result.The text immediately following it, usp_tblAddress_sel is the
name of the stored procedure.This is the simplest way to execute a stored proce-
dure.We could have also just specified the Select statement instead. For example,
if we were using Access with Jet, it doesn’t support stored procedures so we
would have to create the select statement and send it to the OleDbCommand
object.To change the code for Access, refer to Figure 7.15.

Figure 7.15 Switch from a Stored Procedure to Embedded SQL

The line:
strSQL = "EXEC usp_tblAddress_sel";

Becomes:
strSQL = " SELECT [AdrsID]

, [FName]

, [LName]

, [Phone]

, [EMail]

, [WebPage]

, [Age]

, [Comments]

FROM [dbo].[tblAddress]

ORDER BY [LName], [FName]";

www.syngress.com

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 326

Introduction to ADO.NET: A Simple Address Book • Chapter 7 327

The results are the same.The reason we use stored procedures in SQL Server
is that SQL Server can optimize the query plan and reuse it for subsequent exe-
cutions.This eliminates the parsing, and compiling that takes place when we send
in Embedded SQL. Refer to the sidebar entitled “Embedded SQL Statements”
for an explanation of Embedded SQL. It is more flexible than the stored proce-
dure method, but for 95 percent of database operations, dynamic SQL is not the
only way to get the job done.

The next method returns a particular row identified by the Primary key.We
use the Primary key to uniquely identify a row, so it is a very reliable way of
ensuring that you get exactly the row that you wanted. Figure 7.16 (A and B)
contains the Transact SQL for the stored procedure.

Figure 7.16 (A and B) Selecting a Particular Record

Figure 7.16A T-SQL

CREATE PROC usp_tblAddress_sel_ByID(@AdrsID INT)

AS

SELECT [AdrsID]

www.syngress.com

Embedded SQL Statements
Embedded SQL or Dynamic SQL is a term given to generating SQL state-
ments at runtime and executing it against the database. For Access it is
the only method. For SQL Server, Oracle, DB2, and so on, it is optional.
For SQL Server the stored procedure is preferred for several reasons. SQL
Server can optimize the query plan and cache it for reuse, thus saving
the cost of parsing and compiling the statement every time it runs. Also,
you can execute a stored procedure against a table that you do not have
select access to. SQL Server does this through the ownership chain,
where the owner of an object can create a table and a stored procedure.
They can give you execute permission on the stored procedure, but not
give you select permission on the table. Since they own both objects,
SQL Server will grant the user access to the table, but only through the
stored procedure that the table owner created.

Developing & Deploying…

Continued

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 327

328 Chapter 7 • Introduction to ADO.NET: A Simple Address Book

, [FName]

, [LName]

, [Phone]

, [EMail]

, [WebPage]

, [Age]

, [Comments]

FROM [dbo].[tblAddress]

WHERE [AdrsID] = @AdrsID

Figure 7.16B Access

SELECT [AdrsID]

, [FName]

, [LName]

, [Phone]

, [EMail]

, [WebPage]

, [Age]

, [Comments]

FROM [tblAddress]

WHERE [AdrsID] = <replace with your id>

Even though we must specify a parameter, we can still use the Text
CommandType with our Command object by concatenating the variable to our
command text. Figure 7.17 (A and B) contains the code listing for the getByID
function of our DAL.

Figure 7.17 (A and B) GetByID Function—Use Dynamic SQL to Call a
Stored Procedure

Figure 7.17A C#.NET (cs\CDalAddress.cs)

public SqlDataReader getByID(Int32 AdrsID)

{

string strSQL = strSQL = "EXEC usp_tblAddress_sel_ByID " +

www.syngress.com

Figure 7.16A Continued

Continued

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 328

Introduction to ADO.NET: A Simple Address Book • Chapter 7 329

AdrsID.ToString();

SqlCommand oCmd = new SqlCommand(strSQL, oConn);

oCmd.CommandType = CommandType.Text;

try

{

if (oConn.State == ConnectionState.Closed)

{

oConn.Open();

}

return oCmd.ExecuteReader();

}

catch (Exception e)

{

throw e;

}

}

Figure 7.17B VB.NET (vb\CDalAddress.vb)

Public Function getByID(ByVal AdrsID As Int32) As SqlDataReader

Dim oCmd As SqlCommand

Dim strSQL As String

strSQL = "EXEC usp_tblAddress_sel_ByID " & AdrsID

oCmd = New SqlCommand(strSQL, oConn)

oCmd.CommandType = CommandType.Text

Try

If oConn.State = ConnectionState.Closed Then

oConn.Open()

End If

Return oCmd.ExecuteReader

Catch oErr As Exception

Throw New Exception(oErr.ToString)

End Try

End Function

www.syngress.com

Figure 7.17A Continued

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 329

330 Chapter 7 • Introduction to ADO.NET: A Simple Address Book

Notice how we do not include single quotes? For numerical data we leave
our single quotes off and just send the value.This is a very simple way to send
parameters into a stored procedure. In the “Adding to a Database” exercise that
follows, we explicitly create parameters and return values in them.This is called
output parameters, and they are very useful in certain situations.

Adding to a Database: Exercise
Adding data to the database involves many of the same steps that we took to
select the data.At the database level, the database engine will open the table, navi-
gate to a new row, and put in your data.This is overly simplistic, but covers the
highpoints.

We will use a stored procedure, but this time we will use an output parameter
to return the new primary key value of our new record. In SQL Server this is
done using the @@IDENTITY function. SQL Server will return the last iden-
tity value in your session.This is very important for consistency.We don’t want
the ID of a record that another user committed right after we committed ours.
Figure 7.18 (A and B) contains the text for the stored procedure; note the
Output syntax in the parameter declaration:

Figure 7.18 (A and B) Statements for Inserting Records

Figure 7.18A T-SQL

CREATE PROC usp_tblAddress_ins(

@AdrsID INT = NULL OUTPUT

, @FName varchar(50)

, @LName varchar(50)

, @Phone char(15)

, @EMail varchar(255)

, @WebPage varchar(255)

, @Age tinyint

, @Comments varchar(2000)

)

AS

INSERT INTO [dbo].[tblAddress]([FName]

, [LName]

, [Phone]

, [EMail]

www.syngress.com
Continued

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 330

Introduction to ADO.NET: A Simple Address Book • Chapter 7 331

, [WebPage]

, [Age]

, [Comments])

VALUES(@FName

, @LName

, @Phone

, @EMail

, @WebPage

, @Age

, @Comments)

SET @AdrsID = @@IDENTITY

Figure 7.18B Inserting Records with Access

INSERT INTO [tblAddress]([FName]

, [LName]

, [Phone]

, [EMail]

, [WebPage]

, [Age]

, [Comments])

VALUES(<Replace with @FName>

, <Replace with @LName>

, <Replace with @Phone>

, <Replace with @Email>

, <Replace with @WebPage>

, <Replace with @Age>

, <Replace with @Comments>)

SELECT @@IDENTITY

The syntax for inserting records is very simple:

INSERT <table name> (<columns>n) VALUES (<values>n)

www.syngress.com

Figure 7.18A Continued

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 331

332 Chapter 7 • Introduction to ADO.NET: A Simple Address Book

NOTE

For Access you have to select the @@IDENTITY and return this in a
DataReader, or use the ExecuteScalar method to return a single value.

This results in one record being inserted. Notice how we do not specify the
primary key in our field list or values list. Indecently, these two lists must match
for count and data type, or else SQL Server will throw an error.

Calling the stored procedure from our DAL, we use the same Connection
object, but the Add method is quite different from our earlier code. Specifically,
we are creating parameters and adding them to the parameter collection of our
Command object.The SqlCommand object and the OleDbCommand object both
have a parameter collection, and the same methods for creating and adding them.
Our Add function will take a parameter for each column except the primary key,
and the method will return a value of type Int32.This is equivalent to the SQL
Server data type of INT.They are both capable of holding values between nega-
tive 2,147,483,648, and positive 2,147,483,647.Those are plenty of available IDs
for our contact list. Figure 7.19 (A and B) contains the code for the Add method
of our DAL.

Figure 7.19 (A and B) Inserting Records Using a Command Object with
Declared Parameters

Figure 7.19A C#.NET (cs\CDalAddress.cs)

public Int32 Add(string FName,

string LName,

string Phone,

string EMail,

string WebPage,

Int16 Age,

string Comments)

{

SqlCommand oCmd;

SqlParameter oParam;

string strSQL;

Int32 AdrsID;

www.syngress.com

Continued

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 332

Introduction to ADO.NET: A Simple Address Book • Chapter 7 333

strSQL = "usp_tblAddress_ins";

oCmd = new SqlCommand(strSQL, oConn);

oCmd.CommandType = CommandType.StoredProcedure;

oParam = oCmd.Parameters.Add("@AdrsID", SqlDbType.Int, 4);

oParam.Direction = ParameterDirection.Output;

oCmd.Parameters.Add("@FName", SqlDbType.VarChar, 50).Value = FName;

oCmd.Parameters.Add("@LName", SqlDbType.VarChar, 50).Value = LName;

oCmd.Parameters.Add("@Phone", SqlDbType.VarChar, 15).Value = Phone;

oCmd.Parameters.Add("@EMail", SqlDbType.VarChar, 255).Value =

EMail;

oCmd.Parameters.Add("@WebPage", SqlDbType.VarChar, 255).Value =

WebPage;

oCmd.Parameters.Add("@Age", SqlDbType.TinyInt, 2).Value = Age;

oCmd.Parameters.Add("@Comments", SqlDbType.VarChar, 2000).Value =

Comments;

try

{

if (oConn.State == ConnectionState.Closed)

{

oConn.Open();

}

oCmd.ExecuteNonQuery();

AdrsID = (Int32)oCmd.Parameters["@AdrsID"].Value;

return AdrsID;

}

catch (Exception oErr)

{

throw oErr;

}

}

www.syngress.com

Figure 7.19A Continued

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 333

334 Chapter 7 • Introduction to ADO.NET: A Simple Address Book

Figure 7.19B VB.NET (vb\CDalAddress.vb)

Public Function Add(ByVal FName As String, _

ByVal LName As String, _

ByVal Phone As String, _

ByVal EMail As String, _

ByVal WebPage As String, _

ByVal Age As String, _

ByVal Comments As String) As Int32

Dim oCmd As SqlCommand

Dim oParam As SqlParameter

Dim strSQL As String

Dim AdrsID As Int32

strSQL = "usp_tblAddress_ins"

oCmd = New SqlCommand(strSQL, oConn)

oCmd.CommandType = CommandType.StoredProcedure

oParam = oCmd.Parameters.Add("@AdrsID", SqlDbType.Int, 4)

oParam.Direction = ParameterDirection.Output

oCmd.Parameters.Add("@FName", SqlDbType.VarChar, 50).Value = FName

oCmd.Parameters.Add("@LName", SqlDbType.VarChar, 50).Value = LName

oCmd.Parameters.Add("@Phone", SqlDbType.VarChar, 15).Value = Phone

oCmd.Parameters.Add("@EMail", SqlDbType.VarChar, 255).Value = EMail

oCmd.Parameters.Add("@WebPage", SqlDbType.VarChar, 255).Value =

WebPage

oCmd.Parameters.Add("@Age", SqlDbType.TinyInt, 2).Value = Age

oCmd.Parameters.Add("@Comments", SqlDbType.VarChar, 2000).Value =

Comments

Try

If oConn.State = ConnectionState.Closed Then

oConn.Open()

End If

oCmd.ExecuteNonQuery()

AdrsID = oCmd.Parameters("@AdrsID").Value

Return AdrsID

Catch oErr As Exception

www.syngress.com

Continued

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 334

Introduction to ADO.NET: A Simple Address Book • Chapter 7 335

Throw oErr

End Try

End Function

Notice how the first parameter was explicitly set to a parameter object, and
then this object was used to set the direction of the parameter.Valid values are
Output, Input (default), Input/Output, and ReturnValue.The return value is
useful for integer data, and is generally used to tell the outcome of the procedure;
using 0 for success and 1 for failure are common, but any integer is acceptable.
Output parameters are much more useful. If you are only returning one row of
data, it is more efficient to return a batch of output parameters than a single row
of data.We can’t bind to it, but is more efficient from the database side of the
application.

To get the value out of the parameter, we have to close the connection. By
calling the ExecuteNonQuery method of the Command object, we effectively close
the connection after execution, and we can then access our value from the
parameter collection. Getting the value is no different than getting it out of any
other collection. It is interesting to note that you must name your parameters the
same as the Declaration of the stored procedure. It seems that Microsoft decided
to use name parameters when they wrote the data access code.This gives us the
option of setting them out of order.

Updating Data in a Database: Exercise
In addition to inserting new data, we will want the ability to update the data.
Perhaps someone changes his or her phone number or moves. In our sample, we
will update all the columns except for the primary key of our table.The syntax
for creating the update statement is in Figure 7.20 (A, B, and C).The declaration
of our stored procedure is very similar to the Add stored procedure, but we are
not using an output parameter.

Figure 7.20 (A, B, and C) Updating Data

Figure 7.20A ANSI SQL (ANSI Is the Standard Which All RDBMS Databases Try
to Implement)

UPDATE <table name>

SET <Column1 name> = <value1>,

www.syngress.com

Figure 7.19B Continued

Continued

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 335

336 Chapter 7 • Introduction to ADO.NET: A Simple Address Book

<Column2 name> = <value2>

WHERE <primary key> = <identifier>

Figure 7.20B T-SQL

CREATE PROC usp_tblAddress_upd(

@AdrsID INT

, @FName varchar(50)

, @LName varchar(50)

, @Phone char(15)

, @EMail varchar(255)

, @WebPage varchar(255)

, @Age tinyint

, @Comments varchar(2000)

)

AS

UPDATE [dbo].[tblAddress]

SET [FName] = @FName

, [LName] = @LName

, [Phone] = @Phone

, [EMail] = @EMail

, [WebPage] = @WebPage

, [Age] = @Age

, [Comments]= @Comments

WHERE [AdrsID] = @AdrsID

Figure 7.20C Updating Data in Access

UPDATE [tblAddress]

SET [FName] = <Replace with @FName>

, [LName] = <Replace with @LName>

, [Phone] = <Replace with @Phone>

, [EMail] = <Replace with @Email>

, [WebPage] = <Replace with @WebPage>

www.syngress.com

Figure 7.20A Continued

Continued

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 336

Introduction to ADO.NET: A Simple Address Book • Chapter 7 337

, [Age] = <Replace with @Age>

, [Comments]= <Replace with @Comments>

WHERE [AdrsID] = <Replace with @AdrsID>

Again, we will use the Command object with parameters.We are using the
default direction of Input to send in the new data.Any values that were not
changed will just be overwritten with the same data. Refer to Figure 7.21
(A and B) for the Update method of our DAL example.

Figure 7.21 (A and B) Updating Data Using a Stored Procedure

Figure 7.21A C#.NET (cs\CDalAddress.cs)

public void Update(Int32 AdrsID,

string FName,

string LName,

string Phone,

string EMail,

string WebPage,

Int16 Age,

string Comments)

{

SqlConnection oConn;

SqlCommand oCmd;

SqlParameter oParam;

string strSQL;

strSQL = "usp_tblAddress_upd";

oConn = new SqlConnection(strConStr);

oCmd = new SqlCommand(strSQL, oConn);

oCmd.CommandType = CommandType.StoredProcedure;

oCmd.Parameters.Add("@AdrsID", SqlDbType.Int, 4).Value = AdrsID;

oCmd.Parameters.Add("@FName", SqlDbType.VarChar, 50).Value = FName;

oCmd.Parameters.Add("@LName", SqlDbType.VarChar, 50).Value = LName;

oCmd.Parameters.Add("@Phone", SqlDbType.VarChar, 15).Value = Phone;

oCmd.Parameters.Add("@EMail", SqlDbType.VarChar, 255).Value = EMail;

www.syngress.com

Figure 7.20C Continued

Continued

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 337

338 Chapter 7 • Introduction to ADO.NET: A Simple Address Book

oCmd.Parameters.Add("@WebPage", SqlDbType.VarChar, 255).Value = WebPage;

oCmd.Parameters.Add("@Age", SqlDbType.TinyInt, 2).Value = Age;

oCmd.Parameters.Add("@Comments", SqlDbType.VarChar, 2000).Value =

Comments;

try

{

if (oConn.State == ConnectionState.Closed)

{

oConn.Open();

}

oCmd.ExecuteNonQuery();

}

catch (Exception oErr)

{

throw oErr;

}

}

Figure 7.21B VB.NET (vb\CDalAddress.vb)

Public Function Update(ByVal AdrsID As Int32, _

ByVal FName As String, _

ByVal LName As String, _

ByVal Phone As String, _

ByVal EMail As String, _

ByVal WebPage As String, _

ByVal Age As String, _

ByVal Comments As String) As Int32

Dim oConn As SqlConnection

Dim oCmd As SqlCommand

Dim oParam As SqlParameter

Dim strSQL As String

strSQL = "usp_tblAddress_upd"

oConn = New SqlConnection(strConStr)

www.syngress.com

Figure 7.21A Continued

Continued

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 338

Introduction to ADO.NET: A Simple Address Book • Chapter 7 339

oCmd = New SqlCommand(strSQL, oConn)

oCmd.CommandType = CommandType.StoredProcedure

oCmd.Parameters.Add("@AdrsID", SqlDbType.Int, 4).Value = AdrsID

oCmd.Parameters.Add("@FName", SqlDbType.VarChar, 50).Value = FName

oCmd.Parameters.Add("@LName", SqlDbType.VarChar, 50).Value = LName

oCmd.Parameters.Add("@Phone", SqlDbType.VarChar, 15).Value = Phone

oCmd.Parameters.Add("@EMail", SqlDbType.VarChar, 255).Value = EMail

oCmd.Parameters.Add("@WebPage", SqlDbType.VarChar, 255).Value =

WebPage

oCmd.Parameters.Add("@Age", SqlDbType.TinyInt, 2).Value = Age

oCmd.Parameters.Add("@Comments", SqlDbType.VarChar, 2000).Value =

Comments

Try

If oConn.State = ConnectionState.Closed Then

oConn.Open()

End If

oCmd.ExecuteNonQuery()

Catch oErr As Exception

Throw New Exception(oErr.ToString)

End Try

End Function

Notice the use of the SqlDbType enumeration for specifying our data types.The
ExecuteNonQuery method is more efficient, since we are not returning any data.

Deleting from a Database: Exercise
To delete data from your database, you will use the Delete syntax with your pri-
mary key to delete just the row you specify.The syntax for the Delete statement
is shown in Figure 7.22 (A, B, and C).

It is important to include the Where clause here, or you will end up deleting
all the records in your table.The stored procedure will take one parameter, the
primary key of record to delete.

www.syngress.com

Figure 7.21B Continued

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 339

340 Chapter 7 • Introduction to ADO.NET: A Simple Address Book

Figure 7.22 (A, B, and C) Delete Syntax

Figure 7.22A T-SQL

DELETE

FROM <table name>

WHERE <primary key> = <id>

Figure 7.22B Delete Syntax for Access

DELETE *

FROM <table name>

WHERE <primary key> = <id>

Notice that T-SQL does not use the asterisk between the DELETE and the
FROM keywords, and Access does.

Figure 7.22C Deleting a Particular Address in T-SQL

CREATE PROC usp_tblAddress_del(@AdrsID INT)

AS

DELETE FROM [dbo].[tblAddress]

WHERE [AdrsID] = @AdrsID

The Delete method of our DAL is simple after we have completed the
methods earlier in the chapter.The finished code for the Delete Method is in
Figure 7.23 (A and B).

Figure 7.23 (A and B) Calling the Delete Stored Procedure

Figure 7.23A C#.NET (cs\CDalAddress.cs)

public void Delete(Int32 AdrsID)

{

string strSQL = "EXEC usp_tblAddress_del " + AdrsID;

SqlCommand oCmd = new SqlCommand(strSQL, oConn);

oCmd.CommandType = CommandType.Text;

try

{

if (oConn.State == ConnectionState.Closed)

www.syngress.com
Continued

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 340

Introduction to ADO.NET: A Simple Address Book • Chapter 7 341

{

oConn.Open();

}

oCmd.ExecuteNonQuery();

}

catch (Exception oErr)

{

throw oErr;

}

}

Figure 7.23B VB.NET (vb\CDalAddress.vb)

Public Sub Delete(ByVal AdrsID As String)

Dim oCmd As SqlCommand

Dim strSQL As String

strSQL = "EXEC usp_tblAddress_del " & AdrsID

oCmd = New SqlCommand(strSQL, oConn)

oCmd.CommandType = CommandType.Text

Try

If oConn.State = ConnectionState.Closed Then

oConn.Open()

End If

oCmd.ExecuteNonQuery()

Catch oErr As Exception

Throw New Exception(oErr.ToString)

End Try

End Sub

The code to call the Delete Stored procedure is similar to the first method
you used to select the records by their ID.Again, the ExecuteNonQuery tells
ADO.NET that you are not interested in returning any rows and to close the
connection when you are done.This requires less overhead for the data provider.

www.syngress.com

Figure 7.23A Continued

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 341

342 Chapter 7 • Introduction to ADO.NET: A Simple Address Book

Summary
Microsoft has put a lot effort into .NET, and it shows in the 2500-plus objects
that they have provided you in the .NET Framework.ADO.NET continues the
tradition of ADO simplifying data access, while allowing for more flexible and
powerful solutions than ever. Microsoft has added much power to ADO.NET, and
provided clear ties to classic ADO that enable the veteran ADO programmer to
easily move into the new environment.

We have gone over the changes in ADO.NET from classic ADO and talked
about the new architecture.We discussed that ADO.NET was based on XML and
how this compared to the proprietary protocol that classic ADO was based on.We
talked about the rich support for XML and that it is part of the native architecture
of ADO.NET.We discussed the fact that the Recordset no longer exists, and that it
has been replaced with two objects that offer more than the Recordset ever could
have: specifically, the DataSet, which can hold more than one result set for a data
provider.We discussed the disconnected nature of the ADO.NET architecture and
made great use of the DataReader object in our Address Book example.

We went into great detail about the configuration of a connection string, and
where to keep this valuable piece of information. Specifically, by adding the
<appSettings> node to the web.config file, and using the <add> tag, you can
create a ConfigurationSettings variable that can be accessed globally in the Web
application.We discussed the differences in the connection strings of the two
major namespaces for data access. More to the point, we said that OleDB con-
nection strings really haven’t changed, but that if you are using the SqlConnection
object, then you will need to remove the Provider attribute, or ADO.NET will
raise an exception.

We introduced you to the Data Access Layer concept, and created a sample
application the used the DAL to insert data using Embedded SQL statements, and
Stored procedures.We used the System.Data.SqlTypes and the SqlDbTypes enumer-
ation, and discussed that they are related, but have very different uses, such as the
System.Data.SqlTypes namespace provider objects that are used to create SQL
Server-compatible variables in our code, and then use the SqlDbTypes enumera-
tion to specify the data type of a Parameter object for a command.

We showed you the ease in which operations can be performed using the
various namespaces.We created the strConnection property of our DAL, and
demonstrated the ease in which you can change from OleDbConnections to
SqlConnections by declaring new variables and changing the connection string.

www.syngress.com

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 342

Introduction to ADO.NET: A Simple Address Book • Chapter 7 343

Solutions Fast Track

Understanding the Changes in ADO.NET

ADO.NET is not ActiveX Data objects for ported to .NET, but an
entirely new class of data access technologies.

ADO.NET makes extensive use of XML, with rich support for
consuming and creating XML documents.

The Recordset has been removed, and new and more powerful objects
have been provided.The DataSet is an in-memory relational database
with support for multiple result sets from multiple data sources.

ADO.NET is connectionless by nature, and does not maintain a
connection to the data source.

Creating Connection Strings

The first step to connecting to a data source, after choosing the
Managed Provider, is to create the connection string.

The connection string is a list of key/value pairs that the Connection
object will parse; it will use the information to find the Data Source,
authenticate, and establish a connection. Depending on the namespace
used, the connection string will vary a little.

Connecting to a Database: Exercise

Introduce the concept of the Data Access Layer, or DAL, as the data tier
of a multi-tier application architecture.

Create the correct Connection string for your data provider, and place it
in a safe place such as the web.config file.

The connection string for a SqlConnection is different than the
connection string for an OleDbConnection; specifically, the SqlConnection
does not allow for a Provider attribute.

Provide the minimum database permissions to the user.

www.syngress.com

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 343

344 Chapter 7 • Introduction to ADO.NET: A Simple Address Book

Browsing a Database: Exercise

Use stored procedures as much as possible, for both security and for
performance.

Use a DataReader instead of a DataSet to return data from a Method in
VB.NET or C#.NET.

Bind data of the DataReader to a DataList, DataGrid, or DataRepeater.

Return only the rows and columns you need.

Adding to a Database: Exercise

Use parameterized stored procedure to insert data, and return the
identity of the new record in MS SQL.

Use Dynamic SQL to add records in Access, and you can still use the
@@IDENTITY to return the identity that the database gave the new
record.

Use the ExecuteNonQuery() to improve performance.

Updating a Database: Exercise

Use parameterized stored procedures to update data using the primary
key to identify the row to update.

Use ExecuteNonQuery() to improve performance.

Deleting from a Database: Exercise

Do not forget the Where clause!

Use ExecuteNonQuery() to improve performance.

www.syngress.com

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 344

Introduction to ADO.NET: A Simple Address Book • Chapter 7 345

Frequently Asked Questions
Q: Where is the best place to put the connection string?

A: In this chapter, we put our samples in the web.config file.This provides a cen-
tral point to administer the connection strings, and allows for a reasonable
level of security.You should guard the web.config from prying eyes regardless
of where the connection string is.You really have a lot of options for placing
the connection string.You can put the connection string in an encrypted in a
file, custom object, and so on.The best place really depends on your environ-
ment, the applications purpose, and the level of security desired.

Q: Can I reuse a connection?

A:Yes, connections can be reused. Remember to test for state before you do, as
ADO.NET may close the connection if it thinks it is not being used.You
cannot use a connection twice at the same time. It would not be wise to
open a connection at the application level, as you could very easily end up
with simultaneous attempts to use the same connection.

Q: In SQL Server, which data type is more suitable for a primary key, INT,
BIGINT or a uniqueidentifier?

A: Generally speaking, the INT going to be sufficient.An INT can hold
between –2,147,483,648 and 2,147,483,648.That is a lot of records. If you
were to seed an identity column with –2,147,483,648 negative number and
insert one record a second, it would take 136 years to use all of them up. If
you need more than that, then BIGINT is an alternative, but uniqueidentifier
would probably be more appropriate.The other good use for the uniqueiden-
tifier is to keep disconnected records from colliding with one another.This is
often an issue with replication, and the uniqueidentifier is the method used to
prevent it.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 345

346 Chapter 7 • Introduction to ADO.NET: A Simple Address Book

Q: How can I add a record to Access and return the ID of the new record in the
same call?

A:Yes, you can.Access 2002 with ADO.NET supports the @@IDENTITY
function.This function returns the last identity that was written in your ses-
sion.This ensures that the identity value that you got was not from another
user’s session.

Q: How can I add a record to Microsoft SQL Server and return the ID of the
new record in the same call?

A: The technique for returning the identity in SQL server is much the same as
for Access; however, you have a couple of other options.You can return the
identity as a return value.You can create an output parameter that is popu-
lated after the insert.You can also select the @@IDENTITY and return a
record to the caller.The latter is not the most efficient way.The return value
and the output parameter are comparable; however, the return value is limited
to a data type of integer, while the output value can be any data type that
SQL Server supports.

www.syngress.com

166_ASPNET_07.qxd 11/21/01 2:43 PM Page 346

Using XML in the
.NET Framework

Solutions in this chapter:

■ An Overview of XML

■ Processing XML Documents Using .NET

■ Reading and Parsing Using the
XmlTextReader Class

■ Writing an XML Document Using the
XmlTextWriter Class

■ Exploring the XML Document
Object Model

■ Querying XML Data Using XPathDocument
and XPathNavigator

■ Transforming an XML Document
Using XSLT

■ Working with XML and Databases

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 8

347

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 347

348 Chapter 8 • Using XML in the .NET Framework

Introduction
The Extensible Markup Language (XML) is the latest offering in the world of
data access. Microsoft has been actively supporting this language since its concep-
tion. XML provides a universal way for exchanging information between organi-
zations. Its structure makes it perfect for online applications and working with
data residing on the local or remote data sources.

Like Hypertext Markup Language (HTML), XML is a tag-based markup lan-
guage. Many other technologies, such as browsers, JavaScript,VBScript, Dynamic
HTML (DHTML), and Cascading Style Sheets (CSS), were developed to support
the HTML documents. Similarly, XML cannot be singled out as a stand-alone
technology. It is actually a family of a growing set of technologies and frame-
works.The major members of this family are XML parsers, Extensible Stylesheet
Language Transformations (XSLT), XPath, XLink, Simple API for XML (SAX),
Schema Generators, and Document Object Model (DOM), just to name a few.

Please take note that ADO.NET is not coded in XML but that ADO.NET
revolves around XML. Some readers may confuse the terms. Microsoft has inte-
grated the XML technology in its .NET Framework rather tightly.The core
foundation of the entire ADO.NET architecture is built upon XML.The
ADO.NET itself is not coded in XML; however, it provides the facilities to apply
various existing and emerging XML technologies to manipulate data and infor-
mation.The System.XML namespace offers perhaps the richest collection of
classes for generating, transmitting, processing, and storing information via XML.
In this chapter, we will first have a brief introduction to the structural compo-
nents of an XML document.Then we will look into the architecture of the
XML objects in the .NET Framework. Finally, we will study several major
XML.NET objects with many examples.

An Overview of XML
XML is fast becoming a standard for data exchange in the next generation’s
Internet applications. XML allows user-defined tags that make XML document
handling more flexible than HTML, the conventional language of the Internet.
Since XML is the heart and soul of ADO.NET, sound knowledge of XML is
imperative for developing applications in ASP.NET.The following section
touches on some of the basic concepts of XML.

www.syngress.com

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 348

www.syngress.com

What Does an XML Document Look Like?
The idea behind XML is surprisingly simple.The major objective is to organize
information in such a way so that human beings can read and comprehend the
data and its context; also, the document itself is technology and platform inde-
pendent. Consider the following text file:

F10 Shimano Calcutta 47.76

F20 Bantam Lexica 49.99

Obviously, it is difficult to understand exactly what information the above
text file contains. Now consider the XML document shown in Figure 8.1.The
code is available in the Catalog1.xml file on the accompanying CD.

Figure 8.1 Example XML Document (Catalog1.xml)

<?xml version="1.0"?>

<!— Chapter8\Catalog1.xml —>

<Catalog>

<Product>

<ProductID>F10</ProductID>

<ProductName>Shimano Calcutta </ProductName>

<ListPrice>47.76</ListPrice>

</Product>

<Product>

<ProductID>F20</ProductID>

<ProductName>Bantam Lexica</ProductName>

<ListPrice>49.99</ListPrice>

</Product>

</Catalog>

The above document is the XML’s way of representing data contained in a
product catalog. It has many advantages. It is easily readable and comprehendible,
it is self-documented, and it is technology independent. Most importantly, it is
quickly becoming the universally acceptable data container and transmission
format in the current information technology era.Well, welcome to the exciting
world of XML!

Using XML in the .NET Framework • Chapter 8 349

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 349

350 Chapter 8 • Using XML in the .NET Framework

Creating an XML Document
We can use Notepad to create an XML document.VS.NET offers an array of
tools packaged in the XML Designer to work with XML documents.We will
demonstrate the usages of the XML Designer later. Right now, go ahead and

www.syngress.com

XML and Its Future
XML is quickly becoming the universal protocol for transferring infor-
mation from site to site via HTTP. Whereas, the HTML will continue to
be the language for displaying documents on the Internet, the devel-
opers will start using the power of XML to transmit, exchange, and
manipulate data using XML.

XML offers a very simple solution to a complex problem. It offers a
standard format for structuring data or information in a self-defined
document format. This way, the data are kept independent of the pro-
cesses that will consume the data. Obviously, the concept behind XML is
nothing new. XML happens to be a proper subset of a massive specifi-
cation named SGML developed by W3C in 1986. The W3C began to
develop the standard for XML in 1996 with the motivation that XML
would be simpler to use than SGML but that it will have more rigid struc-
ture than HTML. Since then, many software vendors have implemented
various features of XML technologies. For example, Ariba has built its
entire B2B system architecture based on XML, many Web servers (such
as Weblogic Server) utilize XML specifications for configuring various
server related parameters, Oracle has included necessary parsers and
utilities to develop business applications in its 8i/9i suites, and finally, the
.NET has also embraced the XML technology.

XML contains self-defined data in document format. Hence it is
platform independent. It is also easy to transmit a document from a site
to another site easily via HTTP. However, the applications of XML do not
necessarily have to be limited to conventional Internet applications only.
It can be used to communicate and exchange information in other con-
texts, too. For example, a VB client can call a remote function by passing
the function name and parameter values using a XML document. The
server may return the result via a subsequent XML document. Basically,
that is the technology behind the SOAP (Simple Object Access Protocol).

Developing & Deploying…

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 350

Using XML in the .NET Framework • Chapter 8 351

open the Catalog1.xml file from the CD that accompanies this book in IE 5.0 or
higher.You will see that the IE displays the document in a very interesting
fashion with drill-down features as shown in Figure 8.2.

Creating an XML Document
in VS.NET XML Designer
It is very easy to create an XML document in VS.NET. Use the following steps
to develop an XML document:

1. From the Project menu, select Add New Item.

2. Select the XML File icon in the Add New Item dialog box.

3. Enter a name for your XML file.

4. The VS.NET will automatically load the XML Designer and display the
XML document template.

5. Finally, enter the contents of your XML document.

The system will display two tabs for two views: the XML view and the Data
view of your XML document.These views are shown in Figures 8.3 and 8.4.The
XML Designer has many other tools to work with.We will introduce these later
in this chapter.

www.syngress.com

Figure 8.2 Catalog1.xml Displayed in IE

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 351

352 Chapter 8 • Using XML in the .NET Framework

Components of an XML Document
In this section, we will introduce the major components of an XML document.
An XML document contains a variety of constructs. Some of the frequently used
ones are as follows:

■ Declaration Each XML document may have the optional entry
<?xml version=“1.0”?>. This standard entry is used to identify the
document as an XML document conforming to the W3C (World Wide
Web Consortium) recommendation for version 1.0.

■ Comment An XML document may contain html-style comments like
<!--Catalog data -->.

■ Schema or Document Type Definition (DTD) In certain situa-
tions, a schema or DTD may precede the XML document.A schema or

www.syngress.com

Figure 8.3 The XML View of an XML Document in VS.NET XML Designer

Figure 8.4 The Data View of an XML Document in VS.NET XML Designer

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 352

Using XML in the .NET Framework • Chapter 8 353

DTD contains the rules about the elements of the document. For
example, we may specify a rule like “A product element must have a
ProductName, but a ListPrice element is optional.”We will discuss schemas
later in the chapter.

■ Elements An XML document is mostly composed of elements.An ele-
ment has a start-tag and end-tag. In between the start-tag and end-tag, we
include the content of the element.An element may contain a piece of
character data, or it may contain other elements. For example, in the
Catalog1.xml, the Product element contains three other elements: ProductId,
ProductName, and ListPrice. On the other hand, the first ProductName
element contains a piece of character data like Shimano Calcutta.

■ Root Element In an XML document, one single main element must
contain all other elements inside it.This specific element is often called
the root element. In our example, the root element is the Catalog ele-
ment.The XML document may contain many Product elements, but
there must be only one instance of the Catalog element.

■ Attributes Okay, we agree that we didn’t tell you the whole story in
our first example. So far, we have said that an element may contain other
elements, or it may contain data, or both. Besides these, an element may
also contain zero or more so-called attributes.An attribute is just an
additional way to attach a piece of data to an element.An attribute is
always placed inside the start-tag of an element, and we specify its value
using the “name=value” pair protocol.

Let us revise our Catalog1.xml and include some attributes to the Product ele-
ment. Here, we will assume that a Product element will have two attributes named
Type and SupplierId.As shown in Figure 8.5, we will simply add the Type=“Spinning
Reel” and SupplierId=“5” attributes in the first product element. Similarly, we will
also add the attributes to the second product element.The code shown in Figure
8.5 is also available in the accompanying CD.

Figure 8.5 Catalog2.xml

<?xml version="1.0"?>

<!— Chapter8/Catalog2.xml —>

<Catalog>

<Product Type="Spinning Reel" SupplierId="5">

<ProductID>F10</ProductID>

www.syngress.com
Continued

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 353

354 Chapter 8 • Using XML in the .NET Framework

<ProductName>Shimano Calcutta </ProductName>

<ListPrice>47.76</ListPrice>

</Product>

<Product Type ="Baitcasting Reel" SupplierId="3">

<ProductID>F20</ProductID>

<ProductName>Bantam Lexica</ProductName>

<ListPrice>49.99</ListPrice>

</Product>

</Catalog>

Let us not get confused with the “attribute” label! An attribute is just an addi-
tional way to attach data to an element. Rather than using the attributes, we
could have easily modeled them as elements as follows:

<Product>

<ProductID>F10</ProductID>

<ProductName>Shimano Calcutta </ProductName>

<ListPrice>47.76</ListPrice>

<Type>Spinning Reel</Type>

<SupplierId>5</SupplierId>

</Product>

Alternatively, we could have modeled the entire product element to be com-
posed of only attributes as follows:

<Product ProductID="F10" ProductName="Shimano Calcutta"

ListPrice = "47.76" Type="Spinning Reel" SupplierId= "5" >

</Product>

At the initial stage, the necessity of an attribute may appear questionable.
Nevertheless, they exist in the W3C recommendation, and in most situations
these become handy in designing otherwise-complex XML-based systems.

■ Empty Element We have already mentioned a couple of times that an
element may contain other elements, or data, or both. However, an ele-
ment does not necessarily have to have any of them. If needed, it can be
kept totally empty. For example, observe the following element:

<Input type="text" id="txtCity" runat="server" />

www.syngress.com

Figure 8.5 Continued

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 354

Using XML in the .NET Framework • Chapter 8 355

The empty element is a correct XML element.The name of the element is
Input. It has three attributes: type, id, and runat. However, neither does it contain
any sub-elements, nor does it contain any explicit data. Hence, it is an empty ele-
ment.We may specify an empty element in one of two ways:

■ Just before the “>” symbol of the start-tag, add a slash (/), as shown
above, or

■ Terminate the element using standard end-tag as follows:

<Input type="text" id="txtCity" runat="server" ></Input>

Examples of some empty elements are:
, <Pup Age=1 />,
<Story></Story>, and <Mail/>.

Well-Formed XML Documents
At first sight, an XML document may appear to be like a standard HTML docu-
ment with additional user-given tag names. However, the syntax of an XML doc-
ument is much more rigorous than that of an HTML document.The HTML
document enables us to spell many tags incorrectly (the browser would just
ignore it), and it is a free world out there for people who are not case-sensitive.
For example, we may use <BODY> and </Body> in the same HTML docu-
ment without getting into trouble. On the contrary, there are certain rules that
must be followed when we develop an XML document. Please, refer to the
http://W3C.org Web site for the details. Some basic rules, among many others
are as follows:

■ The document must have exactly one root element.

■ Each element must have a start-tag and end-tag.

■ The elements must be properly nested.

■ The first letter of an attribute’s name must begin with a letter or an
underscore.

■ A particular attribute name may appear only once in the same start tag.

An XML document that is syntactically correct is often called a “well-
formed” document. If the document is not well formed, Internet Explorer will
provide an error message. For example, the following XML document will
receive an error message, when opened in Internet Explorer, just because of the
case sensitivity of the tag <product> and </Product>.

www.syngress.com

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 355

http://W3C.org

356 Chapter 8 • Using XML in the .NET Framework

<?xml version="1.0"?>

<product>

<ProductID>F10</ProductID>

</Product>

Schema and Valid XML Documents
An XML document may be well formed, but it may not necessarily be a valid
XML document.A valid XML document is a document that conforms to the
rules specified in its Document Type Definition (DTD) or Schema. DTD and
Schema are actually two different ways to specify the rules about the contents of
an XML document.The DTD has several shortcomings. First, a DTD document
does not have to be coded in XML.That means a DTD is itself not an XML
document. Second, the data-types available to define the contents of an attribute
or element are very limited in DTD.This is why, although VS.NET allows both
DTD and schema, we will present only the schema specification in this chapter.
The W3C has put forward the candidate proposal for the standard schema specifi-
cation (www.w3.org/XML/Schema#dev).The XML Schema Definition (XSD)
specification by W3C has been implemented in ADO.NET. VS.NET supports the
XSD specifications.

A schema is simply a set of predefined rules that describe the data contents of
an XML document. Conceptually, it is very similar to the definition of a rela-
tional database table. In an XML schema, we define the structure of an XML
document, its elements, the data types of the elements and associated attributes,
and most importantly, the parent-child relationships among the elements.We may
develop a schema in many different ways. One way is to enter the definition
manually using Notepad.We may also develop schema using visual tools, such as
VS.NET or XML Authority. Many automated tools may also generate a rough-
cut schema from a sample XML document (similar to reverse-engineering).

If we do not want to code a schema manually, we may generate a rough-cut
schema of a sample XML document using VS.NET XML Designer.We may then
polish the rough-cut schema to conform to our exact business rules. In VS.NET,
it is just a matter of one click to generate a schema from a sample XML docu-
ment. Use the following steps to generate a rough-cut schema for our
Catalog1.xml document:

www.syngress.com

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 356

Using XML in the .NET Framework • Chapter 8 357

■ Open the Catalog1.xml file in a VS.NET Project.VS.NET will display
the XML document and its XML View and the Data View tabs at the
bottom.

■ Click on the XML menu pad of the Main menu.

That’s all! The systems will create the schema named Catalog1.xsd. If we
double-click on the Catalog1.xsd file in the Solution Explorer, we will see
the screen as shown in Figure 8.6.We will see the DataSet view tag and the XML
view tag at the bottom of the screen.We will elaborate on the DataSet view later
in the chapter.

For discussion purposes, we have also listed the contents of the schema in
Figure 8.7.The XSD starts with certain standard entries at the top.Although the
code for an XSD may appear complex, there is no need to get overwhelmed by
its syntax.Actually, the structural part of an XSD is very simple.An element is
defined to contain either one or more complexType or simpleType data structures.A
complexType data structure nests other complexType or simpleType data structures.A
simpleType data structure contains only data.

In our XSD example (Figure 8.7), the Catalog element may contain one or
more (unbounded) instances of the Product element.Thus, it is defined to contain
a complexType structure. Besides containing the Product element, it may also con-
tain other elements (for example, it could contain an element Supplier). In the
XSD construct, we specify this rule using a choice structure as follows:

<xsd:element name="Catalog" msdata:IsDataSet="true">

<xsd:complexType>

<xsd:choice maxOccurs="unbounded">

--- --- ---

--- --- ---

www.syngress.com

Figure 8.6 Truncated Version of the XSD Schema Generated by the
XML Designer

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 357

358 Chapter 8 • Using XML in the .NET Framework

</xsd:choice>

</xsd:complexType>

</xsd:element>

NOTE

An XSD is itself a well-formed XML document.

Because the Product element contains further elements, it also contains a
complexType structure.This complexType structure, in turn, contains a sequence of
ProductId, and ListPrice.The ProductId and the ListPrice do not contain further ele-
ments.Thus, we simply provide their data types in their definitions.The automated
generator failed to identify the ListPrice element’s text as decimal data.We con-
verted its data type to decimal manually.The complete listing of the Catalog.xsd is
shown in Figure 8.7.The code is also available in the accompanying CD.

Figure 8.7 Partial Contents of Catalog1.xsd

<xsd:schema id="Catalog"

targetNamespace="http://tempuri.org/Catalog1.xsd"

xmlns="http://tempuri.org/Catalog1.xsd"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"

attributeFormDefault="qualified" elementFormDefault="qualified">

<xsd:element name="Catalog" msdata:IsDataSet="true"

msdata:EnforceConstraints="False">

<xsd:complexType>

<xsd:choice maxOccurs="unbounded">

<xsd:element name="Product">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="ProductID"

type="xsd:string" minOccurs="0" />

<xsd:element name="ProductName"

type="xsd:string" minOccurs="0" />

www.syngress.com

Continued

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 358

http://tempuri.org/Catalog1.xsd
http://tempuri.org/Catalog1.xsd
http://www.w3.org/2001/XMLSchema

Using XML in the .NET Framework • Chapter 8 359

<xsd:element name="ListPrice"

type="xsd:string" minOccurs="0" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:choice>

</xsd:complexType>

</xsd:element>

</xsd:schema>

Minimal knowledge about the XSD schema is required to understand the
XML.NET architecture.You will find it especially useful when we discuss the
XmlDataDocument.

NOTE

Readers interested in the details of DTD and Schema may explore
http://msdn.microsoft.com/xml/default.asp and www.w3.org/XML.

www.syngress.com

Figure 8.7 Continued

XML Validation in VS.NET
VS.NET provides a number of tools to work on XML documents. One of
them enables you to check if a given XML document is well formed.
While on the XML view of an XML document, you may use
XML>>Validate XML Data of the main menu to see if the document is
well formed. The system displays its findings in the bottom-left corner
of the status bar. Similarly, you can use the Schema Validation tool to
check if your schema is well formed, too. While on the XML view of the
schema, use the Schema>>Validate Schema of the main menu to per-
form this task.

However, none of the above tests guarantee that your XML data is
valid according to the rules specified in the schema. To accomplish this

Developing & Deploying…

Continued

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 359

http://msdn.microsoft.com/xml/default.asp

360 Chapter 8 • Using XML in the .NET Framework

Structure of an XML Document
In an XML document, the data are stored in a hierarchical fashion.A hierarchy is
also referred to as a tree in data structures. Conceptually, the data stored in the
Catalog1.xml can be represented as a tree diagram, as shown in Figure 8.8. Please
note that certain element names and values have been abbreviated in the tree dia-
gram, mostly to conserve real estate on the page.

In this figure, each rectangle is a node in the tree. Depending on the context,
a node can be of different types. For example, each product node in the figure is
an element-type node. Each product node happens to be a child node of the catalog
node.The catalog node can also be termed as the parent of all product nodes.
Each product node, in turn, is the parent of its PId, PName, and Price nodes.

In this particular tree diagram, the bottom-most nodes are not of element-
type; rather, these are of text-type.There could have been nodes for each attribute
and its value, too, although we have not shown those in this diagram.

The Product nodes are the immediate descendants of the Catalog node. Both
Product nodes are siblings of each other. Similarly, the PId, PName, and Price nodes
under a specific product node are also siblings of each other. In short, all children
of a parent are called siblings.

www.syngress.com

task, you will need to link your XML document to a particular schema
first. Then you can test the validity of the XML document. To assign a
schema to an XML document, perform the following steps:

1. Display the XML document in XML view (in the XML
Designer).

2. Display its Property sheet. (It will be captioned DOCUMENT.)

3. Open the drop-down list box at the right-hand side of the
targetSchema, and select the appropriate schema.

4. Now, go ahead and validate the document using the
XML>>Validate XML Data of the main menu.

By the way, there are many other third-party software packages
that can also test if an XML document is well formed, and if it is valid
(against a given schema). In this context, we have found the XML
Authority (by TIBCO) and XML Writer (by Wattle Software) to be very
good. An excellent tool named XSV is also available from www.w3.org/
2000/09/webdata/xsv.

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 360

Using XML in the .NET Framework • Chapter 8 361

At this stage, you may have been wondering why we are studying the family
history rather than ASP.Well, you will find out pretty soon that all of these termi-
nologies will play major roles in taming the beauties and the beasts of something
called XML technology.

Processing XML Documents Using .NET
The entire ADO.NET Framework has been designed based on XML technology.
Many of the ADO.NET data-handling methodologies, including DataTables and
DataSets, use XML in the background, thus keeping it transparent to us.The
.NET Framework’s System.Xml namespace provides a very rich collection of
classes that can be used to store and process XML documents.These classes are
also often referred to as the XML.NET.

Before we get into the details of the XML.NET objects, let us ask ourselves
several questions.As ASP NET developers, what kind of support would we need
from .NET for processing XML documents? Well, at the very least, we would
like .NET to assist us in creating, reading, and parsing XML documents.Anything
else? Okay, if we have adequate cache, we would like to load the entire document
in the memory and process it directly from there. If we do not have enough
cache, then we would like to read various fragments of an XML document one
piece at a time. Do we want more? How about the ability for searching and
querying the information contained in an XML document? How about instantly
creating an XML document from a database query and sending it to our B2B
partners? How about converting an XML document from one format to another

www.syngress.com

Figure 8.8 The Tree-Diagram for Catalog1.xml

Catalog

Product Product

PId PricePName PricePNamePId

47.76ShimanoF10 49.99BantamF20

The Root: Also Known As:
Document.Element

Siblings

First Child of Catalog

A Text-Type Node

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 361

362 Chapter 8 • Using XML in the .NET Framework

format and transmitting it to other servers? Actually, XML.NET provides all of
these, and much more! All of the above questions fall into two major categories:

1. How do we read, parse and write XML documents?

2. How do we store, structure, and process them in the memory?

As mentioned earlier, XML is associated with a growing family of technolo-
gies and frameworks.The major trends in this area are W3C DOM, XSLT, XPath,
XPath Query, SAX, and XSLT. In XML.NET, Microsoft has incorporated almost
all of these frameworks and technologies. It has also added some of its own
unique ideas.There is a plethora of alternative XML.NET objects to satisfy our
needs and likings. However, it’s a jungle out there! In the remainder of this sec-
tion, we will have a brief glance over this jungle.

Reading and Writing XML Documents
Two primary classes in this group are XmlReader and XmlWriter. Both of these
classes are abstract classes, and therefore we cannot create objects of these classes.
Microsoft has provided a number of concrete implementations of both of these
classes:

■ XmlTextReader We may use an object of this class to read non-
cached XML data on a forward-only basis. It checks for well-formed
XML, but it does not support data validation.

■ XmlNodeReader An object of this class can be used to access non-
cached forward-only data from an XML node. It does not support data
validation.

www.syngress.com

Legacy Systems and XML
Organizational data stored in legacy systems can be converted to appro-
priate XML documents, if needed, reasonably easily. There is third-party
software like XML Authority by Tibco Extensibility and others, which can
convert legacy system’s data into XML format. We can also use VS.NET
to convert legacy data to XML documents.

Migrating…

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 362

Using XML in the .NET Framework • Chapter 8 363

■ XmlValidationReader This is very similar to the XMLTextReader,
except that it accommodates XML data validation.

We may create objects of these classes and use their methods and properties.
If warranted, we may also extend these classes to provide further specific func-
tionalities. Fortunately, the XmlWriter class has only one concrete implementation:
XmlTextWriter. It can be used to write XML document on a forward-only basis.
These classes and their relationships are shown in Figure 8.9.

Storing and Processing XML Documents
Once XML data are read, we need to structure these data in the computer’s
memory. For this purpose, the major offerings include the XmlNode class and the
XPathDocument class.The XmlNode class is an abstract class.There are a number of
concrete implementations of this class, too, such as the XmlDocument,
XmlAttribute, XmlDocumentFragment, and so on. We will limit our attention to the
XmlDocument class, and to one of its subsequent extensions named the
XmlDataDocument.The characteristics of some of these classes are as follows:

■ XmlDocument This class structures an XML document according
to a DOM tree (as specified in the W3C DOM Core Level 1 and 2
specifications).

■ XmlDataDocument This class is a major milestone in integrating
XML and database processing. It allows two views of the in-cache data:
the Relational Table view, and the XML Tree View.

www.syngress.com

Figure 8.9 Major XmlReader and XmlWriter Classes

XmlReader

XmlValidatingReader

XmlNodeReader

XmlTextReader

XmlWriter XmlTextWriter

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 363

364 Chapter 8 • Using XML in the .NET Framework

■ XPathDocument This class employs the XSLT and XPath technolo-
gies, and enables you to transform an XML document in to a desired
format.

Above classes are essentially used for storing the XML data in the cache. Just
storing data in the memory serves us no purpose unless we can process and
query these data.The .NET Framework has included a number of classes to
operate on the cached XML data.These classes include XPathNavigator,
XPathNodeIterator, XSLTransform, XmlNodeList, etc.These classes are shown in
Figure 8.10.

Reading and Parsing Using
the XmlTextReader Class
The XmlTextReader class provides a fast forward-only cursor that can be used to
“pull” data from an XML document.An instance of it can be created as follows:

Dim myRdr As New XmlTextReader(Server.MapPath("catalog2.xml"))

Once an instance is created, the imaginary cursor is set at the top of the docu-
ment.We may use its Read() method to extract fragments of data sequentially. Each
fragment of data is distantly similar to a node of the underlying XML tree.The
NodeType property captures the type of the data fragment read, the Name property
contains the name of the node, and the Value property contains the value of the
node, if any.Thus, once a data fragment has been read, we may use the following
type of statement to display the node-type, name, and value of the node.

Response.Write(myRdr.NodeType.ToString() + " " +

myRdr.Name + ": " + myRdr.Value)

www.syngress.com

Figure 8.10 Major XML Classes for In-Memory Storage and Processing

XmlNode

XmlDataDocument

XmlAttribute
and more ...

XmlDocument

XPathDocument

Navigation and Other
Related Processing
Classes

• XPathNavigator
• XPathNodeIterator
• XSLTransform
• XmlNodeList
• many more ...

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 364

Using XML in the .NET Framework • Chapter 8 365

The attributes are treated slightly differently in the XmlTextReader object.When
a node is read, we may use the HasAttributes property of the reader object to see if
there are any attributes attached to it. If there are attributes in an element, the
MoveToAttribute(i) method can be applied to iterate through the attribute collection.
The AttributeCount property contains the number of attributes of the current ele-
ment. Once we process all of the attributes, we need to apply the MoveToElement
method to move the cursor back to the current element node.Therefore, the fol-
lowing code will display the attributes of an element:

If myRdr.HasAttributes Then

For i = 0 To myRdr.AttributeCount - 1

myRdr.MoveToAttribute(i)

Response.Write(myRdr.NodeType.ToString() + " : "+ myRdr.Name _

+ ": " + myRdr.Value + "</br>")

Next i

myRdr.MoveToElement()

End If

Microsoft has loaded the XmlDocument class with a variety of convenient class
members. Some of the frequently used methods and properties are AttributeCount,
Depth, EOF, HasAttributes, HasValue, IsDefault, IsEmptyElement, Item, ReadState,
and Value.

Parsing an XML Document:
In this section, we will apply the XMLTextReader object to parse and display all
data contained in our Catalog2.xml (as shown in Figure 8.5) document.The code
for this example and its output are shown in Figures 8.11 and 8.12, respectively.
The code shown in Figure 8.12 is available in the accompanying CD. Our objec-
tive is to start at the top of the document and then sequentially travel through its
nodes using the XMLTextReader’s Read() method.When there is no more data to
read, the Read() method returns “false.”Thus, we are able to build the While
myRdr.Read() loop to process all data. Please review the code (Figure 8.12) and its
output cautiously.While displaying the data, we have separated the node-type,
node-name, and values using colons. Not all elements have names or values.
Hence, you will see many empty names and values after respective colons.

www.syngress.com

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 365

366 Chapter 8 • Using XML in the .NET Framework

Figure 8.12 XmlTextReader1.aspx

<!— Chapter8\xmlTextReader1.aspx —>

<%@ Page Language = "VB" Debug ="True" %>

<%@ Import Namespace="System.Xml" %>

<Script runat="server">

Sub Page_Load(sender As Object, e As EventArgs)

Dim myRdr As New XmlTextReader(Server.MapPath("Catalog2.xml"))

Dim i As Integer

While myRdr.Read()

Response.Write(myRdr.NodeType.ToString() + " : " + myRdr.Name _

+ ": " + myRdr.Value + "
")

If myRdr.HasAttributes Then

For i = 0 To myRdr.AttributeCount - 1

myRdr.MoveToAttribute(i)

Response.Write(myRdr.NodeType.ToString() + " : "+ myRdr.Name _

+ ": " + myRdr.Value + "</br>")

Next i

myRdr.MoveToElement()

www.syngress.com

Figure 8.11 Truncated Output of the XmlTextReader1.aspx Code

Continued

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 366

Using XML in the .NET Framework • Chapter 8 367

End If

End While

myRdr.Close()

End Sub

</Script>

Navigating through an XML
Document to Retrieve Data
In the previous section, we extracted and displayed all data, including the “white-
spaces” contained in an XML document. Now, we will illustrate an example
where we will navigate through the document and pick up only those data that
are necessary for an application.The output of this application is shown in Figure
8.13. In this example, we will display the names of our products in a list box.We
will load the list box using the Product Name data from the XML file.The user will
select a particular product. Subsequently, we will search the XML document to
find and display the price of the product.We will travel through the XML file
twice, once to load the list box, and once to find the price of a selected product.
Please be aware that we could have easily developed the application by building an
array or arraylist of the products during the first pass through the XML data, thus
avoiding a second pass. Nevertheless, we are reading the file twice just to illustrate
various methods and properties of the XmlTextReader object.

www.syngress.com

Figure 8.12 Continued

Figure 8.13 Output of the Navigation ASPX Example XmlTextReader2.aspx

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 367

368 Chapter 8 • Using XML in the .NET Framework

To load the List Box, we will go through the following process:We will load
the list box in the Page_Load event. Here, we will read the nodes one at a time. If
the node type is of element-type, we will check if its name is ProductName. If it is
a ProductName node, we will perform a Read() to get to its text node and then
apply the myRdr.ReadString() method to extract the value and load it in the list
box. Finally, we will close the reader object. Caution: We are assuming that there
is no “whitespace” between the ProductName and its Text node. If there is a
“whitespace,” we will need to put the second Read() in a loop until the node-
type is Text.

While myRdr.Read()

If XmlNodeType.Element

If myRdr.Name="ProductName" Then

myRdr.Read()

lstProducts.Items.Add(myRdr.ReadString)

End If

End If

End While

myRdr.Close()

To find the price of the selected product, we will go through the following
process:We will include the necessary code in the “unclick” event code of the
command button “Show Price.”We will create a second XmlTextReader object
based on the catalog2.xml file. Of course, we may scan all nodes sequentially to
find the price. However, the XmlTextReader class enables you to skip undesirable
nodes, such as the “whitespace” or the declaration nodes via the MoveToContent()
method.According to Microsoft, all nonwhitespace, Element, End Element,
EntityReference, and EndEntity nodes are content nodes.The MoveToContent()
method checks whether the current node is a content node. If the node is not a
content node, then the method skips to the next content node.You need to be
careful though. If the current node happens to be a content node, the cursor does
not move to the next content node automatically on a further MoveToContent().

Initially, when we instantiate the reader object, its node type is None. It hap-
pens to be a noncontent node. Hence our first MoveToContent() statement takes
us to a content node.There, we check if it is an Element-type node named
“ProductName” and if its ReadString() is equal to the name of the selected
product. If all are true, then we apply a Read() to go to the next node.This Read()
may take us to a “whitespace” node, and thus we have applied a MoveToContent()

www.syngress.com

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 368

Using XML in the .NET Framework • Chapter 8 369

to get to the ListPrice node. Figure 8.14 shows an excerpt of the relevant code.
The complete code is available in XmlTextReader2.aspx file in the CD.

Figure 8.14 Excerpt of XmlTextReader2.aspx

Sub showPrice(s As Object, e As EventArgs)

Dim myRdr2 As New XmlTextReader(Server.MapPath("Catalog2.xml"))

Dim unitPrice As Double

Dim qty AS Integer

Do While Not myRdr2.EOF()

If (myRdr2.MoveToContent() = XmlNodeType.Element _

And myRdr2.Name ="ProductName" _

And myRdr2.ReadString()=lstProducts.SelectedItem.ToString())

myRdr2.Read()

If (myRdr2.MoveToContent() = XmlNodeType.Element _

And myRdr2.Name ="ListPrice")

unitPrice=Double.Parse(myRdr2.ReadString())

lblPrice.Text= "Unit Price = " + FormatCurrency(unitPrice)

Exit Do

End If

End If

myRdr2.Read()

Loop

qty = Integer.Parse(txtQty.Text)

lblAmount.Text = "Amount Due = " + FormatCurrency(qty * unitPrice)

myRdr2.Close()

End Sub

By the way, we could have also used the MoveToContent() method to load our
list box more effectively. However, we just wanted to show the alternative
methodologies.

NOTE

We may also read XML files from remote servers as follows:
Dim myRdr As New XmlTextReader("http://ahmed2/Chapter8/

Catalog2.xml")

www.syngress.com

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 369

http://ahmed2/Chapter8/

370 Chapter 8 • Using XML in the .NET Framework

Writing an XML Document
Using the XmlTextWriter Class
The XmlTextWriter class is a concrete implementation of the XmlWriter abstract
class.An XmlTextWriter object can be used to write data sequentially to an output
stream, or to a disk file as an XML document.The data to be written may come
from the user’s input and/or from a variety of other sources, such as text files,
databases, XmlTextReaders, or XmlDocuments. Its major methods and properties
include Close, Flush, Formatting,WriteAttribues,WriteAttributeString,WriteComment,
WriteElementString,WriteElementString,WriteEndAttribute,WriteEndDocument,
WriteState, and WriteStartDocument.

Generating an XML
Document Using XmlTextWriter
In this section, we will collect user-given data via an .aspx page, and write the
information in an XML file.The run-time view of the application is shown in
Figure 8.15. On the click event of the “Create XML File,” the application will
create the XML file (in the disk) and display it back in the browser as seen in
Figure 8.16.

We have included the necessary code in the click event of the command
button. Our objective is to write the data in a disk file named Customer.xml. In
the code, first we have created an instance of the XmlTextWriter object as follows:

Dim myWriter As New XmlTextWriter _

(Server.MapPath("Customer.xml"), Nothing)

www.syngress.com

Figure 8.15 Output of the XmlTextReader2.aspx

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 370

Using XML in the .NET Framework • Chapter 8 371

The second parameter “Nothing” is specified to map the file to a UTF-8
format.Then it is just a matter of writing the various elements, attributes, and
their values judiciously. Once the file is written, we simply employed the
Response.Redirect(Server.MapPath(“Customer.xml”)) to display the XML documents
information in the browser.The complete code for the application is shown in
Figure 8.17. Both Customer.xml and XmlTextWriter1.aspx files are available in
the accompanying CD.

Figure 8.17 XmlTextWriter1.aspx

<!— Chapter8\XmlTextWriter1.aspx —>

<%@ Page Language="VB" Debug="True"%>

<%@ Import Namespace="System.Xml"%>

<HTML><HEAD><title>XMLTextWriter Example</title></HEAD>

<body><form runat="server">

XmlTextWriter Example

<asp:Label id="lblAcno" Text="Account Number :"

runat="server"/>

<asp:TextBox id="txtAcno" runat="server" width="50" _

text=" ST124" />

<asp:Label id="lblName" Text="Name :" runat="server" />

<asp:TextBox id="txtName" runat="server" width="100" text="Vijay

Ananth"/>

<asp:Label id="lblCity" Text="City :" runat="server"/>

<asp:TextBox id="txtCity" runat="server" width="100"

text="Toledo"/>

www.syngress.com

Figure 8.16 Generated XML File

Continued

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 371

372 Chapter 8 • Using XML in the .NET Framework

<asp:Button id="cmdWriteXML" Text="Create XML File" runat="server"

onclick="writeXML"/>

</form>

<Script Language="vb" runat="server">

Sub writeXML(sender As Object,e As EventArgs)

Dim myWriter As New XmlTextWriter _

(Server.MapPath("Customer.xml"), Nothing)

myWriter.Formatting = Formatting.Indented

myWriter.WriteStartDocument() 'Start a new document

' Write the Comment

myWriter.WriteComment("XMLTextWriter Example")

' Insert an Start element tag

myWriter.WriteStartElement("CustomerDetails")

' Write an attribute

myWriter.WriteAttributeString("AccountType", "Saving")

' Write the Account element and its content

myWriter.WriteStartElement("AccountNumber","")

myWriter.WriteString(txtAcno.Text)

myWriter.WriteEndElement()

' Write the Name Element and its data

myWriter.WriteStartElement("Name","")

myWriter.WriteString(txtName.Text)

myWriter.WriteEndElement()

'Write the City element and its data

myWriter.WriteStartElement("City","")

myWriter.WriteString(txtCity.Text)

myWriter.WriteEndElement()

'End all the tags here

myWriter.WriteEndDocument()

www.syngress.com

Figure 8.17 Continued

Continued

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 372

Using XML in the .NET Framework • Chapter 8 373

myWriter.Flush()

myWriter.Close()

'Display the XML content on the screen

Response.Redirect(Server.MapPath("Customer.xml"))

End Sub

</Script>

Exploring the XML
Document Object Model
The W3C Document Object Model (DOM) is a set of specifications to represent
an XML document in the computer’s memory. Microsoft has implemented the
W3C Document Object Model via a number of .NET objects.The XmlDocument
is one of these objects.When an XmlDocument object is loaded, it organizes the
contents of an XML document as a “tree” (as shown in Figure 8.18).Whereas the
XMLTextReader object provides a forward-only cursor, the XmlDocument object
provides fast and direct access to a node. However, a DOM tree is cache intensive,
especially for large XML documents.

An XmlDocument object can be loaded from an XmlTextReader. Once it
is loaded, we may navigate via the nodes of its tree using numerous methods
and properties. Some of the frequently used members are the following:
DocumentElement (root of the tree), ChildNodes (all children of a node), FirstChild,
LastChild, HasChildNodes, ChildNodes.Count (# of children), InnerText (the con-
tent of the sub-tree in text format), Name (node name), NodeType, and Value
(of a text node) among many others.

If needed, we may address a node using the parent-child hierarchy.The first
child of a node is the ChildNode(0), the second child is ChildNode(1), and so
on. For example, the first product can be referenced as DocumentElement
.ChildNodes(0). Similarly, the price of the second product can be addressed as
DocumentElement.ChildNodes(1).ChildNodes(2).InnerText.

www.syngress.com

Figure 8.17 Continued

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 373

374 Chapter 8 • Using XML in the .NET Framework

Navigating through an XmlDocument Object
In this example we will implement our product selection page using the XML
document object model.The output of the code is shown in Figure 8.19.

Let’s go through the process of loading the XmlDocument (DOM tree).There
are a number different ways to load an XML Document object.We will load it
using an XmlTextReader object.We will ask the reader to ignore the “whitespaces”
(more or less to conserve cache).As you can see from the following code, we are
loading the tree in the Page_Load event. On “PostBack”, we will not have access
to this tree.That is why we are storing the “tree” in a Session variable.When the
user makes a selection, we will retrieve the tree from the session, and search its
node for the appropriate price.

www.syngress.com

Figure 8.18 Node Addressing Techniques in an XML DOM Tree

Document.Element.ChildNodes(1).
ChildNodes(2).InnerTextCatalog

Product Product

PId PricePName PricePNamePId

47.76ShimanoF10 49.99BantamF20

Document.Element.
ChildNodes(0)

Figure 8.19 Output of the XmlDocument Object Example

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 374

Using XML in the .NET Framework • Chapter 8 375

Private Sub Page_Load(s As Object, e As EventArgs)

If Not Page.IsPostBack Then

Dim myDoc As New XmlDocument()

Dim myRdr As New XmlTextReader(Server.MapPath("Catalog2.xml"))

myRdr.WhitespaceHandling = WhitespaceHandling.None

myDoc.Load(myRdr)

Session("sessionDoc") = myDoc ' Put it in a session variable

Once the tree is loaded, we can load the list box with the InnerText property
of the ProductName nodes.

For i = 0 To myDoc.DocumentElement.ChildNodes.Count - 1

lstProducts.Items.Add _

(myDoc.DocumentElement.ChildNodes(i).ChildNodes(1).InnerText)

Next i

myRdr.Close()

Next, let’s investigate how to retrieve the price of a selected product. On
click of the Show Price button, we simply retrieve the tree from the session, and
get to the Price node directly.The SelectedIndex property of the list box does a
favor for us, as its Selected Index value will match the corresponding child’s
ordinal position in the Catalog (DocumentElement). Figure 8.20 shows an excerpt
of the relevant code that is used to retrieve the price of a selected product.The
complete code is available in the XmlDom1.aspx file in the accompanying CD.

Figure 8.20 Partial Listing of XmlDom1.aspx

Private Sub showPrice(s As Object, e As EventArgs)

Dim i As Integer

Dim qty As Integer = 1

Dim price As Double

Dim myDoc As New XmlDocument()

myDoc = Session("sessionDoc")

i = lstProducts.SelectedIndex ' The Row number selected

qty = Integer.Parse(txtQty.Text)

price = Double.Parse _

(myDoc.DocumentElement.ChildNodes(i).ChildNodes(2).InnerText)

lblPrice.Text = FormatCurrency(price)

www.syngress.com

Continued

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 375

376 Chapter 8 • Using XML in the .NET Framework

lblAmount.Text = FormatCurrency(qty * price)

End Sub

Parsing an XML Document
Using the XmlDocument Object
A tree is composed of nodes. Essentially, a node is also a tree because it contains
all other nodes below it.A node at the bottom does not have any children; hence,
most likely it will be of a text-type node.We will employ this phenomenon to
travel through a tree using a VB recursive procedure.The primary objective of
this example is to travel through DOM tree and display the information con-
tained in each of its nodes.The output of this exercise is shown in Figure 8.21.

We will develop two subprocedures:

1. DisplayNode(node As XmlNode) It will receive a node and check if
it is a terminal node. If the node is a terminal node, this subprocedure
will print its contents. If the node is not a terminal node, then the sub-
procedure will check if the node has any attributes. If there are
attributes, it will print them.

2. TravelDownATree(tree As XmlNode) It will receive a tree, and at
first it will call the DisplayNode procedure.Then it will pass the sub-tree
of the received tree to itself.This is a recursive procedure.Thus, it will
actually fathom all nodes of a received tree, and we will get all nodes of
the entire tree printed.

www.syngress.com

Figure 8.20 Continued

Figure 8.21 Parsing an XmlDocument Object

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 376

Using XML in the .NET Framework • Chapter 8 377

The complete listing of the code is shown in Figure 8.22.The code is also
available in the file named XmlDom2.aspx in the accompanying CD.As usual, we
will load the XmlDocument in the Page_Load() event using an XmlTextReader.After
the DOM tree is loaded, we will call the TravelDownATree recursive procedure,
which will accomplish the remainder of the job.

Figure 8.22 The Complete Code XmlDom2.aspx

<!— Chapter8\xmlDom2.aspx —>

<%@ Page Language = "VB" Debug ="True" %>

<%@ Import Namespace="System.Xml" %>

<Script Language="vb" runat="server">

Sub Page_Load(s As Object, e As EventArgs)

If Not Page.IsPostBack Then

Dim myXmlDoc As New XmlDocument()

Dim myRdr As New XmlTextReader(Server.MapPath("Catalog2.xml"))

myRdr.WhitespaceHandling = WhitespaceHandling.None

myXmlDoc.Load (myRdr)

TravelDownATree(myXmlDoc.DocumentElement)

myRdr.Close()

End If

End Sub

Sub TravelDownATree(tree As XMLNode)

If Not IsNothing(tree) Then

DisplayNode(tree)

End If

If tree.HasChildNodes Then

tree = tree.FirstChild

While Not IsNothing(tree)

TravelDownATree(tree) //Call itself and pass the subtree

tree = tree.NextSibling

End While

End If

End Sub

Sub DisplayNode(node As XmlNode)

If Not node.HasChildNodes Then

www.syngress.com

Continued

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 377

378 Chapter 8 • Using XML in the .NET Framework

Response.Write("Name= " + node.Name + " Type= " _

+ node.NodeType.ToString()+" Value= "+node.Value +"
")

Else

Response.Write("Name= " + node.Name + " Type= " _

+ node.NodeType.ToString() + "
")

If node.NodeType = XmlNodeType.Element Then

Dim x As XmlAttribute

For each x In node.Attributes

Response.Write("Name= " + x.Name + " Type = " _

+ x.NodeType.ToString()+" Value = "+x.Value +"
")

Next

End If

End If

End Sub

</Script>

Using the XmlDataDocument Class
The XmlDataDocument class is an extension of the XmlDocument class. It more-or-
less behaves almost the same way the XmlDocument does.The most fascinating fea-
ture of an XmlDataDocument object is that it provides two alternative views of the
same data, the “XML view” and the “relational view.”The XmlDataDocument has a
property named DataSet. It is through this property that XmlDataDocument exposes
its data as one or more related or unrelated DataTables. A DataTable is actually an
imaginary table-view of XML data. Once we load an XmlDataDocument object, we
can treat it as a DOM tree, or we can treat its data as a DataTable (or a collection of
DataTables) via its DataSet property. Figure 8.23 shows the two views of an
XmlDataDocument. Because these views are drawn from the same DataDocument
object, these are automatically synchronized.That means that any changes in any
one of them will change the other. In this section, we will provide three examples.

■ We will demonstrate how to load an XML document as an
XmlDataDocument object, and process it as a Dom tree.

■ We will illustrate how to retrieve the data from a DataTable view of the
XmlDataDocument’s DataSet.

www.syngress.com

Figure 8.22 Continued

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 378

Using XML in the .NET Framework • Chapter 8 379

■ Finally,We will demonstrate when and how the XmlDataDocument object
provides multiple-table views.

Loading an XmlDocument and
Retrieving the Values of Certain Nodes
In this section we will load an XmlDataDocument using our Catalog2.xml file.After
we load it, we will retrieve the product names and load them in a list box.The
output of this example is shown in Figure 8.24.The code for this application is
listed in Figure 8.25, and it is also available in the file named XmlDataDocument1
.aspx in the accompanying CD.

The XmlDataDocument is a pleasant object to work with. In this example, the
code is pretty straightforward.After we have loaded the XmlDataDocument, we
have declared an XmlNodeList collection named productNames.We have populated

www.syngress.com

Figure 8.23 Two Views of an XmlDataDocument Object

XML Source

XmlDataDocument

The Tree View
DataSet’s

Data Table View

Figure 8.24 Output of XmlDataDocument1.aspx

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 379

380 Chapter 8 • Using XML in the .NET Framework

the collection by using the GetElementsByTagName(“ProductName”) method of
the XmlDataDocument object. Finally, it is just a matter of iterating through the
productNames collection and loading each of its members in the list box.

At this stage, you will probably ask why we are not finding the unit price of
the selected product.Actually, therein lies the beauty of the XmlDataDocument.
Because it has extended the XmlDocument class, all of the members of the
XmlDocument class are also available to us.Thus, we could use the same technique
as shown in our previous example to find the price. Nevertheless, the reason for
not showing the searching technique here is that we will cover it later when we
discuss the XPathIterator object.

Figure 8.25 XmlDataDocument1.aspx

<!—\Chapter8\xmlDataDocument1.aspx —>

<%@ Page Language = "VB" Debug ="True" %>

<%@ Import Namespace="System.Xml" %>

<html><head></head><body><form runat="server">

Select a Product:

<asp:ListBox id="lstProducts" runat="server" rows = "2" />

</body></form><html>

<Script Language="vb" runat="server">

Sub Page_Load(s As Object, e As EventArgs)

If Not Page.IsPostBack Then

Dim myDataDoc As New XmlDataDocument()

myDataDoc.Load(Server.MapPath("Catalog2.xml"))

Dim productNames As XmlNodeList

productNames= myDataDoc.GetElementsByTagName("ProductName")

Dim x As XmlNode

For Each x In productNames

lstProducts.Items.Add (x.FirstChild().Value)

Next

End If

End Sub

</Script>

www.syngress.com

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 380

Using XML in the .NET Framework • Chapter 8 381

Using the Relational View of
an XmlDataDocument Object
In this example, we will process and display the Catalog3.xml document’s data
as a relational table in a DataGrid. The Catalog3.xml is exactly the same as
Catalog2.xml except that it has more data.The Catalog3.xml file is available in
the accompanying CD.The output of this example is shown in Figure 8.26.

If we want to process the XML data as relational data, we need to load the
schema of the XML document first.We have generated the following schema for
the Catalog3.xml using VS.NET. The schema specification is shown in Figure 8.27
(also available in the accompanying CD).

Figure 8.27 Catalog3.xsd

<xsd:schema id="Catalog" targetNamespace="http://tempuri.org

/Catalog3.xsd" xmlns="http://tempuri.org/Catalog3.xsd"

xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:msdata

="urn:schemas-microsoft-com:xml-msdata" attributeFormDefault

="qualified" elementFormDefault="qualified">

<xsd:element name="Catalog" msdata:IsDataSet="true"

msdata:EnforceConstraints="False">

<xsd:complexType>

<xsd:choice maxOccurs="unbounded">

<xsd:element name="Product">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="ProductID" type="xsd:string" minOccurs="0"

www.syngress.com

Figure 8.26 Output of XmlDataDocument DataSet View Example

Continued

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 381

http://tempuri.org
http://tempuri.org/Catalog3.xsd
http://www.w3.org/2001/XMLSchema

382 Chapter 8 • Using XML in the .NET Framework

msdata:Ordinal="0" />

<xsd:element name="ProductName" type="xsd:string"

minOccurs="0" msdata:Ordinal="1" />

<xsd:element name="ListPrice" type="xsd:string" minOccurs="0"

msdata:Ordinal="2" />

</xsd:sequence>

<xsd:attribute name="Type" form="unqualified" type="xsd:string"/>

<xsd:attribute name="SupplierId" form="unqualified"

type="xsd:string" />

</xsd:complexType>

</xsd:element>

</xsd:choice>

</xsd:complexType>

</xsd:element>

</xsd:schema>

NOTE

When we create a schema from a sample XML document, VS.NET auto-
matically inserts an xmlns attribute to the root element. The value of this
attribute specifies the name of the schema. Thus when we created the
schema for Catalog3.xml, the schema was named Catalog3.xsd and
VS.NET inserted the following attributes in the root element of
Catalog3.xml:
<Catalog xmlns="http://tempuri.org/Catalog3.xsd">

In our .aspx code, we loaded the schema using the ReadXmlSchema method
of our XmlDataDocument object as:

myDataDoc.DataSet.ReadXmlSchema(Server.MapPath("Catalog3.xsd")).

Next, we have loaded the XmlDataDocument as:

myDataDoc.Load(Server.MapPath("Catalog3.xml")).

www.syngress.com

Figure 8.27 Continued

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 382

http://tempuri.org/Catalog3.xsd

Using XML in the .NET Framework • Chapter 8 383

Since the DataDocument provides two views, we have exploited its DataSet
.Table(0) property to load the DataGrid and display our XML file’s information in
the grid.The complete listing of the code is shown in Figure 8.28.The code is
also available in the XmlDataDocDataSet1.aspx file in the accompanying CD.

Figure 8.28 Complete Listing XmlDataDocDataSet1.aspx

<!— Chapter8\XmlDataDocDataSet1.aspx —>

<%@ Page Language = "VB" Debug ="True" %>

<%@ Import Namespace="System.Xml" %>

<%@ Import Namespace="System.Data" %>

<html><head></head><body><form runat="server">

Select a Product:

<asp:DataGrid id="myGrid" runat="server"/>

</body></form></html>

<Script Language="vb" runat="server">

Sub Page_Load(s As Object, e As EventArgs)

If Not Page.IsPostBack Then

Dim myDataDoc As New XmlDataDocument()

' load the schema

myDataDoc.DataSet.ReadXmlSchema(Server.MapPath("Catalog3.xsd"))

' load the xml data

myDataDoc.Load(Server.MapPath("Catalog3.xml"))

myGrid.DataSource = myDataDoc.DataSet.Tables(0)

myGrid.DataBind()

End If

End Sub

</Script>

Viewing Multiple Tables of
a XmlDataDocument Object
In many instances, an XML document may contain nested elements. Suppose
that a bank has many customers, and a customer has many accounts.We have
modeled this simple scenario in an XML document with nested elements.This

www.syngress.com

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 383

384 Chapter 8 • Using XML in the .NET Framework

document, named Bank1.xml, is shown in Figure 8.29. It is also available in the
accompanying CD.

Figure 8.29 Bank1.xml

<?xml version="1.0" encoding="utf-8" ?>

<Bank xmlns="http://tempuri.org/Bank1.xsd">

<Customer>

<CustomerID>C100</CustomerID>

<CustomerName>Alfred Smith</CustomerName>

<City>Toledo</City>

<Account>

<Type>Savings</Type>

<Balance>1500.00</Balance>

</Account>

<Account>

<Type>Checking</Type>

<Balance>111.11</Balance>

</Account>

<Account>

<Type>Home Equity</Type>

<Balance>50000</Balance>

</Account>

</Customer>

<Customer>

—- —- —-

—- —- —-

</Customer>

</Bank>

If we load the above XML document and its schema in an XmlDataDocument
object, it will provide two relational tables’ views: one for the customer’s informa-
tion, and the other for the account’s information. Our objective is to display the
data of these relational tables in two DataGrids as shown in Figure 8.30.

To develop this application, first we had to generate the schema for our
Bank1.xml file.We used the VS.NET XML designer to accomplish this task. It is

www.syngress.com

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 384

http://tempuri.org/Bank1.xsd

Using XML in the .NET Framework • Chapter 8 385

interesting to observe that while creating the schema,VS.NET automatically gen-
erates the 1:Many relationship between the Customer and Accounts elements.To
establish the relationship, it also creates an auto-numbered primary key column
(Customer_Id) in the Customer DataTable. Simultaneously, it inserts the appropriate
values of the foreign keys in the Account DataTable.The DataSet view of the gen-
erated schema is shown in Figure 8.31.

In order to provide the relational view of our XML document (Bank1.xml),
VS.NET included the Customer_Id attributes in both Customer and Account ele-
ments in its generated schema. It also generated the necessary schema entries to

www.syngress.com

Figure 8.30 Displaying Customer and Accounts Data in Two Data Grids

Figure 8.31 XmlDataDocument DataSet Representation in Visual Studio .NET

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 385

386 Chapter 8 • Using XML in the .NET Framework

describe the implied relationship among the Customer and Account elements.
Figure 8.32 shows an excerpt of the generated schema for our XML file.The
complete schema is available in a file named Bank1.xsd in the accompanying CD.

Figure 8.32 Primary Key and Foreign Key Specifications in the Bank1.xsd

<xsd:unique name="Constraint1" msdata:PrimaryKey="true">

<xsd:selector xpath=".//Customer" />

<xsd:field xpath="@Customer_Id" /></xsd:unique>

<xsd:keyref name="Customer_Account"

refer="Constraint1"msdata:IsNested="true">

<xsd:selector xpath=".//Account" />

<xsd:field xpath="@Customer_Id" />

</xsd:keyref>

In the above fragment of the generated schema, the xsd:unique element speci-
fies the Customer_Id attribute as the primary key of the Customer element.
Subsequently, the xsd:keyref element specifies the Customer_Id attribute as the for-
eign key of the Account element. XPath expressions have been used to achieve the
afore-mentioned objectives.

The complete listing of the application is shown in Figure 8.33. It is also
available in the xmlDataDocDataSet2.aspx file in the accompanying CD.The
code is pretty straightforward.We have loaded two data grids from two DataTables
of the DataSet, associated with the XmlDataDocument object.

Figure 8.33 Complete Code of XmlDataDocDataSet2.aspx

<!— Chapter8\XmlDataDocDataSet2.aspx —>

<%@ Page Language = "VB" Debug ="True" %>

<%@ Import Namespace="System.Xml" %>

<%@ Import Namespace="System.Data" %>

<html><head></head><body><form runat="server">

Customers :

<asp:DataGrid id="myCustGrid" runat="server"/>

Accounts :

<asp:DataGrid id="myAcctGrid" runat="server"/>

</body></form></html>

<Script Language="vb" runat="server">

www.syngress.com
Continued

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 386

Using XML in the .NET Framework • Chapter 8 387

Sub Page_Load(s As Object, e As EventArgs)

If Not Page.IsPostBack Then

Dim myDataDoc As New XmlDataDocument()

' load the schema

myDataDoc.DataSet.ReadXmlSchema(Server.MapPath("Bank1.xsd"))

' load the xmldata

myDataDoc.Load(Server.MapPath("Bank1.xml"))

myCustGrid.DataSource = myDataDoc.DataSet.Tables("Customer")

myCustGrid.DataBind()

'load the Account grid

myAcctGrid.DataSource = myDataDoc.DataSet.Tables("Account")

myAcctGrid.DataBind()

End If

End Sub

</Script>

NOTE

In a Windows Form, the DataGrid control by default provides automatic
drill-down facilities for two related DataTables. Unfortunately, it does not
work in this fashion in a Web form. Additional programming is needed
to simulate the drill-down functionality.

In this example, we have illustrated how an XmlDataDocument object maps
nested XML elements into multiple DataTables.Typically, an element is mapped
to a table if it contains other elements. Otherwise, it is mapped to a column.
Attributes are mapped to columns. For nested elements, the system creates the
relationship automatically.

www.syngress.com

Figure 8.33 Continued

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 387

388 Chapter 8 • Using XML in the .NET Framework

Querying XML Data Using
XPathDocument and XPathNavigator
The XmlDocument and the XmlDataDocument have certain limitations. First of all,
the entire document needs to be loaded in the cache. Often, the navigation pro-
cess via the DOM tree itself gets to be clumsy.The navigation via the relational
views of the data tables may not be very convenient either.To alleviate these
problems, the XML.NET has provided the XPathDocument and XPathNavigator
classes.These classes have been implemented using the W3C XPath 1.0
Recommendation (www.w3.org/TR/xpath).

The XPathDocument class enables you to process the XML data without
loading the entire DOM tree.An XPathNavigator object can be used to operate
on the data of an XPathDocument. It can also be used to operate on XmlDocument
and XmlDataDocument. It supports navigation techniques for selecting nodes, iter-
ating over the selected nodes, and working with these nodes in diverse ways for
copying, moving, and removal purposes. It uses XPath expressions to accomplish
these tasks.

The W3C XPath 1.0 specification outlines the query syntax for retrieving
data from an XML document.The motivation of the framework is similar to
SQL; however, the syntax is significantly different.At first sight, the XPath query
syntax may appear very complex. But with a certain amount of practice, you may
find it very concise and effective in extracting XML data.The details of the
XPath specification are beyond the scope of this chapter. However, we will illus-
trate several frequently used XPath query expressions. In our exercises, we will
illustrate two alternative ways to construct the expressions.The first alternative
follows the recent XPath 1.0 syntax.The second alternative follows XSL Patterns,
which is a precursor to XPath 1.0. Let us consider the following XML document
named Bank2.xml.The Bank2.xml document is shown in Figure 8.34, and it is
also available in the accompanying CD. It contains data about various accounts.
We will use this XML document to illustrate our XPath queries.

Figure 8.34 Bank 2.xml

<!-- Chapter8\Bank2.xml -->

<Bank>

<Account>

<AccountNo>A1112</AccountNo>

<Name>Pepsi Beagle</Name>

www.syngress.com

Continued

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 388

Using XML in the .NET Framework • Chapter 8 389

<Balance>1200.89</Balance>

<State>OH</State>

</Account>

--- --- ---

--- --- ---

<Account>

<AccountNo>A7833</AccountNo>

<Name>Frank Horton</Name>

<Balance>8964.55</Balance>

<State>MI</State>

</Account>

</Bank>

Sample Query Expression 1: Suppose that we want the names of all
account holders.The following alternative XPath expressions will accom-
plish the job equally well:

■ Alternative 1: descendant::Name

■ Alternative 2: Bank/Account/Name

The first expression can be read as “Give me the descendents of all
Name nodes.”The second expression can be read as “Give me the Name
nodes of the Account nodes of the Bank node.” Both of these expres-
sions will return the same node set.

Sample Query Expression 2: We want the records for all customers
from Ohio.We may specify any one of the following expressions:

■ Alternative 1: descendant::Account[child::State=’OH’]

■ Alternative 2: Bank/Account[child::State=’OH’]

Sample Query Expression 3: Any one of the following alternative
expressions will return the Account node-sets for all accounts with a
balance more than 5000.00:

■ Alternative 1: descendant::Account[child::Balance > 5000]

■ Alternative 2: Bank/Account[child::Balance > 5000.00]

www.syngress.com

Figure 8.34 Continued

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 389

390 Chapter 8 • Using XML in the .NET Framework

Sample Query Expression 4: Suppose that we want the Account
information for those accounts whose names start with the letter “D.”

■ Alternative 1: descendant::account[starts-with(child::Name, ‘D’)]

■ Alternative 2: Bank/Account[starts-with(child::Name, ‘D’)]

Which of the alternative expressions would you use? That depends on your
personal taste and on the structure of the XML document.The second alternative
appears to be easier than the first one. However, in the case of a highly nested
document, the first alternative will offer more compact expressions. Regardless of
the syntax used, please be aware that each of the above queries will return a set of
nodes. In our ASP code, we will have to extract the desired information from
these sets using an XPathNodeIterator.

NOTE

We found the http://staff.develop.com/aarons/bits/xpath-builder/ site to
be very good in learning XPath queries interactively.

Okay, now that we have traveled through the XPath waters, we are ready to
venture into the usages of the XPathDocument. In this context, we will provide
two examples.The first example will extract the names of the customers from
Ohio and load a list box.The second example will illustrate how to find a spe-
cific piece of data from an XPathDocument.

Using XPathDocument and
XPathNavigator Objects
In this section we will use the XPathDocument and XPathNavigator objects to load
a list box from our Bank2.xml file (as shown in Figure 8.34).We will load a list
box with the names of customers who are from Ohio.The output of this applica-
tion is shown in Figure 8.35.The complete code for this application is shown in
Figure 8.36.The code is also available in the XPathDoc1.aspx file in the accom-
panying CD.

We loaded the Bank2.xml as an XPathDocument object as follows:

Dim Doc As New XPathDocument(Server.MapPath("Bank2.xml"))

www.syngress.com

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 390

http://staff.develop.com/aarons/bits/xpath-builder/

Using XML in the .NET Framework • Chapter 8 391

At this stage, we need two more objects: an XPathNavigator for retrieving the
desired node-set, and an XPathNodeIterator for iterating through the members of
the node-set.These are defined as follows:

Dim myNav As XPathNavigator

myNav= myDoc.CreateNavigator()

Dim myIter As XPathNodeIterator

myIter=myNav.Select("Bank/Account[child::State='OH']/Name")

The Bank/Account[child::State=’OH’]/Name search expression returns
the Name nodes from the Account node-set whose state is “OH.”To get the
value inside a particular name node, we need to use the Current.Value property of
the Iterator object.Thus, the following code loads our list box:

While (myIter.MoveNext())

lstName.Items.Add(myIter.Current.Value)

End While

Figure 8.36 Complete Code XPathDoc1.aspx

<!— Chapter8/XPathDoc1.aspx —>

<%@ Page Language="VB" Debug="True"%>

<%@ Import Namespace="System.Xml"%>

<%@ Import Namespace="System.Xml.XPath"%>

<%@ Import Namespace="System.Xml.Xsl"%>

<html><head></head><body>

<form runat="server"><h4>

www.syngress.com

Figure 8.35 Using XPathDocument Object

Continued

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 391

392 Chapter 8 • Using XML in the .NET Framework

Query Examples</h4>

Customers From Ohio:

<asp:ListBox id="lstName1" runat="server"

width="150" rows="4"/>

<asp:Button id="cmdDetails" Text="Populate the ListBox"

runat="server" onClick="showNames"/>

</form></body></html>

<Script Language="vb" runat="server">

Sub showNames(s As Object, e As EventArgs)

Dim Doc As New XPathDocument(Server.MapPath("Bank2.xml"))

Dim myNav As XPathNavigator

myNav=Doc.CreateNavigator()

Dim myIter As XPathNodeIterator

myIter=myNav.Select("Bank/Account[child::State='OH']/Name")

While (myIter.MoveNext())

lstName1.Items.Add(myIter.Current.Value)

End While

End Sub

</Script>

Using XPathDocument and XPathNavigator
Objects for Document Navigation
This section will illustrate how to search an XPathDocument using a value of an
attribute, and using a value of an element.We will use the Bank3.xml to illustrate
these.A partial listing of the Bank3.xml is shown in Figure 8.37.The complete
code is available in the accompanying CD.

Figure 8.37 Bank3.xml

<!-- Chapter8\Bank3.xml -->

<Bank>

<Account AccountNo="A1112">

www.syngress.com

Figure 8.36 Continued

Continued

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 392

Using XML in the .NET Framework • Chapter 8 393

<Name>Pepsi Beagle</Name>

<Balance>1200.89</Balance>

<State>OH</State>

</Account>

--- --- ---

--- --- ---

</Bank>

The Account element of the above XML document contains an attribute
named AccountNo, and three other elements. In this example, we will first load
two combo boxes, one with the account numbers, and the other with the
account holder’s names.The user will select an account number and/or a name.
On the click event of the command buttons, we will display the balances in the
appropriate text boxes.The output of the application is shown in Figure 8.38.
The application has been developed in an .aspx file named XpathDoc2.aspx. Its
complete listing is shown in Figure 8.39.The code is also available in the accom-
panying CD.

To search for a particular value of an attribute (e.g., of an account number)
we have used the following expression:

Bank/Account[@AccountNo='"+accNo+"']/Balance

www.syngress.com

Figure 8.37 Continued

Figure 8.38 The Output of XPathDoc2.aspx

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 393

394 Chapter 8 • Using XML in the .NET Framework

To search for a particular value of an element (e.g., of an account holder’s
name), we have used the following expression:

descendant::Account[child::Name='"+accName+"']/Balance

We needed to call the MoveNext method of the Iterator object in order to get
to the balance node.The following expression illustrates the construct:

Bank/Account[@AccountNo='"+accNo+"']/Balance

Figure 8.39 Complete Code XPathDoc2.aspx

<!— Chapter8/XPathDoc2.aspx —>

<%@ Page Language="VB" Debug="True"%>

<%@ Import Namespace="System.Xml"%>

<%@ Import Namespace="System.Xml.XPath"%>

<%@ Import Namespace="System.Xml.Xsl"%>

<html><head></head><body>

<form runat="server"><h4>

Balance Inquiry Screen</h4>

Select an Account Number:

<asp:DropdownList id="cboAcno" runat="server" width="100" />

Balance from Account Number Search:

<asp:Textbox id="txtBalance1" runat="server" width="80" />

<hr/>

Select an Customer Name:

<asp:DropdownList id="cboName" runat="server" width="110" />

Balance from Customer Name Search :

<asp:Textbox id="txtBalance2" runat="server" width="80" />

<asp:Button id="cmdDetails" Text="Show Balances" runat="server"

onClick="showNames"/>

</form></body></html>

<Script Language="vb" runat="server">

www.syngress.com

Continued

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 394

Using XML in the .NET Framework • Chapter 8 395

Sub Page_Load(s As Object, e As EventArgs)

If Not Page.IsPostBack Then

Dim myDoc As New XPathDocument(Server.MapPath("Bank3.xml"))

Dim myNav As XPathNavigator

myNav=myDoc.CreateNavigator()

Dim myIter As XPathNodeIterator

' Populate the DropDownList with Account Number values

myIter=myNav.Select("//@*") ' Load all attributes

While (myIter.MoveNext())

cboAcno.Items.Add(myIter.Current.Value)

End While

' Populate the DropDown list with the name values

myIter=myNav.Select("/Bank/Account/Name")

While (myIter.MoveNext())

cboName.Items.Add(myIter.Current.Value)

End While

End If

End Sub

Sub showNames(s As Object, e As EventArgs)

'Get the value of the selected Item

Dim accNo As String = cboAcno.SelectedItem.Text.Trim()

Dim accName As String = cboName.SelectedItem.Text.Trim()

Dim myDoc As New XPathDocument(Server.MapPath("Bank3.xml"))

Dim myNav As XPathNavigator

myNav=myDoc.CreateNavigator()

Dim myIter As XpathNodeIterator

' Query to get the balance from AccountNo

myIter=myNav.Select("Bank/Account[@AccountNo='"+accNo+"']/Balance")

myIter.MoveNext()

'Display the values of Balance

www.syngress.com

Continued

Figure 8.39 Continued

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 395

396 Chapter 8 • Using XML in the .NET Framework

txtBalance1.Text=FormatCurrency(myIter.Current.Value)

' Query to get the balance from Name

myIter = myNav.Select _

("descendant::Account[child::Name='"+accName+"']/Balance")

myIter.MoveNext()

'Display the values of Balance

txtBalance2.Text=FormatCurrency(myIter.Current.Value)

End Sub

</Script>

Transforming an XML
Document Using XSLT
Extensible Stylesheet Language Transformations (XSLT) is the transformation
component of the XSL specification by W3C (www.w3.org/Style/XSL). It is
essentially a template-based declarative language, which can be used to transform
an XML document to another XML document or to documents of other types
(e.g., HTML and Text).We can develop and apply various XSLT templates to
select, filter, and process various parts of an XML document. In .NET, we can use
the Transform() method of the XSLTransform class to transform an XML document.

Internet Explorer (5.5 and above) has a built-in XSL transformer that auto-
matically transforms an XML document to an HTML document.When we open
an XML document in IE, it displays the data using a collapsible list view.
However, the Internet Explorer cannot be used to transform an XML document
to another XML document. Now, why would we need to transform an XML
document to another XML document? Well, suppose that we have a very large
document that contains our entire catalog’s data.We want to create another XML
document from it, which will contain only the productId and productNames of those
products that belong to the “Fishing” category.We would also like to sort the ele-
ments in the ascending order of the unit price. Further, we may want to add a
new element in each product, such as “Expensive” or “Cheap” depending on the
price of the product.To solve this particular problem, we may either develop rele-
vant codes in a programming language like C#, or we may use XSLT to accom-
plish the job. XSLT is a much more convenient way to develop the application,
because XSLT has been developed exclusively for these kind of scenarios.

www.syngress.com

Figure 8.39 Continued

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 396

Using XML in the .NET Framework • Chapter 8 397

Before we can transform a document, we need to provide the Transformer
with the instructions for the desired transformation of the source XML docu-
ment.These instructions can be coded in XSL.We have illustrated this process in
Figure 8.40.

In this section, we will demonstrate certain selected features of XSLT through
some examples.The first example will apply XSLT to transform an XML docu-
ment to an HTML document.We know that the IE can automatically transform
an XML document to a HTML document and can display it on the screen in
collapsible list view. However, in this particular example, we do not want to dis-
play all of our data in that fashion.We want to display the filtered data in tabular
fashion.Thus, we will transform the XML document to a HTML document to
our choice (and not to IE’s choice).The transformation process will select and
filter some XML data to form an HTML table.The second example will trans-
form an XML document to another XML document and subsequently write the
resulting document in a disk file, as well as display it in the browser.

Transforming an XML Document
to an HTML Document
In this example, we will apply XSLT to extract the account’s information for
Ohio customers from the Bank3.xml (as shown in Figure 8.37) document.The
extracted data will be finally displayed in an HTML table.The output of the
application is shown in Figure 8.41.

If we need to use XSLT, we must at first develop the XSLT style sheet (e.g.,
XSLT instructions).We have saved our style sheet in a file named XSLT1.xsl. In
this style sheet, we have defined a template as <xsl:template match=“/”> …
</xsl:template>. The match=“/” will result in the selection of nodes at the root

www.syngress.com

Figure 8.40 XSL Transformation Process

XML Source File

XSL Instructions

Dot Net XSL
Transformer

Target File

• HTML
• XML
• Text

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 397

398 Chapter 8 • Using XML in the .NET Framework

of the XML document. Inside the body of this template, we have first included
the necessary HTML elements for the desired output.

The “<xsl:for-each select=“Bank/Account[State=‘OH’]” >” tag is used to
select all Account nodes for those customers who are from “OH.”The value of a
node can be shown using a <xsl:value-of select=attribute or element name>. In case
of an attribute, its name must be prefixed with an @ symbol. For example, we are
displaying the value of the State node as <xsl:value-of select=“State”/>. The
complete listing of the XSLT1.xsl file is shown in Figure 8.42.The code is also
available in the accompanying CD. In the .aspx file, we have included the fol-
lowing asp:xml control.

<asp:xml id="ourXSLTransform" runat="server"

DocumentSource="Bank3.xml" TransformSource="XSLT1.xsl"/>

While defining this control, we have set its DocumentSource attribute to
“Bank3.xml”, and its TransformSource attribute to XSLT1.xsl.The complete code
for the .aspx file, named XSLT1.aspx, is shown in Figure 8.43. It is also available
in the accompanying CD.

Figure 8.42 Complete Code for XSLT1.xsl

<?xml version="1.0" ?>

<!— Chapter 8\XSLT1.xsl —>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

www.syngress.com

Figure 8.41 Transforming an XML Document to an HTML Document

Continued

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 398

http://www.w3.org/1999/XSL/Transform

Using XML in the .NET Framework • Chapter 8 399

<h4>Accounts</h4>

<table border="1" cellpadding="5">

<thead><th>Acct Number</th><th>Name</th>

<th>Balance</th><th>State</th></thead>

<xsl:for-each select="Bank/Account[State='OH']" >

<tr align="center">

<td><xsl:value-of select="@AccountNo"/></td>

<td><xsl:value-of select="Name"/></td>

<td><xsl:value-of select="State"/></td>

<td><xsl:value-of select="Balance"/></td>

</tr>

</xsl:for-each>

</table>

</xsl:template>

</xsl:stylesheet>

Figure 8.43 XSLT1.aspx

<!— Chapter8\XSLT1.aspx —>

<%@ Page Language="VB" Debug="True"%>

<%@ Import Namespace="System.Xml"%>

<%@ Import Namespace="System.Xml.Xsl"%>

<html><head></head><body><form runat="server">

XSL Transformation Example

<asp:Xml id="ourXSLTransform" runat="server"

DocumentSource="Bank3.xml" TransformSource="XSLT1.xsl"/>

</form></body></html>

www.syngress.com

Figure 8.42 Continued

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 399

400 Chapter 8 • Using XML in the .NET Framework

Transforming an XML Document
into Another XML Document
Suppose that our company has received an order from a customer in XML
format.The XML file, named OrderA.xml, is shown in Figure 8.44.The file is
also available in the accompanying CD.

Figure 8.44 An Order Received from a Customer in XML Format (OrderA.xml)

<?xml version="1.0" ?>

<!— Chapter 8\OrderA.XML —>

<Order>

<Agent>Alfred Bishop</Agent>

<Item>50 GPM Pump</Item>

<Quantity>10</Quantity>

<Date>

<Month>8</Month>

<Day>24</Day>

<Year>2001</Year>

</Date>

<Customer>Pepsi Beagle</Customer>

</Order>

Now we want to transmit a purchase order to our supplier to fulfill the pre-
vious order. Suppose that the XML format of our purchase order is different
from that of our client as shown in Figure 8.45.The OrderB.xml file is also avail-
able in the accompanying CD.

Figure 8.45 The Purchase Order to Be Sent to the Supplier in XML Format
(OrderB.xml)

<?xml version="1.0" encoding="utf-8"?>

<Order>

<Date>2001/8/24</Date>

<Customer>Company A</Customer>

<Item>

<Sku>P 25-16:3</Sku>

www.syngress.com

Continued

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 400

Using XML in the .NET Framework • Chapter 8 401

<Description>50 GPM Pump</Description>

<Quantity>10</Quantity>

</Item>

</Order>

The objective of this example is to automatically transform OrderA.xml
(Figure 8.44) to OrderB.xml (Figure 8.45).The outputs of this application are
shown in Figures 8.46 and 8.47.

We have developed an XSLT file (shown in Figure 8.48) to achieve the nec-
essary transformation. In the XSLT code, we have used multiple templates.The

www.syngress.com

Figure 8.45 Continued

Figure 8.46 Transformation of an XML Document to Another XML Document

Figure 8.47 The Target XML File as Displayed in Internet Explorer

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 401

402 Chapter 8 • Using XML in the .NET Framework

complete listing of the XSLT code is shown in Figure 8.48.The code is also
available in the order.xsl file in the accompanying CD.

Figure 8.48 Complete Listing of order.xsl

<?xml version="1.0" ?>

<!— Chapter 8\order.xsl —>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" indent="yes" />

<xsl:template match="/">

<Order>

<Date>

<xsl:value-of select="/Order/Date/Year" />/

<xsl:value-of select="/Order/Date/Month" />/

<xsl:value-of select="/Order/Date/Day" />

</Date>

<Customer>Company A</Customer>

<Item>

<xsl:apply-templates select="/Order/Item" />

<Quantity><xsl:value-of select="/Order/Quantity"/></Quantity>

</Item>

</Order>

</xsl:template>

<xsl:template match="Item">

<Sku>

<xsl:choose>

<xsl:when test=". ='50 GPM Pump'">P 25-16:3</xsl:when>

<xsl:when test=". ='100 GPM Pump'">P 35-12:5</xsl:when>

<!—other Sku would go here—>

<xsl:otherwise>00</xsl:otherwise>

</xsl:choose>

</Sku>

<Description>

<xsl:value-of select="." />

</Description>

www.syngress.com
Continued

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 402

http://www.w3.org/1999/XSL/Transform

Using XML in the .NET Framework • Chapter 8 403

</xsl:template>

</xsl:stylesheet>

Subsequently, we have developed the XSLT2.aspx file to employ the XSLT
code in the order.xsl file to transform the OrderA.xml to OrderB.xml.The com-
plete listing of the .aspx file is shown in Figure 8.49.This code is also available in
the accompanying CD.The transformation is performed in the ShowTransformed()
subprocedure of our .aspx file. In this code, the Transform method of an
XSLTransform object is used to transform and generate the target XML file.

Figure 8.49 Complete Listing for XSLT2.aspx

<!—Chapter8/XSLT2.aspx—>

<%@ Page Language="VB" Debug="True"%>

<%@ Import Namespace="System.Xml"%>

<%@ Import Namespace="System.Xml.XPath"%>

<%@ Import Namespace="System.Xml.Xsl"%>

<%@Import Namespace="System.IO"%>

<html><head></head><body><form runat="server">

XSL Transformation Example

<asp:ListBox id="lstInitial" runat="server" rows="9"

width=250/>

<asp:ListBox id="lstFinal" runat="server" rows="9" width=250/>

<asp:Button id="cmdTransform" Text="Transform the XML" runat="server"

onClick="showTransformed" />

<asp:Button id="cmdDisplayTgt" Text="Show Transformed XML in IE"

runat="server" onClick="showTarget" />

</form></body></html>

<Script Language="vb" runat="server">

Sub Page_Load(sender As Object, e As EventArgs)

If Not Page.IsPostBack Then

Dim myDoc As New XPathDocument(Server.MapPath("OrderA.xml"))

www.syngress.com

Figure 8.48 Continued

Continued

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 403

404 Chapter 8 • Using XML in the .NET Framework

Dim myNav As XPath.XPathNavigator

Dim myIterator As XPath.XPathNodeIterator

' Set nav object

myNav = myDoc.CreateNavigator()

' Iterate through all the attributes of the descendants

myIterator =myNav.Select("/Order")

myIterator=myNav.SelectDescendants(XPathNodeType.Element,false)

myIterator.MoveNext()

While myIterator.MoveNext()

' Add the Items to the DropdownList

lstInitial.Items.Add _

(myIterator.Current.Name+" :"+myIterator.Current.Value)

End While

End If

End Sub

Sub showTransformed(sender As Object,e As EventArgs)

' Load the XML Document

Dim myDoc As New XPathDocument(Server.MapPath("OrderA.xml"))

' Declare the XSLTransform Object

Dim myXsltDoc As New XSLTransform

' Create the filestream to write a XML file

Dim myfileStream As New FileStream _

(Server.MapPath ("OrderB.xml"),FileMode.Create,FileShare.ReadWrite)

' Load the XSL file

myXsltDoc.Load(Server.MapPath("order.xsl"))

' Tranform the XML file according to XSL Document

myXsltDoc.Transform(myDoc,Nothing,myfileStream)

myfileStream.Close()

lstFinal.Items.Clear

Dim myDoc2 As New XPathDocument(Server.MapPath("OrderB.xml"))

Dim myNav As XPath.XPathNavigator

Dim myIterator As XPath.XPathNodeIterator

' Set nav object

www.syngress.com

Figure 8.49 Continued

Continued

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 404

Using XML in the .NET Framework • Chapter 8 405

myNav = myDoc2.CreateNavigator()

' Iterate through all the attributes of the descendants

myIterator =myNav.Select("/Order")

myIterator=myNav.SelectDescendants(XPathNodeType.Element,false)

myIterator.MoveNext()

While myIterator.MoveNext()

' Add the Items to the DropdownList

lstFinal.Items.Add _

(myIterator.Current.Name+" :"+myIterator.Current.Value)

End While

End Sub

Sub showTarget(sender As Object,e As EventArgs)

Response.Redirect(Server.MapPath("OrderB.xml"))

End Sub

</Script>

Working with XML and Databases
Databases are used to store and manage organization’s data. However, it is not a
simple task to transfer data from the database to a remote client or to a business
partner, especially when we do not clearly know how the client will use the sent
data.Well, we may send the required data using XML documents.That way, the
data container is independent of the client’s platform.The databases and other
related data stores are here to stay, and XML will not replace these data stores.
However, XML will undoubtedly provide a common medium for exchanging
data among sources and destinations. It will also allow various software to
exchange data among themselves. In this context, the XML forms a bridge
between ADO.NET and other applications. Since XML is integrated in the
.NET Framework, the data transfer using XML is lot easier than it is in other
software development environments. Data can be exchanged from one source to
another via XML.The ADO.NET Framework is essentially based on Datasets,
which, in turn, relies heavily on XML architecture.The DataSet class has a rich
collection of methods that are related to processing XML. Some of the widely
used ones are ReadXml,WriteXml, GetXml, GetXmlSchema, InferXmlSchema,
ReadXmlSchema, and WriteXmlSchema.

www.syngress.com

Figure 8.49 Continued

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 405

406 Chapter 8 • Using XML in the .NET Framework

In this context, we will provide two simple examples. In the first example, we
will create a DataSet from a SQL query, and write its contents as an XML docu-
ment. In the second example, we will read back the XML document generated
in the first example and load a DataSet. What are the prospective uses of these
examples? Well, suppose that we need to send the products data of our fishing
products to a client. In earlier days, we would have sent the data as a text file. But
in the .NET environment, we can instead develop a XML document very fast by
running a query, and subsequently send the XML document to our client.What
is the advantage? It is fast, easy, self-defined, and technology independent.The
client may use any technology (like VB, Java, Oracle, etc.) to parse the XML doc-
ument and subsequently develop applications. On the other hand, if we receive
an XML document from our partners, we may as well apply XML.NET to
develop our own applications.

Creating an XML Document
from a Database Query
In this section, we will populate a DataSet with the results of a query to the
Products table of SQL Server 7.0 Northwind database. On the click event of a
command button, we will write the XML file and its schema. (The output of the
example is shown in Figure 8.50).We have developed the application in an .aspx
file named DataSet1.aspx.The complete listing of the .aspx file is shown in
Figure 8.51.The file is also available in the accompanying CD.

The XML file created by the application is as follows:

<myXMLProduct>

www.syngress.com

Figure 8.50 Output of DataSet1.aspx Application

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 406

Using XML in the .NET Framework • Chapter 8 407

<dtProducts>

<ProductID>13</ProductID>

<ProductName>Konbu</ProductName>

<UnitPrice>6</UnitPrice>

</dtProducts>

--- --- ---

--- --- ---

</myXMLProduct>

The code for the illustration is straightforward.The DataSet’s WriteXml and
WriteXmlSchema methods were used to accomplish the desired task.

Figure 8.51 Complete Listing DataSet1.aspx

<!— Chapter8\DataSet1.aspx —>

<%@ Page Language = "VB" Debug ="True" %>

<%@ Import Namespace="System.Xml" %>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.IO" %>

<%@ Import Namespace="System.Data.SqlClient" %>

<html><head></head><body><form runat="server">

Cheap Products:

<asp:DataGrid id="myGrid" runat="server"/>

<asp:Button id="cmdWriteXML" Text="Create XML File" runat="server"

onclick="writeXML"/>

</body></form></html>

<Script Language="vb" runat="server">

Sub Page_Load(s As Object, e As EventArgs)

If Not Page.IsPostBack Then

Dim myDataSet As New DataSet("myXMLProduct")

Dim myConn As New _

SqlConnection("server=ora07;uid=sa;pwd=ahmed;database=Northwind")

Dim mydataAdapter As New SqlDataAdapter _

("SELECT ProductID,ProductName,UnitPrice FROM Products WHERE

UnitPrice <7.00",myConn)

mydataAdapter.Fill(myDataSet,"dtProducts")

myGrid.DataSource=myDataSet.Tables(0)

www.syngress.com
Continued

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 407

408 Chapter 8 • Using XML in the .NET Framework

myGrid.DataBind

Session("sessDs")=myDataSet

End If

End Sub

Sub writeXML(s As Object, e As EventArgs)

Dim myFs1 As New FileStream _

(Server.MapPath _

("myXMLData.xml"),FileMode.Create,FileShare.ReadWrite)

Dim myFs2 As New FileStream(Server.MapPath _

("myXMLData.xsd"),FileMode.Create,FileShare.ReadWrite)

Dim myDataSet As New DataSet _

myDataSet=Session("sessDs")

' Use the WriteXml method of DataSet object to write an XML file

' from the DataSet

myDataSet.WriteXml(myFs1)

myFs1.Close()

myDataSet.WriteXmlSchema(myFs2)

myFs2.Close()

End Sub

</Script>

Reading an XML Document into a DataSet
Here, we will read back the XML file created in the previous example (as shown
in Figure 8.50) and populate a DataSet in the Page_Load event of our .aspx file.
We will use the ReadXml method of the DataSet object to accomplish this objec-
tive.The output of the application is shown in Figure 8.52.The application has
been developed in an .aspx file named DataSet2.aspx.The complete code for this
application is shown in Figure 8.53.The code is also available in the accompa-
nying CD.The code is self-explanatory.

www.syngress.com

Figure 8.51 Continued

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 408

Using XML in the .NET Framework • Chapter 8 409

Figure 8.53 Complete Listing of DataSet2.aspx

<!— Chapter8\DataSet2.aspx —>

<%@ Page Language = "VB" Debug ="True" %>

<%@ Import Namespace="System.Xml" %>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.IO" %>

<%@ Import Namespace="System.Data.SqlClient" %>

<html><head></head><body><form runat="server">

Products Data From XML File:

<asp:DataGrid id="myGrid" runat="server"/>

</body></form></html>

<Script Language="vb" runat="server">

Sub Page_Load(s As Object, e As EventArgs)

If Not Page.IsPostBack Then

Dim myDataSet As New DataSet("myXMLProduct")

Dim myFs As New FileStream _

(Server.MapPath("myXMLData.xml"),FileMode.Open,FileShare.ReadWrite)

myDataSet.ReadXml(myFs)

myGrid.DataSource=myDataSet.Tables(0)

myGrid.DataBind

myFs.Close

End If

End Sub

</Script>

www.syngress.com

Figure 8.52 Output of DataSet2.aspx Application

166_ASPNET_08.qxd 11/27/01 11:57 AM Page 409

410 Chapter 8 • Using XML in the .NET Framework

Summary
In this chapter, we have introduced the basic concepts of XML, and we have pro-
vided a concise overview of the .NET classes available to read, store, and manipu-
late XML documents.The examples presented in this chapter also serve as good
models for developing business applications using XML and ASP.NET.

The .NET’s System.Xml namespace contains probably the richest collection of
XML-related classes available thus far in any other software development plat-
form.The System.Xml namespace has been further enriched by the recent addi-
tion of XPathDocument and XPathNavigator classes.We have tried to highlight
these new features in our examples. Since XML can be enhanced using a family
of technologies, there are innumerable techniques a reader should judiciously
learn from other sources to design, develop, and implement complex real-world
applications.

Solutions Fast Track

An Overview of XML

XML stands for eXtensible Markup Language. It is a subset of a larger
framework named SGML.The W3C developed the specifications for
SGML and XML.

XML provides a universal way for exchanging information between
organizations.

XML cannot be singled out as a stand-alone technology. It is actually a
framework for exchanging data. It is supported by a family of growing
technologies such as XML parsers, XSLT transformers, XPath, XLink,
and Schema Generators.

An XML document may contain Declaration, Comment, Elements, and
Attributes.

An XML element has a start-tag and an end-tag.An element may
contain other elements, or character data, or both.

An attribute provides an additional way to attach a piece of data to an
element.An attribute must always be enclosed within start-tag of an
element, and its value is specified using double quotes.

www.syngress.com

166_ASPNET_08.qxd 11/27/01 11:58 AM Page 410

Using XML in the .NET Framework • Chapter 8 411

An XML document is said to be well formed when it satisfies a set of
syntax-related rules.These rules include the following:

■ The document must have exactly one root element.

■ Each element must have a start-tag and end-tag.

■ The elements must be properly nested.

An XML document is case sensitive.

DTD and schema are essentially two different ways two specify the rules
about the contents of an XML document.

An XML schema contains the structure of an XML document, its
elements, the data types of the elements and associated attributes
including the parent-child relationships among the elements.

VS.NET supports the W3C specification for XML Schema Definition
(also known as XSD).

XML documents stores data in hierarchical fashion, also known as a
node tree.

The top-most node in the node tree is referred to as the root.

A particular node in a node tree can be of element-type, or of text-type.
An element-type node contains other element-type nodes or text-type
node.A text-type node contains only data.

Processing XML Documents Using .NET

The Sytem.Xml namespace contains XmlTextReader, XmlValidatingReader,
and XmlNodeReader classes for reading XML Documents.The
XmlTextWriter class enables you to write data as XML documents.

XmlDocument, XmlDataDocument, and XPathDocument classes can be used
to structure XML data in the memory and to process them.

XPathNavigator and XPathNodeIterator classes enable you to query and
retrieve selected data using XPath expressions.

www.syngress.com

166_ASPNET_08.qxd 11/27/01 11:58 AM Page 411

412 Chapter 8 • Using XML in the .NET Framework

Reading and Parsing Using the XmlTextReader Class

The XmlTextReader class provides a fast forward-only cursor to pull data
from an XML document.

Some of the frequently used methods and properties of the
XmlTextReader class include AttributeCount, Depth, EOF, HasAttributes,
HasValue, IsDefault, IsEmptyElement, Item, ReadState, and Value.

The Read() of an XmlTextReader object enables you to read data
sequentially.The MoveToAttribute() method can be used to iterate
through the attribute collection of an element.

Writing an XML Document
Using the XmlTextWriter Class

An XmlTextWriter class can be used to write data sequentially to an
output stream, or to a disk file as an XML document.

Its major methods and properties include Close, Flush, Formatting,
WriteAttribues,WriteAttributeString,WriteComment,WriteElementString,
WriteElementString,WriteEndAttribute,WriteEndDocument,WriteState, and
WriteStartDocument.

Its constructor contains a parameter that can be used to specify the
output format of the XML document. If this parameter is set to
“Nothing,” then the document is written using UTF-8 format.

Exploring the XML Document Object Model

The W3C Document Object Model (DOM) is a set of the specifications
to represent an XML document in the computer’s memory.

XmlDocument class implements both the W3C specifications (Core level
1 and 2) of DOM.

XmlDocument object also allows navigating through XML node tree
using XPath expressions.

XmlDataDocument is an extension of XmlDocument class.

www.syngress.com

166_ASPNET_08.qxd 11/27/01 11:58 AM Page 412

Using XML in the .NET Framework • Chapter 8 413

It can be used to generate both the XML view as well as the relational
view of the same XML data.

XmlDataDocument contains a DataSet property that exposes its data as
relational table(s).

Querying XML Data Using
XPathDocument and XPathNavigator

XPathDocument class allows loading XML data in fragments rather than
loading the entire DOM tree.

XPathNavigator object can be used in conjunction with XPathDocument
for effective navigation through XML data.

XPath expressions are used in these classes for selecting nodes, iterating
over the selected nodes, and working with these nodes for copying,
moving, and removal purposes.

Transforming an XML Document Using XSLT

You can use XSLT (XML Style Sheet Language Transformations) to
transform an XML document to another XML document or to
documents of other types (e.g., HTML and Text).

XSLT is a template-based declarative language.We can develop and
apply various XSLT templates to select, filter, and process various parts
of an XML document.

In .NET, you can use the Transform() method of XSLTransform class to
transform an XML document.

Working with XML and Databases

A DataSet’s ReadXml() can read XML data as DataTable(s).

You can create an XML document and its schema from a database query
using DataSet’s WriteXml() and WriteXmlSchema().

Some of the widely used ones include ReadXml,WriteXml, GetXml,
GetXmlSchema, InferXmlSchema, ReadXmlSchema, and WriteXmlSchema.

www.syngress.com

166_ASPNET_08.qxd 11/27/01 11:58 AM Page 413

414 Chapter 8 • Using XML in the .NET Framework

Q: What is the difference between DOM Core 1 API and Core 2 API?

A: DOM Level 2 became an official World Wide Web Consortium (W3C) rec-
ommendation in late November 2000.Although there is not much of differ-
ence in the specifications, one of the major features was the namespaces in
XML being added, which was unavailable in prior version. DOM Level 1 did
not support namespaces.Thus, it was the responsibility of the application pro-
grammer to determine the significance of special prefixed tag names. DOM
Level 2 supports namespaces by providing new namespace-aware versions of
Level 1 methods.

Q: What are the major features of System.XML in the Beta 2 edition?

A: The most significant change in the Beta 2 edition was the restructuring the
XmlNavigator Class. XmlNavigator initially was designed as an alternative to the
general implementation of DOM. Since Microsoft felt that there was a mis-
match in the XPath data model and DOM-based data model, XmlNavigator
was redesigned to XpathNavigator, employing a read-only mechanism. It was
conceived of using with XPathNodeIterator that acts as an iterator over a node
set and can be created many times per XPathNavigator.

Alternatively, one can have the DOM implementation as XmlNode, and
methods such as SelectNodes() and SelectSingleNodes() can be used to iterate
through a node set.A typical code fragment would look like this:

Dim nodeList as XmlNodeList

Dim root as XmlElement = Doc.DocumentElement

nodeList =

root.SelectNodes("descendant::account[child::State='OH']")

Dim entry as XmlNode

For Each entry in nodeList

'Do the requisite operations

Next

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

166_ASPNET_08.qxd 11/27/01 11:58 AM Page 414

Using XML in the .NET Framework • Chapter 8 415

Although XPathNavigator is implemented as a read-only mechanism to
manipulate the XML documents, it can be noted that certain other classes
like XmlTextWriter can be implemented over XPathNavigator to write to the
document.

Q: How is XPath different from XSL Patterns?

A: XSL Patterns are predecessors of XPath 1.0 that have been recognized as a
universal specification.Although similar in syntax, there are some differences
between them. XSL pattern language does not support the notion of axis
types. On the other hand, the XPath supports axis types.Axis types are general
syntax used in Xpath, such as descendant, parent, child, and so on.Assume that
we have an XML document with the root node named Bank. Further,
assume that the Bank element contains many Account elements, which in turn
contains account number, name, balance, and state elements. Now, suppose that
our objective is to retrieve the Account data for those customers who are from
Ohio.We can accomplish the search by using any one of the following alter-
natives:

■ XSL Pattern Alternative: Bank/Account[child::State=‘OH’]

■ XSL Path 1.0 Alternative: descendant::Account[child::State=‘OH’]

Which of the above alternatives would you use? That depends on your
personal taste and on the structure of the XML document. In case of a very
highly nested XML document, the XSL Path offers more compact search
string.

www.syngress.com

166_ASPNET_08.qxd 11/27/01 11:58 AM Page 415

166_ASPNET_08.qxd 11/27/01 11:58 AM Page 416

Debugging ASP.NET

Solutions in this chapter:

■ Handling Errors

■ Page Tracing

■ Application Tracing

■ Using Visual Studio .NET Debugging Tools

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 9

417

166_ASPNET_09.qxd 11/26/01 4:27 PM Page 417

418 Chapter 9 • Debugging ASP.NET

Introduction
Before ASP 3.0, error handling was never a strong suit of ASP. Despite taking
great efforts to handle possible error conditions, it is not uncommon to see ASP
applications crash and display cryptic error messages. For applications critical to a
company’s success, this is a huge embarrassment.You may have seen something
like this quite often:

Microsoft VBScript runtime error '800a0006'

Overflow

/wad/vote.asp, line 25

Besides handling errors, how many times have you forgotten to remove
debugging statements in your application? Often, due to the unrealistic and
tight deadlines imposed by management, you end up rushing to deploy your
application. In the midst of doing that, a few debugging statements occasionally
get left out.

In this chapter, we will look at the new error handling mechanisms available
in .NET.We will discuss how to anticipate various kinds of errors and their pos-
sible remedies.We will also look at how the new Trace class in ASP.NET allows
programmers to trace the flow of ASP.NET applications as well as explore the
various capabilities available in the Trace class. Finally, we will show you how to
use the Object browser and Class Viewer to look for specific libraries.

Handling Errors
While it is the hope of every programmer to write bug-free programs, it can
prove a tasking goal. Bugs in programs can be incredibly frustrating, usually dis-
rupting the programs they infect. Such errors can be classified into these four cat-
egories, which we’ll discuss in the following sections:

■ Syntax Errors Errors caused by writing codes that do not follow the
rules of the language.An example would be a misspelled keyword.

■ Compilation Errors Errors that can be detected during the compila-
tion stage.An example would be assigning a big number to an integer
variable, causing it to overflow.

■ Runtime Errors Errors that happen after the codes are compiled and
executed.An example would be a division-by-zero error.

www.syngress.com

166_ASPNET_09.qxd 11/26/01 4:27 PM Page 418

www.syngress.com

■ Logic Errors Errors due to incorrect implementations of algorithms.
This is the kind of error that programmers dread most since they are the
most difficult to debug.

Syntax Errors
A syntax error is one of the most common errors in programming.This is espe-
cially true if you are new to a particular language. Fortunately, syntax errors can
be resolved quite easily. In Visual Studio .NET, syntax errors are underlined as
shown in Figure 9.1.

To know the cause of the error, simply position the mouse over the under-
lined word and the tool tip box will appear.The cause of the error in Figure 9.1
is the misspelled word “Integer.”To correct the error, simply change the word
“Interger” to “Integer.”

Compilation Errors
Compilation errors occur when the compiler tries to compile the program and
realizes that the program contains codes that may potentially trip up a program.
As an illustration, consider the following example, which declares two variables of
different data types:

Dim shortNum As Int16

Dim intNum As Int32

...

shortNum = intNum

The last line of the code tries to assign the value of an Int32 variable to
another variable of type Int16.The risk here is that during runtime, intNum
might contain a value that is larger than the range represented by the Short data
type. Hence this assignment is not safe (although it will compile and may run
without error).This form of assignment where the value of a “wider” data type is
assigned to a variable of a “narrower” data type is known as narrowing.The reverse

Debugging ASP.NET • Chapter 9 419

Figure 9.1 Syntax Errors Are Underlined

166_ASPNET_09.qxd 11/26/01 4:27 PM Page 419

420 Chapter 9 • Debugging ASP.NET

is known as widening. Narrowing is dangerous and could possibly result in run-
time errors.

VB.NET supports the Option Strict statement to ensure that only widening
conversions are allowed, otherwise it will generate an error message. Modifying
our codes, we get:

Option Strict On

...

...

Dim shortNum As Int16

Dim intNum As Int32

...

shortNum = intNum

In this case, our compiler will generate an error message to indicate that such
a conversion is not allowed.

The Option Strict On statement must be placed at the first line of your pro-
gram. Using the Option Strict On also implies Option Explicit On (the Option
Explicit statement ensures that variables are declared prior to usage).Thus unde-
clared variables would also generate error messages.

NOTE

In VB6, the array index can be changed using the Option Base statement.
In VB.NET, the Option Base statement is not supported.

Runtime Errors
Runtime errors occur during the time when the application is running and
something unexpected occurs. It happens regularly in projects that have very
tight deadlines. Programmers stretched to their limits are often satisfied that their
program runs.They do not have the time to carefully consider all the different
possible scenarios in which their programs may be used, hence the result is often
a buggy program.To ensure that an application is as robust and bug-free as pos-
sible, it is important to place emphasis on anticipating all the errors that can
occur in your program.

www.syngress.com

166_ASPNET_09.qxd 11/26/01 4:27 PM Page 420

Debugging ASP.NET • Chapter 9 421

Error handling got a new lease on life in the .NET Framework, particularly
within the .NET languages. In VB6, error handling was unstructured, done using
the primitive On Error statement. In the .NET languages, specifically in VB.NET,
error handling can both be structured and unstructured.We will examine the two
modes of handling errors in the next section.

Unstructured Error Handling
Using our previous example on narrowing conversions (assuming we use the
Option Strict off statement), the following codes will trigger a runtime error:

Dim shortNum As Int16

Dim intNum As Int32

intNum = 999999

shortNum = intNum ' narrowing will fail!

You should see the error as shown in Figure 9.2.

To prevent the error from happening,VB.NET supports the unstructured On
Error statement:

Dim shortNum As Int16

Dim intNum As Int32

On Error Resume Next

www.syngress.com

Figure 9.2 Runtime Error

166_ASPNET_09.qxd 11/26/01 4:27 PM Page 421

422 Chapter 9 • Debugging ASP.NET

intNum = 999999

shortNum = intNum ' narrowing will fail!

If Err.Number <> 0 Then

Response.Write(Err.Description)

End If

The On Error Resume Next statement ignores any error that happens and con-
tinues as though no error has occurred.The error information is contained
within the Err object. If an error has occurred, the property Number of the Err
object would contain a nonzero value.The Description property will contain the
description of the error. Some common errors and their descriptions are shown
in Table 9.1.

Table 9.1 Common On Error Statements and Descriptions

On Error Statement Description

On Error Resume Next Specifies that in the event an error occurs, resume
execution.

On Error Goto –1 Disables enabled exception in the current subroutine
and resets it to Nothing.

On Error Goto 0 Disables error handling.
On Error Goto label Specifies the location to jump to when an error

occurs.

The following codes show an extended example outlining use of the On
Error statement:

Private Sub Page_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

On Error Goto ErrorHandling

Dim shortNum As Int16

Dim intNum As Int32

intNum = 999999

shortNum = intNum ' error #1 will be trapped

On Error Resume Next

shortNum = intNum ' error #2 will be ignored

www.syngress.com

166_ASPNET_09.qxd 11/26/01 4:27 PM Page 422

Debugging ASP.NET • Chapter 9 423

On Error Goto 0

shortNum = intNum ' error #3 will cause program to fail

Exit Sub ' exits the subroutine

ErrorHandling:

If Err.Number <> 0 Then

Response.Write(Err.Description)

End If

Resume Next

End Sub

In the preceding example, we examine three errors.The first error will cause
the execution to jump to the ErrorHandling block and after the error description
has been printed, it resumes execution at the point it was interrupted.The second
error will be ignored while the third error will cause the program to fail.

As you can see, unstructured error handling makes your code messy and diffi-
cult to debug, and also affects future maintenance. Hence, the recommended way
to handle errors is to use structured error handling, which is covered in the next
section.

Structured Error Handling
Using unstructured error handling usually results in messy and difficult-to-main-
tain codes. Rather than placing an On Error statement at the beginning of a block
to handle potential errors, .NET supports structured error handling using the
Try-Catch-Finally construct. Structured error handling uses the Try-Catch-Finally
construct to handle exceptions.The Try-Catch-Finally construct allows developers
to actively “catch” different forms of errors and respond to them appropriately. It
has the following syntax:

Try

' Executable statements that may cause

' an exception.

Catch [optional filters]

' Catches the error and responds to it

Catch [optional filters]

' Catches the error and responds to it

[Additional Catch blocks]

www.syngress.com

166_ASPNET_09.qxd 11/26/01 4:27 PM Page 423

424 Chapter 9 • Debugging ASP.NET

Finally

' Always executed, with or without error

End Try

Rewriting our codes using structured error handling, we get:

Dim shortNum As Int16

Dim intNum As Int32

intNum = 999999

Try

shortNum = intNum ' narrowing will fail!

Catch anyException As Exception

Response.Write(anyException)

End Try

When executed, the error message printed is:

System.OverflowException: Exception of type System.OverflowException was

thrown. at WebApplication1.WebForm1.Page_Load(Object sender, EventArgs

e) in C:\Documents and Settings\lwm\VSWebCache\LWM\WebApplication1\

WebForm1.aspx.vb:line 31

When the line in the Try block is executed, it generates an exception, which
is then caught by the Catch block.The statement in the Catch block prints out
the reason for causing that exception.

The previous example doesn’t really do justice to the structured error-han-
dling construct in VB.NET. Consider the following revised example:

Dim shortNum As Int16

Dim intNum As Int32

intNum = 999999

Try

shortNum = intNum ' narrowing will fail!

Catch outofMemoryException As System.OutOfMemoryException

Response.Write("Out of memory!")

Catch overflowException As System.OverflowException

www.syngress.com

166_ASPNET_09.qxd 11/26/01 4:27 PM Page 424

Debugging ASP.NET • Chapter 9 425

Response.Write("Overflow!")

Catch anyException As Exception

Response.Write("Some exception!")

End Try

Here we have multiple Catch statements. Each Catch statement tries to catch
the different kinds of exceptions. If discovered, the exception is evaluated from
top to bottom. Once a match is found, the codes within the Catch block are exe-
cuted. If no match is found, an error message is displayed.

The three exceptions in the preceding list include:

■ OutOfMemoryException Thrown when there is not enough
memory to continue the execution of a program.

■ OverflowException Thrown when an operation results in an overflow
condition.

■ Exception The base class for exception.This means all unmatched
exceptions would be matched here.

When the statement within the Try block generates an exception, the few
Catch statements are evaluated in order. First, it compares with the initial Catch
block and checks to see if it matches the kind of exception specified in the Catch
statement. If it doesn’t, it will compare it with the next, and so on. It only stops
when a match is found. In our case, the exception is an overflow exception and
hence the second Catch block is matched. If no match is found, an error message
will be generated.

Lastly, the Finally block allows you to perform whatever cleaning up opera-
tion codes need doing, regardless of whether the exception occurs.

...

Catch anyException As Exception

'Response.Write(anyException)

Response.Write("Some exception!")

Finally

'---codes here are always executed

'---regardless of the exception

End Try

www.syngress.com

166_ASPNET_09.qxd 11/26/01 4:27 PM Page 425

426 Chapter 9 • Debugging ASP.NET

NOTE

You cannot use both structured and unstructured error handling in the
same subroutine.

Logic Errors
Logic errors are the most difficult problem to solve! While the previous errors
can be taken care of with the help of special language constructs and the com-
pilers, logic errors cannot be resolved so easily. Logic errors result when a piece
of code does not work as intended.As an example, consider the following code
snippets:

Dim i, factorial As Integer

For i = 1 To 5

factorial *= i

Next

Response.Write(factorial)

The code is trying to calculate the factorial of a number.Though there are no
syntax errors, the code is not producing the expected answer (120). In fact, no
result is printed. Only through some tracing and checking is it found that the
culprit is actually forgetting to initialize the value of the factorial.To facilitate the
debugging of logic errors,ASP.NET provides tracing ability.We will elaborate on
the tracing feature available in ASP.NET in the next section.

Page Tracing
During the development stage, you may often need to monitor the value of some
variables or functions, especially if they are not giving the correct results.Tracing
through the codes is another important debugging method to make sure your
codes flow in the intended manner.

ASP.NET provides tracing ability to easily map the flow of an application. In
ASP, debugging is a painful process.You must often use the Response.Write()
method to output the values of variables:

Dim i As Integer

Dim factorial As Integer

www.syngress.com

166_ASPNET_09.qxd 11/26/01 4:27 PM Page 426

Debugging ASP.NET • Chapter 9 427

factorial = 1

For i = 1 To 5

factorial *= i

Response.Write("value of i is " & i & "
")

Response.Write("value of factorial is" & factorial &

"
")

Next

Response.Write(factorial)

How often have you forgotten to remove the debugging statements after you
have tracked the error and deployed your application?

Using the Trace Class
ASP.NET includes the Trace class to help trace the flow of an application. Instead
of using the Response object for debugging, we now get:

factorial = 1

For i = 1 To 5

factorial *= i

Trace.Write("value of i is " & i)

Trace.Write("value of factorial is" & factorial)

Next

Trace.Write(factorial)

Response.Write("The factorial of 5 is " & factorial)

To activate the trace, the page directive needs to have a Trace attribute with its
value set to “true,” as shown in Figure 9.3. By just changing the value of the Trace
attribute, we can turn tracing on or off.When the application is ready for deploy-
ment, simply set the Trace attribute to the value “false.”There is no need to
remove the Trace statements in your application.

When the ASP.NET application is run, the following output is shown
(Figure 9.4).Table 9.2 contains the following sections of the Trace page (not all
are shown in Figure 9.4).

www.syngress.com

166_ASPNET_09.qxd 11/26/01 4:27 PM Page 427

428 Chapter 9 • Debugging ASP.NET

www.syngress.com

Figure 9.3 Enabling Tracing

Figure 9.4 Displaying the Trace Information

166_ASPNET_09.qxd 11/26/01 4:28 PM Page 428

Debugging ASP.NET • Chapter 9 429

Table 9.2 Sections in a Trace Page

Sections Description

Request Details Describes information pertaining to the request
(e.g., SessionID, Encoding, and time of request).

Trace Information Contains detailed information about the application
currently running. Trace information is displayed in
this section.

Control Tree Displays information about controls used in a page
and the size of the Viewstate hidden field.

Cookies Collection Displays the cookie set by the page and its value.
Headers Collection Displays HTTP header information like content length

and user agent.
Forms Collection Displays the name of controls in a page and its value.
Server Variables Displays the environment variables on the server side.

Notice that our Trace message is written under the “Trace Information” section.
The Trace class contains the following members (Table 9.3 and Table 9.4).

Table 9.3 Properties in the Trace Class

Property Description

IsEnabled Indicates whether tracing is enabled for the current request.
TraceMode Sets the trace mode: sortByCategory or sortByTime.

Table 9.4 Methods in the Trace Class

Methods() Description

Warn Writes the trace information in red.
Write Writes the trace information.

For example, the Warn() method of the Trace class causes the Trace information
to be printed in red as shown in Figure 9.5 (all the nonshaded lines you see are
displayed in red).

For i = 1 To 5

factorial *= i

Trace.Warn("value of i is " & i)

www.syngress.com

166_ASPNET_09.qxd 11/26/01 4:28 PM Page 429

430 Chapter 9 • Debugging ASP.NET

Trace.Write("value of factorial is" & factorial)

Next

NOTE

Turning tracing on and off is just a matter of modifying the value of the
Trace attribute in the page directive.

Sorting the Trace Information
Inserting multiple Trace statements in an application can sometimes be messy. It is
useful if the Trace information is classified into different categories to make
tracing easier.The Trace class allows us to create different debugging categories
and sort the Trace information based on these categories.The following example
shows how to group the different categories of Trace information:

factorial = 1

Trace.TraceMode = TraceMode.SortByCategory

For i = 1 To 5

factorial *= i

Trace.Warn("counter", "value of i is " & i)

Trace.Write("Factorial", "value of factorial is" & factorial)

Next

Trace.Write(factorial)

Response.Write("The factorial of 5 is " & factorial)

The output of the preceding code is shown in Figure 9.6.
Let’s dissect the preceding codes:

Trace.TraceMode = TraceMode.SortByCategory

www.syngress.com

Figure 9.5 Using the Warn() Method to Display Trace Information

166_ASPNET_09.qxd 11/26/01 4:28 PM Page 430

Debugging ASP.NET • Chapter 9 431

The TraceMode property sets the modes supported by the trace:

■ SortByCategory Trace information is sorted by category.

■ SortByTime Trace information is displayed in the sequence of
execution.

Since we are sorting the Trace mode by category, notice that Figure 9.6 shows
the messages are sorted by category.

Trace.Warn("counter", "value of i is " & i)

The Warn method displays the message in red and notes that this method is
overloaded. In this case, we pass in two arguments.The first goes into the
Category and the second is for the Message.

Trace.Write("Factorial", "value of factorial is" & factorial)

The Write() method of the Trace object is also overloaded, just like the Warn()
method.This time around, we write the message into the “Factorial” category.

Besides using the Trace class to set the Trace mode, you can also use the Page
directive to set the Trace mode:

<%@ Page Language="vb" Trace="true" TraceMode="SortByCategory"

AutoEventWireup="false" Codebehind="WebForm1.aspx.vb"

Inherits="WebApplication1.WebForm1" %>

www.syngress.com

Figure 9.6 Sorting by Category (All Lines in the “Counter” Category Are
Displayed in Red)

166_ASPNET_09.qxd 11/26/01 4:28 PM Page 431

432 Chapter 9 • Debugging ASP.NET

Writing the Trace Information
to the Application Log
Although displaying the Trace information within the page is useful, sometimes
you need to trace the page while users are utilizing your application. In such
cases, the user should not see the Trace information.ASP.NET provides a mean
for the Trace information to be written to a log file.The following example shows
how the Trace information is written to the application log:

...

Response.Write("The factorial of 5 is " & factorial)

Dim appLog As New System.Diagnostics.EventLog()

appLog.WriteEntry("Factorial ASP.NET application", "The factorial of 5

is " & factorial)

The System.Diagnostics namespace provides the class to debug our application.
In particular, we used the EventLog component to help us write messages to the
application log.To view the message, use the Event Viewer. Our message is shown
in Figure 9.7.

To see the message details, double-click the event item.The detailed message
is shown in Figure 9.8.

Application Tracing
This last section discusses page tracing which maps the flow within a page.
ASP.NET also supports tracing at the application level.Application-level tracing is
set in the web.config file, under the trace section:

<trace enabled="false"

requestLimit="10"

pageOutput="false"

traceMode="SortByTime"

www.syngress.com

Figure 9.7 Writing to the Application Log

166_ASPNET_09.qxd 11/26/01 4:28 PM Page 432

Debugging ASP.NET • Chapter 9 433

localOnly="true"

/>

To enable an application-level trace, set the following values shown in
Table 9.5.

Table 9.5 Attributes of the Trace Element

Attribute Value Description

enabled true Enables or disables application-level tracing.
requestLimit 10 Sets the maximum number of requests to trace.
pageOutput false Displays the trace at the end of the page.
traceMode SortByTime Trace information sort order.
localOnly true Sets the ability to see trace viewer on a nonlocal

machine.

When the application is loaded, the Trace information does not appear on the
page.To view the Trace information, we need to use the Trace viewer (trace.axd)
shown in Figure 9.9.

Figure 9.9 shows the Trace information of the last ten requests to the applica-
tion.To view the detailed information of each request, click the View Details
link of each row.

www.syngress.com

Figure 9.8 Details of the Message

166_ASPNET_09.qxd 11/26/01 4:28 PM Page 433

434 Chapter 9 • Debugging ASP.NET

NOTE

If the trace is set to “true” in the web.config file and set to “false” in the
page directive, tracing is disabled.

Using Visual Studio .NET
Debugging Tools
Visual Studio .NET contains a rich set of debugging tools to help developers
debug their applications. In this section, we look at some of the tools available.

Setting Breakpoints
Besides using the Trace class to trace the value of variables in your application,
another method is to set breakpoints in your application.Visual Studio .NET
allows you to do this so you can examine and trace the flow of your application
during runtime. Figure 9.10 shows a breakpoint (indicated by a dot, which shows
up as red on the screen).

www.syngress.com

Figure 9.9 Application Level Tracing

166_ASPNET_09.qxd 11/26/01 4:28 PM Page 434

Debugging ASP.NET • Chapter 9 435

NOTE

Visual Studio 6 developers should be familiar with setting breakpoints in
the IDE.

When the application is run, the execution would stop at the breakpoint.
Three options are available:

■ Step Into The execution would then move into the function named
Factorial. Each step would execute a line (by pressing F11).

■ Step Over The execution would execute the function (without step-
ping through the codes within the function) and treat the function as a
single line.This is achieved by pressing F10.

■ Step Out This option is available if the current execution point is in the
function and you want to execute the rest of the codes in the function
without stepping through them. It then returns to the calling function.

Besides tracing the flow, you can also examine the values of variables during a
breakpoint.There are two ways to examine the values of variables:

■ Tool tip help Position the cursor over the variable you want to
examine.The value will be displayed in a tool tip dialog box.

■ Watch window Examine the value of variables by using the Watch
window (activated by choosing Debug | Windows | Watch).

Enabling and Disabling Debug Mode
By default, your ASP.NET application is in debug mode.The <compilation>
element in the web.config file controls this:

<compilation defaultLanguage="vb" debug="true" />

www.syngress.com

Figure 9.10 Setting a Breakpoint (Designated by Red Dot)

166_ASPNET_09.qxd 11/26/01 4:28 PM Page 435

436 Chapter 9 • Debugging ASP.NET

During compilation, debugging symbols (.pdb information) are inserted into
the compiled page.As a result, the application will run slower than without the
debugging symbols.As such, remember to set the debug attribute to false when
you deploy your application.

Viewing Definitions Using the Object Browser
One of the key aspects of successful .NET programming is the ability to use the
appropriate class libraries provided by the framework.While the MSDN docu-
mentation is a good place to find out about the class libraries, a better option
would be to use the Object Browser provided by the .NET SDK.To launch the
Object Browser in Visual Studio .NET, press Ctrl+Alt+J.

Figure 9.11 shows the Object Browser with the System assembly and its asso-
ciated namespaces exposed. Members of the class UriFormationException are shown
on the right window, while the bottom window shows the description of the
selected member.

Using the Class Viewer
Besides employing the Object Browser to view the various class libraries avail-
able, you can also use the Class Viewer.To launch the Class Viewer, type WinCV
at the command prompt. Figure 9.12 shows the Class Viewer.

www.syngress.com

Figure 9.11 Using the Object Browser

Assemblies

Namespaces

Members

Descriptions

166_ASPNET_09.qxd 11/26/01 4:28 PM Page 436

Debugging ASP.NET • Chapter 9 437

The Class Viewer allows you to type in the keyword to search and display all
matching instances of the search word. For example, Figure 9.12 shows the search
result for “overflowexception.” It also displays the corresponding namespace and
the members of the selected class.

www.syngress.com

Figure 9.12 Using the Class Viewer

166_ASPNET_09.qxd 11/26/01 4:28 PM Page 437

438 Chapter 9 • Debugging ASP.NET

Summary
Error handling is an important aspect of software development. Good robust
applications anticipate various errors and take an active role in resolving them
without crashing the program. In this chapter, we have seen two distinctive
methods of error handling—structured and unstructured.While the unstructured
error handling mechanism continues to be supported in .NET, it is recom-
mended that programmers make the switch to the structured error handling
mechanism using the Try-Catch-Finally statement. Besides handling errors, the
new tracing capability found in .NET makes the life of a programmer much
easier. No longer do you have to insert Response.Write statements into your appli-
cation, you can now trace your application using the Trace class. Removing the
Trace statements during deployment is simply a matter of setting an attribute.
Finally,Visual Studio .NET allows you to set breakpoints in your application so
that the flow of variables and codes can be examined during runtime.

Solutions Fast Track

Handling Errors

There are four main categories of programming errors: syntax,
compilation, runtime, and logic errors.

Visual Studio .NET IDE provides help for detecting syntax errors.

Runtime errors can be handled using structured and unstructured error
handling mechanisms.

Structured handling using the Try-Catch-Finally statement is the
recommended mode for handling runtime errors in .NET.

Page Tracing

The Trace class provides tracing capability.

Turning tracing on and off is easy.

Trace information can be grouped into multiple categories for easier
viewing and it can be written into log files, viewable using the Event
Viewer.

Tracing can be done at the page level or at the application level.

www.syngress.com

166_ASPNET_09.qxd 11/26/01 4:28 PM Page 438

Debugging ASP.NET • Chapter 9 439

Using Visual Studio .NET Debugging Tools

Programmers can use the Visual Studio .NET IDE to set breakpoints in
their application.

Breakpoints allow you to examine variables and trace the execution flow
of your application.

The Object Browser and Class Viewer provide quick reference to the
various class libraries.

Q: Is the Try-Catch-Finally block available in C# as well?

A:Yes, the Try-Catch-Finally block is available in both VB.NET and C#.

Q: Can I use both structured and unstructured error handling within a func-
tion/subroutine?

A: No, you cannot use both error handling mechanisms at the same time. It is
recommended you use structured error handling in .NET.

Q: When I try to run my ASP.NET application in VS.NET, I encounter this
error message “Error while trying to run project: Unable to start debugging
on the Web server.The project is not configured to be debugged.”Why does
this occur?

A: This is caused by the setting of the debug attribute within the <compilation>
element. During development stage, set the value of the debug attribute to
“true.” Remember, however, to set this attribute to “false” when you are
ready to deploy your application.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

166_ASPNET_09.qxd 11/26/01 4:28 PM Page 439

440 Chapter 9 • Debugging ASP.NET

Q: I noticed during tracing that the Session ID for my application changes when
I refresh my page or when I do a postback.Why is this happening?

A: For performance reasons, the .NET Framework does not maintain state
between the Web server and the Web browser automatically, hence the
Session ID is always different between submissions. However, when the
Session object is used or when the Session_OnStart() event is added to the
global.asax file, the Session ID would be maintained between postbacks.

www.syngress.com

166_ASPNET_09.qxd 11/26/01 4:28 PM Page 440

Web Services

Solutions in this chapter:

■ Understanding Web Services

■ Using XML in Web Services

■ An Overview of the System.Web.Services
Namespace

■ Type Marshalling

■ Using DataSets

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 10

441

166_ASPNET_10.qxd 11/26/01 3:17 PM Page 441

442 Chapter 10 • Web Services

Introduction
Web Services provide a new level of interaction to ASP.NET applications.The
ability to access and use a remote Web service to perform a function within an
ASP.NET Web application enables programmers to quickly deliver a more
sophisticated app in less time.The programmer no longer has to create and main-
tain all functions of the application. Reusability is also greatly enhanced by cre-
ating multiple Web services that perform functions in multiple applications, thus
freeing up time and resources to work on other aspects of specific projects. See
Figure 10.1, which shows a graphical representation of this process.

www.syngress.com

Figure 10.1 Where Do Web Services Fit In?

Host Web Services

Internet and
Database
Servers

Data

Host Web Pages

Internet Servers IIS

Host Web PagesHost Web Pages

Internet Users

Workstations

Workstations

Workstations

Workstations

Workstations

Internet Servers IISInternet Servers IIS

166_ASPNET_10.qxd 11/26/01 3:17 PM Page 442

www.syngress.com

Web Services function primarily through XML in order to pass information
back and forth through the Hypertext Transfer Protocol (HTTP).Web Services
are a vital part of what the .NET Framework offers to programmers. XML-based
data transfer is realized, enabling primitive types, enumerations, and even classes to
be passed through Web Services to the application performing the request.This
brings a whole new level of reusability to an application. XML is the backbone
from which the whole Framework is built.The user interface (UI) can be created
by applying Extensible Stylesheet Language Transformations (XSLTs) or by
loading the data into DataSets and binding to Web Controls. Having XML as the
intermediary enables new avenues of client design.

Understanding Web Services
Web Services are objects and methods that can be invoked from any client over
HTTP.Web Services are built on the Simple Object Access Protocol (SOAP).
Unlike the Distributed Component Object Model (DCOM) and Common Object
Request Broker Architecture (CORBA), SOAP enables messaging over HTTP on
port 80 (for most Web servers) and uses a standard means of describing data. SOAP
makes it possible to send data and structure easily over the Web.Web Services capi-
talizes on this protocol to implement object and method messaging.Web Services
are easy to create in VS.NET. Here is an ASP.NET Hello World class in C#:

public class hello

{

public string HelloWorld()

{

return "Hello World";

}

}

}

This class describes a hello object that has one method, HelloWorld.When
called, this method will return data of type string.To convert this to a Web Service
method, we simply have to add one line of code:

public class hello

{

[WebMethod]

public string HelloWorld()

Web Services • Chapter 10 443

166_ASPNET_10.qxd 11/26/01 3:17 PM Page 443

444 Chapter 10 • Web Services

{

return "Hello World";

}

}

}

A little bit more code is involved to make this a method of a Web Service.
This is the code that VS.NET auto-generates when we create a new .asmx page,
along with our Hello World method:

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Diagnostics;

using System.Web;

using System.Web.Services;

namespace Hello

{

public class Hello : System.Web.Services.WebService

{

public Hello()

{

InitializeComponent();

}

private void InitializeComponent()

{

}

protected override void Dispose(bool disposing)

{

}

[WebMethod]

public string HelloWorld()

{

return "Hello World";

www.syngress.com

166_ASPNET_10.qxd 11/26/01 3:17 PM Page 444

Web Services • Chapter 10 445

}

}

}

You can quickly create this class in VS.NET by creating and opening a C# Web
Application project or Web Service project and adding a new WebService page.

If you prefer, similar code could be written to create a VB.NET Service:

Imports System.Web.Services

Public Class Service1

Inherits System.Web.Services.WebService

<WebMethod()> Public Function HelloWorld() As String

HelloWorld = "Hello World"

End Function

End Class

To run this sample in VS.NET, simply press F5. It will take a few moments to
build and compile.When that phase is complete, you should see the Hello service
screen shown in Figure 10.2.

The top line on the screen states that the operations listed below it are sup-
ported.This is followed by a bulleted list of links to each of the Web methods
that belong to the Web service. In our case, we created only one Web method,
HelloWorld. If you click the link HelloWorld, you will be taken to that service’s
description page (see Figure 10.3).

www.syngress.com

Setting the Start Page
When testing a Web service in a project that contains other .aspx or
.asmx files, be sure to set the file you are debugging/testing to be the
Start page, before running. To do this, right-click the filename in the
Solution Explorer and select Set as start page.

Configuring & Implementing…

166_ASPNET_10.qxd 11/26/01 3:17 PM Page 445

446 Chapter 10 • Web Services

www.syngress.com

Figure 10.2 Hello Service

Figure 10.3 HelloWorld Service Description Page

166_ASPNET_10.qxd 11/26/01 3:17 PM Page 446

Web Services • Chapter 10 447

To test our Hello Web Services HelloWorld Web method, simply click the
Invoke button and our method will be called. Recalling our method returns the
string “hello world”; the result is returned in an XML wrapper (see Figure 10.4).

Note that the XML node reflects the datatype of the method’s return value,
string.This XML message is received and converted to the string “Hello World”.
This means that any variable (of type string) in our code can be assigned to the
result of our Web method.

www.syngress.com

Figure 10.4 Results from Invoking the HelloWorld Web Method

Building and Compiling
If you have experience programming in C/C++ or Java, you will be
familiar with the building and compiling steps. If you are a Web
Developer who hasn’t really played with a compiled language before,
these steps will be new to you. Think of it as the phase in which the com-
piler gets all your code together and checks it for unassigned variables,
variable type mismatches, and other syntactic errors. In this phase, it
also converts your code into the Common Language Runtimes (CLR)
Intermediate Language (IL), and then into machine language. This will
allow the code to run faster and more efficiently than uncompiled script.
After this phase completes, the code is run in the Browser. So, testing
Web page output may seem to take longer in the .NET environment.

Configuring & Implementing…

166_ASPNET_10.qxd 11/26/01 3:17 PM Page 447

448 Chapter 10 • Web Services

Communication between Servers
The concept of sending messages between servers or remotely calling functions is
not new.Technologies such as DCOM and CORBA are well-known proprietary
protocols that have been in use for years.What is new is the use of a standard
protocol to transfer messages over HTTP, that protocol is SOAP. SOAP makes it
possible for applications written in different languages running on different plat-
forms to make remote procedure calls (RPC) effectively, even through firewalls.
DCOM doesn’t use port 80, which is reserved for HTTP traffic; this causes
DCOM calls to be blocked by firewalls. SOAP calls use port 80, which makes it
possible to call procedures that exist behind firewalls. Figure 10.5 shows a high
level overview of how Web Services can be used, both for customer interactions
with a company from multiple client types as well as for internal company data
gathering and reporting between all company servers, including legacy systems.

www.syngress.com

Figure 10.5 Overview: Where Do Web Services Fit In?

Headquarters

Data

SOAP // HTTP

Internet

Branch Office

Server

Data

Branch Office

Server

Data

Customers

Corporate /
Customer Web

Services

Corporate
Reporting Web

Services

Investment Brokerage House

Customer Web Services

Branch kiosk can allow
customers to pull or retrieve
account information.

Corporate Website can allow
customers to pull or retrieve
account information.

Corporate Web Services

Branch offices can push
reporting data to corporate
servers.

Corporate can pull branch
reporting data.

Soap / HTTP

Using SOAP over HTTP enables
servers running different operating
systems to communicate
seamlessly over the Internet.

Soap / HTTP

Using SOAP over HTTP enables
applications written in different
languages to communicate seamlessly
over the Internet.

166_ASPNET_10.qxd 11/26/01 3:17 PM Page 448

Web Services • Chapter 10 449

In ASP.NET,Web Services and their methods are defined in pages with the
.asmx extension.When we create Web Services, the .NET Framework generates a
Web Services Description Language (WSDL) file on the server hosting the
Service; this WSDL file describes the Web Service interface. On the Web server
that hosts our .aspx pages,VS.NET generates a WSDL proxy when we click Add
Web reference in the Solutions Explorer and select the server and Service
(see Figure 10.6).

Figure 10.7 shows a Web reference for “localhost” and the WSDL proxies for
each Web Service that exists on that server.

www.syngress.com

Figure 10.6 Overview: Where WSDL and WSDL Proxies Fit into the Internet
User Page Request Process

SOAP // HTTP

Internet
Customers

WSDL

Server

Data

Server

WSDL Proxy

Web Server Hosts
.aspx Pages

Web Service
Server Hosts .asmx

Pages

Scenario

Web user makes an online purchase:
• One method call could verify and

process the credit card with a Web
Service supplied by the credit card
organization.

• Another method could contact a Web
service supplied by the shipping
company to calculate shipping charges.

• Another Web service from within
the organization could remove the item
from active inventory and flag it for
shipping.

166_ASPNET_10.qxd 11/26/01 3:17 PM Page 449

450 Chapter 10 • Web Services

NOTE

A single application hosted on the Web server may access several Web
Services residing on different servers. Likewise, many Web servers may
access one Web Service.

.asmx Files
ASP.NET uses the .asmx file extension for defining ASP.NET Web Services.The
code-behind pages are .asmx.cs and .asmx.vb for C# and VB.NET, respectively.

www.syngress.com

Figure 10.7 Web References in VS.NET’s Solution Explorer Window

What Is the Difference between .asmx and .aspx?
In ASP, we have the .asp extension to denote an Active Server Page.
When IIS sees this extension, it knows it has some extra processing to
do. This is the same with ASP.NET, except that we have two new exten-
sions, .aspx and .asmx.

Migrating…

Continued

166_ASPNET_10.qxd 11/26/01 3:17 PM Page 450

Web Services • Chapter 10 451

While the client for an .aspx page is the Web browser, the client for an .asmx
file is the Web server. Since they are used as programming interfaces and not
directly utilized by the Web user, .asmx files should not contain any UI.To get a
better understanding of how this all works, lets create an .aspx page that calls our
“Hello” service.

1. In the Solutions Explorer, right-click the project name.

2. Select Add | New Item.

3. Select Web Form. Name the file helloPage.aspx.

4. While in design view, open the toolbox and drag onto the page a label
and a button control from the selection of Web Forms (see Figure 10.8).

While still in design mode double-click the new button.This will
generate event code in the code behind page (see Figure 10.9).

5. Right-click References in the Solution Explorer and select Add
Web Reference.This is basically a graphical user interface (GUI) for
the WSDL.exe command line utility.

6. When the Add Web Reference dialog opens (see Figure 10.10) click
the link Web References on local server.

www.syngress.com

Lets do a quick comparison:
■ Both file types have a template, which includes references to

the primary namespaces.
■ .aspx pages have references to System.Drawing since their

purpose is to generate a user interface.
■ .asmx pages have references to System.Web.Services since

their purpose is to generate an interface for external programs.
■ You can add UI components and Data Connections to an

.aspx page.
■ You can add Server and Data Connections to an .asmx page.
■ .aspx pages usually begin with an @Page directive to desig-

nate: this is a Web Form.
■ .asmx pages usually begin with an @WebService directive to

designate: this is a Web Service.
■ Using the wrong @ directive with the wrong type of file

extension will generate an error.

166_ASPNET_10.qxd 11/26/01 3:17 PM Page 451

452 Chapter 10 • Web Services

www.syngress.com

Figure 10.9 Auto-Generated Button Event Code

Figure 10.8 Adding a Web Form Control to an .aspx Page

166_ASPNET_10.qxd 11/26/01 3:17 PM Page 452

Web Services • Chapter 10 453

The dialog will pause while it searches your local machine for a list
of services available.

7. When the list appears, click the name of the service that matches the
name of your project, WebApplication_HelloWorld.

8. When the service loads, click the Add Reference button.This will
create several new entries in your Solutions Explorer.

9. Now take a look at helloPage.aspx in HTML view.You should see code
similar to the following:

<body MS_POSITIONING="GridLayout">

<form id="helloPage" method="post" runat="server">

<asp:Button id=Button1 Text="Button" runat="server" >

</asp:Button>

<asp:Label id=Label1 runat="server">Label</asp:Label>

</form>

</body>

www.syngress.com

Figure 10.10 Add Web Reference Dialog Box

166_ASPNET_10.qxd 11/26/01 3:17 PM Page 453

454 Chapter 10 • Web Services

10. Note the name of the label control is Label1. Now open helloPage
.aspx.cs and add the following code below the label and button code.

localhost.hello test = new localhost.hello();

11. In the Button Click handler, add the following:

Label1.Text = test.HelloWorld();

12. Your code should now look like Figure 10.11.

13. Right-click helloPage.aspx and click Set as start page.

14. Press F5 to run the application.

15. When the browser loads, click the button, this will invoke our helloWorld
method and assign its value to the label text.After clicking the button,
your page should look like Figure 10.12.

www.syngress.com

Figure 10.11 helloPage.aspx.cs

166_ASPNET_10.qxd 11/26/01 3:17 PM Page 454

Web Services • Chapter 10 455

WSDL
WSDL is an XML-based language that describes Web Services. It is the com-
posite of work done by Ariba, IBM, and Microsoft. Currently, it only supports
SOAP as a messaging protocol.

The thought behind WSDL is that in future applications it will be a collec-
tion of networked-Web Services.WSDL describes what a service can do, where it
lives, and how to invoke it.WSDL describes the Web Service method interfaces
thoroughly enough for it to be used to create proxy methods that enable other
classes to invoke its members as if they were local methods. IBM and Microsoft
both have WSDL command line utilities available that do just that. IBM does it

www.syngress.com

Figure 10.12 HelloPage.aspx in the Browser after Clicking the Button

VS.NET Beta 2: Generated Template Code
When using VS.NET to develop ASP.NET pages it’s actually easier to
develop using code behind than to code in the same document. When
we create a new Web Form or Web Service VS.NET automatically gener-
ates a corresponding code-behind page with template code. While the
template code generated may seem like more than is necessary for
simple applications, the generated code makes it easy to quickly create
larger event driven Web applications.

Developing & Deploying…

166_ASPNET_10.qxd 11/26/01 3:17 PM Page 455

456 Chapter 10 • Web Services

for Java, and Microsoft does it for Visual Studio.VS.NET has this ability built into
the GUI. In VS.NET, we simply right-click add Web Reference and select the
service we want to generate a proxy class for. Here is an example of a WSDL file
for a Web Service used in Chapter 12: getCategories.wsdl.This file is auto-gener-
ated by the .NET Framework.

While the auto-generated file will cover the basic functionality, it may do
more or less than you intended.The auto-generated code can be simplified by
removing support for asynchronous operations if you do not need to support this
type of operation.Also, you could add custom SOAP headers and customize
other parts of the SOAP envelope by creating your own class.

<?xml version="1.0" encoding="utf-8"?>

<definitions xmlns:s="http://www.w3.org/2001/XMLSchema"

xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:s0="http://tempuri.org/"

targetNamespace="http://tempuri.org/"

xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>

<s:schema attributeFormDefault="qualified"

elementFormDefault="qualified" targetNamespace="http://tempuri.org/">

<s:import namespace="http://www.w3.org/2001/XMLSchema" />

<s:element name="AllCat">

<s:complexType />

</s:element>

<s:element name="AllCatResponse">

<s:complexType>

<s:sequence>

<s:element minOccurs="1" maxOccurs="1" name="AllCatResult"

nillable="true">

<s:complexType>

<s:sequence>

<s:element ref="s:schema" />

www.syngress.com

166_ASPNET_10.qxd 11/26/01 3:17 PM Page 456

http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/wsdl/http/
http://schemas.xmlsoap.org/wsdl/mime/
http://microsoft.com/wsdl/mime/textMatching/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/soap/encoding/
http://tempuri.org/
http://tempuri.org/
http://schemas.xmlsoap.org/wsdl/
http://tempuri.org/
http://www.w3.org/2001/XMLSchema

Web Services • Chapter 10 457

<s:any />

</s:sequence>

</s:complexType>

</s:element>

</s:sequence>

</s:complexType>

</s:element>

<s:element name="DataSet" nillable="true">

<s:complexType>

<s:sequence>

<s:element ref="s:schema" />

<s:any />

</s:sequence>

</s:complexType>

</s:element>

</s:schema>

</types>

<message name="AllCatSoapIn">

<part name="parameters" element="s0:AllCat" />

</message>

<message name="AllCatSoapOut">

<part name="parameters" element="s0:AllCatResponse" />

</message>

<message name="AllCatHttpGetIn" />

<message name="AllCatHttpGetOut">

<part name="Body" element="s0:DataSet" />

</message>

<message name="AllCatHttpPostIn" />

<message name="AllCatHttpPostOut">

<part name="Body" element="s0:DataSet" />

</message>

<portType name="getCategoriesSoap">

<operation name="AllCat">

<documentation>

www.syngress.com

166_ASPNET_10.qxd 11/26/01 3:17 PM Page 457

458 Chapter 10 • Web Services

This will return all categories in an XML String

</documentation>

<input message="s0:AllCatSoapIn" />

<output message="s0:AllCatSoapOut" />

</operation>

</portType>

<portType name="getCategoriesHttpGet">

<operation name="AllCat">

<documentation>

This will return all categories in an XML String

</documentation>

<input message="s0:AllCatHttpGetIn" />

<output message="s0:AllCatHttpGetOut" />

</operation>

</portType>

<portType name="getCategoriesHttpPost">

<operation name="AllCat">

<documentation>

This will return all categories in an XML String

</documentation>

<input message="s0:AllCatHttpPostIn" />

<output message="s0:AllCatHttpPostOut" />

</operation>

</portType>

<binding name="getCategoriesSoap" type="s0:getCategoriesSoap">

<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http" />

<operation name="AllCat">

<soap:binding style="document"

soapAction="http://tempuri.org/AllCat" />

<input>

<soap:body use="literal" />

</input>

www.syngress.com

166_ASPNET_10.qxd 11/26/01 3:17 PM Page 458

http://schemas.xmlsoap.org/soap/http
http://tempuri.org/AllCat

Web Services • Chapter 10 459

<output>

<soap:body use="literal" />

</output>

</operation>

</binding>

<binding name="getCategoriesHttpGet" type="s0:getCategoriesHttpGet">

<http:binding verb="GET" />

<operation name="AllCat">

<http:operation location="/AllCat" />

<input>

<http:urlEncoded />

</input>

<output>

<mime:mimeXml part="Body" />

</output>

</operation>

</binding>

<binding name="getCategoriesHttpPost" type="s0:getCategoriesHttpPost">

<http:binding verb="POST" />

<operation name="AllCat">

<http:operation location="/AllCat" />

<input>

<mime:content type="application/x-www-form-urlencoded" />

</input>

<output>

<mime:mimeXml part="Body" />

</output>

</operation>

</binding>

<service name="getCategories">

<port name="getCategoriesSoap" binding="s0:getCategoriesSoap">

<soap:address

location="http://ubid/bookSource/getCategories.asmx" />

</port>

www.syngress.com

166_ASPNET_10.qxd 11/26/01 3:17 PM Page 459

http://ubid/bookSource/getCategories.asmx

460 Chapter 10 • Web Services

<port name="getCategoriesHttpGet"

binding="s0:getCategoriesHttpGet">

<http:address

location="http://ubid/bookSource/getCategories.asmx" />

</port>

<port name="getCategoriesHttpPost"

binding="s0:getCategoriesHttpPost">

<http:address

location="http://ubid/bookSource/getCategories.asmx" />

</port>

</service>

</definitions>

Using XML in Web Services
Web Services use SOAP as a messaging protocol. SOAP is a relatively simple
XML language that describes the data to be transmitted.Why use XML? XML is
a standard language designed to be understandable by humans, and structured so
it can be interpreted programmatically. XML does not only describe data, it can
also describe structure, as we will see when we take a closer look at the
ADO.NET DataSet.

Consider the case of replicating a database into cache.We might want to do
this to reduce the load on the database server, to speed client processing, or to
provide an offline data handling scenario.We could transport an XML document
that contains the new W3C XML Schema Definition Standard (XSD) schema
describing the database tables, relations, and constraints, along with the actual data
(see the section “Using DataSets” later in this chapter). Because XSD can

www.syngress.com

When Moving a VS.NET Web
Service to Another Server
When transferring a project to another server, make sure the page name-
spaces match the project name and be sure to update Web references.

Developing & Deploying…

166_ASPNET_10.qxd 11/26/01 3:17 PM Page 460

http://ubid/bookSource/getCategories.asmx
http://ubid/bookSource/getCategories.asmx

Web Services • Chapter 10 461

describe relational data and can be embedded within an XML document, any
database can be converted to a ubiquitous data source.That is, a data source that
can be accessed on any platform by any application.This is possible because the
transfer protocol, SOAP, uses XML over HTTP and because XML, XSD, SOAP,
and HTTP are all nonproprietary industry standards.

It is the use of non proprietary industry standards that makes Web Services so
powerful. By using XML to describe structure and content,Web Services can
provide an interface to data on legacy systems, or between incompatible platforms
from acquisitions or between vendors over intranets, extranets, or the Internet.

An Overview of the
System.Web.Services Namespace
System.Web.Services is the namespace from which all Web service classes are
derived. It consists of all the classes needed to create Web Services in the .NET
Framework.When using VS.NET most of the System.Web.Services classes and sub-
classes are transparent to the developer, so we won’t go into much depth here.
The three primary child classes of System.Web.Services are: Description, Discovery,
and Protocols.

The System.Web.Services.Description
Namespace
The System.Web.Services.Description namespace contains the classes needed to
describe a Web Service using the Microsoft SDL (Service Definition Language), a
Microsoft implementation of the WSDL standard.VS.NET uses these classes to
create the .disco or .vsdisco file. Many of the subclasses of this class are related to
binding: MessageBinding, OperationBinding, OutputBinding, and so on. One of the
more interesting subclasses is the ServiceDescription class. It takes as a parameter an
XML file and enables the creation of a valid WSDL file.

ServiceDescription MyDescription = new ServiceDescription();

ServiceDescription MyDescription =

ServiceDescription.Read("MyTestFile.xml");

The System.Web.Services.Discovery Namespace
The System.Web.Services.Discovery namespace consists of the classes that enable
Web Service consumers to locate available Web Services. In VS.NET when we

www.syngress.com

166_ASPNET_10.qxd 11/26/01 3:17 PM Page 461

462 Chapter 10 • Web Services

create a Web Reference, these classes find the .vsdisco files that describe Web
Services.

Disco file from our Hello World example:

<?xml version="1.0" encoding="utf-8"?>

<discovery xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="http://schemas.xmlsoap.org/disco/">

<contractRef

ref="http://localhost/WebApplication_HelloWorld/hello.asmx?wsdl"

docRef="http://localhost/WebApplication_HelloWorld/hello.asmx"

xmlns="http://schemas.xmlsoap.org/disco/scl/" />

</discovery>

The System.Web.Services.Protocols Namespace
The System.Web.Services.Protocols namespace consists of the classes used to define
the protocols that enable message transmission over HTTP between ASP.NET
Web Services and ASP.NET Web Service clients.These classes are used in our
WSDL proxy classes.They are mostly involved with the formatting, bindings, and
settings of the SOAP message.

WSDL proxy from our Hello World example:

namespace WebApplication_HelloWorld.localhost {

using System.Diagnostics;

using System.Xml.Serialization;

using System;

using System.Web.Services.Protocols;

using System.Web.Services;

[System.Web.Services.WebServiceBindingAttribute(Name="helloSoap",

Namespace="http://tempuri.org/")]

public class hello :

System.Web.Services.Protocols.SoapHttpClientProtocol {

[System.Diagnostics.DebuggerStepThroughAttribute()]

public hello() {

www.syngress.com

166_ASPNET_10.qxd 11/26/01 3:17 PM Page 462

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/disco/
http://localhost/WebApplication_HelloWorld/hello.asmx?wsdl
http://localhost/WebApplication_HelloWorld/hello.asmx
http://schemas.xmlsoap.org/disco/scl/
http://tempuri.org/")]

Web Services • Chapter 10 463

this.Url =

"http://localhost/WebApplication_HelloWorld/hello.asmx";

}

[System.Diagnostics.DebuggerStepThroughAttribute()]

[System.Web.Services.Protocols.SoapDocumentMethodAttribute(

"http://tempuri.org/HelloWorld",

Use=System.Web.Services.Description.SoapBindingUse.Literal,

ParameterStyle=

System.Web.Services.Protocols.SoapParameterStyle.Wrapped)]

public string HelloWorld() {

object[] results = this.Invoke("HelloWorld", new

object[0]);

return ((string)(results[0]));

}

[System.Diagnostics.DebuggerStepThroughAttribute()]

public System.IAsyncResult BeginHelloWorld(

System.AsyncCallback callback, object asyncState)

{

return this.BeginInvoke(

"HelloWorld", new object[0], callback, asyncState);

}

[System.Diagnostics.DebuggerStepThroughAttribute()]

public string EndHelloWorld(System.IAsyncResult asyncResult) {

object[] results = this.EndInvoke(asyncResult);

return ((string)(results[0]));

}

}

}

www.syngress.com

166_ASPNET_10.qxd 11/26/01 3:17 PM Page 463

http://localhost/WebApplication_HelloWorld/hello.asmx
http://tempuri.org/HelloWorld

464 Chapter 10 • Web Services

Type Marshalling
Type marshalling refers to the translation of datatypes from an application or
database as it is mapped to a SOAP datatype.When any datatype, object, method,
or string (xml, or a simple string) is passed as a SOAP request or response, it is
automatically converted into an XML representation of itself. Since any program-
ming language can use SOAP, SOAP has defined its own set of datatypes.When
data is passed in a SOAP envelope its datatypes are translated or converted to a
SOAP equivalent.This enables different languages with different names for similar
datatypes to communicate effectively.The datatypes supported when using Web
Services include:

■ Standard primitive types String, char, Boolean, byte, single, double,
DateTime, int16, int32, int 64, Uint16, and so on.

string "hello World" is represented as:

<string>hello World</string>

■ Enum Types Enumerations like enum weekday {sun=0, mon=1,
tue=2, wed=3, thu=4, fri=5, sat =6}

■ Arrays of Primitives or Enums

MyArray[5,7] is represented as:

<ArrayOfInt>

<int>5</int>

<int>7</int>

</ArrayOfInt>

■ Classes and Structs

struct Order(OrderID, Price) is represented as:

<Order>

<OrderID>12345</OrderID>

<Price>49.99</Price>

</Order>

■ Arrays of Classes (Structs)

MyArray Orders(order1, order2) may be represented as:

<ArrayOfOrder>

www.syngress.com

166_ASPNET_10.qxd 11/26/01 3:17 PM Page 464

Web Services • Chapter 10 465

<Order>

<OrderID>int</OrderID>

<Price>double</Price>

</Order>

<Order>

<OrderID>int</OrderID>

<Price>double</Price>

</Order>

</ArrayOfOrder>

■ DataSets The representation of a DataSet is rather lengthy; it includes
an inline XSD schema defining the structure followed by the XML data.
For an example of a DataSet, see the next section,“Using DataSets.”

■ Arrays of DataSets

■ XmlNodes

<book id=1><title>book1</title><price>25.00</price></book>

■ Arrays of XmlNodes

<ArrayOfBook>

<book id="1">

<title>book1</title>

<price>25.00</price>

</book>

<book id="2">

<title>book2</title>

<price>49.99</price>

</book>

</ArrayOfBook>

It is important to note that when we create and use Web Services in VS.NET,
the marshalling of data is transparent to the developer.This is also true when
using the WSDL.exe command line utility.While it is important to have some
understanding of how data is transported between the Web Service and the
Service proxy or client, this layer is and should be transparent to the developer,
just as packet structures for transmitting data over HTTP is transparent to the
Web developer.

www.syngress.com

166_ASPNET_10.qxd 11/26/01 3:17 PM Page 465

466 Chapter 10 • Web Services

Using DataSets
A DataSet can be used to cache an entire database within an ASP application
variable.This would reduce the Database Server Load and speed data access over
the life of the application object.The following is a code snippet that calls a Web
Service that returns a DataSet.The DataSet in turn stores the data in an applica-
tion object.

myServer.getBooks DataSource = new myServer.getBooks();

Application["AllBooks"] = DataSource.AllBooks();

This makes the DataSet available to all instances of the Web application,
which is very efficient. Operations can be performed on the DataSet and, on
Application_End the Database can be updated.

DataSets store database structure information and contain DataTable,
DataColumn, DataRow, and DataView children. DataSet RowFilter operations are
very much like SQL Queries.The DataSet can easily be databinded to ASP.NET
UI controls. It also has an XML output format that makes it easily translated to
XML for XML processing.

Here is an example of the Books DataSet returned by the getBooks.allBook
service:

<?xml version="1.0" encoding="utf-8"?>

<DataSet xmlns="http://tempuri.org/">

<xsd:schema id="NewDataSet" targetNamespace="" xmlns=""

xmlns:xsd=http://www.w3.org/2001/XMLSchema

xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">

<xsd:element name="NewDataSet" msdata:IsDataSet="true">

<xsd:complexType>

<xsd:choice maxOccurs="unbounded">

<xsd:element name="Books">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="isbn" type="xsd:string"

minOccurs="0" />

<xsd:element name="name" type="xsd:string"

minOccurs="0" />

<xsd:element name="id" type="xsd:int" minOccurs="0" />

www.syngress.com

166_ASPNET_10.qxd 11/26/01 3:17 PM Page 466

http://tempuri.org/
http://www.w3.org/2001/XMLSchema

Web Services • Chapter 10 467

<xsd:element name="imgSrc" type="xsd:string"

minOccurs="0" />

<xsd:element name="author" type="xsd:string"

minOccurs="0" />

<xsd:element name="price" type="xsd:decimal"

minOccurs="0" />

<xsd:element name="title" type="xsd:string"

minOccurs="0" />

<xsd:element name="description" type="xsd:string"

minOccurs="0" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:choice>

</xsd:complexType>

</xsd:element>

</xsd:schema>

<diffgr:diffgram xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"

xmlns:diffgr="urn:schemas-microsoft-com:xml-diffgram-v1">

<NewDataSet xmlns="">

<Books diffgr:id="Books1" msdata:rowOrder="0">

<isbn>0072121599 </isbn>

<name>cisco</name>

<id>2</id>

<imgSrc>ccda.gif</imgSrc>

<author>Syngress Media Inc</author>

<price>49.99</price>

<title>Ccda Cisco Certified Design Associate Study Guide</title>

<description>

Written for professionals intending on taking the CCDA test,

this special guide covers all the basics of the test and

includes hundreds of test questions on the enclosed CD.

</description>

</Books>

www.syngress.com

166_ASPNET_10.qxd 11/26/01 3:17 PM Page 467

468 Chapter 10 • Web Services

<Books diffgr:id="Books2" msdata:rowOrder="1">

<isbn>0072126671 </isbn>

<name>cisco</name>

<id>2</id>

<imgSrc>ccna.gif</imgSrc>

<author>Cisco Certified Internetwork Expert Prog</author>

<price>49.99</price>

<title>CCNA Cisco Certified Network Associate Study

Guide</title>

<description>

Cisco certification courses are among the fastest-growing

courses in the training industry, and our guides are

designed

to help readers thoroughly prepare for the exams.

</description>

</Books>

</NewDataSet>

</diffgr:diffgram>

</DataSet>

www.syngress.com

166_ASPNET_10.qxd 11/26/01 3:17 PM Page 468

Web Services • Chapter 10 469

Summary
In this chapter, we discussed Web Services, along with their related technologies,
protocols, and standards, such as Simple Object Access Protocol (SOAP),Web
Services Description Language (WSDL), Extensible Markup Language (XML),
and the XML Schema Definition (XSD) standard.We examined the role of Web
Services and how messages are passed between servers and data sources.

We created simple Web Services (producers) as well as Web Services (con-
sumers) using the .NET Framework and VS.NET Beta 2 to show how the Web
Service messaging infrastructure works and how it can be used transparently to
the developer.

The power of Web Services is due to its foundation in nonproprietary proto-
cols and standards.Web Services would not be as useful if it were not built on
XML for defining data and structure, XSD for defining structure, SOAP for
defining a messaging transport mechanism over the well-established HTTP,
WSDL for defining method interfaces in XML, Universal Description, Discovery,
and Integration (UDDI, a Web Service discovery mechanism), and DISCO, the
Web Service discovery description document.

We’ve covered a lot of ground here. For in-depth examples, see Chapter 12,
where we develop several Web Services as wrappers around our data source, for
use by an ADO application.

Solutions Fast Track

Web Services

Web Services provide an XML interface that can be accessed by any
SOAP-enabled client, which means a Web Service developed with .NET
can be accessed by a Java application, a Web page, or any SOAP-enabled
desktop application.

Web Services can be accessed over HTTP through port 80, which
means remote procedure calls can be made to objects behind firewalls.

Using XML in Web Services

XML is the enabling standard upon which SOAP and Web Services
are built.

www.syngress.com

166_ASPNET_10.qxd 11/26/01 3:17 PM Page 469

470 Chapter 10 • Web Services

The SOAP envelope is an XML document.The SOAP message,
meanwhile, describes the data being passed as an XML representation of
the original datatype or object.

An Overview of the System.Web.Services Namespace

System.Web.Services is .NET Framework’s namespace of classes that
enable .NET Web Services.The three primary subclasses or
subnamespaces are:

1. System.Web.Services.Description Classes that support WSDL,
used to define the methods, parameters, and datatypes of Web
Services.

2. System.Web.Services.Discovery Classes that support UDDI and
the generation of WSDL proxies for Web Service clients.

3. System.Web.Services.Protocols Classes that support the genera-
tion and customization of Web service protocols, and can be used for
things such as creating custom SOAP headers.

Type Marshalling

Type marshalling is the mapping of types from Web Service method calls
to SOAP datatypes.

When remote calls are made using Web Services and the SOAP
protocol; datatypes and objects that are passed are represented as XML
descriptions of themselves. (Datatypes are marshalled as one of many
SOAP standard datatypes.)

Using DataSets

DataSets are ADO.NET objects that provide database type operations.

DataSets enable the transfer of database structure and content to and
from Web Services.

www.syngress.com

166_ASPNET_10.qxd 11/26/01 3:17 PM Page 470

Web Services • Chapter 10 471

Q: Why replace COM objects with Web Services?

A: Web Services have a platform neutral interface.This enables Web Services to
be easily utilized by multiple clients on different platforms developed with
different programming languages. Note that existing COM components can
be wrapped by Web Services.

Q: Can I create access to Web Services from a standard ASP page?

A:Yes, you can; however, you might want to look into Microsoft’s SOAP toolkit.

Q: How do I know I need Web Services?

A: If you have data that is needed by various customers (different departments,
different levels of management, vendors, industry partners, consumers and so
on) and getting to that data is hindered or prevented by issues involving plat-
form, programming language, legacy hardware or other types of incompati-
bility, developing Web Services can help.

Q: What area of development are Web Services best for?

A: I believe that Web Services development like COM development will remain
in the hands of the middle tier programmer.Traditionally this was accom-
plished with C++ and VB programmers, however simple data access type
components may be developed by intermediate and advanced ASP devel-
opers.While this might still be the case,ASP.NET developers need a firmer
grasp of programming with a strongly typed compiled language then their
ASP predecessors.This makes the ASP.NET developer more of a middle tier
programmer and less of a front-end Web developer. Since building and
deploying Web classes and Web Services are relatively easy with VS.NET as
compared to traditional COM development. I think the proportion of com-
ponents built by the ASP developer (using ASP.NET) will be larger than it
has been in the past.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

166_ASPNET_10.qxd 11/26/01 3:18 PM Page 471

472 Chapter 10 • Web Services

Q: Is it possible to try out Web Services using only my local computer?

A:Yes, it is. Using the WSDL.exe command line tool, you can point to any
Web server.This is even easier with the VS.NET UI. Simply right-click Web
references, then select any Web service from the UDDI directory or your
local machine, or simply type the URL of a disco file on any server.You can
easily generate a WSDL proxy and use it as long as you are connected to the
Internet.

Q: I’m currently in the process of migrating.What considerations should I take
with my existing COM components?

A: Here are a few things to consider:

■ Who is the customer? If the customer is only within the intranet and
there are no external customers in the foreseeable future, an existing
DCOM infrastructure needn’t be changed.

■ What type of clients do I have? If the client is a desktop application,
switching to Web Services would require updating the client, which may
include updating the OS, and possibly the hardware so that the client has
enough memory to host the .NET Framework.

■ Will I need to support Mobile devices in the near future? Using the .NET
Mobile Framework to access Web Services is as simple as it is with
.NET. Updating the existing clients to .NET will make adding future
clients simple and cost-effective.

www.syngress.com

166_ASPNET_10.qxd 11/26/01 3:18 PM Page 472

Creating an
XML.NET Guestbook

Solutions in this chapter:

■ Functional Design Requirements of the
XML.NET Guestbook

■ Adding Records to the Guestbook

■ Viewing the Guestbook

■ Advanced Options for the
Guestbook Interface

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 11

473

166_ASPNET_11.qxd 11/26/01 3:19 PM Page 473

474 Chapter 11 • Creating an XML.NET Guestbook

Introduction
Your first case study is a simple online guestbook application, completely coded
in ASP.NET.You are going to need to provide the basic functions through this
guestbook, namely the ability to do the following:

1. Enable guests to enter messages.

2. Display all messages on one page.

3. Show author, e-mail address of author, and comment from the author of
the message.

The flowchart in Figure 11.1 shows the user interaction process that you
want to achieve.

In essence, the user will come to the site and decide if he or she wants to
view previous messages or add new messages.The user will be redirected to the
view comments page after filling out a new message, or the user viewing the
messages has the option to fill out a message.

NOTE

In the CD there are two folders for this chapter, representing two ways
of going about this guestbook: one is labeled “basic” and the other is
labeled “advanced.” We are going to explore both of these.

www.syngress.com

Figure 11.1 Basic Functionality Layout

User

Add

Comment

View
Comment

166_ASPNET_11.qxd 11/26/01 3:19 PM Page 474

www.syngress.com

All of these functions need to be kept as compact as possible. Our backend
needs to store the following information for every message that is left on the
guestbook:

■ Name

■ E-mail

■ Subject Line

■ Actual Comment

The Name, E-mail, Subject Line, and Actual Comment need to be required
fields and you need to provide validation for the e-mail field.Also, you need to
provide the user with an easy-to-use interface.A basic interface would consist of
the user being able to do the following:

1. Choose between adding a new entry and viewing previous entries.

2. Properly locate the corresponding text areas for the entry points.

3. Have real-time validation take place where needed.

4. Reply to a comment left by a user via e-mail.

Functional Design Requirements
of the XML Guestbook
Several guestbooks are already available online for download, but most require
either a Microsoft Access database or an SQL Server database for storing the
guestbook entries and other information pertinent to that guestbook.While both
of these tools provide their own strengths and weaknesses, you want to provide
an application that is small, quick, and able to stand alone without requiring a
separate application to make it work.This type of thought also implies that the
application will be small and easy to transfer, if needed.You also need to keep an
eye on the code and keep it as small as possible.You need to be able to write
directly to the database and read from the database with as little code as possible.
Just because you are trying to make the code portable doesn’t mean you need to
make the code bloat!

So, if you are not going to use a traditional database (such as Microsoft Access
or SQL Server), then what can you use that won’t kill the application require-
ments? Back in Chapter 8 we talked about a technology that is turning into a
strong database alternative, called XML. XML will enable you to use a text-based

Creating an XML.NET Guestbook • Chapter 11 475

166_ASPNET_11.qxd 11/26/01 3:19 PM Page 475

476 Chapter 11 • Creating an XML.NET Guestbook

approach to your database that does not rely on any ODBC connections or even
any server (although your code will pretty much lock you into a server that uses
ASP.NET).Also, through an XML schema you can define how our XML “row”
will look and what each value must contain.

With your backend solution set at XML you need to determine how you are
going to work with the XML file.The logical choice is the System.XML names-
pace, but you can actually find a faster method by using the XML tools that
accompany the System.Data namespace. Even though System.XML is more pow-
erful than System.Data when it comes to XML, you simply don’t need to rely on
so much coding to see your results.

NOTE

The choice of System.Data over System.XML does not mean that
System.XML is in any way inefficient. It simply means that, as program-
mers, we sometimes have to choose between a solution that requires
more time but is more flexible, and a solution that is quicker but more
rigid. System.XML is more flexible with XML than System.Data will ever
be, but all you need for this case study is just to be able to read and
write to an XML file. In other words, you are following an age-old adage
of programming—K.I.S.—“Keep It Simple!”

Constructing the XML
Even though System.Data is viewed more or less as a method of working with
traditional database connections, such as a SQL database or an Access database, it
can also work with XML data, provided the XML has an inline schema that it
can match the data against; almost like looking at the table structure first and
then the data within it.

The file gbook.xml (shown in Figure 11.2, and in the Basic directory on
the CD that accompanies this book) displays the XML code that we will be
working with.

Figure 11.2 gbook.xml (Basic Version)

01: <gbook>

02: <xsd:schema id="gbook"

03: targetNamespace=""

www.syngress.com
Continued

166_ASPNET_11.qxd 11/26/01 3:19 PM Page 476

Creating an XML.NET Guestbook • Chapter 11 477

04: xmlns=""

05: xmlns:xsd="http://www.w3.org/2001/XMLSchema"

06: xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">

07:

08: <xsd:element name="gbook"

09: msdata:IsDataSet="true">

10: <xsd:complexType>

11: <xsd:choice maxOccurs="unbounded">

12: <xsd:element name="gbooky">

13: <xsd:complexType>

14: <xsd:sequence>

15: <xsd:element name="Name" type="xsd:string" minOccurs="0"

/>

16: <xsd:element name="Chrono" type="xsd:string" minOccurs="0" />

17: <xsd:element name="Email" type="xsd:string" minOccurs="0" />

18: <xsd:element name="Comments" type="xsd:string" minOccurs="0"

/>

19: </xsd:sequence>

20: </xsd:complexType>

21: </xsd:element>

22: </xsd:choice>

23: </xsd:complexType>

24: </xsd:element>

25:

26: </xsd:schema>

27: </gbook>

Lines 1 and 26 have the root tags for the XML file. In this example, we are
using “gbook” but you can use anything. Lines 2 through 6 are one line that we
used whitespace to organize the attributes in order for the tag to be more read-
able.The targetNamespace and xmlns attributes in the <xsd:schema> tag are left
blank since both the targetNamespace and xmlns are inline.The xsd attribute is
pointing to the current schema, and the special Microsoft attribute msdata points
to a Microsoft data compatibility namespace.

www.syngress.com

Figure 11.2 Continued

166_ASPNET_11.qxd 11/26/01 3:19 PM Page 477

http://www.w3.org/2001/XMLSchema

478 Chapter 11 • Creating an XML.NET Guestbook

NOTE

If you want more information on the XSD and MSDATA attributes, you
can find documentation for XML schemas online through http://msdn
.microsoft.com/library and www.w3.org/XML/Schema.html.

Lines 8 through 24 construct the element that will store the data.When the
data is entered into the corresponding .aspx file, it will format the data within the
XML per the data outline within the schema. In this case, a sample entry in our
guestbook will appear as the following:

<gbooky>

<Name>Jon Ortiz</Name>

<Chrono>Time Posted</Chrono>

<Email>somewhere@overthereainbow.com</Email>

<Comments>Hola!</Comments>

</gbooky>

This information will be created by your application through the System.Data
namespace. In order to be able to do it, System.Data matches the information
input to the inline schema and creates the appropriate record. Now that you have
set up the “template,” you can get started with the code that adds records. Refer
to Figure 11.3 for the logic behind the XML file.

Adding Records to the Guestbook
Any veteran ASP developers are going to notice in this section a distinct change.
Remember in desktop applications that you formed your GUIs using a Form?
Well, in ASP.NET, the Form has been brought to Web development and is
referred to as a Panel.You are going to work with your code inline for just this
chapter so that you can get a good grasp of what a Panel looks like and how it
works within ASP.NET.

There are no real differences between using a Form for desktop applications
and a Panel for online applications. Many of the same subs are intact, such as
OnLoad, and Panel can reference any item within the Panel, just like in desktops.
A great place to view the Panel in ASP.NET is within the UI for adding guest-
book records.Your file will be called add.aspx, and is the code is displayed in
Figure 11.4 (note that some lines wrap), and in the Basic directory on the CD
that accompanies this book.

www.syngress.com

166_ASPNET_11.qxd 11/26/01 3:19 PM Page 478

http://msdn

Creating an XML.NET Guestbook • Chapter 11 479

www.syngress.com

Figure 11.3 Creating a Record Using the XML Schema

User enters
information to submit

a guestbook
message.

ASP.NET
guestbook entry

page uses
System.Data to read

schema within XML file.

Does the Data pass
validation and
match the XML

Schema?

New Row is created following the
Schema structure:

<gbooky>
<Name> User Name </Name>
<Chrono> Time & Date Posted </Chrono>
<Subject> Comment Subject </Subject>
<Comment> Actual Message </Comment>
<gbooky>

User is alerted to
invalid data and
asked to change
data on the GUI.

Is the data valid?

YES

NO

NO

YES

166_ASPNET_11.qxd 11/26/01 3:19 PM Page 479

480 Chapter 11 • Creating an XML.NET Guestbook

Figure 11.4 Sample ASPX Code add.aspx (Basic Version)

01: <%@ Page Language="VB" EnableSessionState="False"%>

02:

03: <%@ Import Namespace="System.IO" %>

04: <%@ Import Namespace="System.Data" %>

05: <html>

06: <head>

07: <title>Add Entry</title>

08: </head>

09: <script language="VB" runat="server" >

10: <!— event handling code here—>

11: </script>

12: </head>

13: <body topmargin="0" leftmargin="0" rightmargin="0" marginwidth="0"

marginheight="0">

14:

15:

16: <h3 align="center">Guestbook Post Page.</h3>

17:

18: <asp:label id="err" text="" style="color:#FF0000" runat="server" />

19: <asp:Panel id=pnlAdd runat=server>

20: <form action="add.aspx" runat=server>

21: <table border="0" width="80%" align="Center">

22: <tr>

23: <td>Sign-in My GuestBook</td>

24: <td> </td>

25: </tr>

26: <tr>

27: <td>Name :</td>

28: <td><asp:textbox text="" id="Name" runat="server" />

<asp:RequiredFieldValidator ControlToValidate=Name display=static

runat=server>*</asp:RequiredFieldValidator></td>

29: </tr>

30: <tr>

www.syngress.com

Continued

166_ASPNET_11.qxd 11/26/01 3:19 PM Page 480

Creating an XML.NET Guestbook • Chapter 11 481

31: <td>E-Mail :</td>

32: <td><asp:textbox text="" id="Email" runat="server"/>

<asp:RequiredFieldValidator ControlToValidate=Email display=static

runat=server> *</asp:RequiredFieldValidator>

<asp:RegularExpressionValidator runat="server"

ControlToValidate="Email"

ValidationExpression="[\w-]+@([\w-]+\.)+[\w-]+"

Display="Static"

Font-Name="verdana" Font-Size="10pt">Please enter a valid

e-mail address</asp:RegularExpressionValidator>

33: </td>

34: </tr>

35: <tr>

36: <td>Comments :</td>

37: <td><asp:Textbox textmode=multiline id="Comments" columns="25"

rows="4" runat="server" />

38: </td>

39: </tr>

40: <tr>

41: <td colspan="2" >

42: <asp:Button Text="Submit Post" onClick="AddClick"

runat="server" /></td>

43: </tr>

44: </table>

45: </form>

46: </asp:Panel>

47:

48: <asp:Panel id=pnlThank visible=false runat=server>

49: <p align=center>Thank you for posting in my Guestbook!

50: Click here to view GuestBook.

51: </p>

www.syngress.com

Figure 11.4 Continued

Continued

166_ASPNET_11.qxd 11/26/01 3:19 PM Page 481

482 Chapter 11 • Creating an XML.NET Guestbook

52: </asp:Panel>

53: </body>

54: </html>

It may look daunting at first, but it really is quite simple. Remember that in
ASP.NET you first should declare the language the page is going to be using.
While it is redundant, since the language declaration on the <script> tag deter-
mines the actual language use, it is still a good coding practice to get into. Lines 2
through 4 declare the namespaces that you are going to use—System, System.IO,
and System.Data. Lines 5 through 8 just display the HTML code that needs to be
in every single HTML page.

You then hit the script tag that controls the Submit button event (lines 9
through 10). For now it’s just a placeholder for the code you’ll be adding in later.
Notice that the code is placed at the head of the html file, which means that it
will be processed before anything else.You’ll look at the Submit button event
after you dissect this portion of the ASP.NET page.

Understanding the pnlAdd Panel
On line 19 of Figure 11.4, pnlAdd is declared; it is the name of the panel that
contains the programming code displaying the messages and text boxes that the
user will be viewing on the page, in order to enter the guestbook entry data; e.g.,
the name area, the name entry textbox, the e-mail area, the e-mail entry textbox,
the comment area, the comment entry textbox, and the Submit button. In other
words, it is your run-of-the-mill HTML form but with ASPX. In reality there are
only two “normal” form objects; the name textbox is your standard text object,
and the comment area is your standard multilane textbox.

The e-mail area, however, is another story.Take a look at the behemoth of a
line that you’ll find in line 32:

<asp:textbox text="" id="Email" runat="server"/

><asp:RequiredFieldValidator ControlToValidate=Email display=static

runat=server> *</asp:RequiredFieldValidator>

<asp:RegularExpressionValidator runat="server"

ControlToValidate="Email"

ValidationExpression="[\w-]+@([\w-]+\.)+[\w-]+"

Display="Static"

www.syngress.com

Figure 11.4 Continued

166_ASPNET_11.qxd 11/26/01 3:19 PM Page 482

Creating an XML.NET Guestbook • Chapter 11 483

Font-Name="verdana" Font-Size="10pt">Please enter a valid

e-mail address</asp:RegularExpressionValidator>

Starting from the top, you find your standard ASPcontrol declaration as a
textbox with its default text set to empty and an ID of “E-mail.” Right after it
comes the ASP control declaration for RequiredFieldValidator set to validate the
control labeled “E-mail” and with a static display.You then implement two types
of validation to the field.The first validation is through the RegularFieldValidator
control:

<asp:RequiredFieldValidator ControlToValidate=Email display=static

runat=server>This is required.</asp:RequiredFieldValidator>

All you are doing here is a quick check to see if the field is empty or not. If
the user skips the field and leaves it empty, then a little message in red shows up
saying that “This is required.”You don’t have to use that text but it works for this
example. Our second round of validation begins right after that line with the
more intense RegularExpressionValidator object:

<asp:RegularExpressionValidator runat="server"

ControlToValidate="Email"

ValidationExpression="[\w-]+@([\w-]+\.)+[\w-]+"

Display="Static"

Font-Name="verdana" Font-Size="10pt">Please enter a valid

e-mail address</asp:RegularExpressionValidator>

www.syngress.com

Stricter E-Mail Validation
The method of e-mail validation demonstrated in this chapter is not the
only option available to you. There is a stricter method for e-mail vali-
dation that would only enable the user to input a .com, .org, .edu, .mil,
.gov, or .net:

ValidationExpression = "^[\w-]+@[\w-]+\.(com|net|org|edu|mil|gov)$"

Developing & Deploying…

166_ASPNET_11.qxd 11/26/01 3:19 PM Page 483

484 Chapter 11 • Creating an XML.NET Guestbook

You first set the object to bind itself to the E-mail control. It will be ana-
lyzing the contents within the E-mail object to see if it falls under the Validation
Expression that it has been given; in this case, it checks to see that an “@” symbol
as well as a “.” is present within the string.You may want to read up on RegEx to
fully understand what variables can be used with Regular Expressions.

Adding a Thank-You Panel with PnlThank
All you are doing here is declaring a panel that will show up after a successful
guestbook entry has been added to the XML file.The link in order to view the
guestbook is declared and set.Very simple and very quick, to the point, starting
on line 48 (Figure 11.4):

<asp:Panel id=pnlThank visible=false runat=server>

<p align=center>Thank you for posting in my Guestbook!

Click here to view GuestBook.

</p>

</asp:Panel>

Exploring the Submit Button Handler Code
Now that you have established your design and layout, you can take a look at the
code that actually handles the addition of new entries into the guestbook.The
basic functionality of this code is to react to the Submit button when pressed,
and write the necessary items to the XML file. Figure 11.5 walks you through an
overview of the Submit button code.

Figure 11.5 Submit Button Handler Code for add.aspx (Basic Version)

01: Sub AddClick(Sender As Object, E As EventArgs)

02:

03: Try

04: Dim dataFile as String = "gb/gbook.xml"

05:

06: 'the next line wraps

07: Dim fin as New FileStream (Server.MapPath(dataFile),

FileMode.Open,FileAccess.Read,FileShare.ReadWrite)

08:

09: 'this line also wraps

www.syngress.com
Continued

166_ASPNET_11.qxd 11/26/01 3:19 PM Page 484

Creating an XML.NET Guestbook • Chapter 11 485

10: Dim fout as New FileStream (Server.MapPath(dataFile),

FileMode.Open,FileAccess.Write,FileShare.ReadWrite)

11:

12: Dim guestData as New DataSet()

13: Dim newRow as DataRow

14: err.Text = ""

15: guestData.ReadXml(fin)

16: fin.Close()

17: newRow = guestData.Tables(0).NewRow()

18: newRow("Name")=Name.Text

19: newRow("Chrono")=DateTime.Now.ToString()

20: newRow("Email")=Email.Text

21: newRow("Comments")=Comments.Text

22: guestData.Tables(0).Rows.Add(newRow)

23: guestData.WriteXml(fout, XmlWriteMode.WriteSchema)

24: fout.Close()

25: pnlAdd.Visible=false

26: pnlThank.Visible=true

27:

28: Catch edd As Exception

29: err.Text="Error writing file at: " & edd.ToString()

30:

31: End Try

32:

33: End Sub

34: </script>

Line 1 starts you off with your VB code, declaring itself a code segment that
is run on the server-side and written using VB. Line 1 uses an ASP.NET form
subnamed “AddClick”; this code segment will be providing all of the function-
ality of the Submit button.

On line 3, you start taking advantage of one of VB’s newest and very useful
feature, error trapping.Your try/catch segment starts out by declaring a variable
to store the location of your XML file, which can be any directory.You can just

www.syngress.com

Figure 11.5 Continued

166_ASPNET_11.qxd 11/26/01 3:19 PM Page 485

486 Chapter 11 • Creating an XML.NET Guestbook

assume that for this example it’s in the gb directory on the root folder of the site.
With the location of the file stored, you can open up a FileStream object to open
and process the XML file for you. FileStream needs to know the actual location of
the file (not the virtual location) of the file, so you use Server.MapPath() to return
the actual location of the file to your FileStream object, which you can then open
(FileMode.Open) and start reading (FileAccess.Read).You can also tell FileStream
how to handle other events, such as sharing; by telling FileStream to allow
read/write sharing of the file (FileShare.ReadWrite), you don’t have to worry
about your XML file suffering from any file locking, which would prevent any
other user from editing the file and getting them a nasty error.

With your XML file stored within the fout object (line 10 in Figure 10.5)
you can start to create the object that will handle parsing the data, DataType, and
properly formatting it and writing to the XML file, DataRow. Specifically,
DataType will handle reading the information and transforming it to a table
format. DataRow will then use the information stored within your DataType
object to create a new row with the columns that it finds within the DataType
object. In other words, when DataType reads your XML file, it will see the root
element “gbook” as your table,“gbooky” as your rows, and all the information
within “gbooky” as columns. It will write the information out accordingly to the
XML file. It will know what it’s writing since it’s using the inline schema (Figure
10.2) to write to the file per the schema, using the WriteXML class of the
DataType object and having it write the stream matching the XMLSchema
(XMLWriteMode.WriteSchema).You then hide the panel that contains the text

www.syngress.com

Online Forms
As you have noticed and learned throughout this book, ASP.NET enables
programmers to use Web forms, which can be described as the VB6.0
desktop form. In this particular example, your “AddClick” sub would be
placed within the OnClick() event for whatever button you wanted to
use as your trigger for this action. One other little trick is to view each
“panel” as a small form within an mdi, namely the browser window,
with their own “hide” and “show” features.

Migrating …

166_ASPNET_11.qxd 11/26/01 3:19 PM Page 486

Creating an XML.NET Guestbook • Chapter 11 487

boxes and Submit button, and make the panel that contains the “Thank You”
message. Figures 10.6 and 10.7 show the basic add.aspx file before and after
filling out a new entry.

www.syngress.com

Figure 11.6 Before Adding a New Entry

Figure 11.7 After Adding a New Entry

166_ASPNET_11.qxd 11/26/01 3:19 PM Page 487

488 Chapter 11 • Creating an XML.NET Guestbook

Viewing the Guestbook
One line of actual ASPX code—that’s about as simple as it gets, and done just by
using the built-in XML server control.You may remember in Chapter 3 that
ASP.NET has several controls built in to facilitate many different HTML func-
tions, such as displaying radio buttons and handling forms, which allows
ASP.NET to generate items fairly on-the-fly. XML is no exception to this rule.

Displaying Messages
Here is our one-line masterpiece, as shown in Figure 11.8. In essence, all we did
to get the sample output shown in Figure 11.8 was just to tell the ASP.NET
XML control to read the data in gbook.xml, and to transform it according to the
XSL information in gbook.xsl. It is displayed in Figure 11.9 and can be found in
the gb folder in the Basic directory on the CD that accompanies this book.
Figure 11.10 shows us the output.

Figure 11.8 viewplain.aspx (Basic Directory)

01: <html>

02: <head>

03: <title>XML Control Test</title>

04: </head>

05: <body bgcolor="#000000">

www.syngress.com

File Locking
File Locking is a basic response to multiple users trying to read and
modify the same file at around the same time. I say at “around” the
same time because File Locking will take place if the file is accessed at
the same time, or if access is attempted after someone already has
access to it. By preventing multiple users from reading and writing the
file, you avoid file corruption and constant backup restorations. File
Locking allows a temporary “lock” to be placed to the file that allows for
changes to be made one after the other without damaging the integrity
of the file.

Developing & Deploying…

Continued

166_ASPNET_11.qxd 11/26/01 3:19 PM Page 488

Creating an XML.NET Guestbook • Chapter 11 489

06: <!-- line 7 wraps -->

07: <asp:xml id="gbook" DocumentSource="gb/gbook.xml"

TransformSource="gb/gbook.xsl" runat="server"/>

08: </body>

09: </html>

Figure 11.9 gbook.xsl

01: <?xml version="1.0"?>

02:

03: <!— this line wraps —>

04: <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

05:

06: <xsl:template match="/">

07:

08: <xsl:for-each select="gbook/gbooky">

09: <table width = "400">

10: <!-- this line wraps -->

11: <tr><xsl:value-of

select="Name"/></tr>

12:

13: <!-- this line wraps -->

14: <tr>
<xsl:value-of

select="Chrono"/></tr>

15:

16: <!-- this line wraps -->

17: <tr>
<xsl:value-of

select="Email"/></tr>

18:

19: <!-- this line wraps -->

20: <tr><font face="Arial, Helvetica, sans-serif" size="2"

color="#C7B29A"><p><xsl:value-of

www.syngress.com

Figure 11.8 Continued

Continued

166_ASPNET_11.qxd 11/26/01 3:19 PM Page 489

http://www.w3.org/1999/XSL/Transform

490 Chapter 11 • Creating an XML.NET Guestbook

select="Comments"/></p><p></p></tr>

21:

22: </xsl:for-each>

23: </table>

24: </xsl:template>

25: </xsl:stylesheet>

NOTE

If you have no other recourse but to use XSL to also generate your
hyperlinks, the fastest work around to this is will be to simply add the
<a> element with an attribute of href and nesting the e-mail element.

Advanced Options for
the Guestbook Interface
Now that you have a good understanding of a guestbook and how it works, you
can try to do something you haven’t done yet—actually make it look cool! Just

www.syngress.com

Figure 11.9 Continued

Figure 11.10 Viewing Basic Guestbook Entries

166_ASPNET_11.qxd 11/26/01 3:19 PM Page 490

Creating an XML.NET Guestbook • Chapter 11 491

because you are working with ASP.NET does not mean that you cannot use its
new tricks to come up with some really jazzy items and tweak your XML a bit.
Let’s start by looking at your guestbook entry page.

Manipulating Colors and Images
Clearly this is a design point and not a very strong showing of ASP.NET. However,
how you design your page is just as vital as how you design a graphical user inter-
face. In this example, I made the design pleasing to the eye, and I try to use a
couple of design techniques to lure the user’s eye to the proper areas on the add
screen.While these are basic points, it’s a good idea to keep the following in mind:

1. Is the area visible on most monitors? (Start off at 800x600 resolution.)

2. Will the user be able to understand what to do?

3. If the user cannot easily figure out what to do, should an easy-to-find
help link be visible, or should you perhaps change the design?

One of the nice things about ASP.NET controls is that you can still use tags
with them. In fact, this second version of my add entry page looks so nice
because I’m using a Cascading Style Sheet (CSS) script with it (in the CD that
accompanies this book as gbook.css in the Advanced directory).Another part of
this new design that you haven’t seen before are the emoticons. Emoticons add a
little bit of interactivity to the guestbook by enabling users to pick an image that
reflects their “feelings” at the time of posting.You will have to add a couple of
changes to the XML file and to the add.aspx file as well as to the view.aspx file
in order to display the images. Figure 11.11 will show you how the new add.aspx
page will look before and Figure 11.12 after entering a message.

Line 16 in Figure 11.13 reflects the change from the previous XML code; all
that happened was just to create a new element of “img” to under complex type
“gbook.”Your code will read this value and assign the correct image for it. For
right now all you are doing is just preparing the inline schema to support the
value so that when you store the data it will know where to put it.

www.syngress.com

166_ASPNET_11.qxd 11/26/01 3:19 PM Page 491

492 Chapter 11 • Creating an XML.NET Guestbook

www.syngress.com

Figure 11.11 add.aspx Before Entering a Comment (Advanced Version)

Figure 11.12 add.aspx After Entering a Comment (Advanced Version)

166_ASPNET_11.qxd 11/26/01 3:19 PM Page 492

Creating an XML.NET Guestbook • Chapter 11 493

Figure 11.13 gbook.xml (Advanced Version)

01: <gbook>

. . .

14: <xsd:sequence>

15: <xsd:element name="Name" type="xsd:string" minOccurs="0"

/>

16: <xsd:element name="Emoticon" type="xsd:string" minOccurs="0"

/>

17: <xsd:element name="Email" type="xsd:string" minOccurs="0" />

18: <xsd:element name="Comments" type="xsd:string" minOccurs="0"

/>

19: <xsd:element name="DateTime" type="xsd:string" minOccurs="0"

/>

20: </xsd:sequence>

Now for your code; first, you have to add the new row to your Submit
button handler at the top in order to include the new Emoticon element within
the XML (Figure 11.14).

Figure 11.14 Your Changed add.aspx Submit Handler Code
(Advanced Version)

10: Sub AddClick(Sender As Object, E As EventArgs)

11:

12: Try

13: Dim dataFile as String = "gb/gbook.xml"

14:

15: 'the next line wraps pretty badly

16: Dim fin as New FileStream (Server.MapPath(dataFile),

FileMode.Open,FileAccess.Read,FileShare.ReadWrite)

17:

18: 'this line also wraps pretty badly

19: Dim fout as New FileStream (Server.MapPath(dataFile),

FileMode.Open,FileAccess.Write,FileShare.ReadWrite)

20:

21: Dim guestData as New DataSet()

www.syngress.com

Continued

166_ASPNET_11.qxd 11/26/01 3:19 PM Page 493

494 Chapter 11 • Creating an XML.NET Guestbook

22: Dim newRow as DataRow

23: err.Text = ""

24: guestData.ReadXml(fin)

25: fin.Close()

26: newRow = guestData.Tables(0).NewRow()

27: newRow("Name")=Name.Text

28: newRow("Emoticon")=Emoticon.Value

29: newRow("Chrono")=DateTime.Now.ToString()

30: newRow("Email")=Email.Text

31: newRow("Comments")=Comments.Text

32: guestData.Tables(0).Rows.Add(newRow)

33: guestData.WriteXml(fout, XmlWriteMode.WriteSchema)

34: fout.Close()

35: formPanel.Visible=false

36: thankPanel.Visible=true

37:

38: Catch edd As Exception

39: err.Text="Error writing file at: " & edd.ToString()

40:

41: End Try

42:

43: End Sub

44: </script>

The final change to your add entry is an option button for the image selec-
tion; you can add this code anywhere in the add.aspx within the display area.We
set ours right after the name.

<tr>

<td>Mood :</td>

<td><select id="Emoticon" runat="server">

<option Value="01.gif">Happy</option>

<option Value="02.gif">Sad</option>

<option Value="03.gif">Cute</option>

www.syngress.com

Figure 11.14 Continued

166_ASPNET_11.qxd 11/26/01 3:19 PM Page 494

Creating an XML.NET Guestbook • Chapter 11 495

<option Value="04.gif">Ugly</option>

</select>

</td>

</tr>

Modifying the Page Output
You don’t really want to display the same boring, old structured output, so try
using some tables to break things up a bit.You are going to take a look at this
code a bit differently by starting with the page load code (Figure 11.15).

Figure 11.15 view.aspx (Advanced Version)

Sub Page_Load(Src As Object, E As EventArgs)

Dim ds As New DataSet

Dim fs As New FileStream(Server.MapPath("gb\gbook.xml"),

FileMode.Open)

ds.ReadXml(fs)

gbook.DataSource = ds.Tables(0).DefaultView

gbook.DataBind()

fs.close()

End Sub

You are telling the server that when the page loads (before ANYTHING else is
processed, including HTML) create a dataset (ds) and a filestream (fs) to the XML
file.Then you tell the dataset (ds) to read the XML file and bind the information
to the “gbook” object with the information contained in the dataset.You close the
filestream and finish your initialization code.Your display code has undergone some
major changes as well (see Figure 11.16, note that some lines wrap).

Figure 11.16 Your Changed Display Code add.aspx (Advanced Version)

01: <%@ Page Language = "VB" Debug="true" %>

02: <%@ Import Namespace="System.IO" %>

03: <%@ Import Namespace="System.Data" %>

04: <html>

05: <script language="VB" runat="server">

. . .

www.syngress.com

Continued

166_ASPNET_11.qxd 11/26/01 3:19 PM Page 495

496 Chapter 11 • Creating an XML.NET Guestbook

06: </script>

07:

08: <body>

09: <h3>Advanced Guestbook</h3>

10: <ASP:Repeater id="gbook" runat="server">

11: <headertemplate>

12: <table width="350" style="font: 12pt Arial">

13: </headertemplate>

14:

15: <itemtemplate>

15: <tr>

16: <%# DataBinder.Eval(Container.DataItem, "Name") %>

17: <img src="<%# DataBinder.Eval(Container.DataItem, "Emoticon")

%>" >

18: <%# DataBinder.Eval(Container.DataItem, "Chrono") %>

19: </tr>

20: <tr>

21: <a href="mailto: <%# DataBinder.Eval(Container.DataItem,

"Email") %>"><%# DataBinder.Eval(Container.DataItem, "Email")

%>

22: </tr>

23: <tr>

24: <%# DataBinder.Eval(Container.DataItem, "Comments") %>

25: </tr>

26: </itemtemplate

27:

28: <footertemplate>

29: </table>

30: </footertemplate>

31:

32: </ASP:Repeater>

33: </body>

34: </html>

www.syngress.com

Figure 11.16 Continued

166_ASPNET_11.qxd 11/26/01 3:19 PM Page 496

mailto:<%#

Creating an XML.NET Guestbook • Chapter 11 497

NOTE

This code has had all of the graphical changes stripped; if you want to
see the code as the screenshots display it, please check the code on the
accompanying CD.

Instead of using the asp:xml server control, you are using the Repeater con-
trol and a DataSource. Lines 2 and3 have the two namespaces that you are going
to need for your script tag. System.IO handles the Filestream object and
System.Data handles the DataSource object.The information acquired from the
Page_Load sub will generate the information that is bound to the Repeater object.
The Repeater object (id=“gbook”) will read the information bound to it, write
the header, and then repeat the sequence within the item template until it fin-
ishes; then the footer will be written and the asp:repeater object will close. Line 17
shows your only change to the Repeater by adding the link to the image stored by
the image tag.The code above plus the graphical add-ons gives you the happy
result as seen in Figure 11.17.

www.syngress.com

Figure 11.17 view.aspx + graphics (Advanced Version)

166_ASPNET_11.qxd 11/26/01 3:19 PM Page 497

498 Chapter 11 • Creating an XML.NET Guestbook

Summary
Well, we started off with basically nothing and finished up with something that is
not only useful but can be pleasing to the eye as well. Hopefully this chapter has
introduced some concepts that are useful, not only to your hobby programming
but also in your work.

XML and ASP.NET can work well together in a variety of ways: from simple
reading and writing to proper design and look. Using a combination of either the
System.Data namespace and the ASP server objects, you can create a single-line
parsing .aspx page or a more robust page with tables, rows, columns, and different
colors and graphics. In order to achieve the best performance available, the
System.Data namespace requires an inline schema within the XML file, which the
System.Data namespace can reference against when reading or writing XML.

ASP server objects themselves are very flexible in that they can be stand-
alone and provide an area to insert inline ASPX code. In the Advanced guest-
book, you made heavy use of the inline functions, wrapping table rows and
columns around them to provide a view that was readable.Also, by using an
inline function you were able to receive the correct image file associated for an
emoticon, by placing it within the image html tag. Combined with Cascading
Style Sheets (CSS), this method proved capable and provided ample room to
grow with.

Solutions Fast Track

Functional Design Requirements
of the XML.NET Guestbook

XML enables you to use an interface that is both universally read and
universally accessed.You do not have to use bulky components such as
SQL or Access databases for simple—and even some complicated—
database solutions.

XML provides a schema to use with XML in order to provide validation
for data.

www.syngress.com

166_ASPNET_11.qxd 11/26/01 3:19 PM Page 498

Creating an XML.NET Guestbook • Chapter 11 499

Adding Records to the Guestbook

When working with the System.Data namespace and planning to write
XML, you need to make sure that you have a properly validated inline
XML schema, or else the code will not work.

Even though you can use the XML schema to help determine certain
validation points, it is better to have the ASP.NET provide the validation
of certain entries, such as e-mail, due to the powerful use of Regular
Expressions.

Viewing the Guestbook

Using System.Data can provide a fast, efficient forward-only read and
write solution that is perfect for reading and writing to XML files that
are not dependant on heavy node interaction, and that just need
information added to them.

Cascading Style Sheets provide a way to create a more pleasing
guestbook without having to change any code structure.

Advanced Options for the Guestbook Interface

The ASP.NET controls are very versatile and efficient. Keep in mind
that by combining them with Cascading Style Sheets, their obvious lack
of visual aids are easily bypassed for a true eye-candy feel.

The asp:repeater object needs to have a <headertemplate>, an
<itemtemplate>, and a <footertemplate> within it to function.

The only part of the asp:repeater object that actually repeats is the
<itemtemplate> section.

www.syngress.com

166_ASPNET_11.qxd 11/26/01 3:19 PM Page 499

500 Chapter 11 • Creating an XML.NET Guestbook

Q: Why does the add.aspx code need the inline XML schema?

A: Add.aspx uses the schema to retrieve the way it needs to write the data to the
XML file in the proper order. Say that instead of name before e-mail, you
had e-mail before name; add.aspx would write the row with the e-mail field
first instead of the name field.

Q: Why won’t the simple guestbook show?

A: .NET expects www.w3.org/1999/XSL/Transform as the XSLT namespace.
This does limit you a bit, since the Working Draft version is extremely better
than the 1999 version.

Q: I get an error that says,“compilation error, (addClick or Page_Load) is not part
of asp:(add.aspx or viewbook.aspx)”.What does that mean?

A: Unfortunately, some of the error handling for ASP.NET still needs tweaking;
this is a perfect example.When running the aspx page, it will spit out errors
when it finds them within the asp objects, but is not very good at reporting
errors within the subs located within the <head> tag.When you see these
errors, check the code and try again.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

166_ASPNET_11.qxd 11/26/01 3:19 PM Page 500

Creating an
ADO.NET
Shopping Cart

Solutions in this chapter:

■ Setting Up the Database

■ Creating the Web Services

■ Using WSDL Web References

■ Building the Site

■ Site Administration

■ Customer Administration

■ Creating an ADOCatalog

■ Building an XMLCart

■ Creating the User Interface

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 12

501

166_ASPNET_12.qxd 11/26/01 3:22 PM Page 501

502 Chapter 12 • Creating an ADO.NET Shopping Cart

Introduction
Now that we’ve gotten XML under our belt, let’s start working with ADO.NET.
A good way to really see what ADO can do is within the frame of a shopping
cart application. In this chapter, we will create a shopping cart application for a
fictitious online bookseller called “Book Shop.”

To enable online shoppers to purchase books from our site, our shopping cart
application must be able to: authenticate users, show current contents of the cart,
and enable add, update, and checkout operations.

We will also need to create a catalog that our shoppers can browse through to
add items to their cart. Users should also be able to query books by category and
view a range of books at a time. In order to achieve these goals, we will create
the following:

■ A database to store all book details

■ Stored procedures (MS SQL 2000) or parameterized queries (MS Access
2000) for all add, update, delete, and retrieve operations

■ Web Services that will handle all database interactions

■ Web Services Description Language (WSDL) Web references to our Web
Services

■ Server-side classes that will connect the Web Services with our user
interface (UI)

■ Web interface for displaying both our catalog and cart

We will also need to create admin interfaces to handle add, update, delete, and
retrieve operations for our customers (site users) and site administrators.The
interface that will be created in our example can be seen in Figure 12.1.

Setting Up the Database
First, we will design the database for our shopping cart.We will start out by
designing an MS Access 2000 database which we will then upsize to a SQL
Server 2000 database.

We are creating what is called a relational database.A relational database is a
series of tables that represent entities related to one another. Let’s look at a simple
example to help illustrate this point: our database. See Figure 12.2.

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:22 PM Page 502

www.syngress.com

NOTE

To set up the database in this example, you will need to know some basic
fundamentals of database design. A good source is Syngress Publishing’s
Designing SQL Server 2000 Databases for .NET Enterprise Servers.

Creating an ADO.NET Shopping Cart • Chapter 12 503

Figure 12.1 The “Book Shop” User Interface

Figure 12.2 Table Relationship

166_ASPNET_12.qxd 11/26/01 3:22 PM Page 503

504 Chapter 12 • Creating an ADO.NET Shopping Cart

Table “Books” is an entity that represents all the attributes of a book.Table
“Categories” is an entity that represents all the attributes for a specific category.A
relationship between the two tables is created by the use of primary and foreign
keys.Table “Categories” has an attribute named CAT_ID, which is the primary
key for the table.This means simply that CAT_ID uniquely identifies every row
in the table.This will ensure we won’t get duplicate rows of data.The same con-
cept is true for the table “Books.”We can create the relationship between the two
tables by putting the attribute CAT_ID into the table “Books.” By doing so, we
have created a foreign key in the table “Books” which references the table
“Categories.”We have now created a one-to-many relationship between the table
“Books” and the table “Categories.”

There are three different types of table relationships:

■ One-to-one Exactly one row corresponds with a matching row of the
related table.

■ One-to-many One row corresponds to many rows of the related table.

■ Many-to-many Many rows correspond to many rows of the related
table.

WARNING

A many-to-many relationship between tables is not a recommended
practice. When this type of relationship is created in the design of your
database, use a splitter table in-between the two tables that have the
affected relationship. This will create two one-to-many relationships and
ensure data integrity for your database.

We will now create the entities for our shopping cart application. Entities
enable us to map the real world. Since we are making a shopping cart, we need
some basic objects to start off with. First of all, we need product.We have chosen
to use “Books” as the product for the shopping cart but this could be anything.
Next, we need an object that will be using the shopping cart,“Customers.”As
in the previous paragraph, we have more than one category of product, or in
our case “Books,” so we have another object to map which is “Categories.”The
last piece to finish off the whole design is a way to track what is bought,
“BookOrders.” Now we need to go over each entity to explain why we have
selected the attributes included in each.

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:22 PM Page 504

Creating an ADO.NET Shopping Cart • Chapter 12 505

Setting Up the Table “Books”
The Books table will contain the following attributes:

■ BK_ISBN This will also be our Primary key for the table since an
ISBN is already a global unique identifier.

■ BK_Author This contains the author’s full name.

■ BK_Price The price of the book.

■ BK_Title The book title.

■ BK_Description A brief description of the book.

■ BK_ImagePath The path to where we will store the image.

■ CAT_ID Our foreign key attribute to table “Categories.”

Setting Up the Table “Categories”
The Categories table will contain the following attributes:

■ CAT_ID The primary key for the table which will be an auto gener-
ated number; I will cover this in the next two sections.

■ CAT_Name The name of the category.

Setting Up the Table “Customer”
The Customer table will contain the following attributes:

■ CT_ID The primary key for the table, an auto generated number.

■ CT_FirstName Customer first name.

■ CT_LastName Customer last name.

■ CT_Email Customer e-mail.

■ CT_Password Customer password.

Setting Up the Table “Orders”
The Orders table will contain the following attributes:

■ OR_ID The primary key for the table, an auto generated number.

■ CT_ID This is our foreign key attribute to table “Customers.”

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:22 PM Page 505

506 Chapter 12 • Creating an ADO.NET Shopping Cart

■ OR_Date The date of the order.

■ OR_ShippedDate The date the order ships.

Setting Up the Table “BookOrders”
The BookOrders table is the split table for the handling of our relationship
between the tables “Books” and “Orders.”This table includes the following
attributes:

■ OR_ID This is our foreign key attribute to table “Orders.”This is also
part of the composite Primary key for the table.

■ BK_ISBN This is our foreign key attribute to table “Books.”This is the
other part of the composite primary key.

■ BKOR_Quantity The total of number of books.

■ BKOR_Price The total amount of the order.

Now, lets implement this database in Microsoft Access.

NOTE

It is good practice to come up with a naming convention for your
database. The naming convention can be anything of your choosing,
just make sure you’re consistent throughout your database. A naming
convention is a uniformed way to document your code. In our example,
OR_denotes the table “Orders.”

Creating an Access Database
To create a database in Microsoft Access, simply navigate to your program files
and select the Access icon.The main window will pull up, prompting you to
either pick a database from the list of current databases, create a blank database, or
use the wizard. See Figure 12.3.

We want to select the Blank Database option and not the wizard. Select
OK, then give the database the name shopDb. Next, select the Tables object.
From here, we choose the option Create table in design view.We can now
transfer the attributes for the tables into the interface (see Figure 12.4).

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:22 PM Page 506

Creating an ADO.NET Shopping Cart • Chapter 12 507

Now we can transfer almost everything that’s been done into the interface.
One thing we have not discussed is datatypes.

The following is a list of datatypes we will implement in the database:

■ Text Text or combinations of text and numbers: maximum size 255
characters.

■ Currency Used for monetary functions, prevents rounding off of total:
size 8 bytes.

www.syngress.com

Figure 12.3 Setting Up the Access Database

Figure 12.4 Creating Tables in Design View

166_ASPNET_12.qxd 11/26/01 3:22 PM Page 507

508 Chapter 12 • Creating an ADO.NET Shopping Cart

■ AutoNumber Unique number automatically inserted when a record is
added: size 4 bytes.

■ Number Numeric data to be used for mathematical calculations: size 1,
2, 4, or 8 bytes.

■ Date/Time Stores date/time: size 8 bytes.

■ Yes/No Boolean value, 0 or 1: size 1bit.

■ Memo Used for storing large amounts of text: maximum size 64,000
characters.

■ OLE Object Can store Word docs, Excel files, and so on: maximum
size 1 gigabyte.

Continue this process for the rest of the tables. If you want, you can load the
shopDb.mdb from the CD that accompanies this book, then view the complete
database. Let’s look at the complete diagram generated by Access after we finish
filling in our tables (shown in Figure 12.5).

To generate the preceding diagram, go to the Tools menu and select the
Relationships option.You will be prompted for what tables to add. Select the
tables you have created and hit OK.To create the relationships between the
tables, left-click the attribute you want to make a relationship with and drag it
over to the table that has the matching attribute, release the mouse and you will
be prompted with a set of options for the relationship. See Figure 12.6.

www.syngress.com

Figure 12.5 A Database Diagram

166_ASPNET_12.qxd 11/26/01 3:22 PM Page 508

Creating an ADO.NET Shopping Cart • Chapter 12 509

The default is to have the Enforce Referential Integrity option selected.This
is good enough for our example; the other two options will enable cascading
deletes and updates.

WARNING

When defining relationships, make sure the column is of the same
datatype as the one you are trying to make a relationship with, other-
wise Access will throw an error.

We will do what is called de-normalize the database for the Access version to
make things flow between the Data tier of our application and the two different
databases. Since our shopping cart uses all OleDb connections to the database
regardless of source, the stored procedures created in the SQL Db are the same
for the Access version, but we have some limitations when it comes to Access.We
cannot easily return the submitted record ID from the table like we can in SQL
using the global variable @@identity, so we must solve this by eliminating the
Orders table in the schema for Access and adding those rows to the BookOrders
table.This will result in customers having multiple order entries, but keeps all
data handling code the same for both databases. If you were to program this
application, you would select one or the other and optimize accordingly—we are
going to straddle the fence here and show both in the same logic.

Now that we have our database schema done, we can upsize the database
using the Access Upsizing Wizard and make a SQL server version. Go to Tools,
select Database Utilities, then select Upsizing Wizard. Follow the wizard and
choose all the defaults.

www.syngress.com

Figure 12.6 Defining Relationships in Access

166_ASPNET_12.qxd 11/26/01 3:22 PM Page 509

510 Chapter 12 • Creating an ADO.NET Shopping Cart

SQL Server Database
Now that we have our schema upsized into SQL, we can easily create the rest of
our database components.We primarily need a set of stored procedures that will
run all of our operations against the database.This will enable us not to have to
use ad hoc queries in our code for our Data Tier interaction.

One thing we need to do first is ensure that all our primary keys were tran-
scribed into the upsized version. Let’s open up the Enterprise Manager of
MSSQL 2000 (EM). Navigate to your program files and select the SQL Server
group, then select EM. From EM, we can quickly navigate to our database
(shopDB). See Figure 12.7.

Select Tables and you’ll notice our tables from Access are now here. Right-
click a table and select Design Table. From here, we can check to see if our tables
made the move without ill effects. If everything looks correct, check the rest of
the tables—you’ll see the Access datatype “autonumber” does not come over to
SQL Server as an “int” identity column datatype, which it needs to be. So, for the
tables that have autonumber, you will have to change it to the “int” datatype with
identity, and give them a seed and increment value. See Figure 12.8.

www.syngress.com

Figure 12.7 The SQL EM Interface

166_ASPNET_12.qxd 11/26/01 3:22 PM Page 510

Creating an ADO.NET Shopping Cart • Chapter 12 511

You must also uncheck Allow Nulls.This is because the field we are
working with is a primary key and we cannot have a null value for a primary key
field.Also, we are using the option identity in this instance, which requires that
null not be allowed.

We will also separate the table “BookOrders” into its original design since
SQL Server can easily give us a value for the identity field returned.After we
have done all of this, we can create a new diagram in SQL and apply our new
relationships. In the EM view, right-click diagrams and select New Diagram.
The wizard will prompt you for the tables you want to select for the database
diagram.Add only the tables we have created, leave out all the system tables.We
will now view our new diagram generated by SQL Server (see Figure 12.9).

We can create relationships in the same manner as before. Click the column
you want to make a relationship with and drag and drop it into to the appro-
priate column and table.We will go with the selected defaults.We have a normal-
ized database now completed in SQL Server.We will now create the stored
procedures (procs) we’ll need for the rest of the application.

www.syngress.com

Figure 12.8 Setting Identity to Yes and Giving Seed and Increment Value

166_ASPNET_12.qxd 11/26/01 3:22 PM Page 511

512 Chapter 12 • Creating an ADO.NET Shopping Cart

Creating the Stored Procedures
We’ll now create the following list of stored procedures:

■ AdminAddBook

■ AdminAddCustomer

■ AdminAddCat

■ AdminDeleteCat

■ AdminDeleteCustomer

■ AdminDeleteBook

■ AdminUpdateBook

■ AdminUpdateCat

■ AdminUpdateCustomer

■ AllCustById

www.syngress.com

Figure 12.9 A SQL Server Diagram

166_ASPNET_12.qxd 11/26/01 3:22 PM Page 512

Creating an ADO.NET Shopping Cart • Chapter 12 513

■ GetAllBooks

■ GetAllCat

■ LoginCustomers

■ OrderBook

Don’t be intimidated.We’ll use the SQL Server Wizard to create most of
these procedures. Now we need to begin creating all our stored procedures. Go
to the Tools menu and select Wizards. From there, a new window will pop up
with a listing of items. Double-click the first item, Database, then select Create
Stored Procedure Wizard.You should see the screen shown in Figure 12.10.

Click Next and select the database, which is shopDb.The next window will
show all the tables on the left and the subsequent procedures that can be created
on the right. Mark the check box labeled insert in the row of options listed for
the Customers table. Click Next.The window that appears will give you the
choice to edit the SQL syntax—select this option.We need to give the procedure
a name, which in this case will be AdminAddCustomer. See Figure 12.11.

In Figure 12.11, we see that all columns are selected for insert; however, we
do not need one for CT_ID because the identity field generates that. Uncheck
that option and rename the proc AdminAddCustomer. Select Edit SQL. Let’s
look at the code generated by this; it’s shown in Figure 12.12 and found on the
CD as ShopDB.sql.

www.syngress.com

Figure 12.10 The Create Stored Procedure Wizard

166_ASPNET_12.qxd 11/26/01 3:22 PM Page 513

514 Chapter 12 • Creating an ADO.NET Shopping Cart

Figure 12.12 ShopDB.sql

USE [shopDb]

GO

CREATE PROCEDURE [AdminAddCustomer]

(@CT_FirstName [nvarchar](20),

@CT_LastName [nvarchar](50),

@CT_Email [nvarchar](75),

@CT_Password [nvarchar](6))

AS INSERT INTO [shopDb].[dbo].[Customers]

([CT_FirstName],

[CT_LastName],

[CT_Email],

[CT_Password])

VALUES

(@CT_FirstName,

@CT_LastName,

@CT_Email,

@CT_Password)

www.syngress.com

Figure 12.11 The Stored Procedure Wizard’s Properties Dialog Box

166_ASPNET_12.qxd 11/26/01 3:22 PM Page 514

Creating an ADO.NET Shopping Cart • Chapter 12 515

Here we have the SQL syntax to insert a row of new data. In the code view
window, SQL Server likes to put numbers on all the variables.You can delete this
so the code looks cleaner and will be easy to use when we write the Web service
that will hit this proc and execute it. Create the rest of the Admin procs in this
same manner.

Now that we have completed a majority of the stored procedures needed for
our database through the use of the wizards, we have to create more complex
stored procedures using the Query Analyzer. Open up Query Analyzer from
the Tools menu of EM. Connect the server you are running. In the drop-down
menu, select the database shopDb.The next proc we need to build is
AllCustById.We will write a simple select statement with one parameter.

Let’s look at some code which can be executed in Query Analyzer:

CREATE PROC AllCustById

@CT_ID int

AS

SELECT *

FROM customers

WHERE CT_ID = @CT_ID

GO

The next procedure in the list after AllCustById is GetAllBooks. No need for
parameters—just give up the data.

CREATE PROCEDURE GetAllBooks

AS

SELECT BK_ISBN isbn,

category.CAT_Name "name",

category.CAT_ID "id",

BK_ImagePath imgSrc,

BK_author author,

BK_Price price,

BK_Title title,

BK_Description "description"

FROM Books book inner Join Categories category

on book.CAT_ID = category.CAT_ID

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:22 PM Page 515

516 Chapter 12 • Creating an ADO.NET Shopping Cart

ORDER BY "name"

NOTE

In the code in this section, we are using aliasing so the column headers
returned will have easy-to-use names. The DataSet will use the column
names as XML element names when the data is converted to XML.

Now we need to get a selection of categories from the database for our drop-
down menus:

CREATE PROC GetAllCat

AS

SELECT * FROM Categories

This will populate with all category names and associated IDs.
Now we need to create a proc that will query the database and return a

Customer’s ID.This is our Login proc:

CREATE proc LoginCustomers

@CT_Email nvarchar(75),

@CT_Password nvarchar(6)

as

SELECT [CT_ID]

FROM Customers

WHERE CT_Email = @CT_Email And CT_Password = @CT_Password

This will return a value of either the Customers ID or –1, which we can
check for on the page load.

Now we need to handle the ordering of a book.We can load and run the
OrderBook procedure to do that:

CREATE Procedure OrderBook

(

@CT_ID int,

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:22 PM Page 516

Creating an ADO.NET Shopping Cart • Chapter 12 517

@BK_ISBN int,

@BKOR_Quantity int,

@BKOR_Price money

)

AS

declare @OR_Date datetime

declare @OR_ShipDate datetime

declare @OR_ID int

select @OR_Date = getdate()

select @OR_ShipDate = getdate()

begin tran NewBook

INSERT INTO Orders

(

CT_ID,

OR_Date,

OR_ShipDate

)

VALUES

(

@CT_ID,

@OR_Date,

@OR_ShipDate

)

SELECT @OR_ID = @@Identity

INSERT INTO BookOrders

(

OR_ID,

BK_ISBN,

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:22 PM Page 517

518 Chapter 12 • Creating an ADO.NET Shopping Cart

BKOR_Quantity,

BKOR_Price

)

VALUES

(

@OR_ID,

@BK_ISBN,

@BKOR_Quantity,

@BKOR_Price

)

commit tran NewBook

We are using begin tran and end tran.This simply means that if there is an error
during any part of the previous query the transaction will be aborted and rolled
back.That’s it for the stored procedures. Now to make these all work in the
Access DB, we need to trim out some stuff from the preceding code.

As a rule of thumb, we can grab all the code after the key word AS.This is
then pasted into Access query SQL mode and saved as the same file name. Open
up the shopDB.mdb file and see the differences in the code.

Creating the Web Services
This section will provide an overview of the Web Services needed for our site,
and describe the processes of creating the data connection, creating a Web
Service, and, finally, testing the Web Service.

Overview of the Book Shop Web Services
We will be using Web Service methods to wrap our database logic (stored proce-
dures for SQL, or parameterized queries for Access).This will provide separation of
the data tier from the UI.This will also enable our data to be accessed from mul-
tiple clients including Java-servlets, JSP, PHP, desktop application with Hypertext
Transfer Protocol (HTTP) connections, and, of course,ASP.NET applications.

We will be creating the following Web Services (see Figure 12.13):

■ sellerAdmin

■ adminCustomer

■ getCustomer

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:22 PM Page 518

Creating an ADO.NET Shopping Cart • Chapter 12 519

■ loginCustomer

■ getBooks

■ getCategories

■ orderBooks

Earlier in this chapter (see the section “Setting Up the Database”), we created
stored procedures for use with an SQL database, as well as the equivalent parame-
terized queries for use with an Access database, to make the interface to the data
source consistent; this allows us to write ADO.NET code that can be used against
both SQL and Access.

We will also use the OleDb data connection object since most databases have
an OleDb provider.This will enable our code not only to work with SQL and
Access but with any database that has an OleDb interface. So, our application will
work with an SQL database and our application will work with an Access
database.And the only code that will need to be changed with this approach is
the connection string.

Let’s create a new project to host all our Web Services. Open Visual Studio
.NET Beta 2 (VS.NET), and select New Project.We want to create a C#
ASP.NET Web Service application named “booksource” (see Figure 12.14); next,
we will create the data connection.

www.syngress.com

Figure 12.13 An Overview of Web Services and Their Methods

getCust

allCustById

loginCustomer

validCustomer

orderBooks

orderItem

getBooks

allBooks

getCategories

allCat

adminCustomer

addCust

removeCust

updateCust

sellerAdmin

addItem

removeItem

updateItem

addCat

removeCat

updateCat

166_ASPNET_12.qxd 11/26/01 3:22 PM Page 519

520 Chapter 12 • Creating an ADO.NET Shopping Cart

Creating the Data Connection
Data Connections can be created in several ways. Let’s look at how the VS.NET
Wizard does this. For this example, we’ll create a connection to an Access
database.The steps for MS SQL will be slightly different.

1. Open the Server Explorer, and select View | Server Explorer from
the menu.

2. Right-click Data Connection, then select Add connection.

3. Select the Provider tab.

4. Select the appropriate provider. For access, select Jet 4.0 OLEDB
Provider.

5. Click Next.

6. Select the database name by clicking the Browse… button and navigating
to your database.

7. Click Test Connection.You should get a pop-up window that says
Connection succeeded.

8. Click OK.

9. Click OK.You now have a data connection.

www.syngress.com

Figure 12.14 Creating the Booksource Web Service

166_ASPNET_12.qxd 11/26/01 3:22 PM Page 520

Creating an ADO.NET Shopping Cart • Chapter 12 521

While in design mode, you can drag and drop this connection onto your
.asmx page.This will add the following to our code-behind page as the first line
in the service public class:

private System.Data.OleDb.OleDbConnection oleDbConnection1;

Connection string information will also be added to the InitializeComponent()
method.Alternatively, we can still create a connection string by creating a .udl
file on the desktop, double-clicking it and following the dialogs.With this
method, we will have to insert the code ourselves, as follows:

1. In C#, add Using System.Data.OleDb to the top “using” section.

2. Then add the following inside the service class:

private OleDbConnection myConnection = new OleDbConnection();

3. Add the following to a method (Page_onload, or a method of your own
creation):

myConnection.ConnectionString =

[the string obtained from the udl file]

We will take a closer look at adding a connection when we create the
“sellerAdmin” service in the next section.

Creating a Web Service
All of the code for the Web Services in this chapter can be found on the CD.
(See adminCustomer.asmx.cs, sellerAdmin.asmx.cs, getBooks.asmx.cs,
getCategories.asmx.cs, getCustomer.asmx.cs, loginCustomer.asmx.cs,
orderBooks.asmx.cs, and sellerAdmin.asmx.cs.)

Let’s take a closer look at adding a connection by creating the “sellerAdmin”
Service.To create this service follow these steps:

1. Create the connection object.

2. Set the connection string.

3. Create the Command object.

4. Create the Parameter objects and assign their values.

5. Execute the procedure.We will be using the AdminAddBook proc. It
takes the following parameters: BK_ISBN, BK_Author, BK_Price,
BK_Title, BK_Description, CAT_ID, BK_ImagePath.

6. Return string indicating success or failure of the operation.

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:22 PM Page 521

522 Chapter 12 • Creating an ADO.NET Shopping Cart

Now let’s get started.To accomplish Step 1 (creating the connection object),
first create a new C# Web Service and name it sellerAdmin.asmx.Add this
directive to the top “using” section:

Using System.Data.OleDb;

Scroll down to below the method named Dispose(bool disposing).Add the
following:

protected OleDbConnection sellerAdminConn = new OleDbConnection();

This accomplishes the creation of the connection object. Now, for Step 2
(setting the connection string), add the following:

protected void init()

{

this.sellerAdminConn.ConnectionString =

@"Provider=SQLOLEDB.1;

Persist Security Info=False;

User ID=[user id]; password=[password]; Initial Catalog=[Database

Name];

Data Source=[Server Name]"

}

Note that the use of the “@” before the connection string is required.This
accomplishes Step 2.

For Step 3, (creating the Command object), first create a new method called
addItem. It should have parameters corresponding to the stored procedures param-
eters, and should return a string indicating success or failure of the operation:

public string addItem(string ISBN,string author,double price, string

title,string description,string imagePath, int CAT_ID)

Now create a Command object that references the AdminAddBook proc:

OleDbCommand addItem =

new OleDbCommand("AdminAddBook",this.sellerAdminConn);

addItem.CommandType = CommandType.StoredProcedure;

This accomplishes Step 3.
For Step 4 (creating the Parameter objects and assigning their value), we will

create Parameter objects for ISBN, author, price, title, description, imagePath, and
CAT_ID, then set their values. Here is the code for “isbn”:

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:22 PM Page 522

Creating an ADO.NET Shopping Cart • Chapter 12 523

OleDbParameter addISBN =

addItem.Parameters.Add("@BK_ISBN",OleDbType.Char,15);

addISBN.Value = ISBN;

Note that “@BK_ISBN” is the name of the parameter we are assigning a
value to;“OleDbType.Char” is its datatype (it should be compatible with the
field in the database); and “15” refers to the character size as defined for the field
in the database.

The code to create Parameter objects for each of the method parameters is
nearly identical, and can be found on the CD (see: sellerAdmin.asmx.cs).This
accomplishes Step 4.

Now, for Step 5 (executing the procedure), we will open the connection and
execute the query. Since the stored procedure performs an insert operation it will
return an “int” containing the number of rows affected.Therefore, we will use the
command ExecuteNonQuery.

this.sellerAdminConn.Open();

int queryResult = QueryObject.ExecuteNonQuery();

This accomplishes Step 5. Now close the connection and return the result of
executing the proc (this is Step 6). Note that our method returns the following
string:“success” or the generated error message.

this.sellerAdminConn.Close();

if (queryResult != 0)

{

return "Success";

}

else

{

return "error: QueryResult= " + queryResult;

}

This accomplishes Step 6. Since all of the Web methods have similar logic, we
can combine some of this code into a method that each Web method calls:

protected string ExecuteQuery(OleDbCommand QueryObject)

{

this.sellerAdminConn.Open();

int queryResult = QueryObject.ExecuteNonQuery();

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:22 PM Page 523

524 Chapter 12 • Creating an ADO.NET Shopping Cart

if (queryResult != 0)

{

this.sellerAdminConn.Close();

return "Success";

}

else

{

return "error: QueryResult= " + queryResult;

}

}

We need to add one more thing to our method to make it accessible as a
Web method:

[WebMethod(Description="Adds a new book to the books table",

EnableSession=false)]

Putting it all together, we get the following:

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Diagnostics;

using System.Web;

using System.Web.Services;

using System.Data.OleDb;

namespace bookSource

{

public class sellerAdmin : System.Web.Services.WebService

{

public sellerAdmin()

{

InitializeComponent();

}

protected override void Dispose(bool disposing)

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:22 PM Page 524

Creating an ADO.NET Shopping Cart • Chapter 12 525

{

protected OleDbConnection sellerAdminConn =

new OleDbConnection();

}

protected void init()

{

this.sellerAdminConn.ConnectionString =

@"Provider=SQLOLEDB.1;

Persist Security Info=False;

User ID=[user id];

password=[password];

Initial Catalog=[Database Name];

Data Source=[Server Name]";

}

protected string ExecuteQuery(OleDbCommand QueryObject)

{

this.sellerAdminConn.Open();

int queryResult = QueryObject.ExecuteNonQuery();

if (queryResult != 0)

{

this.sellerAdminConn.Close();

return "Success";

}

else

{

return "error: QueryResult= " + queryResult;

}

}

[WebMethod(Description="Adds a new book to the books

table", EnableSession=false)]

public string addItem(string ISBN,string author,

double price, string title,string description,

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:22 PM Page 525

526 Chapter 12 • Creating an ADO.NET Shopping Cart

string imagePath, int CAT_ID)

{

try

{

this.init();

OleDbCommand addItem =

new OleDbCommand(

"AdminAddBook",

this.sellerAdminConn);

addItem.CommandType =

CommandType.StoredProcedure;

OleDbParameter addISBN =

addItem.Parameters.Add(

"@BK_ISBN",OleDbType.Char,15);

addISBN.Value = ISBN;

OleDbParameter addAuthor = addItem.Parameters.Add(

"@BK_Author",OleDbType.Char,80);

addAuthor.Value = author;

OleDbParameter addPrice =

addItem.Parameters.Add(

"@BK_Price",OleDbType.Currency,8);

addPrice.Value = price;

OleDbParameter addTitle =

addItem.Parameters.Add(

"@BK_Title",OleDbType.Char,75);

addTitle.Value = title;

OleDbParameter addDescription

=addItem.Parameters.Add(

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:22 PM Page 526

Creating an ADO.NET Shopping Cart • Chapter 12 527

"@BK_Description",OleDbType.Char,255);

addDescription.Value = description;

OleDbParameter addImage =

addItem.Parameters.Add(

"@BK_ImagePath",OleDbType.Char,50);

addImage.Value = imagePath;

OleDbParameter addCatId =

addItem.Parameters.Add(

"@CAT_ID",OleDbType.Integer,4);

addCatId.Value = CAT_ID;

return this.ExecuteQuery(addItem);

}

catch(Exception e)

{

return e.ToString();

}

}

.

.

.

In this section, we created the sellerAdmin Web Service and the additem Web
Service method. In the next section, we will look at how to test the Web Service
and its methods.

Testing a Web Service
We can test our service by performing the following steps:

1. In VS.NET right-click the .asmx file (sellerAdmin.asmx), and select Set
as start page.

2. Press F5 to run it.This will take a few seconds to compile and run.

3. When the browser loads, you should see something like Figure 12.15.

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:22 PM Page 527

528 Chapter 12 • Creating an ADO.NET Shopping Cart

4. To test the service addItem, click its link.An input form will be dis-
played, prompting you for values for its parameters. See Figure 12.16.

5. Fill in the appropriate textboxes and click Invoke.

6. Since this service returns a datatype string, we should see something like
Figure 12.17.

This shows that the method has completed successfully and returned the
corresponding output.These steps can be repeated for each of the remaining
methods: removeItem, updateItem, addCat, removeCat, and updateCat. Each of these
methods is coupled with a corresponding stored procedure (MSSQL) or parame-
terized query (MS Access).

The following is a function prototype overview of the process-flow or steps
involved in creating each of these Web methods. See if you can create and test
these Web methods on your own, then compare them to the source on the CD.
The sellerAdmin Web service and all of its methods can be found on the CD
(see sellerAdmin.asmx.cs).

www.syngress.com

Figure 12.15 Web Service Listing

166_ASPNET_12.qxd 11/26/01 3:22 PM Page 528

Creating an ADO.NET Shopping Cart • Chapter 12 529

■ removeItem (int isbn) Removes a book item from the database.

1. Call init().

2. Create Command object accessing the AdminRemoveBook proc.

3. Create the Parameter object and assign its value.

4. Execute the procedure. Call ExecuteQuery(commandObj).

www.syngress.com

Figure 12.16 Testing a Web Service

Figure 12.17 Results of invoking the addItem Web Service

166_ASPNET_12.qxd 11/26/01 3:22 PM Page 529

530 Chapter 12 • Creating an ADO.NET Shopping Cart

5. Return string indicating success or failure of the operation.

■ updateItem (string ISBN, string author, double price, string
title, string description, string imagePath, int CAT_ID) Updates
a book item’s information.

1. Call init().

2. Create Command object accessing the AdminUpdateBook proc.

3. Create the Parameter objects and assign their values.

4. Execute the procedure. Call ExecuteQuery(commandObj).

5. Return string indicating success or failure of the operation.

■ addCat (string CAT_Name) Adds a category name to the database.

1. Call init().

2. Create Command object accessing the AdminAddCat proc.

3. Create the Parameter object and assign its value.

4. Execute the procedure. Call ExecuteQuery(commandObj).

5. Return string indicating success or failure of the operation.

■ updateCat (int CAT_ID, string CAT_Name) Updates category
details.

1. Call init().

2. Create Command object accessing the AdminUpdateCat proc.

3. Create the Parameter objects and assign their values.

4. Execute the procedure. Call ExecuteQuery(commandObj).

5. Return string indicating success or failure of the operation.

■ removeCat (int CAT_ID) Removes a category from the database.

1. Call init().

2. Create Command object accessing the AdminUpdateCat proc.

3. Create the Parameter object and assign its value.

4. Execute the procedure. Call ExecuteQuery(commandObj).

5. Return string indicating success or failure of the operation.

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:22 PM Page 530

Creating an ADO.NET Shopping Cart • Chapter 12 531

NOTE

This application contains several different Web Services. The code for these
Web Services can be found on the CD. (See adminCustomer.asmx.cs,
sellerAdmin.asmx.cs, getBooks.asmx.cs, getCategories.asmx.cs,
getCustomer.asmx.cs, loginCustomer.asmx.cs, orderBooks.asmx.cs,
and sellerAdmin.asmx.cs.)

Now that we know the Web Service and its methods are working correctly,
the next step will be to create our UI for the Web application and generate proxy
classes for it to retrieve data from our Web Services. In the next section, we will
see how VS.NET works with WSDL and Universal Description, Discovery, and
Integration (UDDI) to enable our ASP.NET Web Application to connect to and
retrieve data from our booksource Web Service project.

Using WSDL Web References
We will use WSDL and disco in our Web application project to connect to and
add a reference to our Web Services Application (bookSource) and its individual
Web Services and their Web methods.To learn more about WSDL, disco, and
Web Services, please see the discussion of this topic in Chapter 10.

Let’s create a new C# Web application, named “bookSourceUI.”The first
thing we want to do is create a reference to our Web Services so that we can
easily access the methods in our code.

1. In the Solution Explorer pane, right-click Web References.

2. Select Add Web Reference.A new dialog will appear.

3. Select the last UDDI option, which is your local machine.VS.NET will
check your server for all Web Services. It will then present you with a list
of services you can view or select to add a reference to. See Figure 12.18.

4. Select the service group you would like to add a reference to. Look for
your Web Service project name (http://localhost/bookSource.vsdisco).

5. The Services available will be displayed. See Figure 12.19.

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:22 PM Page 531

http://localhost/bookSource.vsdisco

532 Chapter 12 • Creating an ADO.NET Shopping Cart

www.syngress.com

Figure 12.18 UDDI Server Discovery Dialog

Figure 12.19 Services Available

166_ASPNET_12.qxd 11/26/01 3:22 PM Page 532

Creating an ADO.NET Shopping Cart • Chapter 12 533

6. You can view the Simple Object Access Protocol (SOAP) contracts and
documentation for each Service method by clicking on the link. Be sure
to add the reference from this level in the menu.To add this Web
Service and all its methods, click Add Reference.VS.NET will create
proxy classes for each Service method so that the method can be
accessed just like a local class method. See Figure 12.20.

Building the Site
Now that the backend database interfaces and Web Services have been com-
pleted, we will turn our focus to the middle tier data classes and controls that act
as a bridge between the backend and the Web UI. Our site structure will look
something like that depicted in Figure 12.21.

Site Administration
In this section, we will develop the code that allows us to tie our site administra-
tion interface to our Web Services (see Figure 12.22).While creating the pages
needed, we will cover creating the Administration login, creating the
Administration page, and an addBook page for the administrator.

www.syngress.com

Figure 12.20 Proxy Classes Added to Solution Explorer in VSNET UI

166_ASPNET_12.qxd 11/26/01 3:22 PM Page 533

534 Chapter 12 • Creating an ADO.NET Shopping Cart

www.syngress.com

Figure 12.21 BookShop Site Overview

loginCustomer
.aspx.cs

loginCustomer.aspx

newCustomer
.aspx.cs

newCustomer.aspx

updateCustomerInfo.
aspx.cs

updateCustomerInfo.
aspx

start.aspx.cs

start.aspx

header.htm

adminLogin
.aspx.cs

adminLogin.aspx

addBook
.aspx.cs

addBook.aspx

adminPage
.aspx.cs

adminPage.aspx

Common file used
in all UI pages.

Contains the
navigation bar.

Customer Admin Pages Site Admin Pages

Figure 12.22 Site Administration Page Group Overview

adminLogin
.aspx.cs

adminLogin.aspx

addBook
.aspx.cs

addBook.aspx

adminPage
.aspx.cs

adminPage.aspx

Site Admin Pages

166_ASPNET_12.qxd 11/26/01 3:22 PM Page 534

Creating an ADO.NET Shopping Cart • Chapter 12 535

Creating the Administration Login
(adminLogin.aspx)
This is a fairly simple page that uses the asp:RequiredFieldValidator server control.
There are several server controls that enable HTML form validation:

■ RequiredFieldValidator

■ CompareValidator

■ RangeValidator

■ RegularExpressionValidator

■ CustomValidator

■ ValidationSummary

All of these controls work in a similar fashion. In this example page, we use
RequiredFieldValidator in a code behind page to show how to use a server control
to validate user data in HTML forms.

1. In the Web application bookSourceUI, create a new aspx page, and
name it adminLogin.aspx.

2. In Design view, drag and drop a RequiredFieldValidator.

3. Be sure not to position this element in Design view; in the aspx page,
remove the style attribute from the element and use HTML layout tech-
niques to position it. (See the sidebar in this section on ASP.NET and
Netscape.)

Let’s look at the code from the .aspx page:

<tr>

<td>User: </td>

<td style="WIDTH: 127px">

<asp:textbox id="txtUser" runat="server"

Width="106px" Height="24px">

</asp:textbox>

</td><td>

<asp:requiredfieldvalidator id="passUser" runat="server"

ErrorMessage="You must supply a user name"

ControlToValidate="txtUser" Width="121px" Height="57px">

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:22 PM Page 535

536 Chapter 12 • Creating an ADO.NET Shopping Cart

</asp:requiredfieldvalidator>

</td>

</tr>

Lets look at a code snippet from the code-behind file (the aspx.cs page).
When we drag the RequiredFieldValidator onto the page,VS.NET will add the
following:

protected System.Web.UI.WebControls.RequiredFieldValidator passUValid;

And that’s all there is to it.When the page is run, a reference is made to a
client-side JavaScript file that includes crossbrowser code to ensure that this field
contains a value before allowing a “submit.” If the user tries to submit without
filling in the text box, the error message “You must supply a user name” will
appear in the table cell to the right of the text box (it actually appears wherever
the asp:requiredfieldvalidator tag is placed in the HTML, in this case an adja-
cent table cell). Next, we will look at the admin page itself.

www.syngress.com

ASP.NET Server Controls Do Not
Display Correctly in Netscape 4.x
A lot has happened over the last few years with Netscape and the open
source Mozilla project. While the newer versions of Mozilla version .094
and later should handle this fine, there is still a significant Netscape 4.x
user base. When we develop Web front-ends for our clients, we strive to
ensure at least Netscape 4.72 will display and function correctly.

What’s the issue? It seems that most of the examples showing you
how to use server controls have you drag and drop the control to where
you want it on the screen. In HTML, this creates span tags with inline
style attributes containing “absolute positioning.” Those of us that have
dealt with cross-browser Dynamic HTML (DHTML) issues know that this
can cause problems in Netscape. The solution: Use “FlowLayout” and
good old-fashioned HTML elements and tricks for positioning. To do this,
simply right-click a page in either “Design” or “HTML” view and switch
the pageLayout property to FlowLayout.

Debugging…

166_ASPNET_12.qxd 11/26/01 3:22 PM Page 536

Creating an ADO.NET Shopping Cart • Chapter 12 537

Creating the Administrator Page
(adminPage.aspx)
The purpose of this page is to allow the site administrator the ability to remove
and update book item information. In the following sections, we’ll look specifi-
cally at retrieving the data, displaying the data, adding new books to the database,
deleting books, and updating book details.

Retrieving the Data: Creating the
getBooks.AllBooks Web Method
To retrieve the list of books stored in the database, we will need to access the
“GetAllBooks” stored procedure (MSSQL) or parameterized query (MS Access).
We will do this by creating the allBooks method of the getBooks Web Service.This
method will take no parameters, and will return a DataSet containing all Book
data as well as the table structure of the Database table that the data originated
from.The Web method getBooks.AllBooks can be found on the CD that accompa-
nies this book (see getBooks.asmx.cs).

1. To create this method, we must first create a new Web Service named
“getBooks”. (See the section on Web Services earlier in this chapter.)

2. Inside the code-behind page of getBooks (getbooks.asmx.cs), we need to
create the method allBooks.AllBooks should return a DataSet:

public DataSet AllBooks()

3. Set the connection string:

string source = "Provider=SQLOLEDB.1;Persist Security Info=False …

4. Create the Connection object:

OleDbConnection conn = new OleDbConnection (source) ;

5. Create the Command object accessing the “GetAllBooks” proc:

OleDbCommand cmd = new OleDbCommand ("GetAllBooks" , conn) ;

cmd.CommandType = CommandType.StoredProcedure;

6. Create a DataAdapter object for the Command object:

OleDbDataAdapter da = new OleDbDataAdapter (cmd) ;

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:22 PM Page 537

538 Chapter 12 • Creating an ADO.NET Shopping Cart

7. Create a new DataSet and use the DataAdapter to fill it from the results
of executing the stored procedure:

DataSet ds = new DataSet () ;

da.Fill (ds , "Books") ;

8. Close the connection and return the DataSet:

conn.Close();

return ds;

Here is the method in its entirety:

[WebMethod(Description="This will return all books in an XML String",

EnableSession=false)]

public DataSet AllBooks()

{

string source = "Provider=SQLOLEDB.1;Persist Security

Info=False;User ID=[userID];password = [password];

Initial Catalog=[database name];

Data Source=[server name];Use Procedure for Prepare=1;

Auto Translate=True;Packet Size=4096;

OleDbConnection conn = new OleDbConnection(source);

conn.Open () ;

OleDbCommand cmd = new OleDbCommand ("GetAllBooks" , conn);

cmd.CommandType = CommandType.StoredProcedure;

OleDbDataAdapter da = new OleDbDataAdapter (cmd) ;

DataSet ds = new DataSet () ;

da.Fill (ds , "Books") ;

conn.Close();

return ds;

}

The data returned contains an embedded xsd schema describing the Database
table “Books”.

<?xml version="1.0" encoding="utf-8"?>

<DataSet xmlns="http://tempuri.org/">

<xsd:schema id="NewDataSet" targetNamespace=""

xmlns="" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:msdata=

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:22 PM Page 538

http://tempuri.org/
http://www.w3.org/2001/XMLSchema

Creating an ADO.NET Shopping Cart • Chapter 12 539

"urn:schemas-microsoft-com:xml-msdata">

<xsd:element name="NewDataSet" msdata:IsDataSet="true">

<xsd:complexType>

<xsd:choice maxOccurs="unbounded">

<xsd:element name="Books">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="isbn" type="xsd:string" minOccurs="0" />

<xsd:element name="name" type="xsd:string" minOccurs="0" />

<xsd:element name="id" type="xsd:int" minOccurs="0" />

<xsd:element name="imgSrc" type="xsd:string" minOccurs="0" />

<xsd:element name="author" type="xsd:string" minOccurs="0" />

<xsd:element name="price" type="xsd:decimal" minOccurs="0" />

<xsd:element name="title" type="xsd:string" minOccurs="0" />

<xsd:element name="description" type="xsd:string"

minOccurs="0" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:choice>

</xsd:complexType>

</xsd:element>

</xsd:schema>

The next section is the diffgram node, which contains all the table records:

<diffgr:diffgram xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"

xmlns:diffgr="urn:schemas-microsoft-com:xml-diffgram-v1">

<NewDataSet xmlns="">

<Books diffgr:id="Books1" msdata:rowOrder="0">

<isbn>0072121599</isbn>

<name>cisco</name>

<id>2</id>

<imgSrc>ccda.gif</imgSrc>

<author>Syngress Media Inc</author>

<price>49.99</price>

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:22 PM Page 539

540 Chapter 12 • Creating an ADO.NET Shopping Cart

<title>Ccda Cisco Certified Design Associate Study Guide</title>

<description>Written for professionals intending on taking the CCDA

test, this special guide covers all the basics of the test and

includes hundreds of test questions on the enclosed CD.

</description>

</Books>

<Books diffgr:id="Books2" msdata:rowOrder="1">

<isbn>0072126671</isbn>

<name>cisco</name>

<id>2</id>

<imgSrc>ccna.gif</imgSrc>

<author>Cisco Certified Internetwork Expert Prog</author>

<price>49.99</price>

<title>CCNA Cisco Certified Network Associate Study Guide</title>

<description>Cisco certification courses are among the fastest-

growing courses in the training industry, and our guides are

designed to help readers thoroughly prepare for the exams.

</description>

</Books>.

.

.

This XML file is interpreted by ASP.NET as a DataSet object and can be
easily loaded into any variable of type DataSet.The DataGrid control is designed
to be DataBinded to a DataSet object.This makes it easy to “data bind” to a Web
Service method that returns a DataSet. Data Binding a DataSet to the DataGrid is
almost the same as loading the DataSet into the DataGrid.The DataGrid is then
able to iterate through and perform operations on the DataSet as if it were an
Access Form connected to an Access database.The DataSet in actuality is an in-
memory XML representation of the database including the Books table.

Displaying the Data: Binding
a DataGrid to the DataSet
The DataGrid is actually bound to the DataTable Books which is a table within
the DataSet returned by getBooks.AllBooks.We create a DataView of the Books
table so that we can sort the data.This DataView is then bound to the DataGrid.

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:22 PM Page 540

Creating an ADO.NET Shopping Cart • Chapter 12 541

In the following code, changeBooks is the name of our DataGrid object:

Dt = Books.AllBooks().Tables["Books"];

myView = new DataView(Dt);

myView.Sort = "isbn";

changeBooks.DataSource = myView;

changeBooks.DataBind();

Adding New Books to the Database:
Creating the allBooks.addItem Web Method
The creation of this method was shown as an example earlier in the chapter,
under the section “Web Services.”

Deleting Books: Deleting from
the DataGrid and the Database
Using the DataGrid event changeBooks_DeleteCommand, fired when a user clicks
the Delete button in the DataGrid UI, we will select the row in the DataGrid to
remove by using the RowFilter property.The following code selects the individual
book by performing a filter on ISBN. It is analogous to the SQL statement:

Select * from Books where isbn = "@isbn"

The equivalent code for the DataView is:

myView.RowFilter = "isbn='"+upISBN+"'";

This will return an array or collection of items. Since ISBN is our primary
key in the Books table, we know that this filter will return only one item.We
delete this row from the DataView by simply calling the Delete method:

myView.Delete(0);

Next, we reset the filter so we can re-access the entire Books table:

myView.RowFilter = "";

Now we need to resync the DataGrid with the in-memory Books Table View
so that the DataGrid UI reflects the change:

changeBooks.DataSource = myView;

changeBooks.DataBind();

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:22 PM Page 541

542 Chapter 12 • Creating an ADO.NET Shopping Cart

Next, we need to update the database to sync it with the DataGrid.This is
accomplished by calling the Web method and passing it the ISBN of the book to
delete:

removeBook.removeItem(upISBN);

Updating Book Details: Updating
the DataGrid and the Database
Using the DataGrid event changeBooks_UpdateCommand, fired when a user clicks
the Update button in the DataGrid UI, we will select the row in the DataGrid to
update by using the RowFilter property.

1. Select the row to update by using the RowFilter property of the
DataView (see the example in the preceding section).

2. Create a new DataRow Item and populate it with the changes (new
Data). Store updated column values in local variables:

string upISBN = e.Item.Cells[2].Text;

string upAuthor = ((TextBox)e.Item.Cells[3].Controls[0]).Text;

double upPrice =

double.Parse(((TextBox)e.Item.Cells[4].Controls[0]).Text);

string upTitle = ((TextBox)e.Item.Cells[5].Controls[0]).Text;

string upDescription =

((TextBox)e.Item.Cells[6].Controls[0]).Text;

int upCatId = int.Parse(e.Item.Cells[7].Text);

string upImage = ((TextBox)e.Item.Cells[8].Controls[0]).Text;

3. Delete the row that is being updated (see the example in the preceding
section).

4. Create a new DataRow and populate it with the new data.

DataRow dr = Dt.NewRow();

dr["isbn"] = upISBN;

dr["author"] = upAuthor;

dr["price"] = upPrice;

dr["title"] = upTitle;

dr["description"] = upDescription;

dr["id"] = upCatId;

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:22 PM Page 542

Creating an ADO.NET Shopping Cart • Chapter 12 543

dr["imgSrc"] = upImage;

Insert the new DataRow:

Dt.Rows.Add(dr);

5. Resync the DataGrid with the DataView (see the example in the pre-
ceding section).

To update the database, simply call the Web method sellerAdmin.updateItem,
passing it the new data.

localhost.sellerAdmin newData = new localhost.sellerAdmin();

newData.updateItem(upISBN,upAuthor,upPrice,upTitle,upDescription,

upImage,upCatId);

One limitation of the DataGrid is that it doesn’t provide a UI for adding new
records.We will handle this case by creating another page: addBook.aspx.

Creating the addBook Page (addBook.aspx)
The addBook is another fairly straightforward page. It provides a UI where the site
administrator can fill out a simple HTML form and submits.This data is handled
by the code-behind page addBook.asmx.cs.This page simply passes the data to
the database via the Web method sellerAdmin.addBook:

addNewBook = new localhost.sellerAdmin();

resultAdd =

addNewBook.addItem(addISBN,addAuthor,addPrice,addTitle,addDescription,

addPath,addCatId);

Customer Administration
In this section, we will develop the code that allows us to tie our customer
administration interface to our Web Services (see Figure 12.23).

Creating the Customer Admin Section
This section of the site deals with user authentication, including creating a cus-
tomer account and login.We use this to simulate order processing.

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:22 PM Page 543

544 Chapter 12 • Creating an ADO.NET Shopping Cart

Creating the loginCustomer Page
We will use the same form layout as we did for the admin login described in the
preceding section. One change we’ll implement is that we’ll call a Web Service to
verify the login of the customer.

1. Make a call to the Web Service loginCustomer.This should be routine by
now, but let’s look at the code to call the Web Service:

loggedCust = new WebReference1.loginCustomer();

2. Access the Web method validCustomer. Now we have access to all the
methods contained in the class.

string resultId =

loggedCust.validCustomer(validEmail,validPassword);

3. Return a value.We can now check the value of the variable resultId and
either grant the customer access or return an error message.

if(resultId == "-1")

{

loginLabel.Text = "Invalid Login please re-enter your password

and email!";

www.syngress.com

Figure 12.23 Customer Administration Page Group Overview

loginCustomer
.aspx.cs

loginCustomer
.aspx

newCustomer
.aspx.cs

newCustomer.aspx

updateCustomerInfo
.aspx.cs

updateCustomerInfo
.aspx

Customer Admin Pages

166_ASPNET_12.qxd 11/26/01 3:23 PM Page 544

Creating an ADO.NET Shopping Cart • Chapter 12 545

}

else

{

loginLabel.Text ="Welcome";

Session["userId"] = int.Parse(resultId);

Server.Transfer((string)Session["return2Page"]);

}

Now we have the customer logged in to the site and they can go to any page
without having to sign in again.

NOTE

We are using a session variable to track where the user is coming from
when they are prompted to login. This will enable us to redirect them
back to the page where they came from rather then sending them to
some nonspecific page and having them navigate through the site from
scratch.

Creating the updateCustomerInfo Page
We can now add a page that will let the customer update his or her information.
This will be done identically to the example from site admin where we brought
in all books and then enabled the site administrator to go through the books
listed and delete, update, or add books at will. In this case, we will enable the cus-
tomer to update only.

1. Select the row to update by using the RowFilter property of the
DataView.

2. Create a new DataRow Item and populate it with the changes (new Data).

3. Delete the row that is being updated.

4. Insert the new DataRow.

5. Resync the DataGrid with the DataView.

All five steps are the same as covered in earlier examples. Let’s look at the
code one more time:

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:23 PM Page 545

546 Chapter 12 • Creating an ADO.NET Shopping Cart

Dt = Customers.AllCustById((int)Session["userId"]).Tables["Customers"];

myView = new DataView(Dt);

myView.Sort = "CT_ID";

Set the DataTable value into the DataView:

custGrid.DataSource = myView;

custGrid.DataBind();

Set the data source of DataGrid:

myView.RowFilter = "CT_ID='"+upId+"'";

if (myView.Count > 0)

{

myView.Delete(0);

}

myView.RowFilter = "";

DataRow dr = Dt.NewRow();

dr[0] = upId;

dr[1] = upFName;

dr[2] = upLName;

dr[3] = upEmail;

dr[4] = upPassword;

Dt.Rows.Add(dr);

Delete the bad data row and the new one:

WebReference1.adminCustomer newData = new

WebReference1.adminCustomer();

newData.updateCust(upId,upFName,upLName,upEmail,upPassword);

Lastly, update the database by calling the Web service.
In the previous examples we have made extensive use of the DataGrid control

for DataBinding DataSet information to the UI.We must admit we were a bit
reluctant to use the DataGrid since it seemed reminiscent to the DataGrid Design
Time Controls (DTCs). DTCs were included with many versions of FrontPage,
Visual InterDev, and Office.They made it easy for novice developers to quickly
create data driven Web sites. Lets just say DTCs had some drawbacks, to put it

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:23 PM Page 546

Creating an ADO.NET Shopping Cart • Chapter 12 547

politely! In the next two sections, ADOCatalog and XMLCart, we will use
XSL/Transforms against XML data to produce our UI.This is accomplished by
using the asp:xml server control as well as client side script and hidden asp:text
controls.The ADOCatalog’s primary interfaces will return DataSet objects so it
could be easily tied to a DataGrid control.We will leave that as an exercise for
you.The XMLCart is primarily a wrapper class around the XmlDocument object.
Its primary interfaces will return XmlDocument objects. Let’s get started!

Creating an ADOCatalog
In this section, we will develop the code that allows us to tie our catalog interface
to our Web Services.We will store a DataSet in an Application variable to reduce
the load on the database, perform copy, clone, import, create, and filter operations
on ADO.NET DataSet objects, and use XML and Extensible Stylesheet Language
Transformations (XSLT) to render data stored in a DataSet as HTML via the
asp:xml server control.

In our ADOCart application, all database interaction is handled via Web
Services. Since our “Books” data is fairly static, we can retrieve the data in a
DataSet once and store that DataSet in an application-level variable.This reduces
the database traffic, while still providing quick access to the data. Here is an
overview of the process we will be following:

■ Load all Books data to an application variable:

Application["AllBooks"];

■ Create an instance of ADOCatalog (a.k.a., BookCatalog).

In Page_onload

■ Initialize the instance by passing it.

(DataSet)Application["AllBooks"];

■ Call BookCatalog.CatalogRange(0,5) to return the first five books.

■ Convert return data to XML.

■ Load XSLT.

■ Set Document and Transform properties of the asp:xml control.

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:23 PM Page 547

548 Chapter 12 • Creating an ADO.NET Shopping Cart

Now, lets create the code.To store our data in an application object, open the
Global.asax file.Add this to the Application_onstart method:

localhost.getBooks DataSource = new localhost.getBooks();

Application["AllBooks"] = DataSource.AllBooks();//DataSet

This will create an instance of the getBooks object called DataSource. Using
this instance, we call the AllBooks method, which returns a DataSet.We then save
the DataSet in an application-level variable, allbooks.

NOTE

localhost is a reference to the name of the Web Reference containing the
getBooks Web Service proxy (getBooks.wsdl).

Now add a new page to the Web Application project (bookSourceUI). Name
it start.aspx. Below the #endregion section in the WebForm1 class, we will create
a new class called bookCatalog.

Creating the BookCatalog Class
The BookCatalog class will contain the following public methods: InitCatalog,
Catalog, CatalogItemDetails, CatalogRange, CatalogByCategory, and the private
methods CatalogRangeByCategory, and CreateSummaryTable.The following is a
rough prototype of the ADOCatalog class that we’ll be building in this section:

public class bookCatalog

{

protected WebReference1.getBooks DataSource;

protected DataSet dsAllBooks;

protected DataTable dtSummary;

protected DataTable createSummaryTable(

int startPos, int range, int RecordCount)

public DataSet catalog()

public void initCatalog(DataSet ds)

public DataSet catalogItemDetails(string book_isbn)

public DataSet catalogRange(int startPos, int range)

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:23 PM Page 548

Creating an ADO.NET Shopping Cart • Chapter 12 549

public DataSet catalogByCategory(int catId)

protected DataSet catalogRangeByCategory(

int startPos, int range, int catId, string book_isbn)

}

Creating the CreateSummaryTable Method
The CreateSummaryTable method creates a DataTable that contains summary infor-
mation about the DataSet being returned.This data is used by the XSLT to dis-
play Metadata (i.e., viewing records 6 through 12 of 25). It is also useful when
making a fetch next range of records call.

Based on the prototype, this method will take the parameters int startPos, int
range, and int RecordCount and will return a DataTable. Let’s get started.

1. Create a new empty DataTable named “summary”.

DataTable dtSummary = new DataTable("Summary");

In the XSD schema this makes the DataTables parent

element a summary tag (i.e. <summary>)

2. Now add the Columns RecordCount, FirstItemIndex, and
LastItemIndex to the Summary DataTable.

dtSummary.Columns.Add(

new DataColumn("RecordCount", typeof(int)));

dtSummary.Columns.Add(

new DataColumn("FirstItemIndex", typeof(int)));

dtSummary.Columns.Add(

new DataColumn("LastItemIndex", typeof(int)));

3. Create a new DataRow object and assign it to a new DataTable row.

DataRow drSummary;

drSummary = dtSummary.NewRow();

4. Populate the DataRow object and add it to the DataTable.

drSummary["RecordCount"] = RecordCount;

drSummary["FirstItemIndex"] = startPos;

drSummary["LastItemIndex"] = startPos + range;

dtSummary.Rows.Add(drSummary);

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:23 PM Page 549

550 Chapter 12 • Creating an ADO.NET Shopping Cart

5. Return the new DataTable.

return dtSummary;

Creating the InitCatalog Method
The InitCatalog method loads a DataSet into the BookCatalog object, then adds a
default summary table to the private DataSet dsAllBooks. Based on the prototype,
this method will take the only parameter, a DataSet, and will return nothing.

public void initCatalog(DataSet ds)

{

dsAllBooks = ds;

int recordCount = dsAllBooks.Tables[0].Rows.Count;

dsAllBooks.Tables.Add(

createSummaryTable(0, recordCount-1, recordCount));

}

Creating the Catalog Method
The Catalog method returns the entire DataSet stored in the private variable
dsAllBooks:

public DataSet catalog()

{

return dsAllBooks;

}

Creating the catalogItemDetails, catalogRange,
and catalogByCategory Methods
The three methods, catalogItemDetails, catalogRange, and catalogByCategory, are spe-
cialized cases of catalogRangeByCategory and are really only logical interfaces to
obtain desired result sets.

The method catalogItemDetails will return all data corresponding with the
given ID (Book_isbn):

public DataSet catalogItemDetails(string book_isbn)

{ // returns a DataSet containing a single book

return catalogRangeByCategory(-1, -1, -1, book_isbn);

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:23 PM Page 550

Creating an ADO.NET Shopping Cart • Chapter 12 551

}

The method catalogRange will return all data for items in a given range:

public DataSet catalogRange(int startPos, int range)

{ //returns a given range of books

return catalogRangeByCategory(startPos, range, -1, null);

}

The method catalogByCategory will return all data for items in a given category:

public DataSet catalogByCategory(int catId)

{ //returns all books with the given categoryId

return catalogRangeByCategory(-1, -1, catId, null);

}

Creating the catalogRangeByCategory Method
The catalogRangeByCategory method creates a new DataSet containing a new
Books Table, appends the appropriate Summary Table, and returns this new
DataSet. It is used by the preceding methods to return a single item’s node (to
add to the shopping cart), to return a range of books (to handle browsing the
catalog), and to return all books in a given category (to handle viewing by cate-
gory).A method could easily be added that enables browsing by category.

In order to return a subset of the DataSet allBooks, we need to create a new
DataTable object that has the same table structure as Books.We can then import
rows that meet our criteria into this new table.When the table is filled, we create
a new DataSet object and add the new DataTable as well as a Summary Table.
The resulting DataSet will contain the request subset of data and some Meta-
information (supplied by the Summary table).

Now, let’s examine the code. Create a temporary DataTable that holds
allBooks data:

DataTable dtTemp = dsAllBooks.Tables["Books"];

Clone the structure of this table in a new DataTable:

DataTable dtBooks = dtTemp.Clone();//create Empty Books Table

Set the filter expression property based on input parameters:

if(catId == -1)

{ //no filter is applied strExpr = "";

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:23 PM Page 551

552 Chapter 12 • Creating an ADO.NET Shopping Cart

}

else

{ //select only one category

strExpr = "id='" + catId + "'";

}

if(book_isbn != null)

{ //return a single item

strExpr = "isbn='" + book_isbn + "'";

}

Set our Data filter to affect all current rows, sort by title, and apply the filter
expression:

strSort ="title";

recState = DataViewRowState.CurrentRows;

foundRows = dtTemp.Select(strExpr, strSort, recState);

RecordCount = foundRows.Length;

Add foundRows to the DataTable dtBooks:

for(int i = startPos; i < endPos; i ++)

{

dtBooks.ImportRow((DataRow)foundRows[i]);

}

Add the DataTable dtBooks to the new DataSet along with DataTable Summary,
then return this new DataSet:

dsBookRange = new DataSet();

dsBookRange.Tables.Add(dtBooks);

dsBookRange.Tables.Add(

createSummaryTable(startPos, range, RecordCount));

return dsBookRange;

On page load, we will instantiate the object, retrieve Application[“AllBooks”],
return the requested subset DataSet object, convert it to XML using the GetXml()
method of the DataSet object, and apply an XSL/Transform to render the Catalog
in the UI.

In order to enable browsing, we will store the FirstRecord, LastRecord,
recordCount, and user action (previous | next | by CategoryID) into hidden

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:23 PM Page 552

Creating an ADO.NET Shopping Cart • Chapter 12 553

Text fields on the client, so this data can be read to determine which bookCatalog
method to call and with which parameters to return the desired subset of
AllBooks.

You can see the code on the CD for a closer look at how to implement this
class (see start.aspx and start.aspx.cs).The CD also contains the XSLTused to
render the UI (Catalog.xslt).

Building an XMLCart
In this section, we will develop the code that allows us to tie our catalog to the
shopping cart.We will use XML node operations to update our cart’s contents,
XSLT/XPath operations to calculate cart totals and taxes, XML and XSLT to
render cart data as HTML, and the asp:XML server control to process transforms.
The code for this class can be found on the CD (see start.aspx and start.aspx.cs).

The XMLCart is really a wrapper class around common XML functions. It
performs the following basic operations: load data, add new item, remove item,
and empty cart.

Looking at the class, you’ll see there really isn’t much to it.

public class xmlShoppingCart

{

protected XmlDocument myCart;

public void initCart(string dataSource)

{

myCart = new XmlDocument();

if(dataSource != null)

{

myCart.LoadXml(dataSource);

}

else

{

myCart.LoadXml("<shopcart-items></shopcart-items>");

}

}

public string addItem2Cart(XmlDocument book)

{

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:23 PM Page 553

554 Chapter 12 • Creating an ADO.NET Shopping Cart

try

{

//Import the last book node from doc2 into the original document.

XmlNode newBook =

myCart.ImportNode(book.DocumentElement.FirstChild, true);

myCart.DocumentElement.AppendChild(newBook);

return "Success";

}

catch(Exception e) {

return e.ToString();

}}

public string removeItemFromCart(string isbn)

{

XmlNode curnode =

myCart.SelectSingleNode("//Books[isbn='" + isbn + "']");

try

{

myCart.DocumentElement.RemoveChild(curnode);

return "Success";

}

catch(Exception e)

{

return e.ToString();

}

}

public void clearCart()

{

XmlElement root = myCart.DocumentElement;

root.RemoveAll();

}

public XmlDocument getCartDescription()

{

return myCart;

}

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:23 PM Page 554

Creating an ADO.NET Shopping Cart • Chapter 12 555

public string getCartDescriptionString()

{

return myCart.OuterXml;

}

}

When the page loads, the cart must be initialized.This is handled with the init
method. If there is no data to load into the cart, the root node (<shopcart-
items>) is added so that child nodes can be imported from the catalog.

public void initCart(string dataSource)

{

myCart = new XmlDocument();

if(dataSource != null)

{

myCart.LoadXml(dataSource);

}

else

{

myCart.LoadXml("<shopcart-items></shopcart-items>");

}

}

When a user chooses to add an item to the shopping cart, the onclick event
will call bookCatalog.catalogItemDetails and supply an ISBN.The resulting data will
be an XML node for that item.The node will then be imported to the XmlCart
document via the method addItem2Cart.The string representation will then be
stored in Session[“myShoppingCart”].

public string addItem2Cart(XmlDocument book)

{

//Import the last book node from doc2 into the

//original document.

XmlNode newBook =

myCart.ImportNode(book.DocumentElement.FirstChild, true);

myCart.DocumentElement.AppendChild(newBook);

return "Success";

}

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:23 PM Page 555

556 Chapter 12 • Creating an ADO.NET Shopping Cart

When a user selects to remove an item from the shopping cart, the onclick
event will remove the node specified by the supplied ISBN via the
removeItemFromCart method, and update Session[“myShoppingCart”].

public string removeItemFromCart(string isbn)

{

XmlNode curnode = myCart.SelectSingleNode(

"//Books[isbn='" + isbn + "']");

myCart.DocumentElement.RemoveChild(curnode);

}

When a user selects Checkout from the shopping cart, the onclick event will
call the Web Service orderBooks.OrderItem to update the orders table in the
Database, clear the cart via the clearCart method, and display confirmation infor-
mation to the UI.

public void clearCart()

{

XmlElement root = myCart.DocumentElement;

root.RemoveAll();

}

When the page is reloaded and the UI needs the latest version of cart, the
XML representation is passed via the getCartDescription method:

public string getCartDescriptionString()

{

return myCart.OuterXml;

}

Creating the User Interface
ADOCatalog and XMLCart alone do not provide that much functionality; the
real functionality is handled by the showCatalog and the showCart page methods.
Before we take a closer look at that, let’s see how the start.aspx page is laid out.

Creating the start.aspx Page
The start.aspx page is the Web form that hosts the controls to generate the UI for
our catalog and cart. Here’s the HTML:

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:23 PM Page 556

Creating an ADO.NET Shopping Cart • Chapter 12 557

<body onload="initializePagevariables()">

The preceding code makes a call to a JavaScript function that initializes the
values of our hidden field variables.

This next line adds the HTML necessary to draw the navbar.You can also
find this file on the CD (see header.htm).

<!— #Include file="header.htm" —>

<form id="formstart" method="post" runat="server">

<div style="PADDING-RIGHT: 3px; PADDING-LEFT: 3px; PADDING-BOTTOM: 3px;

WIDTH: 800px; COLOR: white; PADDING-TOP: 3px; BACKGROUND-COLOR:

dimgray" align="left">

View Books by Category

The following asp:dropdown control reads the list of categories from the
database and generates a drop-down select box:

<asp:dropdownlist id="CategoryList" runat="server"

DataValueField="CAT_ID"

DataTextField="CAT_Name"></asp:dropdownlist>

<input type="button" id="btnGo" value="Go !" onclick=

"formstart.categoryState.value='Go';formstart.submit();">

</div>

<table width="800">

<tr>

<td>

The following asp:xml server control transforms the supplied XML data with
catalog.xslt (see catalog.xslt on the CD):

<asp:xml id="catalog" runat="server"></asp:xml>

</td>

<td valign="top" align="middle" bgcolor="cornsilk">

The following asp:xml server control transforms the supplied XML data with
cart.xslt (see cart.xslt on the CD):

<asp:xml id="cart" runat="server"></asp:xml>

The following asp:Label server control is used to insert HTML that is
dynamically generated when the user clicks checkout:

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:23 PM Page 557

558 Chapter 12 • Creating an ADO.NET Shopping Cart

<asp:Label id="lblFeedBack" runat="server"></asp:Label>

</td>

</tr>

</table>

The following div is used to hide a group of text box server controls—so
why use a div to hide asp:textbox controls? First, while the asp:textbox control
does have a visibility attribute, setting this attribute to hidden prevents the
HTML from being written to the client, so when we view page source, the
HTML for the text box isn’t even there. Second, while using the HTML control
<input type=“hidden” runat=“server”> is also an option, this control lacks
postback ability.

Each time a user clicks Add, Remove, Checkout, Previous, Next, or makes a
change to the drop-down menu for category, we set these hidden variables
accordingly and submit the page. Program control is then passed to our code-
behind page “start.aspx.cs” (this file can also be found on the CD).

<div style="VISIBILITY: hidden">

<asp:textbox id="addItem" runat="server" AutoPostBack="True" />

<asp:TextBox id="removeItem" runat="server" AutoPostBack="True" />

<asp:textbox id="firstRecord" runat="server" AutoPostBack="True"/>

<asp:textbox id="lastRecord" runat="server" AutoPostBack="True"/>

<asp:textbox id="direction" runat="server" AutoPostBack="True"/>

<asp:textbox id="recordCount" runat="server" AutoPostBack="True"/>

<asp:TextBox id="categoryState" runat="server" AutoPostBack="True"/>

<asp:TextBox id="Ready4Checkout" runat="server" AutoPostBack="True"/>

</div>

</form>

</body>

In the following sections, we will see how the user-generated events are han-
dled in our code-behind page: start.aspx.cs.

Rendering the Catalog
On Page_load, we retrieve Application[“AllBooks”] and apply an XSL/Transform
to render the Catalog in the UI. In order to enable browsing, we store the
FirstRecord, LastRecord, recordCount, and user action (previous | next | by
CategoryID) into hidden Text fields on the client, so this data can be read to

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:23 PM Page 558

Creating an ADO.NET Shopping Cart • Chapter 12 559

determine which bookCatalog method to call and with which parameters to
return the desired subset of AllBooks.

Rendering the Cart
When a user makes a selection from the catalog (“Add item to cart,” Previous,
Next, or selects a category) or the cart (Remove item, or Checkout), the user’s
action is stored in hidden text boxes that are passed to the code-behind
onsubmit(). In the Page_load method, we will test for addItem, removeItem, or
Checkout and handle each accordingly.

Creating the Code
The code for this page can be found on the CD (see:start.aspx.cs). Here is an
overview of the page process flow:

■ In Page_Load()

1. Get list of categories and bind to asp:dropdownlist control “categories.”

2. Display the default catalog UI by calling showCatalog().

3. Display the default cart UI by calling showCart().

4. Test for Add, Remove, and Checkout. Handle each appropriately.

■ In showCatalog()

1. Create an instance of ADOCatalog (a.k.a., bookCatalog).

2. Initialize the instance by loading all book data from
Application[“AllBooks”].

3. Test for data filters.

■ Did user make a change to the category drop-down? Filter
“AllBooks” for only the selected category.

■ Did user click Previous or Next? Filter “AllBooks based on the
contents in our hidden textboxes: direction, recordCount,
firstRecord, and lastRecord.

■ If no filters, use default.

■ Set the Document property of the asp:xml control,“catalog” to
the filter results.

4. Load XSLT (see catalog.xslt on the CD).

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:23 PM Page 559

560 Chapter 12 • Creating an ADO.NET Shopping Cart

5. Set Transform properties of the asp:xml control “cart” to catalog.xslt.

■ In showCart()

1. Create an instance of XMLCart (a.k.a., xmlShoppingCart).

2. Initialize the instance by loading any previous cart information from
Session[“myShoppingCart”].

3. Load XSLT (see cart.xslt on the CD).

4. Set Document and Transform properties of the asp:xml control,
“cart” to cart.xslt.

Note that cart and catalog will have already been initialized and rendered
before the next three cases can occur.

■ In AddItem

1. Retrieve from “AllBooks” the node corresponding to the ISBN
value stored in the hidden text box “addItem”.

2. Add this node to our shopping cart.

3. Store updated cart information in Session[“myshoppingCart”].

4. Rewrite the cart to update the UI.

■ In RemoveItem

1. Using the ISBN stored in the hidden text box “removeItem,”
remove the corresponding XML node from cart.

2. Store updated cart information in Session[“myshoppingCart”].

3. Rewrite the cart to update the UI.

■ In Checkout

1. Login user to simulate order processing.

2. Loop through the Nodes in cart and update the orders table, then
remove ordered item from cart, while generating the HTML neces-
sary to display the items ordered in an HTML table.

3. Store updated cart information in Session[“myshoppingCart”]; the
cart is empty at this point.

4. Rewrite the cart to update the UI.

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:23 PM Page 560

Creating an ADO.NET Shopping Cart • Chapter 12 561

There are many ways to display data held in a DataSet in XML, or for that
matter in ASP.NET. In fact, there are a multitude of controls, including the pop-
ular DataGrid control that make this relatively simple.We have opted to use XML
and XSLT to show other approaches to the same problem.Also, if your current
ASP application uses XML and XSLT, the migration to ASP.NET is fairly easy. In
fact, your existing XSLT stylesheets and XML content can still be used. For more
information on XSLT, visit www.w3c.org/TR/xslt, www.w3c.org/Style/XSL/
#Learn, and www.w3schools.com/XSL.

It is important to note that the Application and Session objects still have issues
with regards to server farms and scalability.We used Session in this example for
simplicity and to show that it can still be useful. Relatively simple changes can be
made to the Start page to convert Session variables into hidden fields stored on
the page, or state can be stored in a database.

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:23 PM Page 561

562 Chapter 12 • Creating an ADO.NET Shopping Cart

Summary
We have developed an application that enables customers to browse a catalog of
books by category or range, add selections to a virtual shopping cart, remove
items from the cart and simulate processing an order by logging in and submit-
ting updates to the order table in the database.We have leveraged the power of
XML and its ability to represent data and structure, explored Web Services and
their methods, designed databases and stored procedures, developed custom code-
behind classes in C# and covered a multitude of uses for ADO.NET.

We also explored database design and implementation, creating two databases
for the application, one for Access and one for SQL.We then covered entities and
their attributes and how both work with each other to create a normalized
database. Lastly, we developed a set of stored procedures that will handle all data
interaction with the database, preventing the use of “ad hoc” queries against the
database.To see the ADOCart application on the Web (it is available on the CD
accompanying this book), visit www.DotThatCom.com.

Solutions Fast Track

Setting Up the Database

A relationship between the two tables is created by the use of primary
and foreign keys.

The different types of relationships between tables are one-to-one, one-
to-many, and many-to-many. In a one-to-one relationship, exactly one
row corresponds with a matching row of the related table. In a one-to-
many relationship, one row corresponds to many rows of the related
table. In a many-to-many relationship, many rows correspond to many
rows of the related table.

Using parameterized queries in MS Access and stored providers in MS
SQL results in performance gain. In addition, you no longer have to run
ad hoc queries against the database. Pre-complied queries perform better.

Creating the Web Services

Web Services provide separation of the data tier from the user interface
(UI).This also makes it possible to access our data from any platform.

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:23 PM Page 562

Creating an ADO.NET Shopping Cart • Chapter 12 563

Web Services help separate our data tier from our application logic.This
creates a more robust and portable application.

Web Services leverage the power of XML and its interoperability.All
pages can communicate with the common language and exist in the
same context.

Using WSDL Web References

Disco, or vsdisco, written in WSDL, enables access to all Web Services
and methods for that site.This provides a one-stop shop, if you will, into
the server’s cupboards.

Proxy classes can easily be generated using WSDL, which enables code
to access remote services as if they were local classes.

Building the Site

Create an overview of the site structure: what pieces need to be built
and how the pages relate to one another. In our example, we focus on
the middle tier data classes and controls that act as a bridge between the
backend and the Web UI.

Site Administration

Tie the site administration to the Web Services, enabling the
administration functions for the site to be done without accessing the
code or database.The adminPage.aspx page in our example allows the
site administrator to retrieve and display data, and to add, delete, and
update product.

To retrieve the list of books stored in the database, we need to access the
“GetAllBooks” stored procedure (MSSQL) or parameterized query (MS
Access) by creating the allBooks method of the getBooks Web Service.
This method will take no parameters, and will return a DataSet
containing all Book data as well as the table structure of the Database
table that the data originated from.

The DataSet is an in-memory XML representation of the database,
including the Books table.

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:23 PM Page 563

564 Chapter 12 • Creating an ADO.NET Shopping Cart

Display the data by binding a DataGrid to the DataSet.The DataGrid is
actually bound to the DataTable Books which is a table within the
DataSet returned by getBooks.AllBooks.We create a DataView of the
Books table so we can sort the data.This DataView is then bound to the
DataGrid.

Using the DataGrid event changeBooks_DeleteCommand, fired when a user
clicks the Delete button in the DataGrid UI, we can select a row in the
DataGrid to delete by using the RowFilter property.

Using the DataGrid event changeBooks_UpdateCommand, fired when a
user clicks the Update button in the DataGrid UI, we can select the row
in the DataGrid to update by using the RowFilter property.

Customer Administration

The Customer Administration pages tie our customer administration
interface to our Web Services, enabling the customer to update their
personal information.This is an added benefit to the user of the site.

Customer administration will be identical to the example of the site
administrator, except we will enable the customer to update only.

Creating an ADOCatalog

Creating an ADOCart application allows us to tie our catalog interface
to our Web Services. In our ADOCart application, all database
interaction is handled via Web Services.

Create a new class to explore ADO.NET DataSet operations in order to:
copy, clone, import, create, and filter.

Since our “Books” data is fairly static, we can retrieve the data in a
DataSet once and store that DataSet in an application-level variable.This
reduces the database traffic, while still providing quick access to the data.

Use XML and XSLT to render data stored in a DataSet as HTML via
the asp:Xml server control.

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:23 PM Page 564

Creating an ADO.NET Shopping Cart • Chapter 12 565

Building an XMLCart

Building an XMLCart allows us to tie our catalog to the shopping cart.

We will use XML node operations to update our cart’s contents,
XSLT/XPath operations to calculate cart totals and taxes, XML and
XSLT to render cart data as HTML, and the asp:XML server control to
process transforms.

An XmlDocument wrapper class provides add, remove, clear, and checkout
operations.

Creating the User Interface

ADOCatalog and XMLCart alone do not provide that much
functionality; the real functionality is handled by the showCatalog and the
showCart page methods.

The start.aspx page is the Web Form that hosts the controls to generate
the UI for our catalog and cart.

Use of XML and XSLT generates portions of the UI via the asp:xml
server controls.

www.syngress.com

166_ASPNET_12.qxd 11/26/01 3:23 PM Page 565

566 Chapter 12 • Creating an ADO.NET Shopping Cart

Q: My project has a few different pages in it. Unfortunately, the last page I cre-
ated is the one that is loaded when I run the project. How do I set the first
page to open when I run the project?

A: In your Project Explorer, right-click the file you want and set it to Start
Page.

Q: I am working with the XmlDocument object in my code-behind page, and I
am not getting any IntelliSense.What am I doing wrong?

A: Make sure you have included “Using System.Xml” in the top section of
the page.

Q: I just started using VS.NET Beta 2 and I am trying to create a WSDL proxy
to my Web Service. Is there an easy way to do this in VS.NET?

A: Right-click your Project Explorer and select Add Web reference.

Q: I renamed a file in my Solutions Explorer, but the corresponding “.aspx.cs”
and “.aspx.resx” names did not change. Because of this, the project will not
compile correctly. How can I fix this?

A: In your Solutions Explorer, make sure all child files are collapsed in the parent
when renaming and this will change all the associated files. If you have already
changed one file, change it back to the name prefix of the other files, then col-
lapse the children and rename it to the new name.Also, check the first line in
the .aspx page and ensure that the Inherits attribute lists the correct filename.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

166_ASPNET_12.qxd 11/26/01 3:23 PM Page 566

Creating a Message
Board with ADO
and XML

Solutions in this chapter:

■ Setting Up the Database

■ Designing Your Application

■ Designing the User Interface

■ Setting Up General Functions

■ Building the Log-In Interface

■ Designing the Browsing Interface

■ Creating the User Functions

■ Building the Administrative Interface

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 13

567

166_ASPNET_13.qxd 11/26/01 4:06 PM Page 567

568 Chapter 13 • Creating a Message Board with ADO and XML

Introduction
In the case study presented in this chapter, we take both of our previous case
studies and use what we’ve learned together to form a big project.We’ll be
calling this our dotBoard! This case study will detail the process necessary to
design and implement your own message board using ADO.NET and a bit of
XML. First, we will go through the process necessary to create the data structures
in MS Access and SQL Server.We will analyze our application and break down
the data into small pieces in order to represent them in a database. Next, we will
determine the best way to design our application and go through the design of
all the classes we will use to power the message board, and determine what
methods and properties each class should contain.

Once the data analysis is done, we are going to develop our classes that will
represent the core “business objects” in our application.These objects will be the
guts of dotBoard and are what we will use in our User Interface to allow our
users to interact indirectly with the data in our database.The last step we will
perform is creating the User Interface itself and allow users to interact with our
message board.

One major point we should realize, however, is that no matter how large a
project this message board seems, it is in fact incredibly simple once broken down
into its smaller pieces. In fact, as you delve deeper and deeper into .NET, you will
notice how much simpler it is to build most applications.With the right pro-
gramming practices and .NET as your technology of choice, you can build com-
plex applications in a much more efficient manner than some of the older
technologies in existence.

Setting Up the Database
Setting up the database is one of the most important parts of any application.
How do you represent your ideas in a structured, well-formed way? The first and
most important step is to break down what you know you want your application
to do, analyze those tasks, and then extract the important parts.

A message board has several distinguishable elements once you start to ana-
lyze it.The first and most obvious is you need to store information on subjects
and threads. If you’ve ever looked at a message board before, you’ll notice that it’s
broken down into three levels.The first level is a general heading, describing
what it is going to contain.We’ll call this level Board. Board can contain any
number of Threads. Finally, a Thread contains any number of Messages.The last
area of data involved is data representative of a message board user. Users do not

www.syngress.com

166_ASPNET_13.qxd 11/26/01 4:06 PM Page 568

www.syngress.com

fit into this three level hierarchy, but instead are a distinct part of each level.This
very distinct hierarchy is a great place to start when defining your data.

The first thing to do is break down the type of information that describes a
Board.This can be done many different ways: brainstorm, use your vast knowl-
edge of all things data, or actually go to some bulletin boards on the Web and
take a look at the kind of information they capture and display.This last option is
probably the easiest, as there are numerous examples on the Web to look at.

That said, let’s go through a Board and determine what type of information a
Board uses. Our board will have the following information displayed on the user
interface: name, description, list of threads, thread count, post count, the moder-
ator, and some sort of unique identifier. Not all of those fields need their values
to be saved in the database. For instance, the thread count and post count can be
easily retrieved at runtime by just calculating them.That leaves Name,
Description, Moderator, and a Unique Identifier.

Threads are less complex than Boards.A Thread contains the following fields:
board ID, subject, post count, creator, and some sort of unique identifier.The
board ID should be created by a relationship between the two tables, and post
count can be retrieved at runtime.That leaves subject and creator.

A Post is composed of the following fields: subject, body, creator, thread ID,
and some sort of unique identifier.All of these must be captured in order to suc-
cessfully represent a Post.

Finally, the last item we must capture is the user data. Most bulletin boards
you visit do not allow anonymous posting.That is, in order to post, you must
have your own user data. Our message board will function the same way.This
makes it much easier to write your SQL statements and preserve database
integrity. User information will contain the following fields: a unique identifier,
username, password, first name, last name, e-mail address, whether or not this user
is an administrator, and whether or not this user has been banned from posting.

MSAccess Database
Setting up your Access database is a pretty quick process.You can use the
dotBoard.mdb file located on your CD, or follow the steps provided next. If you
want to create your own database, open up Microsoft Access (either 97 or 2000),
and create a new database called dotBoard.mdb.

The Microsoft Access database is rather straightforward.As was described pre-
viously, the Board table (see Figure 13.1) will contains four fields: BoardID,
BoardName, BoardDescription, and ModeratorID. BoardID should be an
AutoNumber, with Indexed set to Yes (No Duplicates), and should also be

Creating a Message Board with ADO and XML • Chapter 13 569

166_ASPNET_13.qxd 11/26/01 4:06 PM Page 569

570 Chapter 13 • Creating a Message Board with ADO and XML

the primary key. BoardName is a Text field, with Required set to Yes, and with
a Field Size of 100. BoardDescription is a Text field, with Field Size set to the
maximum access allows, which is 255.

The Threads table will also contain four fields:ThreadID,ThreadSubject,
CreatorID, and BoardID.ThreadID should be an AutoNumber, with Indexed
set to Yes (No Duplicates), and should also be the primary key.ThreadSubject
is a Text field, with Field Size set to the maximum access allows, which is 255.
CreatorID is a Number, with Field Size set to Long Integer, and Required
set to Yes. BoardID is a Number, with Field Size set to Long Integer, and
Required set to Yes (see Figure 13.2).

The Posts table will contain six fields: PostID, PostSubject, PostBody,
CreatorID,ThreadID, and PostDate. PostID should be an AutoNumber, with
Indexed set to Yes (No Duplicates), and should also be the primary key.
PostSubject is a Text field, with Field Size set to the maximum access allows,
which is 255. PostBody is a Memo field with Required set to Yes. CreatorID is
a Number, with Field Size set to Long Integer, and Required set to Yes.
ThreadID is a Number, with Field Size set to Long Integer, and Required
set to Yes. PostDate will be a Date/Time field with a Default Value of Now()
and Required set to Yes. See Figure 13.3 for the Posts table.

www.syngress.com

Figure 13.1 The Boards Table

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 570

Creating a Message Board with ADO and XML • Chapter 13 571

The Users table will contain eight fields: UserID, Username, Password,
FirstName, LastName, Email, IsAdmin, IsBanned. UserID should be an

www.syngress.com

Figure 13.2 The Threads Table

Figure 13.3 The Posts Table

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 571

572 Chapter 13 • Creating a Message Board with ADO and XML

AutoNumber, with Indexed set to Yes (No Duplicates), and should also be the
primary key. Username is a Text field, with its Field Size set to 50 and Required
set to Yes. Password is a Text field, with its Field Size set to 50 and Required set
to Yes. FirstName is a Text field, with its Field Size set to 100 and Required set
to Yes. LastName is a Text field, with its Field Size set to 200 and Required set
to Yes. Email is a Text field, with its Field Size set to 255 and Required set to
Yes. IsAdmin and IsBanned are Yes/No fields, with Format set to True/False
and Required set to Yes. See Figure 13.4 for the Users table.

The last step is to define the relationships between the tables. Posts relates
to Threads on ThreadID.Threads relates to Board on BoardID. Users relates to
Posts on CreatorID, to Threads on CreatorID, and Board on ModeratorID (see
Figure 13.5).

SQL Server Database
Setting up a SQL Server database is rather effortless, especially since you can let
the database do everything for you by executing a SQL script.The only thing
you need to do is open up your SQL Enterprise Manager, navigate to the
server you want to create your database on, and open up the Databases node.
Right-click the Databases node and select New Database. Name your database
dotBoard and select OK.

www.syngress.com

Figure 13.4 The Users Table

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 572

Creating a Message Board with ADO and XML • Chapter 13 573

The only other action you need to take is open up SQL Query Analyzer,
and execute the SQL Script shown in Figure 13.6 (which can also be found on
your CD, called dotBoard Setup.sql).

Figure 13.6 SQL Server Database Creation Script (dotBoard Setup.sql)

CREATE TABLE [dbo].[Board] (

[BoardID] [int] IDENTITY (1, 1) NOT NULL ,

[BoardName] [varchar] (100) COLLATE SQL_Latin1_General_CP1_CI_AS

NOT NULL ,

[BoardDescription] [varchar] (255) COLLATE SQL_Latin1_General_

CP1_CI_AS NOT NULL

) ON [PRIMARY]

GO

CREATE TABLE [dbo].[Posts] (

[PostID] [int] IDENTITY (1, 1) NOT NULL ,

[PostSubject] [varchar] (255) COLLATE SQL_Latin1_General_CP1_CI_AS

NOT NULL ,

[PostBody] [text] COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,

www.syngress.com

Figure 13.5 The Relationships between Tables

Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 573

574 Chapter 13 • Creating a Message Board with ADO and XML

[CreatorID] [int] NOT NULL ,

[ThreadID] [int] NOT NULL ,

[PostDate] [datetime] NOT NULL DEFAULT getDate()

) ON [PRIMARY] TEXTIMAGE_ON [PRIMARY]

GO

CREATE TABLE [dbo].[Threads] (

[ThreadID] [int] IDENTITY (1, 1) NOT NULL ,

[ThreadSubject] [varchar] (255) COLLATE SQL_Latin1_General_

CP1_CI_AS NOT NULL ,

[CreatorID] [int] NOT NULL ,

[BoardID] [int] NOT NULL

) ON [PRIMARY]

GO

CREATE TABLE [dbo].[Users] (

[UserID] [int] IDENTITY (1, 1) NOT NULL ,

[Username] [varchar] (50) COLLATE SQL_Latin1_General_CP1_CI_AS NOT

NULL ,

[FirstName] [varchar] (100) COLLATE SQL_Latin1_General_CP1_CI_AS

NOT NULL ,

[LastName] [varchar] (200) COLLATE SQL_Latin1_General_CP1_CI_AS

NOT

NULL ,

[Email] [varchar] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NOT

NULL ,

[IsAdmin] [bit] NOT NULL ,

[IsBanned] [bit] NOT NULL

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[Board] WITH NOCHECK ADD

CONSTRAINT [PK_Board] PRIMARY KEY CLUSTERED

(

[BoardID]

) ON [PRIMARY]

www.syngress.com

Figure 13.6 Continued

Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 574

Creating a Message Board with ADO and XML • Chapter 13 575

GO

ALTER TABLE [dbo].[Posts] WITH NOCHECK ADD

CONSTRAINT [PK_Posts] PRIMARY KEY CLUSTERED

(

[PostID]

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[Threads] WITH NOCHECK ADD

CONSTRAINT [PK_Threads] PRIMARY KEY CLUSTERED

(

[ThreadID]

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[Users] WITH NOCHECK ADD

CONSTRAINT [PK_Users] PRIMARY KEY CLUSTERED

(

[UserID]

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[Users] WITH NOCHECK ADD

CONSTRAINT [DF_Users_IsAdmin] DEFAULT (0) FOR [IsAdmin],

CONSTRAINT [DF_Users_IsBanned] DEFAULT (0) FOR [IsBanned]

GO

ALTER TABLE [dbo].[Posts] ADD

CONSTRAINT [FK_Posts_Threads] FOREIGN KEY

(

[ThreadID]

) REFERENCES [dbo].[Threads] (

[ThreadID]

) ON DELETE CASCADE ON UPDATE CASCADE ,

CONSTRAINT [FK_Posts_Users] FOREIGN KEY

(

[CreatorID]

www.syngress.com

Figure 13.6 Continued

Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 575

576 Chapter 13 • Creating a Message Board with ADO and XML

) REFERENCES [dbo].[Users] (

[UserID]

)

GO

ALTER TABLE [dbo].[Threads] ADD

CONSTRAINT [FK_Threads_Board] FOREIGN KEY

(

[BoardID]

) REFERENCES [dbo].[Board] (

[BoardID]

) ON DELETE CASCADE ON UPDATE CASCADE ,

CONSTRAINT [FK_Threads_Users] FOREIGN KEY

(

[CreatorID]

) REFERENCES [dbo].[Users] (

[UserID]

)

GO

Lastly, go back to your SQL Enterprise Manager, navigate to your database, and
select the Diagrams node. Right-click and select New Database Diagram.
Click Next, then select our four database tables and hit Next.The diagram
should be created automatically for us and should look a lot nicer than the MS
Access version. (see Figure 13.7).

Designing Your Application
When designing an application, there are two possible main routes.The first is
the procedural approach (anyone familiar with ASP 3.0 and earlier who did not
use COM objects to handle logic knows exactly what I mean): the simple
“Page1” does this,“Page2” does this, and so on.You have a set of “top-down”
ASP scripts (that is, your code starts at the top and executes until it hits the
bottom), with functions including files, which make up your application.There is
technically nothing wrong with this approach, as there are many large-scale appli-
cations that are written exactly this way.

www.syngress.com

Figure 13.6 Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 576

Creating a Message Board with ADO and XML • Chapter 13 577

Your other choice is to take a more Object-Oriented (OO) approach. In an
OO world, you create a set of classes and interfaces that make up the core of your
application. Using these classes, you create a user interface that will define what an
average user would consider your “application.”This approach allows the designer
of the classes to encapsulate a good majority of all the code and logic behind the
application, without exposing it to whomever might be building the user interface
(and likely, the same person will be building both).An OO approach also allows
your application to be used in a variety of ways, and would allow someone to
build multiple user interfaces on top of the exact same set of classes.

Both approaches have their merits and flaws.With the procedural approach,
you will be stuck in ASP.NET for your user interface, and if you want to “copy”
logic from one place to another, you either have to create globally scoped func-
tions, or copy and paste code.The procedural approach does tend to be a bit
easier to create, though, because you do not have the additional overhead of
having to create classes to handle your logic and data.The Object-Oriented
approach effectively encapsulates your entire application into a small set of classes,
grouped into an assembly .dll file, which can be created from another application
and used.This allows you to hand another developer your assembly file, and let
him or her go about building the actual user interface without you ever needing
to know what the user interface was.The drawback to building an application in

www.syngress.com

Figure 13.7 The SQL Server Diagram

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 577

578 Chapter 13 • Creating a Message Board with ADO and XML

an OO-manner is whomever is developing the classes needs to take a lot of care
to get it done properly, and be able to build it in such a manner as to not tie it
exclusively to one type of user interface.

When deciding whether or not dotBoard should be procedural or Object-
Oriented, take into account these things. First and foremost, you need to be able
to maintain your code. If your code is modularized into multiple functions and
organized very well, then the procedural approach doesn’t seem too bad.
However, if your code is placed haphazardly throughout your application, finding
your bugs and improving code at a later date might be harder. If your code is
organized into a set of classes and public interfaces (the methods and procedures
that an application can “see”), it is typically easier to maintain your code, as each
piece of each class is a very small piece of the application as a whole, and making
changes won’t likely take a large amount of code.

The other thing you should think about is that dotBoard is being written in
VB.NET. For anyone who has built an application in straight ASP, you would
probably be more comfortable with the procedural approach. For anyone who
has built an application in ASP and created VB COM objects, you would most
likely be more comfortable with the Object-Oriented approach, but feel some
trepidation about speed and performance issues. For the master gurus out there
who are building C++ ATL COM objects and using them in ASP, you might
scoff at VB.NET and think you would rather stick with C++ ATL COM.Well,
all of you have very valid points.A straight procedural approach is generally
looked down upon in a professional environment,VB COM objects in ASP are
typically regarded as slow and frequently memory- and processor-intensive, and
well, nobody can read the C++ ATL code anyway, so it doesn’t count!

Seriously, though, every point made is very valid about every technology dis-
cussed.That’s where VB.NET comes in.The .NET runtime is remarkably fast.
The Just-In-Time (JIT) compilation of your code only happens the first time it is
executed; so, after that initial execution, your code runs incredibly fast until you
change it (at which point the JIT compilation happens again).VB.NET is also a
fully Object-Oriented language. It provides developers with every good OO
technique available, and it is actually quite easy to write OO applications with it.

All that said, it’s pretty obvious dotBoard should be an Object-Oriented
application. Don’t worry if you’ve never written any OO code before. Object-
Oriented techniques are relatively easy to implement, and even if you don’t think
you’ve ever used any objects before, you probably have (especially if you’ve done
any development in ASP).

www.syngress.com

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 578

Creating a Message Board with ADO and XML • Chapter 13 579

Designing Your Objects
Now that we’ve decided on object orientation, we need to analyze our applica-
tion and determine what our objects will “look like.”At this point, you might say,
“we’ve already done that while analyzing and building our database,” and you’d
be right.We have already done that. Half of our design work is now already
done! The only other part we have to do is map the data we’ve already analyzed
to VB.NET types and group them accordingly.We’re going to do that with the
wonder of UML (Unified Modeling Language). If you don’t know what UML is,
don’t worry; all we’re using it for here is to show you some pretty pictures of
what our classes are going to look like. Please note that all of these objects and all
files will be found on the CD that accompanies this book.

Creating Your Data Access Object
To make it easier for each of your objects to have access to the database, we’re
going to create a singular data access object that does everything for you.We’re
going to call this class DataControl, and it is going to be comprised of solely
shared methods.A shared method means you do not need to create an instance of
a User object to call it. DataControl will contain two Shared methods, GetDataSet
and ExecuteNonQuery. GetDataSet returns a DataSet, and ExecuteNonQuery exe-
cutes a SQL statement and returns nothing.This class is pretty straightforward,
and is shown in Figure 13.8 (likewise, it can also be found on your CD as
DataControl.vb).

Figure 13.8 DataControl.vb

Imports System.Data

Imports System.Data.OleDb

Imports System.Web

Imports System.Configuration

Imports System.Collections.Specialized

Public Class DataControl

Public Shared Function GetDataSet(ByVal SQL As String) As DataSet

Dim connectionString As String

Dim settings As ConfigurationSettings

Dim appSettings As NameValueCollection

www.syngress.com
Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 579

580 Chapter 13 • Creating a Message Board with ADO and XML

appSettings = settings.AppSettings()

connectionString = appSettings.Item("ConnectionString")

Dim connection As New OleDbConnection(connectionString)

connection.Open()

Dim adapter As New OleDbDataAdapter(SQL, connection)

Dim myData As New DataSet()

adapter.Fill(myData)

adapter.Dispose()

connection.Close()

Return myData

End Function

Friend Shared Sub ExecuteNonQuery(ByVal SQL As String)

Dim connectionString As String

Dim settings As ConfigurationSettings

Dim appSettings As NameValueCollection

appSettings = settings.AppSettings()

connectionString = appSettings.Item("ConnectionString")

Dim connection As New OleDbConnection(connectionString)

connection.Open()

Dim myCommand As New OleDbCommand()

myCommand.Connection = connection

myCommand.CommandText = SQL

myCommand.CommandType = CommandType.Text

myCommand.ExecuteNonQuery()

'clean up

www.syngress.com

Figure 13.8 Continued

Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 580

Creating a Message Board with ADO and XML • Chapter 13 581

connection.Close()

myCommand.Dispose()

connection.Dispose()

End Sub

End Class

You see that the two methods in DataControl are in fact, rather simple.As was
discussed earlier in this book, these functions connect to the database and do a
specific function (execute SQL scripts and one returns a DataSet).The one thing
to note is that the connection string is being retrieved from the
ConfigurationSettings.AppSettings.These are dynamic settings that the .NET
runtime gives you access to.When you’re running an ASP.NET application, they
are located in the web.config file. In another type of application, they are located in
ProjectName.exe.config.That’s it for our Data object.The next step is to take a look
at our User object.

Designing the User Class
When we looked at the user information when thinking about the database, we
discovered a number of fields that needed to reside in the User table. Luckily all
our classes will be structured in a way to nearly match the database; the User class
is no exception.The only difference is that this User is a VB.NET class and not a
database table.

There are four basic types of users: Guests, Registered users,Administrators,
and Moderators.All of these should be represented when we build our User class.
Again, you might say something like “but this is an object-oriented application,
and if we have multiple types of one object, shouldn’t they be separate?”Again,
you would be right.There are three types of users.All have similar properties; the
only difference is that some do certain things that others can’t. For instance, a
registered user in a bulletin board would have the ability to post threads and mes-
sages, whereas a guest user would not.A registered user would also have the
ability to edit his or her profile and edit his or her messages, whereas a guest user
would not be able to.An administrator would have the ability to do everything a
registered user could, except globally.A moderator can modify posts and threads
in boards he or she has moderator privileges to.

Now that we’ve identified the multiple types of users, we need to determine
if we should have multiple types of users in our application.A Guest can only

www.syngress.com

Figure 13.8 Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 581

582 Chapter 13 • Creating a Message Board with ADO and XML

browse a bulletin board, as no security is necessary for browsing.A Registered
User can create and edit posts, and modify his or her profile.An Administrator
can do anything he or she wants to the bulletin board.A Moderator can do what
a Registered User can, and can act like an Administrator on the board he or she
is given moderation rights to.

You may want to build some neat OO objects here, but all these things can
be accomplished through a single User class.Take a look at Figure 13.9.

You see that our User object will have the exact same fields as our database
table, which is named exactly the same.This makes it a bit easier to remember
which field in the object matches up to which field in the database.The other
thing you should notice is the three items down at the bottom of the diagram:
Create, Validate, and Update.All are methods the User object will have. Update()
will update the user’s details and save them to the database. Validate is a shared
method of the User class, and can be used to perform all user validation. Create is
also a shared method, and can be used to create a brand new user in the database.

That’s it.That’s the whole User object. Not much to it is there? It has a
Boolean field to signify whether or not it is an administrator, and each Board
object will store the ID of the administrator of that Board, so the User object
doesn’t have to.The only other thing to mention is guest users—a guest user will
just be a User that is Nothing.That is, if you are currently a guest in the applica-
tion, you won’t have a User object created for you. Let’s take a look at the code
involved to create this User object in Figure 13.10 (which can also be found on
your CD called User.vb).

www.syngress.com

Figure 13.9 The User Object Diagram

+Validate() : User
+Update()
+Create() : User

+ID : Long
+Username : String
+Password : String
+FirstName : String
+LastName : String
+Email : String
+IsAdmin : Boolean
+IsBanned : Boolean

User

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 582

Creating a Message Board with ADO and XML • Chapter 13 583

Figure 13.10 The Basics (User.vb)

Public Class User

Private mUsername As String

Private mPassword As String

Private mFirstName As String

Private mLastName As String

Private mUserID As Long

Private mIsAdmin As Boolean

Private mEmail As String

Private mUserID As Long

End Class

That part is clear enough.We declare the User class, and the private variables
necessary to represent each user. Next, declare the public properties for each of
these private variables as shown in Figure 13.11.

Figure 13.11 Public Properties (User.vb)

Public WriteOnly Property Password() As String

Set(ByVal Value As String)

MPassword = Value

End Set

End Property

Public ReadOnly Property ID() As Long

Get

Return mUserID

End Get

End Property

Public Property LastName() As String

Get

Return mLastName

End Get

Set(ByVal Value As String)

www.syngress.com

Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 583

584 Chapter 13 • Creating a Message Board with ADO and XML

mLastName = Value

End Set

End Property

Public Property FirstName() As String

Get

Return mFirstName

End Get

Set(ByVal Value As String)

mFirstName = Value

End Set

End Property

Public Property Username() As String

Get

Return mUsername

End Get

Set(ByVal Value As String)

mUsername = Value

End Set

End Property

Public Property IsAdmin() As Boolean

Get

Return mIsAdmin

End Get

Set(ByVal Value As Boolean)

mIsAdmin = Value

End Set

End Property

Public Property IsBanned() As Boolean

Get

www.syngress.com

Figure 13.11 Continued

Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 584

Creating a Message Board with ADO and XML • Chapter 13 585

Return mIsBanned

End Get

Set(ByVal Value As Boolean)

mIsBanned = Value

End Set

End Property

Public Property Email() As String

Get

Return mEmail

End Get

Set(ByVal Value As String)

mEmail = Value

End Set

End Property

With that out of the way, let’s look at the methods the User object will have.As
we saw earlier, there will be three methods: Validate, CreateUser, and Update. Validate
is a shared method which will give a developer the ability to validate and return a
valid User object, or throw an exception. CreateUser is also a shared method that
gives the developer the ability to create a new User object. Finally, Update will allow
a developer to update the private fields in the User object and commit them to the
database.This will be for tasks like saving passwords and updating e-mail addresses.
Let’s take a look at the first method, Validate, in Figure 13.12.

Figure 13.12 The Validate Method (User.vb)

Public Shared Function Validate(ByVal username As String, _

ByVal password As String) As User

If password.Equals("") Then

Throw New ArgumentException("You must enter a password.")

Else

Dim myData As DataSet = DataControl.GetDataSet("SELECT * " & _

"FROM [Users] WHERE [UserName] = '" & username & "'")

If myData.Tables(0).Rows.Count <= 0 Then

www.syngress.com

Figure 13.11 Continued

Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 585

586 Chapter 13 • Creating a Message Board with ADO and XML

Throw New ArgumentException("Username does not exist.")

Else

If CBool(myData.Tables(0).Rows(0)("IsBanned")) = True Then

Throw New Exception("User is banned")

Else

If password <> _

CStr(myData.Tables(0).Rows(0)("Password")) Then

Throw New ArgumentException("Invalid password")

Else

Return New User(myData.Tables(0).Rows(0))

End If

End If

End If

End If

End Function

The Validate method accepts a username and a password as parameters, and
attempts to verify that those parameters are a valid combination for a registered
user. If the password is empty, it throws an ArgumentException. If, while looking
up the username, it finds that the username is not present in the database, it again
throws an ArgumentException. If the username exists, but the user is banned, then
it throws an Exception. If the username exists, the user is not banned, and the
password passed in was incorrect, once again it throws an ArgumentException.
Finally, if the username is valid and the password is correct, it returns a new User
object, passing in the first DataRow to the User constructor.

At this point, you’re probably wondering why we haven’t discussed the con-
structor of the User object.Well, wait no longer! Here’s the code for the User
object constructor in Figure 13.13.

Figure 13.13 Constructors (User.vb)

Public Sub New(ByVal userId As Long)

Dim myData As DataSet

myData = DataControl.GetDataSet("SELECT * FROM Users " & _

"WHERE UserID = " & Me.mUserID)

www.syngress.com

Figure 13.12 Continued

Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 586

Creating a Message Board with ADO and XML • Chapter 13 587

If myData.Tables(0).Rows.Count <= 0 Then

Throw New ArgumentException("The requested user " & _

does not exist.")

Else

inflate(myData.Tables(0).Rows(0))

End If

myData.Dispose()

End Sub

Public Sub New(ByVal row As DataRow)

inflate(row)

End Sub

There are two constructors here.The second constructor is what the Validate
method called.That constructor forwards the DataRow on to another method
called inflate, which will be discussed in a moment.The first constructor accepts a
user ID as a parameter.This user ID is synonymous with the UserID field in the
User table.The constructor looks up the user based on the user ID. If that user
ID is not found, it throws an ArgumentException. If the user ID is found, it for-
wards the first DataRow in the DataSet to the fillData method in Figure 13.14.

Figure 13.14 The fillData Method (User.vb)

Private Sub inflate(ByVal row As DataRow)

Me.mUsername = CStr(row("Username"))

Me.mFirstName = CStr(row("FirstName"))

Me.mLastName = CStr(row("LastName"))

Me.mIsAdmin = CBool(row("IsAdmin"))

Me.mEmail = CStr(row("Email"))

Me.mUserID = CLng(row("UserID"))

Me.mPassword = CStr(row("Password"))

End Sub

www.syngress.com

Figure 13.13 Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 587

588 Chapter 13 • Creating a Message Board with ADO and XML

As you can see, the inflate method accepts a DataRow as a parameter, and pop-
ulates all the private fields with values from the database.This is frequently called
“inflating” your objects, hence the appropriately named subroutine.The other
thing to notice is that inflate is a private subroutine.This is because you don’t
want any objects outside of the current User object to have access to this method.
It does “utility” work on the object, and is unnecessary for any other object to
call this method.

Now that we’ve discussed how to Validate and return a valid User object, let’s
move on to creating users.Any user can have any username.The only restriction
is that no two users can have the same username.This is because if you had two
users with the same username, the only way to identify which one you wanted is
to have some other sort of unique identifier. Unfortunately, people can typically
remember names and usernames much better than they could some (relatively)
random number. So, in order to keep this username unique, you have to manually
check. If you were a database administrator, you would probably insist on creating
a unique index on the username field in the database, which is completely rea-
sonable. If you feel you need the extra “security” in place to make sure the same
username isn’t taken twice, go ahead and put it in there, but it’s in the CreateUser
method as well, which we will now take a look at in Figure 13.15.

Figure 13.15 The CreateUser Method (User.vb)

Public Shared Function CreateUser(ByVal userName As String, _

ByVal password As String, _

ByVal firstName As String, _

ByVal lastName As String, ByVal email As String) As User

Dim sql As String

Dim myData As DataSet

sql = "SELECT userName FROM Users WHERE userName = '" & _

userName & "'"

myData = DataControl.GetDataSet(sql)

If myData.Tables(0).Rows.Count <= 0 Then

'this username has not been taken

sql = "INSERT INTO [Users] ([Username], [Password], " & _

"[FirstName], [LastName], " & _

www.syngress.com

Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 588

Creating a Message Board with ADO and XML • Chapter 13 589

"[Email], [IsAdmin], [IsBanned]) VALUES ('" & userName & _

"','" & password & "','" & firstName & "','" & lastName & _

"','" & email & "',0,0)"

DataControl.ExecuteNonQuery(sql)

Return User.Validate(userName, password)

Else

'this username has already been taken

Throw New ArgumentException("The username is already taken")

End If

End Function

First, the CreateUser function scans the database to see if the request username
already exists. If it does, it throws an ArgumentException. If the username doesn’t
exist, it builds a SQL statement to insert a new row into the user table and exe-
cutes it. Finally it calls the Validate method and returns the result.

The last method to discuss is the Update method.This method updates the
database with the current state of the object. See Figure 13.16 for the Update
method.

Figure 13.16 The Update Method (User.vb)

Public Sub Update()

Dim sql As String

sql = "UPDATE [Users] SET [Password] = '" & mPassword & _

"', [FirstName] = '" & mFirstName & _

"', [LastName] = '" & mLastName & _

"', [Email] = '" & mEmail & "'"

If Me.IsAdmin = True Then

sql = sql & ", [IsAdmin] = 1"

Else

sql = sql & ", [IsAdmin] = 0"

End If

If Me.IsBanned = True Then

sql = sql & ", [IsBanned] = 1"

Else

www.syngress.com

Figure 13.15 Continued

Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 589

590 Chapter 13 • Creating a Message Board with ADO and XML

sql = sql & ", [IsBanned] = 0"

End If

sql = sql & " WHERE [UserID] = " & mUserID.ToString()

DataControl.ExecuteNonQuery(sql)

End Sub

Again, this method is rather simple. It generates a SQL statement to update the
database.The If statements are there to insert the correct Boolean value into the
database instead of “True” or “False.” Finally, after building the SQL statement, it
executes it and exits the method.

www.syngress.com

Figure 13.16 Continued

Creating Console Applications to Test Your Progress
Visual Studio .NET gives us an easy way to test and debug our applica-
tions, without actually needing to have a decent User Interface to look
at. They call it a Console Application. Sure, Console Applications are
useful by themselves when you don’t need a UI, but when you are
building a relatively large application and you don’t want to get yourself
confused trying to build the UI and the classes at the same time, con-
sider using a Console Application to debug your project.

Go ahead and try it.

1. Add a new Console Application to your project.

2. Add a reference to your dotBoardObjects project to the
Console Application.

3. Set your new Console Application as the start-up project.

4. Start putting in some code to test the classes you’ve written.
Maybe something like this:

Dim myUser As User

myUser = User.CreateUser("myuser", "mypassword", "joe", _

"blow", "joe.blow@email.com")

Debugging…

Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 590

Creating a Message Board with ADO and XML • Chapter 13 591

Designing the Board Class
Now that we’ve designed the User class, let’s take a look at the Board class.A lot
of the concepts in the User class will be taken from the Board class.That is, the
Board class will mimic the Board table in the database, and will have a couple of
similarly named methods as in the User class. Let’s take a look at a UML diagram
of the Board class in Figure 13.17.

www.syngress.com

Console.WriteLine(myUser.FirstName)

Console.WriteLine("Press enter to finish")

Console.ReadLine()

Before you run this, put a break point on the line that
creates a user.

5. Step through the code using F8 (if you set up your Visual
Studio to use the Visual Basic Profile) and watch as the exe-
cution moves into the User class you created. You can step
through your application and watch as every line of code
gets executed. If an error pops up, stop your application, fix
the error, and run the application again.

You should use and abuse this technique as much as possible. Not
only does it allow you to test and debug your classes, but it also does it
without your needing to build a UI at the same time you build the
objects.

Figure 13.17 The Board Class

+Update()
+CreateThread()
+Delete()
+DeleteThread()
+DeletePost()
+CreateBoard() : Board

+BoardID : Long
+Name : String
+Description : String
+ChildThreads
+ChildThread

Board

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 591

592 Chapter 13 • Creating a Message Board with ADO and XML

Just by looking at this diagram, you can see that the Board class has a lot more
functionality than the User class. Notice the four fields from the Board table:
BoardID, Name, and Description. Just like the User class, these are directly repre-
sentative of what exists in the database.The other two fields you shouldn’t recog-
nize. ChildThreads returns a list of the Threads that exist in this Board.
ChildThread is a property that accepts a ThreadID to return a specific Thread
that is directly located in a specific Board.

The methods available to a Board object should be somewhat self-explanatory.
The Update method does exactly what the User class Update method did: updates
the database with the private fields in the database.The Delete method deletes
the Board from the database. DeleteThread deletes a specific Thread from the
database. DeletePost deletes a specific Post that is located somewhere in this Board.
CreateThread creates a new Thread and adds it to the private list of Threads in this
Board. Like the User class, the Board class has a way to create new Boards, called
CreateBoard. Let’s start off by showing the basics of the Board class in Figure 13.18
(which can also be found on your CD under the name Board.vb).

Figure 13.18 Private Fields and Public Properties (Board.vb)

Public Class Board

Private mBoardID As Long

Private mName As String

Private mDescription As String

Private myThreads As ThreadList

Public ReadOnly Property ChildThread(ByVal threadId As Long) As _

Thread

Get

'lookup the correct thread

Dim i As Integer

For i = 0 To Me.ChildThreads.Count - 1

Dim myThread As Thread = Me.ChildThreads.Item(i)

If myThread.ID = threadId Then

Return myThread

End If

Next i

'if we've gotten to this point, there is no thread

www.syngress.com

Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 592

Creating a Message Board with ADO and XML • Chapter 13 593

'with that ID in this board. throw an exception

Throw New ArgumentException("Thread does not exist")

End Get

End Property

Public ReadOnly Property ChildThreads() As ThreadList

Get

Return myThreads

End Get

End Property

Public ReadOnly Property ID() As Long

Get

Return mBoardID

End Get

End Property

Public Property Name() As String

Get

Return mName

End Get

Set(ByVal Value As String)

mName = Value

End Set

End Property

Public Property Description() As String

Get

Return mDescription

End Get

Set(ByVal Value As String)

mDescription = Value

End Set

End Property

www.syngress.com

Figure 13.18 Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 593

594 Chapter 13 • Creating a Message Board with ADO and XML

The public properties in this class are a little more complex than the properties
in the User class.The public properties for the private fields are easy to understand,
but ChildThread and ChildThreads are a bit more complex, as is the private
myThread variable. Let’s start with myThread, which is defined as being of type
ThreadList. If you’re familiar with the System.Collections namespace, you’ll definitely
notice that this is not one of the built-in .NET collections.ThreadList is actually a
custom list that wraps an ArrayList, which will be discussed a bit later. For now, just
accept the fact that this list collects all the Threads in a given Board.

The ChildThreads property returns the private myThreads variable.The
ChildThread property accepts a ThreadID as a parameter, and looks up that
ThreadID in the myThreads list. It loops through the list, and compares the ID of
the Thread in the list with the ThreadID passed in. If it finds a match, it returns
that Thread, otherwise it throws an ArgumentException.Again,ThreadList will be
discussed later, but for now, let’s move on to the shared CreateBoard method, as
shown in Figure 13.19.

Figure 13.19 The CreateBoard Method (Board.vb)

Public Shared Function CreateBoard(ByVal name As String, _

ByVal description As String, _

ByVal creator As User) As Board

Dim sql As String

Dim myData As DataSet

If creator.IsAdmin = True Then

sql = "SELECT BoardName FROM [Board] WHERE [BoardName] = '" & _

name & "'"

myData = DataControl.GetDataSet(sql)

If myData.Tables(0).Rows.Count <= 0 Then

'this board name does not already exist.

sql = "INSERT INTO [Board] ([BoardName], " & _

"[BoardDescription], " & _

") VALUES ("

sql &= "'" & name & "','" & description & _

"')"

www.syngress.com

Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 594

Creating a Message Board with ADO and XML • Chapter 13 595

'create the board

DataControl.ExecuteNonQuery(sql)

'return the board

Return New Board(name)

Else

'board name already exists

Throw New Exception("This board name already exists")

End If

Else

Throw New Exception("Only admins may create boards")

End If

End Function

The first step in this method is to check to see if the user that is requesting a
new Board be created is an admin. If the user is not an admin, it throws an
exception. If the user is an admin, it then checks to see if a Board with that name
has already been created. Like the username field in the User class, the name field
in the Board class should be unique.This makes it easier to manage your Boards
and to make sure they’re named appropriately. If the Board name already exists, it
throws an exception, otherwise it generates the SQL statement necessary to
create a Board. It then executes the SQL statement and returns a new Board
object based on the Board name. Let’s take a look at the Board constructor,
shown in Figure 13.20, to see what it does.

Figure 13.20 Constructor (Board.vb)

Public Sub New(ByVal name As String)

Dim sql As String

Dim myData As DataSet

sql = "SELECT * FROM [Board] WHERE [BoardName] = '" & _

name & "'"

myData = DataControl.GetDataSet(sql)

If myData.Tables(0).Rows.Count > 0 Then

Me.inflate(myData.Tables(0).Rows(0))

www.syngress.com

Figure 13.19 Continued

Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 595

596 Chapter 13 • Creating a Message Board with ADO and XML

Else

Throw New Exception("Board does not exist")

End If

End Sub

Private Sub inflate(ByVal myRow As DataRow)

mName = CStr(myRow("BoardName"))

mDescription = CStr(myRow("BoardDescription"))

mBoardID = CLng(myRow("BoardID"))

myThreads = New ThreadList(mBoardID)

End Sub

The Board constructor takes the Board name as a parameter, and looks in the
database for that Board name. If it cannot find the Board, it throws an Exception,
otherwise it passes the first DataRow in the DataSet to the inflate method.The
inflate method functions exactly as it did in the User class: it fills up the private
fields with values.The only difference here is that the myThreads variable is ini-
tialized and the BoardID is passed to it.Again, the ThreadList will be discussed a
bit later, but trust that the ThreadList takes the BoardID passed in and creates a
collection of the Threads in this Board. Next, let’s take a look at the Update
method in Figure 13.21.

Figure 13.21 The Update Method (Board.vb)

Public Sub Update(ByVal requestor As User)

If requestor.IsAdmin Then

'update the database with this board's details

Dim sql As String

sql = "UPDATE [Board] SET [BoardName] = '" & mName & _

"', BoardDescription = '" & mDescription & _

" WHERE [BoardID] = " & mBoardID.ToString()

DataControl.ExecuteNonQuery(sql)

End If

End Sub

www.syngress.com

Figure 13.20 Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 596

Creating a Message Board with ADO and XML • Chapter 13 597

The Update method in the Board class does exactly what the User class’s
Update method did.The only real difference here is that it checks to make sure
the user requesting the update is really an admin. If the user is not an admin, then
it throws an exception. Next, take a look at Figure 13.22 for the CreateThread
method.

Figure 13.22 The CreateThread Method (Board.vb)

Public Sub CreateThread(ByVal subject As String, _

ByVal creator As User)

Dim sql As String

sql = "INSERT INTO [Threads] ([ThreadSubject], " & _

"[CreatorID], [BoardID]) VALUES ('" & subject & _

"'," & creator.ID.ToString() & "," & _

mBoardID.ToString() & ")"

DataControl.ExecuteNonQuery(sql)

'reinitialize the thread list

myThreads.InitializeThreads()

End Sub

The CreateThread method builds the SQL statement necessary to insert a new
Thread into the database, and then reinitializes the private ThreadList variable by
calling its InitializeThreads method.You may be wondering why the Board class
has the Create method for its child objects, whereas both the User class and Board
class have their Create method located in their class definitions.This is because
both the User class and Board class do not have any parent-child relationships with
any other classes.When you have a parent object and multiple child objects, the
typical place to put the creation of the child objects is in the parent object.This is
a matter of semantics— if you prefer to have your child objects create themselves,
feel free to do it that way.

Let’s explore how to delete objects.The Board class contains the Delete,
DeleteThread, and DeletePost methods.The Board class can obviously delete itself,
but why would it also contain the ability to delete both threads and posts? It has
these two methods because the Board class is where the ModeratorID lives, and
Moderators can delete both threads and posts, so it just seems natural to put these
two delete methods in the Board class. Look at Figure 13.23 for the code.

www.syngress.com

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 597

598 Chapter 13 • Creating a Message Board with ADO and XML

Figure 13.23 The Delete Method (Board.vb)

Public Sub Delete(ByVal requestor As User)

'only admins can delete boards

If requestor.IsAdmin Then

Dim sql As String

sql = "DELETE FROM Boards WHERE BoardID = " & _

mBoardID.ToString()

DataControl.ExecuteNonQuery(sql)

Else

Throw New ArgumentException("User not permitted to delete")

End If

End Sub

The first step in the Delete method is to check to make sure the requesting
user has the appropriate access rights to delete this board. If the user is not an
admin, then an ArgumentException is thrown. If the user does have access rights
to delete a Board, then the SQL statement is built to delete the Board from the
database.The SQL statement is executed, and the Board is officially deleted.You
can see the DeleteThread method in Figure 13.24.

Figure 13.24 The DeleteThread Method (Board.vb)

Public Sub DeleteThread(ByVal thread As Thread, ByVal requestor As

User)

If requestor.IsAdmin Then

Dim sql As String

sql = "DELETE FROM Threads WHERE ThreadID = " & _

thread.ID.ToString()

DataControl.ExecuteNonQuery(sql)

'reinitialize the threads

myThreads.InitializeThreads()

Else

Throw New ArgumentException("User not permitted to delete")

End If

End Sub

www.syngress.com

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 598

Creating a Message Board with ADO and XML • Chapter 13 599

The first step in the DeleteThread method is to make sure the requesting user
has the appropriate access to delete this thread. If the user is neither an admin nor
a moderator of this Board, then an ArgumentException is thrown. If the user
does have access to delete a thread, then the SQL statement is built to delete the
thread from the database.The SQL statement is executed, and the ThreadList is
reinitialized by calling its InitializeThreads method.

The next method we need is the DeletePost method.Take a look at Figure
13.25 for its implementation.

Figure 13.25 The DeletePost Method (Board.vb)

Public Sub DeletePost(ByVal thread As Thread, ByVal post As Post, _

ByVal requestor As User)

If requestor.IsAdmin Then

Dim sql As String

sql = "DELETE FROM Posts WHERE PostID = " & _

post.ID.ToString()

DataControl.ExecuteNonQuery(sql)

'reinitialize the posts in the thread

thread.ChildPosts.InitializePosts()

Else

Throw New ArgumentException("User not permitted to delete")

End If

End Sub

Just as in the DeleteThread method, the first step in the DeletePost method is to
make sure the requesting user has the appropriate access rights to delete this post.
If the user is neither an admin nor a moderator of this Board, then an
ArgumentException is thrown. If the user does have access to delete a post, then
the SQL statement is built to delete the post from the database.The SQL state-
ment is executed, and the Threads ChildPosts property is reinitialized by calling its
InitializePosts method.

Designing the ThreadList Class
We promised you that we would discuss the ThreadList, and here it is.As was
mentioned earlier, the ThreadList class is a class that wraps an ArrayList. By wraps,

www.syngress.com

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 599

600 Chapter 13 • Creating a Message Board with ADO and XML

we mean it contains a private ArrayList thereby holding its list of Threads, and
exposes certain custom functionalities not necessarily pre-built into the ArrayList
class. Let’s take a look at a UML diagram for the ThreadList class in Figure 13.26.

As you can see from this diagram, there isn’t much to the ThreadList. It con-
tains a count of the number of Threads in the list, contains an Item property to
allow you to access the Threads in the list, and gives you the ability to manually
force the reinitialization of the list through the InitializeThreads method.Again,
let’s start at the basics and build up from there in Figure 13.27 (which can also be
found on your CD under the name ThreadList.vb).

Figure 13.27 The Basics (ThreadList.vb)

Public Class ThreadList

Private list As ArrayList

Private mBoardID As Long

Public Sub New(ByVal BoardID As Long)

mBoardID = BoardID

Me.InitializeThreads()

End Sub

Public ReadOnly Property Count() As Integer

Get

Return list.Count

End Get

End Property

End Class

The ThreadList class contains only two private fields: list and mBoardID.The
list variable is used to hold all your Threads, and mBoardID is used to look up

www.syngress.com

Figure 13.26 The ThreadList Class

+InitializeThreads()

+Count : Integer
+Item

ThreadList

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 600

Creating a Message Board with ADO and XML • Chapter 13 601

the Threads in a given Board.The constructor accepts a BoardID, and calls the
InitializeThreads method, as shown in Figure 13.28.

Figure 13.28 The InitializeThreads Method (ThreadList.vb)

Public Sub InitializeThreads()

Dim myData As DataSet

Dim sql As String

sql = "SELECT [Threads].*, [Users].* FROM [Threads] " & _

"INNER JOIN [Users] " & _

"ON [Users].[UserID] = [Threads].[CreatorID] " & _

"WHERE " & _

"[BoardID] = " & mBoardID.ToString() & _

" ORDER BY [Threads].[ThreadID] DESC"

myData = DataControl.GetDataSet(sql)

list = New ArrayList()

Dim myRow As DataRow

For Each myRow In myData.Tables(0).Rows

list.Add(myRow)

Next

End Sub

The InitializeThreads method is rather straightforward, but there is one major
concept that needs to be mentioned. First, a SQL statement is built to select the
Threads located in the appropriate Board (this is where the mBoardID variable
comes into play).The SQL statement also joins on the Users table, to allow for
the Thread object to know about the User who created the Thread. Next, the list
is initialized, and each DataRow in the resultant DataSet is added to the list.This
is where the important concept is.The private list currently contains a set of
DataRow objects. Obviously, you do not want to expose a bunch of DataRow
objects as your list of Threads, so this is where the Item property comes into
effect. See Figure 13.29 regarding the Item property.

www.syngress.com

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 601

602 Chapter 13 • Creating a Message Board with ADO and XML

Figure 13.29 The Item Property (ThreadList.vb)

Public Function Item(ByVal index As Integer) As Thread

1 Dim myObject As Object = list.Item(index)

2 If myObject.GetType() Is GetType(Thread) Then

3 'it is already a thread, so nothing further is needed

4 Else

5 Dim myThread As Thread

6 myThread = New Thread(CType(list.Item(index), DataRow))

7 'replace the item in the list with

8 'an actual thread object

9 list.Item(index) = myThread

10 End If

11

12 Return CType(list.Item(index), Thread)

End Function

The Item property is a little more complex than the average property. Let’s
review it, line by line. Line 1 creates a variable called myObject of type Object and
sets it equal to the object that is at the specified index of the ArrayList. Line 2
compares the type of the object to the type of the Thread class. If they are the
same, it does nothing; if not, it enters the Else part of the If statement (lines 5 –
9). Next, a Thread variable called myThread is declared and set to a new Thread on
line 6, passing in the object that is in the specified index in the ArrayList.That
object is cast to a DataRow using CType. Line 9 sets the object at the specified
index in the ArrayList to the myThread variable. Finally, on line 12 it returns the
Thread that is in the specified index of the ArrayList (and again, is cast to be a
Thread object).

You may be wondering to yourself exactly what all of this accomplishes.Well,
if you remember from the InitializeThreads method, the ArrayList is filled with
DataRow objects.We do not want to directly expose anyone using our objects to
DataRow objects, so we need to instead give them Thread objects. So, behind the
scenes, every time a new index is requested from the ArrayList, we quietly
“switch” the variable in that index from a DataRow to the appropriate Thread
object.You may also ask why this class doesn’t just put the Threads into the
ArrayList from the start instead of doing it this way.The answer is simple: there is
no need for the overhead of having multiple Thread objects (each with other

www.syngress.com

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 602

Creating a Message Board with ADO and XML • Chapter 13 603

objects inside them) in the list when you can save memory and time instantiating
objects by just keeping the data for each Thread object until it is actually
requested.When developing large-scale applications with many parent-child hier-
archical relationships, a technique like this will save you and your application a lot
of time.

Designing the Thread class
The Thread class is the “middle child” in our hierarchy of objects. Luckily for us,
a lot of its functionality and concepts are borrowed directly from the Board class,
so this should be pretty quick. Let’s take a look at another UML diagram in
Figure 13.30.

Like every class we’ve examined so far, the Thread class shares the same pri-
vate fields as the Thread table in the database. Like the Board class, the Thread class
contains two properties to access its children: ChildPost and ChildPosts. ChildPost
retrieves an individual Post object from its list, and ChildPosts returns the entire
PostList. PostList will be discussed a bit later.Thread also contains the method to
create child Posts. Let’s start with the basics in Figure 13.31.

Figure 13.31 The Basics (Thread.vb)

Public Class Thread

Private mThreadID As Long

Private mSubject As String

Private mCreator As User

Private myPosts As PostList

Public Sub New(ByVal myRow As DataRow)

inflate(myRow)

End Sub

www.syngress.com

Figure 13.30 The Thread Class

+CreatePost()

+ID : Long
+Subject : String
+Creator : User
+ChildPost
+ChildPosts

Thread

Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 603

604 Chapter 13 • Creating a Message Board with ADO and XML

Private Sub inflate(ByVal myRow As DataRow)

mSubject = CStr(myRow("ThreadSubject"))

mThreadID = CLng(myRow("ThreadID"))

mCreator = New User(myRow)

myPosts = New PostList(mThreadID)

End Sub

Public ReadOnly Property ChildPost(ByVal postId As Long) _

As Post

Get

'lookup the correct Post

Dim i As Integer

For i = 0 To Me.ChildPosts.Count - 1

Dim myPost As Post = Me.ChildPosts.Item(i)

If myPost.ID = postId Then

Return myPost

End If

Next i

'if we've gotten to this point, there is no Post

'with that ID in this board. throw an exception

Throw New ArgumentException("Post does not exist")

End Get

End Property

Public ReadOnly Property ChildPosts() As PostList

Get

Return myPosts

End Get

End Property

Public ReadOnly Property ID() As Long

Get

www.syngress.com

Figure 13.31 Continued

Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 604

Creating a Message Board with ADO and XML • Chapter 13 605

Return mThreadID

End Get

End Property

Public Property Subject() As String

Get

Return mSubject

End Get

Set(ByVal Value As String)

mSubject = Value

End Set

End Property

Public ReadOnly Property Creator() As User

Get

Return mCreator

End Get

End Property

End Class

First, you’ll notice the private fields that are the same as the fields in the
database.You’ll also notice that a Thread has a Creator field and property that are
User objects representing the user that created this Thread. Like the Board class,
this class has a constructor that accepts a DataRow as a parameter and then calls
inflate to fill up the private fields using that DataRow.Also like Board, you have
two child object properties, ChildPost and ChildPosts. ChildPost is used to return a
single Post, and ChildPosts is used to return the entire PostList. Let’s take a look at
the next method in the Thread class, CreatePost, in Figure 13.32.

Figure 13.32 The CreatePost Method (Thread.vb)

Public Sub CreatePost(ByVal subject As String, _

ByVal body As String, _

ByVal creator As User)

www.syngress.com

Figure 13.31 Continued

Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 605

606 Chapter 13 • Creating a Message Board with ADO and XML

Dim sql As String

sql = "INSERT INTO [Posts] ([PostSubject], " & _

"[PostBody], " & _

"[CreatorID], [ThreadID]) VALUES ('" & subject & _

"','" & body & "'," & creator.ID.ToString() & "," & _

mThreadID.ToString() & ")"

DataControl.ExecuteNonQuery(sql)

'reinitialize the thread list

myPosts.InitializePosts()

End Sub

Taking a look at the CreatePost method, you’ll notice that it does almost
exactly what CreateThread did in the Board class. It builds a SQL statement to
create a new Post, then executes that statement and reinitializes the private
PostList object.

Designing the PostList Class
Being that we’re almost finished creating our classes, it’s time to look at the
PostList class.You may be thinking to yourself “I wonder if the PostList class is
similar to the ThreadList class”. Such thinking should be rewarded. PostList and
ThreadList are nearly identical, except for in regards to what type of object they
collect.Again, let’s take a look at the UML diagram for the class first in Figure
13.33, then in Figure 13.34 we’ll review the basics of this class (something which
can also be found on your CD as PostList.vb).

Figure 13.34 The Basics (PostList.vb)

Public Class PostList

Private list As ArrayList

Private mThreadID As Long

www.syngress.com

Figure 13.32 Continued

Figure 13.33 The PostList Class

+InitializePosts()

+Count : Integer
+Item

PostList

Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 606

Creating a Message Board with ADO and XML • Chapter 13 607

Public Sub New(ByVal ThreadID As Long)

mThreadID = ThreadID

Me.InitializePosts()

End Sub

Public Sub InitializePosts()

Dim myData As DataSet

Dim sql As String

sql = "SELECT [Users].*, [Posts].* FROM " & _

"[Posts] INNER JOIN [Users] " & _

"ON [Users].[UserID] = [Posts].[CreatorID] " & _

"WHERE " & _

"[ThreadID] = " & mThreadID.ToString() & _

" ORDER BY PostDate DESC"

myData = DataControl.GetDataSet(sql)

list = New ArrayList()

Dim myRow As DataRow

For Each myRow In myData.Tables(0).Rows

list.Add(myRow)

Next

End Sub

Public ReadOnly Property Count() As Integer

Get

Return list.Count

End Get

End Property

End Class

www.syngress.com

Figure 13.34 Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 607

608 Chapter 13 • Creating a Message Board with ADO and XML

Just like ThreadList, PostList contains a Count property, a method to initialize
posts in a thread, and a constructor that accepts the ID of the parent object.The
only real difference here is that this class gets values from the User table instead
of the Thread table. Next, let’s examine the Item function in Figure 13.35.

Figure 13.35 The Item Function (PostList.vb)

Public Function Item(ByVal index As Integer) As Post

Dim myObject As Object = list.Item(index)

If myObject.GetType() Is GetType(Post) Then

'it is already a post, so nothing further is needed

Else

Dim myPost As Post

myPost = New Post(CType(list.Item(index), DataRow))

'replace the item in the list with

'an actual post object

list.Item(index) = myPost

End If

Return CType(list.Item(index), Post)

End Function

In reviewing this Item function, note that it looks remarkably similar to the
Item function in the ThreadList class. In fact, it is exactly the same except that it
uses Post instead of Thread. Other than that difference, PostList is exactly the
same as ThreadList.

Designing the Post Class
So far, you should have noticed most of the classes in our code share a lot of the
same ideas: add, update, lists, mimicking the database tables.Well, the Post class is
no different. In fact, it is rather similar to both the Board and Thread classes. Let’s
take a look at the UML diagram for this class in Figure 13.36.

Just like the other classes, this one is remarkably similar to its brothers—espe-
cially the Thread class.The only real difference between this class and the Thread
class is that Post has a Body field, pulls its values from the Post table, and doesn’t
have any child objects. Let’s take a look at the whole class in Figure 13.37 (which
can be found on your CD as Post.vb), as there really isn’t much to it.

www.syngress.com

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 608

Creating a Message Board with ADO and XML • Chapter 13 609

Figure 13.37 Post.vb

Public Class Post

Private mPostID As Long

Private mPostSubject As String

Private mPostBody As String

Private mCreator As User

Private mPostDate As Date

Public Sub New(ByVal myRow As DataRow)

inflate(myRow)

End Sub

Public Sub Update(ByVal requestor As User)

If requestor.ID = mCreator.ID Then

Dim sql As String

sql = "UPDATE [Posts] SET [PostSubject] = '" & _

mPostSubject & "', [PostBody] = '" & mPostBody & _

"' WHERE [PostID] = " & mPostID.ToString()

DataControl.ExecuteNonQuery(sql)

Else

Throw New ArgumentException _

("Only the creator of a post can update it")

End If

End Sub

Private Sub inflate(ByVal myRow As DataRow)

mPostID = CLng(myRow("PostID"))

www.syngress.com

Figure 13.36 The Post Class

+Update()

+ID : Long
+Subject : String
+Body : String
+Creator : User
+PostDate : Date

Post

Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 609

610 Chapter 13 • Creating a Message Board with ADO and XML

mPostSubject = CStr(myRow("PostSubject"))

mPostBody = CStr(myRow("PostBody"))

mCreator = New User(myRow)

mPostDate = CDate(myRow("PostDate"))

End Sub

Public ReadOnly Property ID() As Long

Get

Return mPostID

End Get

End Property

Public Property Subject() As String

Get

Return mPostSubject

End Get

Set(ByVal Value As String)

mPostSubject = Value

End Set

End Property

Public Property Body() As String

Get

Return mPostBody

End Get

Set(ByVal Value As String)

mPostBody = Value

End Set

End Property

Public ReadOnly Property Creator() As User

Get

Return mCreator

www.syngress.com

Continued

Figure 13.37 Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 610

Creating a Message Board with ADO and XML • Chapter 13 611

End Get

End Property

Public ReadOnly Property PostDate() As Date

Get

Return mPostDate

End Get

End Property

End Class

As you can see, this class has five private fields with the corresponding five
public properties. In addition, it has a constructor that accepts a DataRow param-
eter which passes the DataRow to the inflate method. Finally, it has an update
method, with the rule that only the creator of the Post can actually edit the Post.
Doesn’t seem too hard, does it?, Especially after all the other classes we’ve dealt
with. It almost seems passé.

Designing the MessageBoard Class
We’ve finally gotten every class in our message board object library finished; now
all we need is a way to get a list of every Board object from our database.This is
accomplished using the MessageBoard class.We won’t bother to show you a UML
diagram of the MessageBoard class, as there is only one method in it: GetBoards.
Let’s take a look at the code in Figure 13.38 (which can be found on your CD
under the name MessageBoard.vb).

Figure 13.38 MessageBoard.vb

Public Class MessageBoard

Public Shared Function GetBoards() As ArrayList

Dim list As New ArrayList()

Dim sql As String

Dim myData As DataSet

Dim myRow As DataRow

sql = "SELECT [BoardName] FROM [Board] ORDER BY [BoardName] Asc"

www.syngress.com

Figure 13.37 Continued

Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 611

612 Chapter 13 • Creating a Message Board with ADO and XML

myData = DataControl.GetDataSet(sql)

For Each myRow In myData.Tables(0).Rows

Dim myBoard As Board

myBoard = New Board(CStr(myRow("BoardName")))

list.Add(myBoard)

Next myRow

Return list

End Function

End Class

This class is fairly easy to understand.What it does is look up each
BoardName from the database, and create a new Board object based on that
name. It then adds each Board to its list, and finally returns the list.

That’s it. Every single one of our objects to be used in dotBoard is com-
pletely finished.You may wonder why we did all this work ahead of time instead
of just jumping into the application itself.That is a very good question, and as
such, has a very good answer.We did all this work designing and setting things up
so that when we actually build our application, it will go smoothly, quickly, and
won’t require a lot of coding in the User Interface.Any good application splits
the User Interface from the actual implementation of the application, which is
exactly what we did.We are about to move on to the user interface of our mes-
sage board application.You will see that using the work we’ve already done, the
rest of this application is going to be very straightforward and easy.

Designing the User Interface
Finally, we’ve gotten to our User Interface. Our database is constructed.All of our
message board classes are created; the final thing to do is to put a UI on top of it
all. Just like when we created the classes our applications are going to use, we
need to sit and think for a few minutes to determine exactly what it is our mes-
sage board will do.The obvious requirements are that a user must be able to reg-
ister, log in, and modify his or her profile.Anyone must be able to browse the
Boards,Threads, and Posts. Registered users must be able to create threads and

www.syngress.com

Figure 13.38 Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 612

Creating a Message Board with ADO and XML • Chapter 13 613

posts, and administrators must have the ability to administer users and create and
delete boards.

Sound like a lot? Well, since we have a good majority of this work already
built into our numerous classes, most of our work now is to create the UI and tie
events to methods our objects will handle.The only other thing our message
board should be able to do is be “changed” at will.That is, colors, fonts, and any
other sort of styling element should be able to be changed without needing to
actually modify every single control we place on our form.This will be discussed
in a moment, but for now, rest assured, it will be very exciting, and most of the
work will be done for us! Let’s start by figuring out how to register and log in.

www.syngress.com

Copying ASP.NET Applications to Multiple Computers
If you are using the examples on your CD, please perform the following
steps to get your ASP.NET message board up and running on your
computer.

■ Copy the files from your CD to a folder underneath your
WWWRoot folder, typically located at C:\Inetpub\WWRoot.
Name this folder dotBoardUI.

■ Open up the Internet Services Manager from
Administrative Tools in the Control Panel.

■ Expand the Internet Information Services node, then your
computer’s node, and finally the Default Web Site node.

■ Find your dotBoardUI folder. Right-click and select
Properties to bring up the Properties pane.

■ Look at the Application Settings panel, and click the Create
button next to the grayed out Application Name label and
text box.

■ Hit OK.

Developing & Deploying…

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 613

614 Chapter 13 • Creating a Message Board with ADO and XML

Setting Up General Functions
The first step in designing our application is to create the ASP.NET application.
You can either get the solution from the CD, or create your own. If you get the
files from the CD, they are in a folder called “dotBoardUI” in the Chapter 13
folder.The dotBoard.sln file is the main solution file, and everything else in that
folder is a part of the project. Either way, your application should be named
dotBoardUI, to go with your dotBoardObjects class library.After you have created
your application, add your dotBoardObjects project to your solution, and add a
reference to the newly added project to your ASP.NET application. Next, rename
Web Form1.aspx to default.aspx.This will make it easier when it comes time to
deploy your application, as default.aspx is typically one of the default documents
IIS serves when the browser doesn’t request a specific file in your application.

Now that you have your project created and the appropriate references made,
let’s get started on the groundwork for our application. If you think about it,
every page you make will likely need access to the currently logged in user.
There are many reasons for this as you’ll see later, so for now just assume that
every page will need that information.There are many ways to do this. For
instance, you can copy and paste the code necessary to get this information on
every page.Anyone familiar with programming techniques should sense a red flag
go up at that statement. Copying and pasting the code is a terrible idea, for so
many reasons that we don’t have space to state them here.Another solution avail-
able is to create a public module with the common functions your pages would
need.This is a good solution, but let’s do it a little differently.We are going to
have one Web Form that all our Web Forms will inherit from.Why would we do
this? So every Web Form you create will have direct access to the common
methods, and every user control you put on these Web Forms will be able to get
the information easily.

Add a new class to your project and name it FormBase.vb.We’re not adding a
Web Form in this case because we don’t need any sort of UI for our FormBase;
we just need access to a common set of methods.Take a look at the basic code in
Figure 13.39 (which can also be found on your CD called FormBase.vb).

Figure 13.39 The Basics (FormBase.vb)

Public Class FormBase

Inherits System.Web.UI.Page

End Class

www.syngress.com

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 614

Creating a Message Board with ADO and XML • Chapter 13 615

Pretty easy, right? What we have here is a class that inherits from System.Web
.UI.Page.This allows all our Web Forms to inherit directly from this class, instead
of inheriting from System.Web.UI.Page.The next thing we need is for our
FormBase to be able to have a reference to the currently logged in user (if there
is one). Here is the code to do just that in Figure 13.40.

Figure 13.40 Maintaining the Current User (FormBase.vb)

Private mCurrentUser As dotBoardObjects.User

Public Property CurrentUser() As dotBoardObjects.User

Get

Return mCurrentUser

End Get

Set(ByVal Value As dotBoardObjects.User)

mCurrentUser = Value

'add the user's ID to the session

Session.Add("userid", Value.ID.ToString())

End Set

End Property

Public ReadOnly Property IsLoggedIn() As Boolean

Get

Return Not mCurrentUser Is Nothing

End Get

End Property

All we have here is a private dotBoardObjects.User object, and a public property
to retrieve it.The Set property sets the private field with the value passed in, and
adds the user ID of the passed in User object to the session.We do this so a user
does not have to log in multiple times while perusing your message board.You’ll
see where this comes into play later.The other property we have is one that
returns a Boolean value of whether or not there is a currently logged in user.
This property makes it easier for someone to determine if there is a logged in
user. Basically, instead of having to test for Nothing over and over, you use this
Boolean property.

www.syngress.com

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 615

616 Chapter 13 • Creating a Message Board with ADO and XML

That is all the state maintaining we’ll need in our base class.The only other
thing our FormBase class needs to do is fulfill that last requirement we talked
about.That is, the ability to modify every control on every form without needing
to actually rename the class names on elements.This is probably one of the most
interesting techniques dotBoard will use. Basically, what we will do is create the
code necessary to automate the process of restyling every control in every Web
Form.This might sound like a daunting task, but actually once you take a look at
it, it is rather simple.The first step we need to take is to open up our web.config
file and add the following lines of XML directly beneath the <configuration>
tag as shown in Figure 13.41 (which can also be found on your CD called
web.config).

Figure 13.41 The web.config File

<appSettings>

<add key="ConnectionString"

value="Provider=Microsoft.Jet.OLEDB.4.0;

DataSource="C:\Location\To\Your\database\dotBoard.mdb;

User ID=Admin;Password=;" />

<add key="XmlConfigFile"

value="C:\Inetpub\WWWRoot\dotBoardUI\styles.xml" />

</appSettings>

Okay, now what exactly does that mean? Your <appSettings> are custom set-
tings you create and have access to in your application.We are creating two
custom settings, which are added using the <add> tag.The key attribute is the
name of the settings, and the value attribute is obviously the value. Here we are
adding two keys, ConnectionString and XmlConfigFile. ConnectionString is what you
use to connect to your database with. Remember the DataControl class and how
it accessed System.Configuration.ConfigurationSettings? The ConnectionString key is
exactly what that class will use.The other key is XmlConfigFile, which is used to
hold the location to your XML file that will hold the style information we dis-
cussed earlier. Please change the values of each to represent where you actually
have the files on your computer located.

We now have the ConnectionString and XmlConfigFile keys added to our
appsettings. Let’s start discussing how we will accomplish the “sweeping” change
of styles, without needing to manually apply any styles on your controls. First

www.syngress.com

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 616

Creating a Message Board with ADO and XML • Chapter 13 617

take a look at the following Cascading Style Sheet (CSS) file you should add to
your project, as shown in Figure 13.42.

Figure 13.42 Styles.css

body

{

font-family:Tahoma, Arial, Sans-Serif;

font-size:10pt;

color:#000000;

}

.errors

{

font-family:Tahoma, Arial, Sans-Serif;

font-size:10pt;

color:#993300;

}

.link

{

text-decoration:underline;

font-family:Tahoma, Arial, Sans-Serif;

color:#FF9933;

}

.header

{

color:#003399;

font-size:16pt;

font-weight:bold;

font-family:Arial, Sans-Serif;

}

.panel

{

border: 1px solid #000000;

padding: 10px;

}

www.syngress.com

Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 617

618 Chapter 13 • Creating a Message Board with ADO and XML

.inputBox

{

border: 1px solid #000000;

background-color:#e5e5e5;

}

.label

{

font-family:Tahoma;

font-size:8pt;

color:#000000;

}

.button

{

border: 1px solid #000000;

background-color: #FF9933;

color: #000000;

font-family: Arial, Sans-Serif;

font-size: 10pt;

}

You can see here that we have a number of styles we will want to apply to
many different elements throughout our application. Manually setting these styles
is hardly desirable, and maintaining these settings if any of your class names
change would be a nightmare. So, what can be done to prevent us from having to
maintain this? Enter the styles.xml file in Figure 13.43 (which can also be found
on your CD under the name Styles.xml).

Figure 13.43 Styles.xml

<?xml version="1.0" encoding="utf8"?>

<styles>

<control type="System.Web.UI.WebControls.Label">label</control>

<control

type="System.Web.UI.WebControls.TextBox">inputBox</control>

<control type="System.Web.UI.WebControls.Button">button</control>

www.syngress.com

Figure 13.42 Continued

Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 618

Creating a Message Board with ADO and XML • Chapter 13 619

<control type="System.Web.UI.WebControls.Panel">panel</control>

<control type="System.Web.UI.WebControls.LinkButton">link</control>

<control

type="System.Web.UI.WebControls.ValidationSummary">

errors</control>

</styles>

You should now notice that the values of these XML tags correspond to an
appropriate class name in the preceding stylesheet declaration. Now all we need
to do is find a way to associate these XML tags with the appropriate controls on
every single page.We can accomplish this through two methods, as shown in
Figure 13.44.

Figure 13.44 Two Methods to Dynamically Apply Styles to Controls (Board.vb)

Public Sub ApplyStyles(ByRef objControls As ControlCollection)

If objXml Is Nothing Then

Dim xmlLoc As String

xmlLoc = ConfigurationSettings.AppSettings()("XmlConfigFile")

objXml = New XmlDocument()

Try

objXml.Load(xmlLoc)

Catch E As Exception

Throw New Exception("XML Style Config file not found")

End Try

End If

Dim objControl As Control

For Each objControl In objControls

Dim style As String

style = GetStyleName(objControl.GetType.ToString())

If style <> "" Then

Dim objWebControl As WebControl

objWebControl = CType(objControl, WebControl)

www.syngress.com

Figure 13.43 Continued

Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 619

620 Chapter 13 • Creating a Message Board with ADO and XML

'we only want to apply these styles if we

'haven't already explicitly set them

If objWebControl.CssClass.Trim() = "" Then

objWebControl.CssClass = style

End If

End If

If objControl.HasControls() Then

ApplyStyles(objControl.Controls)

End If

Next objControl

End Sub

Public Function GetStyleName(ByVal controlType As String) As String

Dim objNode As XmlNode

objNode = objXml.SelectSingleNode("styles/control[@type='" & _

controlType & "']")

If objNode Is Nothing Then

'do nothing

Return ""

Else

'get the css class specified by this node

Return objNode.InnerText

End If

End Function

That’s a lot to digest all at once, so let’s break it down.The first thing you’ll
see is that ApplyStyles accepts a ControlCollection as a parameter.This collection
can be obtained from Page.Controls or Control.Controls. Next, the subroutine
checks to see if the XML document has been loaded yet. If it hasn’t, it retrieves
the location of the styles.xml file from the AppSettings and loads it. If there was
an error in the loading of the document, it throws an exception. If there are no
problems with the XML document, it loops through every Control in the
ControlCollection that was passed in. For every control, it sets a variable “style”
to the value of what the GetStyleName function returns. GetStyleName takes your

www.syngress.com

Figure 13.44 Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 620

Creating a Message Board with ADO and XML • Chapter 13 621

control’s fully qualified type name (represented in the code by
objControl.GetType().ToString()), and looks for that in the XML document. It does
this by calling the SelectSingleNode function of the XMLDocument object. It builds
an XPath query string and looks for the appropriate node with the type attribute
that is the same as the type string passed into the GetStyleName function. If it
finds that node, it returns the InnerText of the appropriate node; otherwise it
returns an empty string.

Control is returned to the ApplyStyles method, and the style that was returned
is tested to make sure it is not an empty string; there is no point in setting the
value if it is empty. Next, the Control is cast to be a variable of type WebControl.
Since the only Control that can have its style attribute programmatically manipu-
lated is the WebControl, and since every control in System.Web.UI.WebControls
inherits directly from WebControl, it is safe to perform this cast. Just make sure
you do not add anything other than WebControls to your styles.xml file and this
will work without error. Next, the CssClass property of your WebControl is
tested to make sure it is currently an empty string. It does this because if you
specifically set a style on one of your controls, you most likely do not want that
style overridden by this method. If it is empty, it sets the CssClass property to the
style String that was returned by the GetStyleName function. Finally, if the
Control has child controls, it recursively calls ApplyStyles, but instead with the
Control.ChildControls ControlCollection as the parameter.

With these two functions, every type of Control you add to your styles.xml
file will automatically get CSS styles applied to them, without any maintenance
on your part other than a small XML file.Wondering how this will actually get
used? All you need to do is in your classes that inherit from FormBase, call the
ApplyStyles method passing the ChildControls of the page you are currently on.
Feel free to try this. Modify the stylesheet and styles.xml file all you want. Just
rest assured that every control type you add to your XML file will automatically
have the CSS classes applied to them that you want.

Building the Log-In Interface
Since we don’t have any users created in the database yet, let’s take a look at how
to register with dotBoard. How to create the User Controls and Forms won’t be
discussed, but the source code is available on your CD, as well as multiple screen
shots for each Web Form and User Control.Take a look at the register.aspx page
on Figure 13.45.

www.syngress.com

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 621

622 Chapter 13 • Creating a Message Board with ADO and XML

Let’s examine the controls on this page. First, there are a number of labels and
text boxes used to capture the user’s information.There is also a button that will
submit the form when pressed.The red-colored controls are validation controls.
Validation controls allow you to place “rules” on input without needing to actu-
ally code it yourself.The display property of these controls is set to None, so they
will never show up, but that is where the ValidationSummary comes in.The con-
trol in the top right of this page is a ValidationSummary control, which will
aggregate all the errors into one area, so you do not need to place your validation
controls in a custom place.The other thing on this form is a CustomValidator
control.A CustomValidator is typically used to handle client-side JavaScript, but it
is also quite useful to handle exceptions thrown and display them to the user.
Let’s take a look at the code behind this form in Figure 13.46.

Figure 13.46 The Code-Behind File (Register.aspx.vb)

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

'Put user code to initialize the page here

Me.ApplyStyles(Me.Controls)

End Sub

www.syngress.com

Figure 13.45 The Register.aspx Page

Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 622

Creating a Message Board with ADO and XML • Chapter 13 623

Private Sub btnRegister_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnRegister.Click

'attempt to register the user

If Me.Page.IsValid Then

Try

Dim myUser As dotBoardObjects.User

myUser = dotBoardObjects.User.CreateUser(_

txtUsername.Text, txtPassword.Text, _

txtFirstName.Text, txtLastName.Text, _

txtEmailAddress.Text)

'if we've made it this far, the create worked

Dim objPage As FormBase

objPage = CType(Me.Page, FormBase)

objPage.CurrentUser = myUser

'redirect to the default page

Response.Redirect("default.aspx")

Catch Ex As Exception

valCustom.ErrorMessage = Ex.Message

valCustom.IsValid = False

End Try

End If

End Sub

First, we have the Page_Load subroutine, which handles the Page.Load event.
All this event does is call the ApplyStyles method of the FormBase class. Next, we
have the btnRegister_Click subroutine that handles the Register button’s click
event.The first thing that subroutine does is make sure the page is currently in a
valid state.This validity is determined whether or not all of the validation con-
trols you added to your form return a valid result. Only once every validation
control becomes valid does Page.IsValid ever return true. Next, a User object is
declared and the CreateUser method is called. If the CreateUser method throws an
exception, then the custom validator on our form is set to invalid and its
ErrorMessage property is set to the Message property of the Exception thrown. If

www.syngress.com

Figure 13.46 Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 623

624 Chapter 13 • Creating a Message Board with ADO and XML

the CreateUser succeeded, then a reference to the parent Page, casted to the
FormBase type, is created and the CurrentUser property is set to the User that was
just created. Once all this is done, the user is redirected to default.aspx.

As we discussed when we went over FormBase, every page will need to
know about the currently logged in user. Likely, every page will also need a login
form so the user can log in from anywhere.The best way to do this is to create a
Web User Control.Take a look at our userArea.ascx control in Figure 13.47.

Boy that’s ugly, isn’t it? Don’t worry, that’s why we created the style code in
FormBase.Anyway, what we have here are two panels.The top panel contains the
controls necessary to log a user in, while the bottom panel contains the welcome
message and any specific actions the user can take. Let’s take a look at the code-
behind for this page in Figure 13.48.

Figure 13.48 The Code-Behind (UserArea.ascx.vb)

Private Sub Page_Init(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Init

'CODEGEN: This method call is required by the Web Form Designer

'Do not modify it using the code editor.

InitializeComponent()

www.syngress.com

Figure 13.47 UserArea.ascx

Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 624

Creating a Message Board with ADO and XML • Chapter 13 625

pnlNotLoggedIn.Visible = True

pnlLoggedIn.Visible = False

lnkAdmin.Visible = False

'attempt to log the user in

If Not Session.Contents().Item("userid") Is Nothing Then

Dim userId As Long

userId = CLng(Session.Contents.Item("userid"))

Dim myUser As User

Try

myUser = New User(userId)

Dim objPage As FormBase

objPage = CType(Me.Page, FormBase)

objPage.CurrentUser = myUser

pnlNotLoggedIn.Visible = False

pnlLoggedIn.Visible = True

lblWelcome.Text = myUser.FirstName & " " & myUser.LastName

If myUser.IsAdmin Then

lnkAdmin.Visible = True

End If

Catch Ex As Exception

lblError.Text = Ex.Message

End Try

End If

End Sub

Private Sub btnLogIn_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnLogIn.Click

'attempt to log in the user

If txtUsername.Text.Trim() <> "" And _

www.syngress.com

Figure 13.48 Continued

Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 625

626 Chapter 13 • Creating a Message Board with ADO and XML

txtPassword.Text.Trim() <> "" Then

Try

Dim myUser As User = User.Validate(txtUsername.Text, _

txtPassword.Text)

Dim objPage As FormBase

objPage = CType(Me.Page, FormBase)

objPage.CurrentUser = myUser

'if it got this far it succeeded

'redirect, to allow the whole page to refresh

Response.Redirect(Request.RawUrl)

Catch Ex As Exception

lblError.Text = Ex.Message

End Try

End If

End Sub

Private Sub LinkButton1_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles LinkButton1.Click

'redirect to the register page

Response.Redirect("register.aspx")

End Sub

Private Sub lnkLogOut_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles lnkLogOut.Click

Session.Remove("userid")

Response.Redirect("default.aspx")

End Sub

Private Sub lnkProfile_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles lnkProfile.Click

Response.Redirect("profile.aspx")

End Sub

www.syngress.com

Figure 13.48 Continued

Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 626

Creating a Message Board with ADO and XML • Chapter 13 627

Private Sub lnkAdmin_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles lnkAdmin.Click

Response.Redirect("admin.aspx")

End Sub

Okay, there’s a lot here, so let’s break it down.The Page_Init subroutine han-
dles the Page.Init event.When this subroutine gets called, it attempts to log in the
user based on the Session userId value. If that value exists, it uses it and initializes
the CurrentUser object; otherwise, it exits. Finally, the subroutine hides or shows
the correct panel and admin link depending on whether the user was successfully
logged in or not and if the use is an admin or not, and then changes the text of
the welcome label to the logged in users first and last name.

BtnLogin_Click handles the event when the user clicks the Login button.The
first thing it does is check to make sure values have been entered into the user-
name and password fields. If so, it attempts to validate the user with the username
and password the user entered. If an exception is thrown, the error label text is
set to the message of the exception thrown. If not, it sets the CurrentUser property
of the FormBase to the currently logged in user, and then redirects the user back
to the page they are currently on. It does this to make sure all controls on the
page have gotten a chance to know that the user has logged in.

Finally, we have four link buttons, the first one redirects the user to the reg-
ister page we’ve already seen, while the other clears the user ID out of Session
and redirects them back to default.aspx.The third redirects the user to
profile.aspx, the user profile page.The fourth one redirects the user to
admin.aspx, the admin page.

Finally, open up your default.aspx page, and drag your userArea.ascx user
control onto the page.You now have a fully functioning login/register area to
your message board, where anyone can register and log in and receive customized
links depending on what type of user they are. See Figure 13.49 to see what the
page looks like.

www.syngress.com

Figure 13.48 Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 627

628 Chapter 13 • Creating a Message Board with ADO and XML

Designing the Browsing Interface
The next step in building dotBoard is to determine how to browse through the
Boards,Threads, and Posts.When a user first enters the site and views the default
page, they should be shown a list of Boards and descriptions they can choose to
view.This code is located in default.aspx and default.aspx.vb.

Board Browsing
Browsing through our boards isn’t very difficult.All we need to do is use a
Repeater control, and create a custom DataSet out of our list of Board objects.
Unfortunately, the only control we can drag and drop onto a Web Form is a
Repeater control, and you can’t drag controls into the Repeater, so we are going to
have to look at the actual quasi-HTML that ASP.NET uses and write the
repeated content by hand, as shown in Figure 13.50.

Figure 13.50 The Repeater Control (Default.aspx)

<asp:Panel runat="server">

<asp:Repeater id="Repeater1" runat="server">

<HeaderTemplate>

www.syngress.com

Figure 13.49 The Default Page, with the Styling Code Applied

Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 628

Creating a Message Board with ADO and XML • Chapter 13 629

<div class="header">Available boards</div>

</HeaderTemplate>

<SeparatorTemplate>

</SeparatorTemplate>

<ItemTemplate>

<a href='board.aspx?boardid=

<%#DataBinder.Eval(Container, "DataItem.BoardName")%>'>

<%#DataBinder.Eval(Container, "DataItem.BoardName")%>

<%#DataBinder.Eval(Container, "DataItem.BoardDescription")%>

</ItemTemplate>

</asp:Repeater>

</asp:Panel>

The repeater code creates a header template, separator template, and the
actual item template.The only thing we haven’t discussed thus far is what data
source the Repeater should use. Since the Repeater control requires a real data
source (i.e., DataSet or something similar), what needs to be done is our list of
Boards needs to be “translated” into a DataSet.Take a look at the updated code-
behind for the default page in Figure 13.51.

Figure 13.51 The Updated Code-Behind (Default.aspx.vb)

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

'Put user code to initialize the page here

Me.ApplyStyles(Me.Controls)

Me.DisplayBoards()

End Sub

Private Sub DisplayBoards()

Dim myBoards As DataSet = New DataSet()

Dim list As ArrayList

www.syngress.com

Figure 13.50 Continued

Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 629

630 Chapter 13 • Creating a Message Board with ADO and XML

list = dotBoardObjects.MessageBoard.GetBoards()

myBoards.Tables.Add("boards")

Dim myTable As DataTable = myBoards.Tables(0)

myTable.Columns.Add("BoardName", GetType(String))

myTable.Columns.Add("BoardDescription", GetType(String))

Dim i As Integer

For i = 0 To list.Count - 1

Dim myBoard As dotBoardObjects.Board

myBoard = CType(list(i), dotBoardObjects.Board)

Dim fields(1) As Object

fields(0) = myBoard.Name

fields(1) = myBoard.Description

myTable.Rows.Add(fields)

myTable.AcceptChanges()

Next i

myBoards.AcceptChanges()

Repeater1.DataMember = "boards"

Repeater1.DataSource = myBoards

Repeater1.DataBind()

End Sub

Notice the addition to the Page_Load method in this file.This subroutine
now calls the DisplayBoards subroutine. DisplayBoards restructures the list of
Boards into an appropriate form for a Repeater control to use. First, it creates a
DataSet and gets the list of Boards from the MessageBoard class. Next, it creates a
new table in the DataSet and adds three columns to it. Next, it loops through the
list of Boards and builds an object array of the fields to add to the DataSet. It
then adds a new row by passing in the object array to the Add method of the

www.syngress.com

Figure 13.51 Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 630

Creating a Message Board with ADO and XML • Chapter 13 631

Rows collection. Finally, it accepts the changes, and forces the Repeater control to
DataBind to the DataSet. Look at Figure 13.52 to see what this page looks like.

Thread Browsing
Once the user has clicked one of the board links from default.aspx, they are taken
to board.aspx.This page will be responsible for determining which board was
selected and for displaying the appropriate threads. Displaying the Threads in a
Board will function nearly identically to how displaying Boards functioned. Let’s
take a look at the important quasi-HTML that this page uses in Figure 13.53.

Figure 13.53 The ASPX Code for Board.aspx

<table cellpadding="0" cellspacing="0" border="0">

<asp:Repeater runat="server" id="Repeater1">

<SeparatorTemplate>

<tr> <td colspan="2"> </td> </tr>

</SeparatorTemplate>

<ItemTemplate>

<tr>

<td>

www.syngress.com

Figure 13.52 The Default Page with Boards Displayed

Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 631

632 Chapter 13 • Creating a Message Board with ADO and XML

started by

<%#DataBinder.Eval(Container, "DataItem.creatorName")%>

</td>

<td>

<%#DataBinder.Eval(Container, "DataItem.postCount")%>

total posts

</td>

</tr>

<tr>

<td colspan="2">

<a href='thread.aspx?

<%#DataBinder.Eval(Container, "DataItem.threadLink")%>

'>

<%#DataBinder.Eval(Container, "DataItem.threadSubject")%>

</td>

</tr>

</ItemTemplate>

</asp:Repeater>

</table>

The repeater code creates a separator template and the actual item template.
It DataBinds the appropriate fields in the data source to items in the template.
Let’s take a look at how we get the data into the data source in Figure 13.54.

Figure 13.54 Board.aspx.vb

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

Dim mBoard As dotBoardObjects.board

Dim boardId As String

boardId = Request.QueryString.Item("boardid")

Dim myLabel As Label

myLabel = CType(Me.FindControl("lblHeader"), Label)

www.syngress.com

Figure 13.53 Continued

Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 632

Creating a Message Board with ADO and XML • Chapter 13 633

myLabel.Text = boardId

mBoard = New dotBoardObjects.board(boardId)

Dim myThreads As DataSet

myThreads = New DataSet()

myThreads.Tables.Add("threads")

Dim myTable As DataTable

myTable = myThreads.Tables(0)

myTable.Columns.Add("threadLink", GetType(String))

myTable.Columns.Add("threadSubject", GetType(String))

myTable.Columns.Add("postCount", GetType(Integer))

myTable.Columns.Add("creatorName", GetType(String))

Dim i As Integer

For i = 0 To mBoard.ChildThreads.Count - 1

Dim myThread As dotBoardObjects.Thread

myThread = mBoard.ChildThreads.Item(i)

Dim fields(3) As Object

fields(0) = "BoardId=" & boardId & _

"&ThreadId=" & myThread.ID.ToString()

fields(1) = myThread.Subject

fields(2) = myThread.ChildPosts.Count

fields(3) = myThread.Creator.Username

myTable.Rows.Add(fields)

myTable.AcceptChanges()

Next i

myThreads.AcceptChanges()

www.syngress.com

Figure 13.54 Continued

Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 633

634 Chapter 13 • Creating a Message Board with ADO and XML

Repeater1.DataMember = "threads"

Repeater1.DataSource = myThreads

Repeater1.DataBind()

Me.ApplyStyles(Me.Controls)

End Sub

Just like default.aspx, the data binding is relatively straightforward. First, we
need to get a reference to the current Board.We do this by requesting the board
name from the query string and initializing the board using it. Next, we set a
label’s text property to the name of the board, so the user knows what board he’s
in.Then we create a DataSet, add a table to it, and add all the required columns.
Afterward, we iterate through the Board’s child threads and create an object array
to hold the necessary fields to add to the DataSet. Finally, we add all the rows to
the DataSet and force the Repeater control to DataBind.Take a look at Figure
13.55 to see what the completed page looks like.

www.syngress.com

Figure 13.54 Continued

Figure 13.55 The Board Page with Threads Displayed

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 634

Creating a Message Board with ADO and XML • Chapter 13 635

Message Browsing
The last piece to browsing the message board is to see individual Posts them-
selves. Just like Boards and Threads, displaying this data is accomplished by using a
Repeater control and a DataSet. Let’s take a look at the important quasi-HTML
and the code-behind in Figures 13.56 and 13.57.

Figure 13.56 Thread.aspx

<asp:Repeater runat="server" id="Repeater1">

<ItemTemplate>

<tr>

<td>posted by

<%#DataBinder.Eval(Container, "DataItem.postCreatorName")%>

<%#DataBinder.Eval(Container, "DataItem.postCreatorEmail")%>

</td>

<td>

posted at

<%#DataBinder.Eval(Container, "DataItem.postDate")%>

</td>

</tr>

<tr>

<td colspan="2">

<%#DataBinder.Eval(Container, "DataItem.postSubject")%>

</td>

</tr>

<tr>

<td colspan="2">

<%#DataBinder.Eval(Container, "DataItem.postBody")%>

</td>

</tr>

</ItemTemplate>

</asp:Repeater>

www.syngress.com

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 635

636 Chapter 13 • Creating a Message Board with ADO and XML

Figure 13.57 Thread.aspx.vb

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

Dim boardId As String

Dim threadId As Long

boardId = Request.QueryString.Item("boardId")

threadId = CLng(Request.QueryString.Item("threadId"))

Dim myBoard As dotBoardObjects.board

myBoard = New dotBoardObjects.board(boardId)

Dim myThread As dotBoardObjects.thread

myThread = myBoard.ChildThread(threadId)

lblHeaderBoard.Text = myBoard.Name

lblHeaderThread.Text = myThread.Subject

Dim myPosts As DataSet

myPosts = New DataSet()

myPosts.Tables.Add("posts")

Dim myTable As DataTable

myTable = myPosts.Tables(0)

myTable.Columns.Add("postId", GetType(Long))

myTable.Columns.Add("postSubject", GetType(String))

myTable.Columns.Add("postBody", GetType(String))

myTable.Columns.Add("postDate", GetType(Date))

myTable.Columns.Add("postCreatorName", GetType(String))

myTable.Columns.Add("postCreatorEmail", GetType(String))

Dim i As Integer

For i = 0 To myThread.ChildPosts.Count - 1

www.syngress.com

Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 636

Creating a Message Board with ADO and XML • Chapter 13 637

Dim myPost As dotBoardObjects.Post

myPost = myThread.ChildPosts.Item(i)

Dim fields(5) As Object

fields(0) = myPost.ID

fields(1) = myPost.Subject

fields(2) = myPost.Body

fields(3) = myPost.PostDate

fields(4) = myPost.Creator.Username

If Me.IsLoggedIn = True Then

fields(5) = "<a href='mailto:" & myPost.Creator.Email & _

"'>email"

Else

fields(5) = ""

End If

myTable.Rows.Add(fields)

myTable.AcceptChanges()

Next i

myPosts.AcceptChanges()

Repeater1.DataMember = "posts"

Repeater1.DataSource = myPosts

Repeater1.DataBind()

Me.ApplyStyles(Me.Controls)

End Sub

Again, this code is nearly identical to that of the last two pages we’ve dealt
with.The only real difference is that one of the fields is actually building a short
HTML string.This is because the repeater can’t handle if statements. So, in order
to hide or show users’ e-mail addresses depending on whether the viewer is

www.syngress.com

Figure 13.57 Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 637

638 Chapter 13 • Creating a Message Board with ADO and XML

logged in or not, we need to build a string instead of directly inserting the value.
If the user is logged in, then the anchor tag for the poster’s e-mail address is built;
otherwise, an empty string is used.

Creating the User Functions
Registered users (Members) get a special set of functions they can access, like
creating threads and posts, editing their profile, and editing the messages they’ve
posted.A guest (that is, an unregistered user) is limited to a very small set of func-
tionalities—specifically, viewing the threads and messages (see Figure 13.58).

Editing the Member Profile
The next step in building our application’s User Interface is to allow a registered
user to modify his or her member profile.This includes first name, last name,
password, and e-mail address. Let’s take a look at the profile.aspx page in Figure
13.59.

The profile page contains text boxes for every field in the User object, except
for the user ID and username.These two fields are read only, and should never be
changed. Like the register page, this page contains a number of Validation controls
with their display value set to none, and a ValidationSummary control added to

www.syngress.com

Figure 13.58 The Thread Page

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 638

Creating a Message Board with ADO and XML • Chapter 13 639

the page to aggregate all the errors a user might receive while inputting informa-
tion.When this page first loads, it should default all fields (except for passwords)
with their existing values, so a user does not have to type everything over, just
change the fields he or she wants to change. Upon clicking the Update Profile
button, the user’s details should be updated and the user given a message
explaining that their profile was updated. Let’s take a look at the implementation
of these features in Figure 13.60.

Figure 13.60 The Code-Behind (Profile.aspx.vb)

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

If Me.IsLoggedIn = False Then

'only logged in users can access this site

Response.Redirect("default.aspx")

End If

If Page.IsPostBack = False Then

txtFirstName.Text = Me.CurrentUser.FirstName

txtLastname.Text = Me.CurrentUser.LastName

www.syngress.com

Figure 13.59 The Profile Page

Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 639

640 Chapter 13 • Creating a Message Board with ADO and XML

txtEmailAddress.Text = Me.CurrentUser.Email

End If

Me.ApplyStyles(Me.Controls)

End Sub

Private Sub btnUpdate_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnUpdate.Click

If Page.IsValid Then

If txtNewPassword.Text.Trim() <> "" Then

Me.CurrentUser.Password = txtNewPassword.Text

End If

Me.CurrentUser.FirstName = txtFirstName.Text

Me.CurrentUser.LastName = txtLastname.Text

Me.CurrentUser.Email = txtEmailAddress.Text

Me.CurrentUser.Update()

lblMessage.Visible = True

End If

End Sub

Updating the user profile is rather easy. First, the Page_Load method checks to
make sure there is a valid, logged in user. If not, it redirects the user back to
default.aspx. If the user is logged in and the page has not posted back to itself yet,
then it sets the values of the text boxes to the existing values of the current user
object.Afterward, it applies the styles to the page and exits.

When the Update button is clicked, the btnUpdate_Click method is called.
The subroutine first checks to make sure all the validation controls have returned
valid results. If not, it exits the subroutine. If they have returned valid results, it
first checks to see if the user entered a new password, and if so, sets the current
user object’s password to what the user entered. Next, each of the User objects’
fields are set to what the user entered, then the User object is updated to the
database. Finally, the message label indicating that the profile was updated success-
fully is displayed.

www.syngress.com

Figure 13.60 Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 640

Creating a Message Board with ADO and XML • Chapter 13 641

Creating Threads and Posts
The last thing to do for registered users is generate a page for them to create new
threads and posts. In order to get to this page, let’s take a look at board.aspx and
thread.aspx again.We need to add a LinkButton to each one.When clicked, that
link button needs to redirect the user to createpost.aspx. See Figures 13.61 and
13.62.

Figure 13.61 LinkButton1_Click Event (Board.aspx)

Private Sub LinkButton1_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles LinkButton1.Click

Dim boardId As String

boardId = Request.QueryString.Item("boardid")

Response.Redirect("createPost.aspx?boardName=" & boardId)

End Sub

Figure 13.62 LinkButton1_Click Event (Thread.aspx)

Private Sub LinkButton1_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles LinkButton1.Click

Dim boardId As String

Dim threadId As Long

boardId = Request.QueryString.Item("boardId")

threadId = CLng(Request.QueryString.Item("threadId"))

Response.Redirect("createPost.aspx?boardName=" & boardId & _

"&threadId=" & threadId.ToString())

End Sub

The function of these buttons is almost the same.The first one redirects the
user to createpost.aspx?boardName=[The selected Board], and the second redirects
the user to createpost.aspx?boardName=[The selected Board]&threadId=[The
selected Thread].The same page handles the creation of new Threads and Posts, so
if you are creating a new Post, you just pass in the ThreadID along with the
board name. If you are creating a brand new Thread, you just pass in the board

www.syngress.com

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 641

642 Chapter 13 • Creating a Message Board with ADO and XML

name. Let’s take a look at createpost.aspx to see what controls are on that page.
See Figure 13.63.

The create post page contains the necessary controls to accept user input and
create a new thread and/or post.The other controls on the page are a
ValidationSummary, two RequiredFieldValidators, and a Panel that contains the cur-
rent Thread information. Obviously, if the user is creating a new Thread and Post,
the Thread panel will not be visible, whereas, if the user is creating a new Post
inside a Thread, the Thread panel will be visible and display the appropriate
Thread subject. Let’s take a look at the code necessary to initialize this form in
Figure 13.64.

Figure 13.64 The Code-Behind Initialization (Createpost.aspx.vb)

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

'only logged in users are allowed in this page

If Me.IsLoggedIn = False Then

Response.Redirect("default.aspx")

End If

www.syngress.com

Figure 13.63 The Create Post Page

Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 642

Creating a Message Board with ADO and XML • Chapter 13 643

mBoardName = Request.Item("boardName")

If Request.Item("threadId") Is Nothing Then

mThreadID = 0

Else

mThreadID = CLng(Request.Item("threadId"))

End If

mBoard = New dotBoardObjects.board(mBoardName)

lblBoardName.Text = mBoard.Name

If mThreadID = 0 Then

pnlShowThread.Visible = False

Else

pnlShowThread.Visible = True

mThread = mBoard.ChildThread(mThreadID)

End If

If Not Me.IsPostBack Then

'put the default values in the thread and board text boxes

If mThreadID <> 0 Then

txtThreadSubject.Text = mThread.Subject

lblThreadName.Text = mThread.Subject

End If

End If

Me.ApplyStyles(Me.Controls)

End Sub

First, what we do is verify that there is a logged in user. If there isn’t, we redi-
rect the user back to the default page. If the user is valid, we get a reference to
the current board and if the ThreadID was passed in, we get a reference to the
appropriate Thread as well. Finally, if the page hasn’t posted back to itself and we
have a current Thread, we default the text box and label values with the Thread’s

www.syngress.com

Figure 13.64 Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 643

644 Chapter 13 • Creating a Message Board with ADO and XML

subject.All that’s left is to take a look at the code that actually creates Posts and
Threads, as shown in Figure 13.65.

Figure 13.65 btnCreatePost_Click Code (Createboard.aspx.vb)

Private Sub btnCreatePost_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnCreatePost.Click

If Me.IsValid = True Then

If mThreadID <> 0 Then

'we're adding a post to a thread. do nothing here

Else

'we're creating a new thread and adding a post

mBoard.CreateThread(txtThreadSubject.Text, Me.CurrentUser)

'let's find that thread. it will be the first one

'in the list

mThread = mBoard.ChildThreads.Item(0)

End If

mThread.CreatePost(txtThreadSubject.Text, _

TextBox1.Text, Me.CurrentUser)

'redirect the user to the current thread

Response.Redirect("thread.aspx?boardId=" & mBoardName & _

"&threadId=" & mThread.ID.ToString())

End If

End Sub

What happens in this bit of code is that we first check to make sure the page
is valid. If not, we do nothing; otherwise, we attempt to create the Thread and/or
Post. If the ThreadID is currently “0” (that is, no ThreadID was given to the
page), then we create a new Thread and set the private mThread variable to the
new Thread (remember that when adding a new Thread, since Threads are
ordered by their ThreadID field, new Threads appear at the top of the
ThreadList). Lastly, we create a new Post from the current Thread object and redi-
rect the user to the thread.aspx page to view the new and/or updated Thread.

www.syngress.com

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 644

Creating a Message Board with ADO and XML • Chapter 13 645

Building the Administrative Interface
Administrators need to do a few things that other people can’t. First, they need
the ability to delete anything—boards, threads, and posts.They also need the
ability to edit any post, and modify any user’s admin or banned status. Let’s take a
look at the useradmin.aspx screen in Figure 13.66.

This page allows administrators to promote other users to administrator
status, and ban problematic users from logging into the site. First, we have a
DropDownList control that we will DataBind to a DataSet.There is also a
LinkButton that will show the admin panel at the bottom once we’ve selected a
user to administer.The two radio button lists will be used to display and set the
current admin/banned status of the selected user. Finally, when the user clicks the
Modify User button, the current user will be updated with the new banned and
admin values the administrator entered. Let’s first take a look at the code neces-
sary to set up the form in Figure 13.67.

www.syngress.com

Figure 13.66 The User Admin Page

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 645

646 Chapter 13 • Creating a Message Board with ADO and XML

Figure 13.67 The Page_Load Method (Admin.aspx.vb)

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

'only logged-in admins can enter this page

If Me.IsLoggedIn = False Then

Response.Redirect("default.aspx")

ElseIf Me.CurrentUser.IsAdmin = False Then

Response.Redirect("default.aspx")

End If

'get the users bound to the drop down list

If Not Me.IsPostBack Then

Dim myUsers As DataSet

Dim sql As String

sql = "SELECT UserID, UserName FROM Users"

myUsers = dotBoardObjects.DataControl.GetDataSet(sql)

dlUsers.DataTextField = "Username"

dlUsers.DataValueField = "UserID"

dlUsers.DataMember = "data"

dlUsers.DataSource = myUsers

dlUsers.DataBind()

End If

Me.ApplyStyles(Me.Controls)

End Sub

The first thing this method does is guarantee that there is a logged in user,
and that the currently logged in user is an administrator. If either of these is not
true, it sends the user back to default.aspx. Next, it makes sure the page has not
posted back to itself; since there’s no need to DataBind a drop-down list every
time the page is executed, as ASP.NET will handle that for us. If the page has not
posted back to itself, it builds a SQL statement to retrieve the UserIDs and
Usernames from the Users table in the database. It then gets a DataSet from the
dotBoardObjects.DataControl class, and dynamically binds the DropDownList to the
DataSet. Finally, it applies the styles to this page and exits.

The next thing we need to do is get the ability to select a user from the
drop-down list, and have the page load that user’s information.The click event

www.syngress.com

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 646

Creating a Message Board with ADO and XML • Chapter 13 647

handler for the Choose User link handles this. Let’s take a look at the code for it
in Figure 13.68.

Figure 13.68 The lnkChooseUser_Click Method (Admin.aspx.vb)

Private Sub lnkChooseUser_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles lnkChooseUser.Click

Dim userID As Long

userID = CLng(dlUsers.SelectedItem.Value)

Dim myUser As dotBoardObjects.User

myUser = New dotBoardObjects.User(userID)

If myUser.IsBanned = True Then

rblBanned.Items(1).Selected = True

Else

rblBanned.Items(0).Selected = True

End If

If myUser.IsAdmin = True Then

rblAdmin.Items(0).Selected = True

Else

rblAdmin.Items(1).Selected = True

End If

rblBanned.Visible = True

rblAdmin.Visible = True

Panel1.Visible = True

End Sub

This gets the user ID from the DropDownList’s SelectedItem.Value property,
and creates a new user object from it. Next, the appropriate radio buttons are
selected depending on whether or not the user is banned or is an admin. Finally,
the admin panel and the two radio button lists are set to visible so they will
appear when the page refreshes. Next, we need to handle when the administrator
clicks the Modify User button and update the selected user based on what the
administrator entered in. See Figure 13.69 for the code involved.

www.syngress.com

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 647

648 Chapter 13 • Creating a Message Board with ADO and XML

Figure 13.69 The btnModify_Click Method (Admin.aspx.vb)

Private Sub btnModify_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnModify.Click

Dim userID As Long

userID = CLng(dlUsers.SelectedItem.Value)

Dim myUser As dotBoardObjects.User

myUser = New dotBoardObjects.User(userID)

'we now have the user, so let's set his admin/banned properties

If rblBanned.Items(0).Selected = True Then

'the user is not banned

myUser.IsBanned = False

Else

myUser.IsBanned = True

End If

If rblAdmin.Items(0).Selected = True Then

'the user is an admin

myUser.IsAdmin = True

Else

myUser.IsAdmin = False

End If

myUser.Update()

End Sub

Just like before, the first thing we do is get a reference to the selected User
object.The next step is to determine which radio buttons were selected, and set
the IsAdmin and IsBanned properties accordingly.The last step is to update the
selected user by calling its Update method. Now you can promote other users to
be administrators or ban them from entering your site again. If a banned user
attempts to log on, they will receive an error explaining to that their account was
banned.You may be wondering why we don’t just delete the banned user.We
don’t do this because the Thread and Post tables are dependent on the User table,

www.syngress.com

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 648

Creating a Message Board with ADO and XML • Chapter 13 649

and deleting a User from the User table would not be allowed due to the rela-
tionships involved.

The other thing that administrators can do is create and delete boards, delete
threads, and delete posts. Let’s start with creating a board.The first step involved
in this is adding a new LinkButton to the user area user control.This button will
be named “lnkCreateBoard” and will have its text property set to Create New
Board. Once clicked, it should redirect the user to createboard.aspx. Let’s take a
look at that code in Figure 13.70.

Figure 13.70 The lnkCreateBoard_Click Code (Userarea.ascx.vb)

Private Sub lnkCreateBoard_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles lnkCreateBoard.Click

Response.Redirect("createboard.aspx")

End Sub

Now that we have the administrator going to the create board page, let’s take
a look at that page. See Figure 13.71.

Like all our other pages that accept user input, this page has controls on it for
every piece of information we need to perform the task at hand.Also, like the

www.syngress.com

Figure 13.71 The Create Board Form

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 649

650 Chapter 13 • Creating a Message Board with ADO and XML

other pages, there is a validation control for every text box to make sure the user
enters the required information. Let’s take a look at the code-behind for this
form in Figure 13.72.

Figure 13.72 The Code-Behind (Createboard.aspx.vb)

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

'only logged-in admins can enter this page

If Me.IsLoggedIn = False Then

Response.Redirect("default.aspx")

ElseIf Me.CurrentUser.IsAdmin = False Then

Response.Redirect("default.aspx")

End If

End Sub

Private Sub btnCreate_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnCreate.Click

If Me.IsValid = True Then

'create the new board

dotBoardObjects.Board.CreateBoard(txtBoardName.Text, _

txtBoardDescription.Text, _

Me.CurrentUser)

Response.Redirect("default.aspx")

End If

End Sub

Like every other admin page so far, this page guarantees that the current user
is a logged-in administrator, and if not, redirects to the default page.After the user
has entered the required information to create a board and clicks the Create
Board button, the btnCreate_Click method is called. First, the method checks to
make sure the page is valid, then it creates the board based on the values the
administrator entered. Finally, it redirects the administrator back to the default
page so he can see his newly created board.

The last things an administrator should be able to do are delete Boards,
Threads, and Posts.This functionality can be placed on the appropriate pages

www.syngress.com

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 650

Creating a Message Board with ADO and XML • Chapter 13 651

where this information is actually displayed.What we will do is next to every
Board,Thread, and Post we will place an HtmlAnchor control next to each item
that will point to an .aspx page named delete[type of object to delete].aspx. For
instance, deleting Boards will link to deleteBoard.aspx. Let’s go over the three
places in our code that need to change because of this new feature in Figures
13.73, 13.74, and 13.75.

Figure 13.73 The DisplayBoard Method Changes (Default.aspx.vb)

Dim fields(1) As Object

fields(0) = myBoard.Name

fields(1) = myBoard.Description

If Me.IsLoggedIn = True Then

If Me.CurrentUser.IsAdmin = True Then

fields(1) &= "

<a href='deleteBoard.aspx?boardName=" & _

myBoard.Name & "'>>>delete"

End If

End If

Figure 13.74 The Page_Load Method Changes (Board.aspx.vb)

Dim fields(3) As Object

fields(0) = "BoardId=" & boardId & _

"&ThreadId=" & myThread.ID.ToString()

fields(1) = myThread.Subject

If Me.IsLoggedIn = True Then

If Me.CurrentUser.IsAdmin = True Then

fields(1) &= "

<a href='deleteThread.aspx?" & _

"boardName=" & mBoard.Name & _

"&threadId=" & myThread.ID.ToString() & _

"'>>>delete"

End If

End If

www.syngress.com

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 651

652 Chapter 13 • Creating a Message Board with ADO and XML

Figure 13.75 The Page_Load Method Changes (Thread.aspx.vb)

Dim fields(5) As Object

fields(0) = myPost.ID

fields(1) = myPost.Subject

fields(2) = myPost.Body

If Me.IsLoggedIn = True Then

If Me.IsLoggedIn = True Then

fields(2) &= "

<a href='deletePost.aspx?" & _

"boardName=" & myBoard.Name & _

"&threadId=" & myThread.ID.ToString() & _

"&postId=" & myPost.ID.ToString() & _

"'>>>delete"

End If

End If

You can see that all of these changes is very similar. Each gets slightly more
complicated as you get further down the object hierarchy; you need to pass more
information to get a reference to the correct objects. Now all we need to do is
create the three pages that will handle deleting our objects.All three are very
similar, and are shown in the following figures, Figures 13.76, 13.77, and 13.78.

Figure 13.76 DeleteBoard.aspx.vb

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

If Me.IsLoggedIn = True Then

If Me.CurrentUser.IsAdmin = True Then

Dim boardName As String

boardName = Request.QueryString.Item("boardName")

Dim myBoard As dotBoardObjects.board

myBoard = New dotBoardObjects.board(boardName)

myBoard.Delete(Me.CurrentUser)

End If

End If

www.syngress.com

Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 652

Creating a Message Board with ADO and XML • Chapter 13 653

Response.Redirect("default.aspx")

End Sub

Figure 13.77 DeleteThread.aspx.vb

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

If Me.IsLoggedIn = True Then

If Me.CurrentUser.IsAdmin = True Then

Dim boardName As String

Dim threadId As Long

boardName = Request.QueryString.Item("boardName")

threadId = CLng(Request.QueryString.Item("threadId"))

Dim myBoard As dotBoardObjects.board

myBoard = New dotBoardObjects.board(boardName)

Dim myThread As dotBoardObjects.thread

myThread = myBoard.ChildThread(threadId)

myBoard.DeleteThread(myThread, Me.CurrentUser)

End If

End If

Response.Redirect("default.aspx")

End Sub

Figure 13.78 DeletePost.aspx.vb

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

If Me.IsLoggedIn = True Then

If Me.CurrentUser.IsAdmin = True Then

Dim boardName As String

www.syngress.com

Figure 13.76 Continued

Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 653

654 Chapter 13 • Creating a Message Board with ADO and XML

Dim threadId As Long

Dim postId As Long

boardName = Request.QueryString.Item("boardName")

threadId = CLng(Request.QueryString.Item("threadId"))

postId = CLng(Request.QueryString.Item("postId"))

Dim myBoard As dotBoardObjects.board

myBoard = New dotBoardObjects.board(boardName)

Dim myThread As dotBoardObjects.thread

myThread = myBoard.ChildThread(threadId)

Dim myPost As dotBoardObjects.Post

myPost = myThread.ChildPost(postId)

myBoard.DeletePost(myThread, myPost, Me.CurrentUser)

End If

End If

Response.Redirect("default.aspx")

End Sub

A lot of code, for sure, but it should all be relatively easy to follow. Each page
retrieves the objects necessary to delete whatever it is trying to delete, then calls
the appropriate delete method on the board object.When it finishes, each one
redirects the user back to the default page. If the person accessing this page is
neither logged in nor an admin, it does nothing but the final redirect.You don’t
want anyone who is not an admin deleting your boards, so even on pages in
which the user never sees the UI, it’s still a good idea to perform every security
check necessary.

The final administrative interface we need to create is to give the
Administrators the ability to edit posts, in the case of offensive or undesired lan-
guage that doesn’t necessarily need to be deleted. First, we’ll need to add another
button to the view thread page right next to the Delete button. See Figure 13.79
for the changes.

www.syngress.com

Figure 13.78 Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 654

Creating a Message Board with ADO and XML • Chapter 13 655

Figure 13.79 Page_Load Changes (Thread.aspx.vb)

If Me.IsLoggedIn = True Then

If Me.IsLoggedIn = True Then

fields(2) &= "

<a href='deletePost.aspx?" & _

"boardName=" & myBoard.Name & _

"&threadId=" & myThread.ID.ToString() & _

"&postId=" & myPost.ID.ToString() & _

"'>>>delete"

fields(2) &= " " & _

"<a href='editPost.aspx?" & _

"boardName=" & myBoard.Name & _

"&threadId=" & myThread.ID.ToString() & _

"&postId=" & myPost.ID.ToString() & _

"'>>>edit"

End If

End If

All that has changed is a new HTML anchor tag is added that points to a
new page called editPost.aspx. Let’s take a look at this page and examine what
controls are on it (see Figure 13.80).

www.syngress.com

Figure 13.80 editPost.aspx

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 655

656 Chapter 13 • Creating a Message Board with ADO and XML

You should notice that this page looks very similar to the create post page. In
fact, it is nearly identical — so identical that we could have reused the same page
instead of creating the new one.The only reason we aren’t using the create post
page is for the sake of simplicity; there’s no need to complicate pages we have
already finished for new functionality.All we need to do now is take a look at the
code-behind page in Figure 13.81.

Figure 13.81 The Code-Behind (editPost.aspx)

Public Class editPost

Inherits FormBase

Private mBoard As dotBoardObjects.Board

Private mThread As dotBoardObjects.Thread

Private mBoardName As String

Private mThreadID As Long

Private mPostID As Long

Private mPost As dotBoardObjects.Post

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

'only logged in users are allow in this page

If Me.IsLoggedIn = False Then

Response.Redirect("default.aspx")

ElseIf Me.CurrentUser.IsAdmin = False Then

Response.Redirect("default.aspx")

End If

mBoardName = Request.Item("boardName")

mThreadID = CLng(Request.Item("threadId"))

mPostID = CLng(Request.Item("postId"))

mBoard = New dotBoardObjects.board(mBoardName)

mThread = mBoard.ChildThread(mThreadID)

mPost = mThread.ChildPost(mPostID)

www.syngress.com

Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 656

Creating a Message Board with ADO and XML • Chapter 13 657

lblHeaderBoard.Text = mBoard.Name

lblHeaderThread.Text = mThread.Subject

If Not Me.IsPostBack Then

txtSubject.Text = mPost.Subject

txtMessage.Text = mPost.Body

End If

Me.ApplyStyles(Me.Controls)

End Sub

Private Sub btnEditPost_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnEditPost.Click

If Me.IsValid Then

mPost.Subject = txtSubject.Text

mPost.Body = txtMessage.Text

mPost.Update(Me.CurrentUser)

Response.Redirect("thread.aspx?boardID=" & _

mBoard.Name & "&threadId=" & _

mThread.ID.ToString())

End If

End Sub

End Class

You should immediately notice how similar the code-behind of the edit post
page is to create post page.Again, we could have used the same page, but to keep
things simple we’re using two separate pages.The Page_Load method first checks
to make sure there is a logged in user, and that the user is an administrator. Next,
it gets a reference to the appropriate Board,Thread, and Post objects, and fills the
label and text box controls on the page with values.The btnEditPost_Click
method makes sure the page is valid, then sets the values on the Post object, com-
mits it to the database, and redirects to the thread view page so the user can see
the changes.

www.syngress.com

Figure 13.81 Continued

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 657

658 Chapter 13 • Creating a Message Board with ADO and XML

Summary
Our message board is 100 percent complete and ready for use.We have analyzed
our message board and created a solution to fit with all our requirements. Our
message board is an Object-Oriented application that is scalable, maintainable,
and well-defined.We have created all the necessary classes to maintain our data
and the relationships between our data through the use of custom list objects and
classes.We also have a built-in security model where every action that requires
administrative access is checked before the requestor is allowed to perform the
operation.

Our User Interface is somewhat extensible in that it dynamically applies styles
to multiple types of WebControls that we defined using CSS and an XML docu-
ment. Each Web Form we created inherits the FormBase class, which allows all
our Web Forms to have access to a few common methods and properties, in
addition to the System.Web.UI.Page methods and properties. Our User Interface
contains all the necessary interfaces to browse through Boards,Threads, and
Messages, as well as interfaces to administer users, and those that contain inter-
faces to create and delete Boards,Threads, and Messages.

All in all we have a functioning message board that could be placed anywhere
and run on top of SQL Server or MS Access. It was accomplished in an Object-
Oriented manner and hopefully by now you understand the use for designing
OO applications.We have also separated the UI and UI logic from the actual
“business rules” applied to our objects. If we wanted, we could take our
dotBoardObject class library and put a Windows Form front end on it, a Web
Service front end on it, or even attach a Console Application front end.All
because we kept our UI completely separate from our implementation.

Solutions Fast Track

Setting Up the Database

Analyze your data and create the tables necessary to represent the
solution to our problem. Make sure you have broken down each piece
of data into the smallest possible representation of that data. For instance,
you wouldn’t want to have a field in your database for the user’s full
name; instead, you would want first and last name fields.

www.syngress.com

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 658

Creating a Message Board with ADO and XML • Chapter 13 659

Analyze your data and create the relationships necessary between the
different sets of data.

Designing Your Application

Analyze your data and find a way to fit it into an Object-Oriented
environment. Many times you can use the analysis you performed while
building your database in this step.

Map the fields in the database to appropriate fields in each object.

Analyze our solution and determine the types of methods each of our
objects will contain.You need to provide interfaces to modify, add, and
delete every relationship and field in each of your objects.

Designing the User Interface

Analyze what type of actions our users will need to perform, then create
the necessary Web Forms.

Analyze what type of actions our administrators will need to perform
and create the necessary Web Forms.

Setting Up General Functions

Create the FormBase class that contains all the necessary properties and
methods our Web Forms will need to hold. Determine what
functionality you need shared throughout every Web Form and build it
into this class.

Building the Log-In Interface

Create the user area user control. Place this control on every Web Form
so each form can have a reference to the currently logged in user.

Create the registration page, which allows users to register for your
message board.

www.syngress.com

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 659

660 Chapter 13 • Creating a Message Board with ADO and XML

Designing the Browsing Interface

Create the Board browsing. Create the Web Form and use the Repeater
control and DataBind it to a DataSet.

Create the Thread browsing. Create the Web Form and use the Repeater
control and DataBind it to a DataSet.

Create the Post browsing. Create the Web Form and use the Repeater
control and DataBind it to a DataSet.

Creating the User Functions

Generate the Thread creation. Create the Web Form and use Validation
controls and text boxes to get the necessary information.

Generate the Post creation. Create the Web Form and use Validation
controls and text boxes to get the necessary information.

Building the Administrative Interface

Create the interface to ban and promote users. Make sure only
administrators can access this functionality using the properties built into
the FormBase class.

Create the interfaces necessary to delete Board,Thread, and Post pages.
Modify the existing View Board,Thread, and Post pages to create the
links to the delete pages.

Create the interfaces necessary to edit Posts. Modify the existing view
Post page to create the links to edit Posts.

www.syngress.com

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 660

Creating a Message Board with ADO and XML • Chapter 13 661

Q: When designing applications, do I need to design them in an Object-
Oriented manner?

A: Absolutely not, although when applications are designed in an OO manner,
they are typically more scalable and maintainable, and allow for the use of
multiple User Interfaces.You are not forced to create applications in an OO
manner, but good programming practices typically stress Object Orientation.

Q: Are there any performance issues when using an OO approach versus a more
procedural approach?

A:Yes, typically the OO approach adds a bit of overhead to everything you do.
For instance, the creation of the custom DataSet in order to view Boards,
Threads, and Posts spends extra time that wouldn’t have been lost if you had
gone directly to the database instead of accessing the data through objects.
The price of scalability and maintainability is a possible performance loss.
Luckily, with .NET, execution is very fast after the initial compile, so it’s also
very likely that you would never notice the speed loss.

Q: How important is it to use Validation controls?

A:Very important. In ASP 3.0 and 2.0 (heck, even ASP 1.0), all validation had to
be done by hand. Empty fields needed to be validated as well as e-mail
addresses and URIs.With Validation controls,ASP.NET does all of this for us,
allowing us to focus more on the logic and business rules in our application.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 661

662 Chapter 13 • Creating a Message Board with ADO and XML

Q: How can I ban a list of IP addresses in the future?

A: First, you would need to create a table in your database to store the list of IP
addresses, and provide a way for an administrator to enter an IP address into
it.Then, at every page you want to disallow this list of IP addresses from
viewing, compare the IP address of the requesting user and compare it to the
list of IP addresses you have banned. If it exists in your list of banned
addresses, redirect them to another page or do whatever else you feel is
appropriate.

www.syngress.com

166_ASPNET_13.qxd 11/26/01 4:07 PM Page 662

663

Index
@ OutputCache directive, usage,

269–277, 279

A
absoluteExpiration, 258
Accept-Language

header values, 274
parameter, 274

Access control, authorization tag (usage),
208–209

Access database, creation, 506–509
Access datatype, 510
Access object, creation. See Data
Access times, 267
Account element, 393
Accounts element, 385, 386
Action events, 77
Active Server Pages (ASP). See Classic

ASP
applications, 87

ASP.NET applications, contrast, 231
ASP 1.x, development, 5–6
ASP 2.x

changes, 6–7
development, 6–7
weaknesses, 7

ASP 3.0
development, 7–9
weaknesses, 8–9

code, 12
control declaration, 483
controversy, 4–5
developers, 78, 130
editing environment, 5
Engine, 62, 76
file execution,Web server usage, 15–27
history, 2–11

model
ASP.NET improvements,

comparison, 14–15
need, 9

need, 3–4
original model, changes, 8
origins, 2–5
pages, 86, 161
scripts, 576
skills, obsolescence, 86
timeline, 10–11
upgrading. See Classic ASP
version 4, 11

ActiveX controls, 164, 167
ActiveX Data Objects (ADO), 6, 8

ADO-related codes, 86
update, 19
usage. See Message board creation
version 2.5, 10

Actual comment, 475
add attribute, 203
add (processing directive), 189
Add stored procedure, 335
add subtag, 190, 192–193, 202, 207
add tag, 616
addBook page, 533

addBook.aspx, creation, 543
addBook.aspx, creation. See addBook

page
addCat, 528, 530
Address book application, creation,

314–341
Address.aspx, 314
AdminAddBook, 512
AdminAddCat, 512
AdminAddCustomer, 512
adminCustomer, 518

166_ASPNET_index.qxd 11/27/01 9:07 AM Page 663

664 Index

AdminDeleteBook, 512
AdminDeleteCat, 512
AdminDeleteCustomer, 512
Administration login (adminLogin.aspx),

creation, 535–536
Administrative interface, construction.

See Message board creation
Administrator page (adminPage.aspx),

creation, 537–543
Administrators, 581. See also Logged-in

administrator
adminLogin.aspx, creation. See

Administration login
adminPage.aspx, creation. See

Administrator Page
AdminUpdateBook, 512
AdminUpdateCat, 512
AdminUpdateCustomer, 512
ADO. See ActiveX Data Objects
ADOCatalog, creation, 547–553
ADO.NET, 12

ADO contrast, 53
changes, understanding, 300–310
FAQs, 345–346
introduction, 299, 300
solutions, 343–344
supported connectivity, 305

ADO.NET shopping cart
creation, 501
database, setup, 502–518
FAQs, 566
introduction, 502
site

administration, 533–547
construction, 533

solutions, 562–565
AdRotator controls, 62
ADSI, 13

allBooks.addItem Web method, creation,
541

AllCustById, 512
Allow Paging property, 144
allowOverride attribute, 174, 176, 177,

214
AllowPaging, 152
AllowSorting property, 144, 150
AlternatingItemStyle property, 147
AlternatingItemTemplate, 132
Anchor tag. See HyperText Markup

Language
Application. See ASP.NET application

cache object, 233–234
class, 250
configuration, 179–184
creation. See ASP.NET application
design. See Message board creation
events

support, 236–237
usage, 236–239

identity configuration, identity tag
(usage), 181

locking, 239
log,Trace information (writing), 432
testing/error-checking. See ASP.NET

application
tracing, 432–434
variables, 229, 234

Application state, 63
session states, comparison, 246–258
understanding, 232–236
usage, 232–234

Application-level trace, 433
Application-level variable, 547
Application_onstart method, 548
Application-specific configuration

section handlers, 212
Application-wide issues, 246

166_ASPNET_index.qxd 11/27/01 9:07 AM Page 664

Index 665

ApplyStyles, 620
AppSettings, 620
appSettings

node, 312
tag, usage, 220. See also Static variables

ArgumentException, 586, 587, 599
Ariba, 350, 455
Array class, 44
Array-like addressing, usage, 96
ArrayList, 95, 602

ListControl, binding, 111–113
.ascx file, 163
.asmx

.aspx, contrast, 450–451
file, 445

extension, 450
page, 444

ASP. See Active Server Pages
asp:Button, 62, 135
ASPError object, removal, 27
asp:Label, 62, 102

control, 162
ASP.NET

browser capability function, 21
controls, 68
delivery, 18
developers, 46
Engine, 66
FAQs, 32–33
flexibility, utilization, 12–14
framework, 69
improvements, comparison. See Active

Server Pages
introduction, 2
object, 47
pages, 51. See also Data-enabled

ASP.NET pages
compilation, 18, 37

platform basics, review, 11–15
scripts, 15
server controls, display. See Netscape

4.x
server-side processing, 65
solutions, 29–31
techniques, 95

ASP.NET application, 37, 227
contrast. See Active Server Pages
copying, 613
creation, 20–26, 229
debugging, 27
deployment, 13
FAQs, 262–263
introduction, 228
solutions, 259–262
testing/error-checking, 235–236
understanding, 228–229

ASP.NET configuration, 173
FAQs, 224–225
introduction, 174
overview, 174–177
solutions, 223–224

ASP.NET debugging, 417
FAQs, 439–440
introduction, 418
solutions, 438–439

ASP.NET Web
application, 86
controls, 66
form, structure, 75–76
pages, running, 19–26

asp:RequiredFieldValidator server
control, 535

asp:requiredfieldvalidator tag, 536
asp:TextBox, 62
.aspx

contrast. See .asmx

166_ASPNET_index.qxd 11/27/01 9:07 AM Page 665

666 Index

extension, 65
file, 77, 314, 478

scripts, inclusion, 69–72
page, 451

ASPX code, 488
ASPX page, 65, 162
asp:XML server control, 553
asp:xml server control, 547
ATG, 7
Attribute name, 355
AttributeCount property, 365
Attributes, 353
Authentication, 204. See also Biometric

authentication;Windows
authentication

cookie data, encryption/decryption.
See Forms

modules, removal, 207
authentication tag, 205, 206

usage. See User authentication
authenticationModules tag, usage. See

Security
authorization tag, usage. See Access

control
AutoGenerate, usage, 209
AutoGenerateColumn property, 144,

147
Automatic drill-down facilities, 387
AutoNumber, datatype, 508
AutoPostBack

attributes. See Server controls
property, 85, 106

B
B2B partners, 361
BackColor, 101
Backend database failure, 208
Back-end databases, 3

Back-end Web programming, 5
bin subdirectory, 78, 81, 106
Binary code, 18. See also Machine-

specific binary code
bindDataGrid

procedure, 152
routine, 150

Binding, usage. See Data
bindListControl sub-procedure, 131
Biometric authentication, 207
BK_Author, 505
BK_Description, 505
BK_ImagePath, 505
BK_ISBN, 505, 506
BKOR_Price, 506
BKOR_Quantity, 506
BK_Price, 505
BK_Title, 505
Board

browsing, 628–638
class, design, 591–612
object, 592, 657

BoardDescription, 569
BoardID, 569, 570, 596
BoardName, 569, 570, 612
/body, 130–161
Body field, 608
Book Shop Web services, overview,

518–520
BookCatalog class, creation, 548–553
bookCatalog method, 553
bookCatalog.catalogItemDetails, 555
Books

addition. See Database
deletion, 541–542
details, updating, 542–543

bookSourceUI, 548
Booleans, 38, 40

166_ASPNET_index.qxd 11/27/01 9:07 AM Page 666

Index 667

BorderColor, 101
bordercolor property, 122
BorderStyle, 101
BorderWidth, 101
Borland, 14
Bottom-most nodes, 360
BoundColumn, 147
Breakpoints, setting, 434–435
Broadvision, 7
Browser. See Down-level browsers;

Up-level browsers
communication. See Client/browser

communication
type, 16

Browser-based state solution, 230
browserCaps tag, usage. See Client

capabilities determination
Browser-compliant HTML, 75
Browsing interface, design, 628–638
btnEditPost_Click method, 657
btnRegister_Click subroutine, 623
btnUpdate_Click method, 640
Bug fixes, 300
Built-in applications, 25
Built-in features, 62
BulletList, 123
Business objects, 568
Byte data types, 39

C
C, 3, 447

programmers, 24
C#, 9, 11–13, 26, 247, 450

class file, 78
source file, 79, 81
syntax, 24, 248
usage, 20, 79, 82

Web Service, 522
C++, 3, 8, 14, 25, 447. See also

Visual C++
ATL

code, 578
COM, 578

bolted-on approach, 11
C# .NET, 306
Cache

duration, 280
expiration, 258
method, usage, 282–284
object. See Application
optimization, 268–269
values, 234

Cache Insert method, 258
cache.add method, usage, 282, 285–292
Cached configuration, 220
Cache-filling statements, 258
cache.insert method, usage, 282,

285–292
CacheItemPriority setting, 289
CacheItemPriorityDecay setting, 289
CacheItemRemoved option, 290
CacheItemRemovedCallback delegate,

usage, 289–292
Cache.Remove method, usage.

See /HTML
Caching, 273. See also Data; Fragment

caching; Output caching
data, 282
facility, 252
implementation, 293
overview, 266–269
uses, 293–294

Caching methods, optimization, 265
FAQs, 297–298
introduction, 266

166_ASPNET_index.qxd 11/27/01 9:07 AM Page 667

668 Index

solutions, 296–297
Calendar controls, 62
Camel-cased attributes, 211
Carriage return, 24
Cascading Style Sheet (CSS), 348

code, 62
file, 617
script, 491
styles, 622

Case sensitivity, 355
Catalog

element, 353
method, creation, 550
node, 360
rendering, 558–559

catalogByCategory method, creation,
550–551

catalogItemDetails method, creation, 550
catalogRange method, creation,

550–551
catalogRangeByCategory method,

creation, 551–553
Catalog.xsd, 358
Catch statements, 425
CAT_ID, 504–505, 522
CAT_Name, 505
C-compiled languages, 5
CDalAddress class, 319
CGI. See Common Gateway Interface
Change events, 77
Char data type, 40
CheckBoxes, usage, 103–106
CheckBoxList, 108

control, 101, 106
Child node, 360
Child objects, 597
ChildControls, 621
ChildNodes, 373

ChildNodes.Count, 373
ChildPost property, 599, 603, 605
ChildPosts property, 599, 603, 605
ChildThread, 594
Class file, compiling, 78
Class viewer, usage, 436–437
Classes, 464

arrays, 464–465
Classic ASP, 14, 17, 22

pages, 37
projects, 24
upgrading, 26–27

ClassViewer, 437
clear attribute, 203
clear (processing directive), 189
clear subtag, 190, 192–193, 202, 207
Clear (value), 206
click() event, 70
Client capabilities determination,

browserCaps tag, usage, 184–186
Client/browser communication

(enabling), System.Web namespace
(usage), 45–52

supplied functionality, 45–52
Client-server interaction, 16–17
Client-side JavaScript validation, 120
Client-side scripts, 75
Client-side validation, 120, 121

function. See CustomValidator
ClientValidationFuncation property, 121
C-like shorthand, 250
CLR. See Common Language Runtime
cmdCompute, 164
cntApplication, 250
COBOL.NET, 13
Code

conversion. See Multiple languages

166_ASPNET_index.qxd 11/27/01 9:07 AM Page 668

Index 669

creation. See eXtensible Markup
Language Cart

development activities, 78
listing, 328

Code-Behind, 63, 78
attribute, 82
class file, development, 83
file, 312

Code-behind, 106, 635, 650, 657
classes, 66, 181
in-page coding, contrast, 77–87
onsubmit(), 559
pages, 15, 450, 455, 543
usage

compilation, inclusion, 81–84
compilation, non-inclusion, 79–81

CodeBehind.aspx file, 80
ColdFusion, 7
Collection objects, 111
Colors, manipulation, 491–495
Column mapping, usage. See DataGrid

control
COM. See Component Object Model
COM+ components, 27
Command object, 325, 328, 332, 335

usage, 337
Command-line tools, 12
CommandSource, 136
Comment, 352. See also Actual comment
Common Gateway Interface (CGI), 4

programs, 3
Common Language Runtime (CLR),

11–13, 27, 37, 63
CLR-supported language, 75
Intermediate Language (IL), 447
languages, 300
usage, 45, 75, 313

Common Object Request Broker
Architecture (CORBA), 443, 448

CompareValidator, 113, 127–128, 535
control, 117–118

Compilation
command, 81
errors, 418–420
inclusion/non-inclusion. See Code-

behind
options (setting), compilation tag

(usage), 187–190
compilation subtags, 189
compilation tag, usage. See Compilation
compiler subtag, 188
Compiling. See World Wide Web

services
complexType data structures, 357–358
Component Object Model (COM), 6

components, 24, 27
foundations, 9
objects, 8, 231, 576

Comprehensive Perl Archive Network
(CPAN), 5

comptePay procedure, 166
configSections tag, 212
Configuration. See Application;

ASP.NET configuration;
Encryption; HyperText Transfer
Protocol; Request; Security;
Session state; Sessions; System;
World Wide Web

file, 174
anatomy, 211–222
creation, 215–219
overriding, 175
uses, 177–211

hierarchy, 176
inheritance, 176
section handlers, 212

166_ASPNET_index.qxd 11/27/01 9:07 AM Page 669

670 Index

settings, retrieval, 220–222
trace tag, usage. See Tracing

configuration tag, opening, 215
ConfigurationSettings.appSettings

method, 220
ConfigurationSettings.GetConfig

method, 220
Connection strings

creation, 310–313
placement, 312–313
security, 313

connectionManagement tag, usage. See
Connections control

Connections control,
connectionManagement tag
(usage), 190–191

ConnectionString, 616
Connectivity. See ADO.NET
Console applications, creation, 590–591
Constraints, 127–128
Control.ChildControls Control

Collection, 621
ControlCollection, 620
Controls. See Custom controls; Server

controls;Validation;World Wide
Web

usage. See DataGrid control; DataList
control

ControlToCompare property, 128
Cookies, 230, 241

data, encryption/decryption. See
Forms

Copy methods, 44
CORBA. See Common Object Request

Broker Architecture
Corel, 14
CPAN. See Comprehensive Perl Archive

Network (CPAN)
CreatePost method, 606

CreateSummaryTable method, creation,
549–550

CreateThread method, 606
CreateUser, 585, 624

function, 589
CreateUser method, 623
Creator field, 605
CreatorID, 570
credentials subtag, 206
Cross-discipline teams, 4
CSS. See Cascading Style Sheet
CT_Email, 505
CT_FirstName, 505
CT_ID, 505, 513
CT_LastName, 505
CT_Password, 505
CType, usage, 602
Currency, datatype, 507
CurrentUser

object, 627
property, 624

Current.Value property, 391
Custom controls, 63
Custom errors definition, customErrors

tag (usage), 191–192
Custom server user controls, creation,

161–167
Customer

Admin section, creation, 543–547
administration, 543–547
element, 385, 386

Customer_Id attributes, 385
customErrors tag, usage. See Custom

errors definition
CustomValidator, 113, 535, 622

client-side validation function,
120–122

control, 118–120

166_ASPNET_index.qxd 11/27/01 9:07 AM Page 670

Index 671

D
DAL, 319, 332

example, 337
Data

access code, 335
access layer, value retrieval, 312
access object, creation, 579–581
binding, usage, 95–97
caching, 252–257, 266, 281–294

usage, advantages, 292–293
collection, HTML forms (usage),

63–65
connection, creation, 520–521
display, 540–541. See also Formatted

data; Repeater control
default column mapping, usage. See

DataGrid control
editing capability, providing. See

DataGrid control
filters, testing, 559
non-updateable stream, 303
provider, 300, 341
retrieval, 367–369, 537–540
table, 154
types (grouping), System.Collections

namespace (usage), 43–44
supplied functionality, 43–44

updating. See Database
Data source, 302, 319

System.Data namespace, usage, 52–53
supplied functionality, 52

data source agnostic namespace, 306
DataAdapter, 302, 303

usage, 538
Database. See MSAccess database; SQL

Server database; SQLServer
database

access, 51

addition, 330–335
books, addition, 541
browsing, 323–330
connection, 319–323, 476

information, 236
connectivity issues, 130
creation. See Access database
data, updating, 335–339
deleting, 339–341, 541–542
level, 330
query, usage. See eXtensible Markup

Language document
replication, 460
setup. See ADO.NET shopping cart;

Message board creation
updating, 542–543
usage, 405–409

Database-driven interactivity, 4
DataBind, 101

Repeater control, interaction, 634
DataBind() method, 111
DataBinded, 540
DataBinds, 632
Databound ListControls, 100

family, 130–161
DataColumn, 306

children, 466
DataColumns, 301
DataControl, 579
Data-enabled ASP.NET pages, 52
DataException, 306
DataGrid, 49

binding, 323. See DataSet
contents, 146
control, 387, 540, 561
deleting, 541–542
event, 542
loading, 383

166_ASPNET_index.qxd 11/27/01 9:07 AM Page 671

672 Index

paging, providing, 152–154
relational table, 381
resync, 543
sorting, 149–152
tag, 158
UI, 541
updating, 542–543

DataGrid control
data display, default column mapping

(usage), 145–146
data editing capability, providing,

157–161
usage, 144–152

DataGridPageChangedEventArgs
parameter, 152, 157
usage, 158

DataItem fields, 132
DataKeyField property, 158
DataList, 314. See also Page-level

DataList
binding, 316, 323
control, 157
definition, 142
RepeatColumn property, usage,

139–141
RepeatDirection property, usage,

139–141
DataList control

items, capturing, 141–144
usage, 139–144

DataReader, 303, 305, 325
object, 301
usage, 314

DataReaders, 52
DataRepeater, binding, 323
DataRow, 486, 586, 596, 601

children, 466
creation, 542

CType, usage, 602
passing, 611

DataRows, 301
DataSet, 303, 306, 319, 465, 516. See also

XmlDataDocument
allBooks, 551
arrays, 465
creation, 538, 634
DataGrid, binding, 540–541
dsAllBooks, 550
object, 408, 540, 547, 552
property, 378
requirement, 302
returning, 537
RowFilter operations, 466
storage, 547
type, 540
usage, 301, 314, 466–468, 601
view tag, 357
XML document, reading, 408–409

DataSets, 52–53, 361
DataSource object, 497
DataTable, 306, 361, 386

children, 466
filling, 323
returning, 549
value, 546
view, 378

DataType, 486
Datatypes, 507. See also AutoNumber;

Currency; Date/Time; Memo;
Number; OLE Object;Text;
Yes/No

DataView, 306, 541
children, 466
object, 151
usage, 543

DataViews collection, 301

166_ASPNET_index.qxd 11/27/01 9:07 AM Page 672

Index 673

Dates, 40
structures, 38
validating, 126–129

Date/Time, datatype, 508
datetime.maxvalue option, usage, 287
DB2, 327
DCOM. See Distributed Component

Object Model
Debug mode, enabling/disabling,

435–436
Debugging. See ASP.NET debugging

tools, usage. SeeVisual Studio .NET
Declaration, 352
decryptionKey attribute, 209
Default column mapping, usage. See

DataGrid control
defaultRedirect attribute, 191
Definitions (viewing), object browser

(usage), 436
Delete method, 592, 598
DELETE records, 303
Delete Stored procedure, 341
Delete syntax, usage, 339, 340
deleteBoard.aspx, 651
DeletePost method, 597, 599
DeleteThread method, 597
Delphi, 3
Dependency option, usage, 285–287
Depth, 365
Description property, 422
Design Time Control (DTC), 546
Desktop application, 229
DHTML. See Dynamic HTML
Dictionary-style interface, 282
Display, 114
Display= “dynamic,” 114
Display= “none,” 114
Display= “static,” 114

DisplayBoards subroutine, 630
displayMode, 123
DisplayNode, 376
Dispose, 101
Distributed Component Object Model

(DCOM), 443, 448
Distributed Internet Applications

(DNA), 5, 9
DLL. See Dynamically linked library
DNA. See Distributed Internet

Applications
DNS. See Domain Name System
Document Object Model (DOM), 348,

373
exploration. See eXtensible Markup

Language
tree, 374, 376–378, 388

Document Type Definition (DTD),
352–353, 356

DocumentElement, 373
DocumentElement.ChildNodes(0), 373
Documents. See eXtensible Markup

Language;Valid XML documents;
Well-formed XML documents

components. See eXtensible Markup
Language document

creation. SeeVisual Studio .NET
navigation

XPathDocument objects, usage,
392–396

XPathNavigator objects, usage,
392–396

structure. See eXtensible Markup
Language

DocumentSource attribute, 398
DOM. See Document Object Model
Domain Name System (DNS), 13, 15
doPaging sub-procedure, 152
dotBoard

166_ASPNET_index.qxd 11/27/01 9:07 AM Page 673

674 Index

construction, 628
Setup.sql, 573

dotBoardObjects, 590, 614
dotBoardObjects.DataControl class, 646
dotBoardObjects.User object, 615
dotBoardUI, 613, 614
Down-level browsers, 100
Drill-down facilities. See Automatic

drill-down facilities
Drop-down list, 303, 646

boxes, 233
DropDownList, 646, 647

control, 645
DropDownLists, usage, 103–106
DSN sources, 176
DTC. See Design Time Control
DTD. See Document Type Definition
dtProducts, 132, 135
Dynamic compilation, 75
Dynamic HTML (DHTML), 348, 536
Dynamic SQL, 327
Dynamically Linked Library (DLL), 36,

192
file, 78, 81, 83, 577

E
editItemIndex, 314
EditItemIndex, setting, 316
EditItemTemplate, 139
editPost.aspx, 655
Electronic business (E-business), 12
Electronic commerce (E-commerce), 12
Electronic mail (E-mail), 475

address, 474, 569, 638
object, 484
validation, 483

Elements, 353. See also Empty element;
Root element

nesting, 355
termination, 355

Element-type node, 368
element-type node, 360
EM. See Enterprise Manager
Email, 571
Embedded SQL, 327

statements, 327
Emoticon element, 493
Empty element, 354–355
Enabled, 101
Encryption, 204, 206

keys configuration, machineKey tag
(usage), 209–210

End-tag, 353, 355
English-language systems, 180
Enterprise JavaBeans, 9
Enterprise Manager (EM), 510–511,

515, 572, 576
Enum types, 464
Enums, arrays, 464
EOF, 365
ErrorHandling block, 423
ErrorMessage, 114
Errors. See Compilation; Logic errors;

Runtime; Syntax errors
definition. See Custom errors

definition
handling, 418–426. See also Structured

error handling; Unstructured error
handling

message, 114, 420, 424
display, 122

Events, 237–239
bubbling, 132

usage, 135–138
capturing. See Repeater control

166_ASPNET_index.qxd 11/27/01 9:07 AM Page 674

Index 675

execution, order, 77
item, 432
usage. See Application; Sessions

Exception, 425. See also
OutOfMemoryException;
OverflowException

EXEC usp_tblAddress_sel, 326
ExecuteNonQuery method, 335, 339,

341, 579
ExecuteQuery, 530
ExecuteReader, 325
Execution environment, 75
executionTimeout attribute, 194
Expiration policy, 285

option, usage, 287
eXtensible Markup Language Cart

(XMLCart)
construction, 553–556
rendering, 559

eXtensible Markup Language Schema
Definition (XSD), 356–357, 460

attributes, 478
schema, 359

eXtensible Markup Language (XML),
51

Authority, 362
construction, 476–478
data, 13, 52, 465, 557

representation, 53
data, querying

XPathDocument, usage, 388–396
XPathNavigator, usage, 388–396

Designer, XML document creation.
SeeVisual Studio .NET

DOM, exploration, 373–387
element, 355
files, 15, 52, 285, 484

change, 286

files (processing), System.XML
namespace (usage), 53–54

supplied functionality, 53–54
format text files, 13
formatting, 174
functions, 553
future, 350
interactions. See Legacy systems
node, 362, 560
overview, 348–361
parser, 174, 348
specifications, 350
tags, 619
tree, 364
usage, 405–409. See also Message board

creation; .NET framework;World
Wide Web services

validation. SeeVisual Studio .NET
XML-based systems, 354
XML-based text files, 8
XML-RPC, 9

eXtensible Markup Language (XML)
document, 70, 312. See alsoValid
XML documents;Well-formed
XML documents

appearance, 349
components, 352–355
creation, 350–352. See alsoVisual

Studio .NET
database query, usage, 406–408

generation, XmlTextWriter (usage),
370–373

loading, 378
navigation, 367–369
parsing, 365–367

XmlDocument object, usage,
376–378

XmlTextReader class, usage, 364–369
processing, .NET (usage), 361–364

166_ASPNET_index.qxd 11/27/01 9:07 AM Page 675

676 Index

reading, 362–363. See also DataSet
XmlTextReader class (usage),

364–369
storing/processing, 363–364
structure, 360–361
transformation, 400–405. See also

HyperText Markup Language
XSLT, usage, 396–405

writing, 362–363
XmlTextWriter class, usage, 370–373

eXtensible Markup Language (XML)
XML.NET guestbook

creation, 473
FAQs, 500
functional design requirements,

475–478
interface, advanced options, 490–497
introduction, 474–475
records, addition, 478–488
solutions, 498–499
viewing, 488–490

eXtensible Stylesheet Language
Transformations (XSLT), 348, 362,
396, 549

code, 401–403
file, 401
style sheet, 397
usage. See eXtensible Markup

Language document

F
Factorial, value, 426
Failure point, 27
File locking, 488
File Transfer Protocol (FTP), 5, 16, 231
fileControl.PostedFiled.SaveAs, 93
Filestream, 495

Finally block, 425
firehose Recordset, 303
Firewalls, 448
FirstChild, 373
FirstName, 571
FirstRecord, 558
Floating point numbers, 38
Floating-point numbers, 39–40
Font, 101
Footer template, 132, 133
FooterTemplate, 132
ForeColor, 101
forecolor property, 122
/form, 130–161
Formatted data, display, 146–149
Formatting, 370
Formatting-related HTML elements,

139
FormBase.vb, 614
Forms. See Online forms

authentication cookie data,
encryption/decryption, 209

controls. See World Wide Web
objects, 482
usage. See Data collection

forms subtag, 205, 206
Form-type server controls, 62
Forward-only basis, 362–363
Foundation class libraries, 12
Fragment caching, 266, 267, 277–281,

294
usage, advantages, 281

fragment_cache.aspx, 279
FrontPage, 5
FTP. See File Transfer Protocol
Functionality. See Supplied functionality

166_ASPNET_index.qxd 11/27/01 9:07 AM Page 676

Index 677

G
Generated template code, 455
GET, 16, 192

query string parameter, 270
requests, 17

GetAllBooks, 513
GetAllCat, 513
GetBoards, 611
getBooks, 519, 540
getBooks.AllBooks Web method,

creation, 537–540
getByID function, 316
getCartDescription method, 556
getCategories, 519
getCustomer, 518
GetDataSet, 579
GetElementsByTagName, 380
GetStyleName, 620–621

function, 621
GetValueList method, 97
GetXml, 405
GetXml() method, 552
GetXmlSchema, 405
Global Assembly Cache, 27
Global files, 24
Global support (providing), globalization

tag (usage), 180–181
Global unique identifier, 505
Global variables, 233
Global.asa, 313
Global.asax, 228, 234, 250

analysis, 231–232
creation, 245
files, 238

globalization tag, usage. See Global
support

grossWage property, 164

Guestbook. See eXtensible Markup
Language XML.NET guestbook

Guests, 581
GUIs, 478

H
HasAttributes property, 365
HasChildNodes, 373
HashTable, 95
HasValue, 365
Header

information, 17
template, 133

HeaderStyle property, 147
HeaderTemplate, 132
headerText, 123
Height, 101
Hidden fields, 69
HTML. See HyperText Markup

Language
/html, 130–161
/HTML tag, cache remove method

(usage), 292
HTMLAnchor, 47

object, 36
HtmlAnchor control, 651

usage, 88, 89
HtmlButton control, usage, 91–93
HtmlCheckBox control, usage, 98–99
HtmlImage control, usage, 91–93
HtmlInputButton, 91
HtmlInputFile control, usage, 93–95
HtmlInputRadioButton control, usage,

98–99
HtmlInputText control, usage, 90–91
HTMLInputTextBox object, 36
HtmlSelect control

binding, 111

166_ASPNET_index.qxd 11/27/01 9:07 AM Page 677

678 Index

usage, 95–97
HtmlTable

construction, 89
control, usage, 88–90

HtmlTextArea control, usage, 90–91
HTTP. See HyperText Transfer Protocol
HttpApplication class, 46
HttpCachePolicy class, 46

methods, 269
usage, 275–277

httpHandlers, 192
tag, usage. See Requests mapping

httpModules tag, usage. See HyperText
Transfer Protocol modules
configuration

HttpRequest object variables, 45
HttpResponse object variables, 45
HttpResponse.Cache property, 269
httpRuntime tag, 194

usage. See Runtime options
HttpServerUtility object, 45
HTTP_USER_AGENT variable, 184
HyperLink controls, usage, 110–111
Hyperlinks, display, 88
HyperText Markup Language (HTML),

4, 53, 212, 557. See also Dynamic
HTML

anchor tag, 655
code, 482
controls, 47, 75, 558

usage, 66–67
counterparts, 48
display, 26
document, 64, 348

XML document transformation,
397–399

elements, 62, 87, 93, 95. See also
Formatting-related HTML
elements

form
element, 64
usage. See Data
validation, 535

functions, 488
head/body information, 257
HTML-user interface controls, 36
layout techniques, 535
markup, 20
metatag, 232
page, 47
rendering, 303
server controls, 62, 102

usage, 87–100
Web controls, contrast, 100

string, 637
table, 133, 397
tables/lists, 48
version 3.2, 100
version 4.0, 100
view, 453

HyperText Transfer Protocol (HTTP),
350, 443

connections, 518
data transmission, 462, 465
header, 230

value, 273
HTTP-header client-side

implementation, 8
message, 63, 65
methods, 16
modules, 200

configuration, httpModules tag
(usage), 193–194

processing, 194
protocol, 67
reponse information, 45
request, 18, 267, 281

166_ASPNET_index.qxd 11/27/01 9:07 AM Page 678

Index 679

header, 17
traffic, 448
usage, 461

I
IBM, 7
IconfigurationSectionHandler interface,

212
IDC. See Internet Database Connector

technology, 10
@@IDENTITY

function, 330
selection, 332

@@identity, 509
identity tag, usage. See Application
If statements, 27, 637
IHttpHandler, 192
IhttpHandlerFactory, 192
IIS. See Internet Information Server
IL. See Common Language Runtime
Image selection, 494
ImagePath, 130
Images

folder, 92
manipulation, 491–495

img (element), 92
Imports keyword, 306
In AddItem, 560
In Checkout, 560
In Page_Load(), 559
In RemoveItem, 560
In showCart(), 560
In showCatalog(), 559–560
InferXmlSchema, 405
inflate method, 588, 611
Inheritance, 75. See also Configuration
.ini files, 174

Init, 101
init(), 529, 530
InitCatalog method, creation, 550
Initialization code, 495
InitializeComponent() method, 521
InitializeThreads method, 599–601
InkCreateBoard, 649
Inline coding, 77
In-memory relational database, 301
InnerText, 373
In-Page Code, 63
In-page coding, contrast, 77. See also

Code-behind
Input/Output, 335
INSERT records, 303
Insurance-related data, 103
Int16 variable, 419
Int32 variable, 419
Integers, 38

data types, 39
number, 250

Integral numbers, 38, 39
Intermediate Language (IL). See

Common Language Runtime
Internet Database Connector (IDC), 3
Internet Information Server (IIS), 2–3,

10, 18
application parameters, 228
environment, 63
infancy, 5
usage, 266, 450
version 5, 8, 10

Internet Server Application
Programming Interface (ISAPI),
3–5, 10

Internet Service Provider (ISP), 19
Intrinsic state methods, 220
IsAdmin, 571, 648

166_ASPNET_index.qxd 11/27/01 9:07 AM Page 679

680 Index

ISAPI. See Internet Server Application
Programming Interface

IsBanned, 571, 648
ISBN, 522, 541, 556

supplying, 555
usage, 560

IsDefault, 365
IsEmptyElement, 365
ISP. See Internet Service Provider
IsPostBack property, usage. See Pages
Item, 365

capturing. See DataList control
Command event, 132
function, 608
property, 602
Template, 132

ItemIndex, 314
ItemTemplate, 135, 137
Iterator object, 394

J
J++, 14
J2EE. See Java 2 Enterprise Edition
Java, 11, 24, 447, 456

support, 7
Java 2 Enterprise Edition (J2EE), 9
Java Server Pages (JSP), 7
JavaScript, 3, 24, 62, 120, 348

validation, 121. See also Client-side
JavaScript validation

Java-servlets, 518
Jet, 326
JIT. See Just-In-Time
JScript

developers. See .NET.Experience
JScript developers

programmers, 26
JScript.NET, 13

JSP, 518. See Java Server Pages
Just-In-Time (JIT) compilation, 578

K
Key attribute, 179
Key-field, 97

L
Labels, usage, 103–106
Large-scale applications, 603
LastChild, 373
LastName, 571
LastRecord, 558
Legacy systems, XML interactions, 362
Length properties, 44
Let assignments, 27
level attribute, 211
Link buttons, usage, 141
LinkButton, 641, 645
List, 123
List box loading, script usage, 70–72
ListBox control, 85, 106
ListControl, 108, 141–142. See also

Databound ListControls
abstract class, usage, 106–109
binding. See ArrayList
examples, 132

ListPrice
element, 353, 358
node, 369

Load, 101
Local files, usage, 51
location (tag), 177, 214, 216
Logged-in administrator, 650
Logic errors, 419, 426
Log-in interface, construction, 621–628
loginCustomer, 519

166_ASPNET_index.qxd 11/27/01 9:07 AM Page 680

Index 681

page, creation, 544–545
LoginCustomers, 513
Long data types, 39
Lower-level configuration file, 177
Lower-level file, 175

M
machine.config, 174, 183

file, 176, 184, 212
machineKey tag, usage. See Encryption
Machine-specific binary code, 14
Macromedia. See Ultradev
.majorversion properties, 22
Many-to-many table relationship, 504
Mark-up codes, 63
mBoardID variable, 601
MD5 hash algorithm, usage, 206
MD5 (value), 206
Member profile, editing, 638–640
Memo, datatype, 508
Memory

implications, 233
resources, 269, 293

Message
board, 568
browsing, 635–638
display, 488–490
transmission, 462

Message board creation,ADO/XML
usage, 567

administrative interface, construction,
645–657

application design, 576–612
database, setup, 568–576
FAQs, 661–662
general functions, setup, 614–621
introduction, 568
solutions, 658–660

user functions, creation, 638–644
MessageBinding, 461
MessageBoard class, 630

design, 611–612
Metatag. See HyperText Markup

Language
Microsoft Data Engine (MSDE), 19, 28
Microsoft Intermediate Language

(MSIL), 14, 18, 37
Microsoft Management Console

(MMC), 10, 13, 229
usage, 231, 239

Microsoft Message Queue, 7
Microsoft Office, 51
Microsoft Transaction Server (MTS),

7, 10
Middle child, 603
.minorversion properties, 22
MMC. See Microsoft Management

Console
mode attribute, 191, 205
ModeratorID, 569
Moderators, 581
Modern Relational Database

technology, 323
Modified URL, 241
Modules configuration,

webRequestModule tag (usage).
See Request

Mono, 14
MoveNext method, 394
MoveToAttribute(i) method, 365
MoveToContent()

method, 369
statement, 368

MoveToElement method, 365
MSAccess database, 569–572
MSDATA attributes, 478
MSDE. See Microsoft Data Engine

166_ASPNET_index.qxd 11/27/01 9:07 AM Page 681

682 Index

MSDN documentation, 436
MSIL. See Microsoft Intermediate

Language
MSSQL, 537
mThread variable, 644
MTS. See Microsoft Transaction Server
Multi-line comments, 24
Multi-line text, 90
Multi-page bank account sign-up form,

228
Multiple languages, code conversion,

13–14
Multiple tables, viewing. See

XmlDataDocument
Multiple-table views, 379
Multi-process environment, 233

N
Name, 475

property, 364
name attribute, 210, 212

acceptance, 213
name parameter, 270
name value, 203
namespace subtag, 189
Namespaces. See System

FAQs, 58–59
function, review, 36–37
introduction, 36
set. See System.Web.Services

namespace set; System.Web.UI
namespace

solutions, 56–57
understanding. See Root namespace
usage, 37. See also Client/browser

communication; Data; eXtensible
Markup Language files; Objects;
.VisualBasic namespace

NavigateUrl property, 110

Nested controls, 100
Nested elements, 387
.NET, 11

class, 234
environment, 406
language code, 14
namespaces, 232
objects, 12
obtaining/installation, 19
technology, 13
usage. See eXtensible Markup

Language document
.NET DLLs, 36
.NET Framework, 12, 13, 26, 421, 449

FAQs, 414–415
introduction, 348
solutions, 410–413
XML usage, 347

Net SDK Collection Class, 95
.NET-based modules, 26
Net.Commerce, 7
.NET.Experience JScript developers, 14
Netscape 4.72, 536
Netscape 4.x,ASP.NET server controls

display, 536
Netscape Netsite server, 10
Network communication, 233
Network-handling functions, 12
newPageIndex property, 152
Nodes, values retrieval, 379–380
NodeType, 373

property, 364
Non-indexed default properties, 27
Non-windows platforms, 14
Normal default value, 288
Notepad, 4, 174

usage, 350, 356
nothing object, 287

166_ASPNET_index.qxd 11/27/01 9:07 AM Page 682

Index 683

Null, 246
Number, datatype, 508

O
objControl.GetType().ToString(), 621
Object Browser, usage, 436
Object-oriented (OO)

application, 581
approach, 577–578
objects, 582

Objects, 40–43. See also Application;
Request; Response objects

browser, usage. See Definitions
creation. See Data
design, 579
grouping, System.Collections

namespace (usage), 43–44
supplied functionality, 43–44

hierarchy, 652
orientation, 14

ODBC. See Open DataBase
Connectivity

OLE Object, datatype, 508
OleDb

connection string, 305
data connection object, 519
provider, 519

OleDbCommand, 307
object, 326, 332

OleDbConnection, 307
connection string, 310

OleDbDataAdapter, 307
OleDbDataReader, 307

object, 319
OLTP. See Online Transaction

Processing
On Error Resume Next statement, 422
On Error statement, 421–423

OnCancelCommand, 157
onclick event, 556
OnClick() event, 486
OnDataBinding, 101
OnDeleteCommand, 157
OnEditCommand, 157, 314
OnEditCommandEvent, 157
One-to-many table relationship, 504
One-to-one table relationship, 504
OnInit, 101
Online forms, 486
Online Transaction Processing

(OLTP), 323
OnLoad, 101
OnPageIndexChanged, 152
OnRemove, 289
onSelectedIndexChanged

attribute/event, 73
onserverchange attribute, 90
OnServerValidate property, 120
onServerValidate property, 119
OnSortCommand, 150
onsubmit(), 559
OnUpdateCommand, 157
OO. See Object-oriented
Open DataBase Connectivity

(ODBC), 3
connections, 476

Open Source projects, 22
Opera browser, 275
OperationBinding, 461
Option Explicit, 27
Option Strict On statement, 420
Oracle, 7, 327
OR_Date, 506
OrderBook, 513
orderBooks, 519
orderBooks.OrderItem, 556

166_ASPNET_index.qxd 11/27/01 9:07 AM Page 683

684 Index

OR_ID, 505, 506
originUrl attribute, 211
OR_ShippedDate, 506
OutOfMemoryException, 425
Output Cache directive, usage.

See @ OutputCache directive
Output caching, 266–267, 269–277, 294

advantages, 276–277
OutputBinding, 461
output_cache.aspx, 271
OverflowException, 425

P
Page, 101

Declarative statement, 79
@Page directive, 451
Page_Init, 77
Page.InitOutputCache method, 269
Page.IsPostBack, 72
Page-level DataList, 319
Page_Load, 77

event, 71–72, 77, 97, 108, 162, 281
usage, 368, 374, 408

method, 630, 640, 657
sub, 497
subroutine, 623

Page.Load event, 623
Page_Load() event, 377
Page_OnLoad event, 316
Page_PreRender event, 281
PagerStyle-HorizontalAlign, 152
Pages. See Active Server Pages

class file, 65
compilation. See ASP.NET
directive, 434
directives, 76–77
events, 75

option, 181

IsPostBack property (usage), 72–73
navigation, 154–156
output, modification, 495–497
running. See ASP.NET
tracing, 426–434

pages tag, usage. See Page-specific
attributes

PageSize, 152
Page-specific attributes (setting), pages

tag (usage), 181–182
Page_Unload, 77
Paging, providing. See DataGrid
Parallel processing, 24
Parameterized stored procedure, 154
Parent, 101
Parent-child relationships, 356
Parentheses, usage, 27
passport subtags, 205, 206
Passwords, 176, 236, 569, 571

validating, 126–129
Password-type textbox, 90
path attribute, 214
Patterned strings, validating, 126–129
Payroll user control

consuming, 166–167
development, 164–166

Perl, 3–5, 117. See also Comprehensive
Perl Archive Network

5, 7
Perl.NET, 13
Permissions, 208
Per-server basis, 174
Personal identification number

(PIN), 230
PHP, 7, 518
PIN. See Personal identification number
pnlAdd panel, understanding, 482–484
PnlThank,Thank-You panel

(addition), 484

166_ASPNET_index.qxd 11/27/01 9:07 AM Page 684

Index 685

policyFile attribute, 210
Portable.NET, 14
POST, 16, 192

method, 17
parameters, 270

Post
class, design, 608–611
creation, 641–644
object, 603, 657

PostBack, role, 63
Postbacks, 166
PostList class, design, 606–608
Price, 146
Primitive types. See Standard primitive

types
Primitives, arrays, 464
Priority option, usage, 288–289
Process model options (setting),

processModel tag (usage), 195–200
processModel tag, usage. See Process

model options
Product element, 353, 357–358
Product Name, 353, 367
Product nodes, 360
ProductId, 135–137, 146, 353

field, 158
usage, 358

ProductName, 130, 146
node, 368

Provider
attribute, 304, 310
property, 305

Proxy
classes. See Web Services Description

Language
PUT, 192
Python, 13

Q
Quasi-HTML, 628, 631, 635
Query

expressions, samples, 389–390
plan, optimization, 327
running, 276
usage. See eXtensible Markup

Language document
Query Analyzer, 515
Querystring parameter values, 17

R
RAD. See Rapid Application

Development
RadioButtonList control, 101, 106
RadioButtons, usage, 103–106
RangeValidator, 113–114, 128, 535

control, 118
Rank properties, 44
Rapid Application Development

(RAD), 63
features, 11

Read() method, 364, 365, 368
Read-only forward-only cursor, 323
ReadOnly property, 158, 164
ReadState, 365
ReadString(), 368
ReadXml method, 408
ReadXmlSchema, 405
Real-time value verification, 62
RealXml, 405
recordCount, 558
Recordset. See firehose Recordset

object, 53
usage, 301

Recursive procedure, 376
redirectUrl attribute, 206

166_ASPNET_index.qxd 11/27/01 9:07 AM Page 685

686 Index

Register
directive, 162

Registered users, 581
Regular Expressions, 4

support, 6
RegularExpression property, 115
RegularExpressionValidator, 113, 535

control, 115–117
Relational database, 502
Relational view, 378, 384

usage. See XmlDataDocument
Remote database, access, 181
Remote procedure call (RPC), 448
remove attribute, 203
remove (processing directive), 189
remove subtag, 190, 192–193, 202, 207
removeCat, 528, 530
removeItem, 528–530
removeItemFromCart method, 556
RepeatColumn property, usage. See

DataList
RepeatDirection

attribute, 107
property, usage. See DataList

Repeater code, 632
Repeater control, 52, 145, 628–631

data display, 132–135
events, capturing, 135–138
interaction. See DataBind
usage, 635

Repeater server control, usage, 132–138
RepeaterCommandEventArgs, 136
Request

modules configuration,
webRequestModule tag (usage),
202–203

objects, 21, 45–46
Request.Browser.Browser, 22

Request.Browser.Type property, 275
requestEncoding, default, 180
Requests mapping, httpHandlers tag

(usage), 192–193
RequiredFieldValidator, 113, 535

control, 114–115
RequiredFieldValidators, 642
Resource buffering, 216
Response

buffering options, 181
messages, 63
objects, 45–46, 63, 427

responseEncoding, default, 180
Response.Write() method, 426–427
ReturnValue, 335
Reverse engineering, 356
Rexx, 3
Root element, 353, 355, 382
Root namespace, understanding, 38–43

supplied functionality, 38–43
Root node, 555
RowFilter property, 542, 545
RPC. See eXtensible Markup Language;

Remote procedure call
Runtime

errors, 418, 420–426
options (setting), httpRuntime tag

(usage), 194
Run-time display, 119
Run-time view, 114, 155

S
SAX. See Simple API for XML
Schema, 352–353

documents, 356–360
Schema Generators, 348
Screen scrape, 12

166_ASPNET_index.qxd 11/27/01 9:07 AM Page 686

Index 687

Scripts
execution changes, 8
inclusion. See .aspx file
tags, entering, 239
usage. See List box loading

SDK. See Service Definition Language;
Software Development Kit

section tag, 212
sectionGroup, usage, 213
Security. See Connection strings

configuration, 179, 204–211
modules configuration,

authenticationModules tag (usage),
207–208

policies mapping, securityPolicy tag
(usage), 210–211

precautions, 28
securityPolicy tag, usage. See Security
Select statement, 326
SelectedIndex property, 375
SelectedIndexChange events, 106
SelectedItem property, 72
SelectedItemTemplate, 139
SelectedItem.Value property, 647
SelectSingleNode function, 621
sellerAdmin, 518
Semi-static page, 292
SeparatorTemplate, 132
Server controls, 72. See also Form-type

server controls; HyperText Markup
Language;World Wide Web

AutoPostBack attributes, 73–77
FAQs, 171
features, 62–65
introduction, 62
mapping, 69
solutions, 168–171
states, preservation, 69

usage, 68–69. See also HyperText
Markup Language; Repeater server
control

Server resources
utilization, 268

Server resources, optimization, 268–269
Server Side Include (SSI), 4
Server user controls, creation. See

Custom server user controls
ServerControl3.aspx, 73
Server.HTMLEncode, 45
Server.MapPath, 45
Server.MapPath(), usage, 486
Servers, communication, 448–460
Server-side code, 65, 90, 92

development, 118
Server-side controls, 113
Server-side processing, 17–18, 65–77.

See also ASP.NET
Server-side programmability, 98
Server-side redirects, 8
Server-side scripting, 65
Server-side scripts, 75

tag, 120
Server-side validation, 120, 121
Server-side Web form components, 257
Server-side-only custom validator, 120
ServerValidateEventArgs class, 120
Service Definition Language (SDL), 461
ServiceDescription class, 461
Servlets technology, 7
Session

configuration, 241–243
events, usage, 243–245
information, 232
object, 97
userId value, 627
variable, 240

166_ASPNET_index.qxd 11/27/01 9:07 AM Page 687

688 Index

usage, 545
Session ID, 15, 240
Session state, 63, 242

comparison. See Application state
configuration, sessionState tag (usage),

200–202
information, 26
understanding, 240–241

Session_OnStart event, 245
sessionState tag, usage. See Session state
Set assignments, 27
setEditMode procedure, 157
SetSlidingExpiration method, 276
Settings, retrieval. See Configuration
SGML, 350
SHA1 algorithm, usage, 206
SHA1 (value), 206
Short data types, 39
Show Price button, 375
showCart page methods, 556
showCatalog(), 559
showCatalog page methods, 556
showSelection

function, 142
procedure, 97, 142

ShowSummary, 123
Simple API for XML (SAX), 348
Simple Mail Transfer Protocol (SMTP),

6, 10
Simple Object Access Protocol (SOAP),

9, 12, 51, 350, 443
contracts, 533
datatype, 464
headers, 456
message, 462
usage, 448, 460–461

SimpleType data structures, 357
Singleparagraph, 123
Site, 101

Site, construction/administration. See
ADO.NET shopping cart

Sliding expiration, 287
slidingExpiration, 258
Smart cards, usage, 207
SMTP. See Simple Mail Transfer

Protocol
SOAP. See Simple Object Access

Protocol
Socket, 211
Software Development Kit (SDK), 19
Sort methods, 44
SortByCategory, 431
SortByTime, 431
SortedList

creation/loading, 97
structure, 95–97

sortGrid sub-procedure, 150
Source data, 283
Splitter table, 504
SQL. See Structured Query Language
SQL 2000, 317, 502
SQL database, 476
SQL mode, 518
SQL ORDER BY clause, 149
SQL Query, 406

Analyzer, 28, 573
SQL scripts, 581
SQL Server, 19, 52, 307–308, 330, 511

7.0 Northwind database, 406
2000 database, 502, 503
database, 475, 572–576
installation, 28
stored procedures, 327
usage, 313
Wizard, 513

SQL Server 2000, 300
SQL Statement, 324, 326, 541, 579

construction, 597–598, 646

166_ASPNET_index.qxd 11/27/01 9:07 AM Page 688

Index 689

usage, 589–590, 595, 599–601
SQL string, 132, 158
SqlClient

connection string, 305
namespace, 307

SqlCommand, 308
object, 332

SqlConnection, 308, 312
connection string, 310
object, 319
type, 322

SqlDataAdapter, 308
SqlDataReader, 308
SqlDbType enumeration, usage, 339
SqlDbTypes enumeration, 309
SQLServer database, 510–518
SSI. See Server Side Include
Standard primitive types, 464
Start page, setting, 445
start.aspx page, creation, 556–558
Start-tag, 353, 355
State. See Application state; Session state

example, 234–236
management, 229–231

State Bags, 16
State-full ASP Net controls, 63
State-full phenomenon, 68
State-full values, 97
State-less ASP controls, 63
Static texts, 75
Static values, 249–258
Static variables, 234, 249

counter, 252
setting, appSettings tag (usage),

179–180
Step Into, 435
Step Out, 435
Step Over, 435

Stored procedures
creation, 512–518
name, 324

strConnection property, 322
strConStr, 322
Strings, 38, 40

data type, 40
values, 38
variable, 22

Structs, 464
arrays, 464–465

Structured error handling, 423–426
Structured Query Language (SQL). See

Dynamic SQL; Embedded SQL
server, 327

Sub-application, 176
Subject line, 475
Submit button, 64, 67, 230

event, 482
removal, 73

Submit Button Handler code,
exploration, 484–488

Sun, 7, 9, 11
Supported connectivity. See ADO.NET
Syntax errors, 418, 419
System

configuration, 179, 184–204
namespace, 38–43

System.Collections, 41, 43
namespace, usage, 594. See also Data;

Objects
System.Configuration

.NameValueFileActionHandler
class, 212

System.Data, 478
namespace, 37, 305–308, 476

usage. See Data
object, 52

166_ASPNET_index.qxd 11/27/01 9:07 AM Page 689

690 Index

System.Data.Common namespace,
307–310

System.Data.OleDb namespace, 304,
305, 307

System.Data.SqlClient namespace, 304,
305, 308

System.Data.SqlTypes namespace,
308–310

System.Int, 39
System.Int16, 39
System.Int32, 39
System.IO, 497
System-level capabilities, 184
System.Net.FileWebRequestCreator

module, 202
System.Web namespace, usage. See

Client/browser communication
system.web node, 312
System.Web.HttpForbiddenHandler

handler, 192
System.Web.HttpResponse

class, 45
object, 45

System.Web.Services namespace
overview, 461–463
set, 51–52

System.Web.Services.Description
namespace, 461

System.Web.Services.Discovery
namespace, 461–462

System.Web.Services.Protocols
namespace, 462–463

System.Web.UI
namespace set, 46–51
sub-namespace, 46

system.WebUI.Control object, 46
System.Web.UI.HtmlControls

subnamespaces, 47
System.Web.UI.HtmlControls

.HTMLControl, 87

System.Web.UI.Page, 615
System.Web.UI.WebControls

namespace, 62, 80
sub-namespaces, 47

System.Web.UI.webControls, 621
System.XML, 36

namespace, 348
usage. See eXtensible Markup

Language files
System.Xml namespace, 361
System.Xml.Schema sub-namespaces, 54
System.Xml.Serialization

subnamespaces, 54
System.Xml.XPath subnamespaces, 54
System.Xml.Xsl subnamespaces, 54

T
TabIndex, 101
Table

BookOrders, setup, 506
books, setup, 505
categories, setup, 505
customer, setup, 505
orders, setup, 505–506

Tag-based markup language, 348
tagname attribute, 163
tagprefix attribute, 162–163
Tags, system, 53
targetNamespace attribute, 477
TCP/IP. See Transmission Control

Protocol/Internet Protocol
Template code. See Generated template

code
Template-based declarative language, 396
Templated Web Controls, 100
Terminal node, 376
Text

boxes, 638

166_ASPNET_index.qxd 11/27/01 9:07 AM Page 690

Index 691

databases, 53
datatype, 507
files. See eXtensible Markup Language

Text CommandType, 328
TextBoxes, usage, 103–106
Text-type node, 376
Thank-You panel, addition. See

PnlThank
Third-party support, 5
Third-party tool vendors, 6
Thread

browsing, 631–634
class, design, 603–606
creation, 641–644
ID, 569
object, 657

ThreadID, 570, 572, 594, 643–644
Threading

model. SeeVisual Basic
usage, 239

ThreadList, 600, 608
class, 606

design, 599–603
ThreadSubject, 570
TIBCO, 360
Tibco Extensibility, 362
Time delay, 257
Time structures, 38
timespan.zero option, usage, 287
Timestamp, 233
TimeUserControl.ascx, 162
Title property, 166
Tool tip help, 435
ToolTip, 101
tooltip property, 122
ToString, 101
Trace. See Application-level trace

attribute, 427

class, 418
usage, 427–430

information
sorting, 430–431
writing. See Application

message, 429
mode, 431
page, 427
statements, 430

trace tag, usage. See Tracing service
Tracing. See Application; Pages

service configuration, trace tag (usage),
183–184

Transact SQL (T-SQL), 323, 327
asterisk, usage, 340
command, 326

Transaction sites, 6
Transfer protocol, 461
Transform() method, usage, 396
TransformSource attribute, 398
Transmission Control Protocol/Internet

Protocol (TCP/IP), 12, 15
TravelDownATree, 376
True-or-false values, 40
Trust levels application, trust tag (usage),

211
trust tag, usage. See Trust levels

application
Try block, 425
Try Catch block, 325
Try-Catch-Finally construct, 423
T-SQL. See Transact SQL
Two-way communication, 164
txtConfirmPassword, 128
txtDateOfBirth, 127
type attribute, 212
Type marshalling, 464–465
Type safety, 75

166_ASPNET_index.qxd 11/27/01 9:07 AM Page 691

692 Index

U
UI. See User interface
Ultradev (Macromedia), 6
UML. See Unified Modeling Language
Unicode, 40
Unified Modeling Language (UML),

579
diagram, 591, 600, 603, 606, 611

Unique Identifier, 569
UNIX, 3
Unload, 101
Unstructured error handling, 421–423
UPDATE

query, 158
records, 303

Update, 585
method, 589, 592, 597, 648
profile, 639

Update(), 582
updateCat, 528, 530
updateCustomerInfo page, creation,

545–547
updateItem, 528, 530
Up-level browsers, 100
useFullyQualifiedRedirectUrl attribute,

194
User action, 558
User authentication, authentication tag

(usage), 205–207
User class, 583, 592

design, 581–591
User constructor, 586
User controls

consuming. See Payroll user control
creation. See Custom server user

controls;World Wide Web
development. See Payroll user control
properties, exposure, 163–167

User functions, creation. See Message
board creation

User IDs, 176, 587, 647
User information, 569
User interface (UI), 46–49, 478, 638,

654. See also World Wide Web
components, 451
creation, 556–561
design, 612–613
producing, 547
usage, 51, 518, 612

User lists, usage, 51
User object, 585, 588, 615
User page request, 252
User table, 649
userArea.ascx control, 624
UserControlPayrollText.aspx, 166
userCtrlPayroll, 166
User-defined tags, 348
UserID, 571, 646
userId value. See Session
Usernames, 236, 571, 588

V
Valid XML documents, 356–360
Validate, 582, 585

method, 586
validateDeptNum, 119
Validation

controls, 63, 100, 113–129
function. See CustomValidator

validationKey attribute, 209
ValidationSummary, 113, 535, 622, 642

control, 123–126
ValidatorControls, 123
validCustomer, 544
Value, 365

attribute, 179, 616

166_ASPNET_index.qxd 11/27/01 9:07 AM Page 692

Index 693

Variables
setting. See Static variables
values, 435

VaryByControl attribute, 280, 281
VaryByCustom, 270

attribute, 275, 280
VaryByHeader, 270

attribute, 273, 274, 280
VaryByParam, 270

attribute, 269, 271, 280
VB. SeeVisual Basic
vbCb.dll file, 79, 81
VBCodeProvider, 38
View states, 181
Virtual directory, 83, 229

structure, 176
Visible, 101
Visual Basic (VB), 2–4, 8, 25

ASP.NET project, 84
class file, 80
objects, 232
Profile, 591
Rapid Development, 15
Scripting, 4
source file, 79, 81
threading model, 239
VB.NET, 27

language, 20
statement, 40

VBScript, 14, 37, 348
programmers, 10

Visual C++, 9
Visual Source Safe, 6
Visual Studio .NET (VS.NET), 11, 13,

75–78, 246
Beta 2, 455
debugging tools, usage, 434–437
usage, 318. See also World Wide Web

Web service, movement, 460
XML Designer, XML document

creation, 351–352
XML validation, 359–360

Visual Studio (VS) project, 232
.VisualBasic namespace, usage, 38
VS.NET. SeeVisual Studio .NET

W
W3C. See World Wide Web Consortium
Wall, Larry, 5
Warn property, 431
Watch window, 435
Wattle Software, 360
Web Custom Controls, 161
Web Services Description Language

(WSDL), 455–460, 502, 531
file, 449, 461
proxy classes, 463
web references, usage, 531–533

Web User Controls, 161
web.config setting, 242
web.config.files, 174, 217, 243
WebControls namespace, 47
WebRequest, 211
webRequestModule tag, usage. See

Request
@WebService directive, 451
webServices tag, usage. See World

Wide Web
Websphere, 7
Well-defined documents, 301
Well-formed XML documents, 355–356
Whitespace, 368
Wildcards, 202, 207
Win32 API, 9
Windows authentication, 217
Wireless Markup Language (WML), 18

166_ASPNET_index.qxd 11/27/01 9:07 AM Page 693

694 Index

Wizard-style developer toolkits, 6
WML. See Wireless Markup Language
WMLScript, 18
World Wide Web Consortium (W3C),

396, 460
DOM, 362
recommendation, 354, 356

World Wide Web (WWW / Web)
application, 174, 228, 267

development,VS.NET (usage), 84–87
folder, creation, 239

browser, 235
configuration files, 236
controls, 62, 75, 87, 101–113

contrast. See HyperText Markup
Language

usage, 100–161
developers, 3
farm, 240
form, 319, 455

components. See Server-side Web
form components

controls, 62
structure. See ASP.NET

interface, 502
method, creation. See allBooks.addItem

Web method; getBooks.AllBooks
Web method

pages, 63
running. See ASP.NET

programming. See Back-end Web
programming

references, usage. See Web Services
Description Language

root folder, 229
server

controls, 62
usage. See Active Server Pages

services configuration, webServices tag
(usage), 203–204

UI, 533
user control, creation, 161–163

World Wide Web (WWW / Web)
services, 51, 441

building/compiling, steps, 447
creation, 518, 521–527
FAQs, 471–472
introduction, 442–443
method interfaces, 455
overview. See Book Shop Web services
solutions, 469–470
testing, 527–531
understanding, 443–460
XML, usage, 460–461

Write() method, 431
WriteAttributes, 370
WriteAttributeString, 370
WriteComment, 370
WriteElementString, 370
WriteEndAttribute, 370
WriteEndDocument, 370
WriteStartDocument, 370
WriteXml, 405

method, 407
WriteXML class, 486
WriteXmlSchema, 405

method, 407
WSDL. See Web Services Description

Language
WYSIWYG editing tools, 75

X
XML. See eXtensible Markup Language
XmlAttribute, 363
XMLCart, 547

166_ASPNET_index.qxd 11/27/01 9:07 AM Page 694

Index 695

XmlCart document, 555
XmlConfigFile, 616
XmlDataDocument, 363

class, usage, 378–387
DataSet, 378
object, 379, 382

multiple tables, viewing, 383–387
relational view, usage, 381–383

XmlDocument, 363
loading, 379–380
object

navigation, 374–376
usage. See eXtensible Markup

Language document
XmlDocumentFragment, 363
XmlDocuments, 370
XmlElement, 54
XmlNode, 54, 376, 465

arrays, 465
class, 363

XmlNodeList, 364
XmlNodeList collection, 379
XmlNodeReader, 362
xmlns attribute, 382, 476
XmlReader, 362
XMLTextReader, 363

object, 373
XmlTextReader, 362, 368

class, usage. See eXtensible Markup
Language document

object, 367, 374
usage, 377

XmlTextReader object, 365
XmlTextReaders, 370
XmlTextWriter, 363

class, usage. See eXtensible Markup
Language document

object, 370

usage. See eXtensible Markup
Language document

XmlTextWriter1.aspx, 371
XmlValidationReader, 363
XmlWriter, 362
XPath expressions, 389
XPath query syntax, 388
XPathDocument, 364

objects, usage, 390–392. See also
Documents

searching, 392
usage. See eXtensible Markup

Language
XPathNavigator

objects, 388
usage, 390–392

usage. See eXtensible Markup
Language

XPathNodeIterator, 364, 390–391
XSD. See eXtensible Markup Language

Schema Definition
XSL, 490
XSLT. See eXtensible Stylesheet

Language Transformations
XSLTransform, 364

class, 396
XSV, 360

Y
Yes/No, datatype, 508

Z
Zero-based odd indexed items, 132
.ZIP extension, 192

166_ASPNET_index.qxd 11/27/01 9:07 AM Page 695

166_ASPNET_index.qxd 11/27/01 9:07 AM Page 696

166_ASPNET_index.qxd 11/27/01 9:07 AM Page 697

166_ASPNET_index.qxd 11/27/01 9:07 AM Page 698

166_ASPNET_BM.qxd 11/26/01 11:37 AM Page 699

Train with Global Knowledge
The right content, the right method,

delivered anywhere in the world, to any

number of people from one to a

thousand. Blended Learning Solutions™

from Global Knowledge.

Train in these areas:
Network Fundamentals
Internetworking
A+ PC Technician
WAN Networking and Telephony
Management Skills
Web Development
XML and Java Programming
Network Security
UNIX, Linux, Solaris, Perl
Cisco
Enterasys
Entrust
Legato
Lotus
Microsoft
Nortel
Oracle

www.globalknowledge.com

166_ASPNET_BM.qxd 11/26/01 11:37 AM Page 700

http://access.globalknowledge.com/syngress

Only Global Knowledge offers so much content
in so many formats—Classroom, Virtual Classroom,
and e-Learning. This flexibility means Global
Knowledge has the IT learning solution you need.

Being the leader in classroom IT training has paved
the way for our leadership in technology-based
education. From CD-ROMs to learning over the
Web to e-Learning live over the Internet, we have
transformed our traditional classroom-based
content into new and exciting forms of education.

Most training companies deliver only one
kind of learning experience, as if one
method fits everyone. Global Knowledge
delivers education that is an exact reflection
of you. No other technology education
provider integrates as many different
kinds of content and delivery.

www.globalknowledge.com

Every hour, every business day
all across the globe

Someone just like you
is being trained by

Global Knowledge.

166_ASPNET_BM.qxd 11/26/01 11:37 AM Page 701

http://access.globalknowledge.com/syngress

Blended Learning Solutions
from Global Knowledge

The Power of Choice is Yours.
Get the IT Training you need—

how and when you need it.

Mix and match our Classroom, Virtual Classroom, and e-Learning
to create the exact blend of the IT training you need. You get
the same great content in every method we offer.

1-800-COURSES www.globalknowledge.com

Self-Paced
e-Learning

Self-paced training via CD or
over the Web, plus mentoring

and Virtual Labs.

Virtual Classroom
Learning

Live training with real
instructors delivered over the

Web.

Classroom
Learning

Train in the classroom with our
expert instructors.

™

166_ASPNET_BM.qxd 11/26/01 11:37 AM Page 702

http://access.globalknowledge.com/syngress

9000 Regency Parkway, Suite 500
Cary, NC 27512
1-800-COURSES

www.globalknowledge.com

At Global Knowledge, we strive to support the multiplicity of learning styles required
by our students to achieve success as technical professionals.We do this because we
know our students need different training approaches to achieve success as technical
professionals.That’s why Global Knowledge has worked with Syngress Publishing in
reviewing and recommending this book as a valuable tool for successful mastery of this
subject.

As the world’s largest independent corporate IT training company, Global Knowledge is
uniquely positioned to recommend these books.The first hand expertise we have gained
over the past several years from providing instructor-led training to well over a million
students worldwide has been captured in book form to enhance your learning experi-
ence.We hope the quality of these books demonstrates our commitment to your life-
long learning success.Whether you choose to learn through the written word,
e-Learning, or instructor-led training, Global Knowledge is committed to providing you
the choice of when, where and how you want your IT knowledge and skills to be
delivered. For those of you who know Global Knowledge, or those of you who have
just found us for the first time, our goal is to be your lifelong partner and help you
achieve your professional goals.

Thank you for the opportunity to serve you.We look forward to serving your needs
again in the future.

Warmest regards,

Duncan M.Anderson
President and Chief Executive Officer, Global Knowledge

P.S. Please visit us at our Web site www.globalknowledge.com.

166_ASPNET_BM.qxd 11/26/01 11:37 AM Page 703

http://access.globalknowledge.com/syngress

SYNGRESS SOLUTIONS…

soluti o n s @ s y n g r e s s . c o m

VB.NET Developer’s Guide
The introduction of VB.NET has sent many Visual Basic gurus back to
the drawing board! VB.NET introduces a new set of standards, proto-
cols, and syntax that previous users of Visual Basic will need to learn to
regain their guru status and be positioned to create enterprise-critical
applications. VB.NET Developer’s Guide will help you master VB.NET!
ISBN: 1-928994-48-2

Price: $49.95 USA, $77.95 CAN

AVAILABLE NOW
ORDER at
www.syngress.com

AVAILABLE JANUARY 2002
ORDER at
www.syngress.com

AVAILABLE JANUARY 2002
ORDER at
www.syngress.com

BizTalk Server 2000 Developer’s Guide for .NET
Written for developers responsible for installing, configuring, and
deploying BizTalk Server. This book discusses B2B application
integration, BizTalk enhancements, XML, and the tools incoporated
into BizTalk.
ISBN: 1-928994-40-7

Price: $49.95 US, $77.95 CAN

C#.NET Web Developer’s Guide
Teaches Web developers to build solutions for the Microsoft
.NET platform. Web developers will learn to use C# (C Sharp)
components to build services and applications available across
the Internet.
ISBN: 1-928994-50-4

Price: $49.95 US, $77.95 CAN

166_ASPNET_BM.qxd 11/26/01 11:37 AM Page 704

http://www.syngress.com/catalog/sg_main.cfm?pid=1532
http://www.syngress.com/book_catalog/145_biztalk
http://www.syngress.com/book_catalog/167_c/
http://www.syngress.com/solutions

	Cover
	Foreword
	Chapter One
	Chapter Two
	Chapter Three
	Chapter Four
	Chapter Five
	Chapter Six
	Chapter Seven
	Chapter Eight
	Chapter Nine
	Chapter Ten
	Chapter Eleven
	Chapter Twelve
	Chapter Thirteen
	Related Titles

