"::%'m‘-}:-

Javascript
Application
Cookbook

JavaScript Application Cookbook
By Jerry Bradenbaugh

Publisher: O'Reilly

Pub Date: September 1999
ISBN: 1-56592-577-7
Pages: 476

JavaScript Application Cookbook literally hands the Webmaster a set of ready-to-go,
client-side JavaScript applications with thorough documentation to help them
understand and extend the applications. By providing such a set of applications,
JavaScript Application Cookbook allows Webmasters to immediately add extra
functionality to their Web sites.
Copyright
Editor's Note
Preface
What You Should Know
Font Conventions
Book Structure
About the Code
Development and Testing
We'd Like to Hear From You
Acknowledgments

Introduction
JavaScript Pros
Basic JavaScript Programming Strategy
JavaScript Approaches in These Applications
Moving On

Chapter 1. The Client-Side Search Engine
Section 1.1. Execution Requirements
Section 1.2. The Syntax Breakdown
Section 1.3. nav.html
Section 1.4. Building Your Own JavaScript Database
Section 1.5. Potential Extensions

Chapter 2. The Online Test
Section 2.1. Execution Requirements
Section 2.2. The Syntax Breakdown
Section 2.3. index.html—The Frameset
Section 2.4. questions.js—The JavaScript Source File
Section 2.5. administer.html
Section 2.6. Potential Extensions

Chapter 3. The Interactive Slideshow
Section 3.1. Execution Requirements
Section 3.2. The Syntax Breakdown
Section 3.3. Application Variables
Section 3.4. The Application Functions
Section 3.5. Potential Extensions

Chapter 4. The Multiple Search Engine Interface
Section 4.1. Execution Requirements
Section 4.2. The Syntax Breakdown
Section 4.3. Potential Extension: Adding User Control

Chapter 5. ImageMachine
Section 5.1. Execution Requirements
Section 5.2. The Syntax Breakdown
Section 5.3. Potential Extension: Adding Attributes to the Template

Chapter 6. Implementing JavaScript Source Files

Section 6.1. arrays.js

Section 6.2. cookies.js

Section 6.3. dhtml.js

Section 6.4. events.js

Section 6.5. frames.js

Section 6.6. images.js

Section 6.7. navbar.js

Section 6.8. numbers.js

Section 6.9. objects.js

Section 6.10. strings.js

Section 6.11. Potential Extensions

Chapter 7. Cookie-Based User Preferences
Section 7.1. Execution Requirements
Section 7.2. Syntax Breakdown
Section 7.3. prefs.html
Section 7.4. dive.html
Section 7.5. Potential Extensions

Chapter 8. The JavaScript Shopping Cart
Section 8.1. Shopping Bag Walk-Through
Section 8.2. Execution Requirements
Section 8.3. Syntax Breakdown
Section 8.4. Step 1: Loading Shopping Bag
Section 8.5. Step 2: Displaying Products
Section 8.6. Step 3: Showing All the Categories
Section 8.7. Step 4: Adding Products to the Shopping Bag
Section 8.8. Step 5: Changing the Order/Checking Out
Section 8.9. Potential Extensions

Chapter 9. Ciphers in JavaScript
Section 9.1. How Ciphers Work
Section 9.2. Execution Requirements
Section 9.3. The Syntax Breakdown
Section 9.4. Potential Extensions

Chapter 10. Cyber Greetings: Drag-and-Drop Email
Section 10.1. Execution Requirements
Section 10.2. Syntax Breakdown
Section 10.3. The Server Side
Section 10.4. Potential Extensions

Chapter 11. Context-Sensitive Help
Section 11.1. Execution Requirements
Section 11.2. Syntax Breakdown
Section 11.3. Potential Extensions

Epilogue

Appendix A. JavaScript Reference
Section A.1. Browser Compatibility
Section A.2. Objects, Methods, and Properties
Section A.3. Top-Level Properties and Functions
Section A.4. Event Handlers

Appendix B. Web Resources
Section B.1. Cool JavaScript Sites
Section B.2. JavaScript Reference
Section B.3. JavaScript FAQs
Section B.4. DHTML Reference
Section B.5. Document Object Model Reference
Section B.6. Perl/CGI Reference
Section B.7. Graphics Resources
Section B.8. Similar Applications

Appendix C. Using Perl Scripts
Section C.1. A Perl/CGI Overview
Section C.2. Getting Perl
Section C.3. The Shopping Bag Script—bag.pl
Section C.4. The CyberGreeting Script—greet.pl

Colophon
Index

Copyright © 1999 O'Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safari.oreilly.com). For more information
contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

The O'Reilly logo is a registered trademark of O'Reilly & Associates, Inc. Many of the designations
used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and O'Reilly & Associates, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps. The use of the hippopotamus image in
association with JavaScript is a trademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

Editor's Note

Welcome to JavaScript Application Cookbook, the second book in O'Reilly's Cookbook line. This
book is different enough from the Perl Cookbook, our first offering, that it seems worth explaining. In
his foreword to the Perl Cookbook, Larry Wall writes that the essence of the book is "not to cook for
you (it can't) or even to teach you how to cook (though it helps), but rather to pass on various bits of
culture that have been found useful ..."

Perl Cookbook is a compendium of cooking techniques. "Finding the Nth Occurrence of a Match" is
roughly equivalent to "How to Brown Butter." "Sorting a Hash" can be thought of as "Peeling Roasted
Red Peppers."

JavaScript Application Cookbook, on the other hand, is a pure recipe book. Think of "Shopping Bag:
The JavaScript Shopping Cart" as "Mini Scallion Biscuits with Smoked Salmon Spread." Each chapter
provides the code and documentation for a useful web application written (mostly) entirely in
JavaScript. Prepare each recipe as Jerry has written it or just take key concepts and fold them into your
own creations. (Nick Heinle's Designing with JavaScript contains smaller recipes that you can drop
into a single web page, whereas this book shows you how to write full client-side web applications in
JavaScript, the only scripting language that browsers natively understand.)

Given these two different approaches, what's our definition of a Cookbook? A Cookbook isn't content
plugged into an inflexible format; it's a book that helps you "cook up code." Expect to see more
Cookbooks doing that in a variety of ways.

—Richard Koman, Editor

Preface

Something was missing. Here I was, poring through stacks of JavaScript books and screen after screen
of web sites, soaking in as much code and as many concepts as possible. But after picking up some
new syntax or a slick technique from the guru de jour, I didn't know what to do with it outside the
scope of the example. It was as if I had a kitchen full of ingredients, but no recipes. I had all these cool
JavaScript techniques and code snippets, but I wasn't sure how to apply them to solve common web
site problems. Sure, some of those books had JavaScript applications, but they weren't relevant to the
Web. I mean, a blackjack game is great. So is a spreadsheet app, but I'm not going to put those on a
web site any time soon.

http://safari.oreilly.com

So here are some recipes. Not just for checking a browser's identity or doing an image rollover, but
full-blown applications that you'll actually want to use on your web site. The applications here are
pretty much out of the box. You can copy them into a folder on your web server (or local computer)
and run them immediately. The chapters that follow are packed with JavaScript that helps you help
users perform common web tasks, such as site searching, collecting survey info, creating image
rollovers, viewing online presentations, cyber shopping, and plenty more. Of course, you'll want to
modify them to make them work best for you, but they're more or less ready to go. In addition, each
application comes with a lengthy explanation so that you can check out what makes each one work.

What You Should Know

This is not a beginner's book. You will not learn JavaScript here. You will learn how to use it. You
don't have to be a three-year JavaScript veteran, butif info.replace (/</g, "&1t;"),new
Image (),and var itemArray = [] seem obscure, make sure you at least have a JavaScript
syntax book handy as you work. Try O'Reilly's JavaScript: The Definitive Guide, by David Flanagan.

Font Conventions
[talic

is used for filenames, directory paths, URLs, and the names of objects, variables, arrays, and
other entities.

Constant Width

is used for HTML tags, code examples, code fragments, functions, and other references to
code.

Constant Width Italic
is used for text that the user enters and for replaceable text.

Constant Width Bold

is used for text that is displayed on the screen.

Book Structure
For the most part, each chapter follows a similar template with the following four sections.
Execution Requirements

This short section lays out the environment required to run the application. This usually means which
versions of Netscape Navigator or Microsoft Internet Explorer are compatible. The section also offers
some perspective by discussing any scalability or monitor resolution issues.

Syntax Breakdown

When you're done playing with an application and want to see what's "under the hood," check here.
This is where you'll find the code discussion, mostly line-by-line. This is by far the longest section of
the chapter, so get comfortable before you tackle these.

JavaScript Techniques

As we make our way through the syntax breakdown, there will be good points to stop and highlight a
technique that you can add to your bag of web knowledge.

Potential Extensions

This section suggests ways you can extend each application for even more impressive functionality.
Sometimes I make suggestions, sometimes I offer code. And sometimes I just can't help myself and
write the code for you—which is included in a code archive that you can download. Either way, this
should get the creative juices flowing so you don't get stuck, saying, "Cool, how can I put that on my
site?"

About the Code

This book is all about applications. It's no surprise, then, that you are going to see JavaScript code—
lots of it. Some applications contain several hundred lines, and most of them are on the pages
following the code. In some cases, the code is even repeated so you don't have to always flip back and
forth between the discussion and the code.

One of the drawbacks of putting the code in the book, is, well, putting it in the book. There just isn't as
much page width to fit all the code as we'd like on one line. The code often wraps onto the next line,
and the next. To keep the readability higher, the comments have also been left out, though you'll find
plenty of comments in the files themselves. The editing staff has gone to great pains to neatly format
the code within the page constraints, but in some cases you might find looking at the files in your text
editor easier on your eyes.

Since we expect you to use this code, not just read it, we've made all of the applications available in a
zip file that you can download from the O'Reilly web site. Go to
http://www.oreilly.com/catalog/jscook /index.html and look for the "Download" link. You'll see
references to this file in each chapter.

Development and Testing

In no particular order, I've listed the hardware and software used in developing the code for this book.
For the most part, everything has been tested for a Windows environment, but Unix and Mac users
should encounter few, if any, problems.

Hardware: IBM ThinkPad 55/P75/16M, Compaq Presario/P233/100M, IBM Aptiva C23/P120/128M,
DELL OptiPlex/P2-266/128M, Sun SPARC 20

Operating Systems: Win95, WinNT Workstation 4.0, WinNT Server 4.0, Solaris 2.5

Browsers: Netscape Navigator 3.0, 3.04 Gold, 4.0, 4.04, 4.07, 4.08, 4.5; Microsoft Internet Explorer
3.0,3.02,4.0,4.01, 5.00

http://www.oreilly.com/catalog/jscook

Resolutions: 640 x 480, 800 x 600, 1024 x 768, 1152 x 900, 1280 x 1024

Of course, not every application was tested under all these conditions. However, I tried to code
defensively enough so that the vast majority of user environments would be accommodated.

We'd Like to Hear From You

We have tested and verified all of the information in this book to the best of our ability, but you may
find that features have changed (or even that we have made mistakes!). Please let us know about any
errors you find, as well as your suggestions for future editions, by writing:

707-829-0104 (fax)

You can also send us messages electronically. To be put on the mailing list or request a catalog, send
email to:

infoloreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

Acknowledgments

My name is on the cover, but it gives me great pride to credit others in the creation of this book. I'd
like to extend heartfelt gratitude to these folks for making this possible.

On the technical side, I'd like to thank Steve Quint and James Chan, Jim Esten, Bill Anderson, Roland
Chow, Rodney Myers, Matthew Mastracci, Giorgio Braga, Brock Beauchamp and the others who
have let me tap into their massive wealth of JavaScript and other programming experience whenever [
got into a bind. And I must pay homage to Patrick Clark, whose code was the inspiration for the online
help application. Thanks to Richard Koman, my editor, for keeping an open ear to my ideas and
enabling me to put them on paper, and to Tara McGoldrick and Rob Romano for all their behind-the-
scenes labors.

On the emotional side, I'd like to sincerely thank my wife, Rondine Bradenbaugh, for putting up with
me staring at a PC monitor and typing feverishly, night after night, for months. I'd like to thank my
parents for their support and for encouraging me to develop my writing skills.

I'd also like to thank someone else who often gets overlooked—you, the reader. It's you who leave
your hard-earned cash at the bookstore that makes all of this possible. There are plenty of JavaScript
books available. You chose mine. Thanks, big time, for giving me the opportunity to give you your
money's worth.

Introduction

This is an unusual book. It's about writing large web applications in JavaScript. That's not what most
people think JavaScript is used for. JavaScript is normally (or at least used to be) associated with just
adding image rollovers, visitor hit counters, browser detection, and the like.

JavaScript Pros

No one language or technology has the market cornered as the best solution for developing web
applications. Each has its pros and cons. Recent advances in JavaScript and other proliferating
technologies, such as DHTML, Java, and even Macromedia's Flash, have positioned JavaScript to
capitalize on these tools and create relatively powerful web solutions. Here are some other reasons
that argue strongly for developing applications in JavaScript.

Easy to Learn, Quick, and Powerful

Since JavaScript is fairly easy to learn, you can begin using it right away. This is perfect for adding
some quick functionality to a site. Once you have the basics down, creating full-featured applications
isn't much further away.

JavaScript also rates as pretty powerful for a high-level language. You can't do anything at the
machine level with it, but it does expose many features of browsers, web pages, and sometimes the
system on which the browser is running. JavaScript doesn't have to be compiled like J ava'™ or C, and
the browser doesn't need to load a virtual machine to run the code. Just code it and load it.

JavaScript also works from an object-oriented architecture similar to Java and C++. Features such as
constructor functions and prototype-based inheritance add a layer of abstraction to the development
schema. This promotes much greater code reusability.

Ubiquity

JavaScript is by far the most popular scripting language on the Web. Not thousands, but millions of
web pages around the world contain JavaScript. JavaScript is supported by the most popular web
browsers (though we're really talking about JScript in MSIE). Both Netscape and Microsoft seem to
be continuously seeking ways to extend the language's functionality. This kind of support means that
JavaScript stands a better chance of being supported by the vast majority of browsers used by your
web site visitors.

Reducing the Server Load

This was one of the first reasons that web developers adopted JavaScript. It can perform many
functions on the client side that used to be handled strictly on the server. One of the best examples of
this is form validation. Old-school coders might remember back just a few years when the only way to
validate user input of an HTML form was to submit the user information to the web server, then toss
that data to a CGI script to make sure the user entered everything correctly.

If the data had no errors, the CGI script processed as normal. If errors were encountered, the script
returned a message to the user indicating the problem. While this is one solution, consider the
overhead involved. Submitting the form requires another HTTP request from the server. That trip
across the Net is also followed by executing the CGI script again. Each time the user makes a mistake
in the form, this process repeats. The user has to wait until the error message arrives to learn of the
mistake.

Enter JavaScript. Now you can validate the elements of a form before the user sends it back to the web
server. This reduces the amount of transactions via HTTP and significantly reduces the chance of user

error with the form input. JavaScript can also read and write cookies , an operation once performed
exclusively by the header-setting power of the web server.

JavaScript Is Growing

When JavaScript 1.1 came out, there was mass hysteria because of the new things called the IMAGE
object and the DOCUMENT.IMAGES array that let us create image rollovers. Then JavaScript 1.2 hit the
scene. The floodgates were wide open. DHTML support, layers, and a slew of other enhancements
bowled over many coders. It was too good to be true.

It hasn't stopped there. JavaScript has since become the design model for EMCA-262 , a standardized
general-purpose scripting language. At least one company has developed an environment that runs
JavaScript from the command line. Macromedia has incorporated custom JavaScript calls in its Flash
technology. Allaire's ColdFusion has integrated JavaScript into its XML-based technology, Web
Distributed Data Exchange (WDDX). JavaScript is getting better and better. More features. More
options. More hooks.

Maybe You Have No Choice

Sometimes it's the only way. Suppose your ISP doesn't allow CGI scripts to be executed. Now what
are you going to do if you want to add that forms-based email or take advantage of cookie
technology? You have to look to client-side solutions. JavaScript is arguably the best one for adding
server-side functionality to a "client-side only" web site.

There Are Probably More

I can think of a few more advantages, and you could surely add to the list. The point is: in spite of the
advantages of server-side technology, JavaScript applications have their place on the Net.

Basic JavaScript Programming Strategy

Whenever you build an application, JavaScript or not, it is in your best interest to have a strategy. This
helps organize your thoughts and code and also speeds the development and debugging process. There
are scores of worthy publications that get down to the nitty-gritty of step-by-step application design,
and you'll probably want to adopt a strategy that works best for you. So I won't spend too much time
here. Keeping the following things in mind, however, before, during, and after you code your way
between the <SCRIPT></SCRIPT> tags will surely save you some headaches. It's pretty simple:
just answer what?, who?, and how?

What Are the Application Features?

First, what is the application going to do? Be as specific as possible. What will the application not
offer? Suppose you want to develop an HTML form to send email. Consider these questions.

¢ How many fields will the form include?

o Will users enter the email address themselves or choose it from a select list?

¢ Do you want to validate the form input before sending it? If so, what are you going to
validate? The message? The email address? Both?

e What happens after the email is sent? Do you want to redirect the user to another page or have
nothing happen at all?

This barrage of questions could certainly continue. The good news is that if you take the time to
consider such questions, you will have a much better idea of what you want.

Who Is Your Audience?

Identifying who will be using the information is vital for determining the app's capabilities. Make sure
you have precise answers to at least the following questions:

o What browsers will people be using? Netscape Navigator? What versions: 2.x, 3.x, 4.X, or
higher?

e s the application going to be used on the Internet, intranet, or locally on individual
computers?

e (Can you determine the monitor resolution that most users will have?

e What type of connectivity will most users have? 56K modem? ISDN? Fractional T-1? T-3?

Other than the question about browser type, you might think that these questions have nothing to do
with JavaScript. "Connectivity . . . who cares? I don't need to configure a router to do this stuff."
That's true. You don't need to be Cisco-certified. Let's run through those questions, one by one,
though, and see why they are important to you.

The browser issue is arguably the most pressing. In general, the more recent the browser, the more
recent the version of JavaScript you can use. For example, if your audience is confined to NN 2.x and
MSIE 3.x (though I can't think why this would be the case), you can automatically rule out image
rollovers. The versions of JavaScript and JScript in both browsers don't support the /mage or
document.images objects.™!

[Some MSIE 3.x browsers for the Mac do support image rollovers.

Since most people have upgraded to at least the 4.x version of these browsers, image rollovers are
acceptable. But now you have to reckon with dueling object models. That means you have to make
your applications cross-browser compatible or write separate applications for each version (which can
be a lesson in futility).

Where will the application reside? The Internet, an intranet, or maybe on someone's PC converted into
a kiosk? The answer to this question will in turn provide many more clues to what you can get away
with. For example, if the application will run on the Internet, you can rest assured that just about any
type of browser imaginable will hit your site and use (or at least try to use) the app. If the application
is restricted to an intranet or a local machine, chances are some kind of browser standard is in place.
At the time of this writing, I'm doing consulting work for a firm that is one big Microsoft shop. If my
intranet code chokes in Navigator, I don't care; users must have MSIE.

Monitor resolution is another major issue. If you've included a table 900 pixels wide on your page,
and users only have an 800 x 600 resolution, they're going to miss out on some of your hard work.
Can you count on a fixed resolution for all visitors? If this is for the Internet, your answer is no. If the
audience is on an intranet, you might be in luck. Some corporations standardize PC hardware,
software, browsers, monitors, and even resolutions.

Connectivity issues also have an effect. Suppose you've whipped up a mind-blowing image rollover
sequence that would give Steven Spielberg's movie animations a run for their money (if so, maybe you
and I should . . . umm . . . collaborate). Pretty cool, but users with 56K modems could probably go out
and see a movie before your code loads all those images. Most users understand that the Net can get

bogged down with heavy traffic, but after a minute or so, most will move on to other sites. Take the
bandwidth issue into consideration.

How Can You Get Around the Obstacles?

Juggling all of these issues may sound pretty cut and dried, but it's actually not that simple. You might
have no way to accommodate all browser versions, monitor resolutions, or connectivity specs. Now
what? How do you keep everybody happy and still wow them with your 500K image rollover
extravaganza?

Consider one or more of the approaches I've proposed below. Read them all so you can make a better-
informed decision.

Try the cross-browser approach

This egalitarian method of "the greatest good for the greatest number" cross-browser coding is
probably the most common and arguably the best approach. By the greatest good for the greatest
number, I mean that most users probably have MSIE 4.x and NN 4.x. You can scoop up a large web-
surfing population if you implement significant browser detection and code your application so that it
capitalizes on the common features of the 4.x generation while it accommodates their differences.

Elegantly degrade or change performance

This makes a nice corollary to the cross-browser strategy. For example, if your image rollover script is
loaded into an unsupporting browser such as MSIE 3.x, you're bound to get nasty JavaScript errors.
Use browser detection to disable the rollovers for these browsers. By the same token, you might want
to load different pages according to monitor resolution.

Aim low

This approach assumes that everyone has NN 2.0 browsers, 640 x 480 screen resolutions, 14.4K
modems, and a Pentium 33 MHz. The bad new is that you won't be able to use anything but JavaScript
1.0. No rollovers, no layers, no regular expressions, and no external technologies (be thankful you can
use frames). The good news is: the masses will be able to use your application. Actually, recent
changes in JavaScript may make even that untrue. I'm admittedly aiming really low, but it's not
uncommon to shoot for, say, NN 3.x and MSIE 3.x. Obsolescence has its advantages.

Aim high

If your users don't have MSIE 5.0, assume they're technological nitwits and not worthy of seeing your
application, let alone using it. Now you can code away, accessing the MSIE document object model,
event model, data binding, and so on. Of course, that sharply drops the size of your viewing audience
and can have long-term effects on your ego.

Offer multiple versions of the same app

If you're a glutton for punishment, you can write multiple versions of the application , say for
example, one for NN, the other for MSIE. This method is definitely for those into monotony, but there
is at least one twist that can pay off. Let's go back to the connectivity issue. Since it's often impossible
to determine what type of bandwidth users have, allow them to choose. A couple of links from the

homepage will enable users with T-1 connections to load your image rollover spectacular, or users
with modems to view the benign version.

JavaScript Approaches in These Applications

Those are the basics. You'll see that I incorporated a couple of these strategies in the applications in
this book. I should also mention the JavaScript approaches, or coding conventions. That'll give you a
better idea of where I'm coming from, and whether the approaches will work for you.

The first thing I did when considering an application was to decide whether your (and my) web site
visitors might have any use for it. Each application solves one or more basic problems. Searching,
emailing, online help, setting personal preferences, testing or gathering information, creating image
rollovers, and so on are fairly common features that web surfers like. If a potential application didn't
pass the justification test, I didn't spend any time on it.

The next thing I did was to decide whether JavaScript could pull off the functionality I wanted. This
was pretty easy. If the answer was yes, then I went for it. If not, it was into the JavaScript landfill.

Once I singled out an application, it was off to the text editor. Here are some of the conventions I used
for the codes.

Reuse as Much Code as Possible

This is where JavaScript source files come into play. That is, these applications make use of the
JavaScript source files loaded in using the following syntax:

<SCRIPT LANGUAGE="JavaScriptl.l" SRC="someJSFile.js"></SCRIPT>

someJSFile.js contains code that can be used by multiple scripts—any one that uses the above syntax.
Many of the applications throughout the book use JavaScript source files. This just makes sense. Why
reinvent the wheel? You can also use JavaScript source files to hide code from the rest of the
application. You might find it useful to keep a very large JavaScript array in a source file. Using
JavaScript source files are definitely worthwhile, so Chapter 6, is devoted to it.

Some of the applications contain code that is simply cut and pasted from one place to another. This
code could easily qualify as a candidate for a source file. I did it this way so you don't have to spend
so much time reading: "See the code in the library file three chapters back . . ." This way, the code
stays in front of you until you understand it, and cuts down on the page flipping. After you get the
apps comfortably running on your site, consider creating a JavaScript source file.

Isolate the JavaScript

Keep as much within a single set of <SCRIPT></SCRIPT> tags as possible between the
<HEAD></HEAD> tags.

Declare Global Variables and Arrays near the Top

Even if they are originally set to an empty string or undefined, declaring global variables and arrays at
the top of the script is a good way to manage your variables, especially when they are used throughout

the script. That way, you don't have to sift through a bunch of code to change a variable value. You
know it'll be somewhere near the top.

Declare Constructor Functions After the Global Variables

I generally include functions that create user-defined objects at the top. This is simply because most of
my objects are created early in the life of the script.

Define Functions from Top to Bottom in "Chronological™ Order

In other words, I try to define functions according to the order in which they will be called in the
application. The first function defined in the script is called first, second is called second, and so forth.
At times, this can be difficult or even impossible to enforce. This approach, however, at least
improves the organization and the chances that adjacent functions will be called in succession.

Each Function Performs a Single Operation

I try to limit each function to performing one distinct operation, such as validating user input, setting
or getting cookie info, automating a slideshow, showing or hiding layers, etc. That's a great theory, but
it can be tough to apply in every case. In fact, [make several flagrant violations in Chapter 5. The
functions perform one basic operation, but wind up dozens of lines in length.

Use as Many Local Variables as Possible

I do this to conserve memory. Since local JavaScript variables die after a function finishes executing,
the memory they occupy is returned to the system. If a variable doesn't need to last for the life of the
application, I make it local instead of global.

Moving On

This should give you a general picture of how to go about building your JavaScript applications, and
how I built mine. Now let's get to the fun stuff.

Chapter 1. The Client-Side Search Engine

Application Features JavaScript Techniques

Sl — . .

® Efficient Client-Side Searching Using Delimited Strings to Store Multiple
Records

®Multiple Search Algorithms ®Nested for Loops

#® Sorted and Portioned Search Results ®\Vise Use of document.write()

®Scalable to Thousands of Records ®Using the Ternary Operator for Iteration

®Easily Coded for JavaScript 1.0

Compatibility

Every site could use a search engine, but why force your server to deal with all those queries? The
Client-Side Search Engine allows users to search through your pages completely on the client side.
Rather than sending queries to a database or application server, each user downloads the "database"

within the requested web pages. This makeshift database is simply a JavaScript array. Each record is
kept in one element of the array.

This approach has some significant benefits, chiefly reducing the server's workload and improving
response time. As good as that sounds, keep in mind that this application is restricted by the
limitations of the user's resources, especially processor speed and available memory. Nonetheless, it
can be a great utility for your web site. You can find the code for this application in the ck0/ folder of
the zip file. Figure 1.1 shows the opening interface.

Figure 1.1. The opening interface

¥, Salm Semch Engina Apphcation - Helaps
Fia Edt Y Eo Commumcsta Halp

= , A - . v 3 -
a.i ! Fd?'uj e i';:m 'lu_:]:-.r sn:...m I m

o "Bomnats & Loostion [TN KT Frolies it dramsteat o Dimsonn UpoeralLlbicherd-ide._sesichsnaes hil =] 7 e sl

Halp
Clent-5Side Search Engine

To search... Enter.._ For sxample_

Any terms words with spaces JavaScript application
All tarms +[waords with spaces] #JavaSaript applicatien
By LARL url:furl portions with spaces] urbthotsyta wab

Case doas not mattar.

& Dieeurssnd [ines S R T
B Sian |ﬁﬁ‘ﬁi. [——Y 1 357 M

This application comes equipped with two Boolean search methods: AND and OR. You can search by
document title and description, or by document URL. User functionality is pretty straightforward. It's
as easy as entering the terms you want to match, then pressing Enter. Here's the search option
breakdown:

¢ Entering terms separated by spaces returns all records containing any of the terms you
included (Boolean OR).

e Placing a plus sign (+) before your string of query term(s) matches only those records
containing all of the terms you enter (Boolean AND).

e Entering url : before a full or partial URL returns those records that match any of the terms

in the URL you enter.
e Don't forget your zip file! As noted in the preface, all the code used in this
- book is available in a zip file on the O'Reilly site. To grab the zip, go to

o 3 http://www.oreilly.com/catalog/jscook/index.html.

Figure 1.2 shows the results page of a simple search. Notice this particular query uses the default (no
prefixes) search method and javascript as the search term. Each search generates on the fly a results
page that displays the fruits of the most recent search, followed by a link back to the help page for
quick reference.

Figure 1.2. A typical search results page

http://www.oreilly.com/catalog/jscook/index.html

B Sabe Seaic® Lsgiss Apphoshon - Hebicaps
Fie Edt Yew Bo Cowmanicsa Hep
4 ¢+ 3 3 2 =wW oS F @ m
finck Figlzad Howe Sewch Metcaps Pt Secuiy
of "Bosknats b Leestion e /TR KT Frolies A den sttin DT pbecs il chert ke _seasckdndes bixl =] T2 winars Ml
Hal
CEent-Side Search Engine Pt "
=
Search Query: javascript
Search Results: 1-70of I7
ctive bnages
Arvvm Script applicathon that sses o image object to craste dysamic inege chinges
Rective Map
s S i apyalication it d i il OF P e 0jRcd with @ g grghic
Aol
Jren S oript application thet scrols web peges for yor
Bank Resures —l
Simpde SavaSonipd datsbase application
Duowser ldentifeer
i Fe gt application Bl proides won vith i joe bt i B
Cybed Date Piala
S Soript application fhaf sses e cookde propery o medekeio ife clieo ma _|
~ Diocurmand 0 ore B W T M RN)
#51an | [Sitn Soasch Lngine & e

It's also nice to be able to search by URL. Figure 1.3 shows a site search using the ur/: prefix to
instruct the engine to search URLs only. In this case the string html is passed, so the engine returns all
documents with Atm/ in the URL. The document description is still displayed, but the URL comes
first. The URL search method is restricted to single-match qualification, just like the default method.
That shouldn't be a problem, though. Not many people will be eager to perform complex search

algorithms on your URLs.

Figure 1.3. Results page based on searching record URLs

e
Es @ few - Cowescus e
B Hmhma B Lo M el o oot T Bk Lo M A, Bl bk h_LP e i - =] s wrenren I
« + 3 B a2 W & o 8
Pucd Pobeal Haw Seid Haws P e
vz v Halp
ClariSics Search Engine
" a
ey
b of MY laom sarhirica
WA e v s b bl s
Jave et innveson. istsaln, ks, evarpver. see dosalogdyble or e pane wnpk
%
AP s e, £ s b b Frierasd by
el o T, BN Dod et o NV (e
WA e v vaws b e R b
An ask sbour sl nod bo do with e onifounelnr et
W e e b e e el b
v winhmtiver el Ume v sl s il oGO8 i
AP s parve, £ b by ik s g asrbenic 1 b frim|
Dt RN MO LR COORTAl BT SR GG T ST WY ©Oun P ahan U Loaieg el oine
R S L E T T
How fo ae die (vepe ahsed i cnbanes meb page i iy
W e e v i b e TS b
Hiow i amvm v poiaed for el
Pire W) Fmialn Sieat 10 Bamaatn
C Dot s Ms 29 50 (__
F LT ey pe— T

This application can limit the number of results displayed per page and create buttons to view
successive or previous pages so that users aren't buried with mile-long displays of record matches. The
number displayed per page is completely up to you, though the default is 10.

1.1 Execution Requirements

The version of the application discussed here requires a browser that supports JavaScript 1.1. That's
good news for people using Netscape Navigator 3 and 4 and Microsoft Internet Explorer 4 and 5, and
bad news for IE 3 users. If you're intent on backwards compatibility, don't fret. I'll show you how you
can accommodate IE 3 users (at the price of functionality) later in this chapter in Section 1.5.

All client-side applications depend on the resources of the client machine, a fact that's especially true
here. It's a safe bet the client will have the resources to run the code, but if you pass the client a huge
database (more than about 6,000 or 7,000 records), your performance will begin to degrade, and you'll
eventually choke the machine.

I had no problem using a database of slightly fewer than 10,000 records in MSIE 4 and Navigator 4.
Incidentally, the JavaScript source file holding the records was larger than 1 MB. I had anywhere
between 24 and 128 MB of RAM on the machine. I tried the same setup with NN 3.0 Gold and got a
stack overflow error—just too many records in the array.

On the low end, the JavaScript 1.0 version viewed with MSIE 3.02 on an IBM ThinkPad didn't allow
more than 215 records. Don't let that low number scare you. The laptop was so outdated you could
hear the rat on the exercise wheel powering the CPU. Most users will likely have a better capacity.

1.2 The Syntax Breakdown

This application consists of three HTML files (index. html, nav.html, and main.html) and a JavaScript
source file (records.js). The three HTML files include a tiny frameset, a header page where you enter
the search terms, and a default page in the display frame with the "how-to" instructions.

1.3 nav.html

The brains of the application lie in the header file named nav.html. In fact, the only other place you'll
see JavaScript is in the results pages manufactured on the fly. Let's have a glimpse at the code.
Example 1.1 leads the way.

Example 1.1. Source Code for nav.html

1 <HTML>
2 <HEAD>
3 <TITLE>Search Nav Page</TITLE>
4

5 <SCRIPT LANGUAGE="JavaScriptl.l"
SRC="records.js"></SCRIPT>

6 <SCRIPT LANGUAGE="JavaScriptl.l">

7 <l-=

8

9 wvar SEARCHANY = 1;

10 wvar SEARCHALL = 2;

11 wvar SEARCHURL = 4;

12 wvar searchType = "";

13 wvar showMatches = 10;

14 wvar currentMatch = 0;

15 wvar copyArray = new Array();

16 wvar docObj = parent.frames[l].document;

17

18 function validate (entry) {

19 if (entry.charAt (0) == "+") {

20 entry = entry.substring(l,entry.length);

21 searchType = SEARCHALL;

22 }

23 else if (entry.substring(0,4) == "url:") {

24 entry = entry.substring(5,entry.length);

25 searchType = SEARCHURL;

26 }

277 else { searchType = SEARCHANY; }

28 while (entry.charAt(0) == " ") {

29 entry = entry.substring(l,entry.length);

30 document.forms[0] .query.value = entry;

31 }

32 while (entry.charAt (entry.length - 1) == " ") {

33 entry = entry.substring(0,entry.length - 1);

34 document.forms[0] .query.value = entry;

35 }

36 if (entry.length < 3) {

37 alert ("You cannot search strings that small.
Elaborate a little.");

38 document.forms[0] .query.focus () ;

39 return;

40 }

41 convertString (entry);

42 }

43

44 function convertString (reentry) {

45 var searchArray = reentry.split(" ");

46 if (searchType == (SEARCHALL)) {
requireAll (searchArray); }

477 else { allowAny (searchArray); 1}

48 }

49

50 function allowAny(t) {

51 var findings = new Array(0);

52 for (i = 0; i < profiles.length; i++) {

53 var compareElement = profiles[i].toUpperCase();

54 if (searchType == SEARCHANY) {

55 var refineElement = comparekElement.substring (0,

56 compareElement.indexOf (' [HTTP'")) ;

57 }

58 else {
59 var refineElement =
60
compareElement.substring (compareklement.indexOf (' |[HTTP'),
61 compareElement.length) ;
62 }
63 for (j = 0; 7 < t.length; j++) {
64 var compareString = t[]j].toUpperCase();
65 if (refineElement.indexOf (compareString) != -1)
{
66 findings[findings.length] = profiles[i];
67 break;
68 }
69 }
70 }
71 verifyManage (findings) ;
72 }
73
74 function requireAll (t) {
75 var findings = new Array();
76 for (i = 0; i < profiles.length; i++) {
77 var allConfirmation = true;
78 var allString = profiles[i].toUpperCase();
79 var refineAllString = allString.substring(O0,
80 allSstring.indexOf (' |HTTP')) ;
81 for (j = 0; 7 < t.length; j++) {
82 var allElement = t[]].toUpperCase();
83 if (refineAllString.indexOf (allElement) == -1)
84 allConfirmation = false;
85 continue;
86 }
87 }
88 if (allConfirmation) {
89 findings[findings.length] = profiles[i];
90 }
91 }
92 verifyManage (findings) ;
93 }
94
95 function verifyManage (resultSet) {
96 if (resultSet.length == 0) { noMatch(); }
97 else {
98 copyArray = resultSet.sort();
99 formatResults (copyArray, currentMatch,
showMatches) ;
100 }
101 }

102

103 function noMatch () {

104 docObj.open() ;

105 docObj.writeln ('<HTML><HEAD><TITLE>Search
Results</TITLE></HEAD>' +

106 '<BODY BGCOLOR=WHITE TEXT=BLACK>' +

107 '<TABLE WIDTH=90% BORDER=0 ALIGN=CENTER><TR><TD

VALIGN=TOP>"' +
108 '<DL>' +

109 '<HR NOSHADE WIDTH=100%>"'"' +
document.forms[0] .query.value +

110 '" returned no results.<HR NOSHADE WIDTH=100%>"' +

111 '</TD></TR></TABLE></BODY></HTML>") ;

112 docObj.close() ;

113 document.forms[0] .query.select () ;

114 }

115

116 function formatResults (results, reference, offset) {

117 var currentRecord = (results.length < reference +
offset ?

118 results.length : reference + offset);

119 docObj.open () ;

120 docObj.writeln ('<HTML><HEAD><TITLE>Search
Results</TITLE>\n</HEAD>' +

121 '<BODY BGCOLOR=WHITE TEXT=BLACK>' +

122 '<TABLE WIDTH=90% BORDER=0 ALIGN=CENTER
CELLPADDING=3><TR><TD>"' +

123 '<HR NOSHADE WIDTH=100%></TD></TR><TR><TD
VALIGN=TOP>"' +

124 'Search Query: <I>' +

125 parent.frames[0] .document.forms[0] .query.value +
'</I>
\n' +

126 'Search Results: <I>' + (reference + 1) + ' - ' +

127 currentRecord + ' of ' + results.length +
'</I>

' +

128 '' +

129 '"\n\n<!-- Begin result set //-->\n\n\t<DL>'");

130 if (searchType == SEARCHURL) {

131 for (var 1 = reference; 1 < currentRecord; i++) {

132 var divide = results[i].split('[|");

133 docObj.writeln ("\t<DT>' + '<A HREF="' +
divide[2] + "">' +

134 divide[2] + '"\t<DD><I>' + divide[l] +
'</I><P>\n\n") ;

135 }

136 }

137 else {

138 for (var 1 = reference; 1 < currentRecord; i++) {

139 var divide = results[i].split('|");

140 docObj.writeln ("\n\n\t<DT>' + '<A HREF="' +
divide[2] + "">' +

141 divide[0] + '' 4+ '"\t<DD>' + '<I>' +
divide[l] + '"</I><P>");

142 }

143 }

144 docObj.writeln ("\n\t</DL>\n\n<!-- End result set //-
->\n\n"') ;

145 prevNextResults (results.length, reference, offset);

146 docObj.writeln ('<HR NOSHADE WIDTH=100%>"' +

147 '</TD>\n</TR>\n</TABLE>\n</BODY>\n</HTML>") ;

148 docObj.close() ;

149 document.forms[0] .query.select () ;

150 }

151

152 function prevNextResults (ceiling, reference, offset) {

153 docObj.writeln ('<CENTER><FORM>"') ;

154 if (reference > 0) {

155 docObj.writeln ('<INPUT TYPE=BUTTON VALUE="Prev ' +
offset +

156 ' Results" ' +

157
'onClick="parent.frames[0].formatResults (parent.frames[0].copy
Array, ' +

158 (reference - offset) + ', ' 4+ offset + ")">");

159 }

160 if (reference >= 0 && reference + offset < ceiling) {

161 var trueTop = ((ceiling - (offset + reference) <
offset) ?

162 ceiling - (reference + offset) : offset);

163 var howMany = (trueTop > 1 2 "s" : "");

164 docObj.writeln ("<INPUT TYPE=BUTTON VALUE="Next ' +
trueTop +

165 ' Result' + howMany + '" ' +

166

'onClick="parent.frames[0].formatResults (parent.frames[0].copy
Array, ' +

167 (reference + offset) + ', ' 4+ offset + ")">");
168 }

169 docObj.writeln ('</CENTER>"') ;

170 }

171

172 //-->

173 </SCRIPT>

174 </HEAD>

175 <BODY BGCOLOR="WHITE">

176 <TABLE WIDTH="95%" BORDER="0" ALIGN="CENTER">
177 <TR>

178 <TD VALIGN=MIDDLE>

179

180 Client-Side Search Engine

181 </TD>

182

183 <TD VALIGN=ABSMIDDLE>

184 <FORM NAME="search"

185 onsubmit="validate (document.forms[0] .query.value) ;
return false;">

186 <INPUT TYPE=TEXT NAME="query" SIZE="33">

187 <INPUT TYPE=HIDDEN NAME="standin" VALUE="">

188 </FORM>

189 </TD>

190

191 <TD VALIGN=ABSMIDDLE>

192

193 Help

194 </TD>

195 </TR>

196 </TABLE>
197 </BODY>
198 </HTML>

That's a lot of code. The easiest way to understand what's going on here is simply to start at the top,
and work down. Fortunately, the code was written to proceed from function to function in more or less
the same order.

We'll examine this in the following order:

The records.jssource file
The global variables
The functions

The HTML

1.3.1 records.js

The first item worth examining is the JavaScript source file records.js. You'll find it in the
<SCRIPT> tag at line 5.

It contains a fairly lengthy array of elements called PROFILES. The contents of this file have been
omitted from this book, as they would have to be scrunched together. So after you've extracted the
files in the zip file, start up your text editor and open ch01/records.js. Behold: it's your database. Each
element is a three-part string. Here's one example:

"http://www.serve.com/hotsyte|HotSyte-The JavaScript
Resource|The " +

"HotSyte home page featuring links, tutorials, free scripts,
and more"

http://www.serve.com/hotsyte|HotSyte-The

Record parts are separated by the pipe character (|). These characters will come in handy when
matching database records are printed to the screen. The second record part is the document title (it
has nothing to do with TITLE tags); the third is the document description; and the first is the
document's URL.

By the way, there's no law against using character(s) other than " | " to separate your record parts. Just
be sure it's something the user isn't likely to enter as part of a query string (perhaps &~ or ~ [%).
Keep the backslash character (\) out of the mix. JavaScript will interpret that as an escape character
and give you funky search results or choke the app altogether.

> Why is all this material included in a JavaScript source file? Two reasons: modularity and
cleanliness. If your site has more than a few hundred web pages, you'll probably want to have a
server-side program generate the code containing all the records. It's a bit more organized to have this
generated in a JavaScript source file.

> You can also use this database in other search applications simply by including records.jsin your
code. In addition, I'd hate to have all that code copied into an HTML file and displayed as source
code.

JavaScript Technique: Using Delimited Strings to
Contain Multiple Records

This application relies on searching pieces of information, much like a database. To emulate
searching a database, JavaScript can parse (search) an array with similarly formatted data.

It might seem like common sense to set each array element equal to one piece of data (such
as a URL or the title of a web page). That works, but you're setting yourself up for potential
grief.

You can significantly reduce the number of global array elements if you concatenate
multiple substrings with a known delimiter (such as |) into one array element. When you
parse each array element, JavaScript's split () method of the String object can create an
array of each of the elements. In other words, why have a global array such as:

var records = new Array("The Good", "The Bad",
"and The JavaScript Programmer"),

when you can have a local array inside the function? For example:

var records = "The Good|TheBad|and The JavaScript
Programmer".
split ('["');

Now you're probably thinking, "Six of one and a half dozen of the other. What's the
difference?" The difference is that the first version declares three global elements that take
up memory until you get rid of them. The second declares only one global element. The
three elements created with split (' | ') atsearch time are temporary because they are
created locally.

With the latter, JavaScript disposes of the records variable after the search function runs.
That frees memory. Plus that's less coding for you. For myself, I'll take the second option.
We'll hit this concept again when we take a look at the code that does the parsing.

1.3.2 The Global Variables

Lines 9 through 16 of Example 1.1 declare and initialize the global variables.

var SEARCHANY =
var SEARCHALL =
var SEARCHURL ;
var searchType = '';
var showMatches 10;
var currentMatch = 0;
var copyArray = new Array();

var docObj = parent.frames[1l].document;

14

.
’

SN

The following list explains the variable functions:
SEARCHANY
Indicates to search using any of the entered terms.
SEARCHALL
Indicates to search using all of the entered terms.
SEARCHURL
Indicates to search the URL only (using any of the entered terms).
searchType
Indicates the type of search (set to SEARCHANY, SEARCHALL, or SEARCHURL).
showMatches
Determines the number of records to display per results page.
currentMatch
Determines which record will first be printed on the current results page.
copyArray
Copy of the temporary array of matches used to display the next or previous set of results.

docObj

Variable referring to the document object of the second frame. This isn't critical to the
application, but it helps manage your code because you'll need to access the object (
parent.frames[1l] .document) many times when you print the search results.
docObj refers to that object, reducing the amount of code and serving as a centralized point
for making changes.

1.3.3 The Functions
Next, let's look at the major functions:
1.3.3.1 validate()

When the user hits the Enter button, the validate () function at line 18 determines what the user
wants to search and how to search it. Recall the three options:

e Search the document title and description, requiring only one term to match.
e Search the document title and description, requiring all of the terms to match.
e Secarch the document URL or path, requiring only one of the terms to match.

validate () determines what and how to search by evaluating the first few characters of the string
it receives. How is the search method set? Using the searchType variable. If the user wants all terms to
be included, then searchType is set to SEARCHALL. 1f the user wants to search the title and
description, validate () sets searchType to SEARCHALL (that's the default, by the way). If the
user wants to search the URL, searchType is set to SEARCHURL. Here's how it happens:

Line 19 shows the charAt () method of the String object looking for the + sign as the first
character. If found, the search method is set to option 2 (the Boolean AND method).

if (entry.charAt (0) == "+") {
entry = entry.substring(l,entry.length);
searchType = SEARCHALL;
}

Line 23 shows the substring () method of the String object looking for "ur1 :". If the string is
found, searchTypeis set accordingly.

if (entry.substring(0,4) == "url:") {
entry = entry.substring(5,entry.length);
searchType = SEARCHURL; }

What about the substring () methods in lines 20 and 24? Well, after validate () knows
what and how to search, those character indicators (+ and ur1 :) are no longer needed. Therefore,
validate () removes the required number of characters from the front of the string and moves on.

If neither + nor ur1l : is found at the front of the string, validate () sets variable searchTypeto
SEARCHANY, and does a little cleanup before calling convertString (). The while statements
at lines 28 and 32 trim excess white space from the beginning and end of the string.

After discovering the user preference and trimming excess whitespace, validate () has to make
sure that there is something left to use in a search. Line 36 verifies that the query string has at least
three characters. Searching fewer might not produce useful results, but you can change this to your
liking:

if (entry.length < 3) {

alert ("You cannot search strings that small. Elaborate a
little.");

document.forms[0] .query.focus () ;

return;

}

If all goes well to this point, validate () makes the call to convertString (), passinga
clean copy of the query string (entry).

1.3.3.2 convertString()

convertString () performs two related operations: it splits the string into array elements, and
calls the appropriate search function. The split () method of the String object divides the user-

entered string by whitespace and puts the outcome into the array searchArray. This happens at line 45
as shown below:

var searchArray = reentry.split("™ ");

For example, if the user enters the string "client-side JavaScript development” in the search field,
searchArray will contain the values client-side, JavaScript, and development for
elements 0, 1, and 2, respectively. With that taken care of, convertString () calls the
appropriate search function according to the value of searchType. You can see this in lines 46 and 47:

if (searchType == (SEARCHALL)) { requireAll (searchArray); }
else { allowAny(searchArray); }

As you can see, one of two functions is called. Both behave similarly, but they have their differences.
Here's a look at both functions: allowAny () and requireAll ().

1.3.3.3 allowAny()

As the name implies, this function gets called from the bench when the application has only a one-
match minimum. Here's what you'll see in lines 50-68:

function allowAny (t) {

var findings = new Array(0);
for (i = 0; i < profiles.length; i++) {
var compareElement = profiles[i].toUpperCase();
if (searchType == SEARCHANY) {

var refineElement =

compareElement.substring (0, compareElement.indexOf (' |[HTTP'")) ;

}

else {
var refineElement =

compareElement.substring (compareElement.indexOf (' |HTTP'),
compareElement.length) ;
}
for (3 = 0; J < t.length; j++) {
var compareString = t[]j].toUpperCase();

if (refineElement.indexOf (compareString) != -1) {
findings[findings.length] = profiles[i];
break;
}

The guts behind both search functions is comparing strings with nested for loops. See the sidebar
JavaScript Technique: Nested for Loops for more information. The for loops go to work at lines 52
and 63. The first for loop has the task of iterating through each of the profiles array elements (from the
source file). For each profiles element, the second for loop iterates through each of the query terms
passed to it from convertString ().

To ensure that users don't miss matching records because they use uppercase or lowercase letters, lines
53 and 64 declare local variables compareElement and compareString, respectively, and then initialize
each to an uppercase version of the record and query term. Now it doesn't matter if users search for
"JavaScript," "javascript,” or even "jAvasCRIpt."

allowAny () still needs to determine whether to search by document title and description or by
URL. So local variable refineElement, the substring that will be compared to each of the query terms,
is set according to the value of searchType at line 55 or 59. If searchType equals SEARCHANY,
refineElement is set to the substring containing the record's document title and description. Otherwise
searchType must be SEARCHURL, so refineElement is set to the substring containing the document
URL.

Remember the | symbols? That's how JavaScript can distinguish the different record parts. So the
substring () method returns a string starting from and ending at the character before the first
instance of "[HTTP", or returns a string starting at the first instance of "[HTTP" until the end of the
element. Now we have what we're about to compare with what the user entered. Check it out at line
65:

if (refineElement.indexOf (compareString) != -1) {
findings[findings.length] = profiles[i];

break;

}

If compareString is found within refineElement, we have a match (it's about time). That original
record (not the URL-truncated version we searched) is added to the findings array at line 66. We can
use findings.length as an indexer to continually assign elements.

Once we've found a match, there is certainly no reason to compare the record with other query strings.
Line 67 contains the break statement that stops the for loop comparison for the current record. This
isn't strictly necessary, but it reduces excess processing.

After iterating through all records and search terms, allowAny () passes any matching records in
the findings array to function verifyManage () atlines 95 through 101. If the search was
successful, function formatResults () gets the call to print the results. Otherwise, function
noMatch () will let the user know that the search was unsuccessful. Functions
formatResults () and noMatch () are discussed later in the chapter. Let's finish examining
the remaining search methods with requireAll ().

1.3.3.4 requireAll()

Put a + in front of your search terms, and requireAll () gets the call. This function is nearly
identical to allowAny (), except that all terms the user enters must match the search. With
allowAny (), records were added to the result set as soon as one term matched. In this function,

we have to wait until all terms have been compared to each record before deciding to add anything to
the result set. Line 74 starts things off:

function requireAll (t) {
var findings = new Array();
for (i = 0; i < profiles.length; i++) {
var allConfirmation = true;
var allString profiles[i].toUpperCase() ;
var refineAllString = allString.substring(O0,
allString.indexOf (' |[HTTP'")) ;
for (j = 0; 7 < t.length; j++) {
var allElement = t[]j].toUpperCase();
if (refineAllString.indexOf (allElement) == -1) {
allConfirmation = false;
continue;

}

}
if (allConfirmation) {
findings[findings.length] = profiles[i];
}
}
verifyManage (findings) ;

}

JavaScript Technique: Nested for Loops

Both the searching functions allowAny () and requireAll () use nested for loops.
This is a handy technique to iterate multidimensional arrays as opposed to single-dimension
arrays. (JavaScript arrays are technically one-dimensional. However, JavaScript can

emulate multidimensional arrays as described here.) Consider this five-element, single-
dimension array:

var numbers = ("one", "two", "three", "four", "five");

If you want to compare a string to each of these, you simply run a for (or while) loop,
comparing each array element to the string as you go. Like this:

for (var i = 0; i1 < numbers.length; i++) {

if (myString == numbers[i]) { alert("That's the
number") ;

break;

}

Not too demanding, so let's up the ante. Multidimensional arrays are, well, arrays of arrays.
For example:

var numbers = new Array (

new Array("one", "two", "three", "four", "five"),
new Array ("uno", "dos", "tres", "cuatro", "cinco"),
new Array("won", "too", "tree", "for", "fife")

) ;

A single for loop won't cut it. We'll need more fire power. The first numbers array is a
single-dimension array (1 x 5). The new version is a multidimensional array (3 x 5). Going
through all 15 elements (3 x 5) means we'll need an extra loop:

for (var 1 = 0; i < numbers.length; i++) { //
1...
for (var 3 = 0; j < numbers[i].length; j++) { // and
2.
if (myString == numbers[i][J]) {
alert ("Finally found it.");
break;
}
}
}

That's the two-dimensional answer to getting a shot at each element. Let's take it a notch
further. What if we build a color palette in a table of all 216 web- safe colors—one in each
cell? Nested for loops to the rescue. This time, however, we'll only use a single-dimension
array.

Using hexadecimal numbers, web-safe colors come in six-digit groups—two digits for each
color component—such as FFFFF, 336699, and 99AACC. The two-digit pairs that make up
all web-safe colors are: 33, 66, 99, AA, CC, and FF. Let's spark up an array:

var hexPairs = new Array("33","66","99","AA","CC","FF");

"There's only one array and one dimension. I want my money back."

Don't run to the bookstore yet. There are three dimensions, but we'll use the same array for
each dimension. Here's how:

var str = ' ';

// Strike up a table

document.writeln ('<H2>Web Safe Colors</H2>' +
'<TABLE BORDER=1 CELLSPACING=0>");
for (var 1 = 0; 1 < hexPairs.length; i++) {
// Create a row
document.writeln ('<TR>") ;
for (var 7 = 0; J < hexPairs.length; j++) {
for (var k = 0; k < hexPairs.length; k++) {
// Create a string of data cells for the row with
whitespace in each
// Notice each background color is made with three
hexPairs elements
str += '<TD BGCOLOR="' + hexPairs[i] + hexPairs[j]
+ hexPairs[k] +
'">g </TD>";
}
// Write the row of data cells and reset str
document.writeln (str);
str ='";
}
// End the row
document .writeln ('</TR>") ;
} // End the table
document.writeln ('</TABLE>") ;

Drop this code in a web document (it's in the zip file, at \Ch0I\websafe.html), and you'll get
a 6 x 36 table with all 216 (that's 6 x 6 x 6) web-safe colors. Three for loops and three
dimensions. Of course, you could modify the palette table in plenty of ways, but this just
shows you how nested for loops can solve your coding woes.

At first glance, things seem much as they were with allowAny () . The nested for loops, the

uppercase conversion, and the confirmation variable—they're all there. Things change, however, at
lines 79-80:

var refineAllString =
allString.substring(0,allString.indexOf (' |HTTP'")) ;

Notice that variable searchType was not checked to determine which part of the record to keep for
searching as it was in al 1lowAny () atline 50. There's no need. requireAll () gets called only
if searchType equals SEARCHALL (see line 46). URL searching doesn't include the Boolean AND
method, so it's a known fact that the document title and description will be compared.

Function requireAll () isa little tougher to please. Since all the terms a user enters must be
found in the compared string, so the searching logic will be more restrictive than it is in
allowAny (). See lines 83 through 86:

if (refineAllString.indexOf (allElement) == -1) {
allConfirmation = false; continue;

}

It will be far easier to reject a record the first time it doesn't match a term than it will be to compare
the number of terms with the number of matches. Therefore, the first time a record does not contain a
match, the cont inue statement tells JavaScript to forget about it and move to the next record.

If all terms have been compared to a record and local variable allConfirmation is still true, we have a
match. allConfirmation becomes false the moment a record fails to match its first term. The current
record is then added to the temporary findings array at line 89. This condition is harder to achieve, but
the search results will likely be more specific.

Once all records have been evaluated this way, findings is passed to verifyManage () to check
for worthy results. If there are any matches at all, formatResults () gets the call. Otherwise,
verifyManage () calls noMatch () to bring the bad news to the user.

1.3.3.5 verifyManage()

As you've probably realized, this function determines whether the user's search produced any record
matches and calls one of two printout functions pending the result. It all starts at line 95:

function verifyManage (resultSet) {
if (resultSet.length == 0) {
noMatch () ;
return;
}
copyArray = resultSet.sort();
formatResults (copyArray, currentMatch, showMatches);

}

Both allowAny () and requireAll () call verifyManage () after running the respective
course and pass the findings array as an argument. Line 96 shows that veri fyManage () calls
function noMatch () if array resultSet (a copy of findings) contains nothing.

If resultSet contains at least one matched record, however, global variable copyArray is set to the
lexically sorted version of all the elements in resultSet. Sorting is not necessary, but it's a great way to
add order to your result set, and you don't have to worry about the order in which you add records to
the profiles array. You can keep adding them on the end, knowing that they'll be sorted if a match
occurs.

So why should we make an extra copy of a bunch of records we already have? Remember that
findings is a local, and thus temporary, array. Once a search has been performed (that is, the
application executes one of the search functions), findings dies, and its allocated memory is freed for
further use. That's a good thing. There's no reason to hold onto memory we could possibly use
elsewhere, but we still need access to those records.

Since the application displays, say, 10 records per page, users potentially see only a subset of the
matching results. Variable copyArray is global, so sorting the temporary result set and assigning that
to copyArray keeps all matching records intact. Users can now view the results 10, 15, or however
many at a time. This global variable will keep the matching results until the user submits a new query.

The last thing verifyManage () doesis call formatResults (), passing an index number
(currentMatch), indicating which record to begin with and how many records to display per page

(showMatches). Both currentMatch and showMatches are global variables. They don't die after
functions execute. We need them for the life of the application.

1.3.3.6 noMatch()

noMatch () does what it implies. If your query produces no matches, this function is the bearer of
the bad news. It is rather short and sweet, though it still generates a custom results (or lack of results)
page, stating that the query term(s) the user entered didn't produce at least one match. Here it is
starting at line 103:

function noMatch () {
docObj.open () ;
docObj.writeln ('<HTML><HEAD><TITLE>Search
Results</TITLE></HEAD>' +
'<BODY BGCOLOR=WHITE TEXT=BLACK>' +
'<TABLE WIDTH=90% BORDER=0 ALIGN=CENTER><TR><TD
VALIGN=TOP>"' +
'<DL>'"' +
'<HR NOSHADE WIDTH=100%>"'"' + document.forms[0].query.value

'" returned no results.<HR NOSHADE WIDTH=100%>"' +
'</TD></TR></TABLE></BODY></HTML>") ;
docObj.close() ;
document.forms[0] .query.select () ;

}
1.3.3.7 formatResults()

This function's job is to neatly display the matching records for the user. Not terribly difficult, but this
function does cover a lot of ground. Here are the ingredients for a successful results display:

e An HTML head, title, and body

o The document title, description, and URL of each matching record with a link to the URL of
the each matching record

e "Previous" and "Next" buttons to view earlier or later records, if applicable

1.3.3.8 The HTML head and title

The HTML head and title are straightforward. Lines 116 through 129 print the head, title, and the
beginning of the body contents. Take a look:

function formatResults (results, reference, offset) {
var currentRecord = (results.length < reference + offset ?
results.length : reference + offset);
docObj.open () ;
docObj.writeln ('<HTML><HEAD><TITLE>Search
Results</TITLE>\n</HEAD>' +
'<BODY BGCOLOR=WHITE TEXT=BLACK>' +
'<TABLE WIDTH=90% BORDER=0 ALIGN=CENTER
CELLPADDING=3><TR><TD>"' +

'<HR NOSHADE WIDTH=100%></TD></TR><TR><TD VALIGN=TOP>' +

'Search Query: <I>' +

parent.frames[0] .document.forms[0] .query.value +
'</I>
\n' +

'Search Results: <I>' 4+ (reference + 1) + ' - ' +
currentRecord +

' of ' + results.length + '</I>

' +

'' +

'"\n\n<!- Begin result set //-->\n\n\t<DL>');

Before printing the heading and title, let's find out which record we're going to start with. We know
the first record to print starts at results [reference]. And we should display offset records
unless reference + offset is greater than the total number of records. To find out, the ternary operator is
used to determine which is larger. Variable currentRecord is set to that number at line 117. We'll use
that value shortly.

Now, formatResults () prints your run-of-the-Internet HTML heading and title. The body
starts with a centered table and a horizontal rule. The application easily gives the user a reminder of
the search query (line 125), which came from the form field value:

parent.frames[0] .document.forms[0] .query.value

Things get more involved at line 126, however. This marks the beginning of the result set. The line of
printed text on the page displays the current subset of matching records and the total number of
matches, for instance:

Search Results: 1 - 10 of 38

We'll need three numbers to pull this off—the first record of the subset to display, the number of
records to display, and the length of copyArray, where the matching records are stored. Let's take a
look at this in terms of steps. Remember, this is not the logic used to display the records. This logic
lets the user know how many records and with which record to start. Here is how things happen:

1. Assign the number of the current record to variable reference, then print it.

Add another number called offset, which is how many records to display per page (in this
case, 10).

3. If the sum of REFERENCE + OFFSET is greater than the total number of matches, print the total
number of matches. Otherwise, print the sum of REFERENCE + OFFSET. (This value has
already been determined and is reflected in currentRecord) .

4. Print the total number of matches.

Steps 1 and 2 seem simple enough. Recall the code in verifyManage (), particularly line 99:
formatResult (copyArray, currentMatch, showMatches);

The local variable results is a copy of copyArray. The variable reference is set to currentMatch, so the
sum of reference + offset is the sum of currentMatch + showResults. In the first few lines of this code
(13 and 14 to be exact), showMatches was set to 10, and currentMatch was set to 0. Therefore,
reference starts as 0, and reference + offset equals 10. Step 1 is taken care of as soon as reference is
printed. The math we just did takes care of step 2.

In step 3, we use the ternary operator (at lines 117-118) to decide whether the sum of reference +
offset is greater than the total number of matches. In other words, will adding offset more records to
reference yield a number higher than the total number of records? If reference is 20, and there are 38
total records, adding 10 to reference gives us 30. The display would look like this:

Search Results: 20 - 30 of 38

If reference is 30, however, and there are 38 total records, adding 10 to reference gives us 40. The
display would look like this:

Search Results: 30 - 40 of 38

Can't happen. The search engine cannot display records 39 and 40 if it only found 38. This then
indicates that the end of the records has been reached. So the total number of records will be displayed
instead of the sum of reference + OFFSET. That brings us to step 4, and the end of the process:

Search Results: 30 - 38 of 38

"'_" Function formatResults () is sprinkled with special characters such as
as \n and \ t. \n represents a newline character, which is equivalent to pressing
w4 s Enter on your keyboard while writing code in your text editor. \ € is

equivalent to pressing the Tab key. All that these characters do in this case is
make the HTML of the search results look neater if you view the source code.
I'included them here to show you how they look. Keep in mind that they are
not necessary and don't affect your applications. If you think they clutter your
code, don't use them. I use them sparingly in the rest of the book.

1.3.3.9 Displaying document titles, descriptions, and linked URLs

Now that the subset of records has been indicated, it's time to print that subset to the page. Enter lines
130 through 143:

if (searchType == SEARCHURL) {
for (var i1 = reference; i1 < currentRecord; i++) {
var divide = results[i].split('|");
docObj.writeln ('"\t<DT>' + '' +

divide[2] + '' +'\t<DD>' + '<I>' + divide[l] +
'</I><P>\n\n") ;
}

}
else {
for (var 1 = reference; 1 < currentRecord; i++) {
var divide = results[i].split('|");
docObj.writeln ("\n\n\t<DT>' + '<A HREF="' + divide[2] +
res>to4

divide[0] + '' + '"\t<DD>' + '<I>' 4 divide[l] +
V</I>KP>") ;
}
}

Lines 131 and 138 show both for loops, which perform the same operation with currentRecord, except
that the order of the printed items is different. Variable searchType comes up again. If it equals
SEARCHURL, the URL will be displayed as the link text. Otherwise, searchType equals SEARCHANY
or SEARCHALL. In either case the document title will be displayed as the link text.

The type of search has been determined, but how do you neatly display the records? We need only
loop through the record subset, and split the record parts accordingly by title, description and URL,
placing them however we so desire along the way. Here is the for loop used in either case (URL
search or not):

for (var 1 = reference; 1 < lastRecord; i++) {

Now for the record parts. Think back to the records.js file. Each element of profiles is a string that
identifies the record | separating its parts. And that is how we'll pull them apart:

var divide = results[i].split('|");

For each element, local variable divide is set to an array of elements also separated by |. The first
element (divide [0]) is the URL, the second element (divide [1]) is the document title, and
the third (divide [2]) is the document description. Each of these elements is printed to the page
with accompanying HTML to suit (I chose <DL>, <DT>, and <DD> tags). If the user searched by
URL, the URL would be shown as the link text. Otherwise, the document title becomes the link text.

1.3.3.10 Adding "Previous"” and "Next" buttons

The only thing left to do is add buttons so that the user can view the previous or next subset(s) of
records. This actually happens in function prevNextResults (), which we'll discuss shortly,
but here are the last few lines of formatResults ():

docObj.writeln ('\n\t</DL>\n\n<!- End result set //-->\n\n');
prevNextResults (results.length, reference, offset);
docObj.writeln ('<HR NOSHADE WIDTH=100%>' +
'</TD>\n</TR>\n</TABLE>\n</BODY>\n</HTML>") ;
docObj.close() ;
}

This part of the function calls prevNextResults (), adds some final HTML, then sets the focus
to the query string text field.

1.3.3.11 prevNextResults()

If you've made it this far without screaming, this function shouldn't be that much of a stretch.
prevNextResults () is as follows, starting with line 152.

function prevNextResults(ceiling, reference, offset) {
docObj.writeln ('<CENTER><FORM>"') ;
if (reference > 0) {
docObj.writeln ('<INPUT TYPE=BUTTON VALUE="Prev ' + offset

' Results" onClick=""' +

parent.frames[0] .formatResults (parent.frames[0].copyArray,
(reference - offset) + ', ' 4+ offset + ")">");
}

if (reference >= 0 && reference + offset < ceiling) {

|l

var trueTop = ((ceiling - (offset + reference) < offset)
ceiling - (reference + offset) : offset);
var howMany = (trueTop > 1 2 "s" : "");

|

?

docObj.writeln ('<INPUT TYPE=BUTTON VALUE="Next ' + trueTop

' Result' + howMany + '™ onClick=""' +

parent.frames[0].formatResults (parent.frames[0].copyArray,
(reference + offset) + ', ' + offset + ")">");
}
docObj.writeln ('</CENTER>"); }

JavaScript Technique: Go Easy on
document.write()

Take another look at formatResults (). You'll see that HTML written to the page
with a call to document.write () ordocument.writeln (). The string passed
to these methods is generally long and spans multiple lines concatenated by +. While you
may argue that the code would be more readable with a call to document.writeln ()
on each line, there is a reason for doing otherwise. Here's what I mean. The few lines of
formatResults () are as follows:

function formatResults (results, reference, offset) {
docOb7j.open() ;
docObj.writeln ('<HTML>\n<HEAD>\n<TITLE>Search
Results</TITLE>\n
</HEAD>' +
'<BODY BGCOLOR=WHITE TEXT=BLACK>' +
'<TABLE WIDTH=90% BORDER=0 ALIGN=CENTER
CELLPADDING=3><TR><TD>"' +
'<HR NOSHADE WIDTH=100%></TD></TR><TR><TD
VALIGN=TOP>"' +
'Search Query: <I>' +
parent.frames[0] .document.forms[0].query.value +
'</I>
\n"' +
'Search Results: <I>' + (reference + 1) + ' - ' +
(reference + offset > results.length ?
results.length
reference + offset) +
' of ' + results.length + '</I>

' +
'' +
'"\n\n<!- Begin result set //-->\n\n\t<DL>');

|

There is only one method call to write the text to the page. Not too attractive. One
alternative would be to line things up neatly with a method call on each line:

function formatResults (results, reference, offset) {
docObj.open () ;
docObj.writeln ('<HTML><HEAD><TITLE>Search
Results</TITLE>\n</HEAD>"') ;
docObj.writeln ('<BODY BGCOLOR=WHITE TEXT=BLACK>');
docObj.writeln ('<TABLE WIDTH=90% BORDER=0 ALIGN=CENTER
'+
'CELLPADDING=3><TR><TD>") ;
docObj.writeln ('<HR NOSHADE
WIDTH=100%></TD></TR><TR><TD VALIGN=TOP') ;
docObj.writeln ('' + 'Search
Query: <I>' +
parent.frames[0] .document.forms[0] .query.value +
'</I>
\n"') ;
docObj.writeln ('Search Results: <I>' + (reference + 1)
-)y
docObj.writeln((reference + offset > results.length ?
results.length : reference + offset) +
' of ' + results.length + '</I>

' +
'"'");
docObj.writeln ('\n\n<!- Begin result set //--
>\n\n\t<DL>") ;

That might look more organized, but each of those method calls means a little more work
for the JavaScript engine. Think about it. What would you rather do: make five trips to and
from the store and buy things a little at a time, or go to the store once and buy it all the first
time? Just pass a lengthy text string separated with + signs, and be done with it.

This function prints a centered HTML form at the bottom of the results page with one or two buttons.
Figure 1.3 shows a results page with both a "Prev" and a "Next" button. There are three possible
combinations of buttons:

e A "Next" button only—for the first results page displayed. There aren't any previous records.

e A "Prev" button and a "Next" button—for those results pages that are between the first and
last results pages. There are records before and after those currently displayed.

e A "Prev" button only—for the last results page. There are no more records ahead.

Three combinations. Two buttons. That means this application must know when to print or not print a
button. The following list describes the circumstances under which each combination will occur.

"Next" Button Only

Where should we include a Next button? Answer: every results page except the last. In other
words, whenever the last record (REFERENCE + OFFSET) of the results page is less than the
total number of records.

Now, where do we exclude the "Prev" button? Answer: on the first results page. In other
words, when REFERENCE equals (which we got from currentMatch).

"Prev" and the "Next" Buttons

When should both be displayed? Given that a "Next" button should be included on every
results page except the last, and a "Prev" button should be included on every results page
except the first, we'll need a "Prev" button as long as REFERENCE is greater than 0, and a

"Next" button if REFERENCE + OFFSET is less than the total number of records.

"Prev" Button Only

Knowing when to include a "Prev" button, under what circumstances should we exclude the
"Next" button? Answer: when the last results page is displayed. In other words, when
REFERENCE + OFFSET is greater than or equal to the total number of matching records.

Things might still be a little sketchy, but at least we know when to include which button(s), and the if’
statements in lines 154 and 160 do just that. These statements include one or both the "Prev" and
"Next" buttons depending on the current subset and how many results remain.

Both buttons call function formatResults () when the user clicks them. The only difference is
the arguments that they pass, representing different result subsets. Both buttons are similar under the
hood. They look different because of the VALUE attribute. Here is the beginning of the "Prev" button
at lines 155-156:

docObj.writeln ('"<INPUT TYPE=BUTTON VALUE="Prev ' + offset + '
Results" ' +

Now the "Next" button at lines 164-165:

docObj.writeln ('<INPUT TYPE=BUTTON VALUE="Next ' + trueTop + '
Result' + howMany

Both lines contain the TYPE and VALUE attributes of the form button plus a number indicating how
many previous or next results. Since the number of previous results is always the same (offset), the
"Prev" button value displays that number, for example, "Prev 10 Results." The number of next results
can vary, however. It is either offset or the number remaining if the final subset is less than offset. To
address that, variable trueTop is set to that value, whichever it is.

Notice how the value of the "Prev" button always contains the word "Results." This makes sense. The
showMatches never changes throughout the app. In this case it is and always will be 10. So the user
can always count on seeing 10 previous results. However, that isn't always the case for the amount of
"Next" results. Suppose the last subset contains only one record. The user shouldn't see a button
labeled "Next 1 Results." That's incorrect grammar. To clean this up, prevNextResults ()
contains a local variable named howMany that uses the ternary operator once again. You'll find it at
line 163:

"

var howMany = (trueTop > 1 2 "s" : "");

If trueTop is greater than 1, howMany is set to the string s. If trueTop equals 1, howMany is set to an
empty string. As you can see at line 165, howMany is printed immediately after the word "Result." If
there is only one record in the subset, the word "Result" appears unchanged. If there are more,
however, the user sees "Results."

The final step in both buttons is "telling" them what to do when they are clicked. I mentioned earlier
that the onClickevents of both buttons call formatResults (). Lines 157-158 and 166-167
dynamically write the call to formatResults () in the onClick event handler of either button.
Here is the first set (the latter half of the document .writeln () call):

'onClick="" +
parent.frames[0] .formatResults (parent.frames[0].copyArray, ' +
(reference - offset) + ', ' 4+ offset + '")">");

The arguments are determined with the aid of the ternary operator and written on the fly. Notice the
three arguments passed (once the JavaScript generates the code) are copyArray, reference - offset, and
offset. The "Prev" button will always get these three arguments. By the way, notice how
formatResults () and copyArray are written:

parent.frames[0].formatResults(...);
and:
parent.frames[0].copyArray

That may seem strange at first, but remember that the call to formatResults () does not happen
from nav.html (parent . frames [0]). It happens from the results frame

parent.frames [1], which has no function named formatResults () and no variable
named copyArray. Therefore, functions and variables need this reference.

The "Next" button gets a similar call in the onClick event handler, but wait a sec. Don't we have to
deal with the possibility of less than offset results in the last results subset of copyArray just as we did
in formatResults () when displaying the range of currently viewed results? Nope. Function
formatResults () takes care of that decision process; all we do is add reference to offset and
pass it in. Take a look at lines 166-167, again the latter half of the document .writeln ()
method call:

'onClick="parent.frames[0].formatResults (parent.frames[0].copy
Array, ' +
(reference + offset) + ', ' + offset + ")">'");

JavaScript Technique: The Ternary Operator

After that section, you must have seen this one coming. The ternary operator is pretty
helpful, so here's my sermon. Ternary operators require three operands, and they are used
throughout this app as a one-line if-else statement. Here's the syntax straight from
Netscape's JavaScript Guide for Communicator 4.0, Chapter 9:

(condition) ? wvall : wval?2

This conditional operator, when properly populated, acts upon vall if condition evaluates to
true, and valZ2 otherwise. I'm making all the fuss about it because in many cases I find it
makes code easier to read and there is usually less to write. This operator can be especially
helpful if you're coding within several nested statements.

The ternary operator is not the cure for everything. If you have multiple things that need to
happen if condition is true or false, take the if-else route. Otherwise, give this a try in your
code.

1.3.4 The HTML

nav.html has very little static HTML. Here it is again, starting with line 174:

</HEAD>
<BODY BGCOLOR="WHITE">
<TABLE WIDTH="95%" BORDER="0" ALIGN="CENTER">
<TR>
<TD VALIGN=MIDDLE>

Client-Side Search Engine
</TD>

<TD VALIGN=ABSMIDDLE>
<FORM NAME="search"
onsubmit="validate (document.forms[0] .query.value); return

false; ">

<INPUT TYPE=TEXT NAME="query" SIZE="33">

<INPUT TYPE=HIDDEN NAME="standin" VALUE="">

</FORM>

</TD>

<TD VALIGN=ABSMIDDLE>

Help
</TD>
</TR>
</TABLE>
</BODY>
</HTML>

There aren't really any surprises. You have a form embedded in a table. "Submitting" the form
executes the code we've been covering. The only question you might have is: "How can the form be
submitted without a button?" As of the HTML 2.0 specification, most browsers (including Navigator
and MSIE) have enabled form submission with a single text field form.

There's no law saying you have to do it this way. Feel free to add a button or image to jazz it up.

1.4 Building Your Own JavaScript Database

Eventually you'll want to replace the records I've provided with your own records. You can do this in
three easy steps.

1. Open records.js in your text editor.
2. Remove the records already there so that the file looks like this:
3. wvar profiles = new Array (

)
4. For each record you want to add, use the following syntax:

"Your Page Title|Your Page Description|http://your page u
rl/file name.html",

Add as many of these elements between the parentheses as you want. Be sure to include the comma at
the end of each record—except the last one. Notice also the page title, description, and URL are each
separated by | (the pipe character). Don't use any of those in your titles, descriptions, or URLs. That
will cause JavaScript errors. Remember, too that if you include double quotes (") other than the ones
on the outside, be sure to escape them with a backslash (e.g., use \" instead of just ").

1.5 Potential Extensions

The search engine is pretty useful the way it is. What's even better is that you can make some
significant improvements or changes. Here are some possibilities:

Make it JavaScript 1.0 compatible
Make it harder to break

Display banner ads

Add refined search capabilities
Develop cluster sets

1.5.1 JavaScript 1.0 Compatibility

You know it, and I know it. Both of the major browsers are in the latter 4.x or early 5.x versions. Both
are free. But there are still people out there clunking along with MSIE 3.02 or NN 2.x. I still get a
surprising hit count of visitors with those credentials to HotSyte—The JavaScript Resource
(http://www.serve.com/hotsyte/).

Since a search engine is pretty much a core feature of a web site, you might consider converting this
app for JavaScript 1.0. Fortunately, all you have to do is go through the code listed earlier, line by
line, figure out which features aren't supported in JavaScript 1.0, and change a// of them.

OK. I already did that, but admit it: I had you going. Actually, you'll find the modified version in
/ch01/js1.0/. Open index.htm! in your browser just like you did with the original. In this section, we'll
take a quick look at what will make the app work in JavaScript 1.0 browsers. There are three changes:

e No JavaScript source file (a browser issue really)
e No array sorting (with the sort () method)

http://your_page_u
http://www.serve.com/hotsyte/

e A workaround for the split () method

NN 2.x and MSIE 3.x do not support .js source files."! The workaround for this is to embed the
profiles array in nav.html. The second change eliminates the callto resultSet.sort () inline
90. That means your results will not be sorted in dictionary order, but by the way you have them
chronologically listed in profiles. The last change is eliminating the spl1it () method. JavaScript
1.0 does not support that either; the workaround takes care of that, but it degrades performance.

y Actually that's a stretch. Some versions of MSIE 3.02 do support JavaScript source files.
1.5.2 TANSTAAFL

That's what my economics professor wrote on the chalkboard my freshman year at Florida State
University. The translated acronym: Thar' Ain't No Such Thang As A Free Lunch. In other words,
these changes give you older browser version compatibility, but cost you in functionality and code
management.

Without support for .js files, you have to dump that profiles array into your nav.html. That will be
quite unsightly and more unmanageable if you want to include those records in other searches.

The sort () method, while not critical to the operation, is a great feature. People might have to view
all subsets of matched records because the records are in no particular order. Of course, you could
place the results in the array alphabetically, but that's no picnic either. Or you write your own sort
method for JavaScript 1.0. The split () method is arguably the least of your troubles. The
JavaScript 1.0 version of the app has a workaround, so it really isn't an issue.

1.5.3 Make It Harder to Break

As it stands, you can pass the pipe character as part of the search query. Why not add the functionality
to remove any characters from the query used as the string delimiters? That makes the app harder to
break.

1.5.4 Display Banner Ads

If your site gets a lot of traffic, why not use it to make some extra money?

How? Try this. Suppose you want to randomly display five banner ads (no particular order in this
case). If you have several ad image URLSs in an array, you could pick one to load at random. Here's the
array.

var adImages = new Array ("pcAd.gif", "modemAd.gif",
"webDevAd.gif") ;

Then you might randomly display one on the results page like so:

document.writeln ('<IMG SRC=' +
ads [Math.floor (Math.random(ads.length))] + '>");

1.5.5 Add Refined Search Capabilities

You can have some great programming fun with this concept. For example, suppose the user could
select from array elements to search. Then the user could narrow seach results accordingly.

Consider displaying a set of checkboxes under the text field in nav.html.Maybe like this:

<INPUT TYPE=CHECKBOX NAME="group" VALUE="97">1997 Records

<INPUT TYPE=CHECKBOX NAME="group" VALUE="98">1998 Records

<INPUT TYPE=CHECKBOX NAME="group" VALUE="99">1999 Records

Use this checkbox group to determine which arrays to search, in this case profiles97, profiles98, or
profiles99.

There are many things you can add to increase the user's ability to refine searches. One easy one is to
offer case-sensitive and case-insensitive queries. As it stands now, case does not matter, but you can
change that by adding a checkbox allowing either style.

You could also expand search refinement by broadening Boolean searches from the current AND and
OR searches to AND, OR, NOT, ONLY, even LIKE. Here is a breakdown of the general meanings:

AND
Record must contain both terms on the left and right of AND.
OR
Record can contain either of the terms on the left and right of OR.
NOT
Record must not contain the term(s) to the right of NOT.
ONLY
Record must contain this and only this record.
LIKE

Record can contain term(s) spelled like or sounding like.

This takes some work (especially LIKE), but users would be quite amazed at your wizardry.

1.5.6 Cluster Sets

Another popular and useful technique is to establish cluster sets. Cluster sets are predefined word
groups that automatically return predefined results. For example, if a user includes the term "mutual
funds" anywhere in the query string, you could automatically generate results containing records
featuring your company's financial products. This technique takes a bit more planning, but it would be
a great feature in a search application.

Chapter 2. The Online Test

Application Features JavaScript Techniques

®|nteractive Multiple Choice Test ®Cheating the SRC Attribute
> .

®Thousands of Unique Tests with One Question Set Shyfﬂmg and Array
Manipulation

®Comprehensive Results Printout and Ranking ®The javascript: Protocol

®Excellent App for Web Surveys and Other Information

Gathering

® Context-Sensitive Explanations of Missed Questions

The online test application is a boilerplate for just about any multiple-choice test you'd like to
administer over the Web. You have significant flexibility in the following ways:

e You determine the number of test questions the user takes.

e The questions and answers are randomly jumbled each time the application is loaded or the
test is retaken, virtually guaranteeing each user a unique test.

e You can add or subtract test questions anywhere in the question set; the application adjusts
the shuffling, the administration, the grading, and the ranking.

¢ You can easily remove the answers from the application to prevent cheating, and forward user
answers to the server-side application of your choice for grading.

You can load the application by opening ch02/index.html in your browser. Figure 2.1 shows the
opening screen. Now who would have guessed that the test questions included here deal with
JavaScript? Try the test. It is a 50-question test that most folks find challenging. Questions cover
many JavaScript issues: core JavaScript, client-side and server-side JavaScript, LiveConnect, known
bugs, and more. It isn't easy, but it is fun. (I have documentation that supports all the test questions
and answers. Nonetheless, if you think one or more of the questions are inaccurate, send me email.)

Figure 2.1. Are you ready for this?

7 JawnScapt On-ine Text - Retecapn
Fis it Yewr o Commumces Heip

= - 3 :
I T R N b o @ m
[Fadeal Heww Suach Haloses Seruiy
" Eokreks o) Loostion [l £ DRWH KT Proliea’t draison Deshanp ez ulbionkne_tandes hixl =] 2 whaks Ruleadd
Hegin It Mickes |
Strap in Buckn: Thig san't no JewsSonpt wacaton
& Dincursant Do — ik 3 3 s
s | [JavaBein Dofine Te... 1221 &H

Once you begin the test, you'll see that each question offers four possible answers. As soon as you
make your choice, the application auto-advances to the next question. You can't go back to change
your answers. Each question is a one-time deal. Figure 2.2 shows the question-answer format.

Figure 2.2. The multiple-choice questions

i+ JavaScopt On-bne Tet - Hoiccaps

[N T
4 < B A =2 ®m 3 of @ m

| Begn | Quit How |
Question 1 of 50

¥ou unsucosssfully use navigator preferences() to alter browser preferences. How come?

F Yo e usang export nsbead of import
C ousre using mport instead of eport
T Thats the wrong method

T You're nat using a signed scrip

=y Docursant o —— e e A
st | [davasicsion Do fire: Te... 1222 AN

When you answer the last test question, your choices are compared with the answers; your
performance, ranked; and the results, displayed. Figure 2.3 shows the results. Notice how each
question and its accompanying four choices are written to the screen along with the answer you
selected. If you answered correctly, your text is green. Otherwise, you get the shameful red text.

Figure 2.3. Test results

= JavaSoepl On-bne Te - Helsiape

Fd: B Vs Lo Cowrarsoso Help

i 4 03 @ a2 W o & =
Back Melged Hove Sesch Metscape Prnd Securiy
wf Eocknats i Locetion [l TS WIN KT Frolins 9 denbstor Deskios U pbaSiullonine_sarfnde bl] A s Rebed
Hegin Qluit Hiorer |
You scored 45/50 corractly. £

Ranklrg: Yeu are an exhalted JavaSoripe gury,
Pass the mouse pointer arrow over the red text for an explanation of those you misssed

Here 15 how you scored;

Huestion 1
Which best explaing perSelecion]]?

& Rabumis the VALUE of & sokicted OPTION

b Retume dacur=ant LIS of the wisdow in facus
o Ratums She value of cuesar selacteod ba

d Relume i VALUE ol & checked radi ingul

Quastien I =
o Gipourssed fions e e e G N

it | [T davasicrn (e T 5 i Cbpecis ScrptBir 123N

To better understand the questions that he or she missed, the user can view an explanation of the
question choices by passing the mouse pointer arrow over the red text of any incorrect question.
Notice the text explanation at the top right of the screen in Figure 2.4.

Figure 2.4. Explaining the missed questions

B Javaboepl On-bne Tead - Helpcaps
Fie [t Yew [0 Cowranicso Hep

i o A3 A = w4 F m
Finch. Fslzad Home Sesch MHetmspe Pt Secuiy
P

B T PR PO PO ks /w1 KT [Pkl ke el on D) bt C e Sl el

Hegin st Mo | Lamk () &Thed i 1.0 spla) & joinl) Showed up in 1.1

Huestion 4
Select the method added in JevasSonpt 1.3 =

u concal)
b Bk
o splii)
d joi)

Question §
What is one dsadvantage af umng the Function constructar?

B SEnptE can vER i 10 cradle Rncine 8l ngn limg

b b canral define smal Renctans

& Fussclioes defisad The sy are nel campiled and sxecule eliwsr
d Thae i no reasos nol 1o use i

ot ——— e D i

#8540 | [T Javaricript Declive Te._ 1290 AN

OK. That's the application at first pass. Indeed, it seems fairly straightforward, but the diagram in
Figure 2.5 will give you a better idea of the application flow from the user perspective. Dashed lines
indicate optional user action or waiting-for-user action status. Follow along with the following five-
step process.

Figure 2.5. The application flow from the user's perspective

[iser Chogses
BEGIN
o Wext Questian User (haoses
i Printed [*TTTT CANCEL
[iser Chogses User Chooses
* Answar QUIT NOW

W ———— | Tetbrdkd [Mﬂ"‘““

Resas i
P Anower nfo |

Here is the process:

1. The user chooses the "Begin" button. This action writes the first question and waits for the
user to select an answer or choose the "Quit Now" button.

2. If'the user selects an answer, the application records that selection, then decides whether the
test has ended or to print another question. If the test is finished (the user has answered the
last question), it's on to step 4 (grading the test). Otherwise, the next question is printed.

3. Ifthe user, however, chooses "Quit Now", he or she is prompted to confirm that choice.
Should the user choose "OK", the test is graded (though prematurely) in step 4. Should the
user choose "Cancel" instead, the application resumes the test.

4. When the test is over (or aborted), the user's choices are compared with the correct answers,
and then the results are printed to the screen.

5. As the user scans the results display, he or she can pass the mouse pointer arrow over any of
the red text (indicating an incorrectly answered question) for more information about the
question content.

2.1 Execution Requirements

This is all JavaScript 1.1, so Navigator 3.x and up and MSIE 4.x and up fit the bill. As far as
scalability goes, there are currently 75 test questions in the application. I stopped testing after 400
questions. Since no one will probably use this to administer a bar exam or the SAT, I felt 400 was
plenty.

2.2 The Syntax Breakdown

Figure 2.5 shows a flowchart indicating how the user proceeds through the application from beginning
to end. A good way to understand what is really happening here is to start with a more comprehensive
flowchart that deals with the JavaScript flow , and then examine the files and supporting code from
there.

Figure 2.6 illustrates the JavaScript flow. Dashed-line boxes indicate processes that occur before or
after the test (such as during the loading of the pages). Dashed-line arrows indicate optional user
action or a return to a waiting-for-user action status. The function associated with each process is
listed in italics.

Associated functions are italicized. Compare the chart in Figure 2.5 with the one in Figure 2.6, and
you'll catch on quickly. You basically have the same flow, except that there is a bit going on before
and after the user takes the test.

2.3 index.html—The Frameset

This application has three files: index.html, administer.html, and questions.js. Since index.html is the
frameset, let's start there. Example 2.1 leads the way.

Example 2.1. The index.html Source Code

<HTML>

<HEAD>

<TITLE>JavaScript On-line Test</TITLE>
<SCRIPT LANGUAGE="JavaScriptl.l">

DSw N

5 <I--

6 var dummyl = '<HTML><BODY
BGCOLOR=WHITE></BODY></HTML>"';

7 var dummy2 = '<HTML><BODY BGCOLOR=WHITE>"' +

8 'Strap in Bucko: This ain\'t no JavaScript
vacation...</BODY></HTML>";

9 //-=>

10 </SCRIPT>
11 </HEAD>
12 <FRAMESET ROWS="90, *" FRAMEBORDER=0 BORDER=0>

13 <FRAMESET COLS="250,*">

14 <FRAME SRC="administer.html" SCROLLING=NO>
15 <FRAME SRC="javascript: self.dummyl">

16 </FRAMESET>

17 <FRAME NAME="questions" SRC="javascript:

self.dummy2">
18 </FRAMESET>
19 </HTML>

Figure 2.6. The JavaScript flow

ot Queshion
W — | Pimed oo ”’aﬁc‘ﬁ”

User Chooses User Chogses

YES Tes! Groded User Chooses
grodelest]) oK

'

Resulls S — :
Mplayed |——= ifemfeseff]
prinResulfs() SR

User Viow
Arswer Info

explainf |

As you probably noticed, this isn't your average run-of-the-web frameset y. First of all, it's nested .
That is, a frameset within a frameset. The outer frameset in line 12 defines two rows—the first 90
pixels high, and the second filling the rest of the available window height.

The 90-pixel frame also contains a frameset; this one declares two columns—the first 250 pixels wide
and the second filling the remaining available window width. Figure 2.7 shows how the parent
window is divided among frames. The SRC attribute of each frame is also listed.

Figure 2.7. The nested frameset layout of index.html

administrator. html javascript: self dummy]

javascript: self dummy2

administer.html makes sense as a SRC for a FRAME tag, but what about the other two? The two
dummy variables implicitly define HTML pages. That means dummy!I and dummy2 represent HTML
pages with no filename. Each exists only within the realm of the application. The dummy variables are
defined in lines 7 and 8. Notice that each contains a small amount of HTML. Not much, but it will
work. index.html uses the javascript : protocol to evaluate the expressions contained in dummyl
and dummy2, then returns each as the content of a URL for the SRC attribute. Check out the sidebar
JavaScript Technique: Cheating the SRC Attribute for more info.

The frameset is now in place. You have filled three frames using only one HTML page
(administer.html). Talk about economy.

2.4 questions.js—The JavaScript Source File

Let's continue with questions.js , the JavaScript source file called by administer.html, shown in
Example 2.2.

Example 2.2. The Beginning of the questions.js Source Code

1 function question (answer, support, question, a, b, c,

d) |
2 this.answer = answer;
3 this.support = support;
4 this.question = question;
5 this.a = a;
6 this.b = b;
7 this.c = c¢;
8 this.d = d;
9 return this;
10 }
11 wvar units = new Array(
12 new question ("a", "The others are external
objects.",
13 "Choose the built-in JavaScript object:", "Image",
"mimeType",
14 "Password", "Area"),
15 // and so on
16 }

This is, of course, an abbreviated version of the file. Array UNITS is much longer (75 elements in all),
but this shows you that each element of UNITS is a question object as defined in function
question () inlines 1-10.

This application is based on user-defined objects (objects that you and I declare). If the concept of
JavaScript objects seems obscure, check Netscape's documentation at
http://developer.netscape.com/docs/manuals/communicator/jsguide4/model.htm. It will help you
better understand the JavaScript Object Model. In the meantime, use the next few paragraphs as a
crash course.

An object is a set of structured data. Each object can own or have associated with it two types of
entities—properties and methods. Properties Zave something, such as the number 6, the expression a

http://developer.netscape.com/docs/manuals/communicator/jsguide4/model.htm

* D, or the string "Jimmy." Methods do something, such as calculate the circumference of a circle or
change the color of your document background. Consider the JavaScript DOCUMENT object. Each
document has things (DOCUMENT.BGCOLOR, DOCUMENT.FGCOLOR, etc.) and does things
(DOCUMENT.OPEN(), DOCUMENT.WRITE(), DOCUMENT.CLOSE()). Properties have. Methods do.

JavaScript Technique: Cheating the SRC
Attribute

Setting the SRC attribute equal to a JavaScript evaluation might seem a bit confusing. Let's
back up. Suppose you open your text editor and copy the following code into a fresh clean
text file:

<BODY BGCOLOR=WHITE>

Better strap in, Bucko. This ain't no JavaScript
vacation...

</BODY>

Then you name that file bucko.html and load it in your browser. You'll no doubt know what
to expect. What's happening in index.html is basically the same thing, except variable
dummy?2 has been set to the same text above, and the javascript : protocol evaluates
dummy?2. The SRC attribute at line 20 is set equal to the javascript : protocol
evaluation; in this case, the value of dummy2. For more about the javascript:

protocol, see the sidebar JavaScript Technique: Shuffling and Array Manipulation chapter.

What you have is an anonymous HTML page. I call this technique cheating the SRC. We'll
get some serious mileage out of it later in the chapter.

You can create objects by first creating a constructor function, like so:

function myFirstConstructor (argl, arg2, argn) {
this.propertyl = argl;
this.property?2 = arg2;
this.propertyn = argn;
return this;

}

This looks similar to just about any function you might create, except that it utilizes the this
keyword to refer to itself. Any arguments you pass in can be assigned to properties or manipulated in
other ways. Once you have your constructor, you need only instantiate variables with the new
operator:

var myFirstObject = new myFirstConstructor (6, a*b, "Jimmy"),
var mySecondObject = new myFirstConstructor (6, a*b, "Jimmy"),
var myThirdObject = new myFirstConstructor (6, a*b, "Jimmy"),

For our script, object implementation is that easy. The objects we create, instances of the constructor
function question (), have only properties. Lines 2-8 identify seven properties of each
qguestion ():an answer, an explanation, a question (the text), and four multiple-choice
possibilities: a, b, ¢, and d. Here are lines 1-10:

function question (answer, support, question, a, b, c, d) {
this.answer = answer;
this.support = support;

this.question = question;
this.a = a;
this.b = b;
this.c = c;

this.d = d;
return this;

}

Properties and methods are assigned to objects by using the thi s notation. So, each element of units
uses the new operator to create a new instance of question (), which is passed the seven
parameters that will be assigned to the properties. Line 9 uses the following syntax:

return this;

That line returns a reference to the instantiated variable (in our case, each of the units elements).
Think of it as sealing the deal to make things official. Now each element in units is a question.
This is a convenient way of creating, deleting and otherwise managing questions for the test. You can
add questions at will by using the same syntax as the other units elements:

new question ("your answer letter", "your explanation",
"your question text'", "option a", "option b", "option c",
"option d");

In case you're wondering, I put the answer as the first argument of the function because it seems easier
to have the one-character string at the front of the argument list instead of the back. Some of those
questions are pretty long. It just makes it easier to find and change.

Creating a question object for each question might seem unnecessary, but it makes life considerably
easier when it comes time to work with the data in each question's properties. We'll get into that when
we examine administer.html.

o If you don't use JavaScript objects in your applications, consider changing your
ar style. Objects have significant advantages. They tend to make your code more
‘. 4s clegant and manageable. Objects also have the advantage of inheritance, the

transfer of properties from an original object to another object that is constructed
from the original object. You can download a PDF file or read the documentation
about JavaScript and object inheritance online at
http://developer.netscape.com:80/docs/manuals/communicator/jsobj/contents.htm.

2.5 administer.html

http://developer.netscape.com:80/docs/manuals/communicator/jsobj/contents.htm

The objects are now in place. Let's put them to work for us. This is another application where the
JavaScript brains reside in the upper frame, and the lower frame is used for interaction. You can break
down the application into a series of processes. Table 2.1 lists and describes these processes and
includes the JavaScript variables and functions associated with each.

Table 2.1. Test Processes and Associated JavaScript Functions

answers.

Process Description Associated JavaScript
variables qTdx, correct, howMany,
stopOK, nextQ, results,
aFrame, gFrame

Setting the Declare and initialize global variables,

environment shuffle the question-answer sets. arrays keeper, rank, questions,
answers
functions itemReset (), shuffle ()

S .) functions buildQuestion (),
Administering |Write each question-answer set to the .
. . makeButton (), possibly

the test window, record each user choice. .
chickenOut ()

Grading the test Compare student answers with correct function gradeTest ()

Printing out

Print out all answers, right and wrong,

function printResults ()

results to the window along with a ranking.
Dlsplaylpg Printing and clearing explanations to functions explain () and show () .
explanations parent.frame[1l].

variables gIdx, correct, stopOK
Resetting the Set all necessary variables to their array keeper
environment original values.

functions cleanSlate (),
shuffle ()

We'll look at each of these in a moment. For now, check out the code for administer.html in Example

2.3.

Example 2.3. The administer.html Source Code

1
2
3

<HTML>
<HEAD><TITLE>On-line JavaScript Test</TITLE>
<SCRIPT LANGUAGE="JavaScriptl.1l"

SRC="questions.js"></SCRIPT>

offense, but you need

4 <SCRIPT LANGUAGE="JavaScriptl.l">
5 wvar gldx = 0;

6 var correct 0;

7 var howMany 50;

8 wvar keeper = new Array();

9 wvar rank = new Array('No

help.',

10 'Unmm. .. Well...

Few have done worse.',

11 'Ehhh... You know some. Keep at it.',

12 'You seem to have a working knowledge.',

13 'Better than the average bear.',6 'You are an adequate
JavaScripter.',

14 'You are a formidable JavaScripter.',

15 '"You are an excellent JavaScripter.',

16 'You are an exhalted JavaScript guru.'

17) 7

18 wvar stopOK = false;

19 wvar nextQ ="'';

20 wvar results = '';

21 wvar aFrame = parent.frames[1l];
22 wvar gFrame = parent.frames[2];
23 function shuffle () {

24 for (var 1 = 0; 1 < units.length; i++) {

25 var j = Math.floor (Math.random() * units.length);

26 var tempUnit = units[i];

27 units[i] = units[7];

28 units[j] = tempUnit;

29 }

30 }

31 function itemReset () {

32 gldx = 0;

33 correct = 0;

34 stopOK = false;

35 keeper = new Array();

36 shuffle();

37 }

38 function buildQuestion () {

39 if (gIdx == howMany) {

40 gradeTest () ;

41 return;

42 }

43 nextQ = '<HTML><BODY BGCOLOR=WHITE>"' +

44 '<H2>Question ' + (gIdx + 1) + ' of ' 4+ howMany +
'</H2>' +

45 '<FORM>' + '' + units[gIdx].question +
'

"' +

46 makeButton ("a", units[gldx].a) +

477 makeButton ("b", units[gldx].b) +

48 makeButton ("c", units[gldx].c) +

49 makeButton ("d", units[gldx].d) +

50 '</FORM></BODY></HTML>";

51 gFrame.location.replace ("Jjavascript:
parent.frames[0] .nextQ") ;

52 gldx++;

53 if (gIdx >= 2 && !stopOK) { stopOK = true; }

54 }

55 function makeButton (optLtr, optAnswer) {

56 return '<INPUT TYPE=RADIO NAME="answer" VALUE="' +
optLtr +

57 T
onClick="parent.frames[0] .keeper[parent.frames[0] .gqldx - 1] =

58 this.value; parent.frames[0].buildQuestion()">" +
optAnswer + '
';

59 }

60 function chickenOut () {

61 if(stopOK && confirm('Stopping early? Are you really
a ' +

62 'JavaScript Chicken?')) {

63 gradeTest () ;

04 }

65 }

66 function gradeTest () {

67 for (var i = 0; 1 < gIdx; i++) {

68 if (keeper[i] == units[i].answer) {

69 correct++;

70 }

71 }

72 var idx = Math.ceil ((correct/howMany) * rank.length
- 1) <0 2?2 0 :

73 Math.ceil ((correct/howMany) * rank.length - 1);

74 printResults (rank[idx]) ;

75 itemReset () ;

76 }

77 function printResults (ranking) {

78 results = '"<HTML><BODY BGCOLOR=WHITE LINK=RED
VLINK=RED ALINK=RED>' +

79 '' +

80 '<H2>You scored ' + correct + '/' + howMany + '
correctly.</H2>' +

81 'Ranking: <I>' + ranking +

82 '</I>
Pass the mouse over the red text for an
explanation of ' +

83 'those you misssed.' +

84 '

Here 1s how you scored:

"';

85 for (var i = 0; i < howMany; i++) {

86 results += '"\n\r\n\r\n\rQuestion ' + (i + 1) +
'
' +

87 units[i].question + '"

\n\r'
+

88 'a. ' 4+ units[i].a + '"
' +

89 'b. " + units[i].b + '"
' +

90 'c. ' 4+ units[i].c + '"
' +

91 'd. ' + units[i].d + '"
';

92 if (keeper[i] == units[i].answer) {

93 results += '<I>' +

94 'You answered this correctly (' + keeper[i] +
|). LI

95 '</I>\n\r

';

96 }

97 else {

98 results += '"<I>' + '

99 '<A HREF=" "
onMouseOver="parent.frames[0] .show () ;"' +

100 parent.frames[0] .explain(\'"' +
units[i].support + "\'); ' +

101 'return true"
onMouseOut="parent.frames[0] .explain(\" \");"' +

102 'onClick="return false;">"' +

103 'The correct answer is: ' + units[i].answer +

104 '</I>\n\r

';

105 }

106 }

107 results += '"\n\r</BODY></HTML>';

108 gFrame.location.replace ("javascript:
parent.frames[0] .results");

109 }

110 function show() { parent.status = ''; }

111 function explain(str) {

112 with (aFrame.document) {

113 open () ;

114 writeln ('<HTML><BODY BGCOLOR=WHITE>' + str +

115 '</BODY></HTML>") ;

116 close (),

117 }

118 }

119 function cleanSlate () {

120 aFrame.location.replace ('javascript:
parent.dummyl') ;

121 gFrame.location.replace ('javascript:
parent.dummy?2') ;

122 }

123 </SCRIPT>
124 </HEAD>

125 <BODY BGCOLOR=WHITE onLoad="cleanSlate() ;">
126

127 <FORM>

128 <INPUT TYPE=BUTTON VALUE="Begin"

129 onclick="itemReset (); buildQuestion();">
130

131 <INPUT TYPE=BUTTON VALUE="Quit Now"

onclick="chickenOut () ;">
132 </FORM>

133
134 </BODY>
135 </HTML>

This long file can be broken into four sections. First the source file questions.js is called. Next some of
global variables are defined. Then come the functions. Finally, we have a few lines of HTML. Let's
look at the HTML first, since it is short and sweet.

2.5.1 HTML Body

When administer.html finishes loading, function cleanSlate () is called at line 125:
<BODY BGCOLOR=WHITE onLoad="cleanSlate();">

cleanSlate () usesthe replace () method of the location object to replace the current URLs
of parent.frames[1] (alias aFrame)and parent.frames[2] (alias gFrame) with

the contents of the value of the dummy [and dummy?2 variables defined earlier in index. html. See lines
119-122:

function cleanSlate () {
aFrame.location.replace('javascript: parent.dummyl') ;
gFrame.location.replace ('javascript: parent.dummy2') ;

}

We just did that in index.html, right? Indeed, we did. This, however, ensures that if the user reloads

administer.html for any reason, the top right frame will always begin as a blank white page, that the
bottom frame will always start with the opening "bucko" message, and that the previous contents of
the page, perhaps a test question, won't be accessible any longer and possibly run things awry.

The rest of the HTML is simply a form with two buttons. This part won't take long. administer.html!
has a form with two buttons. Each button has calls to different functions when clicked. Here is the
code at lines 127-132:

<FORM>
<INPUT TYPE=BUTTON VALUE="Begin"
onclick="itemReset (); buildQuestion() ;">

<INPUT TYPE=BUTTON VALUE="Quit Now" onclick="chickenOut () ;">
</FORM>

Notice that the "Begin" button calls i temReset () and buildQuestion (), and the "Quit
Now" button calls chickenOut (). We'll get to all three functions in Section 2.5.3.

2.5.2 Global Variables

Just after the code to embed the JavaScript source file questions.js at line 4, you'll see the global
variables used in this application. Here they are in lines 5-22:

var gldx = 0;

var correct = 0;

var howMany = 50;

var keeper = new Array():;

var rank = new Array('No offense, but you need help.',
'Unmmm. .. Well... Few have done worse.',
'Ehhh... You know some. Keep at it.',

'"You seem to have a working knowledge.',
'Better than the average bear.',
'You are an adequate JavaScripter.',
'You are a formidable JavaScripter.',
'You are an excellent JavaScripter.',
'You are an exhalted JavaScript guru.'
)i

var stopOK = false;

var nextQ = '';
var results = '";
var aFrame = parent.frames[1l];
var gFrame = parent.frames[2];

The following list describes the function of each global variable. We'll have a closer look at them in
the function discussion.

qldx

A variable used to monitor the current question that is displayed on the screen
correct

A variable used to track the number of correct answers while the test is graded
howMany

A static number you set to determine how many questions you want the user to answer (out of
the number available in the UNITS array)

keeper
An initially empty array that holds the user's answer choices
rank
An array of strings indicating various levels of performance
stopOK
A variable containing a Boolean value indicating whether to permit stopping the test early

nextQ

An empty string repeatedly set to the value of the HTML that represents each test question
results

An empty string later set to the value of the HTML that represents the test results
aFrame

An easy reference to the second frame
qFrame

A easy reference to the third frame
2.5.3 Functions
Next we come to the functions. We start with i temReset ().
2.5.3.1 itemReset()

The first of our functions to get the call in this application is 1 temReset (). It happens when the
user chooses the "Begin" button (lines 128-129):

<INPUT TYPE=BUTTON VALUE="Begin"
onclick="itemReset (); buildQuestion() ;">

itemReset () sets the values of the global variables to their original values and shuffles the
question object array elements (more on shuffling shortly). Have a look at lines 31-37:

function itemReset () {

gldx = 0;

correct = 0;

stopOK = false;
keeper = new Array();
shuffle();

}

Note that the user hasn't even seen the first question, and JavaScript is already hard at work resetting
the global variables. Why? Well, suppose you've already taken the test, and you only got two
questions right. You might choose the "Begin" button to retake the test. After the first test, however,
many global variables no longer have their original values. i temReset () takes care of that and
gives you fresh new values.

Notice that variable sowMany is not included. Its value stays the same for the duration of the
application. Variables nextQ and results originally start as empty strings, but their values are not reset.
There is no need. Check lines 43 and 86, respectively, and you'll see that these variables are set on the
fly.

With the variables properly set, how about the call to shuffle () atline 36?

2.5.3.2 shuffle()

This little function gives the test administrator a lot of flexibility. This function randomly orders the
questions, almost guaranteeing each test taker a unique version. Just to give you an idea of the
possibilities, consider that the number of possible combinations (different orders) of test questions is
n (n — 1), where n is the number of questions. So a measly 10-question test has 10 (10 - 1) or 90
possible combinations. A 20-question test has 380 possible arrangements. This 50-question test has a
significant 2,450 combinations. That could be a cheater's worst nightmare.

The test is also made unique because though the units array has 75 questions available, variable
howManyis set to 50. When the shuffling is finished, the test uses the first 50. Since there are 75, there
is a strong possibility that users will not receive the same 50 questions. Therefore, this test gives you
thousands of combinations of different test questions. Amazingly, the shuffle process is pretty easy.

Here are lines 23-30:

function shuffle () {

for (var i = 0; 1 < units.length; i++) {
var J = Math.floor (Math.random() * units.length);
var tempUnit = units[i];
units[i] = units[j];

units[j] = tempUnit;
}

For each element in the units array:

1. Pick arandom integer between 0 and units.length - 1.

2. Set the value of local variable tempUnit equal to the element of the current index
(units[i]).

3. Set the value of the element of the current index (units [i]) to the value of the element
of the random integer index (units|[j]).

4. Set the value of the element of the random integer index to the value of local variable
tempUnit.

In other words, systematically iterate through all elements of the array, and swap each value for the
value of another randomly chosen element, then set the value of the randomly chosen element to the
value of the currently counted array element.

The questions are jumbled in random fashion and now awaiting the user.

JavaScript Technique: Shuffling and Array
Manipulation

This test rearranges the array elements in random order. That is the desired effect for this
application, but other, more controlled shuffling schemas aren't that hard to write either.
The following function accepts a copy of an array object to shuffle and an integer indicating
the multiple by which you want to shuffle:

function shakeUp (formObj, stepUp) {
stepUp = (Math.abs (parselInt (stepUp)) > 0 2
Math.abs (parselnt (stepUp)) : 1);
var nextRound = 1;
var idx = 0;
var tempArray = new Array();
for (var i1 = 0; 1 < formObj.length; i++) {
tempArray[i] = formObj[idx];
if (idx + stepUp >= formObj.length) {
idx = nextRound;
nextRound++;
}
else {
idx += stepUp;
}
}
formObj = tempArray;
}

For example, if your array has 10 elements, and you want them sorted by multiples of 2
(elements 0, 2, 4, 6, 8, then 1, 3, 5, 7, 9), then you call shakeUp (yourArrayObj,
2) . If you pass 0, the increment defaults to 1. You'll find more functions like these in

Chapter 6.

2.5.3.3 buildQuestion()

This function acts as the test administrator. As you probably noticed in the last flowchart,
buildQuestion () is mentioned in several places. It has a lot of responsibility. Here it is starting
at line 38 and ending at line 54:

function buildQuestion () {
if (gIdx == howMany) {
gradeTest () ;
return;
}
nextQ = '<HTML><BODY BGCOLOR=WHITE>' +

'<H2>Question ' + (gIdx + 1) + ' of ' + howMany + '</H2>' +
'"<FORM>' + '' + units[gldx].question + '

' +

makeButton ("a", units[gldx].a) +
makeButton ("b", units[gldx].b) +
makeButton ("c", units[gldx].c) +
makeButton ("d", units[gldx].d) +

'</FORM></BODY></HTML>"';

gFrame.location.replace ("javascript:
parent.frames[0] .nextQ") ;

gldx++;

if(gIdx >= 2 && !stopOK) { stopOK = true; }

}

From the top, buildQuestion () checks to see if variable gldx is equal to variable howMany. If
so, the user has just answered the last question, and it is time for grading. Function gradeTest ()
is called at line 40.

If the test is not over, buildQuestion () proceeds to—you guessed it—build the next question
by generating a string that represents an entire HTML page. This happens in lines 43 through 50. If
you examine nextQ, you'll see that the forthcoming HTML page contains a question number indicator
and the total number of test questions. That is line 44:

'<H2>Question ' + (gIdx + 1) + ' of ' + howMany + '</H2>'

Next you'll see an opening FORM tag followed by question text. The question text, if you'll recall, is
stored in the question property of each units element. It's no surprise, then, to see line 45 like so:

'<FORM>' + '' + units|[gIdx].question

And where there is a FORM tag, form elements aren't too far behind. Actually, that is all that remains
in the making of the HTML page. This form has only four elements, each a radio button. Rather than
hardcoding the HTML within the function to write the radio buttons (which are almost identical),
function makeButton () generates them. You need only pass the choice letter and the choice text,
which are provided in each call in lines 46 through 49. Here is function makeButton () in lines
55-59:

function makeButton (optLtr, optAnswer) {
return '<INPUT TYPE=RADIO NAME="answer" VALUE="' + optLtr +
'" onClick="parent.frames[0] .keeper[parent.frames[0].gldx
- 1] =
this.value; parent.frames[0].buildQuestion()">" +
optAnswer + '
';
}

This function simply returns a string representing a radio button with a custom-set VALUE attribute—
equal to a, b, c, or d—and the choice answer printed immediately to the right. The VALUE attribute
comes from optLtr, and the choice text comes from optAnswer.

Keep in mind that this test is user-driven, so it auto-advances as soon as the user makes a choice. In
JavaScript-ese, that means a couple of things happen by associating expressions with the onClick
event handler in each radio button.

The first thing that happens is that the array keeper stores the letter associated with the user's answer.
To determine which element to assign to the current user choice, we use:

parent.frames[0] .gldx - 1

Variable gldx keeps track of the current question count, so it is perfect for helping assign the next
element to the current user choice.

The next thing that happens is for JavaScript to call buildQuestion () to print the next
question, or grade the test if it is finished. Notice that both keeper and buildQuestion () are

referred to starting from parent . frames [0]. Since this information will be written to
parent.frames|[1], weneed to access them from the upper frame.

With the form properly built, all that remains (as far as the HTML is concerned) is to close the tags
and load the content into the window. See lines 50-51:

'</FORM></BODY></HTML>'; qgFrame.location.replace("javascript:
parent.frames[0] .nextQ") ;

This loads the value of nextQ into the bottom frame. Notice that the application uses the

replace () method of the location object, instead of setting the location.href property or
even using document .write () to print the test questions to the page. In this application, that
makes an important difference. replace () loads the specified URL into the browser (in our case,
the URL is a string of HTML evaluated by the Javascript : protocol), but replaces the current
page in the history. This prevents users from going back to view previous questions or change
previous answers. If a user chooses the "Back" button, the browser loads the page loaded prior to
index.html.

The last thing to do before leaving buildQuestion () is take care of a little housecleaning at
lines 52-53.

gldx++;
if (gIdx >= 2 && !stopOK) { stopOK = true; }

Incrementing gldx by 1 sets things up for the next call to buildQuestion ().Remember in line
39 that if gldx is greater than the number of questions on the test (in variable zowMany), then it is time
for grading. The if statement at line 53 determines whether the user is eligible to stop the test. The
current code requires that the user answer at least one question before being allowed to end the test
early by choosing the "Quit Now" button. Adjust it to your fancy.

JavaScript Technique: The javascript: Protocol

You've seen it a lot so far in this book; you can count on seeing it more. The
Jjavascript : protocol allows JavaScript to evaluate any expressions following it. It has
multiple uses. For example, if you want something to happen other than loading a new page
into the browser after a user clicks on a link, use it in the HREF attribute of the <A> tag:

<A HREF="javascript: alert('You found the alert
dialog!');">Click me

You can also set SRC attributes of other HTML tags. See "JavaScript Technique: Cheating
the SRC Attribute" earlier in this chapter for details.

One word of caution: If you use the protocol within a JavaScript function you defined, don't
try to use it to evaluate variables local to the function. It won't work. The javascript:

protocol maintains a global scope, and therefore can only "see" and access global variables,
global objects, and the like. Line 51 is a classic example:

gFrame.location.replace ("javascript:

parent.frames[0] .nextQ") ;
The variable nextQ could well have been defined locally. After all, it is only used with
buildQuestion (). However, since line 55 uses the javascript : protocol, the

following won't work:

gFrame.location.replace ("javascript: nextQ");

If nextQ is local, javascript : won't be able to evaluate it.

2.5.3.4 gradeTest()

gradeTest () performs two functions. First it compares the user's answers to the correct answers,
keeping a running tab of correct user choices. Second, gradeTest () calculates a ranking index
and response based on the number of correct user answers. Here is gradeTest () in its entirety,
lines 66-76:

function gradeTest () {
for (var i = 0; 1 < gldx; i++) |
if (keeper[i] == units[i].answer) {
correct++;
}

}
var idx = Math.ceil ((correct/howMany) * (rank.length - 1)) <
0?20
Math.ceil ((correct/howMany) * (rank.length - 1));
printResults (idx) ;
itemReset () ;

}

Array keeper contains each letter (a, b, c, or d) associated with the answer that the user chose for
each question. Each element of the units array is a question object that contains an answer property—
also a, b, c,or d. gradeTest () iterates through each keeper element and compares its value to
the answer property of the corresponding units element. If there is a match, variable correct is
incremented by 1.

Note that this function does not keep track of which answers are correct. That never actually happens
in this application. The function only determines the number of correct answers and delivers a ranking
based on that number. We'll pay the keeper array another visit when we examine

printResults () shortly. Also note that gradeTest () does not iterate through howMany
questions. It doesn't matter how many questions are on the test, only how many the user answered.

Once the results are in, the correct variable holds the value of how many correct answers the user
gave. gradeTest () need only determine the user's ranking, or how well he or she did. Lines 72-
73 take care of this:

var idx = Math.ceil ((correct/howMany) * (rank.length - 1)) < O
2 0
Math.ceil ((correct/howMany) * (rank.length - 1));

Here's how this works. We want to assign one of the rankings from the elements in the rank array on
line 9. To choose an element, we need an integer between 0 and rank.length - 1. Function
gradeTest () chooses an integer using a three-step process:

1. Calculate the percentage of correct answers (Ccorrect /howMany).
2. Multiply that percentage by (rank.length - 1).
3. Round that product to the next highest integer.

The result of the process is set to local variable idx, which is an integer proportional to the user's
performance between 0 and rank . length. In other words, no matter how many test questions
there are, the user will always receive a ranking based more or less on how many he or she answer
correctly. The following example should help. Suppose you have the rank array set as follows:

var rank = new Array("I've seen better", "So-so", "Good",
"Very Good" "Excellent");

rank.length is 5, so if your test has 50 questions, the grading scale is as follows:

Questions Correct Calculated Integer Ranking (rank|int])
0-9 0 "I've seen better"
10-19 1 "So-so"
20-29 2 "Good"
30-39 3 "Very Good"
40-50 4 "Excellent"

There are, then, approximately howMany / rank . length answers per ranking (except the
highest ranking, such as 40-50 in the previous table). Doesn't matter if it is 2 or 200 questions. It
works the same.

This grade system has the advantage of being effective, but the disadvantage of being fairly crude.
Grading systems are usually more complex. Most schools use something to the effect of 90% and
above is an A, 80-89% is a B, 70-79% is a C, 60-69% is a D, and everything below 60% is an F.
Perhaps you want to use some type of curve. See Section 2.6 in this chapter for some novel ideas.

gradeTest () has basically finished its job. Variable rank/idx] is passed to function
printResults () fordisplay; then itemReset () is called for clean up.

2.5.3.5 printResults()

The application knows how well the user performed; it is time to show the user. Function
printResults () does so by displaying the following items:

e The number of correct answers out of the number of total questions

e The user's ranking based on the calculation passed from gradeTest ()

e Each test question, including the four answer choices

o The user's choice if it was correct or the correct answer if not

e Linked text that allows users to view additional information about incorrectly answered
questions

Lines 77 through 84 take care of the first two:

function printResults (ranking) {
results = '<HTML></HEAD><BODY BGCOLOR=WHITE LINK=RED

VLINK=RED ALINK=RED>'+

'"' +

'<H2>You scored ' + correct + '/' + howMany + '
correctly.</H2>' +

'Ranking: <I>' + ranking +

'</I>
Pass the mouse over the red text for an
explanation of ' +

'those you misssed.' +

'

Here is how you scored:

"';

Variables correct and howMany represent the number of correct answers and total test questions,
respectively, and rank [rankIdx] represents the string indicating user performance. As for the
test question and the four corresponding choices, this happens from lines 85 through 91. It's no
surprise that it happens within a for loop:

for (var i = 0; i < howMany; i++) {
results += 'Question ' 4+ (1 + 1) 4+ '
' +
units[i] .question + '

' +

'a. ' + units[i].a + '
' +
'b. ' + units[i].b + '
' +
'c. " + units[i].c + '
' +
'd. ' + units[i].d + '
';

For every iteration from 0 through howMany - 1, results is given a string containing the question
number (1 + 1), the question text (units[1] .gquestion), and the corresponding four answer
choices (units[i] .a,units[i] .b,units[i].c,andunits[1i] .d). The surrounding
HTML jazzes it up a little.

The last piece of the print-out puzzle is displaying the user's answer in green text if he or she chose
wisely, or linked red text otherwise. Here are lines 92 through 106:

if (keeper[i] == units[i].answer) {
results += '<I>' +
'You answered this correctly (' + keeper[i] + "). ' +

'</I>\n\r

"';
}

else {
results += '<I>' + '
'<A HREF=" " onMouseOver="parent.frames[0].show();"' +
parent.frames[0] .explain(\'' + units[i].support +
'\’);] +

'return true" onMouseOut="parent.frames[0].explain (\'

'onClick="return false;">' +

'The correct answer is: ' + units[i].answer +
'</I>\n\r

';

For each question, the user either chose the right answer or the wrong answer. It's no shock, then, to
see this facilitated by an if-else statement. If keeper [i] equalsunits[i] .answer, the user
chose correctly. Therefore, the green text indicates the user is correct and prints his or her answer
(keeper [i]). If the two are not equal, the red text indicates the correct answer and offers the
option to view additional information about the question in parent . frames [1]. This frame,
which has not been used for anything significant, so far, is finally put to use.

Those questions that the user answered correctly are displayed simply as text. You can see, however,
that incorrectly answered questions are displayed as linked text. The onMouseOver event in each link
calls two functions before returning true: show () and explain (). Function show () is very
easy. It prints an empty string to the status bar to prevent any unnecessary distractions caused by the
onMouseOverevent. Here is the code at line 110.

function show() { parent.status = ''; }

Function explain () accepts a string argument and utilizes the document .write () method
to display HTML to the patiently waiting parent . frames [1]. Check out lines 111—118:

function explain(str) {
with (aFrame.document) ({
open () ;
writeln ('<HTML><BODY BGCOLOR=WHITE>' +
str +
'</BODY></HTML>") ;
close () ;

}

Even though the onMouseOver event has been taken care of, explain () still has a little more
work. Notice that explain () is called again in line 101 in the onMouseOut event handler. This
time, however, function explain () is passed an empty string, so aFrame will appear to have been
cleared out after each onMouseOut event.

The only thing left to do is prevent anything from happening if the user clicks the links used for the
mouse-over capabilities. Line 102 contains onClick="return false;". This cancels the
loading of any document URL listed in the HREF' attribute.

Keep in mind that this is still within the for loop. The above process happens for every answer from 0
through howMany - 1. After the for loop runs its course, variable results is one big string
containing the number of correctly answered questions, the total number of test questions, all the
question text and four choices, and the user's choice or the correct answer. Lines 107-109 add some
closing HTML, load the string into the bottom frame, and close out the function.

results += '\n\r</BODY></HTML>"';

gFrame.location.replace ("javascript:
parent.frames[0] .results");

}

2.5.3.6 chickenOut()

There is that one small matter of the user quitting early. It certainly isn't necessary, and you might
want to remove it from any of your implementations. I added it just to give the user a little extra
functionality. Here's the code at lines 60-65:

function chickenOut () {
if(stopOK && confirm('Stopping early? Are you really a ' +
'JavaScript Chicken?')) {
gradeTest () ;
}

If the user is eligible and confirms the desire to quit early, gradeTest () is called. Remember that
a user becomes eligible to stop early after answering at least one question. Variable stopOK, originally
setto false,is set to true after g/Dx is greater than 1. See line 53.

The catch is that gradeTest () compares answers to all the questions, even if the user didn't
answer them. This tends to do tremendous damage to the user ranking, but that's the price you pay for
quitting early.

2.6 Potential Extensions

This application can be modified in a number of ways. The two obvious extensions I see, however, are
making it cheat-proof by performing the grading on the server, and changing the application to
administer a survey instead of a test.

2.6.1 Making It Cheat-Proof

One of the first things you might have thought after tinkering with the application for a while is,
"Users can check the answers by downloading and opening the JavaScript source file." It would be a
pain to go through each question and find the letter, but it can be done.

You can remove the "Peeping Tom" factor by simply not sending the answers with the application and
requiring the user to submit his or her test results to a server for grading. We won't get into grading the
test on the server, but it won't be much more involved than gradeTest (). Maybe a little more
involved, but the principles will be the same.

To remove the grading feature and add the server-side submission feature, you'll need to do the
following:

e Remove any data representing the answers from the object and array logic in questions.js.

e Remove gradeTest () and replace the call to itin buildQuestion () with
printResults ().

e Modify printResults () so that the user can view his or her answers, and embed the
answer data within an HTML form to send the waiting server.

2.6.1.1 Removing the answers from the array logic

Remove this.answer and this. support from the question constructor in question.Js.
Change this:

function question (answer, support, question, a, b, c, d) {
this.answer = answer;
this.support = support;

this.question = question;
this.a = a;
this.b = b;
this.c = c;

this.d = d;
return this;
}

to this:

function question (question, a, b, c, d) {

this.question = question;
this.a = a;
this.b = b;
this.c = c;

this.d = d;
return this;

}

Notice that variables answer and support have also been removed. Now that you have removed these
from the constructor, you can remove them from each call to the new operator in each element of
units. In other words, remove the first two arguments from each element in units.

2.6.1.2 Removing gradeTest() and modifying buildQuestion()

Since the answers and explanations no longer exist, there is no reason to grade the test or display any
results. That means you can get rid of function gradeTest (). Just delete lines 66-76 in
administer.html. This also means that you can get rid of the call to gradeTest () in
buildQuestion () atline 40. Actually, you'll want to replace it with a call to
printResults () so that the user can see his or her answers and the answers can be embedded in
an HTML form.

Lines 39-42 are changed from this:

if (gIdx == howMany) {
gradeTest () ;

return;

to this:

if (gIdx == howMany) {
printResults () ;
return;

}
2.6.1.3 Modifying printResults()

printResults () is where most of the new work happens. Line 84 in administer.html currently
looks like this:

'

Here is how you scored:

"';

Change it to this:

'

Here is how you scored:

'
+
'<FORM ACTION="your server script URL" METHOD=POST>';

And replace lines 92-105 with the following:

results += '"<INPUT TYPE=HIDDEN NAME="question' + (i + 1) + '"
VALUE="" +

keeper[i] + '""><I>COLOR=GREEN>You chose ' +
keeper[i] +

'</I>

"';

That removes the decision-making portion of the function that determines whether users answered
correctly and then displays the appropriate green or red text. Lastly, line 107 currently looks like this:

results += '\n\r</BODY></HTML>';
Change it to this:

results += '<INPUT TYPE=SUBMIT VALUE="Submit">
</FORM></BODY></HTML>";

Those few changes added opening and closing FORM tags, a uniquely named hidden field with a
value of each of the user's answers, and a SUBMIT button. The FORM tags and the submit button are
static, but the hidden fields involve a bit more.

Each answer is written as the value of a hidden field, which is named according to its question
number. Iterative variable i is used to create a unique name for each hidden field and also associates
the proper question number with the proper user answer. Each time variable i is incremented in the

update portion of the for loop (i++), a new hidden field can be made. The fields will follow the
pattern of questionl, question2, question3, ad infinitum.

The changes in printResults () still display the questions, four choices, and the user's answers.
The test isn't graded, however. All the user has to do is choose "Submit" to send the answers off for a
grading.

2.6.2 Converting to a Survey

Since surveys theoretically don't have right and wrong answers, converting the application to
administer a survey requires the same changes you just saw, plus one more easy one—adjusting the
content. Simply change the units elements to reflect survey questions with multiple choice options,
and you're in business. Thanks to the changes above, the user can view the results before he or she
sends them in for marketing analysis.

Chapter 3. The Interactive Slideshow

Application Features JavaScript Techniques

®Advancing Slides with Graphics and

o ®The First Step to Cross-Browser DHTML
Descriptive Text

° . .
® Context-Sensitive Animated Slide Navigation The Advantage of Simple Naming

Conventions
®Hands-Free Autopilot Mode ®The Power of eval()
®Easy Slide Management and Scalability ®Using setinterval() and clearlnterval()

This application allows users to view groups of slides, in any order, or consecutively in autopilot
mode according to a timed interval you choose. Each slide is a DHTML layer that contains an image
and descriptive text. Your slides could conceivably contain almost any combination of text, graphics,
DHTML, and the like. These slides give the user a fictitious tour of the wild animal kingdom. Figure
3.1 shows the opening screen.

Figure 3.1. The opening slide

1% The Shdmshow - Malacaps

[[Yo o fomruricso sk

« 3 N = = S+ F WA m
Fdzaal Hame Seach Howmee Ainl Stk
o TRomnate 0 Looston s ST Tkt ke den il =] 5 wiare Raltad
*;n:-"- Animal Kingdom Slideshow T
« Gawin =
= Common Name:
Bird
Schemtific Nanme:
Bowrb-giv Car-gex
Ahbsiract:

Thes winged creature has
been knowe bo sesk om
ared soil Seshly washed

wekirles a

=l
o Docunesnd Dons e e o
i Sian Iﬁ‘n— Sladnuhas - Nnls 1 LOT P

Notice the slides in the center of the screen and the two graphics labeled "Automate" and "<Guide>"
at the top left of the screen. The arrows of the "<Guide>" image (< and >) allow the user to navigate
slide by slide, forward or backward in the slideshow.

Users can also move to any slide in the show by clicking "Guide." This reveals a slide menu that
automatically moves the user to the desired slide by passing the cursor over the corresponding slide
name. Clicking "Guide" once again conceals the slide menu. Figure 3.2 shows the slide menu.

Figure 3.2. The highlighted name indicates the slide currently in view

T T Sliduemhew - Mt apes
Fla Ed Ywws Eo C[ommunicea Hak
i = 3 4 2 = F F @ m
Pl Hove Semch Melmae B Seul
o "hosknerts) Loostion s (T Dbt e showdnes hixd] AF 5 whars Reluted
ﬂ;'uw:-‘-- Animal Kingdom Slideshow T
o]
Bird
Waknus
Gasar o Common Name:
]
Fig Conw
Enake
Ruindeer Sclentific Mame:
Turkoy
Croiney My
Caare {
Mhztract:
Thes animal & considered a
J mocerer and shaker, and
tends to el thengs for al
theg're worth. Tiddesty -
sharefill
=
g Y
e |ﬁn.. Shednthaw - Nz 1 AP

In the two previous chapters, the applications follow a beginning-to-end process. That is, the user
always starts at the same place (say, entering search text or answering question one) and ends at the
same place (say, a page of matching search results or getting test results after answering the last
question). The slideshow is different. Users can jump in almost anywhere and take advantage of the
application features. Therefore, it is better to describe the application code in terms of its features
instead of describing the code from top to bottom. That's exactly how we'll go through it in this
chapter.

3.1 Execution Requirements

The moment you utter the "D" in DHTML, you can bet that you're talking about MSIE 4.x and
Navigator 4.x and up. It's the same story here. All the slides are DHTML-based entities. As far as
scalability, there's no reason why you couldn't fit hundreds of slides into your online presentation.
However, this application preloads a// the images (except for two small ones), so I doubt you want to
spend your time preloading hundreds of images.

3.2 The Syntax Breakdown

The script is included in one file, index.html. You'll find it in your zip file at ch03/index.html. Example
3.1 has the code.

Example 3.1. index.html

1 <HTML>
2 <HEAD>
3 <TITLE>The Slideshow</TITLE>
4
5 <STYLE TYPE="text/css">
6 #menuConstraint { height: 800; }
7 </STYLE>
8
9 <SCRIPT LANGUAGE="JavaScriptl.2">
10 <!--
11 var dWidLyr = 450;
12 wvar dHgtLyr = 450;
13 wvar curSlide = 0;
14 wvar zIdx = -1;
15 wvar isVis = false;
16
17 wvar NN = (document.layers ? true : false);
18 wvar sWidPos = ((NN ? innerWidth : screen.availWidth)
/ 2) -
19 (dWidLyr / 2);
20 wvar sHgtPos = ((NN ? innerHeight
screen.availHeight) / 2) -
21 (dHgtLyr / 2);
22 wvar hideName = (NN ? 'hide' : 'hidden');
23 wvar showName = (NN ? 'show' : 'visible');

24

25 wvar img = new Array();
26 var imgOut = new Array();
27 wvar imgOver = new Array();

28 wvar imgPath = 'images/';
29

30 wvar showSpeed = 3500;

31 wvar tourOn = false;

32

33 function genlLayer (sName, sLeft, sTop, sWdh, sHgt,
sVis, copy) {

34 if (NN)

35 document.writeln ('<LAYER NAME="' + sName + '"
LEFT="' + sLeft +

36 ' TOP=' + sTop + ' WIDTH=' + sWdh + ' HEIGHT=' +
sHgt +

37 ' VISIBILITY="' + sVis + '"' + ' Z-INDEX=' +
(++zIdx) + '>' +

38 copy + '</LAYER>');

39 }

40 else {

41 document.writeln ('<DIV ID="' + sName +

42 '" STYLE="position:absolute;
overflow:none;left:' + sLeft +

43 'px; top:' + sTop + 'px; width:' + sWdh + 'px;
height:' + sHgt +

44 'px; ' + ' visibility:' 4+ sVis + '; z-Index=' +
(++zIdx) + "">' +

45 copy + '</DIV>"');

46 }

47 }

48

49 function slide (imgStr, scientific, copy) {

50 this.name = imgStr;

51 imagePrelLoad (imgStr) ;

52 this.copy = copy;

53 this.structure =

54 '<TABLE WIDTH=500 CELLPADDING=10><TR><TD WIDTH=60%
VALIGN=TOP>"' +

55 '</TD>' +

56 '<TD WIDTH=40% VALIGN=TOP><H2>Common
Name : </H2><H2><I>' +

57 camelCap (imgStr) + '</I></H2><H3>Scientific Name:
</H3><H3><I>' +

58 scientific + '</I></H3>' + 'Abstract:
'
+ copy +

59 '</TD></TR></TABLE>";

60

61 return this;

62 }

63
64 function imagePreload (imgStr) {

65 img[img.length] = new Image();

66 img[img.length - 1].src = imgPath + imgStr + '.gif';

67

68 imgOut [imgOut.length] = new Image();

69 imgOut [imgOut.length - 1].src = imgPath + imgStr +
'out.gif';

70

71 imgOver [imgOver.length] = new Image()

72 imgOver [imgOver.length - 1].src = imgPath + imgStr +
'over.gif';

73 }

74

75 wvar slideShow = new Array(

76 new slide('bird', 'Bomb-zis Car-zes', 'This winged
creature has been

77 known to seek out and soil freshly-washed
vehicles.'),

78 new slide('walrus', 'Verius Clueless', 'These big
fellas good fishers,

79 but toothbrushing is another story.'),

80 new slide('gator', 'Couldbeus Luggajus', 'These
reptiles often play

81 mascots for large college sporting events.'),

82 new slide('dog', 'Makus Messus', 'Man\'s best
friend? Yeah, right.

83 No wonder these mammals get a bad rep.'),

84 new slide('pig', 'Oinkus Lotsus', 'Humans with
questionable eating

85 habits are often compared to these farm
creatures.'),

86 new slide('snake', 'Groovius Dudis', 'Slick and sly
with a

87 watchful eye.'),

88 new slide('reindeer', 'Redius Nosius', 'Though co-
workers used to

89 laugh and call him names, he eventually won the
respect of the entire

90 team."'),

91 new slide('turkey', 'Goosius Is Cooktis',
'Celebrated and revered for

92 an entire year, then served as dinner shortly
after."),

93 new slide('cow', 'Gotius Milkus', 'This animal is
considered a moover

94 and shaker, and tends to milk things for all

they\'re worth. Udderly
95 shameful."'),

96 new slide('crane', 'Whooping It Upus', 'Not to be
confused with a

97 piece of heavy construction equipment. Rumored as
the source of the

98 nickname <I>birdlegs</I>.")

99) ;

100

101 function camelCap(str) {

102 return str.substring (0, 1).toUpperCase() +
str.substring(l);

103 }

104

105 function genScreen() {

106 var menuStr = '';

107 for (var i = 0; 1 < slideShow.length; i++) {

108 genLayer ('slide' + i, sWidPos, sHgtPos, dwidLyr,
dHgtLyr,

109 (i == 0 ? true : false),
slideShow[i].structure);

110 menuStr += '<A HREF="" onMouseOver="hideStatus();
if (!tourOn)

111 { setSlide (' + 1 + ");' +

112 ' imageSwap (\'' + slideShow[i].name + '\', ' + 1
+ ', true)};

113 return true;"' +

114 ' onMouseOut="1if (!tourOn) { setSlide(' + i +
)i+

115 ' imageSwap (\'' + slideShow[i].name + '"\', ' + i
+ ', false)};

116 return true;"' +

117 ' onClick="return false;"><IMG NAME="' +
slideShow([i] .name +

118 '" SRC="' + imgPath + slideShow[i].name +

119 'out.gif" BORDER=0>
';

120 }

121

122 genlLayer ('automation', sWidPos - 100, 11, 100, 200,
true,

123 '<A HREF="javascript: autoPilot();"
onMouseOver="hideStatus () ;

124 return true;">' +

125 '<IMG SRC="' + imgPath + 'automate.gif"
BORDER=0>"'

126) ;

127

128 genLayer ('guide', sWidPos - 100, 30, 100, 200, true,

129 '<A HREF="javascript: if (!tourOn) { changeSlide (-
y; "

130 onMouseOver="hideStatus (); return true;">' +

131

'<IMG SRC="' + imgPath + 'leftout.gif"

BORDER=0>"' +

132 '<A HREF="javascript: if (!tourOn) { menuManager () ;
} \AJ

133 onMouseOver="hideStatus (); return true;">' +

134 '<IMG SRC="' + imgPath + 'guideout.gif"
BORDER=0>"' +

135 '<A HREF="javascript: if (!tourOn) {
changeSlide (1); }"

136 onMouseOver="hideStatus (); return true;">' +

137 '<IMG SRC="' + imgPath + 'rightout.gif"
BORDER=0>"

138)

139

140 genlLayer ('menu', sWidPos - 104, 43, 100, 200, false,

141 '<DIV ID="menuConstraint"><TABLE><TD>' +

142 menuStr + '</TD></TABLE></DIV>"

143) ;

144 }

145

146 function refSlide (name) {

147 if (NN) { return document.layers|[name]; }

148 else { return eval ('document.all.' + name +
'.style'); }

149 }

150

151 function hideSlide (name) {

152 refSlide (name) .visibility = hideName;

153 }

154

155 function showSlide (name) {

156 refSlide (name) .visibility = showName;

157 }

158

159 function menuManager () {

160 if (isVis) { hideSlide('menu'); }

161 else { showSlide('menu'); }

162 isVis = !isVis;

163 }

164

165 function changeSlide (offset) {

166 hideSlide ('slide' + curSlide);

167 curSlide = (curSlide + offset < 0 ? slideShow.length
-1 :

168 (curSlide + offset == slideShow.length ? 0
curSlide + offset));

169 showSlide ('slide' + curSlide);

170 }

171

172
173
174
175
176
177
178
179
180

function setSlide (ref) {
if (tourOn) { return; }
hideSlide ('slide' + curSlide);
curSlide = ref;
showSlide ('slide' + curSlide);

}

function imageSwap (imagePrefix, image
if (isOver) { document[imagePrefix]

imgOver [imageIndex] .src; }

181

else { document[imagePrefix].src =

imgOut [imageIndex] .src; }

182
183
184
185
186
187
188
189

false);

190
191
192
193
true);
194
195
196
197
198
199
200
201

false);

202
203
204
205
206
207
208
209
210
211
212
213
214
215

}

function hideStatus () { window.status

function autoPilot () {
if (tourOn) {
clearInterval (auto) ;

imageSwap (slideShow|[curSlide] .name,

}
else {
auto = setInterval ('automate()',

imageSwap (slideShow[curSlide] .name,

showSlide ('menu') ;
visible = true;
}

tourOn = !tourOn;

}

function automate () {
imageSwap (slideShow[curSlide] .name,

changeSlide (1) ;
imageSwap (slideShow[curSlide] .name,

}

//==>

</SCRIPT>

</HEAD>

<BODY BGCOLOR=WHITE>

<CENTER>

<H2>Animal Kingdom Slideshow</H2>

</CENTER>

<SCRIPT LANGUAGE="JavaScriptl.2">

Index, isOver) {

.Src =

= ''; }

showSpeed) ;

curSlide,

curSlide,

curSlide,

curSlide,

true) ;

2l <!--

217 genScreen();
218 //-->

219 </SCRIPT>
220

221 </BODY>

222 </HTML>

3.3 Application Variables
Let's look first at the variables and other details; then we'll get into the functions. Here are lines 5-7:

<STYLE TYPE="text/css">
#menuConstraint { height: 800; }
</STYLE>

This defines a cascading style sheet ruled with the name menuConstraint and only one property, a
height of 800 pixels. This is applied to every slide created to ensure that users have enough page real
estate to view the slides. In other words, if the user has a monitor resolution set to less than a height of
800 pixels, this style sheet forces vertical scrollbars. This is especially helpful if your images are long
or you have a lot of copy. At least, users can scroll to see the rest. Lines 11-31 show the variables:

var dWidLyr = 450;

var dHgtLyr = 450;

var curSlide = 0;

var zIdx = =1;

var 1sVis = false;

var NN = (document.layers ? true : false);

var sWidPos = ((NN ? innerWidth : screen.availWidth) / 2)

(dWidLyr / 2);
var sHgtPos =((NN ? innerHeight : screen.availHeight) / 2) -
(dHgtLyr / 2);

var hideName (NN ? 'hide' : 'hidden');
var showName = (NN ? 'show' : 'visible'):;
var img = new Array();

var imgOut = new Array();

var imgOver = new Array();

var imgPath = 'images/';

var showSpeed = 3500;
var tourOn false;

The variables are divided into four groups:

e DHTML layer defaults

e Browser-determined variables
e Image-related variables
e Autopilot-related variables

3.3.1 DHTML Layer Defaults

Variables dWidLyr and dHgtLyr simply declare the default width and height of the slides. Variable
curSlide always holds the array index value of the current slide in view. Variable z/dx assigns a z-
index value to each layer created, and isVis holds a Boolean value indicating whether the layer is
currently visible.

"'_" I generally refer to the slides as DHTML layers or just layers. Don't confuse
as them with Netscape's proprietary LAYER tag, which is used to create these
‘*. @ layers in Navigator. In other words, a layer is a LAYER in Navigator, but not

" in MSIE.

3.3.2 Browser-Determined Variables

The next five variables, NN, sWidPos, sHgtPos , showName, and hideName are determined according
to the browser in which the application is loaded. Variable NN at line 17 is set to true if the layers
property of the document object exists. In other words, it's Netscape Navigator 4.x. Netscape's current
implementation of the document object model supports a layers object:

var NN = (document.layers ? true : false);

Otherwise the script assumes the user has MSIE 4.x, and sets NN to false. Microsoft's object model
references layers in the styles object of document.all. Variables s WidPos and sHgtPos hold the values
of the x and y coordinates of the top left corner, where the layer will be positioned so that it is in the
center of the browser window (not the screen). These are determined not only by the value of NN, but
also by the values of variables dWidLyr and dHgtLyr. Here are lines 18-21:

var sWidPos = ((NN ? innerWidth : screen.availWidth) / 2)
(dWidLyr / 2);
var sHgtPos = ((NN ? innerHeight : screen.availHeight) / 2)

(dHgtLyr / 2);

How would you find the values of the x and y coordinates? You can easily calculate the center
coordinates by dividing the browser window width by 2 for the x coordinate, then the browser window
height by 2 for the y coordinate. In other words, the center of the window coordinates equals (window
width in pixels / 2, window height in pixels / 2).

Now you know the coordinates for the center of the window. Since these coordinates will also be the
center of each of the layers, you can get the x and y coordinates by subtracting half of dWidLyr from
the center x coordinate and half of dHgtLyr from the center y coordinate.

The remaining two browser-determined variables are strings that hold the correct name of visible or
hidden status of layers according to the DOM utilized. Here are lines 22 and 23:

var hideName = (NN ? 'hide' : 'hidden');
var showName = (NN ? 'show' : 'visible'):;

According to the Netscape DOM, hidden layers have the visibility property set to hide, while the
Microsoft DOM has the visibility set to hidden. Conversely, the Netscape layers property visibility
of those in view is set to show, and Microsoftto visible.

and availHeight Also according to the Netscape DOM, the window width and height are contained in
window object properties inner Width and innerHeight, while Microsoft stores these values in the
screen object properties avail Width. Since variable NN has been set for just this purpose, JavaScript
knows which properties to reference.

3.3.3 Image-Related Variables

The next group of variables consists of arrays that will manage the images. Check out lines 25-28:

var img = new Array();

var imgOut = new Array();
var imgOver = new Array();
var imgPath = 'images/';

These are fairly straightforward. The images stored in the IMG array represent the slide images. Those
stored in the IMGOUT array are used as the slide menu images. The images stored in the IMGOVER
array are used for the menu rollover images. We'll get more involved with image rollovers when we
cover the swapImage () function shortly.

The last variable, imgPath, contains the value of the path to where all the images are kept on your web
server. You can make this path absolute or relative. An absolute path contains the entire location of
files, from the host and domain name or IP address of the web server (such as
http://www.oreilly.com/) or local drive (such as C : \) to the directory containing the files. Here are
two examples.

var imgPath = 'http://www.serve.com/hotsyte/';
var imgPath = 'C:\\Winnt\\Profiles\\Administrator\\Desktop\\';

You'll have to use two backslashes (\\) to produce a single escaped backslash with any Windows OS.
If you don't, JavaScript will think you mean:

C:WinntProfilesAdministratorDesktop;

That's not only wrong, it's a syntax error.

3.3.4 Automated Slideshow Variables

The last two variables, showSpeed and tourOn, represent the speed at which the slides change and
whether the autopilot is on. Here they are at lines 30-31:

var showSpeed = 3500;
var tourOn = false;

http://www.oreilly.com/
http://www.serve.com/hotsyte/'

Variable showSpeed is expressed in milliseconds. You can increase the time between changes, to say,
10 seconds by setting it to 10000, for slides with more information. You can also make it blindingly
fast by setting it to, say, 1 0. When the page first loads, the automated slideshow isn't on. So, fourOn,
not surprisingly, is setto false.

3.4 The Application Functions

The slideshow functions fall into three categories: layer creation, image handling, and
navigation/display. Table 3.1 describes each of the functions and the category in which it belongs.

Table 3.1. Slideshow Functions and Descriptions

Function Name Category Description
genLayer () Layers Generates the slides
slide () Layers The object constructor for each slide
imagePrelLoad () |Images Preloads images for the slides and the navigation bar
camelCap () Layers Capitalizes the first letter of the slide name
genScreen () Layers Calls genLayer () and positions all layers
hideSlide () Layers Hides layers
showSlide () Layers Reveals layers
refSlide () Layers Returns a reference to layers based on browser
menuManager () Layers Hides and reveals the slide menu
changeSlide () |Layers Changes slide currently in view via Guide arrows or autopilot
setSlide () Layers Changes slide currently in view via mouse events
imageSwap () Images Performs image rollovers for the slide menu
hideStatus () Navigation [Sets the window status bar value equal to " "
autoPilot () Navigation [Manages the autopilot mode
automate () Navigation |Performs the advance of slides automatically

3.4.1 Layer-Related Functions
Since most of the slideshow setup relies on layer-related functions, it makes sense to start with them.
3.4.1.1 genLayer()

This function is cross-browser DHTML central. Anything you want displayed in the slideshow, no
matter how big, small, multicolored, or image-intensive, passes through here. Take a good look at
lines 33-47:

function genLayer (sName, sLeft, sTop, sWdh, sHgt, sVis, copy)
{

if (NN) {
document.writeln ('<LAYER NAME="' + sName + '" LEFT=' +
sLeft +

' TOP=' + sTop + ' WIDTH=' + sWdh + ' HEIGHT=' + sHgt +

' VISIBILITY="' 4+ sVis + '"' + ' z-Index=' + (++zIdx) +

'>l +
copy + '</LAYER>');
}
else {
document.writeln ('<DIV ID="' + sName +
'" STYLE="position:absolute; overflow:none; left:' +
sLeft +

'px; top:' + sTop + 'px; width:' + sWdh + 'px; height:'
+ sHgt +

'px; " + ' visibility:' + sVis + '; z-Index=' + (++zIdx)
+ 'S4

copy + '</DIV>"');

This function contains a lone if-else statement. Actually genLayer () performs the same basic
operation in both blocks of code. One works for Netscape; the other, for MSIE. Until the document
object model is straightened out, this is the way things will have to be.

Line 34 uses the NN variable to determine whether the user's browser is Netscape Navigator or
(presumably) Microsoft Internet Explorer. If NN is t rue, then the browser is Navigator. Otherwise,
it is assumed that the user has MSIE.

Note the arguments expected in line 33. They are sName, sLeft, sTop, sWdh, sHgt, sVis, and copy.
Regardless of browser, all of them do pretty much the same thing. sName represents a name you'd
like to associate with the layer. sLeft specifies the number of pixels from the left of the screen to
position the layer. sTop specifies the number of pixels from the top of the browser window to position
the layer. sWdh and sHgt, as you can imagine, hold pixel values for the layer dimensions. sVis
contains true or £alse, which determines whether the layer is visible (true). copy contains a string
you want to display as the contents of the layer. Content is presumably HTML, but plain text never
hurt anyone.

Whichever the browser may be, function genLayer () calls the document.writeln ()
method and constructs a LAYER tag for Navigator or a DIV tag for IE.

JavaScript Technique: The First Step to Cross-
Browser DHTML

Before the proliferation of the 4.x browsers and DHTML, web developers had to be content
with whining about MSIE 3.x not being JavaScript 1.1 compatible. Among other things,
that meant basically no image rollovers, barely any support for JavaScript source files, and
having to implement workarounds accordingly.

However, now there can be peace, by simply making our pages cross-browser compatible.
Here is one of your most powerful weapons: document.all.

For simpler applications, an if-else statement is all that is required:

if (document.all) { // It's MSIE
// Use the Jscript equivalent
// e.g., document.all.styles, etc.

else {
// It's NN
// Stick with JavaScript
// e.g., document.layers, etc.
}
3.4.1.2 slide()

slide () is an object constructor. Instances of s1ide () contain important details about each
slide, such as the animal name, descriptive text, and HTML content. Have a look at lines 49-62:

function slide (imgStr, scientific, copy) {

this.name = imgStr;
imagePrelLoad (imgStr) ;
this.copy = Ccopy;

this.structure =
'<TABLE WIDTH=500 CELLPADDING=10><TR><TD WIDTH=60%
VALIGN=TOP>' +
'</TD>' +
'<TD WIDTH=40% VALIGN=TOP><H2>Common Name:</H2><H2><I>' +
camelCap (imgStr) + '</I></H2><H3>Scientific Name:
</H3><H3><I>' +
scientific + '"</I></H3>' + 'Abstract:
' + copy +
'</TD></TR></TABLE>";

return this;

}

Function s1ide () accepts three arguments—imgStr, scientific, and copy. imgStr represents the
name of the "wild" animal depicted on the slide. imgStr is in many ways the backbone of each slide.
Now is a good time to look at the application's naming convention. The name associated with each
slide object is set in line 50.

this.name = imgStr;

imgStr pops up a few more times. Check out lines 53-59. This is where the structure property of the
slide is set:

this.structure =

'"<TABLE WIDTH=500 CELLPADDING=10><TR><TD WIDTH=60%
VALIGN=TOP>"' +

'</TD>' +

'<TD WIDTH=40% VALIGN=TOP><H2>Common Name:</H2><H2><I>' +

camelCap (imgStr) + '</I></H2><H3>Scientific Name:
</H3><H3><I>' +

scientific + '</I></H3>' + 'Abstract:
' + copy +

'</TD></TR></TABLE>";

JavaScript Technique: Using Well-Constructed
Naming Conventions

It pops up almost everywhere in this book. Naming conventions. Consider how the
slideshow application leverages a lot of referencing power with simple words such as cow,
bird, and dog. Of course, none of these applications is made for an enormous enterprise
with complex data warehousing, but you can get a surprising amount from very little. This
isn't really a JavaScript technique; you can use it with nearly any language. Consider the
simplicity of the naming convention used here with parameter imgStr.

imgStr is the name of an animal. Let's say a pig. So imgStr equals pig. That seems innocent
enough, but that string also defines the name of the animal, the base name of the slide
image, and the two images used for the rollovers in the slide menu (we'll get there soon).
Four JavaScript members and one animal name based on a single string. That's getting your
money's worth. The following table illustrates how pig and other imgStrs are central to their
respective slides.

imgStr|Animal Name |Slide Image |Menu Image | Menu Image Rollover
pig pig pig.gif pigout.gif pigover.gif

cow [cow cow.gif cowout.gif |cowover.gif

snake |snake snake.qif snakeout.gif |snakeover.gif

To dynamically create the slide image, s1ide () concatenates the required HTML for an
tag with variables imgPath and imgStr, followed by 'gi f '. If imgStr were equal to pig, the slide
image HTML would look like this:

The structure property defines the slide content as an HTML table, each with one row and two data
cells. The left data cell contains the slide image, and the right cell contains the descriptive text. Line
57 makes use of imgStr again to assign a common name to the animal.

camelCap (imgStr)

Function came1Cap () in lines 88-90 simply returns whatever text string it is passed with the first
character in uppercase. This is a formatting issue and simply makes things look a bit nicer. Notice also
that argument scientific is set as the scientific name of the animal. Of course, after you read some of
the "scientific" names I came up with, you may question (or laugh at) scientific research in general.

Just when it seems imgStr has been worked to the bone, s11ide () passes it to function
preLoadImages () for another round. See line 51. This function preloads all those slide images.
We'll get to that shortly.

3.4.1.3 genScreen()

Function genScreen () utilizes the application's layer-creating ability to get things on the screen.
It is by far the function with the most code. Here are lines 105-144. genScreen () not only
manages slide creation and positioning, but also defines the navigational features of the application
with dynamic JavaScript.

function genScreen () {
var menuStr = '';
for (var i = 0; 1 < slideShow.length; i++) {
genlLayer ('slide' + i, sWidPos, sHgtPos, dWidLyr, dHgtLyr,
(1 == 0 ? true : false), slideShow[i].structure);
menuStr += '<A HREF="" onMouseOver="hideStatus();'
if (!'tourOn)
{ setSlide(' + 1 + '"); +

' imageSwap (\'' + slideShow[i].name + '\', ' + i + ',
true) };
return true;"' +
' onMouseOut="1if (!tourOn) { setSlide(' + i1 + ");"' +
' imageSwap (\'' + slideShow[i].name + '\', ' + 1 + ',
false) };
return true;" +
' onClick="return false;"><IMG NAME="' +
slideShow[i] .name +
'" SRC="' + imgPath + slideShow[i].name +

'out.gif"™ BORDER=0>
';
}

genlLayer ('automation', sWidPos - 100, 11, 100, 200, true,
'<A HREF="javascript: autoPilot();"
onMouseOver="hideStatus ();"' +
return true;">' +
''
)7

genLayer ('guide', sWidPos - 100, 30, 100, 200, true,
'<DIV ID="menuConstraint">'"' +
'<A HREF="javascript: if (!tourOn) { changeSlide(-1); }" '

+
'onMouseOver="hideStatus (); return true;">' +
'' +
'<A HREF="javascript: if (!tourOn) { menuManager(); }" ' +
'onMouseOver="hideStatus (); return true;">' +
'' +
'<A HREF="javascript: if (!tourOn) { changeSlide(1l); }"™ ' +

'onMouseOver="hideStatus (); return true;">' +

'<IMG SRC="' + imgPath + 'rightout.gif"
BORDER=0></DIV>"
) ;

genlLayer ('menu', sWidPos - 104, 43, 100, 200, false,
'<DIV ID="menuConstraint"><TABLE><TD>' +
menuStr + '</TD></TABLE></DIV>'
) ;

It is this function's responsibility to manage the creation of all the slide layers plus three more for the
navigation links (one for the slide menu , one for the ""<Guide>" images, and one for the "Automate"
image). The for loop in lines 106-120 takes care of the layers and generates the content for the slide
menu layer:

var menuStr = '';
for (var i = 0; i < slideShow.length; i++) {
genlLayer ('slide' + i, sWidPos, sHgtPos, dWidLyr, dHgtLyr,

(1 == 0 ? true : false), slideShow[i].structure);
menuStr += '<A HREF="" onMouseOver="hideStatus();' +
'if (!tourOn) { setSlide(' + i1 + '"); imageSwap(\'' +
slideShow[i] .name + '"\', ' 4+ 1 + ', true)}; return true;"'
+
' onMouseOut="1f (!tourOn) { setSlide(' + 1 + ");"' +
' imageSwap (\'' + slideShow[i].name + '\', ' + 1 + ',
false)}; ' +
'"return true;" onClick="return false;"><IMG NAME="' +
slideShow[i] .name + '" SRC="' + imgPath + slideShow[i].name
+

'out.gif" BORDER=0>
';
}

By iterating through all the elements of the SLIDESHOW array, creating each layer slide happens rather
easily with one call to genLayerxr (). Here is a closer look:

genlLayer ('slide' + i, sWidPos, sHgtPos, dWidLyr, dHgtLyr,
(1 == 0 ? true : false), slideShow[i].structure);

That's a hefty load of values to pass as arguments. Table 3.2 lists and describes each.

Table 3.2. Arguments for genLayer()

Value Description

Creates a unique, but indexed name for each slide, such as

slide' + 1 slide0), slidel, etc.

The pixel distance from the left of the window for positioning

sWidPos the slide.

The pixel distance from the top of the window for positioning

sHgtPos the slide.

dWidLyr Default slide width, in this case 450.
dHgtLyr Default slide height, in this case 450.

Determines whether to show (t rue) or hide (false) the

slide. All slides begin hidden except the first, when i is equal to
0.

This is the content of the slide, including text and graphics,
slideShow[i] .structure |embedded in a table. It came from the slide constructor. See
lines 54-59.

(1 == 0 ? true
false)

Function genLayer () iscalled slideShow. length times, to create a layer for each slide. It
doesn't matter if you have 6 slides or 106 slides: this one line handles them all. Surprisingly enough,
the rest of the code within genScreen () is devoted to getting three navigational layers on the
screen, but let's get a little more use out of that for loop before moving on. Check out the rest of it:

menuStr += '<A HREF="" onMouseOver="hideStatus();' +
'"if (!tourOn) { setSlide(' + 1 + '); imageSwap (\'' +
slideShow[i] .name + '"\', ' 4+ 1 + ', true)}; return true;"' +
' onMouseOut="if (!tourOn) { setSlide(' + i + '");
imageSwap (\'' +
slideShow[i] .name + '"\', ' + 1 + ', false)}; return true;"'
I
' onClick="return false;"><IMG NAME="' + slideShow[i].name +
'" SRC="' + imgPath + slideShow[i].name +

'out.gif" BORDER=0>
';

I snuck it in at line 110, but variable menuStr, previously initialized to an empty string, is going to be
set to an HTML string containing code for an image rollover pair for each slide. See Figure 3.2 for a
look at the slide menu rollover effect.

For every slide, menuStr is set equal to itself plus a linked image corresponding with the slide. Before
you try to match those single and double quotes, consider what each linked image rollover pair needs.

1. Anopening <A HREF> tag
Code for the onMouseOver event handler when the user passes the mouse pointer arrow over
the linked image

3. Code for the onMouseOut event handler when the user removes the mouse pointer arrow from
the linked image

4. Code for the onClick event handler to prevent anything from happening if the user clicks on
the linked image (you can easily change this, though)

5. An tag with a unique NAME and SRC

6. A closing tag

Item 1 is straightforward; just input it.

Item 2 is a bit more involved. To eliminate any annoying status bar text, the first thing that the
onMouseOver event handler does is set the value of the status bar to an empty string with a call to
hideStatus (). You can see this one-line function at line 184.

Next, but if and only if the user is not running the show on autopilot, the onMouseOver event needs to
call function setS1ide () (discussed shortly). For now just remember that the value of i is passed
in.

As if onMouseOver won't have enough to do, the last thing we need to add code for is function
imageSwap (). This function handles the image rollovers and will be discussed shortly as well. In
the meantime, remember that the JavaScript coded here has three values passed in
slideShow[i] .name, the value of i, and the Boolean value t rue.

Item 3 has the same requirements for the onMouseOut event handler except that no call will be made
tohideStatus () because the status bar is already clear, and the last coded value passed to
imageSwap is the Boolean false instead of true.

Item 4 is easy: just add onC1lick="false". This cancels any clicking the user might do.
Here is how to satisfy the requirement in Item 5:

'<IMG NAME="' + slideShow[i].name + '" SRC="' + imgPath +
slideShow[i] .name + 'out.gif" BORDER=0>"

The tag will get a unique name from s1lideShow[i] .name. slideShow[i] .name
is also used with variable imgPath and the string "out . gif" to create the proper source for the
.

Item 6 is simple. Add a
 tag to the end, and you're done.

Variable menuStr is set to itself plus the string that comes from the aforementioned code each iteration
of the for loop.

Now what happens to menuStr? Since menuStr contains the HTML and JavaScript contents of the
slide menu, it is passed in as an argument in the call to genLayer () in lines 140-143:

genlLayer ('menu', sWidPos - 104, 43, 100, 200, false,
'<DIV ID="menuConstraint"><TABLE><TD>' +
menuStr + '</TD></TABLE></DIV>"
) 7

I saved the call for last in this function simply because the other two navigation layers created are
positioned above the slide menu, and I thought it made more sense to generate them in the code in that
order. Notice the use of the <DIV> tag with the ID attribute set to menuConstraint. This
provides the assurance of 800 pixels of height for the slideshow.

We need to make two other calls to genLayer () to finish the slideshow layout. One is to display a
linked image to start and stop the autopilot feature, the other is for the linked image that reveals and
conceals the slide menu with forward and backward arrows to navigate slides one at a time. There's
not much to creating the layer for the linked image of the autopilot feature. See lines 122-126:

genlLayer ('automation', sWidPos - 100, 11, 100, 200, true,

'<A HREF="javascript: autoPilot();"
onMouseOver="hideStatus();"' +

'return true;">'

) 7

You've already seen just about everything here. The javascript : protocol will be used in the
HREF attribute to call the autoPilot () function, and the onMouseOver event handler calls
hideStatus (). As you yearn for something more challenging, take a look at the last layer code.
The call to genLayer () in lines 128-138 creates the final layer. It contains three images: two
arrows and the word "Guide." It looks like this: <Guide>.

genlLayer ('guide', sWidPos - 100, 30, 100, 200, true,

'<A HREF="javascript: if (!tourOn) { changeSlide(-1); " ' +
'onMouseOver="hideStatus (); return true;">' +

'' +

'<A HREF="javascript: if (!tourOn) { menuManager(); }" ' +
'onMouseOver="hideStatus (); return true;">' +

'' +
'<A HREF="javascript: if (!tourOn) { changeSlide(1l); }" ' +
'onMouseOver="hideStatus (); return true;">' +

''

) ;

The code for each image looks almost identical. Again you've seen much of the code in the linked
images before. Clicking the left and right arrow image links, however, conditionally calls
changeSlide (). The -1 passed causes the slideshow to move to the previous slide. The 1 causes
the slideshow to advance to the next slide. We'll cover changeS1ide () soon. All the linked
<Guide> image does is show or hide the slide menu, handled by function menuManager ().

Before we put genScreen () to rest, notice that it is called within the <BODY> tags before the

page is loaded. MSIE can't create layers after the document has loaded, so we need to fire it up before
then. Here are lines 215-219:

<SCRIPT LANGUAGE="JavaScriptl.2">
<l --

genScreen () ;

//==>

</SCRIPT>

3.4.1.4 The elements of slideShow

You may have already noticed the array variable slideShow. Each element contains the building
blocks (properties) of a single slide object. Here is the SLIDESHOW array in lines 75-98. There are 10
elements, and hence, 10 slides of animals:

var slideShow = new Array (
new slide('bird', 'Bomb-zis Car-zes', 'This winged creature
has ' +

'been known to seek out and soil freshly-washed

vehicles.'),
new slide('walrus', 'Verius Clueless', 'These big fellas ' +
'good fishers, but toothbrushing is another story.'),
new slide('gator', 'Couldbeus Luggajus', 'These reptiles ' +
'often play mascots for large college sporting events.'),
new slide('dog', 'Makus Messus', 'Man\'s best friend? Yeah,
right. ' +
'No wonder these mammals get a bad rep.'),

new slide('pig', 'Oinkus Lotsus', 'Humans with questionable
eating ' +
'habits are often compared to these farm creatures.'),
new slide('snake', 'Groovius Dudis', 'Slick and sly with a '
I
'watchful eye.'),
new slide('reindeer', 'Redius Nosius', 'Though co-workers
used to ' +
'"laugh and call him names, he eventually won the respect
of the ' +
'entire team.'),
new slide ('turkey', 'Goosius Is Cooktis', 'Celebrated and
revered ' +
'for an entire year, then served as dinner shortly
after."),
new slide('cow', 'Gotius Milkus', 'This animal is considered
a ' +
'moover and shaker, and tends to milk things for all
they\'re ' +
'worth. Udderly shameful.'),
new slide('crane', 'Whooping It Upus', 'Not to be confused
with a ' +
'piece of heavy construction equipment. Rumored as the
source of the ' +
'nickname <I>birdlegs</I>.")

) ;

Compare the values passed in each call to the s/ide constructor with the arguments expected. The first
is the name of the animal (and image); next is the "technical" name; and each wraps up with some
descriptive text. Notice that line 85 has some HTML included in the text. There is certainly no reason
why you couldn't build on this concept, even defining layers in the slides themselves. See Section
3.5later in the chapter for more possibilities.

If your list gets too long, consider putting this array into a JavaScript source file to clean up the code
somewhat. Since there are only 10, I kept it in this file.

3.4.2 Image-Related Functions

With the slide functions under our belts, let's take a look at how to handle the images.

3.4.2.1 preLoadlmages()
This function does what its name implies. Here are lines 64-73:

function imagePreload (imgStr) {
img[img.length] = new Image();
img[img.length - 1].src = imgPath + imgStr + '.gif';

imgOut [imgOut.length] = new Image();
imgOut [imgOut.length - 1].src = imgPath + imgStr +
'out.gif';

imgOver [imgOver.length] = new Image()
imgOver [imgOver.length - 1].src = imgPath + imgStr +
'over.gif';

}

This function creates new Image objects and preloads their sources three at a time. While this
increases your original load time for the application, users will be spared having to wait for images to
download as they navigate through the slideshow.

Variables imgPath and imgStr are concatenated together with .gif, out.gif, and over.gif, respectively, to
make the necessary images associated with each slide. For example, the slide named cow has images
cow.gif, cowout.gif, and cowover.gif associated with it.

3.4.2.2 imageSwap()

This function performs the image rollovers, whether users call it "manually" by passing the mouse
pointer arrow over or away from the linked images in the slide menu, or whether it happens in
autopilot mode. Not much to it, but lines 179-182 make all the difference:

function imageSwap (imagePrefix, imagelndex, isOver) {
if (isOver) { document[imagePrefix].src =
imgOver [imageIndex] .src; }
else { document[imagePrefix].src = imgOut[imagelIndex].src; }

}

Many rollover scripts, including the one on my site, perform the rollover with two separate functions:
one for onMouseOver and the other for onMouseOut. You can combine the operations into one
function, however, by passing in a few handy arguments.

Called imagePrefix, imagelndex, and isOver, these arguments represent the base string used to name
the image (imgStr again), the index of the desired image (this is the value of i from the for loop in
genScreen ()), and a Boolean value used to indicate whether to use the images from array
imgQOver or array imgQut.

To make this a bit clearer, revisit lines 105-120 in function genScreen () . Notice the dynamic
JavaScript created in line 112:

imageSwap (\'' + slideShow[i].name + '"\', ' + i + ', true)};

When this is written to the document and i equals 0, it will look like this:

imageSwap ('bird', 0, true);

Once the function is called, you can see where things are headed. Since isOver is t rue, then:
document [bird] .src = imgOver[0].src;

And imgOver [0] . src is images/birdover.gif. If isOver is £a 1 se, the image is set to
imgOut [0] . src, which is images/birdout.gif.

3.4.3 Navigational Functions

The slide function created the slides and the controls for viewing them. The image functions enable
preloading and rollovers. Now let's look at what makes this slideshow a slideshow—the navigational
functions.

3.4.3.1 refSlide(), hideSlide(), showSlide(), and menuManager()

The slides have been created, and the images have been loaded. Now we want to do things with the
slides—namely, show the one we want and keep the other ones hidden. Before we can manipulate
them, we need to be able to reference them. That's normally pretty easy, right? Just reference the layer
name. Well, yes and no. You'll have to use the name of the layer, but remember that Navigator and
MSIE reference layers differently in their document object models. Function refS1ide () takes
care of that in lines 146-149:

function refSlide (name) {
if (NN) { return document.layers|[name]; }
else { return eval ('document.all.' + name + '.style'); }

}

If the user has Navigator, refS1ide () returns a reference to the
document.layers [name]. If the user has MSIE, however, refS1ide () returns a
reference using eval ('document.all.' + name + '.style"'). This allows us to change

the visibility of the layer no matter which browser. It's no surprise, then, to see these two functions in
lines 151-157.

Not only is that simple, but all those members will be very easy to access later.

function hideSlide (name) {
refSlide (name) .visibility = hideName;

}

function showSlide (name) {
refSlide (name) .visibility = showName;

}

JavaScript Technique: The Power of eval()

As Netscape puts it, eval () "Evaluates a string of JavaScript code without reference to a
particular object." It might not sound like much, but this function is available to all objects,
and it means good news for us coders. Suppose you need to reference an object, but you're
not sure of its index number (if it's an array) or you need to de-reference a string to properly
access the object. That is the case for this application:

eval ("document.all.styles." + name + ".visibility");

Here's another example:

"

eval ("document.forms[0]." + elementName + .value") ;

This will come in handy for many situations including constructing form objects and image
rollovers, and performing mathematic calculations, all using strings as input. Make sure you
add eval () to your arsenal. Visit Netscape's DevEdge Online for more information about
eval () at: http://developer.netscape.com/docs/manuals/communicator/jsref/glob8.htm.

Both functions call refS1ide () and pass in the name argument that they receive. This code might
look a bit strange at first. How can refS1ide () have the visibility property? In fact, it does not.
Remember, however, that refS1ide () returns a reference to a layer, each of which has the
visibility property. If we want to hide a particular slide, we reference it with refS1ide () and set
the visibility property of the returned object to hideName, which, if you recall, was set to either the
string hide or hidden back in line 22, depending on the browser. The same goes for showing a slide,
except that the visibility property of the returned layer is set to the value of showName, also set
depending on the browser in line 23.

hideSlide () and showSlide () are used to hide and reveal not only the slides, but also the
slide menu. The functions are not called directly; instead, they are called by function
menuManager () shown here:

function menuManager () {
if (isVis) { hideSlide ('menu'); }
else { showSlide('menu'); }
isVis

= !isVis;

}

Whenever the slide menu is in view, variable isVis is set to t rue; itis £alse otherwise. So
menuManager () shows the slide menu if isVis is false and hides it if it is currently t rue,
then sets isVis to its opposite for the next time around.

3.4.3.2 changeSlide()

Now that we can reference the slides correctly regardless of browser and we have functions to hide
and show the slides (and the slide menu), we need a function to actually change the slides from one to
the next. Actually, there are two functions: changeSlide () and setSlide ().

I hope I haven't been leading you on with this hiding and showing business. Changing from one slide
to the next actually involves three steps:

http://developer.netscape.com/docs/manuals/communicator/jsref/glob8.htm

1. Hide the current slide.

2. Determine which slide to show next.
3. Show that slide.

Steps 1 and 3 may seem painfully obvious by now, but step 2 is more involved than you might
suspect. There are two situations in which you want to change slides. The first happens when you
want to change slides one by one, forward or backward, in sequence. This type occurs when you use
the < and > arrows to move through the slideshow. The second occurs when the autopilot advances
through the slides. Function changeS1ide () was crafted to handle both cases. See lines 165-170:

function changeSlide (offset) {
hideSlide('slide' + curSlide):;
curSlide = (curSlide + offset < 0 ? slideShow.length - 1
(curSlide + offset == slideShow.length ? 0 : curSlide +
offset));
showSlide ('slide' + curSlide);
}

The first thing that happens is that hideS1ide () is called with the value of the expression
'slide' + curSlide. Variable curSlide was originally set to in line 13. Since that is the slide
currently in view, function hideS1ide () will conceal slide0, which is the bird slide. Fair enough.
Now which slide should be revealed?

Recall that changeS1ide () expects a parameter named offset. offset is either 1 or -1. The 1
causes the next highest slide of the s1ideShow array to be revealed. Since curSlide is the integer
representing the current index of the slide in view, adding 1 to it changes its value to 1, then 2, then 3,
etc. The -1 causes the next lowest slide of the SLIDESHOW array to be revealed. Not surprisingly, if
curSlide were 3, adding -1 to it would yield 2, then 1, then 0.

Everything seems fine, until you try hiding a slide named 'slide' + -1 or
'slide'+slideShow. length. Those slides don't exist, and you can bank on syntax errors.
So how do you prevent curSlide from dipping below zero and creeping above
slideShow.length - 1?

Lines 167-168 provide the answer:

curSlide = (curSlide + offset < 0 ? slideShow.length - 1
(curSlide + offset == slideShow.length ? 0 : curSlide +
offset));

The value of curSlide is determined by using a set of nested ternary operators. Here is the pseudo-code
translation:

IF curSlide + offset is less than 0, THEN curSlide equals
slideShow.length - 1
ELSE
IF curSlide + offset equals slideShow.length THEN curSlide
equals 0
ELSE curSlide equals curSlide + offset

If adding offset to curSlide makes curSlide too low, curSlide is setto slideShow.length — 1.
If adding offset to curSlide makes curSlide too high, curSlide is simply set to 0. Otherwise, curSlide
can safely be set equal to itself plus offset.

Once curSlide has been determined, the call to showS1ide () in line 169 can safely be made.
3.4.3.3 setSlide()

changeSlide () is one of two functions used to change the slides. Whereas changeS1lide ()
changes slides +/- 1 in relation to the current slide shown, function setS1ide () hides the current
slide in view, then shows whatever slide is associated with the index number it receives as an
argument. Here are lines 172-177:

function setSlide(ref) {
if (tourOn) { return; }
hideSlide('slide' + curSlide):;
curSlide = ref;
showSlide ('slide' + curSlide);
}

The first line checks fourOn to determine whether the autopilot mode is running, and if so, returns
immediately. If autopilot is on, there is no reason to do any slide changing; it's done automatically for
you.

Just like changeS1lide (), setSlide () hides the slide currently in view. However, unlike
changeSlide (), setSlide () doesn't care what the current value of curSlide is.
setSlide () assigns the value of parameter ref to curSlide anyway, then shows the current slide
associated with that number.

3.4.3.4 autoPilot()

As you can likely imagine, autoPilot () controls the autopilot feature of the slideshow.
autoPilot () isturned on or off from the same link of the slideshow screen. Have a look at lines
186-198:

function autoPilot () {

if (tourOn) {
clearInterval (auto) ;
imageSwap (slideShow[curSlide] .name, curSlide, false);
}

else {
auto = setlInterval ('automate()', showSpeed);
imageSwap (slideShow[curSlide] .name, curSlide, true);
showSlide ('menu') ;
visible = true;
}

tourOn = !tourOn;

}

autoPilot () "knows" whether the autopilot feature is on or off by the value of variable tourOn.
If tourOn is £a 1 se, then the autopilot feature is not currently running. Therefore, the function uses
the set Interval () method of the window object to call function automate () (discussed
next) every showSpeed milliseconds.

It would be nice to see the slide menu advancing with the slides, highlighting the current slide menu
image along the way. Since the user had to click the "Automate" image link to call autoPilot (),
the autoPilot () takes care of both showing the slide menu (if it isn't showing already) and
highlighting the current slide menu image the first time. Function automate () takes care of the
rest, so it needs to be done only once.

If, however, autopilot is currently running (i.e., tourOn is false), autoPilot () utilizes the
clearInterval () method, also of the window object, to cancel the set Interval () call
associated with variable auto. To keep things neat, a last call to imageSwap () is made to roll the
currently highlighted slide menu image back to its unhighlighted image like the others.

The last thing autoPilot () does is to change the current value of fourOn to its opposite.
Obviously, if you click to turn it on, the next time you click, you'll want to turn it off, and so on.

JavaScript Technique: Introducing setinterval()
and clearinterval()

Window methods setInterval () and clearInterval () are an upgrade from
their JavaScript 1.0 cousins setTimeout () and clearTimeout (). Whereas the
setTimeout () runs the code within its first argument only once, setInterval ()
runs its code indefinitely. To get the same effect, you had to call setTimeout () and
the function in which it is contained recursively, like this:

y = 50;

function overAndOver () {
// Do something
y = Math.log(y);
// Call it again, Sam

setTimeout ("overAndOver ()", 250);

}
The function overAndOver () can be called as follows:
<BODY onLoad="overAndOver ()" ;>

setInterval () takes care of the recursion implicitly and can take care of this in one
call.

y = 50;

function overAndOver () {
// Do something
y = Math.log(y);
}

The onLoad event handler can also produce this code. Just make sure you "turn off" the
operation(s) performed with clearInterval ().

3.4.3.5 automate()

automate () is a small function that runs the slideshow by performing the following three
operations:

1. Simulates an onMouseQOut event to cause the currently highlighted image in the slide menu to
roll back to the unhighlighted image. This happens with a call to imageSwap () .

2. Advances to the next slide with a call to changeSlide ().

3. Simulates an onMouseOver event to cause the next unhighlighted image in the slide menu to
rollover to the highlighted images. This happens with a call to imageSwap ().

Here are lines 200-204. That's about all there is to it.

function automate () {
imageSwap (slideShow[curSlide] .name, curSlide, false);
changeSlide (1) ;
imageSwap (slideShow[curSlide] .name, curSlide, true);

}

One final note. Both calls to imageSwap () pass in the value of curSlide, giving the illusion that
the same slide menu image might be rolled over and rolled back. Keep in mind, though, that the call to
changeSlide () changes the value of curSlide. So the second call to imageSwap () causes
the rollover to happen on the correct slide menu image.

3.5 Potential Extensions

As with nearly any application using DHTML, you can add dozens of things to make the slideshow
snappier. I'll try to keep the list short.

3.5.1 Change Random Slides in AutoPilot

Why not mix things up a bit? Generate a random integer between 0 and s1ideShow.length-1.
Then call setS1ide (). Here is what the function might look like:

function randomSlide () {
var randIdx = Math.floor (Math.rand() * slideShow.length);
setSlide (randIdx) ;
}

Instead of calling changeS1lide () in function automate (), call randomS1lide():

function automate () {
imageSwap (slideShow[curSlide] .name, curSlide, false);
randomSlide () ;
imageSwap (slideShow[curSlide] .name, curSlide, true);

}

3.5.2 Animated GIFs or Image Rollovers in the Slides

These may be obvious improvements, but they certainly help. Users really like the added interactivity;
anything with cool moves and color on a web page (this excludes the pitiful BLINK tag) can spice up
the look.

3.5.3 Animate the Slides Themselves

Every slide created in this application remains in one place. At times, you have the "now you see it,
now you don't" slides. But the layers remain in the same place throughout the entire show. Why not
have the slides move in from the left or exit right? Or the top and bottom?

I'm opening the door to an entire new application within an application, so I won't get into the code,
but I'll tell you where you can get a JavaScript toolkit to perform loads of layer effects. Netscape has a
library file awaiting your download.

You can find it at http://developer.netscape.com/docs/technote/dynhtml/csspapi/xbdhtml.txt.

Notice it has a .zxt extension. Whenever you save the document as a local file, change the extension to
JS.

Scratching the Surface

This book does not go crazy with DHTML. There are plenty of resources available if you want
to explore slideshow extensions. Here are a few of my favorites:

Netscape's Dynamic HTML In Netscape Communicator:

http://developer.netscape.com/docs/manuals/communicator/dynhtml/index.htm

Microsoft's DHTML References:

http://msdn.microsoft.com/developer/sdk/inetsdk/help/dhtml/references/dhtmlrefs.htm

World Wide Web Consortium HTML 4.0 Specification:

http://www.w3.org/TR/REC-html140/

Macromedia's DHTMLZone:

http://developer.netscape.com/docs/technote/dynhtml/csspapi/xbdhtml.txt
http://developer.netscape.com/docs/manuals/communicator/dynhtml/index.htm
http://msdn.microsoft.com/developer/sdk/inetsdk/help/dhtml/references/dhtmlrefs.htm
http://www.w3.org/TR/REC-html40/

http://www.dhtmlzone.com/

Dynamic Drive:

http://dynamicdrive.com/

Chapter 4. The Multiple Search Engine Interface

Application Features JavaScript Techniques
®Frames-Based Multiple Search Engine ®Reusing Your Code
#®Single-Click Searching ®Foregoing OO
®Simple Search Engine Management ®Math Versus Memory

®Using escape()

Multiple search engine apps written in JavaScript abound on the Net. This kind of application is one
of the coolest and potentially easiest things to develop in JavaScript. And why not? You can capitalize
on OPD (other people's data) to make your web site a portal to the network universe. This is my
version. There are certainly more robust applications out there, but this one gives you significant
advantages fairly easily. Figure 4.1 shows the first look as you open ch04/index.htmlin your browser.

Using this application isn't complicated. The user enters query text in the bottom left corner, then uses
the arrows to advance through a layer-based menu of available search engines. All the user needs to
do is click on the button of the search engine he or she wants to send the query text to, and the results
show up in the center frame. I searched the Image Surfer database for the term "andromeda" and
received the results shown in Figure 4.2.

Figure 4.1. The multiple search engine interface

) Melli Soach Engne Intolece Site Helzcape
Ede E@ Yew Eo [wwranicss Hep

- . -]

< 4 4 2 o 3 & Wi m
Back Ralssd Hove Sewch Melsoase Prind =T TR]
F Bockrwbs) Locstion il £ THAN KT Fholieah deini st Dedcopa el ullinal i march_srogne e hiwl :l-f_"'Werm

search Teot — - TSN
o e S gD 2

W5 |;i;uupsuch Engine I G [

Figure 4.2. Image Surfer returns pictures in its database associated with the term
"andromeda™

http://www.dhtmlzone.com/
http://dynamicdrive.com/

S Malli-Gesch Lngns Intsifiscs Sie - Hebioaps
B Ck Vs Lo Dowronscso Help

« ¢ 3 A4 = N5 4 & Wi m
fick Fisdzad Move Gewch Medscape Pl Gecuiy Skop
; “Bosmnabs _f Leeston 'i: AT WIH KT Prolie’d deear s i, T ko per = ol e ch_ e redes hird j igr_ " ey Nelaied

Results for; mrkomeda Feumbser ol rewults: §
[,

e Tide

LNF Flaniariua
Shows Light Faars
From Andromeds

Page Tale:

The Uil
Frishan Ay Wb
Fogw

Fage Tils;
The Uivefoal
Erirtian Aye Web
Fage

Page T Page Tele:
The Androwads =il Ao

hrlaxy « Seff Srys F ’

AN sheeda

-

#8540 | [Wl S Lngine 1 . 1P

That's really all there is to it. Notice the search results frame is surrounded by a black border. That's
my award-winning attempt at web page design. It's a personal preference and easy to change to a more
basic two-frame (top and bottom) layout.

By the way, if you've been following the chapters in order, you'll soon notice that this one is different
in that it doesn't present entirely new code. Actually, I'll show you how to get extra mileage out of the
code we covered in Chapter 3. This will be a great way to see how you can reapply code that you
already have to save time.

4.1 Execution Requirements

This application uses DHTML, so you'll need NN or MSIE 4.x to use it. I included 20 search engines.
The number of search engines you use can easily reach the hundreds. But that's probably more than
the average user will ever need. Keep in mind, too, that this application might run really well on your
local machine, but, as with the slideshow, lots of graphics will increase the load time for Internet
users.

4.2 The Syntax Breakdown

This application involves two files: index. html and multi.html. index.html, shown in Example 4.1,
utilizes nested framesets to achieve the surrounding border effect.

Example 4.1. index.html

<HTML>
<HEAD>

<TITLE>Multi-Search Engine Interface Site</TITLE>
<SCRIPT LANGUAGE="JavaScriptl.2">

S w N

<! --
var black
var white

'<BODY BGCOLOR=BLACK></BODY>";
'<BODY BGCOLOR=WHITE></BODY>"';

0 ~J oy U

//==>

9 </SCRIPT>
10 </HEAD>
11 <FRAMESET ROWS="15,*,50" FRAMEBORDER=0 BORDER=0>

12 <FRAME SRC="javascript: parent.black;" SCROLLING=NO>
13 <FRAMESET COLS="15,%*,15" FRAMEBORDER=0 BORDER=0>
14 <FRAME SRC="javascript: parent.black;"SCROLLING=NO>
15 <FRAME SRC="javascript: parent.white;">

16 <FRAME SRC="javascript: parent.black;"
17 SCROLLING=NO>
18 </FRAMESET>

19 <FRAME SRC="multi.html"™ SCROLLING=NO>
20 </FRAMESET>
21 </HTML>

The two JavaScript variables black and white at lines 6 and 7 are evaluated as HTML strings in the
SRC attribute of the frames in lines 12 and 14-16. We reviewed this in the sidebar JavaScript
Technique: Cheating the SRC Attribute in Chapter 2. If you've been following along in order, this
shouldn't be rocket science. The only frames that see any real action are frames [2], which
displays the search results, and frames [4], which houses the search engine interface. The rest are
purely for show. Let's move on to multi.html, shown in Example 4.2.

Example 4.2. multi.html

1 <HTML>

2 <HEAD>

3 <TITLE>Multi-Engine Menu</TITLE>

4 <SCRIPT LANGUAGE="JavaScriptl.2">

5 <!--

6

7 parent.frames[2].location.href = 'javascript:

parent.white';

8

9 wvar NN = (document.layers ? true false);
10 wvar curSlide = 0;

11 wvar hideName = (NN ? 'hide' 'hidden')

12 var showName (NN ? 'show' 'visible'

13 wvar perlyr = 4;

14 wvar engWdh = 100;

15 wvar engHgt = 20;

16 wvar left = 375;

17 wvar top = 10;

18 wvar zIdx = =-1;

19 wvar imgPath "images/"';
20 wvar arrayHandles = new Array('out', 'over');

21

22 for (var i = 0; 1 < arrayHandles.length; i++) {

23 eval ('var ' + arrayHandles[i] + ' = new Array()'):;

24 }

25

26 wvar engines = new Array (

27 new Array ('HotBot',

28 'http://www.hotbot.com/?MT=",

29 '"http://www.hotbot.com/"),

30 new Array('InfoSeek',

31
'http://www.infoseek.com/Titles?col=WW&sv=IS&lk=noframes&qt=",

32 'http://www.infoseek.com/"),

33 new Array('Yahoo',

34 'http://search.yahoo.com/bin/search?p=",

35 'http://www.yahoo.com/"),

36 new Array('AltaVista',

37 'http://www.altavista.com/cgi-
bin/query?pg=qg&kl=XXs&qg=",

38 'http://www.altavista.digital.com/"),

39 new Array('Lycos',

40 'http://www.lycos.com/cgi-
bin/pursuit?matchmode=ands&cat=1ycos' +

41 '&query=",

42 'http://www.lycos.com/"),

43 new Array('Money.com',

44

p://Jjcgl.pa inder.com/money/plus/news/searchResults.oft?
'http://jcgi thfind / /olus/ / hR 1t ft?
]

|

45 'vcssortby=DATE&search=",

46 'http://www.money.com/"),

47 new Array('DejaNews',

48 'http://www.dejanews.com/dnquery.xp?QRY=",

49 'http://www.dejanews.com/"),

50 new Array('Insight',

51 'http://www.insight.com/cgi-
bin/bp/870762397/web/result.html?"' +

52 'a=s&f=p&t=A&d=",

53 'http://www.insight.com/"'),

54 new Array('Scientific American',

55 'http://www.sciam.com/cgi-bin/search.cgi?' +

56
'searchby=strict&groupby=confidence&docs=100&query=",

57 'http://www.sciam.com/cgi-bin/search.cgi'),

58 new Array('Image Surfer',

59 'http://isurf.interpix.com/cgi-
bin/isurf/keyword search.cgi?g="',

60 'http://www.interpix.com/"),

61 new Array('MovieFinder.com',

http://www.hotbot.com/?MT='
http://www.hotbot.com/'
http://www.infoseek.com/Titles?col=WW&sv=IS&lk=noframes&qt='
http://www.infoseek.com/'
http://search.yahoo.com/bin/search?p='
http://www.yahoo.com/'
http://www.altavista.com/cgibin/query?pg=q&kl=XX&q='
http://www.altavista.digital.com/'
http://www.lycos.com/cgibin/pursuit?matchmode=and&cat=lycos'
http://www.lycos.com/'
http://jcgi.pathfinder.com/money/plus/news/searchResults.oft?
http://www.money.com/'
http://www.dejanews.com/dnquery.xp?QRY='
http://www.dejanews.com/'
http://www.insight.com/cgibin/bp/870762397/web/result.html?'
http://www.insight.com/'
http://www.sciam.com/cgi-bin/search.cgi?'
http://www.sciam.com/cgi-bin/search.cgi'
http://isurf.interpix.com/cgibin/isurf/keyword_search.cgi?q='
http://www.interpix.com/'

62
'http://www.moviefinder.com/search/results/1,10,,00.html?" +

63 'simple=true&type=movie&mpos=begin&spat=",

64 'http://www.moviefinder.com/"'),

65 new Array ('Monster Board',

66
'http://www.monsterboard.com/pf/search/USresult.htm? ' +

67 'loc=&¢EmploymentType=F&KEYWORDS=",

68 'http://www.monsterboard.com/"'),

69 new Array('MusicSearch.com',

70
'http://www.musicsearch.com/global/search/search.cgi?QUERY=",

71 'http://www.musicsearch.com/"'),

72 new Array('ZD Net',

73 'http://x1link.zdnet.com/cgi-
bin/texis/xlink/xlink/search.html?' +

74 '"Utext=",

75 'http://www.zdnet.com/"),

76 new Array('Biography.com',

77 'http://www.biography.com/cgi-
bin/biomain.cgi?search=FIND&field=",

78 'http://www.biography.com/"),

79 new Array('Entertainment Weekly',

80 'http://cgi.pathfinder.com/cgi-
bin/ew/cg/pshell?venue=pathfinders&g=",

81 'http://www.entertainmentweekly.com/"'),

82 new Array('SavvySearch',

83 'http://numan.cs.colostate.edu:1969/nph-search?' +

84
'classic=on&Boolean=0OR&Hits=10&Mode=MakePlan&df=normal' +

85 '&AutoStep=on&KW=",

86 'http://www.savvysearch.com/"'),

87 new Array('Discovery Online',

88 '"http://www.discovery.com/cgi-bin/searcher/-2" +

89 'output=titleg&exclude=/searché&search=",

90 'http://www.discovery.com/"),

91 new Array('Borders.com',

92 'http://www.borders.com:8080/fcgi-
bin/db2www/search/"' +

93
'search.d2w/QResults?doingQuickSearch=1&srchPage=QResults' +

94 '&émediaType=Booké&keyword=",

95 'http://www.borders.com/"),

96 new Array('Life Magazine',

97 'http://cgi.pathfinder.com/cgi-
bin/life/cg/pshell?' +

98 'venue=1life&pg=g&date=allaex=15&y=166&g=",

99 'http://www.life.com/")

100) ;

http://www.moviefinder.com/search/results/1,10,,00.html?'
http://www.moviefinder.com/'
http://www.monsterboard.com/pf/search/USresult.htm?
http://www.monsterboard.com/'
http://www.musicsearch.com/global/search/search.cgi?QUERY='
http://www.musicsearch.com/'
http://xlink.zdnet.com/cgibin/texis/xlink/xlink/search.html?'
http://www.zdnet.com/'
http://www.biography.com/cgibin/biomain.cgi?search=FIND&field='
http://www.biography.com/'
http://cgi.pathfinder.com/cgibin/ew/cg/pshell?venue=pathfinder&q='
http://www.entertainmentweekly.com/'
http://numan.cs.colostate.edu:1969/nph-search?'
http://www.savvysearch.com/'
http://www.discovery.com/cgi-bin/searcher/-?'
http://www.discovery.com/'
http://www.borders.com:8080/fcgibin/db2www/search/'
http://www.borders.com/'
http://cgi.pathfinder.com/cgibin/life/cg/pshell?'
http://www.life.com/'

101

102 engines = engines.sort();

103

104 function imagePreload (imgName, idx) {

105 for(var j = 0; J < arrayHandles.length; j++) {

106 eval (arrayHandles[J] + "[" + idx + "] = new
Image () ")

107 eval (arrayHandles[j] + "[" + idx + "].src = "" +
imgPath +

108 imgName + arrayHandles[J] + ".jpg'");

109 }

110 }

111

112 function engineLinks () {

113 genlLayer ('sliderule', left - 20, top + 2, 25,
engHgt, true,

114 '<A HREF="javascript: changeSlide(1l);" ' +

115 'onMouseOver="hideStatus (); return true;">' +

116 '<IMG SRC="' + imgPath + 'ahead.gif"
BORDER=0>
"' +

117 '<A HREF="javascript: changeSlide(-1);" ' +

118 'onMouseOver="hideStatus (); return true;">' +

119 '<IMG SRC="' + imgPath + 'back.gif"
BORDER=0>") ;

120 lyrCount = Math.ceil

121 (engines.length / perLyr);

122 for (var i = 0; 1 < lyrCount; i++) {

123 var engLinkStr = '<TABLE BORDER=0 CELLPADDING=0
CELLSPACING=0><TR>";

124 for (var 7 = 0; j < perLyr; j++) {

125 var imgIdx = (i1 * perLyr) + j;

126 if (imgIdx == engines.length) { break; }

127 var imgName = nameFormat (engines[imgIdx] [0])

128 imagePreload (imgName, imgIdx) ;

129 engLinkStr += '<TD><A HREF="javascript: ' +

130
'callSearch (document.forms[0] .elements[0] .value, ' +

131 imgIdx + '");" onMouseOver="hideStatus/() ;
imageSwap (\'' +

132 imgName + '\', ' + imgIdx + ', 1); return
true" ' +

133 'onMouseOut="imageSwap (\'' + imgName + '\', '
+ imgIdx +

134 ', 0);"><IMG NAME="' + imgName + '" SRC="' +
imgPath + imgName +

135 'out.jpg' + '" BORDER=0></TD>';

136 }

137 engLinkStr += '</TR></TABLE>';

138 genlayer ('slide' + i, left, top, engWdh, engHgt,
false, engLinkStr);

139 }

140 }

141

142 function genlayer (sName, sLeft, sTop, sWdh, sHgt,
sVis, copy) {

143 if (NN) {

144 document.writeln ('<LAYER NAME="' + sName + '"
LEFT=' + slLeft +

145 ' TOP=' + sTop + ' WIDTH=' + sWdh + ' HEIGHT=' +
sHgt +

146 ' VISIBILITY='" + sVis + ' z-Index=' + (++zIdx) +
>+

147 copy + '</LAYER>');

148 }

149 else {

150 document.writeln ('<DIV ID="' + sName +

151 '" STYLE="position:absolute; overflow:none;left:
'+

152 sLeft + 'px; top:' + sTop + 'px; width:' + sWdh
+ 'px; height:' +

153 sHgt + 'px; visibility:' + sVis + ' z-Index=' +
(++zIdx) +

154 '"">' + copy + '</DIV>'");

155 }

156 }

157

158 function nameFormat (str) {

159 var tempArray = str.split(' ");

160 return tempArray.join('').toLowerCase();

161 }

162

163 function hideSlide (name) { refSlide(name) .visibility =
hideName; }

164

165 function showSlide (name) { refSlide(name) .visibility
showName; }

166

167 function refSlide (name) {

168 if (NN) { return document.layers|[name]; }

169 else { return eval ('document.all.' + name +
'.style');

170 }

171

172 function changeSlide (offset) {

173 hideSlide('slide' + curSlide);

174 curSlide = (curSlide + offset < 0 ? slideShow.length
—_ l .

175 (curSlide + offset == slideShow.length ? 0
curSlide + offset));

176 showSlide ('slide' + curSlide);
177 }
178

179 function imageSwap (imagePrefix, imagelndex, arrayldx)

{

180 document [imagePrefix] .src =
eval (arrayHandles[arraylIdx] +
181 "[" + imagelIndex + "].src");
182 }
183
184 function callSearch (searchTxt, idx) {
185 if (searchTxt == "") {
186 parent.frames[2].location.href = engines[idx][2] +
187 escape (searchTxt) ;
188 }
189 else {
190 parent.frames[2].location.href = engines[idx][1] +
191 escape (searchTxt) ;
192 }
193 }
194
195 function hideStatus () { window.status = ''; }
196
197 //-—>
198 </SCRIPT>
199

200 </HEAD>
201 <BODY BGCOLOR="BLACK" onLoad="showSlide ('slideO'") ;">
202 <SCRIPT LANGUAGE="JavaScriptl.2">

203 <!--
204 enginelinks();
205 //-=->

206 </SCRIPT>
207 <FORM onSubmit="return false;">
208 <TABLE CELLPADDING=0>

209 <TR>

210 <TD>

211

212
213 </TD>

214 <TD>

215 <INPUT TYPE=TEXT SIZE=25>

216 </TD>

217 </TR>

218 </TABLE>
219 </FORM>
220 </BODY>

221 </HTML>

More than 200 lines of code, but you've seen most of it already. This shouldn't be that bad. Let's begin
at line 7.

parent.frames[2].location.href ='javascript: parent.white';

If you count the frames in index. html, you'll see that f rames [2] is where the search results show
up. Setting the Llocation.href property in this frame makes things a bit smoother if you decide
to reload the application. This automatically sets the results document content to some "local" HTML
so that you don't have to wait for any previous search queries to reload.

By the way, even though you get a neat display of search engine results in frames [2], once you
follow a search results link, you're at the mercy of the search engine designers. Some will let you
follow the links while staying in the same frame. Others, unfortunately, like InfoSeek, will force the
document into the top window of the browser.

4.2.1 Strolling down Memory Lane

Let's take a trip down Memory Lane (RAM, in case you're wondering). As you examine the variables
below, you'll see some newcomers, but several will bear a striking resemblance to those you've
worked with in Chapter 3. Look, there's NN and curSlide! And they brought hideName and
showName, too. Not to mention imagePath and zldx:

var NN = (document.layers ? true : false);
var curSlide = 0;

var hideName = (NN ? 'hide' : 'hidden'):;
var showName = (NN ? 'show' : 'visible');
var perlLyr = 4;

var engWdh = 100;

var engHgt = 20;

var left = 375;

var top = 10;

var zIdx = =1;

var imgPath = 'images/';

var arrayHandles = new Array('out', 'over');

These variables all have the same function they did in Chapter 3. They just pick up where they left off.
As for the new ones, perLyr defines the number of search engines you want to display per layer.
Variables engWdh and engHgt define default width and height values for each layer, respectively.
Variables left and top hold values for positioning the layers. Variable arrayHandlescontains an array
used for dynamically preloading images. Hold that thought for just a bit; we'll go over it shortly.

Talking about family reunions, the variables aren't the only familiar code. Check out the functions
from way back when.

Lines 142-156:

function genLayer (sName, sLeft, sTop, sWdh, sHgt, sVis, copy)
{

if (NN) {
document.writeln ('<LAYER NAME="' + sName + '" LEFT=' +
sLeft +
' TOP=' + sTop + ' WIDTH=' + sWdh + ' HEIGHT=' + sHgt +
' VISIBILITY='" + sVis + ' z-Index=' + (++zIdx) + '>' +
copy + '</LAYER>');
}
else {
document.writeln ('<DIV ID="' + sName +
'" STYLE="position:absolute; overflow:none;left: ' +
sLeft + 'px; top:' + sTop + 'px; width:' + sWdh + 'px;
height:' +
sHgt + 'px; visibility:' + sVis + ' z-Index=' + (++zIdx)
+
""S' 4+ copy + '</DIV>');

Lines 163-177:

function hideSlide (name) { refSlide(name).visibility =
hideName; }

function showSlide (name) { refSlide (name).visibility
showName; }

function refSlide (name) {
if (NN) { return document.layers[name]; }
else { return eval ('document.all.' + name + '.style'); }

}

function changeSlide (offset) {
hideSlide('slide' + curSlide):;
curSlide = (curSlide + offset < 0 ? slideShow.length - 1
(curSlide + offset == slideShow.length ? 0 : curSlide +
offset));
showSlide ('slide' + curSlide);
}

Five functions: genSlide (), refSlide(),hideSlide (), showSlide (), and
changeSlide (). All of them operate the same way they did in Chapter 3; if you're not clear on
how any of them works, flip back a chapter and check them out. There are actually two more
functions, imagePreload () and imageSwap (), which perform the same operations as well,
but they've been modified enough to merit new discussion.

4.2.2 Dynamically Preloading Images

One of the big web paradigms is performing conventionally static operations dynamically. Why do
something statically when you can manage it more easily on the fly? That's what the following code

does with image preloading. What's the typical modus operandi when you want to preload images to
perform rollovers? It might look something like this:

var myImagelOn = new Image()
myImagelOn.src = 'images/myImgOnl.gif';
var myImagelOff = new Image();
myImagelOff.src = 'images/myImgOffl.gif';

Simple enough. But that's four lines of code for one pair of image rollovers. What if you have five or
ten pairs? That's 20 or 40 lines. If you ever have to make changes, that'll get messy in no time. The
Multiple Search Engine Interface introduces a way to pull off the same preloading, no matter how
many (theoretically) image pairs you have. We'll need three things:

1. An array of /mage objects for each set of images you'll need. This application uses one array
for the images used when the mouse pointer arrow is over the link and one array for the
images that roll back when the mouse pointer arrow moves out of the link.

2. A simple naming convention for the images. The mylmgOn.gif/myImgOff1.gif convention
will work fine. See the sidebar JavaScript Technique: Using Well-Constructed Naming
Conventions in Chapter 3 for more information. The naming convention must incorporate the
names of the arrays in step 1.

3. Theeval () method.

For step 1, this application will use two arrays. One will be named out and will contain /mage objects
of those images that roll over when the mouse-pointer arrow is outside the linked image. The other
will be named over and will contain /mage objects of those images that roll over when the mouse-
pointer arrow is over the linked image. Those variables will be represented for now in an array of
strings called arrayHandles, line 20:

var arrayHandles = new Array('out', 'over')

For step 2, we'll use a very simple naming convention. All image pairs will have the same prefix
followed by either out.jpg or over.jpg, depending on the image. For example, the image rollovers
associated with InfoSeek are named infoseekout.jpg and infoseekover.jpg.

For step 3, we'll first iterate through each element of arrayHandles and use eval () to create the
arrays soon to hold the /mage objects. Enter lines 22-24:

for (var i = 0; 1 < arrayHandles.length; i++) {
eval ('var ' + arrayHandles[i] + ' = new Array()');

}
Performing the above for loop is equivalent to hardcoding this:

var out = new Array();
var over = new Array();

To polish off the preloading, we use eval () again in function preLoadImages () to
dynamically create Image objects and assign the SRC property of each. Here is the function in lines
104-110:

function imagePreload (imgName, idx) {

for(var j = 0; j < arrayHandles.length; j++) {
eval (arrayHandles[j] + "[" + idx + "] = new Image()");
eval (arrayHandles[3j] + "[" + idx + "].src = '"" + imgPath +

imgName + arrayHandles[3] + ".Jjpg'");
}

imagePreLoad () accepts two arguments, a name prefix (e.g., Infoseek) and an integer used to
assign the appropriate array element to a new /mage object. Once again, a for loop iterates through
arrayHandles, utilizing each element string to access one of the arrays just created and assign it a
unique reference. For example. Calling imagePreLoad ('infoseek', 0) is equivalent to
hardcoding the following:

out [0] = new Image();
out[0].src = 'images/infoseekout.jpg';
over[0] = new Image () ;

over[0].src 'images/infoseekover.jpg';

But that's four lines of code, exactly what I wanted to avoid doing over and over. Every time I want a
new image rollover pair, I can make a call to preLoadImages (). And that is working smarter,
not harder.

JavaScript Technique: Reusing Your Code

It's not really a JavaScript technique, per se. You can apply this to just about any language.
If you take a higher level approach when coding, particularly when creating objects and
functions, you'll find that you can use the same code in multiple situations. Consider the
functions genSlide (), refSlide (),hideSlide (),and showSlide ().

They perform very basic, but necessary operations. The following list explains.

e To create cross-browser DHTML layers, use genSlide ()

e To reference cross-browser DHTML layers, use refS1ide ()
e To hide cross-browser DHTML layers, use hideSlide ()

o To show cross-browser DHTML layers, use showS1lide ()

Think of all the mileage we got from those functions in the last chapter. We'll also see them
again later in the book. If you haven't already, consider building a JavaScript source file
library with your reusable code. Chapter 6, tells you all about it. When you devise a great
function or object that you're sure to use again, drop it into a wisely named .js file for easy
future access.

4.2.3 Start Your Engines

Variable engines at lines 26-100 represents an array of elements, each containing another array of
elements with specific search engine information. Variable engines has 20 fairly long elements, so
let's takes a look at just the first one as shown in lines 27-29:

new Array('HotBot',

'http://www.hotbot.com/?MT=",
'http://www.hotbot.com/"),

Element 0 identifies the search engine name, HotBot. Element 1 identifies the URL with the query
string, which, when included with query text, will call the search engine and return the results page.
Element 2 represents the URL of the search engine home page. This is used in place of Element 1 if
the user attempts a null search (searching with an empty string).

JavaScript Technique: Foregoing OO

After taking a good look at the engines array, you might be wondering why we don't have a
searchEngine constructor. Wouldn't this be a great place to have a searchEngine
constructor? You know, something like this:

function searchEngine (name, searchURL, homePage) ({
this.name = name;
this.searchURL = searchURL;
this.homePage = homePage;
return this;

}
Then engines would look like this:

var engines = new Array (
new searchEngine ('HotBot',
'http://www.hotbot.com/?MT=",
'http://www.hotbot.com/")
// etc., etc,

That is the route I would take except for that one little technicality at line 102:
engines = engines.sort();

The fact is, I want to present the search engines in alphabetical order. Users will appreciate
being able to find their favorite search engines faster. If you take the OO (object oriented)
route, the sort () method won't change the order of the elements. The array of arrays in
lines 26-100, however, will be sorted based upon the first element of each array. That's why
the search engine name is the first element in each new array. As it stands right now,
JavaScript will sort according to the first element. Objects don't have a first element, per se.
This is the same thing that happened in Chapter 1. The search results are displayed in
alphabetical order, so all the records are coded the same way. Don't get me wrong. I'm still
keen on OO. This was just an application that didn't need it.

4.2.4 engineLinks()

Function enginelLinks () is similar to function genScreen () in Chapter 3 because it is
responsible for managing the creation of the layers. It does have its differences, though. Examine lines
112-140.

http://www.hotbot.com/?MT='
http://www.hotbot.com/'
http://www.hotbot.com/?MT='
http://www.hotbot.com/'

4.2.4.1 Managing layers
The first thing this function takes care of is generating the layer containing the navigation links:

genLayer ('sliderule', left - 20, top + 2, 25, engHgt, true,
'<A HREF="javascript: changeSlide(1l);" '+
'onMouseOver="hideStatus (); return true;"><IMG SRC="' +
imgPath + 'ahead.gif" BORDER=0>
<A HREF="javascript:
"+
'changeSlide (-1) ;" onMouseOver="hideStatus(); return
true;">"' +
'');

This happens with a simple call to genLayer (). There are no real surprises here. The layer will
contain two linked images: a forward and a backward arrow. Notice that the left and top pixel values
passed in are relative to the left and top positions, Left - 20 and top + 2, of the soon-to-be
created engine link layers.

Next up, variable /yrCount determines the number of layers of search engine buttons to create,
depending on the number of buttons you want per layer and the number of engines you have allotted
in the engines array. It is really pretty easy. Divide the number of search engines

(engines. length) by the number of engines you want to display per layer (perLyr). If the
remainder is anything but 0, you'll need one more layer.

Let's use the values of the application. engines. length is 20, and perLyr is 4. Therefore,
variable [yrCount is 5. If | had used 21 engines, 21 / 4 = 5.25. A remainder of .25 indicates the need
for an extra layer, so /yrCount would be set to 6. Here is the code again:

lyrCount = Math.ceil (engines.length / perLyr);

The conditional operator performs exactly as described above. If the remainder is 0, set /yrCount to
engines.length/perLyr. Otherwise set lyrCountto

Math.ceil (engines.length/perLyr) . Determining /yrCountis important. Once
determined, enginelLinks () creates lyrCountlayers in lines 122-136:

for (var i = 0; 1 < lyrCount; i++) {
var engLinkStr = '<TABLE BORDER=0 CELLPADDING=0
CELLSPACING=0><TR>";
for (var 7 = 0; J < perLyr; j++) {
var imgIdx = (1 * perlyr) + 3J;
if (imgIdx >= engines.length) { break; }
var imgName = nameFormat (engines[imgIdx] [0]);
imagePreload (imgName, imgIdx) ;
engLinkStr += '<TD><A HREF="javascript: ' +
callSearch (document.forms[0] .elements[0] .value, ' +
imgIdx +
') ;" onMouseOver="hideStatus (); imageSwap (\'' + imgName

+ '\'I v +

imgIdx + ', 1); return true" onMouseOut="imageSwap (\'' +
imgName +

"\'", ' 4+ imgIdx + ', 0);"><IMG NAME="' + imgName + '"
SRC="" +
imgPath + imgName + 'out.jpg' + '" BORDER=0></TD>';

For each layer, engineLinks () declares local variable engLinkStr, which will contain the code
for each slide. After creating engLinkStr, which as you can see in line 123 starts the table that will
encapsulate the images, a nested for loop makes perLyr iterations to create the table cells that will
contain the image.

For each perLyr iteration, local variable imgldxis assigned the value (i * perLyr) + j. That
expression is simply an integer that starts at and is incremented by 1 at the beginning of every
iteration. imgldx will be used to identify the prefix of the images (which is the name of the search
engine in element in each array in engines) and then preload the images as discussed earlier. Table 4.1
offers a quick multiplication scheme when perLyr is 4.

Table 4.1. Calculating Layers to Display (perLayer is 4)

Wheniis... And j values at . .. (i * perLyr) + j keeps rising by 1. ..
0 0,1,2,3 0,1,2,3
1 0,1,2,3 4,5,6,7
2 0,1,2,3 8,9,10,11
3 0,1,2,3 12,13, 14,15
4 0,1,2,3 16,17, 18,19

There are 20 integers, 0-19.

JavaScript Technique: Math Versus Memory

Instead of some unnecessary expression suchas (i * perLyr) + 7, why notjustset
a variable—named, for example, count—set it to 0, and increment it every iteration, like
++count? Well, you certainly can. But why allocate more memory resources in declaring
an extra variable, even if it's local?

JavaScript already has the necessary values in i, perLyr, and j, to perform the desired
calculation. It might seem like a small issue here, but this can conserve precious memory
when coding larger applications.

Now that we know the value of imgldx, we have to make sure we haven't gone too far. Line 126
handles that:

if (imgIdx == engines.length) { break; }

Since the value of imgldx is incremented unconditionally each iteration, once it reaches the
engines. length, there are no more search engines to display links for, so the function will
"break" out of the for loop.

4.2.4.2 Preloading images

The time has come to preload the pair of images for each search engine. Before that happens, we need
to know the image prefix. Simply enough, the prefix is the lowercase version of the search engine
name. That is, the "InfoSeek" image prefix is infoseek; the HotBot image prefix is hotbot, and so on.
Variable imgldx identifies the correct image prefix in line 127:

var imgName = nameFormat (engines[imgIdx] [0]) ;

Element 0 of each array in engines contains the search engine name. Variable imgldx identifies the
correct element index in engines, which returns that search engine name. All that is left is to convert
all the letters to lowercase. Function nameFormat () does the trick at lines 158-161:

function nameFormat (str) {
var tempArray = str.split(' ");
return tempArray.join('').toLowerCase()

}

All whitespace is removed by splitting the string passed by whitespaces into array elements, then
joined. Now imgName has a lowercase, whitespace-free image prefix. It is ready to be passed with
imgldx to imagePreload () inline 128.

4.2.4.3 Building the link

Time to build a linked image with appropriate rollover code for each search engine. Enter lines 129-
135:

engLinkStr += '<TD><A HREF="javascript: ' +

'callSearch (document.forms[0] .elements[0] .value, ' + imgIdx
+)t

'onMouseOver="hideStatus (); imageSwap(\'' + imgName + '\', '
+ imgIdx +

', 1); return true" onMouseOut="imageSwap (\'' + imgName +
'\l’ |l +

imgIdx + ', 0);"><IMG NAME="' + imgName + '" SRC="' +
imgPath +

imgName + 'out.]jpg' + '" BORDER=0></TD>';

Let's consider this. Each search engine link will need the same four requirements:

Code that calls the appropriate search engine when the user clicks on the image

Code for the onMouseOver event handler that rolls over the image

Code for the onMouseOut event handler that rolls the image back

An IMG tag with a unique NAME and the SRC attribute set to the corresponding image path

bl S

Dissecting the string set to engLinkStr will reveal how each requirement is satisfied.

The first requirement is satisfied with the following code:

HREF="javascript:
callSearch (document.forms[0] .elements[0] .value, ' +
imgIdx + '");"

You can see that the link created, upon being clicked, will call function callSearch (), in which
document.forms[0] .elements[0] .value will be passed in along with the
corresponding value of imgldx. More on callSearch () soon. For now it's safe to say that
requirement 1 is in the bag.

The second requirement is satisfied by the following code:

'onMouseOver="hideStatus (); imageSwap (\'' + imgName + '\', ' +
imgIdx +
', 1), return true" ' +

This code handles creating the callto hideStatus () for clearing the status bar of annoying
URLs, then the call to imageSwap (), passing in the three necessary parameters imgName, imgldx,
and an integer (1) corresponding to the element in arrayHandles.

The third requirement is remedied like so:

'onMouseOut="imageSwap (\'' + imgName + '\', ' + imgIdx + ',
O);Il>' +

Not much of a change. The only appreciable difference is passing in 0 instead of 1.
And now for the fourth requirement:

'<IMG NAME="' 4+ imgName + '" SRC="' + imgPath + imgName +
'out.jpg' +
'" BORDER=0></TD>"';

The name of each image is set to the value of imgName. That is how it will be referenced in function
imageSwap (). The SRC attribute is set to the concatenation of imgPath, imgName, and out.jpg.
Since the images will start in the mouse-arrow pointer out position, the SRC tag is set to the images
corresponding with the out.jpg substring. For example, the opening image for HotBot is located at
images/hotbotout.jpg.

Lines 137-138 add the finishing touches:

engLinkStr += '</TR></TABLE>';
genLayer ('slide' + i, left, top, engWdh, engHgt, false,
engLinkStr) ;

That is, engLinkStr receives the HTML to close the table, and all that remains is to create the layer
with genLayer (). Notice that all calls to genLayexr () here pass in false. Remember that
passing in £alse hides the layer from view. All the layers are hidden until the page is loaded. Then
slide(is revealed in the onLoad event handler at line 201.

4.2.5 imageSwap()
You saw it Chapter 3, but this version is a bit different. Consider lines 179-182:

function imageSwap (imagePrefix, imagelndex, arrayldx) {

document [imagePrefix].src = eval (arrayHandles[arrayIdx] +
\Al [" _I_

imageIndex + "].src");

}

This function performs the image rollovers. Argument imagePrefix identifies the source of the image
to be switched. Arguments imagelndex and arrayldx are integers that properly access the correct
Image object in arrayHandles.

4.2.6 callSearch()

When the HTML form and the layers are in place, the user needs only enter search text and click the
search engine of choice. When users click a search engine image, function callSearch () gets
the call. Here it is in lines 184-193:

function callSearch (searchTxt, idx) {
if (searchTxt == "") {

parent.frames[2].location.href
escape (searchTxt) ;

engines[idx] [2] +

}
else {
parent.frames[2].location.href = engines[idx][1] +
escape (searchTxt) ;
}

callSearch () expects two arguments. searchTxtcontains the text entered in the text field, and
idx contains an integer that corresponds with the search engine information in the engines array. The
application loads one of two documents in frames [2] . If the user enters no search text,
frames [2] is loaded with the default home page of the search engine. This URL is contained in
element 2 of each array in engines. If, however, the user enters search text, the application loads
frames [2] with the URL and query string of the search engine, plus the escaped version of the
text the user entered.

JavaScript Technique: Using escape() and
unescape()

escape () is a built-in function in JavaScript that converts the non-alphanumeric
characters of a string to their hexadecimal equivalents. This ensures that reserved or
disallowed characters don't interfere with processing the string. For example, the ampersand
(&) is already used to separate name-value pairs of form fields. So every & the user enters
is replaced with %26. escape () is commonly used to format strings that you want to
submit as part of a URL query string. Whenever you submit a form, your browser takes care

of the work for you. Since this application doesn't use form submission, character
conversion must be added.

unescape () 1s handy when writing cookies. The plus sign (+) and equals sign (=) are
reserved to assign values to cookie attributes, such as name, domain, and expires. The
unescape () method, as you might guess, converts the hexadecimal representations
back to their ASCII equivalents.

You might be wondering where I got those lengthy query strings in element 1 of each array in engines.
Where could I possibly come up with those values?

Actually, I checked the source code of each search page and built the query string based on the HTML
form used to submit search text. Let's start with an easy example. MusicSearch.com has a single text
field for searching. The ACTION attribute of the form is
http://www.musicsearch.com/global/search/search.cgi. The name of the field is QUERY. Therefore,
the URL with query string should look like this:

http://www.musicsearch.com/global/search/search.cgi?QUERY= +
escape (searchTxt) ;

That's pretty easy. One name-value pair. Search engines can have plenty of options, though. Consider
the meta-search engine (one that searches other organizations' databases instead of its own)
SavvySearch. With SavvySearch, you enter search text, and then can use checkboxes to choose which
media to search, such as search engines, newsgroups, etc. You can also impose Boolean search rules,
set the number of results to return from each database, and choose the amount of information
displayed about each search result.

The ACTION attribute of the SavvySearch form is Attp.//numan.cs.colostate.edu: 1969/nph-search.
Here is a list of the required form elements:

e The name of the select list for Boolean searches is Boolean
e The name of the results count select list is Hits

e The name of the result amount radio buttons is df’

e The name of the text field is KW

I set the Boolean select list value to OR, the Hits select list value to 10, the results display button
dfvalue to norma 1, and the search text field KW to escape (searchTxt) . didn't invent
values OR, 10, and norma 1. Those are either option values in the select lists or radio button values,
all of which are in the HTML source code.

The form also contains two hidden fields, one with the name Mode, and the other with the name
AutoStep. The Mode HIDDEN field has the value MakePlan. The HIDDEN field AutoStep has the
value on. I'm not sure what purpose they serve, but that's not important. All you have to do is add
them to the query string. Submitting a query to SavvySearch, then, requires the following URL:

http://numan.cs.colostate.edu:1969/nph-search? ' +
classic=on&Boolean=0R&Hits=10&Mode=MakePlan&df=normal&AutoStep

=on&KW= +
escape (searchTxt)

http://www.musicsearch.com/global/search/search.cgi
http://www.musicsearch.com/global/search/search.cgi?QUERY=
http://numan.cs.colostate.edu:1969/nph-search
http://numan.cs.colostate.edu:1969/nph-search?

Another nice thing about "decrypting" the query strings is that the order of the name-value pairs
generally doesn't matter. As long as they are in the query string, things will work fine.

4.3 Potential Extension: Adding User Control

As mentioned earlier, this application leaves users at the "mercy" of the search engine defaults. That
is, users have little or no control over customizing their searches. The only thing the user has to enter
is the query text. You can code it so that users can also effect such features as the number of results to
return per page, the amount of information displayed with each result, or perhaps whether to impose
Boolean search rules with terms such as AND, OR, LIKE, and NOT LIKE. In this section, I'll use the
HotBot search engine as an example.

Perhaps the easiest way to extend functionality is to increase the number of results per page. You'll
need the name-value pair associated with the results per page for each search engine. Table 4.2 lists a
few names and possible values for several search engines.

Table 4.2. Search Engines and Variables for Determining the Result Count

Search Engine Field name Possible values Example
HotBot DC 10, 25,50, 100 |DC=10
InfoSeek Advanced Search |Numberresults |10, 20,25, 50 Numberresults=10
Scientific American Docs 10, 25,50, 100 |Docs=10
Yahoo! N 10, 20, 50, 100 |n=10

I pulled these field names from the source code of each search page. Some of the fields come from the
search engine's advanced search pages, so the URLSs in the engines array might not work. Keep in
mind, too, that the number of results might not be adjustable. The search engine coders may have it set
to a fixed number. If you don't see a select list on the search page that allows you to change the
number of results, you might contact the organization and ask someone if the results (and other
features, while you're at it) can be modified. Otherwise, you'll have to add some type of default that
doesn't pass in a results field for certain search engines.

Notice also that the possible values vary among search engines. You'll have to add code to compensate
for that. It's not difficult, though. Use the following procedure to add a search-results select list to your
application. Then use it as a general guideline to add other feature controls.

1. Add aselect list to the frame containing the text field.

2. Add an extra element in each new array containing the name of the results field for each
corresponding search engine in the engine array.

3. Andanextranew Array () containing possible values of the corresponding search engine
to each new array in the engines array.

4. Remove the predefined name-value pair from the query string (if the name-value pair exists in
the query string) .

5. Adjust the code in function callSearch () to correctly concatenate the query string for
each search engine.

Let's stick with the HotBot example.

Step 1

Adding the select list shouldn't be a problem. It might be wise to choose values most common
to all the search engines in your application. Here is the code using 10, 25, 50, and 100:

<SELECT NAME="docs">
<OPTION VALUE="10">10
<OPTION VALUE="25">25
<OPTION VALUE="50">50
<OPTION VALUE="100">100
</SELECT>

Step 2

As it stands, each instance of new Array () inthe engines array defines a search engine
with three elements: element 0 is the search engine name; element 1 is the search engine
query string; and element 2 is the search engine home page. Here is the HotBot record again:

new Array ('HotBot',
'http://www.hotbot.com/?MT=",
'http://www.hotbot.com/")

Set element 3 to the name of the field associated with HotBot. Recalling the previous table,
the field name is DC. Now the HotBot record looks like this:

new Array ('HotBot',
'http://www.hotbot.com/?MT=",
'http://www.hotbot.com/",
IDCI)

If one or more of your search engines doesn't have a results count (and, hence, a name-value
pair) that you can set, place null in element 3.

Step 3

Now that you have identified the respective name, add another array containing all the
allowable values. Do so by defining the new array in element 4. Referring again to the
previous table, the HotBot record would look like this:

new Array ('HotBot',
'http://www.hotbot.com/?MT=",
'http://www.hotbot.com/",
IDCI,
new Array (10, 25, 50, 100))
Step 4

This step applies only if the default query string in element 2 contains the name-value pair of
the results setting. Here is the query string for HotBot in element 2:

http://www.hotbot.com/?MT=

Since DC isn't there, we can skip step 4. Just as an example though, the search engine for
Scientific American does contain the name-value pair, which is docs=100. Take a look:

http://www.hotbot.com/?MT='
http://www.hotbot.com/'
http://www.hotbot.com/?MT='
http://www.hotbot.com/'
http://www.hotbot.com/?MT='
http://www.hotbot.com/'
http://www.hotbot.com/?MT=

Step 5

http://www.sciam.com/cgi-bin/search.cgi?' +
'searchby=stricté&groupby=confidence&docs=100&query=

You would need to take that out so it looks like this:

http://www.sciam.com/cgi-bin/search.cgi?' +
'searchby=stricté&groupby=confidence&query=

If one or more of your search engines doesn't have a results count (and, hence, a name-value
pair) that you can set, don't create a value for element 4.

The last item to handle is the decision-making code that constructs the query string before
passing it to the awaiting search engine. You can do this all in function callSearch ().
Here is the original code:

function callSearch (searchTxt, idx) {
if (searchTxt == "") {
parent.frames[2].location.href = engines[idx][2] +
escape (searchTxt) ;
}
else {
parent.frames[2].location.href
escape (searchTxt) ;

}

engines[idx] [1] +

If the user enters nothing in the query text form field, the application should still redirect the
user to the search engine home page. So the if block can stay the same. It's in the else block
that we need to focus attention:

else {
if (engines[idx] [3] !'= null) {
for (var i = 0; 1 < engines[idx][4].length; i++) {

var selRef =
parent.frames[4] .document.forms[0] .docs;
if (selRef.options[selRef.selectedIndex].value =

engines[idx] [4] [i].toString()) {
parent.frames[2].location.href = engines[idx] [1]
I
escape (searchTxt) + '&' + engines[idx][3] + '='
+
engines[idx] [4][1];
return;
}
}
parent.frames[2].location.href = engines[idx][1] +

escape (searchTxt) ;

http://www.sciam.com/cgi-bin/search.cgi?'
http://www.sciam.com/cgi-bin/search.cgi?'

Here is the line that adds the appropriate name-value pair to the query string:

parent.frames[2].location.href = engines[idx][1] +
escape (searchTxt) + '&' + engines[idx][3] + '='
engines|[idx] [4][i];

+

What you have here is the search engine URL plus the escaped searchTxt plus the name
(engines [idx] [3]) plus the value the user chose. However, this happens only after
two conditions are satisfied. If not, the search is set to the default query string defined in
element engines [idx] [1]. First, the search engine must have a results feature that you
can change. If so, the field is defined as the string in engines [1idx] [3]. Otherwise, that
element is set to null. This happens in step 3. The following if statement verifies that
engines [idx] [3] is not null:

if (engines[idx] [3] !'= null) {

If the value is equal to null, the first condition has failed. Therefore, the default query string is
used. [f engines [1dx] [3] does not equal null, JavaScript then iterates through the
number of acceptable values defined in the array at engines [idx] [4]. If the number
chosen in the select list, which is represented by
selRef.options[selRef.selectedIndex] .value, matches one of the
acceptable values in the array, JavaScript concatenates the user search engine URL and query
text with the name-value pair, then loads frames [2] with the document result, and stops
executing.

If the loop iterates through all acceptable values without encountering a match, the second
condition has failed, and the default query string is used instead.

Chapter 5. ImageMachine

Application Features JavaScript Techniques
®Dynamic Image Rollover Code Generator and ® JavaScrioting Defensivel
Viewer Ping y
®Code Accommodates Lesser JavaScript ®The Power of Global Variables
Browsers
®Flexible and Extensible HTML Attribute ® Search and Replace in JavaScript 1.1
Settings and 1.2
® Supports Image Rollovers for MouseDown
Events

Everywhere you look in these chapters, the applications are designed with one person in mind: the
user. You know, the ones we want to arrive like lemmings to our web sites, then bump up our traffic,
buy our stuff, and download our software. This application breaks the mold. This one's for you: the
developer, webmaster, or designer.

Although DHTML has enhanced the capabilities of what can happen when we put our mouse-pointer
arrows over some frame, widget, button or stylesheet, the image rollover is still one of the hottest and
most widely used techniques on the Net.

Generating the JavaScript to enable the rollovers isn't rocket science, but it sure would make life easier
to have an application that spews nicely formatted image rollover code. That way, we coders can just
drop it in our pages. Enter ImageMachine. Figure 5.1 shows the opening look as you open
ch05/index.html.

Figure 5.1. ImageMachine ready for action

ML

j {317 whas Miwad n

T Imvped sa-hursa - Hilnc apss
Fle E& o= G5 [ownecws Hep
S plnsbs L Lossion P: LR THT P A ek g T L L e 0 wein_repc e cion Sl

+ y 3 9 = o

=)
Seauch MWewaa Pt

Back. Plckoad [[Ea Tmcurily

briage P r_-

syl Hovrks [

ﬂ il [*?.’
3 e

ﬂ Magseloen

Fragess] Rt

rrasgys Fochors gyrisrraca by geasisien dasSonpl cadeoarg HTRL =eeded fe ereale rraps rmlavem. Ha's ol geo resd Te ged

riaried

all =i

o =

= ot bt

Dicideti Dk

wzan

= P e e O R
ol bt i e

ALs

« thw HREF abris

S

rrosgys Machors fasn gerarsden: cul-nn pands cecs yoo ean sxsly dop nin o weh poges 7o can sloe ses whal G pags
oake ik bafem pawdecsds in kmep the coda

PR = Y Y
P

The app is fairly easy to use. You just have to make a few decisions about your images. As Figure 5.1
indicates:

[un—

Choose the number of image pairs you want.

2. Set the default width, height, and border for all the images. (You can make individual
adjustments later).

3. Check the "MouseDown" option if you want to specify a third image for the onMouseDown
state. Otherwise, leave it blank.

4. Choose "Proceed" to continue or "Reset" to start over.

Once you've reached this point, ImageMachine generates a template as shown in Figure 5.2.

Figure 5.2. ImageMachine generates a custom template according to the options you
select

I Imageblsching - Naiscaps [-T2]]
Fle B ¥e= GF [ewwces Holos

f Mmbmaks 4 Lovaton et LAATHI Frclinstermsiem Dasaops L pbersbul fimaon_rachms/rdo vl =] T wteads Rind =
o A % = = b of i
Fack Tbad Hame Gamch Mo Poi ek

Image Fais |:_;| AT |.:.:—;| Magseloen &
ek "l_Ll Haght m Frocisd Fereae

Chaags 51 st (be palbs of ol osages i the colime s Beles, A8d e ink path (e, Teb_psge Brsl) or soipl teel fe g, 18msscrapt ;) far soach HREF
aribte, el enier any meseage you went (e disghy in e e bar duieg the Eceselescr et Then chaate Gararie 1 g your code, of P rewbes
[CE I T

¥ Frimary Fath Ralkover Fath MouseD own Path

1 FEroagr_rabrrnag=ad Il\nllr:l |11.-._.—_-r~-----.-l.--.lllm\-'-:l..:l
[reamsi HEFF [oe=si Siates Bar Tanl [Wit | aight [et
O TRl T [l eeerr——— | [T err———y TR |
[o HREF e Statuslar Tawt = Walk [Heght | Border
I e marrrrapmaa e Banie] e s e e o BiowaE. Frem merraaageninn 0 Bivwet. .
=
o <k Do Dowe B Wa o LA W
Hiawt| Bt sovdude | [Imagel achias - Hais [T LT

If you didn't select the "MouseDown" option, you'll have two HTML file fields for each image group:
one for the primary image and one for the rollover image. If you selected the "MouseDown" option,
an extra corresponding file field will also appear. Each image also comes with fields to enter the
HREF attribute for each link and any status text to be displayed in the status bar when users pass the
mouse-pointer arrows over the link. Finally, three small text fields contain the value of the default
width, height, and border values of each image group—yours for the changing. Take the final few
steps to get the code you need:

1. Enter the paths of each primary image (the one displayed when the pointer arrow is
elsewhere) in the file fields. They are file fields instead of text fields because your images
might be on your local machine. You can change the URL info once you're satisfied with the
code. Do the same for each rollover image and mousedown image, if you have any.

2. Enter a relative or absolute URL in the text field associated with HREF for each image group.

3. In the "Status Bar" text field, enter any status bar text you want displayed when the user
passes the mouse pointer arrow over the link.

4. Make any adjustments to the individual width, height, and border attributes in their respective
text fields.

5. Choose "Generate" to see the code or "Preview" to see how the code works in your browser.

- Figure 5.3 shows ImageMachine after "Generate" is chosen. Check out the JavaScript and HTML, all
well commented. Notice that for each image group you specify, ImageMachine generates the code to
preload the images and set them up for the rollover. The ensuing HTML include+s corresponding A
HREF and IMG tags, fully loaded with event handlers and image attributes.

Figure 5.3. See the code you just created

T T =1]
Flo B Ye= (p [owunces Heo
|l mbmaka f Locaton [l AT Frolienscrnsinon Lo borti i mage_rachnnineo vl =] T wteads Rind n

« » A A =2 o =+ o @
[Pbad Hwe Gesch Miews Pai ek

- Image Fais |:—:| WAL |.:.:—;| MaggeLoen &
ImEl S o cnine SR

T AT CRSH M O Dedon (00 HTIA Bk T (004 S0 (BResanis IBvmmfian Wil Ak

“HIFL>
HEAL
TITLExImage Machaes Cods <TIMLE =

ST LAMGUMAGE="Jawsorgt™ >

flehal virablas o a5t 10
o 2 POl = Fialik,
W NS R Y

ralAFT=
ECRIPT LAMNGUWGEE =" lgvaTonpt .17

N e Caa®a Bver 1 L n SeweSongt 1
e el D = I,

N Frrvary aed mllverimage aeoresa Wl
Fwichl
swtehlonk s =% FITFred
Fwlc R comr = e e D=0 5T
FelL i e g = ¥ LU R

N Pravsty @l 1 b isage seces 00
wderCeul = e lmagal0 50
werlcloud aic = Wi
radrtiiomm = arw imngsl

L e L R %

of =i Deoaribom B B R TR R

[T e B

You'll notice two more buttons at the bottom of the screen. "Preview" lets you see the code in action.
"Change Info" lets you go back to the template and make changes. Figure 5.4 shows the interpreted
code displaying the images and their preloaded rollover counterparts.

Figure 5.4. Choose "Preview" or "Change Info" for more options

B Il s hies - Hislncaps [_[a] -]
Fle B Y= s [owunces el

" Ambawks f Locaton et DRI HT il decrmm oL asop L pberst b lrmage_rachnsinae el =] {3 s Riwied n
] A % A = b &F @
Fack Fsleaed Hav famch Heuaigs Paa Y

— Inage Paks m [T m Wl B
-m- B [=] oot BT =] | Frecead Rt

T LA FALSTR - BALAT, ROV SIS T R,
-
W3 BAL= foh F 2 2

MAME= imAlchl
PADTH=
HELHT=
BORDE Gl
e Ll &3
<&, HREF"j
antba s dOnar s g Swip Ewlch T, e, fab) diipl iyl I vt
antlasuniut=Trnage Swap] vl war, lusi; dupbr)

antda pnaDomorm-teliawr=ta o, rageSaaleaicn deer, inel s

1]
-]
| —

Framaw Chasge kia
R Diecume Durd B Ma 052 FRl 8
] | e—r———. o BER

One of the most powerful things about this generated code is that it reduces performance according to
the JavaScript capability of the browser in which it is viewed. In other words, browsers that support
JavaScript 1.2 and higher will perform both onMouseOver-, onMouseOut-, and onMouseDown-related
rollovers. JavaScript 1.1 capable browsers will fire only the onMouseOut- and onMouseOver-related
rollovers. JavaScript 1.0 capable browsers execute only the code for setting the status bar text.

And how's this for bandwidth-friendly? Only the images that will actually be used are downloaded. If
the browser can't use it, it won't have to download it. JavaScript 1.1 browsers won't preload any
images associated with the onMouseDown event. JavaScript 1.0 capable browsers won't preload any
of the images!

5.1 Execution Requirements

Although the code generated will run in any JavaScript-capable browser, you, the developer, must use
a JavaScript 1.2-capable browser. Some string replacement and other code requires 1.2. As far as
scalability goes, you can create the code for as many rollovers as your system resources can
accommodate. The maximum is currently set to 50 groups, which is more than I think I'll ever have on
one page, but to each his own.

By the way, the interface is designed to be viewed with a monitor resolution of at least 1024 x 768.
The requirements of both the image template and the code demand the extra page width.

5.2 The Syntax Breakdown

Before we consider any code, it might be a good idea to get a visual sense of the program flow. Figure
5.5 illustrates the basic flow from beginning to end. Basically, you begin by creating your image form
and setting the specs for each rollover. Then you can toggle back and forth between previewing,

making changes, and generating the code. When you see what you like, copy and paste the generated
code.

ImageMachine has three files: a frameset page and two content pages. The frameset is named
index.html, and contains files nav.html and base.html. index.html has neither JavaScript nor any
surprises. Brace yourself; here are all nine staggering lines, shown in Example 5.1.

Example 5.1. index.html

1 <HTML>

2 <HEAD>

3 <TITLE>ImageMaChine</TITLE>

4 </HEAD>

5 <FRAMESET ROWS="105, *" FRAMEBORDER="0" BORDER="0">
6 <FRAME SRC="nav.html" NAME="nav" SCROLLING=NO>

7 <FRAME SRC="base.html" NAME="base">

8 </FRAMESET>

9 </HTML>

Figure 5.5. The ImageMachine logic

Saleet image count,
dimensioms, and
barders

Generals irmg'efm'm

Enter image paths,
HREFs, and sfatus
Dar fext

L]

Generate, preview,
o clear

If you look at base.html, you'll see more static HTML. Before we get to nav.html, shown in Example
5.2, it's important to understand a few things about the code you're about to see. It's long (400+ lines)
and somewhat hard to read, but not all that complicated.

Example 5.2. nav.html

1 <HTML>

2 <HEAD>

3 <TITLE>ImageMachine</TITLE>

4 <SCRIPT LANGUAGE="JavaScriptl.2">

5

6 var platform = navigator.platform;

7 wvar 1lb = (platform.indexOf ("Win" != -1) ? "\n\r" :
8 (platform.indexOf ("Mac" != -1) 2 "\r" : "\n"));
9 wvar fontOpen = '';
10 wvar fontClose = '';
11
12 function genSelect (name, count, start, select) {

13 var optStr = "";

14 for (var h = start; h <= count; h++)
15 optStr += "<OPTION VALUE=" 4+ h +
16 (h == select ? " SELECTED" "
17 }
18 document .write ("<SELECT NAME="

+ "</SELECT>") ;
19 }
20
21 function captureDefaultProfile (formOb7j)

22 setArrays () ;
23 imgDefaults = formObj;
24 var imgQty =

(imgDefaults.imgnumber.selectedIndex + 1);
25 var imgHeight
(imgDefaults.pxlheight.selectedIndex) ;
26 var imgWidth
(imgDefaults.pxlwidth.selectedIndex) ;
277 var imgBorder
(imgDefaults.defbdr.selectedIndex) ;

28 for (var i = 0; i < imgQty; i++) {
29 imgPrim[i] = "";

30 imgRoll[i] = "";

31 imgDown[i] = "";

32 imgLink[i] = "";

33 imgText[i] = "";

34 imgWdh[i] = imgWidth;

35 imgHgt[i] = imgHeight;

36 imgBdr[i] = imgBorder;

37 }

38 generateEntryForm() ;

39 }

40

41 function setArrays() {

42 imgPrim = new Array();

43 imgRoll = new Array();

44 imgDown = new Array();

45 imgLink = new Array();

46 imgText = new Array();

47 imgWdh = new Array();

48 imgHgt = new Array();

49 imgBdr = new Array();

50 }

51

52

53 function generateEntryForm() {

54 with (parent.frames[1l].document) {
55 open() ;

56 writeln ("<HTML><BODY BGCOLOR=FFFFEE><FONT

FACE=Arial SIZE=2>" +

{

+

+ name +

{

">"

">"

+ h;

+ optStr

57 "<BLOCKQUOTE>Choose or enter the paths of all

images in the " +

58 "columns below. Add the link path (e.g., " +

59 "web page.html) or script text (e.g.,
" +

60 "Javascript:) for each HREF attribute,
and enter any " +

61 "message you want to display in the status bar
during the " +

62 "MouseOver event. Then
choose " +

63 "Generate to get your code, or
Preview to see the " +

64 "code in action.</BLOCKQUOTE><FORM
NAME='imgProfile' " +

65 "onSubmit='return false; '><CENTER><TABLE
BORDER=0 ALIGN=CENTER " +

66 "CELLSPACING=5 CELLPADDING=5><TH
ALIGN=LEFT>#" +

67 "<TH ALIGN=LEFT>Primary Path" +

68 "<TH ALIGN=LEFT>Rollover Path"
+

69 (imgDefaults.mousedown.checked ? "<TH
ALIGN=LEFT>" +

70 "MouseDown Path" : "") +

71 "<TR><TD>
</TD></TR>") ;

72 }

73

74 for (i = 0; 1 < imgPrim.length; i++) {

75 with (parent.frames[1l].document) {

76 writeln ("<TR>" +

777 "<TD><CENTER>" + (i +
1) +

78 "</CENTER><TD VALIGN=BOTTOM><FONT FACE=Arial
SIZE=2>" +

79 "<INPUT TYPE=FILE NAME='prim" + i + "' VALUE="'"
+ imgPrim[i] +

80 "'><TD VALIGN=BOTTOM><FONT FACE=Arial
SIZE=2><INPUT TYPE=FILE " +

81 "NAME="'seci" + i + "' VALUE='" 4+ imgRoll[i] +
mwi >" _I_

82 (imgDefaults.mousedown.checked ? "<TD
VALIGN=BOTTOM><FONT " +

83 "FACE=Arial SIZE=2><INPUT TYPE=FILE NAME='down"
+ i + "' VALUE='" +

84 imgDown [i] + "'>" : "") + "<TR><TD

VALIGN=BOTTOM><FONT " +
85 "FACE=Arial SIZE=2> </TD>" +

86 "<TD VALIGN=BOTTOM><FONT FACE=Arial

SIZE=2><INPUT TYPE=TEXT " +

87 "NAME="href" + 1 + "' VALUE='" + imgLink[i] +
mw > \AJ +

88 "<TD
VALIGN=BOTTOM><FONT FACE=Arial " +

89 "SIZE=2><INPUT TYPE=TEXT NAME='stat" + i + "'
VALUE='" +

90 imgText[1i] + "'>
"ot

91 (!imgDefaults.mousedown.checked ?"<TR>" : "") +

92 "<TD VALIGN=BOTTOM>" +

93 (!imgDefaults.mousedown.checked *?

94 "</TD><TD VALIGN=BOTTOM><FONT FACE=Arial
SIZE=2>" : "") +

95 "<INPUT TYPE=TEXT NAME='wdh" + i + "' VALUE='" +

96 imgWdh([i] + "' SIZE=3> " +

97 " <INPUT TYPE=TEXT NAME='hgt" + i + "'
VALUE='" +

98 imgHgt[1i] + "' SIZE=3>
 " +

99 (!imgDefaults.mousedown.checked *?

100 "<TD VALIGN=BOTTOM>"
\AJ ") +

101 "<INPUT TYPE=TEXT NAME='bdr" + i + "' VALUE='" +
imgBdr[i] +

102 "' SIZE=3> " +

103 "<TR><TD VALIGN=BOTTOM COLSPAN=" +

104 (!imgDefaults.mousedown.checked ? "3" : "4") +

105 ">
<HR NOSHADE>
</TD></TR>") ;

106 }

107 }

108

109 with (parent.frames[1l].document) {

110 writeln ("</TABLE><CENTER><INPUT TYPE=BUTTON " +

111 "onClick="'parent.frames[0].imgValid8 (this.form,
true);" " +

112 "VALUE='"'Generate'><INPUT TYPE=BUTTON " +

113 "onClick="'parent.frames[0].imgValid8 (this.form,
false);"' " +

114 "VALUE='"Preview'> <INPUT TYPE=RESET VALUE='
Clear ST+

115 "</FORM></BODY></HTML>") ;

116 close ()

117 }

118 }

119

120 function imgValid8 (imgTemplate, mimeType) {

121 for (var 1 = 0; i < imgPrim.length; i++) {

122 if (imgTemplate['prim' + i].value == "" ||

123 imgTemplate['seci' + i].value == "" |[|

124 imgTemplate['href' + i].value == "") {

125 alert ("All images and HREF attributes must have
URLs.") ;

126 return;

127 }

128 if (imgDefaults.mousedown.checked) {

129 if (imgTemplate['down' + i].value == "") {

130 alert ("All images and HREF attributes must
have URLs.");

131 return;

132 }

133 }

134 }

135 genJdavaScript (imgTemplate, mimeType) ;

136 }

137

138 function gendJavaScript (imgTemplate, mimeType) {

139 imagelLinks = '';

140

141 if (mimeType) {

142 1t = "glt;";

143 gt = ">";

144 br = "
";

145 HTML = true;

146 nbsp = " ";

147 }

148 else {

149 1t = "<,

150 gt = ">",

151 br = lb;

152 HTML = false;

153 nbsp =" "

154 }

155

156 if (imgTemplate != null) {

157 setArrays () ;

158 for (var 1 = 0; 1 <
(imgDefaults.imgnumber.selectedIndex + 1); i++) {

159 imgPrim[i] = purify(imgTemplate['prim' +
i] .value) ;

160 imgRoll[i] = purify(imgTemplate['seci' +
i] .value) ;

le6l if (imgDefaults.mousedown.checked) {

162 imgDown[i] = purify(imgTemplate['down' +

i] .value) ;
163 }

164 imgLink[i] = purify(imgTemplate['href' +
i] .value) ;

165 imgText[i] = purify(imgTemplate['stat' +
i]l.value);

166 imgWdh[i] = purify(imgTemplate['wdh' +
i].value) ;

167 imgHgt[1i] = purify(imgTemplate['hgt' +
i].value);

168 imgBdr[i] = purify(imgTemplate['bdr' +
i].value) ;

169 }

170 }

171

172 if (HTML) {

173 primJavaScript = "<HTML><HEAD><TITLE>Image Machine
Code</TITLE>" +

174 "</HEAD><BODY BGCOLOR=FFFFEE>"
I

175 "<I>Cut and paste the code below into an HTML
file. The blue " +

176 "code represents information you provided.</I>"
+

177 "

" +

178 1t + "HTML" 4+ gt + "
" + 1t + "HEAD" + gt +
"
" +

179 1t + "TITLE" + gt + "Image Machine Code" + 1t +
"/TITLE" + gt;

180 }

181 else {

182 primJavaScript = "<HTML><HEAD><TITLE>Image Machine
Code</TITLE>";

183 }

184

185 primJavaScript += br + br + 1t + "SCRIPT
LANGUAGE=\"JavaScript\"" +

186 gt + br + br + "// Define global variables in
JavaScript 1.0" + br +

187 "var canRollOver = false;" + br + "var
canClickDown = false;" + br +

188 br + 1t + "/SCR" + "IPT" + gt + br + br + 1t +

189 "SCRIPT LANGUAGE =\"JavaScriptl.I1\"" + gt + br +
br +

190 "// Change canRollOver to true in JavaScript 1.1"
+ br +

191 "canRollOver = true;" + br + br;

192

193 secJdavaScript = 1t + "SCRIPT

LANGUAGE=\"JavaScriptl.2\"" + gt + br +

194 br + "// Change canClickDown to true in JavaScript
1.2" + br +

195 "canClickDown = true;" + br + br;

196

197 for (var 7 = 0; J < imgPrim.length; J++) {

198 primJavaScript += "// Primary and rollover image
sources #" +

199 (j + 1) + br +"switch"™ + (j + 1) + "out = new
Image (" +

200 (HTML ? fontOpen : "") + imgWdh[j] +

201 (HTML ? "," : ", ") +

202 (HTML ? fontOpen : "") + imgHgt[j] +

203 (HTML ? fontClose : "") + ™); " + br + "switch"
+ (3 + 1) +

204 "out.src = '"" +

205 (HTML ? fontOpen : "") +

206 (imgPrim[]j].indexOf (":\\") != -1 ?
pathPrep (imgPrim[j])

207 imgPrim[j]) +

208 (HTML ? fontClose : "") + "';" 4+ br + "switch" +
(3 + 1) +

209 "over = new Image (" +

210 (HTML ? fontOpen : "") + imgWdh[j] +

211 (HTML ? "," : ", ") +

212 (HTML ? fontOpen : "") + imgHgt[j] +

213 (HTML ? fontClose : "") + "™); " + br + "switch"
+ (3 + 1) +

214 "over.src = '" +

215 (HTML ? fontOpen : "") +

216 (imgRoll[j].indexOf (":\\") != -1 2
pathPrep (imgRoll[j])

217 imgRoll1[j]) +

218 (HTML ? fontClose : "") + "';" 4 br + br;

219

220 if (imgDefaults.mousedown.checked) {

221 secJavaScript += "// MouseDown image source #" +
(3 + 1) + br +

222 "switch" + (3 + 1) + "down = new Image (" +

223 (HTML ? fontOpen : "") + imgWdh[j] +

224 (HTML ? ","™ : ", ") +

225 (HTML ? fontOpen : "") + imgHgt[j] +

226 (HTML ? fontClose : "") + "); " + br +
"switch" +

227 (3 + 1) + "down.src = "'" +

228 (HTML ? fontOpen : "") +

229 (imgPrim[j] .indexOf (":\\") != -1 ?
pathPrep (imgDown[]])

230 imgDown[j]) +

231 (HTML ? fontClose : "") + "';" 4+ br + br;

br

+

232
233
234
|

235
236
237
238
239
240
241
+

242
243
244
245

246
247
248
249
250
251
252

253
254

255
256
257
258
259
260

261
262
263
|

264
265
266

267
.I_
268

269
270

}

imagelLinks += 1t + "!-- <I> Image Link #" +

(3 +

" </I>//--" + gt + br + 1t + "A HREF=\"" +

(HTML ? fontOpen
(HTML ? fontClose

"onMouseOver=\"imageSwap ('switch" +

", 'over', false);
(HTML ? fontOpen
(HTML ? fontClose

"w ")

"w ")

+ imgLink[]] +

nvv) + u\n "o br + anp +

(7 + 1) +
display('" +

+ imgText[]] +

nvv) + "l); return true;\"" +

nbsp + "onMouseOut=\"imageSwap ('switch" +

(3 +1) + "', 'out',

false); display('");\"" +

(imgDefaults.mousedown.checked *?
br + nbsp + "onMouseDown=\"isDown=!isDown;
imageSwap ('switch" +

G +1 + ",
gt + br + 1t + "IMG
(HTML ? fontOpen
(HTML ? fontClose

'down',

" ")

true) ,. \u "

SRC:\HH +

+ pathPrep (imgPrim[j]) +
+ "\"" + br + nbsp +

"") _l_

"")

"NAME=switch" + (J + 1) + br + nbsp + "WIDTH=" +
(HTML ? fontOpen "") + imgWdh[]] +
(HTML ? fontClose "") + br + nbsp + "HEIGHT="
(HTML ? fontOpen "") + imgHgt[j] +
(HTML ? fontClose "") + br + nbsp + "BORDER="
(HTML ? fontOpen "") 4+ imgBdr[j] +
(HTML ? fontClose "y o+
gt + "" + 1t + "/A" + gt + br + br + br;
}
scriptClose = br + 1t + "/SCR" + "IPT" + gt + br +
swapCode = br + 1t + "/SCR" + "IPT" + gt + br + br +

1t + "SCRIPT LANGUAGE

=\"JavaScript\"" + gt + br +

(imgDefaults.mousedown.checked ?

"var isDown = false;

" + br + br "y 4+

"// Conditionally perform the rollovers in
JavaScript 1.0" + br +

"function imageSwap (imageName,

nbsp + "if

(!canRollOver)

imageSuffix) {" +

{ return; }" + br + nbsp

(imgDefaults.mousedown.checked ?

"if (!isDown) {

" 4+ br + nbsp + nbsp

" ") +

271 "document [imageName] .src = " +

272 "eval (imageName + imageSuffix + \".src\");" + br +
nbsp +

273 (imgDefaults.mousedown.checked ? nbsp + "}" + br +
nbsp +

274 "else if (canClickDown) {" + br +

275 nbsp + nbsp + "document[imageName].src = " +

276 eval (imageName + imageSuffix + \".src\");" + br +

277 nbsp + nbsp + "}" + br + nbsp : "") + "}" + br +
br +

278 "function display(stuff) { window.status = stuff;
o+

279 br + br + 1t + "/SCR" + "IPT" + gt + br;

280

281 primiHTML = br + 1t + "/HEAD" + gt + br +

282 1t + "BODY BGCOLOR=FFFFEE" +

283 gt + br + br + (HTML ? "" : "") +
1t +

284 "l-— <I> Image Code Begins </I> //--" + gt + br +

285 (HTML ? fontClose : "") + br + br;

286

287 secHTML = (HTML ? "" : "") +

288 1t + "!-- <I> Image Code Ends</I> //--" + gt +

289 (HTML ? fontClose : "") + br + br +

290 (HTML 2 1t + "/BODY" + gt + br + 1t + "/HTML" + gt

"") +

291 br + br + "<CENTER><FORM>" + br +

292 "<INPUT TYPE=BUTTON
onClick='"'parent.frames[0] .genJavaScript (null, " +

293 (HTML ? "false" : "true") + ");' VALUE='" +

294 (HTML ? 'Preview' : 'Generate') +
"'> "+

295 "<INPUT TYPE=BUTTON " +

296 "onClick="'parent.frames[0].generateEntryForm();" "
+

297 "VALUE='Change Info'>" + br + "</FORM></CENTER>" +
br + br +

298 "</BODY></HTML>";

299

300 agregate = primJavaScript +

301 (imgDefaults.mousedown.checked ? scriptClose +
secJavaScript : "") +

302 swapCode + primHTML + imagelLinks + secHTML;

303

304 parent.frames[1l].location.href =

305 "jJavascript: parent.frames[0].agregate";

306 }

307

308
"))
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326

function purify(txt) { return txt.replace(/\'|\"/g,

function pathPrep (path) {
if (path.indexOf (":\\") != -1) {
path = path.replace(/\\/g, "/");
path = path.replace(/:\//, "I|/");
return "file:///" + path;
}
else { return path; }

}

</SCRIPT>
</HEAD>
<BODY BGCOLOR=FFFFEE>
<FORM>
<TABLE BORDER="0">
<TR>
<TD VALIGN=MIDDLE>
<IMG SRC="images/image machine.gif" WIDTH=275

HEIGHT=56 HSPACE=25>

327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354

</TD>
<TD>
<!-- Create a the default template //-->
<TABLE BORDER="0" ALIGN="CENTER">
<TR>

<TD VALIGN="TOP">

Image Pairs

</TD>

<TD VALIGN="TOP">

<SCRIPT LANGUAGE="JavaScriptl.2">
<l--

genSelect ("imgnumber", 50, 1, 1);
[/ ==>

</SCRIPT>

</TD>

<TD VALIGN="TOP">

Width

</TD>

<TD VALIGN="TOP">

<SCRIPT LANGUAGE="JavaScriptl.2">

<l --
genSelect ("pxlwidth", 250, 0, 90);
//==>

</SCRIPT>

355 </TD>

356 <TD VALIGN="TOP">

357

358 MouseDown

359 </TD>

360 <TD VALIGN="TOP">

301

362 <INPUT TYPE=CHECKBOX NAME="mousedown">
363 </TD>

364 </TR>

365 <TR>

366 <TD VALIGN="TOP">

367

368 Border

369 </TD>

370 <TD VALIGN="TOP">

371

372 <SCRIPT LANGUAGE="JavaScriptl.2">
373 <lP--

374 genSelect ("defbdr", 10, 0, 0);

375 //==>

376 </SCRIPT>

377 </TD>

378 <TD VALIGN="TOP">

379

380 Height

381 </TD>

382 <TD VALIGN="TOP">

383

384 <SCRIPT LANGUAGE="JavaScriptl.2">
385 <l--

386 genSelect ("pxlheight", 250, 0, 50);
387 /) ==>

388 </SCRIPT>

389 </TD>

390 <TD VALIGN="TOP">

391

392 <INPUT TYPE=BUTTON VALUE="Proceed"
393 onClick="captureDefaultProfile (this.form) ;">
394 </TD>

395 <TD VALIGN="TOP">

396

397 <INPUT TYPE=RESET VALUE=" Reset ">
398 </TD>

399 </TR>

400 </TABLE>

401 </TD>

402 </TR>

403 </TABLE>

404 </CENTER>
405 </FORM>
406 </BODY>
407 </HTML>

That's the most code per application so far. Some of this looks confusing, but it isn't as bad as it
seems. To best understand ImageMachine, let's run through the application from a typical user
experience. Consider this five-step scenario:

1. The pages load.
The user enters the image pairs and defaults, then chooses "Proceed."

3. The user fills in the image paths, HREF attributes, etc, then chooses "Generate" to see the
code.

4. The user chooses "Preview" to watch the code in action.

5. The user chooses "Change Info" to make changes.

5.2.1 Step 1: The Pages Load

Everything seems fairly normal. A frameset named index.html, and two frame fillers named
nav.htmland base.html. JavaScript, however, is going to do some work even before the user has a
chance to do anything. I call your attention to lines 323-403. Here you'll see the code for a table with
several JavaScript function calls in the data cells. For example:

<TD VALIGN="TOP">

Image Pairs

</TD>

<TD VALIGN="TOP">

<SCRIPT LANGUAGE="JavaScriptl.2">
<!I--

genSelect ("imgnumber", 50, 1, 1);
//==>

</SCRIPT>

</TD>

<TD VALIGN="TOP">

Width

</TD>

<TD VALIGN="TOP">

<SCRIPT LANGUAGE="JavaScriptl.2">
<!I--

genSelect ("pxlwidth", 250, 0, 90);
//==>

</SCRIPT>

</TD>

The calls to function genSelect () use JavaScript to dynamically create select lists. Each of the
select lists allows you to set default values for the image attributes. Select lists work better here than

text fields because you don't have to worry about form validation as much. The user can't enter an
incorrect value (such as a non-numeric value) for a border or image width because he or she must
select from the numbers provided in the lists. But who wants to hard-code a select list with 250 or 300
different options, one for each number? Suppose you had to change the number of options. JavaScript
can help with a call to genSelect () for each select list we want to make. Look at lines 12-19:

function genSelect (name, count, start, select) {
var optStr = "";
for (var h = start; h <= count; h++) {
optStr += "<OPTION VALUE=" + h +
(h == select ? " SELECTED" : "") + ">" + h;
}
document.write ("<SELECT NAME=" + name + ">" + optStr +
"</SELECT>") ;
}

genSelect () expects four arguments—a string containing a name for the select list, the number
of the highest valued option, the integer at which to start displaying the numbers (incrementing by 1
thereafter), and a number specifying which option to be selected. genSelect () simply iterates
from start to count, creating a string of <OPTION> tags. When that ends, JavaScript writes that
string between the <SELECT> tags to the document. Now the pages are loaded and ready to go. Let's
see what happens when the user enters the defaults.

5.2.2 Step 2: Entering the Image Pairs and Defaults

Notice in Figure 5.1 that the user sets the defaults with four select lists and a checkbox. The most
important setting is the number of image pairs. ImageMachine allows you to choose from 1 to 50
pairs. I doubt you'll ever need 50, but a little overkill never hurt anyone.

The user can then select the default pixel width and height for all of the image pairs. Each of these
selectlists has pixel ranges from 1 to 250. You might want to change this later, but it'll work for now.
The default width and height selected are 90 and 50, respectively. This is a nice rectangle size for a
button.

The last of the selectlists is used to set the border, which ranges from to 10 pixels. Most people will
always want it set at 0, but I've seen rollovers with image borders.

Checking the checkbox allows the user to add an image rollover feature for the onMouseDown event
handler, supported in JavaScript 1.2 and the later DOMs of NN and MSIE. All the user has to do is
choose "Proceed" to generate an image template according to the information he or she has just
provided.

5.2.3 Step 3: Filling in Image Paths, HREF Attributes, and More

Once the user chooses "Proceed," ImageMachine generates a custom image template as shown in
Figure 5.2. ImageMachine utilizes three functions to create the custom template:
captureDefaultProfile (), setArrays (),and generateEntryForm().

5.2.3.1 captureDefaultProfile()

Function captureDefaultProfile () is called first when the user chooses "Proceed." Here
are lines 21-39:

function captureDefaultProfile (formObj) {
setArrays () ;
imgDefaults = formObj;
var imgQty = (imgDefaults.imgnumber.selectedIndex + 1);
var imgHeight (imgDefaults.pxlheight.selectedIndex) ;
var imgWidth (imgDefaults.pxlwidth.selectedIndex) ;
var imgBorder = (imgDefaults.defbdr.selectedIndex) ;
for (var 1 0; 1 < imgQty; i++) |
imgPrim]| =
imgRoll [
imgDown [
imgLink [
imgText [
i
i
i

wi o,
14

— nw,
’

wi o,
14

]
]
] j— " ";
]
]

= imgWidth;
imgHeight;
imgBorder;

imgWdh [
imgHgt [
imgBdr [
}
generateEntryForm() ;

}

i
i
i
i
i
]
]
]

The first action that captureDefaultProfile () takesis to call function setArrays ().
Shown in lines 41-50 below, setArrays () declares and initializes eight arrays. Each array is
responsible for holding the specific attribute values of each image group. For example, imgPrim
contains the image paths for all the primary image rollovers. imgRoll contains all the image paths for
the rollover images (for the onMouseOver event handler), and so on. If the arrays have not already
been declared, setArrays () takes care of that. If the arrays have been already declared (the user
has generated image code before), this resets the arrays to containing zero elements.

function setArrays() {
imgPrim = new Array(
imgRoll = new Array(
imgDown new Array (
imgLink = new Array(
(

(

(

(

14

14

4

14

)
)
)
)
) .
)
)
)

imgText new Array
imgWdh new Array
imgHgt = new Array
imgBdr
}

14

’

4

14

new Array

After setArrays () returns, captureDefaultProfile () continues by copying the form
object formObj to variable imgDefaults. This is important: imgDefaults is global. It doesn't "die" like
the many other local variables in this application, so it keeps a copy of the user's defaults if he or she
wants to toggle between previewing or generating the code, or changing the image attributes. This is
the only place in the application where imgDefaults is set. That means the only way users can change
their defaults is to choose "Proceed" again.

Once ImageMachine has a copy of the user defaults, captureDefaultProfile () declares
four local variables. Here they are:

(imgDefaults.imgnumber.selectedIndex + 1);
(imgDefaults.pxlheight.selectedIndex) ;
(imgDefaults.pxlwidth.selectedIndex) ;
(imgDefaults.defbdr.selectedIndex) ;

var imgQty =
var imgHeight
var imgWidth
var imgBorder =

imgQtyrepresents the number of rollovers that the user wants. imgHeight, imgWidth, and
imgBorderrepresent the default width, height, and border settings. These variables enable the function
to assign values to those arrays declared in setArrays (). Here are lines 28-37:

for (var
imgPrim
imgRoll
imgDown

i 0; i < imgQty; i++) |

(1] =

[1

[1
imgLink[i

[1

i]

i]

i]

mwi
14

mwi
14

j— mwi
14

]

] =

] = nn.
]

]

mwim
14

imgText
imgWdh [
imgHgt [
imgBdr [
}

imgWidth;
= imgHeight;
= imgBorder;

The for loop makes as many iterations as the user wants rollovers, assigning attributes to each of the
declared arrays. imgPrim holds the paths for the MouseOut events. imgRoll holds the values of the
MouseOver events, and imgDown holds the paths for the MouseDown events. imgLink and imgText
hold the values of the HREF attributes and the status bar text, respectively. Since the user will set the
value for the first five elements individually in the image template, each element in these five arrays
initially receives an empty string.

All elements in the remaining three arrays will be set alike. The default width is the same for all
images. So are the default height and border. The user can change these later, but for now they are set
equally.

5.2.3.2 generateEntryForm()

The last thing to do in the function is to call generateEntryForm (). That's where the real fun
begins. This function is solely responsible for creating a custom image template in HTML for the user
to enter specific data about each image group. Take a look at lines 53-118.

Sixty-six lines of code for one function. That probably violates every programmer's size limits for a
function. However, generateEntryForm () still performs only one operation: making the
image template. It's pretty easy if you break the function into three chunks of HTML—the table
headers (TH), the form text fields, and the buttons. This entire function is really a series of calls to
document.writeln (). That's it. Here is the code that writes the headers in lines 54-72:

with (parent.frames[1].document) {
open () ;
writeln ("<HTML><BODY BGCOLOR=FFFFEE><FONT FACE=Arial
SIZE=2>" +

"<BLOCKQUOTE>Choose or enter the paths of all images in
the " +

"columns below. Add the link path (e.g., " +

"web page.html) or script text (e.g., " +

"Jjavascript:) for each HREF attribute, and enter
any " +

"message you want to display in the status bar during
the " +

"MouseOver event. Then choose
"4

"Generate to get your code, or Preview to
see the " +

"code in action.</BLOCKQUOTE><FORM NAME='imgProfile' " +

"onSubmit="return false; '><CENTER><TABLE BORDER=0
ALIGN=CENTER " +

"CELLSPACING=5 CELLPADDING=5><TH ALIGN=LEFT>#" +

"<TH ALIGN=LEFT>Primary Path" +

"<TH ALIGN=LEFT>Rollover Path" +

(imgDefaults.mousedown.checked ? "<TH ALIGN=LEFT>" +

"MouseDown Path" : "") +

"<TR><TD>
</TD></TR>") ;

Notice that the image template form is embedded in a table. Everything in this block is static, except
for the code in lines 69-70. Using the ternary operator, JavaScript adds an extra header if the user
checked the "MouseDown" checkbox, and adds nothing otherwise. Take a closer look:

(imgDefaults.mousedown.checked ? "<TH ALIGN=LEFT>" +
"MouseDown Path" : "'")

Here's the real payoff: if you understand this, you're going to fly through the rest of the function
because generateEntryForm () makes all coding decisions based on whether the user checked
the "MouseDown" checkbox. Look at the text field chunk in lines 74-107.

For as many elements as there are in imgPrim (and hence the number of rollovers), ImageMachine
adds a new TR that includes TDs of two (or three) F'ILE fields, a text field for the HREF attributes,
status bar text, and the width, height, and border pixel settings. If you look closely, you'll see that each
element of index i in the arrays declared in setArrays () is assigned to a value in a corresponding
text field.

Remember that imgPrim, imgRoll, imgDown, imgLink, and imgText were originally set to empty
strings? Up to this point, the user hasn't had a chance to enter any values for these. It makes sense,
then, that the values of these text fields are set to an empty string. The default values for width, height,
and border, however, have been set. Therefore, it makes sense that the corresponding elements of
index i from arrays imgWidth, imgHeight, and imgBorder are assigned to their respective text field
values.

Notice the recurring code:
(imgDefaults.mousedown.checked ?

Each instance comes at a point in the form where if the user checked the "MouseDown" checkbox, the
additional code to accommodate the additional image is added.

The headers and the form text fields have been taken care of. The only thing left for the image
template is to create the buttons: "Generate," "Preview," and "Clear."

with (parent.frames[1l].document) {
writeln ("</TABLE><CENTER><INPUT TYPE=BUTTON " +
"onClick='parent.frames[0].imgValid8 (this.form, true);"' "

|.

"VALUE='Generate'><INPUT TYPE=BUTTON " +

"onClick='parent.frames[0].imgValid8 (this.form, false);' "
|

"VALUE="Preview'> <INPUT TYPE=RESET VALUE=' Clear r>n
+

"</FORM></BODY></HTML>") ;
close();

}

The "Clear" button is your basic RESET button, so we'll focus on the other two. Notice that both
buttons call function imgValid8 () when clicked. Both pass a copy of the form to the function, but
one passes true and the other £a 1 se. This makes all the difference in whether ImageMachine
creates the printed code or the interpreted code. We'll get to that shortly.

By the way, you might want to scan each line of generateEntryForm () to see how the HTML
for the form comes about. You'll see how one big string creates a form that takes the user to the next
step. Function generateEntryForm () makes the form to be filled out by the user, who then,
according to our four-step procedure at the beginning of this chapter, chooses "Generate." Doing so as
seen in the code above, calls imgValid8 (). Here itis in lines 120-136:

function imgValid8 (imgTemplate, mimeType) {
for (var 1 = 0; i < imgPrim.length; i++) {
if (imgTemplate['prim' + i].value == "" ||

imgTemplate['seci' + i].value == "" ||

imgTemplate['href' + i].value == "") {
alert ("All images and HREF attributes must have URLs.");
return;

}
if (imgDefaults.mousedown.checked) {
if (imgTemplate['down' + i].value == "") {
alert ("All images and HREF attributes must have
URLs.");
return;

}

}
genJavaScript (imgTemplate, mimeType) ;

}

This function makes sure that the user has entered values for each of the image paths. Remember that
the "Generate" button passes a copy of the form with all the image info. This copy is assigned to
imgTemplate. Once again, using the length of imgPrim, ImageMachine iterates through the text fields
containing the image paths. The fields containing the primary image paths are named prim + i,
where 1 is a number from 0 to imgPrim. length — 1. The fields containing the rollover image
paths are named similarly, except using seci instead of prim. If the user included images for the
MouseDown event, these text fields are named with down.

5.2.3.3 genJavaScript()

If any of the inspected fields is empty, the user is alerted, and the function returns. If each has at least
some text, ImageMachine calls function genJavaScript (), passing in imgTemplate and
the as-of-yet unexamined Boolean value contained in mimeType. As you can guess,
genJavaScript () isresponsible for creating the JavaScript code of the web page to the screen.
The function is very long, but performs similar work to that of generateEntryForm (). See
lines 138-306.

JavaScript Technique: JavaScripting Defensively

It's no accident that there are SCRIPT tags in the generated code with several different
LANGUAGE attribute settings. You'll see some code within the <SCRIPT
LANGUAGE="JavaScript"> </SCRIPT> tags at line 185. Other code within the
<SCRIPT LANGUAGE="JavaScriptl.1l"> </SCRIPT> tags atline 189, and
finally yet more code between within the <SCRIPT LANGUAGE=
"JavaScriptl.2"> </SCRIPT> tags atline 193.cd

This keeps browsers of varying JavaScript compatibility from executing code they won't
support, and hence causing application-stopping errors. For example, the Tmage () object
isn't supported in JavaScript 1.0. Therefore, you won't see any ITmage () object code
unless it is embedded in a <SCRIPT> tag with "JavaScript 1.1" (or higher) as the
LANGUAGE attribute.

You can code defensively like this by using control variables, setting their values according
to the <SCRIPT> tag in which they reside. When it comes time to run a function with
questionably supported code, run that code only if the conditions of the control variables are
met. You can see this in variables canRollOver for the Image object code and variable
canClickDown for the onMouseDown event handler code.

Notice also that scripting this way can also reduce download times. For example, browsers
that don't support JavaScript 1.2 won't execute any code within the <SCRIPT
LANGUAGE="JavaScriptl.2"> </SCRIPT> tags. That's good news because the
browser won't have to request images used for the rollovers associated with the
onMouseDown event.

And you thought generateEntryForm () was long! It's still the same deal, though.
genJavaScript () performs a single task: it generates the rollover code, which is mostly
JavaScript.

The first thing that genJavaScript () does is to reset global variable imageLinks. More on these
code-holding globals in a moment. Next up, genJdavaScript () sets a handful of global

"specification” variables according to the value of mimeType. Here are lines 141-154:

if (mimeType) {

1t = "g<";
gt = ">";
br = "
";
HTML = true;
nbsp = " ";
}
else {
1t = "<",;
gt = nyn,
br = 1b;
HTML = false; nbsp =" ";

If mimeType is t rue, the globals will be set to string values that force the code to be printed.
Variables /t and gt are setto & 1t ; and > ; respectively. Variable br is then set to the string value
of
. HTML is a Boolean variable, indicating that the user wants the code interpreted (instead of
displayed on the screen). This will come into play shortly when generating the code. Variable nbsp is
set to a string of HTML non-breaking spaces. nbsp is used for the HTML equivalent of emulating the
Tab key.

If mimeType proves £alse, the globals will be set to force the code to be interpreted. Variables /¢
and gt are set to < and > respectively. Variable br is then set to the string value of /b. The value of /b
was set all the way back in lines 6-8. Here it is:

var platform = navigator.platform;
var lb = (platform.indexOf ("Win" != -1) 2 "\n\r"
(platform.indexOf ("Mac" != -1) 2 "\r" : "\n"));

As you can see, variables platform and [b work together. platform contains a string of the value of the
operating system for which the browser was compiled. Variable /b is set according to the value of
platform. Windows (DOS) represents the line break, equivalent to pressing the Enter or Return key, by
\n\ r. Macintosh does so with \ r, and Unix operating systems use \n. This use of line breaks keeps
the generated code from being jammed into two or three mile-long lines. This isn't vital to the
application, but when ImageMachine prints the HTML and JavaScript, viewing the source code will
be much easier.

JavaScript Technique: The Power of Global
Variables

This application reaps the benefits of global variables. ImageMachine generates printed
code or executable code. You look at one and run the other. Both types of code, however,
are almost the same except that the executed code utilizes HTML brackets < and >,
whereas the printed code utilizes the character entities of HTML brackets, & 1 £ ; and
> ;. Global variables /fand gtare set to either the HTML brackets or the character
entities, depending whether you choose the "Generate" button or the "Preview" button.

Variables brand nbspare assigned similarly. This is the power of global variables: simply
changing their value yields strings that perform distinctly different but equally useful
purposes.

Moving on, HTML, set to fal se, is a Boolean variable, indicating that the user wants to have the
code interpreted. This will come into play shortly when generating the code. Variable nbsp is set to a
string of whitespace.

Now ImageMachine has the information from the text field in the template, and whether the user has
selected printed code or interpreted code. Generating the JavaScript truly begins at line 185 and works
until the end of the function.

As you scan the code, you'll see several calls to function pathPrep (). This function reformats the
image path string if the path appears to be an absolute local path on a Windows machine (see Chapter
3 for facts about paths). Why all the fuss? Remember that Windows uses backslash notation (\) to
separate directories. Browsers use the forward slash (/). So do Unix machines. Therefore, it will be
necessary to convert backslashes to forward slashes. Actually, some browsers make the conversion on
the fly.

The catch is that JavaScript interprets the backslash character as part of an escaped character.
Therefore, JavaScript would perceive C:\My_Directory\My.File as C:My_DirectoryMy.File. The
pathPrep () function takes care of it. Here are lines 310-317:

function pathPrep (path) {
if (path.indexOf (":\\") != -1) {
path = path.replace(/\\/g, "/");
path = path.replace(/:\//, "|/");
return "file:///"™ + path;
}
else { return path; }

}

Browsers also open local documents with the file protocol, which means we'll need file:/// attached to
the front of the URL and a pipe (|) in place of the colon (:) to conform to the specification.

5.2.3.4 Decision time

Things are now set up to generate code according to a printed or interpreted specification. Before
ImageMachine builds the code, though, it needs to "know" whether to generate code based on new
data from the image template or use information already stored in the arrays. According to our user
cycle, described earlier, the user just finished entering information in the image template. The other
situation arises when the user has already generated code and is toggling back and forth between
"Generate" and "Preview." We'll cover that shortly.

file:///attached

If the information will be coming from the image template (in our case), genJavaScript ()
resets all img arrays by calling setArrays () so that the new information from the image template
can be assigned. ImageMachine determines whether to call setArrays () and reassign values by
evaluating imgTemplate. genJavaScript () can be called in one of three ways, from buttons
"Generate," and "Preview," and from function imgValid8(). Calling genJavaScript () from
"Generate" and "Preview" passes a null value to imgTemplate. Therefore, if imgTemplate is not
equal to null, genJavaScript () knows to clear the arrays and make way for new information.

Otherwise, the elements in the IMG arrays won't be modified. Study lines 156-170 carefully and see
how this checks out:

if (imgTemplate != null) {
setArrays () ;
for (var i1 =
1); i++) |

0; i < (imgDefaults.imgnumber.selectedIndex +

imgPrim[i] = purify(imgTemplate['prim' + i].value);
imgRoll[i] = purify(imgTemplate['seci' + i].value);
if (imgDefaults.mousedown.checked) ({
imgDown[i] = purify(imgTemplate['down' + i].value);
}
imgLink[i] = purify(imgTemplate['href' + i].value);
imgText[i] = purify(imgTemplate['stat' + i].value);
imgWdh[i] = purify(imgTemplate['wdh' + i].value);
imgHgt[i] = purify(imgTemplate['hgt' + i].value);
imgBdr[i] = purify(imgTemplate['bdr' + i].value);

If the array elements are modified, the string values assigned to them go through a quick, dangerous
character removal process by way of function purify () atline 308. Here you go:

function purify(txt) { return txt.replace(/\'|\"/g, ""); }

This removes all single and double quotes from your values. They certainly aren't illegal, but
JavaScript has to use both single and double quotes to generate the code. Unless they're properly
escaped with a backslash, this will mean trouble for your generated code. purify () removes them
from the string it is passed, then returns the fresh new string.

5.2.3.5 Generate the code

Once that is complete, it is time to generate the long-awaited code. This occurs in lines 185-305 by
assigning all the generated code equal to several "code-holding" variables. The variables are as
follows:

PrimJavaScript

Holds the HTML tags such as HTML , HEAD , and TITLE . Also contains the preliminary
JavaScript and rollover code associated with the MouseOver and MouseOut events.

secJavaScript

Holds rollover code associated with the JavaScript 1.2 MouseDown event.
imageLinks

Holds HTML code that displays the links.
scriptClose

Holds a closing SCRIPT tag.
swapCode

Holds the JavaScript functions that will perform the image rollovers.
primHTML

Holds the BODY tag and some HTML comments.
secHTML

Holds closing HTML tags plus the "Form" buttons displayed after the code is generated
(either "Generate" and "Change Info" or "Preview" and "Change Info").

aggregate
This variable is the concatenation of all the other variables just mentioned.

The for loop at line 197 once again iterates imgPrim. length times. For each iteration, variables
primJavaScript, secJavaScript (if the user chose MouseDown option), and imageLinks have added to
them code corresponding with the next image group in the iteration.

Variables scriptClose, swapCode, primHTML, and secHTML are not part of the for loop. Their
content can be set once by using the ternary operator in conjunction with variable HTML and
imgDefaults.mousedown.checked.

Once the for loop has finished and the other variables have been accordingly set, the last thing to do is
get the content to the page. It all happens at lines 300-305:

agregate = primJavaScript +
(imgDefaults.mousedown.checked ? scriptClose + secJavaScript
" ") _I_
swapCode + primHTML + imageLinks + secHTML;

parent.frames[1l].location.href =
"jJavascript: parent.frames[0].agregate";

5.2.4 Step 4: Choosing "Preview" to Watch the Code in Action

If you're mentally drained by now, I don't blame you. Fortunately, the last two steps are pretty quick
and painless. Suppose the user has viewed the generated code and now wants to see it in action. A
quick click of "Preview" will do. Remember that clicking "Preview" calls genJavaScript (),
but mimeTypeis false instead of true with the "Generate" button. That's the only difference. The
"specification"” variables in lines 141-154 are simply reset to reflect interpreted code instead of printed
code as before. Everything else happens the same as with the "Generate" button.

5.2.5 Step 5: Choosing "Change Info" to Make Changes

Now you've seen the generated code and the code in action. Suppose the user wants to make some
changes. Choose "Change Info," and the image template with the information reappears. Widths,
heights, status text . . . everything you entered except the image URLs. Wait a minute . . . why not?

The effect happens because the image path URLs are stored in a FileUpload object (i.e., <INPUT
TYPE=FILE>). For security reasons, the FileUpload object is read-only. In other words, you must
manually populate the field by entering a value with the keyboard or selecting a file from the dialog
box with the mouse. The good news is that this is very easy to change. Just swap TYPE=FILE for
TYPE=TEXT ingenerateEntryForm (). You'll find it there three times. The only problem is
that you'll lose the ability to seek local files with the mouse and the dialog box. Use the arrangement
that is most convenient for you. Once you've made your changes, you can choose "Generate" or
"Preview" and check out the new code.

5.3 Potential Extension: Adding Attributes to the Template

Big applications can always be made bigger. This section is devoted to showing you how to add
attributes to the image template, giving you greater control over the generated code. For the sake of
simplicity, I'll show you how to add the IMG attributes HSPACE and VSPACE. The procedure
involves these six steps:

Add the new fields in the default template.

Create an array for its values in setArrays ().

Capture the new default values.

Add text fields in the image template in generateEntryForm ().
Reference and assign the new attribute values in genJavaScript ().
Generate the HTML required to display the attributes in genJavaScript ().

IR

JavaScript Technique: String Replacement with
JavaScript 1.1 and 1.2

JavaScript 1.2 brought with it many cool new features. One of those is the ability to use
regular expressions for string matching and replacing. Functions pathPrep () and
purify () perform a simple but powerful method of replacing, using JavaScript 1.2. This
is a great for JavaScript 1.2 capable browsers, but Netscape 3.x is still used in significant
numbers. Here is a function that performs string replacement in JavaScript 1.1 using
methods of the ARRAY object:

function replacevll (str, oldSubStr, newSubStr) {
var newStr = str.split(oldSubStr).join (newSubStr);

return newStr;

}

This function takes a string, creates an array of elements split () according to the
substring you want to remove (0/dSubStr), then returns a string made by using join () to
hook up the array with the new substring (newSubStr). Not pretty, but it works.

5.3.1 Step 1: Adding the Fields

<TD VALIGN="TOP">

HSpace

</TD>

<TD VALIGN="TOP">

<SCRIPT LANGUAGE="JavaScriptl.2">
<!--

genSelect ("hspace", 25, 0, 0);
[/ ==>

</SCRIPT>

</TD>

<TD VALIGN="TOP">

VSpace

</TD>

<TD VALIGN="TOP">

<SCRIPT LANGUAGE="JavaScriptl.2">
<l --

genSelect ("vspace", 25, 0, 0);
//==>

</SCRIPT>

</TD>

5.3.2 Step 2: Creating Arrays in setArrays()

function setArrays/()

{
imgPrim = new Array();
imgRoll = new Array();
imgDown = new Array();
imgLink = new Array();
imgText = new Array();
imgWdh = new Array();
imgHgt = new Array():;
imgBdr = new Array();
imgHSpace = new Array(); // For the HSPACE

imgVSpace = new Array(); // For the VSPACE
}

That makes room to store the new default values. That brings us to the next step—filling those new
arrays.

5.3.3 Step 3: Capturing the New Default Values

In captureDefaultProfile (), we will add two local variables named imgHspace and
imgVspace, then assign their values to the values chosen in the default template. Now
captureDefaultProfile () looks like this:

function captureDefaultProfile (formObj) {
setArrays (),
imgDefaults = formObj;
var imgQty = (imgDefaults.imgnumber.selectedIndex + 1);
var imgHeight = (imgDefaults.pxlheight.selectedIndex) ;
var imgWidth = (imgDefaults.pxlwidth.selectedIndex) ;
var imgBorder = (imgDefaults.defbdr.selectedIndex) ;
var imgHspace = (imgDefaults.hspace.selectedIndex) ;
var imgVspace = (imgDefaults.vspace.selectedIndex) ;
<

for (var 1 = 0; 1 imgQty; i++) {

imgPrim[i] = "";

imgRoll[i] = "";

imgDown[i] = "";

imgLink[i] = "";

imgText[i] = "";

imgWdh[i] = imgWidth;

imgHgt[i] = imgHeight;

imgBdr[i] = imgBorder;

imgHSpace[i] = imgHspace; // For HSPACE
imgVSpace[i] = imgVspace; // For VSPACE

}

generateEntryForm () ;

}

ImageMachine will now be able to include the default values for HSPACE and VSPACE in the image
template.

5.3.4 Step 4: Adding Text Fields in generateEntryForm()

Now you can add the strings of HTML in generateEntryForm () to accommodate the two
new text fields. Let's put them in their own TR under all the others. You can adjust it later to make it
look better. Lines 103-106 currently look like this:

"<TR><TD VALIGN=BOTTOM COLSPAN=" +
(!imgDefaults.mousedown.checked ? "3" : "4") +

">
<HR NOSHADE>
</TD></TR>") ;

Adding the two text fields to the end looks like this:

"<TR><TD VALIGN=BOTTOM><INPUT TYPE=TEXT NAME='hsp " + 1 +

"' VALUE=&INPUT TYPE=TEXT NAME='vsp" + 1 +

"' VALUE='" 4+ imgVspace[i] + "' SIZE=3> VSPACE </TD></TR>" +
"<TR><TD VALIGN=BOTTOM COLSPAN=" +
(!'imgDefaults.mousedown.checked 2?2 "3" : "4"™) + ">" +

"
<HR NOSHADE>
</TD></TR>") ;

This code adds two extra text fields for every image group and displays the default value in each. The
user can change this later, just like the others.

5.3.5 Step 5: Referencing and Assigning the New Values in
genJavaScript()

Once the user chooses to generate the code, ImageMachine needs to grab the information from the
new text fields in the image template. Just add the code in lines 158-169, which now looks like this:

for (var 1 = 0; 1 < (imgDefaults.imgnumber.selectedIndex + 1);
i++) |
imgPrim[i] = purify(imgTemplate['prim' + i].value);
imgRoll[i] = purify(imgTemplate['seci' + i].value);
if (imgDefaults.mousedown.checked) {
imgDown[i] = purify(imgTemplate['down' + i].value);
}
imgLink[i] = purify(imgTemplate['href' + i].value);

)
i].value):;

([i

imgText[i] = purify(imgTemplate['stat' + i
(['wdh' + i].value);

([]

]

imgWdh[i] = purify(imgTemplate
imgHgt[i] = purify(imgTemplate['hgt' + i].value);
imgBdr[i] purify (imgTemplate['bdr' + i].value);

imgHSpace[i] = purify(imgTemplate['hsp' + i].value);
imgVSpace[i] = purify(imgTemplate['vsp' + 1i].value);
}

The last two lines in the block show ImageMachine assigning the form values from the image
template to elements in imgHSpaceand imgVSpace. We're almost there. The only thing left is to make
sure the new attributes are included in the code generation, printed or interpreted.

5.3.6 Step 6: Generating the Additional HTML in genJavaScript()

The new code will be added to the variable imageLinks. The last few lines of the string are as follows:

(HTML ? fontClose : "") + br + nbsp + "HEIGHT=" +
(HTML ? fontOpen : "") + imgHgt[j] +

(HTML ? fontClose : "") + br + nbsp + "BORDER=" +
(HTML ? fontOpen : "") + imgBdr[j] +

(HTML ? fontClose : "") +

gt + """ + 1t + "/A" + gt + br + br + br;

All you need to do is copy a few lines, and change HEIGHT to HSPACE , imgHgt to
imgHSpace, BORDER to VSPACE , and imgBdr to imgVSpace . Here is the new version:

(HTML ? fontClose : "") + br + nbsp + "HEIGHT=" +
(HTML ? fontOpen : "") + imgHgt[j] +

(HTML ? fontClose : "") + br + nbsp + "BORDER=" +
(HTML ? fontOpen : "") + imgBdr[j] +

(HTML ? fontClose : "") + br + nbsp + "HSPACE=" +
(HTML ? fontOpen : "") + imgHSpacel[j] +

(HTML ? fontClose : "") + br + nbsp + "VSPACE=" +
(HTML ? fontOpen : "") + imgVSpacel[]j] +

(HTML ? fontClose : "") +

gt + " + 1t + "/A" 4+ gt + br + br + br;

That adds two new attributes for your images. You might also consider adding an ALT tag for image
content. There's no need to limit this type of modification to the IMG tag. There is plenty to do in the
<A> tag; you can customize it for image maps, and so on.

Chapter 6. Implementing JavaScript Source Files

Library Functions

® Array Manipulation

®Cookie Management

®DHTML Operations

®Mouse and Keyboard Capture

®Frameset Relationships

®Navigation Bar Creation

®Number Formatting and Correction

®Object Creation and Inspection

® String Manipulation

If you've been following along since the beginning (in order) you've been poring through code trying
to understand how the functions and variables work together so that those applications actually do
something. I thought it might be a nice break to look at something that could make life easier for all
your applications.

This chapter doesn't contain any applications. Rather, it documents several dozen functions contained
in JavaScript source files. Though you may not find all of them useful, there are probably a handful
that you can use right away and many others that you can customize to make useful.

I didn't include these files to imply that I could hand you a bunch of functions and say, "OK, coders,
this is all you'll ever need." That's ludicrous. This chapter is designed to encourage you to beef up
your own JavaScript library with reusable code. Then you won't have to re-invent the wheel every
time you code a new application. The following list shows the .js files, in alphabetical order, and the
purpose of each.

arrays.js

Contains array manipulation functions. Some of the functions allow you to perform the
equivalent JavaScript 1.2 operations in lesser browsers.

cookies.js

This awesome library, mostly from JavaScript veteran Bill Dortch, makes leveraging cookie
power a snap.

dhtml.js

You've seen all of these functions in Chapter 3, and Chapter 4. This is a nice package to
create, show, and hide cross-browser DHTML layers.

events.js

This source file contains code that will enable and disable capturing mousemove and keypress
events in both NN and MSIE.

frames.js

These functions help keep your web pages in or out (whichever you prefer) of other
framesets.

images.js
Rollover code, which you've probably seen in earlier chapters, makes for a neat package here.
navbar.js

Contains code that generates a dynamic navigation bar based on the current document loaded.
Impressive.

numbers.js

Contains code to correct JavaScript rounding errors and provide number formatting.
objects.js

Contains code for generic object creation and object inspection.
strings.js

This file contains a few string manipulation functions.

Except for navbar.js, each .js file has a correspondingly named HTML document (for example,
arrays.html goes with arrays.js). The functions aren't explained in as much detail here as they are in
the applications. In most cases that's because it's just not necessary, although exceptions are noted. As
you make your way through the chapter, think about how each function can solve a common problem
you have. If it won't work for you as it is, consider how you can change it to make it do so.

Each section that describes a .js file starts with the file name, its practical uses, the version of
JavaScript required, and a list of the functions contained in the file.

6.1 arrays.js

Practical use
Array manipulation
Version requirement
JavaScript 1.2
Functions

avg(),high(),low (), JjsGrep (), truncate (), shrink (),
integrate (), reorganize ()

These functions take your arrays, manipulate them, and return other useful information, including
other arrays. Figure 6.1 shows arrays.html. Nothing exciting to look at, but you can see that each

function is demonstrated.

Figure 6.1. Showing off the power of arrays.js

fla C& ‘o= G Cownncea e

b “Wechmata b Loason e S TARRNT ol s T op bl 1 oot ariags vl =] (FF whare Rt H
< <+ A N a2 &2 S & @
Fack Rekad Hame demch Hebwars Pord Seewly

Original feray: |1, 1,5, 100E 5 T K456, 133455, 76, 45 3, 47054, 00006, 65.7, 1, 5, 2, 4, 55|
Anerige B2 AREIRRA IS

Lewest -7

Eigheat 1324 55

Teewate by 1[0, T, 2

Sarpk bty 1 [2.3

FReorparieefy J

lesegrabe ["An dlem 2, 5. “An shenent’, “Anofter eae’, *Cre recer®, 2, 3456, 1324 55 - 76,45, 3,
1M, LG, 6T 1, 4, 2, 4]

Ohiginal grepExssple furey |bosdey™, " Toeesday™, " Wednesday™, = Thasday ™, " Fridoy™ |

g grep Exarmple, fobuy, “Aay Hight) [Monday Hight', Tursday Hight', “Windnraday Hght', Thursday High®, Fracey Hight']

s = Doy Dions e b o FROwf
:ﬂﬁul 5w Eusnpl - M . BN

Here is the laundry list of functions of arrays.js and their uses:
avg ()

Returns the average value of all the numbers in the array
high ()

Returns the highest number value of the array
low ()

Returns the lowest value of the array

JsGrep ()
Performs string matching and replacement on all array elements

truncate ()

Returns a copy of the array without the last element
shrink ()

Returns a copy of the array without the first element

integrate ()

Combines the elements of two arrays starting with an index you define
reorganize ()

Reorders the array elements according to a multiple you choose

Now look at the code for arrays.html, shown in Example 6.1. Not much here. Just a call to
document .write (). The string displayed contains the results of all the function calls with
sample arrays—someArray () and grepExample ().

Example 6.1. arrays.html

1 <HTML>

2 <HEAD>

3 <TITLE>arrays.js Example</TITLE>

4 <SCRIPT LANGUAGE="JavaScriptl.2"

SRC="arrays.js"></SCRIPT>

5 </HEAD>

6 <BODY>

7 <SCRIPT LANGUAGE="JavaScriptl.2">

8 <!--
9
0
(

1 var someArray = new
Array(1,2,3,.1098,5,2,3.456,1324.55,-0.76,45,3,47.234,
.00060,65.7,1,3,2,4,55);

11 wvar grepExample = new Array('Monday', 'Tuesday',
'Wednesday',

12 'Thursday', 'Friday'):;

13 document.write ("Original Array: " + someArray +
"
" +

14 "Average: " + avg(someArray) + "
" +

15 "Lowest: " 4+ low(someArray) + "
" +

16 "Highest: " + high(someArray) + "
" +

17 "Truncate by 1: " + truncate(someArray) + "
"

18 "Shrink by 1: " + shrink(someArray) + "
" +

+

19 "Reorganize(by 4): " + reorganize (someArray, 4) +
"
" +

20 "Integrate ('An element', 'Another one', and 'One
more', " +

21 "at index 5): integrate(someArray, new Array ('An
element', " +

22 "'Another one', 'One more'), 5) +
"

Original grepExample " +

23 "Array: " + grepExample + "
 " +

24 "JsGrep (grepExample, /day/, \'day Night\'): " +

25 jsGrep (grepExample, /day/, 'day Night') + "
");

26

27 //-=>

28 </SCRIPT>
29 </BODY>
30 </HTML>

You might have noticed that both SCRIPT tags require JavaScript 1.2. The only reason for this is the
function JsGrep (), which utilizes JavaScript 1.2 string-matching and replacement features. More
on JsGrep () inamoment. You can include JavaScript 1.1 browsers by removing (or rewriting)
JsGrep (). Now that you see how the functions are called, look at the functions themselves; in

Example 6.2, arrays.js.

Example 6.2. arrays.js

1 wvar sum = 0;

2 for (var i = 0; 1 < arrObj.length; i++) {
3 sum += arrObj[i];

4 }

5 return (sum / 1);

6

7

38

}

function high (arrObj) {

9 var highest = arrObj[0];

10 for (var i = 1; i < arrObj.length; i++) {

11 highest = (arrObj[i] > highest ? arrObj[i]
highest) ;

12 }

13 return (highest);

14 }

15

16 function low(arrObj) {

17 var lowest = arrObj[0];

18 for (var i = 1; i < arrObj.length; i++) {

19 lowest = (arrObj[i] < lowest ? arrObj[i]
lowest) ;

20 }

21 return (lowest);

22 }

23
24 function jsGrep (arrObj, regexp, subStr) {
25 for (var i = 0; 1 < arrObj.length; i++) {

26 arrObj[i] = arrObj[i].replace (regexp, subStr);

277 }

28 return arrObj;

29 }

30

31 function truncate (arrObj) {

32 arrObj.length = arrObj.length - 1;

33 return arrObj;

34 }

35

36

37 function shrink(arrObj) {

38 var tempArray = new Array();

39 for(var p = 1; p < arrObj.length; pt++) {

40 tempArray[p - 1] = arrObjlp];

41 }

42 return tempArray;

43 }

44

45

46 function integrate (arrObj, elemArray, startIndex) {

47 startIndex = (parselnt (Math.abs(startIndex)) <
arrObj.length ?

48 parselnt (Math.abs (startIndex)) : arrObj.length);

49 var tempArray = new Array();

50 for(var p = 0; p < startIndex; p++) {

51 tempArray[p] = arrObjlpl;

52 }

53 for(var g = startIndex; g < startIndex +
elemArray.length; g++) {

54 tempArray[gq] = elemArray[qg - startIndex];

55 }

56 for(var r = startIndex + elemArray.length; r <
(arrObj.length +

57 elemArray.length); r++) {

58 tempArray[r] = arrObj[r - elemArray.length];

59 }

60 return tempArray;

61 }

62

63 function reorganize (formObj, stepUp) {

64 stepUp = (Math.abs (parselInt (stepUp)) > 0 2

65 Math.abs (parselnt (stepUp)) : 1);

66 var nextRound = 1;

67 var idx = 0;

68 var tempArray = new Array();

69 for (var i = 0; i < formObj.length; i++) {

70 tempArray[i] = formObj[idx];
71 if (idx + stepUp >= formObj.length) {
72 idx = nextRound;

73 nextRound++;

74 }

75 else {

76 idx += stepUp;

77 }

78 }

79 return tempArray;

80 }

Functions avg (), high (), and 1ow () don't seem all that shocking. avg () adds up all the
values, then divides that sum by arrObj . length and returns that quotient. The other two
functions iterate through the passed array, comparing the elements with one another to determine the
highest or lowest valued element.

Function jsGrep () iterates through the elements of an array and executes string matching or
replacement. Anyone familiar with Perl has probably used the subroutine grep () plenty of times.
Perl's grep () is much more powerful, but works much the same way.

Functions t runcate () and shrink () are simple JavaScript 1.1 equivalents of JavaScript 1.2
array function pop () and shift (). Actually, pop () and shift () are also named after the

similarly named and performing subroutines in Perl.

Function integrate () is also a JavaScript 1.1 equivalent for the JavaScript 1.2 array method
slice().

slice () is also named after the Perl subroutine. This function is fairly simple. Although there are
three for loops, the total number of iterations is always arrObj.length +

elemArray.length.

Function reorganize () reorders array elements by a multiple you select. In other words, if you

"reorganize" a 10-clement array (that starts out as 0, 1, 2, 3,4, 5, 6, 7, 8, 9) by 3, the new order comes
outas0,3,6,9,1,4,7,2,5,8.

6.2 cookies.js
Practical uses

Individual hit counters, form repopulation, user preferences settings
Version requirement

JavaScript 1.1

Functions

getCookieVal (),GetCookie (), DeleteCookie (), SetCookie ()

You want client-state management? How about cool web site greetings for repeat visitors? Need to set
up a language switching interface or other user preferences? This code makes setting and getting
cookie information really easy. Figures 6-2, 6-3, and 6-4 show cookies.html in action. Notice in Figure
6.2 that the first time the page is loaded, the user is prompted to provide a name. Figure 6.3 displays
the greeting that the first-time visitor receives. Figure 6.4 shows that repeat visitors are welcomed
back warmly with a personalized hit count.

Figure 6.2. First timers fill in their name once . ..

B b Ye= e [ownacsa Hep
T S P P TN P T PR TR e p e P S =] ke Y

i &« A % = A 4 o B
Pri ecsk Sip

Fialowrd Hams Semch Hebras

b Fit b by st gl bt teiughi, Pt ks s ror

I.I.'I Tama Vil

[] e |
aF —b- I | Mzadngfic Dare AT T
!H—I SE cooke i E e 8. 1041 Pl

Figure 6.3. ... get a newcomer's welcome . . .

[oot bramphe Wetecwee MG
Pe & je= [jp [rrsces [

Tl ket b Loetsion e ST CARHT Pl et o T lop el 1] oo vk el =] 4 wharemse: 2H
< ¥ 3 A 2 = o o
Badk. Prckoad Hare Seach Heicaa Pori FETY

Welcome, Just Some Visitor

This 15 vasar st st
o == O ecumsri Dona $ e g5 B F
!h—l B T —— Emm I ik

Figure 6.4. ... then become one of the gang

¥ moskmp tzeepls Helroase

B B Yo [Lewnacas Mol

0 ek Lesswn e STARHT Ficlistsim an e oyt 31 et ook el =] iy wharu e Y
4 = A 4 = T T
Bach. Feletd Haes Smach Hebmam Pl Gecnk

Welcome Back, Just Some Visilor

Ton haven wismod 5 oo

o [T N -

;-h-il [cookis o Fanple 8 1 ol Pl

This is definitely a simple example of cookie power. Chapter 7, applies this same code to "remember"
user preferences. By the way, if you haven't fully digested the concept of a cookie, check out the

Unofficial Cookie FAQ at http://www.cookiecentral.com/unofficial cookie faq.htm. As unofficial as
it is, you'll get the low-down on all your cookie questions. Also, we'll go into more detail in Chapter 7.

File cookies.html works like this: when the user loads the page, it checks for a cookie of the name
user_id. If the name does not exist (equals null), it prompts the user for his or her name. Then it sets
the cookie user_id to the value of the user's name, and cookie 4it _count to 2 (the number of times the
user will have visited on next return).

If user_id does exist, it grabs its value and the value of 4it _count. If the user_id cookie exists, the user
has been to the site before. It's safe to say, then, the cookie Ait _count has also been set. It displays the
name and the number of times the user has come to the site, then resets the value of it _count to a
string equivalent of hit count+1. Take a look at cookies.js,in Example 6.3, to see what all this
setting and getting is about.

Example 6.3. cookies.js

1 wvar today = new Date();
2 var expiry = new Date(today.getTime () + 365 * 24 * 60
* 60 * 1000);
3
4 function getCookieVal (offset) {
5 var endstr = document.cookie.indexOf (";", offset);
6 if (endstr == -1) { endstr = document.cookie.length;
}
7 return unescape (document.cookie.substring (offset,
endstr)) ;
8 }
9
10 function GetCookie (name) {
11 var arg = name + "=";
12 var alen = arg.length;
13 var clen = document.cookie.length;
14 var i = 0;
15 while (i < clen) {
16 var j = 1 + alen;
17 if (document.cookie.substring (i, J) == arg) {
18 return getCookievVal (J);
19 }
20 i = document.cookie.indexOf (" ", 1) + 1;
21 if (i == 0) break;
22 }
23 return null;
24 }
25
26 function DeleteCookie (name,path,domain) {
277 if (GetCookie (name)) {
28 document.cookie = name + "=" +
29 ((path) 2 "; path=" + path : "") +
30 ((domain) ? "; domain=" + domain : "") +

31 "; expires=Thu, 01-Jan-70 00:00:01 GMT";

http://www.cookiecentral.com/unofficial_cookie_faq.htm

32 }

33 }

34

35 function SetCookie
(name,value,expires,path,domain, secure) {

36 document.cookie = name + "=" + escape (value) +

37 ((expires) ? "; expires=" + expires.toGMTString /()
"ll) +

38 ((path) ? "; path=" + path : "") +

39 ((domain) ? "; domain=" + domain : "") +

40 ((secure) 2 "; secure" : "");

41 }

There are four functions here, but you'll only need to call three: SetCookie (), GetCookie (),
and DeleteCookie ().getCookieVal () is an internal function. You never need to call it
directly.

Creating cookies with SetCookie () is easy. You need only pass in a cookie name (to access it
later with GetCookie ()), the information you want to store (such as a username or hit count), and
an expiration date, in that order. You must provide the first two parameters. The expiration date,
however, is provided by way of variables foday and expiry. Variable expiry is set to a date one year
from the day the user loads the page. This happens by instantiating variable foday to a new Date
object and using the get Time () method. Here's how it works.

Variable today is a Date object. So today.getTime () returns the current time in terms of
milliseconds (since 1970 at 00:00:00, Greenwich Mean Time). That brings us to the present time in
milliseconds, but we want an expiration date of one year from now. There are 365 days in a year, 24
hours in a day, 60 minutes in an hour, 60 seconds in a minute and 1,000 milliseconds in a second. Just
multiply them together and add the product (which is 3.1536e10 milliseconds) to the return of
getTime ().

The syntax for GetCookie () and DeleteCookie () are even easier. All you do is pass in the
name associated with the cookie. GetCookie () will return the value of the cookie (or null if it

isn't found), and DeleteCookie () deletes the cookie associated with the name passed in.
Deleting simply means setting the cookie with an expiration date in the past.

6.3 dhtml.js

Practical use

DHTML layer creation, hiding, and revealing
Version requirement

JavaScript 1.2
Functions

genLayer (),hideSlide (), showSlide (), refSlide ()

If you've been reading the book in order, you've seen this code in two previous applications (the
slideshow and the multiple search engine interface). Figures 6-5 and 6-6 show the code that has
created a layer and allows you to hide and show it at will.

Figure 6.5. "Eye-catching” DHTML: Now you see it

= dhemdis eanmple Weiwsmee ___ HBLIL
fie Ed Y= fiz Cowunces Hebo
|l Wmbmata) Losaon [l DAKTHT Ficlles dhcrinst s T o Cibarst F Tosis hind rind = T whans P n
4 < 3 H a4 @ S &F @
Bk, Riad Hame Semch Hebmam Porl Soiwd

= D cumeen D e e 2 PRl o
;ﬂiwul EE.—.;_--_. BN

Figure 6.6. Now you don't

£ el s wasmpde - Woliimge __ HCIL]
e ER Yes e [ewunces Heb
T ul Mmhawts 4 Locaton et TR il oo s L g ket] oo ghir o] =] (" s Ried n
< + 3 % 2 &A@ & & @
Bk Robed Hame Gesch Heteags Pl peounk,

ol =pe D ecumsare Dons e Me 32 [o
!H—lﬂ-l--—l--n-. 100 Paa

Example 6.4 shows the contents of dhtml.js. I haven't changed a thing. Check Chapter 3 and Chapter 5
for the code details.

Example 6.4. dhtml.js

var NN (document.layers ? true : false);
var hideName = (NN ? 'hide' : 'hidden'):;
var showName = (NN ? 'show' : 'visible');

var zIdx = -1;
function genlLayer (sName, sLeft, sTop, sWdh, sHgt,
sVis, copy) {

O w N

6 if (NN) {
7 document.writeln ('<LAYER NAME="' + sName + '"
LEFT="' + sLeft +
8 ' TOP=' + sTop +
9 ' WIDTH=' 4+ sWdh + ' HEIGHT=' + sHgt + '
VISIBILITY="' + sVis +
10 '" z-Index="' + zIdx + '>' + copy + '</LAYER>');
11 }
12 else {

13 document.writeln ('<DIV ID="' + sName +

14 '" STYLE="position:absolute;

overflow:none;left:' + sLeft +

15 'px; top:' + sTop + 'px; width:' + sWdh + 'px;
height:' + sHgt +

16 'px; visibility:' + sVis + ' z-Index=' +
(++zIdx) + '"">' + copy +

17 '</DIV>");

18 }

19 }

20

21 function hideSlide (name) {

22 refSlide (name) .visibility = hideName;

23 }

24

25 function showSlide (name) {

26 refSlide (name) .visibility = showName;

27 }

28

29 function refSlide (name) {

30 if (NN) { return document.layers|[name]; }

31 else { return eval ('document.all.' + name +
'.style'); }

32 }

6.4 events.js

Practical uses
Cross-browser event handler assignment, mouse movement tracking
Version requirement
JavaScript 1.2
Functions
enableEffects (), showXY (), keepKeys (), showKeys ()

If you haven't experimented with cross-browser event handling scripts, this might be just the primer
for you. This example utilizes three event handlers: onclick, onmousemove, and onkeypress. When you
first click anywhere in the document space, the JavaScript captures the initial x and y coordinates of
the mouse-pointer arrow with respect to the browser window. After that, the status bar displays the x
and y coordinates as the user moves the pointer arrow around. Clicking once again "turns off" the
coordinate tracking and calculates the pixel distance between the point the user first clicked and
current location. You can see this in Figure 6.7 and Figure 6.8.

Figure 6.7. x and y mouse coordinates in the status bar

[vomie s Encmple ciwech bsbemnit Ewglbtes ___MHH
Bk E® Y G g e
a0« @ 9 & D oM o4 8 A By
Fak Fkp Rembk How Bawch Fwaiey By Chaws Fuise HY P
Ty L] P o b im0 o e i x| | ki
=
Lok Poir frevess bofion, Bien meve 7 o, click agak 1o siop warkag
Mo twpes avemes keps aay bepr Then paess Sl Keys
5 et iyl I
=
AL]] dpCorpsm
:*Ilunl & Jevenia js Casmgle - . A naomsa

Figure 6.8. The pixel distance between the two points

A weeviep brample - Mecinea® Isieenet b aplere
D [Yen Go Faeoiws bk
. o= 0 d @ a2 =i
Fack 1‘?; th_:‘rh ne Gmwch Cmevier u"'-o'?'- nE-n Fi n
st |] et b o' b S kvt bl =] | |urke
= |

Chck our meese bottor, Ben mote 2 around, dick agss 1o dlsp acking

How tpee seme lews sy ke Then press Show Keys

Shp e |
= |
%t 1M Cret (10,213 Diatarea: M1 psk 7 Uy Corges
jh-il & Jasnnie o § asagel 4 1omss

Independent of the mouse action, you can also type any sequence of keys on your keyboard. The
status bar will then display each of the individual keys you type. When you finish, choose the "Show
Keys" button, and you'll get a JavaScript alert dialog box that displays the cumulative sequence of
keys you entered up to that point. Figure 6.9 shows this. Choose "OK," and you start again from
scratch.

Figure 6.9. These are the keys the user typed

[E remtrir Eromple - Micvweslt bnteet oplyn ______________________ ARIE]
o T S R .
+ . 0= . @ a3 @A | B @ 4 8 o @B &5 C
Feek Sp Rk How Gomsh Fawwie: Hildy Chawws Fuiews Ba Pl Ed
TR [PPTTS, [N urre ¥ S Y w— E| Kinkr
= |
Chck: peur roevess bones Bes sess 8 e, ook agsn o kg wackeg
Hoow tupes momna kewe. wey ke Then prees Shaes Kiegs
8 e ity
i&, “Vioas harve gl Thase s & bunch of bags
=
¥ Emprmtnd. B Wy Corpan
!Hﬂl T —— 1051 4

By now you're familiar with the intricacies of coding cross-browser stylesheets. You know: LAYER
tags in one browser, DIV tags in the other.!"? Things don't change much for the good when it comes to

the event models, either. If you check the source code in events.html,you'll find the following two
lines of JavaScript:

y Actually, you can use DTV tags for positioning in Netscape Navigator 4.x as long as you include a value
for "position" in the STYLE attribute. However, until Netscape comes on board with the document object
model, using the LAYER tag gives you access to all the properties of the Layer object.

document.onclick = enableEffects;
document.onkeypress = keepKeys;

The onclick event handler is associated with function enableEffects (), and the onkeypress
event handler is associated with function keepKeys (). Both functions are shown below. Notice
that neither function has any parentheses in the syntax. That is, the code does not look like this:

document.onclick = enableEffects();
document.onkeypress = keepKeys() ;

Using parentheses would call each method the moment each line was interpreted. You don't want that:
the event handlers are associated by a reference to the functions, instead. Look at the code in Example
6.5.

Example 6.5. events.js

1 wvar keys = '";
2 var change = true;
3 wvar x1, x2, vl, y2;
4
5 function enableEffects(ev) {
6 if (change) {
7 if (document.layers) {
8 x1 = ev.screenX;
9 yl = ev.screenY;
10 document.captureEvents (Event .MOUSEMOVE) ;
11 }
12 else {
13 x1 = event.screenX;
14 yl = event.screenY;
15 }
16 document.onmousemove = showXY;
17 }
18 else {
19 if (document.layers) {
20 X2 = ev.screenX;
21 y2 = ev.screenY;
22 document.releaseEvents (Event .MOUSEMOVE) ;
23 }
24 else {
25 x2 = event.screenX;
26 y2 = event.screenY;

277 document .onmousemove = null;

28 }

29 window.status = 'Start: (' + x1 + ',' + yl +

30 'y End: (" + x2 + '"," + y2 + ") Distance: ' +

31 (Math.round (Math.sgrt (Math.pow((x2 - x1), 2) +
Math.pow ((y2 - y1l),
2)))) + ' pixels';

32 }

33 change = !change;

34 }

35

36 function showKeys () {

37 if (keys != "") {

38 alert ('You have typed: ' + keys);

39 window.status = keys = '';

40 }

41 else { alert('You have to type some keys first.'); }

42 }

43

44 function showXY (ev) {

45 if (document.all) { ev = event; }

46 window.status = 'X: ' + ev.screenX + ' Y: ' +
ev.screenY;

47 }

48

49 function keepKeys (ev) {

50 if (document.layers) {

51 keys += String.fromCharCode (ev.which) ;

52 window.status = 'Key pressed: ' +
String.fromCharCode (ev.which) ;

53 }

54 else {

55 keys += String.fromCharCode (event.keyCode) ;

56 window.status = 'Key pressed: ' +
String.fromCharCode (event.keyCode) ;

57 }

58 }

Function enableEffects () is the epicenter for the clickand mouseoverevents. I call your
attention to lines 6, 18, and 33:

if (change) {
else {

change = !change;

The variable change starts as t rue and is changed to its opposite (i.e., to false, back to true,
and so forth) during every call. Since clicking calls enableEffects () and change is true the
first time, that brings lines 7-15, shown here, into effect:

if (document.layers) {

x]1l = ev.screenX;
yl = ev.screenY;
document.captureEvents (Event .MOUSEMOVE) ;
}

else {
x1l = event.screenX;
yl = event.screenY¥;

}

These lines capture x and y coordinates and enable the onmousemove event handler. If

document . layers exists, the user has Navigator. The event object created on the fly is reflected
in the argument passed to the function, named ev in this case. Global variables x/ and y/ are set to the
respective x and y coordinates where the user first clicks (contained in screenX and screenY). Then
the call to the document method captureEvents () causes the mousemoveevent to be
intercepted.”!

(2 At least some versions of NN4.x seem to respond only intermittently to the mouse clicks. That is,
sometimes you have to click twice to start or stop the tracking. | haven't found any supporting documentation
about such a bug.

If document. layers does not exist, the script assumes the user has Internet Explorer and takes
appropriate actions to do the same as above. Microsoft's event model, however, defines an event
object as event. That's where properties screenX and screenY will be waiting. No additional method
calls are required for event capturing in MSIE, which leads us to line 16:

document.onmousemove = showXY;

The onmousemove event handler is then assigned by reference to function showXY () in both
browsers. Let's have a quick look at showXY () :

function showXY (ev) {
if (document.all) { ev = event; }
window.status = 'X: ' + ev.screenX + ' Y: ' 4+ ev.screenY;

}

The call to showXY () each time the mouse moves displays the x and y coordinates of the mouse-
pointer arrow. The x and y values are referenced in the same cross-browser manner as before.
showXY () is called repeatedly as the user moves the mouse around. This happens until the user
decides to click again, which puts in another call to enableEffects (). However, variable
change is £a 1 se this time around, so lines 19-31 get the call:

if (document.layers) {
X2 = ev.screenX;
y2 = ev.screenY;
document.releaseEvents (Event .MOUSEMOVE) ;

}

else {

x2 = event.screenX;

y2 = event.screenY;

document.onmousemove = null;

}
window.status = 'Start: (' + x1 + ','" + yl +

") End: (' + x2 + '," + y2 + ") Distance: ' +

Math.round (Math.sgrt ((x1 - x2)*(x1 - x2) + (yl - y2)*(yl -
vy2)))

+ ' pixels';

Variables x/ and y/ hold the values of the starting click location. Now variables x2 and y2 are set to
the values of the stopping click location. There is no longer a need to keep processing the
onmousemove event handler. So with Navigator, the releaseEvents () method is called to
cease interception of the mousemove event. The same result is performed by setting

document .onmousemove equal to null in MSIE.

All that remains is to display the distance between the starting and stopping points. Do you recall the
distance formula? You may have used it in ninth grade Geometry class. That's the same formula here
in lines 29-31.

That takes care of the onclick and onmouseover event handlers, leaving only onkeypress. Remember
that document . onkeypress was set to call function keepKeys () during the loading of
events.html. Here is keepKeys (), lines 49-58:

function keepKeys (ev) {
if (document.layers) {
keys += String.fromCharCode (ev.which);
window.status = 'Key pressed: ' +
String.fromCharCode (ev.which) ;

}

else {
keys += String.fromCharCode (event.keyCode) ;
window.status = 'Key pressed: ' +

String.fromCharCode (event.keyCode) ;
}
}

Using the same browser detection technique, empty string variable keys is set to itself plus the string
equivalent of the key pressed. This happens with String. fromCharCode () , regardless of
browser. JavaScript 1.2, however, represents the keystrokes as ISO Latin-1 characters. JScript uses
Unicode representations. The number in JavaScript is stored in the which property of the event object.
The number for JScript is reflected in the event.keyCode property. So the user types a number of keys,
then selects the "Show Keys" button. This function alerts the value of keys, then sets it to an empty
string.

A Word About the Dueling Event Models

The Navigator 4 and MSIE 4 event models have some things in common, thank goodness. As of this
writing, however, there are still significant differences worth your investigation. Perhaps the greatest
difference is that while Navigator events move down the object hierarchy (e.g., from window to frame
to document to form to field). MSIE events bubble up (e.g., from field to form to document to frame to
window). You can find out more about both models at the URLs below. This info is vital if you plan to
do any complex, cross-browser event handling.

For Navigator, visit:
http://developer.netscape.com/docs/manuals/communicator/jsguide4/evnt.htm

For MSIE, see:

http://msdn.microsoft.com/developer/sdk/inetsdk/help/dhtml/doc_object/event model.htm#dom event

6.5 frames.js

Practical use

Forced frame loading
Version requirement

JavaScript 1.1
Functions

keepIn (), keepOut ()

This source file contains only two functions. One keeps your documents in a particular frameset. The
other keeps your documents out of them. frames.js requires multiple HTML pages for its examples.
For example, try to load ch06\frameset.html in your browser. This file is a frameset with two frames.
One of the frames has file frames.html as the source. frames.html utilizes frames.js to ensure that
frames.html is always loaded in the top window. That's why loading frameset.htm! gives you the
results shown in Figure 6.10 and Figure 6.11 (the browser loaded frames.html).

Conversely, those who want to make certain that their files aren't loaded unless they are in a particular
frameset can use frames.js as well. Check out Figure 6.10, which shows what happens when you try to
load ch06\frames2.html. You'll get an alert stating the frameset violation, then the browser loads the
corresponding frameset containing frames2.html. You can see this in Figure 6.11.

Figure 6.10. Busted by the frameset police

http://developer.netscape.com/docs/manuals/communicator/jsguide4/evnt.htm
http://msdn.microsoft.com/developer/sdk/inetsdk/help/dhtml/doc_object/event_model.htm#dom_event

B Ed Yiew Ge Fyeder Hele -
A = @ J & D W o ¥ = B 5 O
Back Skp Mamk Hme Sewch Fests Wiy Charen Fuome Wl P (=]
gwilwi |] O Prarie il e o g Dy bR i T sk e hary =] | [
=

E
] D g o o b s Ll | 5 o
!hl #|Meed Framessd -« Moy BT

Figure 6.11. That's better

G (5 Yem G Fgem Heo
o= @ 9 @ D W o ¥ =5 B I o
Fach Tiop Aok How Gowch Pty Bl Chaves Fulcswe Bl Frai (]
gmiieis |8 [wSHI] Pratie oAt s Dieeston'be SLIT ok Herwsnn ey = | e
Thiere... it 18 rouch besdes
3] eme T MpiCowpe
!h—l | Plam Uk Fromenct .. RECET

The code to accommodate this functionality is short and sweet. Function keepOut () compares
document URL in the top window with the document URL of the current frame. If the
location.href properties don't match, keepOut () protests with an alert dialog box and
loads the document in its own top window. Function keepIn () performs the exact opposite
comparison and loads the URL contained in the argument passed if the comparison fails. Example 6.6
shows the code for frames.js .

Example 6.6. frames.js

1 function keepOut () {

2 if (top.location.href != self.location.href) {
3 alert ('This document bows to no frameset.');
4 top.location.href = self.location.href;

S) }

6 }

7

8 function keeplIn (parentHREF) {

9 if (top.location.href == self.location.href) {
10 alert (' [Wheez]. . . [Gasp]. . . Must. . . load.

'+

11 'original. . . frameset.');

12 top.location.href = parentHREF;

13 }

=
D
—~

6.6 images.js

Practical use
Image rollovers

Version requirement
JavaScript 1.1

Functions
imagePrelLoad (), imageSwap (),display ()

Just like the functions in dhtml.js, the code in images.js was presented in earlier chapters. Chapters 3,
4, and 5 have various versions of the code listed in Example 6.7. You can preload images and use
them for mouse rollovers.

Example 6.7. images.js

1 wvar imgPath = 'images/';
2 var arrayHandles = new Array('out', 'over');
3
4 for (var 1 = 0; 1 < arrayHandles.length; i++) {
5 eval ('var ' + arrayHandles[i] + ' = new Array()'):;
6 }
.
8 for (var 1 = 0; 1 < imgNames.length; i++) {
9 imagePreload (imgNames[i], 1),
10 }
11
12 function imagePreload (imgName, idx) {
13 for(var j = 0; j < arrayHandles.length; j++) {
14 eval (arrayHandles[j] + "[" + idx + "] = new
Image () ")
15 eval (arrayHandles[j] + "[" + idx + "].src = '"" +
imgPath + imgName +
16 arrayHandles[j] + ".gif'");
17 }
18 }
19

20 function imageSwap (imagePrefix, imagelIndex, arrayldx)

{

21 document [imagePrefix] .src =
eval (arrayHandles[arrayIdx] + "[" +

22 imageIndex + "].src");

23 }

24 function display(stuff) { window.status = stuff; }

Since you know the procedure for image rollovers, I haven't included any graphics here to illustrate
the difference.

6.7 navbar.js
Practical use
Dynamic page navigation
Version requirement
JavaScript 1.1
Function
navbar ()

This source file contains only one function, but it's a good one. Suppose you have on your web site
several pages of content, each with a navigation bar of links to all the other pages. Wouldn't it be great
if JavaScript could make a smart nav bar that included links to all other pages on the site except the
one currently loaded? Figure 6.12 shows ch06\astronomy.html. The nav bar contains links to the other
pages on the site: Other Sciences, Sports, Musicians' Corner, and Cool People. Figure 6.13 shows the
document that loads after following the People link. Now look at the nav bar: Astronomy, Other
Sciences, Sports, and Musicians' Corner. There's no link for People because it's already loaded. You
can do this for as many pages as you like, and if documents change, you need to make changes only in
navbar.js. This will save plenty of time.

The code for this is surprisingly basic. Just populate array navURLs with the filenames of your web
pages, and array linkText with the text you want to display in your links. Function navbar ()
iterates through all the filenames and generates a link with corresponding text for all those that do not
appear in the location. href property of the current document. It's that easy. Check out the code in

Example 6.8.

Example 6.8. navbar.js

1 wvar navURLs = new Array('astronomy.html',
'science.html', 'sports.html',
2 'music.htm', 'people.htm');
3 wvar linkText = new Array ('Astronomy', 'Other
Sciences', 'Sports',
4 '"Musicians\' Corner', 'Cool People');
5
6 function navbar () {
7 var navStr= '';
8 for (var i = 0; i < navURLs.length; i++) {
9 if (location.href.indexOf (navURLs[i1]) == -1) {
10 navStr += ' [<A HREF="' 4+ navURLs[i] +
'">T 4+ linkText[i] +
11 '] ';

12 }

13 }
14 document .writeln ('

' + navStr) ;

15 }

You can extend this functionality dramatically. There is no reason you can't use images (with
rollovers) in place of the text links. If you have a ton of links and don't want to list them across the
page, why not embed them in a select list? Then you can really pile on the links and save precious real

estate.

Figure 6.12. The astronomy page with no links to astronomy

[: The diessms Page Meiows ___HBLIE
fla Ex ¥e= (= Cowwnces Hek
| Wmbmata) Losaton e AN Ficliesd et o o o I | oot snonamg il ﬂlr.l'mrmn n

- r E | % - Al & [Fs il

() Read Hase Semch Holmiis Pord Gelek

The Astronomy Page

Dacussie Duea S e oW FRl wf
LKy

e
:ﬂmﬂl _l].' Tha Aty I'aga

Figure 6.13. The people page with no links to people

L b Maain I'aga - Halacaps

Be B8 Ye= v [owwons feo
el

| Ambmaba e Lovaion e S TATHT Frolie it e T op et d T oo ppe i

« & A A = = 4 f &

Hack. Fekad Wams Semch Heccs Pari Sacok

-The People Page
4

A,

S =

w b O ecumare Dona
!Hﬂl FE The Peopis Page - 4 (21

6.8 numbers.js

Practical uses

Correcting rounding errors and number formatting for shopping cart programs
Version requirement

JavaScript 1.1
Functions

twoPlaces (), round (), totals ()

JavaScript performs floating point arithmetic a little differently than we might expect; the result is that
many of our calculations also come out slightly different than what we expect. The DevEdge
Newsgroup FAQ at http://developer].netscape.com:80/support/fags/champions/javascript.html#2-2
uses the example 0.119 * 100 = 11.899999. It's also common to want to display number in terms of
dollars and cents. The functions in numbers.js are designed to help with both situations. All three
functions included are based on those at http://www.irt.org/script/number.htm maintained by Martin
Webb. Figure 6.14 shows ch06\numbers.html loaded.

Figure 6.14. Better looking numbers, thanks to JavaScript

Fie R o= OF [owwwss Hoo

f Hmbmats 4 Lovaion et LTI T clionsermshse U eop L berdul | covarsen Hni =] T wrads Ruiad n
- A A = = s o @
Rk Famed Plekoad Ha» Semch Hebwas Pl Temcunily
Tww Dhe elmial Plasee s

1 (00 o o [0
T 10
1al0d
i) - 53

Frranding repmessinns Wiskime nembers |« Frmcoose
5102 - 38 = 7. 220000000 D000

Eounfing expressions Witk rarsh ers.js Panerions
SI02- 23=4722

ol =LF] B R o LAl
iml G mambeia i T gl - 1117844

The numbers displayed under the "Two Decimal Places" heading shows how function

twoPlaces () formats numbers to place them in a dollars and cents format. The other two
headings display the difference between the expression 51.02 - 3.8 both without and with function
round () and totals (), the latter of which is the desired effect. Example 6.9 shows numbers.js.

Example 6.9. number.js

1 function twoPlaces (amount) {

2 return (amount == Math.floor (amount)) ? amount +
'.00"

3 ((amount*10 == Math.floor (amount*10)) ? amount +
'0O' : amount);

4 }

5

6 function round (number,X) {

7 X = (X 7?2 2 : X);

http://developer1.netscape.com:80/support/faqs/champions/javascript.html#2-2
http://www.irt.org/script/number.htm

8 return Math.round (number * Math.pow(10,X)) /
Math.pow (10, X) ;

9 }

10

Function twoPlaces () returns the string value of the number it receives with either O or . 00
appended, or nothing if the number is already correctly formatted. That huge conditional expression
translates to English as:
e Ifthe number is equal to its greatest lower integer (Math.floor (amount)), return it as
a string with . 00 appended.
e Otherwise, if the number times 10 equals its greatest lower integer times 10
(Math.floor (amount) * 10),returnitas a string with .0 appended.
e Otherwise, return the number as a string, because it is fine the way it is.
As for the rounding errors listed below the "Two Decimal Places" list, function round () returns the

number received rounded to the precision of integer x decimal places. x defaults to 2. Therefore, the
default is rounding to two places if you don't pass in a value for x.

6.9 objects.js
Practical uses
Generic object creation, object inspection
Version requirement
JavaScript 1.1
Functions
makeOb] (), parseObj (),objProfile ()

Now JavaScript objects. So many things to do with them, so little time to try them all. objects.js
provides two utilities. One is a generic object constructor, the other is a basic object inspector. Open
ch06\objects.html in your browser. Figure 6.15 shows you what you get.

Figure 6.15. The results of objects.html

B abacis o Lxampls - Reacsps

Be ER Ye= [» [swnwuss leb

"l T Bmbmaks b Lovation e 0D ATHT Frobe e s e ion oS8 oo oot el] T e Rt n
it o+ A N - W o o &
Bk Pabad Wams Semch Meeics Pt Gaowk

Ohbject Profile

1) somadbjact

Frepere pame Tope sirimg Vaies: dhis abjerr nawa
Freperty nomba Trpe vamher Vabas: 1000
Fropeity alglnherit Tepe ohjest Vakis [abgeecl Cfigece|

Froperty prapervyline Thpe soimg Valse. didsPrapeny
Troperr properyTus Trpe siring Vaue dhaiPraperty

Fropeity prapentyThree Tepe string Vales thelthePrapery

2) salf. location

Trepertr hrel Tge cirmg Vaiw fleO0WINNT Prafiles Admiri Thw sktnp CxhrrSealETea labjarts himd

Frepeity pratacnl T widag Wike e

Fropeiiy. bon I'm= rFumg el

Tropertr hoomame Tipe strmg Wk

Frepeity post T strmg Wik

Foopeitw pathiame The rinmg Wale HOANIRS DL ol e Rdwiivd Db g koo U whs i Sl 1 Wb b o0 Lol

FPreperte harck T cirmg Wakm

Frepoty dmiarch Tge dlrmg Wik

Fooperty rurger Tape wbieer Walne ol

Troperr eext Tepe shisrt Vaiw mall

Frepaty x Twe endalised Ve endalined

Fropeiiy ¥ Page wmilaftved Wit wndafioed

H

=k Hooumers fora T)
P T | —, 111ELs

Object inspector functions parseObj () and objProfile () reveal the properties of two
objects: one represented by variable someObject ; the other is the location object of the window. Have
a look at objects.html in Example 6.10 to see how this gets under way.

Example 6.10. objects.html

<HTML>
<HEAD>
<TITLE>objects.js Example</TITLE>
<STYLE type="text/css">
<!P--
td { font-family: courier new; font-size: 14}
-——>
</STYLE>
9 <SCRIPT LANGUAGE="JavaScriptl.l"

SRC="objects.js"></SCRIPT>

10 </HEAD>

11 <BODY>

12 <SCRIPT LANGUAGE="JavaScriptl.1l">

13 <!--

O ~J o U Wb

14
15 function plainOldObject () {

16 this.name = 'some name';

17 this.numba = 1000;

18 this.objInherit = new makeObj ('propertyOne',
'thisProperty',

19 'propertyTwo', 'thatProperty', 'propertyThree',
'theOtherProperty');

20 return this;

21 }

22

23 var someObject = new plainOldObject ()

24

25 document.write (objProfile('someObject',
'self.location'));

26 //-—>

27 </SCRIPT>

28

29 </BODY>
30 </HTML>

Notice line 23 sets variable someObject equal to anew plainOldObject () . The
plainOldObject () constructor has several properties, including name, numba, and objinherit.
objlnherit represents an object made from the generic object constructor makeObj () found in
objects.js. Take a look at the source file in Example 6.11.

Example 6.11. objects.js

1 function makeObj () {
2 if (arguments.length % 2 != 0) {
3 arguments[arguments.length] = "";
4 }
5 for (var 1 = 0; i < arguments.length; i += 2) {
6 this[arguments[i]] = arguments[i + 1] ;
7 }
8 return this;
9 }
10
11 function parseObj (obj) {
12 var objStr = '';
13 for (prop in obj) {
14 objStr += '<TR><TD>Property: </TD><TD>' +
prop +
15 '</TD><TD>Type: </TD><TD>' +
typeof (obj [propl]) +
16 '</TD><TD>Value: </TD><TD>' +
obj [prop] +
17 '</TD></TR>"';

18 if (typeof (obj[propl) == "object") {

19 objStr += parseObj (obj[propl):

20 }
21 }
22 return objStr;
23 }
24
25 function objProfile() {
26 var objTable = '<TABLE BORDER=2
CELLSPACING=0><TR><TD><H1>' +
277 'Object Profile</H1></TD></TR>"';
28 for (var i = 0; i < arguments.length; i++) {
29 objTable += '<TR><TD>

<H2><TT>' + (i + 1) +
')] +
30 arguments[i] + '</H2></TD></TR>';
31 objTable += '<TR>}XTD><TT><TABLE CELLPADDING=5>' +
32 parseOb]j (eval (arguments[i])) +
'</TABLE></TD></TR>"';
33 }
34 objTable += '</TABLE>

';
35 return objTable;
36 }
Let's first have a look at makeOb7 () ; here are lines of the source file:
function makeObj () {
if (arguments.length % 2 != 0) {

mwi
14

arguments[arguments.length]
}
for (var 1 = 0; i < arguments.length; i += 2) {
this[arguments[i]] = arguments[i + 1] ;
}
return this;

}

This constructor builds properties by assigning pairs of arguments passed in. If there is an odd number
of arguments passed (meaning one argument won't make a pair), makeObj () assigns an additional
element of empty string value to the arguments array. Now every argument element has a buddy.
makeOb7j () then iterates through the arguments elements by twos, assigning the first element of the
pair as an object property name, and the second element of the pair as the value of the previously
named property. That is, calling makeObj ('name', "Madonna', 'occupation',
'singer/songwriter') would return a reference to an object with the following properties:

this.name = 'Madonna';
this.occupation = 'singer/songwriter';

Therefore, variable objlnherit now refers to an object and has the following properties:

objInherit.propertyOne = 'thisProperty';
objInherit.propertyTwo 'thatProperty';

objInherit.propertyThree = 'theOtherProperty';

Note that all the properties have strings as values. You can certainly pass in numbers, objects, and the
like. Function makeObj () is great for creating multiple objects, each with different properties,
without having to define a constructor for each.

The other object inspected is the location object. Pretty straightforward, but how does the inspection
work? Functions objProfile () and parseOb7j () work together recursively to "drill down"
into object properties and create a table of results. Each table row identifies the object property name,
the property object type, and the value to which it is associated. Let's begin with objProfile ():

function objProfile() {

var objTable = '<TABLE BORDER=2 CELLSPACING=0><TR><TD><H1>'
|
'Object Profile</H1></TD></TR>"';
for (var i = 0; 1 < arguments.length; i++) {
objTable += '<TR><TD>

<H2><TT>' + (1 + 1) + ') ' +

arguments[i] + '</H2></TD></TR>"';
objTable += '<TR>}<TD><TT><TABLE CELLPADDING=5>"' +
parseObj (eval (arguments[i])) + '</TABLE></TD></TR>';
}
objTable += '</TABLE>

';
return objTable;

}
objProfile () isthe function you call and pass parameters. See line 25 in objects.html :
document.write (objProfile ('someObject', 'self.location'));

The arguments passed in aren't objects at all. They're strings. They'll reflect objects soon. Passing in
the string equivalent allows JavaScript to display these objects by name to the page. Once the
necessary table TRs and TDs are created, these string arguments passed into objProfile () are
iteratively de-referenced with the eval () method in line 32 and passed to parseObj (). Watch
what happens then:

function parseObj (obj) {
var objStr = '';
for (prop in obj) {
objStr += '<TR><TD>Property: </TD><TD>' + prop +
'</TD><TD>Type: </TD><TD>' + typeof (obj[prop])

'</TD><TD>Value: </TD><TD>' + obj[prop] +
'</TD></TR>";
if (typeof (obj[prop]) == "object") {
objStr += parseObj (obj[propl)
}
}
return objStr;

}

Each dereferenced string arrives as an object and is called obj. Using the for ... if loop,

parseObij () iterates through all properties in 0bj, accumulating a string of its property, type, and
value along with appropriate table tags. parseObj () accesses the object type with the

typeof () operator. Once the property, type and value have been added to the string,
parseObij () checks to see whether the type of that particular property is an object. If so,
parseOb7 () calls itself and passes in the property (which is an obj object). This recursion allows
the "drill down" effect to get to the bottom of, and reveal, a top-level object's internal hierarchy.

When parseOb7j () has no more objects to parse, the entire string of properties, types, values, and
table tags, reflected in variable 0bjStr, is eventually returned to function objProfile ().
objProfile () then concatenates this string to the other table rows and cells that it created. This
string, reflected in variable objTable, is finally written to the page in line 25 of objects.html.

o These object inspection functions are designed for relatively small objects,
. such as user-created objects. Both Navigator and IE will choke on the script if
w # ;. there is too much recursion. For example, try changing line 25 of objects.html
" from this:

document.write (objProfile ('someObject’',
'self.location'));

to this:
document.write (objProfile ('document')) ;

Now load the document into MSIE. You'll no doubt receive a stack overflow
message. Try this in line 25 with Navigator:

document.write (objProfile ('window')) ;

You get this in the JavaScript console: JavaScript Error: too
much recursion

6.10 strings.js
Practical uses
String manipulation, alphabetization, frequency counting
Version requirement
JavaScript 1.2
Functions

camelCaps (), prepStr (),wordCount (), reorder ()

The functions give you a taste of what you can do with strings, most likely from user input. Open
ch06\string.html in your browser and Figure 6.16 is what you'll see.

Figure 6.16. Three forms to crunch string data, starting with word count

e E s Lrwnunces e
TR T I T Lezaiem [l DA FHT o St Thasdop gha 3 7T el tergn i

=] {7 wWhea Fismied n
i « 3 A a A & & @
Eab Famsd PReld Hase Sesch Hotwae Pa Tl

=
Fates iome words im e TENTAREA below Then choass Camnl For @ wroed cosal —
FUDL0- BKE B FELann =
The =ost comntaly wStd j
irplermstat dum ol
public-kow caccyphion mre
parsd o= mlgporicees
Fazanted by RS Daca
Hscuricy. Trarsdors, thim
jreczian dessribhea the
Bl MBETOADR TO

Sam | s |

Eaim vomr weords @ the TEXTAREA belw Then choom Uppar or Lowar to chazgy faz ©

=

Uppor | Lower | Fosat |

Eaie rome weerds @ the TEXTAREA belome Then chease Sartea parithy st
i -k LECTES T

=
% e o A
s |77 g o Fwosmie - W

What you have here are three forms that demonstrate three functions. The first form contains a
TEXTAREA to enter text. After the user enters text and presses the "Count" button, function
wordCount () generates a new page with a table. The table list each of the "words" typed in the

TEXTAREA and the number of times the word was encountered. You can see the results in Figure
6.17.

Figure 6.17. The table of words and their respective counts

Fle E® ¥e= 05 [owurces Hels
"l imbsaka f Locaton paemcipt VHTMLT L me <M FEL =] T wteads Rind n
« » A A =2 o =+ o @
Fonch Febad Hame Gasmch Mooy Pod Gecunk
Crignal Foomatted Texi o Eregueacy
PROFCkRY ST e RO SoMmRaRYY LT
Lmgplemenindimier o pubdsfry peimpdon aw] 1
e ooy akporiunr paseiad e nsa dsie
ity Dhar B T8 el dieieriled L i T
sppraeck 10 pubacker ssrryplan pubickey .
sue g non oo callad apwemeres dverypIica . 1
T S e
pervare drpssemated Witk o are that .
snade 30 autlenticats ite ideatity whectravicaly | SaPlE 1
o [0 Ags o aucned difa aack padls R i
prblbiond and the cormgronding private bee i %93 1
gt st e wpore pfemaion kot D
ey Pl b aret palyialend S ceetpioateg [4] 1
Pt I LY B |H'-.'l."'_'|‘l'l'l"fl"|. ol
bl ety o b e rreina oy wetke poar i x
prvare kxy fgure F shoves s peplpied e
1R WAIY P DT AR R WO spprouth 1
o 2
AT 1
il ais 1
ailrisakon 1
bagzd 1
=l
ol =B e B W O LE
jhﬂl e 1130880

The second form contains a TEXTAREA for entering text, too. The user can then choose "Upper" or
"Lower" to convert the first character of each word to upper- or lowercase. Function

camelCaps () takes care of this. You might find this function handy for form validation, perhaps
when users have to enter names and addresses. Check out the case change in Figure 6.18.

Figure 6.18. Capitalizing the first character or each word

BT T gy TR —

B poms weords B e TENTAREA below Then chiososs Uppser or Lavwer to chusge s ciss
Futlic-xay Coyptography &

Fucilicaces Tha Followisg

Talcn:

- EmEEyELAOn AmD
Pecryplion ALlow Tw
[Fomimicallig PArtiIcs Ta
Pizyuire Infuremtion They
[ferd To Each deber. The
Incrypea, Or
Poomblas, laformatica

o I |

i vomr weords @ the TENTAREA below Them cheows Sard ba cant the e

- |
_5en | Fowe |
af =L Oecumers fira R e R u?-_
| [g s P - W e 2P

Figure 6.19. Alphabetizing the words

T T =1]
Be Ef ¥es e [owunces Heb
T al Mmbamts 4 Locaton et TR Frcliemsorrs s D op kel] oot =] (" wteeds ke n

e A % =2 o 4 & H#
Buk Fuewd Febed Hwe Gewh Hoics Pl Gek

B oo weopcds s TEXTAKEA, bekoer Then cheoss Upper ar Lawer to change i cass
=

- |
gt | Wi | ot
Tvier roame weerds in the TENTARTA bk Then chenss Sarkta sart the bt

Ia & & sfter allcw allows &
mllovs mn snd mny e

mtcecpt wethanvicwtica b
san befors clEiming
ot C KT ored A
CRPCOPTARIY SALA GNTH
A= ek han “ypra
jasrectea metecticn
frtermine disguize e h
lenczyated mnccyprion

L[Bent | P |
o - Bocumere fioea AT

!n—|ﬁ.n.'..,.i.r._.a.-u ;IIIJP\-

b |

Not to be outdone, the last form has a TEXTAREA, which, after the user types in his or her text, can
sort each instance of the words. This is a good alphabetization script. Have a look at Figure 6.19 to see
the results. Choosing "Sort" multiple times renders the text between ascending and descending sort
orders. You've seen the puppet show; now its time to see who's pulling the strings.

Example 6.12 has the code for strings.js.

Example 6.12. strings.js

1 function wordCount (str, output) {
2 var wordArray = new Array();
3 str = prepStr(str);
4 var tempArray = str.split(' '").sort();
5 var count = 1;
6 for (var 1 = 0; 1 < tempArray.length; i++) {
7 if (wordArray[tempArray[i]]) {
8 wordArray [tempArray[i]]++;
9 }
10 else { wordArray|[tempArray[i]] = 1; }
11 }
12 if (output) { return wordArray; }
13 else {
14 var arrStr = '';
15 for (word in wordArray) {
16 if (word != "") {
17 arrStr += '"<TR><TD>' + word + '</TD><TD>' +
wordArray[word] +
18 '</TD></TR>";

19 count++;

20
21
22

}

}
return '<TABLE BORDER=0><TR><TD WIDTH=300

VALIGN=TOP ROWSPAN=' +

+ str +

arrStr

23

24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

+

count + '>Original Formatted Text
<I>'
'</I><TD>Word<TD>Fregency</TR>' +
'</TABLE>';

}

function prepStr(str) {

str = str.toLowerCase ()

str = str.replace(/['"-1/g, "");
str = str.replace(/\W/g, " ");
str = str.replace(/\s+/g, " ");

return str;

}

function camelCaps (str, theCase) {
var tempArray = str.split(' ");

for (var i = 0; 1 < tempArray.length; i++) {
if (theCase) {
tempArrayl[i] =

tempArray[i] .charAt (0) .toUpperCase () +

42 tempArray[i] .substring (1)

43 }

44 else {

45 tempArrayl[i] =
tempArray[i].charAt (0) .toLowerCase () +

46 tempArray[i].substring (1) ;

47 }

48 }

49 return tempArray.join(' ");

50 }

51

52 wvar order = true;

53

54 function reorder(str) {

55 str = prepStr(str);

56 str = str.replace(/\d/g, "");

57 order = !order;

58 if ('order) { str = str.split(' '").sort().join(" '");
}

59 else { str = str.split(' ").sort().reverse().join("'
"): o}

60 return str.replace(/*\s+/, "");

61

}

To generate a word count using the first form, wordCount () accomplishes the following steps:

Removes any characters that aren't letters, numbers (or underscores) or single whitespaces
Creates an array of all the words in the text

Counts the number of occurrences of each word

Displays the results in table format

bl

Step 1 is accomplished with another function, prepStr (). Here it is at lines 29-35:

function prepStr (str) {

str = str.toLowerCase();

str = str.replace(/['"-1/g, "");
str = str.replace(/\W/g, " ");
str = str.replace(/\s+/g, " ");

return str;

}

The string is first converted to all lowercase (no need to count "Boat" and "boat" as two separate
words). Then the function performs a series of string replacements. Quotation marks and dashes are
eliminated in line 31. Any characters that are not letters, numbers, or underscores are converted to
single whitespaces in line 32. Finally, one or more adjacent whitespaces are converted to a single
whitespace. This cleans up the text a bit and keeps the ensuing code from counting such entries as ? or
"string" (quotes included) as a word.

Back to wordCount (). prepStr () returns a string of words delimited by whitespace. This
makes for an easy split () to wrap up step 2 from above. Step 3 happens in lines 6-11:

for (var i = 0; i < tempArray.length; i++) {
if (wordArray[tempArray[i]]) {
wordArray [tempArray[i]]++;
}
else { wordArray[tempArray[i]] = 1; }
}

In the second form, the text the user typed is passed to the function camelCaps () as a string.
camelCaps () also accepts a second argument, a Boolean value indicating whether the case
conversion is upper- or lowercase. Here's another look:

function camelCaps (str, theCase) {
var tempArray = str.split(' ");
for (var i = 0; i < tempArray.length; i++) {
if (theCase) {
tempArray[i] = tempArray[i].charAt (0).toUpperCase() +
tempArray[i] .substring (1) ;
}
else {
tempArray[i] = tempArray[i].charAt(0).toLowerCase() +
tempArray([i] .substring (1) ;
}

}

return tempArray.join(' ");

}

Local variable tempArray is set to an array containing all the words in the text. A "word," in this case,
refers to any text between whitespace. Now it's a matter of iterating through all the words and
replacing the first character of each with its upper- or lowercase equivalent. When all first letters have
been changed, the function returns a string of these new words joined by a whitespace. Function
camelCaps () is essentially returning the whitespace that it removed during the split ().

For the last form, function reorder () performs eithera sort () orareversed sort (). See for
yourself:

var order = true; function reorder (str) {
str = prepStr(str);
str = str.replace(/\d/g, "");

order = !order;

if (lorder) { str = str.split(' ').sort().join("'" "); }
else { str = str.split (' '").sort().reverse().join("' "); 1}
return str.replace (/"“\s+/, "");

}

Justas in wordCount (), prepStr () formats the string passed in. For this function, though, I
also removed the digits with a callto str.replace (/\d/g, ""). This keeps the focus on
words as opposed to numbers. Variable order is changed to its opposite, which determines the sort
order and sets up things for the next click of the "Sort" button . Now, consider what must happen if the
words are sorted traditionally or in reverse. For a traditional sort:

1. The text is split into an array.
2. Those array elements are sorted.
3. That array is joined to make a string.

In the case of a reverse sort, there is an extra step:

The text is split into an array.

Those array elements are sorted.
The elements are reversed.

That array is joined to make a string.

b s

Lines 58-59 of strings.js use the value of order to determine which of the two routes to take.
Afterwards, the string is returned (less any leading whitespace that may have been created by the
join()).

6.11 Potential Extensions

The sky is really the limit here. Of course, you can add cool functions to these files or even make the
existing functions better. In all honesty, though, I doubt you'll want to keep your functions in these
same source files. Maybe you're designing a handful of web sites, and you want to name .js files by
site name. Great. Insert the functions that you need, and you just made a toolkit. (How about naming it
toolkit.js 7) The important thing to remember is that you need to come up with a system that works

best for you. Don't let your .js files manage you. Keep it the other way around. I'd really like to know
what you come up with.

Chapter 7. Cookie-Based User Preferences

Application Features JavaScript Techniques
> . .
®Modifiable Links, Background Images, and Font Settings Aglaa;lTlng Conventions Pay Off
®Flexible User Preference Application ®Dynamic DHTML

®Dozens of Layout Combinations

®Easily Customized for Language Preferences, Colors,
Images, and DHTML

This chapter contains a worthless application, but don't flip to the next one yet. Did I mention that the
code in this one can help you add some of the coolest functionality to your web site? I'm talking about
setting user preferences. Consider this. What's the one word every user has on his or her mind while
surfing the Web?

HMe.”

Yes, users are a selfish bunch, always thinking about their concerns and interests, rather than yours.
Whatever people do, they always tend to seek things that remind them of themselves. That's why
DHTML freaks hang out at the Dynamic HTML Zone (http://www.dhtmlzone.com/), shoppers go to
Shopping.com (http://www.shopping.com/ibuy/), and astronomy geeks (that would be me. See? I'm
doing it right now) visit the Sky & Telescope site (http://www.skypub.com/). Marketers, advertisers,
and salespeople have capitalized on this for centuries. The Web is no different. Using a fictitious
application, this chapter shows you how to add personalization of functionality to your site, even if it's
as simple as remembering a username. Using JavaScript cookies, visitors will be able to customize
their experience on your web site.

Say you've developed a site for Internet investors who have a little extra spending cash. Visitors get a
free membership at this fictitious Wall Street cybercenter, called Take-A-Dive Brokerage $ervices.
They can't do any trading here, but they can get their own customized home page with a choice of
favorite links to other financial-related web sites and e-news. Figure 7.1 shows what happens when the
user first visits the soon-to-be-customized page (\ch07\dive.html). This is the user's first time, so he or
she is redirected to the user preferences page.

Figure 7.1. First timers go directly to the user preferences screen

E SLIE
Be BB You Gs Fasaller e E
= . @ A9 & 8@ & F ¥ oo 3
ot Swa Peimsy Hama Semch Feostm: Hosop Chers Falcwan Wl Perd
A.'ﬁhul-g"-'m'll"n.h.q‘l--Jm‘Ir.Il.r'.l’#"ml’.l il o ot il x| | Liia

t': el it it Fred £ e i e Phaass chaoai O o bt et Ll Pl e

7 My Cowpan

£ [oam 1aka-A-Dive Lis, & AP

|E [

http://www.dhtmlzone.com/
http://www.shopping.com/ibuy/
http://www.skypub.com/

Figure 7.2 shows the user preferences page (\ch07\prefs.html). It's a long form that allows the user to
enter name, age, occupation, and category of investment strategy. A series of checkboxes allow the
user to choose which (if any) of the available finance-related links to put on the customized home

page.

Figure 7.2. Setting user preferences

"I
+ v
=3

Atb [AR F i dved o

a4 a4 = o ¥

]
e R e e . . B T
=

e = e

Take-A-DHve User Preferences.

Boon T BEEINE o e b, i £a0ae
o B 1 b L R
& Clowr b resed I fon

[TR T NN T T T

Ierrwzior Profis

Fiame - DR g
Rz Bl et
ArER Dy eEVEIEIE T

Boopadon [anceder

Eerrwaimnl Links

-
[]
r
P ne
P
=
=]

Emack Wdeaed

Boreen Layoan b

.

| iy Lonuin

Bt ||] ki v L ePe

The form winds up with a series of select lists, with which the user chooses a background image, font
size, and font family from the provided thumbnail images. When everything is chosen, clicking
"Save" writes the selections to the resident browser cookie file. The user is then asked to review the
changes, as shown in Figure 7.3. Choosing "OK" directs the user to dive.html,a page that reflects
everything the user selected—the personal info, the background, even the font stuff.

Pretty cool, but what if the user wants to make changes? Simply choose the "Set Preferences" link,
and you're back at prefs.html. Notice that the user's choices are also maintained here. All the personal
information remains intact. The most recently checked checkboxes are still selected. Even the
background images and font details are in place. Now the user can experiment with the background
images and font specs to see which works best. Figure 7.4 shows one of the many possible
combinations.

Figure 7.3. After clicking Save, the user is asked if the personalized page should be
displayed

B E% e e Frems o
.o+ 2 A
S

Aaarh

)

a@

Swwch Fawwinr

ET

iy

im0 | e/ SHITT Pt s e ' iz b S b s el

1 weivhd]
e & MO BIE o
| e

Investrnent Links

06
SHillegy
O b

I Baren's Colkig

F TN Rmractve

P Mesws

F MESHBL

F The 'Wal Sreet Jouna

F Do Jonss I

Slock Indexee F rlvE0n0
P Tha Mew ork Sock Exchan

SRARh

Hizsaredt v Coplasss I}
‘_;:) Prsbiitrn, Llmrmd Diba win o peribind g

=

Screen Layout

round
Currency 1 =]

Fant Face

Tak D
Font Size

Font

e
]
[e

L4l

T 4y Cowrgrr
(T

Figure 7.4. The customized page, including font and background image

W vow labeA v Lk Mage - Hecoalt Istmnet L aoiois -l
Ele [¥e= L Fecisr bHeb
o - ¥ & =
- 2-2AglAsaig 2T 2
S [WIS T oz’ ot gty il ol v b =]
Take-A-Dive Brokerage $ervices |
‘Take-A-Dive Brokerage Services i dedicated to helping YOU part with your MONEY,
Qur metto is " We go for broke,” Here & your user profile and your customized links.
Hame: Jerry Bradentaugh Age: 21 (T wishl}
Strategy: [oderabe Occupatian: ‘Web Coder
Mews Links Stock Index Links
= CHN Int=ractve = Dow Jones Indexes
- MSNBE - HASDAD
= The Wall Strest Journal = Th Mew Yark Stock Exchange
[Set Preferences]
| [y 5 o =
St || & Frlemm Tk lres o [L]

7.1 Execution Requirements

This application has JavaScript 1.2 written all over it. Stylesheets and string replacement make it so.
Users will need to have at least version 4 of Navigator or Internet Explorer. This application can be

significantly extended; it makes use of a very simple stylesheet. The only limitations are those
imposed by your ability to utilize DHTML (in other words, not many).

This is a cookies-based application, so you are limited to the cookie specifications of each browser.
You can find those at the URLSs listed below.

Netscape Navigator:

http://developerl.netscape.com:80/docs/manuals/communicator/jsguide4/cookies.htm

MSIE:

http://msdn.microsoft.com/msdn-
online/workshop/author/dhtml/reference/properties/cookie.asp

Don't worry, though. This application stays well within the cookie limits of both NN and MSIE 4.x
browsers.

7.2 Syntax Breakdown

This application consists of two HTML pages (prefs.html and dive.html) and a JavaScript source file,
cookies.js. The following list describes each file:

prefs.html
This is the page is used to set the preferences for dive.html. This page is also affected by the
extracted cookie info, as the cookie information is used to determine which settings the user
has already selected, and to populate a form accordingly.

dive.html
This page is custom-designed by the information extracted from the cookie.

cookies.js
This file contains the functions used to write the user preferences to and extract the
preferences from the cookie. cookies.jsis embedded in both HTML files. The
GetCookie () and SetCookie () functions, which you'll see in the other two files

come from here.

The files prefs.html and dive. html are both new, but cookies.jsis a source file that was included in
Chapter 6. You can find a discussion of its functionality there.

7.3 prefs.html

Although the sequence of screen captures leads you through the true progression of events (i.e., the
user begins with no preference settings), let's assume the user has previously set user preferences and
is returning to prefs.html to make changes. I think you'll find it much easier to follow. Example 7.1
shows prefs. html.

http://developer1.netscape.com:80/docs/manuals/communicator/jsguide4/cookies.htm
http://msdn.microsoft.com/msdnonline/workshop/author/dhtml/reference/properties/cookie.asp

Example 7.1. prefs.html

<HTML>
<HEAD>
<TITLE>Take-A-Dive User Preferences</TITLE>
<STYLE type="text/css">
BODY, TD { font-family: Arial; }
</STYLE>
7 <SCRIPT LANGAUGE="JavaScriptl.2"
SRC="cookies.js"></SCRIPT>
8 <SCRIPT LANGUAGE="JavaScriptl.2">

oY U1 i LW DN

9
10 wvar imagePath = 'images/';
11 var newsNames = new Array(
12 new Array('The Wall Street
Journal', 'http://www.wsj.com/"),
13 new Array('Barron\'s
Online', '"http://www.barrons.com/"'),
14 new Array ('CNN Interactive', 'http://www.cnn.com/'),
15 new Array ('MSNBC', 'http://www.msnbc.com/"),
16 new Array('Fox News',6 'http://www.foxnews.com/")
17) ;
18
19 var indexNames = new Array (
20 new Array('The New York Stock
Exchange', 'http://www.nyse.com/"'),
21 new Array ('NASDAQ', 'http://www.nasdag.com/"'),
22 new Array ('Dow Jones
Indexes', 'http://www.dowjones.com/")
23) ;
24
25 wvar strategy = new Array(
26 new Array ('Cheap', 'I\'m Really Cheap'),
27 new Array('Stingy', 'I\'m Pretty Stingy'),
28 new Array('Conservative', 'I\'m Conservative'),

(
(
29 new Array ('Moderate', 'I\'m a Moderate'),
(
(

30 new Array('Agressive', 'I\'m Aggressive'),

31 new Array('Willing to sell mother', 'I\'d Sell My
Mother!")

32) 7

33

34 var background = new Array(

35 new Array(imagePath + 'goldthumb.gif', 'Gold Bars'),

36 new Array(imagePath + 'billsthumb.gif', 'Dollar
Bills"),

37 new Array (imagePath + 'fistthumb.gif', 'Fist of
Cash'),

38 new Array(imagePath + 'currencylthumb.gif',

'Currency 1'"),

http://www.wsj.com/'
http://www.barrons.com/'
http://www.cnn.com/'
http://www.msnbc.com/'
http://www.foxnews.com/'
http://www.nyse.com/'
http://www.nasdaq.com/'
http://www.dowjones.com/'

39

new Array(imagePath + 'currency2thumb.gif',

'Currency 2'")

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

) 7

var face = new Array(
new Array('times', 'Times Roman'),
new Array('arial', 'Arial'),
new Array('courier', 'Courier New'),
new Array ('tahoma', 'Tahoma')

) ;

var size = new Array(
new Array('10', 'Small'),
new Array('12', 'Medium'),
new Array('14', 'Large'),
new Array('le', 'X-Large')

) ;

indexNames = indexNames.sort () :;
newsNames = newsNames.sort () ;

var allImages = new Array();

var imageNames = new Array (
'courierl0', 'courierl2', 'courierld', 'courierlo',
'ariallO', 'ariall2', 'arialld', 'ariallé6',
'"timesl0', 'timesl2', 'timesld', 'timesl6',
'tahomalO', 'tahomal2', 'tahomal4', 'tahomal6',

'goldthumb', 'billsthumb', 'fistthumb', "currencylthumb', 'currenc

y2thumb'
67
68
69
70
71
72
'.gif';
73
74
75
76
77
formObj.
78
formOb7j.
'.gif';
79
80

4

'blank’
) ;

for (var i = 0; 1 < imageNames.length; i++) {
allImages[i] = new Image();
allImages[i] .src = imagePath + imageNames[i] +

}

function makePath (formObj) {
var fontName = imagePath +

face.options[formObj.face.selectedIndex].value +
size.options[formObj.size.selectedIndex] .value +

swapImage ("fontImage", fontName) ;

}

81
82 function swaplImage (imageName, imageBase) {

83 document [imageName] .src = imageBase;

84 }

85

86 function genSelect (name, select, onChangeStr) {

87 var optStr = "";

88 var arrObj = eval (name) ;

89 for (var i = 0; 1 < arrObj.length; i++) {

90 optStr += '<OPTION VALUE="' + arrObj[i][0] +

91 (1 == select ? '" SELECTED' : '""') 4+ '>' +
arrObj[i][1];

92 }

93 return '<SELECT NAME="' + name + '"' + (onChangeStr
? ' onChange="" +

94 onChangeStr + ';"' : ''") + '>' 4+ optStr +
'</SELECT>"';

95 }

96

97 function genBoxes (handle, arr0bj) {

98 var boxStr = '';

99 for (var i = 0; i < arrObj.length; 1i++) {

100 boxStr += '<INPUT TYPE=CHECKBOX NAME="' 4+ handle +
i + '" VALUE="' +

101 arrObj[i]1[0] + ',"'" + arrObj[i][1] + ""> ' +
arrObj[1i] [0] + '
';

102 }

103 return boxStr;

104 }

105

106 function getPrefs (formObj) {

107 var prefStr = GetCookie('userPrefs');

108 if (prefStr == null) { return false; }

109 var prefArray = prefStr.split('-->");

110 for (var i = 0; 1 < prefArray.length; i++) {

111 var currPref = prefArray[i].split('::");

112 if (currPref[l] == "select") {

113 formObj[currPref[0]].selectedIndex =
currPref[2];

114 }

115 else if (currPref[l] == "text") {

116 formObj[currPref[0]].value = currPref[2];

117 }

118 else if (currPref[l] == "checkbox") {

119 formObj [currPref[0]].checked = true;

120 }

121 }

122 return true;

123 }

124
125 function setPrefs (formObj) {

126 var prefStr = '';

127 var htmlStr = '';

128 for (var i1 = 0; 1 < formObj.length; i++) {

129 if (formObj[i].type == "select-one") {

130 prefStr += formObj[i].name + '::select::' +

131 formObj[i].selectedIndex + '-->';

132 htmlStr += formObj[i].name + '=' +

133
formObj[i].options[formObj[i].selectedIndex].value + '-->"';

134 }

135 else if (formObj[i].type == "text") {

136 if (formObj[i].value == ""') { formObj[i].value =
"Not Provided"; }

137 prefStr += formObj[i].name + '::text::' +

138 safeChars (formObj[i].value) + '-->'";

139 htmlStr += formObj[i].name + '=' +
formObj[i].value + '-=->";

140 }

141 else 1if (formObj[i].type == "checkbox" &&
formObj[i] .checked) {

142 prefStr += formObj[i].name + '::checkbox::' + '-
_>';

143 htmlStr += formObj[i].name + '=' +
formObj[i].value + '-=->'";

144 }

145 }

146 SetCookie ('userPrefs', prefStr, expiry);

147 SetCookie ('htmlPrefs', htmlStr, expiry);

148 if (confirm('Preferences changed. Go to your
personalized page?')) {

149 self.location.href = "dive.html";

150 }

151 }

152

153 function safeChars(str) {

154 return str.replace(/::|=|-->/g, '":;");

155 }

156

157 function populateForm (formObj) {

158 if (getPrefs (formObj)) {

159 makePath (formOb7j) ;

160 swapImage ('bkgImage',

1ol

formObj.background.options|[formObj.background.selectedIndex] .v
alue);

162 }

163 else { resetlImage (document.forms[0]); }

164 }

165

166 function resetImage (formObj) {

167 swapImage ('bkgImage',
formObj.background.options[0] .value) ;

168 swapImage ('fontImage', imagePath +
formObj.face.options[0] .value +

169 formObj.size.options[0].value + '.gif'");

170 }

171

172 </SCRIPT>
173 </HEAD>
174
175 <BODY BGCOLOR=FFFFFF
onLoad="populateForm (document.forms[0]) ;">
176 <DIV ID="setting">
177 <H2>Take-A-Dive User Preferences</H2>
178 Choose the settings you like best, then choose

179

180 Save to keep your changes,

181 Clear to reset the form, or

182 Back to return to your links page.
183

184

185 <FORM>
186 <TABLE BORDER=1 CELLBORDER=0 CELLPADDING=0
CELLSPACING=1>

187 <TR>

188 <TD COLSPAN=2>

189

190 <H3>Investor Profile</H3>

191 </TD>

192 </TR>

193 <TR>

194 <TD>Name</TD>

195 <TD><INPUT TYPE=TEXT NAME="investor"></TD>
196 </TR>

197 <TR>

198 <TD>Age</TD>

199 <TD><INPUT TYPE=TEXT NAME="age"></TD>
200 </TR>

201 <TR>

202 <TD>Strategy</TD>

203 <TD>

204 <SCRIPT LANGUAGE="JavaScriptl.2">
205 document.write (genSelect ('strategy', 3));
206 </SCRIPT>

207 </TD>

208 </TR>

209 <TR>
210 <TD>Occupation</TD>
211 <TD>
212 <INPUT TYPE=TEXT NAME="occupation">
213 </TD>
214 <TR>
215 <TD COLSPAN=2>
216

217 <H3>Investment Links</H3>
218 </TD>
219 </TR>
220 <TR>
221 <TD>News</TD>
222 <TD>
223 <SCRIPT LANUAGE="JavaScriptl.2">
224 document.write (genBoxes ('newsNames')) ;
225 </SCRIPT>
226 </TD>
227 </TR>
228 <TR>
229 <TD>Stock Indexes</TD>
230 <TD>
231 <SCRIPT LANUAGE="JavaScriptl.2">
232 document.write (genBoxes ('indexNames')) ;
233 </SCRIPT>
234 </TD>
235 </TR>
236 <TR>
237 <TD COLSPAN=2>
238

239 <H3>Screen Layout</H3>
240 </TD>
241 </TR>
242 <TR>
243 <TD>
244 Background
245

246 <SCRIPT LANGUAGE="JavaScriptl.2">
2477 document.write (genSelect ('background', O,
248 "swapImage ('bkgImage’,
249
this.options[this.selectedIndex].value)"));
250 </SCRIPT>
251 </TD>
252 <TD>
253 <IMG SRC="images/blank.gif"
254 NAME="bkgImage" WIDTH=112 HEIGHT=60>
255 </TD>
256 </TR>

257 <TR>

258 <TD>

259 Font Face

260

261 <SCRIPT LANGUAGE="JavaScriptl.2">

262 document.write (genSelect ('face', 0,
"makePath (this.form)"));

263 </SCRIPT>

264 </TD>

265 <TD ROWSPAN=2>

266 <IMG SRC="images/blank.gif"
NAME="fontImage"

267 WIDTH=112 HEIGHT=60>

268 </TD>

269

270 </TR>

271 <TR>

272 <TD>

273 Font Size

274

275 <SCRIPT LANGUAGE="JavaScriptl.2">

276 document.write (genSelect ('size', O,
"makePath (this.form)")) ;

277 </SCRIPT>

278 </TD>

279 </TR>

280 </TABLE>

281

282 <INPUT TYPE=BUTTON VALUE="Save"
onClick="setPrefs (this.form) ;">

283 <INPUT TYPE=RESET VALUE="Clear"
onClick="resetImage (this.form) ;">

284 <INPUT TYPE=BUTTON VALUE="Back"
onClick="location.href="dive.html';">

285 <!--

286 <INPUT TYPE=BUTTON VALUE="Show"

287
onClick="alert (GetCookie ('userPrefs')) ;alert (GetCookie ("htmlPr
efs'));">

288 <INPUT TYPE=BUTTON VALUE="Erase"

289 onClick="DeleteCookie ('userPrefs');
DeleteCookie ('htmlPrefs') ;">

290 /J/-->

291 </FORM>
292 </DIV>
293 </BODY>
294 </HTML>

Lines 10-68 are fairly academic. Other than identifying a path location for the images (line 10), the
variables here are dedicated to configuring the layout for dive.itml. Each of the variables is set to the
value of a "multidimensional" array. A multidimensional array is essentially an array of arrays. For
example, here is a one-dimensional array:

var oneDimension = new Array("This", "That", "The Other");

You can easily reference any element by using one set of brackets and the corresponding index, such
asoneDimension[0]. Ina "multidimensional" array, each element is an array of more elements,
like so:

var twoDimension =
new Array (
new Array(l,2,3),
new Array(4,5,6),
new Array(7,8,9)
)7

Now twoDimension [0] refers to new Array (1,2, 3) instead of a string, such as This. To
refer to values 1, 2, or 3, you must use a second set of brackets, like this:

twoDimension[0] [0] // Refers to 1
twoDimension[0] [1] // Refers to 2
twoDimension[0] [2] // Refers to 3
twoDimension[1][0] // Refers to 4
twoDimension[2] [1] // Refers to 5
twoDimension[3][2] // Refers to 6

I use the term "multidimensional” in quotes because JavaScript technically doesn't create
multidimensional arrays. It only emulates them. Getting back to the script, each of the variables
declared in lines 11-68 is set to an array of information as described in Table 7.1.

Table 7.1. Variables with Information About the User's Page

Array Name Contains...

newsNames |The names and URLs of several online financial news resources

indexNames |The names and URLSs of several online stock indexes

strategy The name and type of investment strategy users can classify themselves with
background |The names and URLs of available background images

face The image handle (more on that shortly) and the names of the available font families
size The image handle and the names of the available font sizes

alllmages A currently empty array used later to store the preloaded images for easy access

imageNames |An array containing image handles; these strings help preload the images

As the term multidimensional array implies, each element of the array is itself a two-element array.
Basically, one element contains a string for display; the other contains a string for behind-the-scenes
work. For example, size [0] [0] equals 10. That value will be used to set the pixel size of the font.
However, size [0] [1] equals Small, which is the description printed on the page. Users will have

an easier time relating to "small" letters than 10-point letters. It works basically the same for all the
other arrays.

Lines 56-57 are calls to the ARRAY object's sort () method to neatly arrange the news and stock
index links. Not necessary, but two more lines won't hurt anybody. prefs. html utilizes a handful of
graphics, so it's a good idea to preload them. Lines 70-73 handle this:

for (var i = 0; 1 < imageNames.length; i++) {
allImages[i] = new Image();
allImages[i].src = imagePath + imageNames[i] + '.gif';
}

Each of the elements in imageNames is a string. This image handle, when concatenated between
variable imagePathand the string .gif, make it possible to iterate through the elements of imageNames
and preload everything necessary. By the way, make a mental note that the image handles (such as
courierl0) aren't named arbitrarily. The naming convention has a utility that we'll explore a little later.

If you scan the rest of the code within the SCRIPT tags, you'll see that everything else is defined in
terms of functions. So, any code that executes is called elsewhere. This happens twice:

e Asthe HTML content is loading
e In the onLoad event handler of the BODY tag

Let's have a look, then, at the HTML following the JavaScript, lines 174-294. See Example 7.1 for this
code.

7.3.1 Preferences Form

The interface is a form containing a text field, checkbox, and select list elements with which users
specify preferences. Creating text fields is a matter (at least in this case) of hardcoding each and
setting the names as desired. This happens in lines 195, 199, and 212 for name, age, and occupation.

The next thing to decide on is the type of investment strategy the user employs. Categories range from
very conservative ("Stingy") to very aggressive ("Willing to Sell Mother"). The user doesn't fill in a
text field as before, but instead chooses from a list of options. Instead of hardcoding each OPTION
tag, we can use a JavaScript function to write the lists on the fly. The function genSelect ()
comes in handy in lines 205, 247-249, 262, and 276. Line 205 takes care of the investment strategy
list, while other calls accommodate lists for the background, font face, and font size. Look at the
genSelect () in lines 86-95:

function genSelect (name, select, onChangeStr) {

var optStr = "";

var arrObj = eval (name) ;

for (var i = 0; i < arrObj.length; i++) {
optStr += '<OPTION VALUE="' + arrObj[i][0] +
(i == select 2 '"" SELECTED' : ""'") 4+ '>' 4+ arrObj[i][1];
}

return '<SELECT NAME="' 4+ name + '"' + (onChangeStr ? '

onChange=""' +
onChangeStr + ';"' : '"') 4+ '>' + optStr + '</SELECT>';

You may have seen a similar genSelect () in Chapter 5. That function generated select lists
based strictly on using integers as string values. This version generates OPT ION tags not based on
numbers, but rather on an array of elements. Let's take the call to genSelect () atline 205:

document.write (genSelect ('strategy', 3));

The function receives two arguments: the string strategy and the number 3. You might be thinking.
"Wait a minute . . . there's an array named strategy. Why pass in a string with the same name?"

Indeed, there is an array named strategy. It makes sense to pass a copy of the strategy array, except for
the fact that each select list needs a name to be referenced when setting the user preferences. To keep
things simple, each select list assumes the name of the associated array. That's why the string
equivalent is passed in.

Then variable arrObj is set to the de-referenced value of the string. That is, eval (name) equals
eval ('strategy') equals a reference to the strategy array. Now genSelect () has both an
array (arrObj) to reference for the OPT ION items and a name (name) to assign the select list.

The second argument passed in is an integer, assigned to select. This value determines the option that
will be selected by default. If the value of i is equal to select, then the OPT TON tag associated with
select will have the SELECTED attribute in its tag. If select equals 0, then the first option will be the
default; if select equals 1, then the second option is selected by default, and so on. You can see this in
line 91 in the conditional expression:

(i == select ? '"" SELECTED' : '"'")

After iterating through all the elements in strategy and building optStr with all the OPTION tags, a
simple concatenation in lines 93-94 puts together all the OPT ION tags with surrounding SELECT
tags.

Now, what about that third expected argument defined in genSelect () ? It's called onChangeStr
and is not used in this particular call. However, you can see it elsewhere. For example, check out lines
247-249:

document.write (genSelect ('background', O,
"swapImage ('bkgImage’,
this.options[this.selectedIndex] .value)™));

In this call, argument name is assigned the string background, argument select is assigned the value 0,

and argument onChangeStr is assigned the value

swapImage ('bkgImage',this.options[this.selectedIndex] .value).Wh
en genSelect () receives an argument for onChangeStr, the string is added to the onChangeevent
handler in the soon-to-be select list. Otherwise, no onChange event handler is added. The lists in lines

247-249, 262, and 276 utilize the onChange event handler to roll over images that correspond with the
option currently selected. As you move from "Small" to "Medium" to "Large" to "X-Large" in the font
size category, a larger and larger image rolls over to reflect the larger size.

Select lists aren't the only dynamically created elements created with JavaScript in this form. Function
genBoxes () creates two groups of checkboxes—one for news links, the other for stock index
links—with calls at lines 224 and 232.

Here is genBoxes (), lines 97-104:

function genBoxes (name) {

var boxStr = '';
var arrObj = eval (name) ;
for (var i = 0; 1 < arrObj.length; i++) {
boxStr += '<INPUT TYPE=CHECKBOX NAME="' + handle + i + '""

VALUE=""' +

arrObj[i][0] + '," + arrObj[i][1] + ""> ' + arrObj[i][0] +
'
"'

}

return boxStr;

}

Here, things happen much as they do in genSelect (). The string equivalent of the desired array
is passed in and de-referenced to yield the desired array. Iterating through the elements produces a
string of checkboxes, which is returned and finally written to the document.

7.3.2 Loading Stored Preferences

Once all the HTML is loaded, the empty form can be populated with the user's previous settings (if
there are any). The onLoad event handler in the BODY tag summons function populateForm ()
and passes in a copy of the empty form to work on. Here is populateForm () atlines 157-164:

function populateForm(formObj) {
if (getPrefs (formObj)) {
makePath (formObj) ;
swapImage ('bkgImage', formObj.background.options
[formObj.background.selectedIndex] .value) ;
}
else { resetImage (document.forms[0]); }

}

populateForm () isjusta function manager, calling others to do the work. It operates like this: if
preferences have been previously set, fill in the appropriate form fields with the info gleaned from the
cookie. Then set the background and font image to match the selected OPT ION tags in the screen
layout section. If no preferences have been set, do nothing. populateForm () checks for user
preferences in the cookie with function getPrefs (). Here it is in lines 106-123:

function getPrefs (formObj) {

var prefStr = GetCookie('userPrefs');
if (prefStr == null) { return false; }
var prefArray = prefStr.split('-->");

for (var i = 0; 1 < prefArray.length; i++) {
var currPref = prefArray[i].split('::");

if (currPref[l] == "select") {

formObj [currPref[0]].selectedIndex = currPref[2];
}

else if (currPref[l] == "text") {
formObj [currPref[0]].value = currPref[2];
} else if (currPref[l] == "checkbox") {
formObj [currPref[0]].checked = true;
}

}

return true;

}

getPrefs () also has a little decision-making to do. It works like so: get the cookie information
associated with the name userPrefs. If it has a null value, return false. That means the
document . cookie property userPrefs has not been set. If, however, userPrefs does not equal
null, this indicates that there are previous user settings. For our example, userPrefs equals null, but
now is a good time to see what happens when userPrefs contains usable information.

If userPrefs contains the desired goodies, getPrefs () creates an array by splitting the value of
prefStr according to the delimiter used to concatenate each setting in setPrefs (). The string is —
> . Now the elements in prefsArray contain strings delimited by : : that indicate the type of form
element and the value associated with it. Assigning the associated values to the form elements is a
matter of iterating through the prefsArray elements and assigning each according to the type of form
element. Lines 110-121 explain it better:

for (var i = 0; i < prefArray.length; i++) {

var currPref = prefArray[i].split('::");

1if (currPref[l] == "select") {
formObj [currPref[0]].selectedIndex = currPref[2];
}

else if (currPref[l] == "text") {
formObj [currPref[0]].value = currPref[2];

}

else if (currPref[l] == "checkbox") {
formObj [currPref [0]].checked = true;
}

Remember that the user sets preferences in three ways:

e Selecting an option from a select list
e Entering text in a text field
e Checking a checkbox

Therefore, the values in prefsArray each contain a form element type identifier (text, checkbox, or
select-one) and another string that represents the value of the form element, both of which are
separated by : : as a delimiter. This will become clearer shortly. The following list shows some
examples of prefsArray elements.

strategy::select::0

This indicates that the form element named strategy is a select list and has OPTION 0O
selected.

newsNamesO0: :checkbox: :Barron's Online, http://www.barrons.com/

This indicates that the form element named newsNames0 is a checkbox and has the value
Barron's Online, http://www.barrons.com/.

investor::text::Jerry Bradenbaugh

This indicates that the form element named investor is a text field and has the value Jerry
Bradenbaugh.

As the for loop at line 110 iterates the elements of PREFSARRAY, local variable currPref is set to an
array by splitting prefsArray[i] atevery instance of : :. That means currPref will have three
elements (two for checkbox elements). Since currPref [1] contains the form element type
identifier, checking it determines what getPrefs () does with curPref [0] and
currPref[2].

If currPref [1] equals select, getPrefs () utilizes line 113 to assign the select list of the
name in currPref [0] to the option associated with the selectedIndex in

currPref [2]—actually parseInt (currPref [2]), but JavaScript knows to convert the
string to a number.

If currPref [1] equalstext, getPrefs () utilizes line 116 to assign the text field of the name
incurrPref [0] thevaluein currPref [2].

Finally, if currPref [1] equals checkbox, get Prefs () imposes line 119 to set the checked
property of the checkbox of the name in currPref [0] to true. Thereisno currPref [2]
for this one. If the checkbox comes up in the cookie info, that's the only indication necessary to check
it.

This happens for each element of prefsArray. Once that has finished, the user has a form that reflects
all the information last set. So getPrefs () has done its job and returns true to indicate to
populateForm () that all went well.

7.3.3 Laying Out Images

That leaves only one more challenge—synchronizing the background and font images with the options
selected in the form. Notice that the SRC attributes of both graphics in the HTML are set to
images/blank.gif. That is merely a transparent placeholder until the images change according to the
information from the cookie. Function populateForm () keeps things going at lines 159-161.
Have a look:

makePath (formObj) ;
swapImage ('bkgImage',

formObj.background.options|[formObj.background.selectedIndex] .v
alue) ;

http://www.barrons.com/
http://www.barrons.com/

Upholding its reputation as a function manager, populateForm () callsmakePath () and
swaplmage () to do the image rollovers. Actually, swapImage () is the only function that does
any rollovers; makePath () just manipulates a couple of strings to make a path suitable to send to
swapImage (). Let's examine the simpler of the two, the call to swapImage (). After you see
that swapImage () expects two arguments, which are passed in at lines 160-161, have a look at the
code, lines 82-84:

function swapImage (imageName, imageBase) {
document [imageName] .src = imageBase;

}

Argument imageName represents the name of the IMAGE object whose source will be rolled over.
Argument imageBase is a URL of an image to which we want to roll over. Check out the argument
passed in:

formObj.background.options|[formObj.background.selectedIndex] .v
alue

That is a pretty big argument, but it is nothing more than the value of the selected OPT ION tag. Since
getPrefs () just finished setting all the select lists to the options previously selected by user, the
image will certainly match. To get a better idea, look at Table 7.2. It contains the OPTION tag's
value, the OPT TON text (the text that the user sees), and the argument to pass to swapImage ().

Table 7.2. OPTIONSs for the Background

OPTION Value OPTION Text Argument for swapImage()
images/goldthumb.gif Gold Bars images/goldthumb.gif
images/billsthumb.gif Dollar Bills images/billsthumb.gif
images/fistthumb.gif Fist of Cash images/fistthumb.gif
images/currencylthumb.gif Currency 1 images/currencylthumb.gif
images/currency2thumb.gif Currency 2 images/currency2thumb.gif

That seems pretty easy. swapImage () receives the value of the OPTION currently selected. It's
already a URL, so the rollover happens in a snap. Incidentally, this is the same code used when the
user changes the options in the background select list. The rollovers happen just the same. Here is the
HTML generated when you load the page, and look: those two arguments going to swapImage ()
bear a striking resemblance to those we just saw in line 161:

<SELECT NAME="background" onChange="swapImage ('bkgImage’',
this.options[this.
selectedIndex] .value) ;">

The background image has been set. What about the font image graphic? That's a bit more involved.
With the background image, there is one image to rollover using one select list. With the font image,
there is still one image to roll over, but the rollover image is based on the selected OPTTON tags of
two select lists. See for yourself how the image URLs are made. Table 7.3 shows the OPTION values
and corresponding text for the two select lists.

Table 7.3. OPTIONs for Font Family and Size

Face OPTION Value Size OPTION Value Face OPTION Text Size OPTION Text
Timesroman 10 Times Roman Small
Arial 12 Arial Medium
Courier 14 Courier Large
Tahoma 16 Tahoma X-Large

Now watch what happens when the OPT ION values from each are combined. Look at all the possible
combinations of font face and size.

timesromanl(ariall0 courierl(tahomal 0
timesromanli?2 ariall2 courierl?2 tahomal2
timesromanli4 ariall4 courierl4 tahomal4
timesromanl6 ariall6 courierl6 tahomal6

Now don't those look just like the elements used to preload the images in the array imageNames at line
617? Indeed, they do. This is turning out to be a pretty cool application after all. Now we know that we
have to construct a composite URL. That's a URL made from several strings. We still need to call
swaplmage (), but before doing so, we'll have to make a URL from scratch using the
combinations in the earlier table. That's where function makePath () comes in.

populateForm () gives it the call at line 159. Here is the real thing at lines 75-80:

function makePath (formObj) {
var fontName = imagePath +
formObj.face.options[formObj.face.selectedIndex] .value
|.
formObj.size.options[formObj.size.selectedIndex] .value
+ '.gif';
swapImage ("fontImage",

}

fontName) ;

makePath () accepts a copy of the form object as an argument. It is from formObj that we
reference both values of the two selected OPT TON tags, then add .gif. Now local variable fontName is
a string pointing to a legitimate image. The call to swapImage () atline 79 seals the deal. Of
course, all this assumes that the user has previously set preferences. If get Prefs () returns false,
populateForm () calls function resetImage () atline 163 to roll over the background and
font images to the images associated with OPTTON tag in the background and font select lists. See
the forthcoming section "Resetting the Form" for details.

Let's take a moment and review:

e The form elements have been written to the page, some with calls to genSelect () and
genBoxes ().

e The gleaned cookie information has been used to set every form element to a value with
getPrefs().

e The background and font images have been synchronized to the selected OPT ION tags with
functions swapImage () and makePath ().

7.3.4 Making Changes

The user now sees a user preferences page that "remembered" what settings were last set. Let's see
what happens when the user wants to make changes.

For the user, making changes is as easy as entering new text in the text fields, selecting other options
from the select lists, and checking or unchecking a new combination of checkboxes. He or she can
then choose "Save," and it's done. While the user's work is done, your work is just beginning. Have a
look at the code for the "Save" button at line 282:

<INPUT TYPE=BUTTON VALUE="Save"
onClick="setPrefs (this.form) ;">

Looks pretty typical. This calls function setPrefs () and passes a copy of the form as an
argument. The fun begins at lines 125-151:

function setPrefs (formObj) {

var prefStr = '';
var htmlStr = '';
for (var i = 0; i < formObj.length; i++) {
if (formObj[i].type == "select-one") {
prefStr += formObj[i].name + '::select::' + formObj[i].
selectedIndex + '-->';
htmlStr += formObj[i].name + '=' +
formObj[i] .options[formObj[i].
selectedIndex] .value + '—-=->";
}
else if (formObj[i].type == "text") {
if (formObj[i].value == "') { formObj[i].value = "Not
Provided"; }
prefStr += formObj[i].name + '::text::' +
safeChars (formObj[i] .value) + '-->';
htmlStr += formObj[i].name + '=' + formObj[i].value + '-
_>',-
}
else 1if (formObj[i].type == "checkbox" &&
formObj[i] .checked) {
prefStr += formObj[i].name + '::checkbox::' + '"-->";
htmlStr += formObj[i].name + '=' + formObj[i].value + '-
_>';

}
}

SetCookie ('userPrefs', prefStr, expiry);
SetCookie ('htmlPrefs', htmlStr, expiry);
if (confirm('Preferences changed. Go to your personalized
page?')) {
self.location.href = "dive.html";

}

setPrefs () generates two strings—one is set to local variable prefStr, the other to local variable
htmiStr. We really need two cookies—one for this page to populate the preferences form, the other to
generate the layout and links for dive.html, the user's custom links page. The information stored is
almost identical, except that each has its own way of representing the data. You'll see in a moment.
Here is the basic modus operandi for setPrefs (), in order:

1. TIterate through formObj, building two cookie strings based on the values of the FORM
elements.

2. Write both cookies to the user's cookie file(s).

3. Offer the user the option of being redirected to dive.html! right away to see the new changes.

7.3.4.1 Step 1: lterating through formObj

This shouldn't be a problem. Since the beginning of the book, there have been hordes of formObj
iterations to this point. It's the same thing here, except set Prefs () needs to know what to look
for.

Look at the preferences form again. Notice that each element (besides the buttons at the bottom) is a
text field, a select list, or a checkbox. Therefore, set Prefs () only needs to know what type of
action to take when formObj [1] is one of those element types. The code in lines 129-144 sets the
guidelines.

if (formObj[i].type == "select-one") {
prefStr += formObj[i].name + '::select::' +
formObj[i] .selectedIndex + '-->"';
htmlStr += formObj[i].name + '=' +
formObj[i].options[formObj[i].selectedIndex] .value + '--
>';
}
else if (formObj[i].type == "text") {
if (formObj[i].value == '') { formObjl[i].value = "Not

Provided"; }
prefStr += formObj[i].name + '::text::' +
safeChars (formObj[i] .value) + '-->';
htmlStr += formObj[i].name + '=' + formObj[i].value + '--

>';
}
else 1if (formObj[i].type == "checkbox" && formObj[i].checked)
{
prefStr += formObj[i].name + '::checkbox::' + '-->';
htmlStr += formObj[i].name + '=' + formObj[i].value + '--
>,
}

One of the cool and underused properties of a form element is the #ype property, which contains a
string identifying the kind of form element. set Prefs () needs only to be on the lookout for three
of them—select-one, text, and checkbox. The compound if statement in the previous code takes a
slightly different action for each type. Regardless of the type, though, setPrefs () is going to do
the following in one way or another:

¢ Concatenate the form element name, the string equivalent of the form element type, and
possibly the form element value or selected index, separated by a delimiter.
¢ Concatenate the string to the existing value of prefStr and htmiStr.

If the element type is a select list, the selected index is added to the string. If the element is a
checkbox, the checkbox name is added to the string. If the element is a text field, its name and value
are added to the strings. Notice that the function safeChars () operates on the value of all text
fields. This happens because the values associated with select lists and checkboxes are predetermined.
Since the user can enter anything, it's possible to enter one of the strings reserved as delimiters (in this
case, : :, ——>, and =). That would cause plenty of undesired results the next time the application
tried to acquire and parse the cookie info. Here is the function in lines 153-155:

function safeChars(str) {
return str.replace(/::|=|-->/g, ':;");:

}

Function safeChars () simply removes the reserved strings from anything the user enters and
returns the string. Each name/type or value or selected index string is delimited by ——>. Each section
of the string in variable prefStris delimited by : :. htmiStr uses =. Those don't have to be the
delimiters, but they're both pretty simple. Here is an example of what the two might look like when
building strings with the same form.

prefStrmight look like this:
investor::text::Not Provided-->age::text::Not Provided--

>strategy::
select::3-->occupation::text::Not Provided--

>newsNames0: :checkbox::—->

newsNamesl: :checkbox::—-->newsNames2: :checkbox::—-
>newsNames4 : :checkbox: :
-->indexNamesO: :checkbox: :-->indexNames2: :checkbox::—-

>background: :select
t:2-->face::select::3-->size::select::2-->

and AtmlStrmight look like this:

investor=Not Provided-->age=Not
Provided-->strategy=Moderate-->occupation

=Not Provided-->newsNames(O=Barron's
Online,http://www.barrons.com/—-->

newsNames1=CNN Interactive,http://www.cnn.com/--
>newsNames2=Fox News,
http://www.foxnews.com/-->newsNames4=The Wall Street Journal,
http://www.wsJ.com/-->indexNamesO=Dow Jones Indexes,
http://www.dowjones.com/-->indexNames2=The New York Stock
Exchange,
http://www.nyse.com/-->background=images/fistthumb.gif--
>face=tahoma-->

size=14-->

http://www.barrons.com/--
http://www.cnn.com/--
http://www.foxnews.com/-->newsNames4=The
http://www.wsj.com/-->indexNames0=Dow
http://www.dowjones.com/-->indexNames2=The
http://www.nyse.com/-->background=images/fistthumb.gif--

Remember that ——> separates the form element entries from one another in both prefStrand htmiStr,
while : : and = separate the individual form element pieces in the two variables, respectively. Just so
you know, I grabbed this info by uncommenting lines 286-289. These extra buttons allow you to
display the variable values with "Show" and delete the cookie info with "Erase." Your users won't
need them, but they might help you out of a debugging bind.

If the above code looks like an ugly variable, don't fret. We'll get to the deconstruction of AtmiStr
when we tackle the code in dive. html. Fortunately, we've already been through "decoding" the value of
prefStr with function getPrefs (). It might be a good idea to review that section. Comparing how
setPrefs () puts the cookie info together and how getPrefs () parses that cookie data will
surely increase your comprehension of how this thing works as a whole.

7.3.4.2 Step 2: Writing the information to the cookie file(s)

Once prefStrand htmiStrhave been loaded with great user preferences info, the calls to
SetCookie () inlines 146-147 store the information to a cookie file.

Netscape Navigator keeps cookie-related information in a file called cookies.txt . Here is part of mine:

.hotwired.com TRUE / FALSE 2145917529 p_unigid
2sfurM4ANNMEDKAgQ8A

.hotbot.com TRUE / FALSE 946739221 p_unigid
3MarneJsXGwNgxWbFA

www.allaire.com FALSE / FALSE 2137622729 CFTOKEN

97611446

MSIE 4.x15.x, on the other hand, keeps cookie info stored as separate files. Cookie files are named
according to the domain from which the cookie came and the name of the user logged on when the
cookie was set. Here's a partial list of the MSIE cookie files on my WinNT machine right now. I'm
logged on as the administrator.

Cookie:administrator@altavista.com
Cookie:administrator@amazon.com
Cookie:administrator@builder.com
Cookie:administrator@cnn.com
Cookie:administrator@dejanews.com
Cookie:administrator@hotbot.com
Cookie:administrator@infoseek.com

7.3.4.3 Step 3: Offering users a peek at new choices

The last job for setPrefs () is redirecting the user to dive.html to see the effects the changes have
on the layout. Here is the code at lines 148-150.

if (confirm('Preferences changed. Go to your personalized
page?')) {
self.location.href = "dive.html"; }

That encompasses the functionality of prefs. html. There is, however, one more item that in most
circumstances can be overlooked—resetting the form.

7.3.5 Resetting the Form

Wouldn't a simple <INPUT TYPE=RESET> button take care of this? Yes, a reset button sets the
text field values to an empty string, unchecks all the checkboxes, and returns the option selected for
each select list to OPT ION 0. That's super, but those background and font images haven't moved.
They need to roll over to the images associated to OPTION O in both cases. That's why line 283
looks like this:

<INPUT TYPE=RESET VALUE="Clear"
onClick="resetImage (this.form) ;">

Not only does choosing "Clear" reset the form, it also calls function resetImage (). Here are
lines 166-170.

function resetImage (formObj) {
swapImage ('bkgImage', formObj.background.options[0].value);
swapImage ('fontImage', imagePath +
formObj.face.options[0] .value +
formObj.size.options[0].value + '.gif');

}

This is another function-calling function, which calls swapImage () twice. The first call to
swapImage () rolls over the background image associated with OPTION 0, a.k.a.
formObj.background.options[0] .value. The next call does the same thing, but
creates the image path associated with OPTION 0. Similar to the logic inmakePath (),
resetImages () makes the image URL with variable imagePath, the OPT ION values of both
font-related select lists (though this time is used in place of se lectedIndex), followed by the
faithful string .gif. These two calls set the images where they need to be.

That brings us to the end of the functionality in prefs.html . Let's forge ahead to dive.html.

7.4 dive.html

The user preferences have been changed. The time has come to see how to convert those recorded
changes into visual realities. The process isn't long, but the details can get a bit sticky. It's probably
obvious by now that the information will come from information stored in a cookie. That extracted
information is used in three ways.

e AsaURL for a background image
e As URLs and display text for links
e As part of a stylesheet declaration for font family and size

We'll encounter each use as we go. For now, soak in the code for dive.html, coming right up in
Example 7.2.

Example 7.2. dive.html

1 <HTML>
2 <HEAD>

3 <TITLE>
4 Your Take-A-Dive Links Page
5 </TITLE>

6 <SCRIPT LANGAUGE="JavaScriptl.2"
SRC="cookies.js"></SCRIPT>
7 <SCRIPT LANGUAGE="JavaScriptl.2">

8 <!--

9

10 var newsNames = new Array();

11 var indexNames = new Array();

12

13 function getAttributes () {

14 var htmlStr = GetCookie('htmlPrefs');

15 if (htmlStr == null) {

16 alert ('Welcome. You must first set your user
preferences.' +

17 'Please choose OK to load the User Settings
page."');

18 self.location.href = 'prefs.html';

19 }

20 var htmlArray = htmlStr.split('-->");

21 for (var i = 0; 1 < htmlArray.length; i++) {

22 var tagInfo = htmlArray[i].split('=");

23 if (tagInfo[Q] != "") {

24 if (tagInfo[0].indexOf ('newsNames') == 0) {

25 newsNames [newsNames.length] = tagInfoll];

26 }

27 else if (tagInfo[0].indexOf ('indexNames') == 0)
{

28 indexNames [indexNames.length] = tagInfol[l];

29 }

30 else { eval(tagInfo[O] + ' = "' + tagInfo[l] +
)

31 }

32 }

33 }

34

35 getAttributes|();

36

37 function genLinks (linkArr) {

38 var linkStr = '';

39 for (var i = 0; 1 < linkArr.length; i++) {

40 var linkParts = linkArr[i].split(',")

41 linkStr += 'é - <A HREF="' +
linkParts[1] + ""> ' +

42 linkParts[0] + '
'

43 }

44 return linkStr;

45 }

46
47
48
49
50
51
'pt; }
52
53
54
55
56
57
58
59
60
ol
62
63
64
65
66

67

[/==>
</SCRIPT>

<SCRIPT LANGUAGE="JavaScriptl.2">
document .write ('<STYLE type="text/css"> TD ' +

{ font-family: ' + face + '; font-size: ' + size +
</STYLE>"') ;
</SCRIPT>
</HEAD>
<SCRIPT LANGUAGE="JavaScript">
document .write ('<BODY BACKGROUND="' +
background.replace (/thumb/, "") + '"">");
</SCRIPT>

<TABLE BORDER=0>

<TR>

<TD VALIGN=TOP COLSPAN=4>
<H2>Take-A-Dive Brokerage S$Services</H2>

</TD>
</TR>
<TR>

<TD VALIGN=TOP COLSPAN=4>
Take-A-Dive Brokerage Services is dedicated to
helping YOU part with

your MONEY.

broke.</I>"

68
69
70
71
72
73
74
75
76
77

78
79
80
81
82

 Our motto is "<I>We go for

Here is your user profile
and your customized links.

</TD>
</TR>
<TR>

<TD VALIGN=TOP>

Name :</TD>

<TD VALIGN=TOP>
<SCRIPT

LANGUAGE="JavaScriptl.2">document.write (investor) ;</SCRIPT>

<TD VALIGN=TOP>
</TD>

Age:

<TD VALIGN=TOP>
<SCRIPT

LANGUAGE="JavaScriptl.2">document

83
84
85
86
87
88
89

</TR>

<TR>

</TD>

<TD VALIGN=TOP>
Strategy:

</TD>

<TD VALIGN=TOP>

.write (age) ;</SCRIPT>

90 <SCRIPT LANGUAGE="JavaScriptl.2">

91 document.write (strateqy) ;

92 </SCRIPT>

93 </TD>

94 <TD VALIGN=TOP>

95 Occupation:

96 </TD>

97 <TD VALIGN=TOP>

98 <SCRIPT LANGUAGE="JavaScriptl.2">
99 document.write (occupation) ;

100 </SCRIPT>

101 </TD>

102 </TR>

103 <TR>

104 <TD VALIGN=TOP COLSPAN=2>

105

106 News Links

107 <SCRIPT LANGUAGE="JavaScriptl.2">
108 document.writeln (genLinks (news)) ;
109 </SCRIPT>

110 <TD VALIGN=TOP COLSPAN=2>

111

112 Stock Index Links

113 <SCRIPT LANGUAGE="JavaScriptl.2">
114 document.writeln (genLinks (indexes)) ;
115 </SCRIPT>

116 </TD>

117 </TR>

118 <TR>

119 <TD VALIGN=TOP COLSPAN=2>

120

121 [Set Preferences]
122 </TD>

123 </TR>

124 </TABLE>
125 </BODY>
126 </HTML>

7.4.1 Parse That Cookie

Look at all those SCRIPT tags. From the looks of it, you can tell that this page is truly a shell that
will be custom-designed on the fly. The first step is parsing that cookie. Function
getAttributes () gets the call. To dynamically create a layout, we need this information
quickly (before the page has loaded). That's why getAttributes () is called at line 35, a mere
two lines after it is defined. Here are lines 13-33:

function getAttributes () {
var htmlStr = GetCookie ('htmlPrefs');
if (htmlStr == null) {

alert ('Welcome. You must first set your user preferences.'

+
'Please choose OK to load the User Settings page.');
self.location.href = 'prefs.html';
}
var htmlArray = htmlStr.split('-->");
for (var i = 0; i < htmlArray.length; i++) {
var tagInfo = htmlArray[i].split('=");
if (tagInfo[0] != "") {
if (tagInfo[0].indexOf ('newsNames') == 0) {
newsNames [newsNames.length] = tagInfo[l];
}
else if (tagInfo[0].indexOf ('indexNames') == 0) {
indexNames [indexNames.length] = tagInfol[l];
}
else { eval (tagInfol[O] + " ="' + tagInfol[l] + """); }

}

Local variable htmiStris set to the return of function GetCookie (). In prefs.html, the cookie
named prefStrhad the necessary form info, but dive.html needs the cookie named AtmiStr. If it turns
out that ~tmiStris equal to null, that means the user hasn't yet set preferences, so he or she is made
aware of this, and is then promptly redirected to prefs.html to make those changes.

Otherwise, hitmiStrwill be split () by every instance of ——>, which returns an array assigned to
local variable htmlArray. A for loop is used to iterate through each of the elements, assigning the
values of each element along the way. By the way, this is almost identical to the logic in function
getPrefs () of prefs.html. See lines 110-120 in the listing for prefs.html. Compare them with lines
20-32:

var htmlArray = htmlStr.split ('-->");
for (var 1 = 0; i1 < htmlArray.length; i++) {
var tagInfo = htmlArray[i].split('=");

if (tagInfol[0O] != "") {
if (tagInfo[0].indexOf ('news') == 0) {
newsNames [newsNames.length] = tagInfol[l];
}
else 1if (tagInfo[0].indexOf ('indexes') == 0) {
indexes[indexNames.length] = tagInfol[l];
}
else { eval (tagInfo[0O] + ' = "' + tagInfol[l] + """); }

}

7.4.2 Dealing with the Unknown

Very interesting. getPrefs () in prefs.html knows it is going to work with the form represented in
formObj, and assigns values, checks, and select options accordingly. getAttributes () doesn't

have that luxury, though. It is necessary to have at least some idea of what to expect from the cookie.
For example, we know that there will some link information about online news resources. The same
goes for online stock indexes. Who knows how many of each there will be: 0, 10, maybe 50? Since
this is unknown, we can put the link information of both in separate arrays. Here are lines 10-11:

var newsNames = new Array ()
var indexNames = new Array();

Variable newsNameswill hold the link information for news resources, and indexNameswill hold the
same for the stock indexes. Look at that sample cookie that you saw in the last section. Note the
bolded text:

investor=Not Provided-->age=Not Provided-->strategy=Moderate--
>

occupation=Not Provided-->newsNamesO=Barron's Online,
http://www.barrons.com/-->newsNamesl=CNN Interactive,
http://www.cnn.com/-->newsNames2=Fox News,
http://www.foxnews.com/-->newsNames4=The Wall Street Journal,
http://www.ws].com/-->indexNames0=Dow Jones Indexes,
http://www.dowjones.com/-->indexNames2=The New York Stock
Exchange,
http://www.nyse.com/-->background=images/fistthumb.gif--
>face=tahoma-->size=14-->

Those bolded names are markers for the link information headed for the new array variables declared
above. Now, we also know that there will be some variables, but how do we name them? How many
will there be? The code in dive. html certainly doesn't reveal any secrets. But the truth is, it doesn't
matter. As long as you know what the variable names are, the logic in dive.htm/ doesn't have to
include explicit, hardcoded definitions. Here's what I mean. Take another look at the sample value of
GetCookies ('htmlPrefs'). Again, note the bolded text:

investor=Not Provided-->age=Not Provided-->strategy=Moderate--
>

occupation=Not Provided-->newsNamesO=Barron's Online,
http://www.barrons.com/-->newsNames1=CNN Interactive,
http://www.cnn.com/-->newsNames2=Fox

News, http://www.foxnews.com/-->

newsNames4=The Wall Street Journal,http://www.wsj.com/-->
indexNamesO=Dow Jones Indexes,http://www.dowjones.com/-->
indexNames2=The New York Stock Exchange,http://www.nyse.com/--
>

background=images/fistthumb.gif-->face=tahoma-->size=14-->

The bolded text in this example represents the names of variables that will be defined shortly. That for
loop in getAttributes () accommodates both the array elements' assignment and the
"unknown" variable declaration. It's in lines 22-31:

var tagInfo = htmlArray[i].split('=");
if (tagInfo[0] !'= "") {
if (tagInfo[0].indexOf ('newsNames') == 0) {

http://www.barrons.com/-->newsNames1=CNN
http://www.cnn.com/-->newsNames2=Fox
http://www.foxnews.com/-->newsNames4=The
http://www.wsj.com/-->indexNames0=Dow
http://www.dowjones.com/-->indexNames2=The
http://www.nyse.com/-->background=images/fistthumb.gif--
http://www.barrons.com/-->newsNames1=CNN
http://www.cnn.com/-->newsNames2=Fox
http://www.foxnews.com/--
http://www.wsj.com/--
http://www.dowjones.com/--
http://www.nyse.com/--

newsNames [newsNames.length] = tagInfoll];

}

else if (tagInfo[0].indexOf ('indexNames') == 0) {
indexNames [indexNames.length] = tagInfol[l];
}
else { eval (tagInfo[0] + ' = "' 4+ tagInfol[l] + """); }

Each element of htmlArray contains an equals sign (=) that separates the identifier from the value we
really want. For each iteration of the for loop, htmlArray[i] is split () by =, and this two-
element sub-array is assigned to local variable taglnfo. If tagInfo [0] does not equal an empty
string, we have a valid identifier-value pair. The empty string check is performed because of the way
JScript returns the array from the split () method.

Each valid identifier-value pair falls into one of two categories: an array element or a regular variable.
If the pair is an array element, it is also one of two types, one that contains a news link, or one that
contains a stock index link. The following if-else statement determines the action to take under all
circumstances:

if (tagInfo[0].indexOf ('newsNames') == 0) {
newsNames [newsNames.length] = tagInfoll];

}

else if (tagInfo[0].indexOf ('indexNames') == 0) {
indexNames [indexNames.length] = tagInfo[l];

}

else { eval (tagInfol[0] + " ="' + tagInfol[l] + """); }

Because of the naming convention used in prefs.html, if tagInfo [0] contains the string
newNames, it must be associated with news links. Therefore, the value tagInfo [1] is assigned to
the next available element in newsNames. If tagInfo [0] contains the string indexNames, it
must be associated with stock indexes. Therefore, tagInfo[1] goes to the next element in
indexNames. If tagInfo [0] contains neither string, then tagInfo[0] and
tagInfo[1] must contain the name of a variable to be declared and a value to assign it. The code
in line 30 knows just what to do:

eval (tagInfo[0] + ' = "' + tagInfo[l] + '""'");

When this for loop has finished, here is the equivalent code generated:

newsNames [0] = 'Barron's Online,http://www.barrons.com/"';
newsNames[1l] = 'CNN Interactive,http://www.cnn.com/"';
newsNames [2] = 'Fox News,http://www.foxnews.com/"';
newsNames [3] = 'The Wall Street Journal,http://www.ws]j.com/"';

Those are the news links:

indexNames[0] = 'Dow Jones Indexes,http://www.dowjones.com/"';
indexNames[1l] = 'The New York Stock
Exchange, http://www.nyse.com/"';

http://www.barrons.com/'
http://www.cnn.com/'
http://www.foxnews.com/'
http://www.wsj.com/'
http://www.dowjones.com/'
http://www.nyse.com/'

Those are the stock index links:

var investor = 'Not Provided';

var age = 'Not Provided';

var strategy = 'Moderate';

var occupation = 'Not Provided';

var background = 'images/fistthumb.gif';
var face = 'tahoma';

var size = '14"';

And those are the layout variables.

JavaScript Technique: Naming Conventions Pay
Off Again

I've preached about sound naming conventions before. I won't give you another sermon, but
just consider how those news and stock index link elements and layout variables came to be.
It began before any code was interpreted in dive.html. It began before any cookies were set
in prefs.html. It began even before the user made his or her first change in the form in
prefs.html. It started with the naming of the form fields.

Each of the news and stock index link variables has an identifier (e.g., newsNames(or
indexNames3) that contains the name of a select list in prefs.html. Each of the layout
variables has the name of one of the form elements, such as background or size. This name
was included in the cookie strings, extracted and defined accordingly. Wisely planned
naming conventions not only make things easier, they also make things possible. Stay on
the lookout for opportunities to use them in your code.

Remember, nowhere in the file is any of this code listed. You can iterate through the
elements of newsNamesand indexNames to access their values, but you have to know the
other variable names to access them.

We have all the information we need to set up the page the way the user wants it. Once we write the
information to the page, it's done. We'll use document .write () to get everything we need on
the page. There are eight calls to document .write (). Table 7.4 lists and describes each.

Table 7.4. Using document.write() to Create the HTML

Lines

Code

Description

50-51

document .write ('<STYLE
type="text/css">

Creates a stylesheet on the fly

TD { font-family: ' + face + '; font-

size: ' + size + 'pt; } </STYLE>');

document.write ('<BODY BACKGROUND="' +
55-56/background.replace (/thumb/, "") + Deﬁnes a URL for background

Ty image
77 |document.write (investor); Adds the name of the investor
82 document.write (age) ; Adds the age of the investor

91 document.write (strateqy); Adds the investor's strategy

(
99 |document.write (occupation); Adds the investor's occupation
108 |document.write (genLinks (news)) ; Adds the news links
114 |document.write (genLinks (indexes)) ; Adds the stock index links

Though the 3rd through 6th calls are pretty much self-explanatory, the first two and last two are more
involved. Let's start with lines 50-51:

document.write ('<STYLE type="text/css"> TD { font-family: ' +
face +
'; font-size: ' + size + 'pt; } </STYLE>');

This call writes a style sheet to the page, but we'll insert layout variables face and size to dictate the
type of font and the size.

JavaScript Technique: Dynamic DHTML

Dynamic DHTML is my from-the-hip definition of JavaScript writing DHTML on the fly.
Consider that you can use document .write () to display HTML and even more
JavaScript. If you combine that functionality with the added bonuses of style sheets, you
have a lot of layout power in a little code. Here is how it's used in this application:

document.write ('<STYLE TYPE="text/css"> TD { font-
family: ' + face +
'; font-size: ' + size + 'pt; } </STYLE>');

All I've done here is slip in variables face and size . Now the font face and size can be
determined by changing the values of two variables. Not bad for a one-line style sheet.
Think of the possibilities, though, if you have a lengthy definitive style sheet that controls
styles for many more elements such as headers, form elements, and more. Style sheets give
you fine-tuned control over document elements. Generating style sheets with JavaScript
makes that same great control dynamic.

With the dynamically created style sheet in place, let's move on to getting the right background image
in. Here are lines 55-56:

document.write ('<BODY BACKGROUND="' +
background.replace (/thumb/, "") + '">");

Remember that variable background contains the value images/fistthumb.gif. Great, except that's the
thumbnail version of the background image. We want the real thing. No problem, each thumbnail
image is named exactly as the full-blown version, except with the string thumb added. We can get the
background image by removing "thumb" from background, which in this case is images/fist.gif. The
replace () method makes the quick change.

The last two calls to document .write () use the only other function defined on the page—
genLinks () . This function is similar to functions genBoxes () and genSelect () in
prefs.html in that it loops through the elements of an array to create a custom string of HTML. The

only difference is that this function returns a string of links, not checkboxes or OPTTON tags. The
"magic" happens in lines 37-45:

function genLinks (linkArr) {
var linkStr = '';
for (var i = 0; 1 < linkArr.length; i++) {
var linkParts = linkArr[i].split(',")
linkStr += ' - <A HREF="' + linkParts[1l] +
'">] +
linkParts[0] + '
'
}
return l1linkStr;

}

genLinks () is designed to receive an array of delimited strings as its lone argument. The first
element of each is a string to display as link text. The second element is the URL for the HREF
attribute. Each of these is separated by a comma, so using the split () method by comma and
assigning the array result to local variable /inkParts , we can get at the separate parts. The for loop
iterates as usual, creating a string of links to return when finished.

7.5 Potential Extensions

Even a little bit of creativity can take you places with this application. Here are a few of the
possibilities that come to mind:

e Add fields to manipulate table cell background colors and font colors, and other elements for
the layout look.

o Allow users to choose entire page themes.

e Add a couple of extra text fields so that the user can add his or her own favorite web site links
(with names).

e Post banner ads according to the user's cookie preferences.

7.5.1 More Choices for the Layout Look

Users like lots of choices. Anything you can tweak on the user's page can be manipulated. This
includes content and graphics in layers, other frames, and remote windows.

7.5.2 Adding Themes

This idea stems from Windows 95's desktop themes. Instead of letting users pick individual items,
such as font face, size, and color, why not offer a couple of layout themes that make the choices all at
once? Suppose you have a music-related web site. Consider the following select list:

<SELECT NAME="themes"onChange="swapImage ('thelImage',
this.options[this.selectedIndex] .value) ;">

<OPTION VALUE="none">None

<OPTION VALUE="bigband">Big Band

<OPTION VALUE="rocknroll">Rock 'n Roll

<OPTION VALUE="rap">Rap

<OPTION VALUE="country">Country
<OPTION VALUE="reggae">Reggae
<OPTION VALUE="grunge'">Grunge
<OPTION VALUE="jazz">Jazz
<OPTION VALUE="club">Club Music
</SELECT>

Each of those OPTTON values could relate to a thumbnail image of the potential theme. You can even
use genSelect () and swapImage () in prefs.html to create the list and perform the rollovers.
Keep in mind, however, that by selecting one of these themes, you'll have to somehow disable the
individual layout features, such as background image and font specs. Notice the first OPTION
displays "None." You'll probably want to include an OPTTON tag for that so the user can make
individual layout selections if desired.

7.5.3 Letting Users Create Their Own Links

The Take-A-Dive preferences form lets user pick from predetermined links. You could always add a
couple of text fields for the user to enter his or her own favorite links. The following table should give
you a good start:

<TABLE>
<TR>
<TD>Extra Links</TD>
<TD>
<INPUT TYPE=BUTTON VALUE=" Add "

onClick="addOpt (this.form) ;">
<INPUT TYPE=BUTTON VALUE="Delete"
onClick="deleteOpt (this.form) ;">
</TD>
</TR>
<TR>
<TD>Link Name</TD>
<TD><INPUT TYPE=TEXT NAME="linkname" SIZE=20></TD>
</TR>
<TR>
<TD>Link URL</TD>
<TD><INPUT TYPE=TEXT NAME="1inkURL" SIZE=20></TD>
</TR>
</TABLE>

Users can add or delete links by typing in the link name and URL, and choosing "Add" or "Delete."
You could then store these variables in an array, and add or remove the elements with functions such
as addOpt () and delOpt () referenced in the code above. If you're ambitious, you could create
a select list to display the links as you added or removed them.

7.5.4 Direct Banner Ad Marketing

Why not cater your advertising campaign to the user's interests? In the case of this pseudo-investment
web site, I could code it so that users who consider themselves conservative investors would receive

banner ads offering stable and lower-yielding investments, such as bonds. On the other hand, investors
who were willing to "sell their mother" would receive banners offering opportunities in unstable, but
higher yielding junk bonds and overseas investments.

Chapter 8. The JavaScript Shopping Cart

Application Features JavaScript Techniques

®Managing Multiple Windows and

®\/ersatile Client-Side Shopping Cart Document Content

®User-Friendly Interface Makes Shopping Easy |®Maintaining Client State with Objects

®No Server-Side Processing Required (Until

& Addi . _
Check-out) Adding Object Properties

®Program Monitors All Selections and Keeps a

. : ,
Running Total Reusing a JavaScript Database

®Database Enables Accurate Product Searching |® Number Rounding and String Conversion

If there is a single-most diverse and robust JavaScript application in this book, it is the one described
here. With Shopping Bag, you need only the graphics and product details to quickly and easily add an
online shopping cart to your site. You don't need to create extra files to display your products.
Shopping Bag takes care of that on the fly. No need for a server to calculate tax and totals. Shopping
Bag accurately computes them on the fly as well. Adding and removing products from a user's
shopping bag takes only a click or two. Unlike server-based shopping bags, there's no waiting.

8.1 Shopping Bag Walk-Through

Something really easy and intuitive for the online consumer usually means some extra elbow grease
for the programmer. Not to disappoint you, this is the case here. The fun and functionality you get in
return, however, make the effort well worth it. The description of Shopping Bag's functionality and
code are based on the following example.

Here is the four-step process:

1. The application loads.

2. A shopper browses products by category and product search, choosing several along the way.

3. Seemingly content, the shopper views the current selections and makes changes to quantity
and contents.

4. Finally satisfied, the user decides to check out and pay.

This application also has several easy rules that users must follow to use Shopping Bag. You'll see
these rules posted where applicable in each section. Let's help a user—call her Daisy Deep Pockets—
part with some hard-earned money.

8.1.1 Step 1: Loading the Application

Opening ch08\index.htm! loads the screen shown in Figure 8.1. The opener is simply that, a kind of
splash screen (without the splash). When Daisy clicks on the "Begin" link, she sees the screen shown

in Figure 8.2.

Figure 8.1. A warm Shopping Bag welcome

i acsamaad Tiks - Wicasadt baisrst [oplasss

e Ed ew Oe Fgesies Heln E
5 A B o K= F A
kg Membk Mo Sowch Peewimi Weley Cherel Fdioxe Hal Pt [T
Auckiman 0 | TV 1o e s e ool B S P BT b =] | |k
=
Welcome to Shopping Bag!!!
=l
B % M Coargens
:.MI & |Dacumert e - B, ar | kel

Figure 8.2. The Shopping Bag interface

Shopping Bag

gy Bag s deigaed o ke v iboppagg i beowing sgsenience iy, Uie Be s below o gde youssl Vou o sanigioe o g ot o s
wemnboasn, ading or pemoving tiags frem geer shopping bag

Ton can view poor and changs hag conbrbr wheeever you lie e o a deacrpbos of wach Shoppng Eag Sncton

O i Addy the peeduct wmesw B wour bag
;LTF.WF Tarpiwge an dwerored, iz kS abln lant of your ~erent paaeted mrodu=

Freviean Fleteryr 4o @ t of the premiour cxeagary. [F pou ane cementhy weeng prodxc: mfe &

W aitigiy Wi T e LT Caegary

Frrvieas produes Typsn ars copmerthy viemang e fres ot of a catagasy, e progra
Froduer 1 peroeibict of [he JOSTINS CADsEaTY.

Mot Pradurt w t tha pang product Eyo mrw comemdy mewng the ladk pro-dect of 0 cpingery, the progrem

B e el of Bhe EAT LIEGOET
Addvarrme tv the Eret praduct of the nest catmpory. Wy ane curwrtly viewing prodzcts i the lut categoer,

ezt
i e perograns B B ke Erel prodis n the st eaie joey

Show All Catwpsries Tirpbrgr w Ebosd Bt of all pooduct catspare
Presduet Searth Enables yom te scarch ol producti by nens, desspton, el pnce
Melp Loz this posgs
|] 1] i Peoduirt] =1y
il i] Prodirr Mt Prawdiar T O)

What you have here is the opening (and help) screen loaded with the navigation links in a frame
below. Have a good look before you move on.

Why two browser windows? There is no reason you couldn't pull it off with only the main window,
but this method gives you the maximum amount of web real estate to market your wares. Besides,
users won't be distracted by such browser buttons as "Bookmarks" and "Search." That means more
attention will likely stay on your products. While you're at it, you could use the main window as a
login page to distinguish between member and guest shoppers.

8.1.2 Step 2: Product Browsing and Selection

OK, Daisy is in. It's time for a look around. She chooses "Show All Categories" and generates a linked
list of product categories.

] Rule 1: When Shopping Bag initially loads, the user must choose "Show All
as Categories" or "Product Search" and choose a link from those sections in order
wh 4 ;. to view products. Afterwards, choosing any of the "Category" or "Product"

" buttons in the navbar will work fine.

This displays a dazzling array of really cool product categories. Let's see, buildings, food, hardware—
who wouldn't buy things like that online? After recovering from the astonishing wealth of choices,
Ms. Pockets decides that she is running low on her collection of buildings and decides to see what
Shopping Bag has to offer.

Following the "Buildings" links, she is stunned again to see the fire-sale prices on items such as the
barn, castle, and tower. Overwhelmed, she settles for an igloo, as shown in Figure 8.3. Choosing
"Gimme One," the igloo is added to her shopping bag, as the Alert box indicates.

Figure 8.3. Putting the igloo in her bag

Shopping Bag: Buifdings

=, Mame: kgco

Dimcripbion: Made o fop (rade siow Diocks, s icdes o diimiey s 5lon aie oondilion ing unil
Price: $%541_Thinath

PLLI: 155

P 08 Voupd e bboinasiug

(=]
e Rule 2: Choosing "Gimme One" adds only one product to the shopping bag.
o Users can change quantities and remove selections by choosing "View/Change

Ly = .\3‘,—. Bag."

Still hunting for a bargain, our relentless shopper decides to use the search feature to see if she can
drum up any more hot items. She chooses "Product Search," which brings up the simple search
interface you see in Figure 8.4. Bargain hunting, she enters "1.15" to find products at that price. By
sheer luck, her gamble pays off. Five products come up with 1.15 in the price, as shown in Figure 8.5.
A hairdryer, a necktie, and an order of fries each cost $1.15. She angles for the fries, peeks at the
details, and hastens to add them to her bag.

Figure 8.4. The search for great products begins here

Shopping Bag Search {[EE]
Uit this search emgms 1o God Thoppig Bag pro St by same or Sz, of proe. Eeler as weord or plaiges
thir mighs shemafy pro ducas wou aoe boakang for. then poess EWTEE. Tromng EXTTER, with xothing o e veom Beld
reveili &l avalable prodects Chde docd ol mntter
Exarrples mokidke
» Enieneg the siemg Ciunm reams the prodect iing for Chainso

& Enberag the sinng grear rebums the prodect g for Washer, Shlsp. sl Bangos becaus the word
apval o i il ol il o prodict depiipon

s Evberrg the dbmg [0 T retmes the prodies bitrgg fo Hairdryor, Lighthsse, Macktie Frie, e Cyele
becaups e price of sach conbaar .45

Tl v iy ol thie pro Uit tabrvih hited i the g oo fls b Wi tht peedint diigee and detads
Crane Car View Change Ang Shaw Al Catmgrman Tendurt Searck Lalp

rerisn Cabsgary reviaus Podurt Wext Product Next Categrey

Figure 8.5. One search, multiple bargains

Shopping Hag Search -

fesach Query: LIS
Bwanch Hinalis: Fo 505

Halirdryer
Famiy ylbrsish Blait, aiel Siralds cord e eapeiie spaiod
Frsea: 1115 PLU Mumbar: AN

Tighthauwr
Blade sl comest &ssortad Bght balls, Thees 800 Bhatlesies nol melelel.
Frice: 2IH5L 1 FLU Number; LIGI23E]

Mecktie
Ev the Gt (u probukly ondy) eae fever) m ovone Hock, Male of geasiae bhulag.
Frive; $5.08 TLU Number NECT

Iries
Filore preass shas the Incal car parage. Van can't heat the fvis, imgh
P! SLIS PLU Musber: FRIT

Cyele
Bforw darerm the whieai flodd with a few swipes. Just ke the Grim Raapor's,
Price: LTS FLU Maaher: CFCIT

Daisy heads back to the category listing by choosing "Show All Categories" once again. This time, the
clothing category piques her interest. Following the link, she happens upon the necktie—the one in the
list at an unbelievable $1.15. She ignored it earlier, but it looks OK now. Add that one to the bag.

8.1.3 Step 3: Viewing and Changing the Order

Daisy decides she has seen enough for today and chooses "View/Change Bag." Shopping Bag
generates her bag contents as shown in Figure 8.6. Notice that Shopping Bag has been keeping tabs on

everything she has added to her own bag, right down to the tax, shipping, and total.

Figure 8.6. Daisy's shopping bag contents, complete with pricing

Your Shopping Bag!!!
Tnele | Prodmet | Category PLI Unii Priee | Charitty | Braduer Tocal | Riervve
T Buddnge | BALIS gt [AW r
Fries | Faed FEII sis| A PR T
Mecktis | Ttk | HECI yis| A R r
SatTant | AT
tE T
+ 2 Shppang: | 2
Tk Chul PRI Chasegh B Total | fimaaes

e n wrwChangs Fag e AL JEries ‘vl

Still excited about the igloos, Daisy changes the quantity of her igloo order to 6. She lives in a warm
climate, so those things won't last. Better have at least that many. Those fries looked pretty good in the
picture, so she bumps that quantity to 2. Unfortunately, her pockets aren't as deep as she thought, so
she has to forfeit the necktie. There is always next time.

= Rule 3: Shoppers must choose "Change Bag" to record changes to the
as shopping bag. In other words, changes don't happen simply by changing any
‘*. s "Quantity" select lists or checking "Remove" checkboxes and moving to

another screen.

It's easy to see how Daisy can change her order. She changes quantities with the "Quantity" select list
and deletes products with the "Remove" checkbox. Each product entry has a select list to change
quantity and a checkbox to remove the product from the order. After changing her order, Daisy
chooses "Change Bag," which displays her new bag, reflecting all her quantity changes and product
removal. See Figure 8.7. Her bag now has her down for 6 igloos, two orders of fries, and one necktie.
Tax and shipping costs bring the grand total to $6,190.57.

Figure 8.7. Daisy's refined shopping bag

Your Shopping Bag!®!
Index Troduct | Caregary Ly Ve Price Emamtiry | Protors Toval | Remeve
1 |Tghe |Boldegs |FEL¥% st 6 2 [Feem | T
3 |Frx |Fead FEI | e = | ¢
Hecksie | Clothmg, | MEC] gl e e | R
SchTot | [IFEEMD
=@ Twe [0
+ Shipping | [11A04

ChackOu || Besorons | Chenpo Esg Teiat | [F1o007

"'_" Rule 4: Submitting the Shopping Bag order form empties your shopping bag.
s If you want more stuff, you'll have to start filling a new, empty bag.
wh o
gk

8.1.4 Step 4: Check Out

Content with her finishing touches, Daisy chooses "Check Out," which opens the form you see in
Figure 8.8. Daisy can fill in her ordering information, submit it, and then anxiously await her shipment
in the mail.

And so it goes . . . another satisfied customer. Let's move on to the next section to see how the
Shopping Bag code keeps customers that way.

Figure 8.8. The order form

Shopping Bag Check Out

heppeng Exfarmaizn

Fart Hues I—
Las Flene I—
Cormp my Hatres -
Swesi Addressd I—
iy [

BaProvare |—
Crigdry I

Zpiml Cade

Payureid Iinformation

Crede :"h--_'[:_-lu Tiag & A Thaeorpss T
e O Bmber [
Espaiens Dae l—

Sand Onjer Gl lnig I

8.2 Execution Requirements

Shopping Bag utilizes JavaScript 1.2 and some CSS, so generation 3.x browsers need not apply.
However, keep in mind that a significant number of users do shop, but don't keep the latest browser
loaded. You can easily remove the CSS to make Shopping Bag compatible with MSIE and NN 3.x.

As far as scalability goes, you should conservatively be able to cram at least 500 items into the
Shopping Bag warehouse. After all, adding a single product takes only one line of code. I stopped
testing after reaching close to 700 items on my 120 MHz PC with 128 Meg of RAM. So unless you're
competing with WalMart, Shopping Bag should work just fine.

8.3 Syntax Breakdown

Let's have a look at Shopping Bag's flow chart. Figure 8.9 shows how the user begins shopping,
browses and chooses products, makes final changes at check out time, fills out payment and shipping
info, and eventually submits the entire order to the server.

Figure 8.9. Shopping Bag overview

Load fitlserasn

imlerfore

l— Codegorins m’ﬁ; Serch

¥

Chovse from

ingery b Enter search fext
|)

Wont the produet >4 mr",;’fi‘;, - Yes

o Add prode fa
shapping bog

Disply check out

Eresn

Genarafe arder forms (Change produver
with provust infa il
Enier address | Submit filled-out (Gl script creates
credit card infa, i Y| order form | customar orda file |

This application consists of eight files. This list describes each file and its purpose:
index.html
This opening page of Shopping Bag handles window management.
shopset.html
The frameset for the full-screen remote window. Contains both intro. html and manager.html.
intro.html

The default page for the largest of the frames and also the help document that lists the
function of each navigation bar feature.

manager.html

This is the Shopping Bag epicenter. All core functionality comes from code in this file, which
will be the primary focus of the chapter.

inventory.js

Contains functions, constructors, and arrays for building the Shopping Bag inventory. Much
of its work occurs during loading.

search/index.html

The frameset that loads the product search application. If you've even glanced at Chapter 1,
you'll recognize this as a modified version of the search engine covered there.

search/main.html

The help page for the search engine. Complete with examples.
search/nav.html

The brains of the search engine application.

Because of the size of the application and the fact that you can find some of the JavaScript code used
to manipulate layers in others chapters (3, 4, 6, 9, 10, and 11), it makes more sense to cover Shopping
Bag differently.

As opposed to advancing through each of these files from top to bottom, let's cover the application in
terms of its five basic operations:

Loading Shopping Bag: building the inventory and loading the display

Displaying products: moving from category to category and from product to product
Adding products to the shopping bag: keeping track of everything in the bag
Searching for products: running text searches against the products "in stock"
Changing shopping bag contents/checking out: making changes and paying

S

If you compare the earlier file descriptions with these descriptions, you can semi-extrapolate (i.e.,
guess) which files go with which operation. It isn't cut and dried, but operation 1 involves code from
index.html, shopset.html, inventory.js; operations 2, 3, and 5 cover code in manager.html; and
operation 4 is exclusive to the files in the search directory.

You'll still get the code on a file-by-file basis, but we'll be hopping around somewhat in order to cover
the JavaScript functions of the operations. Each of these five sections is described mostly in terms of
user actions, such as searching, changing product quantities, getting help, and so on. We'll also cover
the relevant techniques along the way. Let's start with loading Shopping Bag.

8.4 Step 1: Loading Shopping Bag

JavaScript and the resident browser take care of most of the work here, although the user plays a small
part. Consider the first page loaded—index.html. You can see what it looks like in Example 8.1.

Example 8.1. index.html

1 <HTML>
2 <HEAD>
3 <TITLE>Shopping Bag</TITLE>
4 <STYLE TYPE="text/css">
5 <!--
6 #welcome { text-align: center; margin-top: 150}
7T/ ==>
8 </STYLE>
9 <SCRIPT LANGUAGE="JavaScript">
10 <!--
11 wvar shopWin = null;
12 wvar positionStr = '';
13 function whichBrowser () {
14 if (navigator.appVersion < 4) {
15 alert ("You need MSIE 4.x or Netscape Navigator 4.x
to use " +
16 "Shopping Bag.")
17 return false;
18 }
19 return true;
20 }
21
22 function launch () {
23 if (!whichBrowser ()) { return; }
24 if (navigator.appName == "Netscape")
25 { positionStr = ", screenX=0,screen¥Y=0"; }
26 else { positionStr = ", fullscreen=yes"; }
27 if (shopWin == null) {
28 shopWin = open ("shopset.html", "", "width=" +
screen.width +
29 ",height=" + screen.height + positionStr);
30 }
31 }
32 function closeUpShop () {
33 if (shopWin != null) {
34 if (typeof (shopWin) == "object") {
35 shopWin.close () ;
36 }
37 }
38 }
39 window.onunload = closeUpShop;
40 //-->

41 </SCRIPT>

42 </HEAD>

43 <BODY>

44 <DIV ID="welcome">

45 <Hl1>Welcome to Shopping Bag!!!</H1>

46 Begin
47 </DIV>
48 </BODY>
49 </HTML>

That might seem like a lot of JavaScript for a page that prints only five words on the screen; however,
the additional code makes for a slightly better application. JavaScript defines and initializes a top-level
member for multiple window management and identifies the browser type to provide cross-platform
code when the remote window opens.

8.4.1 Top-Level Members

The variables and function in lines 11 and 32-38 exist to enforce one rule: if the main window closes,
close the remote window too. Otherwise, Shopping Bag might experience a violent JavaScript-error
death if the user decides, say, to reload the remote window.

Here's line 11:
var shopWin = null;
And lines 32-38:

function closeUpShop () {
if (shopWin != null) {
if (typeof (shopWin) == "object") {
shopWin.close () ;
}
}
}

window.onunload = closeUpShop;

Variable shopWin, originally set to null, is later set to the remote window object (I'm jumping the gun,
but see line 27). Function closeUpShop () is called when this window closes. This function
determines whether the user still has the remote Shopping Bag open, and if so, closes it. If shop Win
does not equal null and is of the type object, the remote window must be open. closeUpShop ()
closes the remote window just prior to unloading.

The only thing that concerns the user at this point is clicking the "Begin" link to open the remote
window. That opens shopset.html, a frameset. You'll find the code in Example 8.2.

Example 8.2. shopset.html

<HTML>

<HEAD>

<TITLE>Shopping Bag Frameset</TITLE>

<SCRIPT LANGUAGE="JavaScriptl.2">

<l--

function resetOpener () {
opener.shopWin = null;

~ o Ul w DN

8 }

9 J/-—>

10 </SCRIPT>

11 </HEAD>

12 <FRAMESET ROWS="80%,20%" FRAMEBORDER=0 BORDER=0
onLoad="self.focus();"

13 onUnLoad="resetOpener () ;">

14 <FRAME SRC="intro.html" NORESIZE>

15 <FRAME SRC="manager.html" NORESIZE>

16 </FRAMESET>

17 </HTML>

This is your basic frameset with two rows. One is assigned a source of intro.html; the other gets
manager.html. Not much JavaScript here, but let's see what there is:

function resetOpener () {
opener.shopWin = null;

}

Lines 6-8 have a function named resetOpener () called whenever the document in the parent
window (in this case, the frameset) is unloaded. By setting opener.shopWin to null,
resetOpener () allows the user to close the remote Shopping Bag window and reopen it again
with the same "Begin" link.

That might seem trivial, even unnecessary. Notice, however, that in index. html (line 27), the extra
window is opened only if shop Win equals null. Closing the window does not set shop Win equal to
null, so resetOpener () steps in to help. Notice also that the onLoad event handler in the
FRAMESET tagissetto self.focus (). This assures that the remote window doesn't open and
load behind the main window, leaving the user wondering what happened.

That basically takes care of this frameset loading. There are still three pages that still need to load—
intro.html, manager.html, and inventory.js. intro.html is a static help file. As manager.html! loads, the
embedded source file inventory.js comes with it. manager.html is worthy of a little bit of discussion
later in this section, but inventory.js has the code we need to examine now. It's fairly long, but you'll
get a good idea of the structure used to build the inventory.

JavaScript Technique: Multiple Window and
Document Management

While you're working with an application that utilizes only the main browser window, you
don't have many window worries. However, once you spawn another window, you need a
JavaScript window babysitter. Should the window always be on top or bottom? Is the parent
window still open? What happens to the application when the parent or child window
closes?

You probably won't have to deal with all of these for every multi-window application, but
these issues do arise. You can stay ahead of the game by setting variables to values that

always reflect the state of the windows. For example, the variable shopWin is equal to the
remote window object when the remote Shopping Bag window is open and null when it is

closed. Shopping Bag takes actions based on the value of shopWin. You can adopt a similar
strategy for frames and framesets as well.

Variables gimmeControl and browseControl perform a similar function to monitor the
document content. In other words, based on a document's current contents, you can adjust
the behavior of your application.

8.4.2 inventory.js

inventory.js contains three functions. The first two are constructor functions. One defines a product;
the other defines a product category. The last function creates arrays of objects created by those
constructors. See for yourself in Example 8.3.

Example 8.3. inventory.js

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

function product (name, description, price, unit) {

this.name = name;

this.description = description;

this.price = price;

this.unit = unit;

this.plu = name.substring (0, 3).toUpperCase() +
parselnt (price) .toString () ;

this.icon = new Image();

return this;

}

function category (name, description) {

this.name = name;

this.description = description;

this.prodLine = eval (name) ;

var imgDir = "images/" + name.toLowerCase() + "/";

for (var i = 0; i < this.prodLine.length; i++) {
this.prodLine[i].icon.src = imgDir +

this.prodLine[i] .name.toLowerCase () + ".gif";

}

return this;

}

function makeProducts () {

Appliances = new Array(
new product ("Dryer",
"Stylish pastel design, contemporary two-button

engineering.",

26
27
28
29

263.37 ,
"each"),
new product ("Hairdryer",
"Fancy yellowish blast, and durable cord. No

expense spared.",

30
31
32

1.15,
npairn) ,
new product ("Oven",

33 "Made in the 1850's, this coal-powered unit
quickly blackens any" +

34 "favorite dish.",

35 865.78,

36 "each"),

37 new product ("Radio",

38 "Revolutionary one-channel technology. White
noise and static" +

39 "included.",

40 15.43,

41 "each"),

42 new product ("Toaster",

43 "BBQ-style toaster. Only a moderate shock
hazard.",

44 25.78,

45 "each"),

46 new product ("Washer",

47 "Does a great job on partially everything.",

48 345.61,

49 "each™)

50) ;

51

52 Buildings = new Array (

53 new product ("Barn",

54 "Complete with rusty silo and rotting doors. Pig
sty sold" +

55 "separately.",

56 6350.57,

57 "each"),

58 new product ("Lighthouse",

59 "Made of cement. Assorted light bulbs. Three AA
batteries " +

60 "not included.",

6l 12351.15,

62 "each"),

63 new product ("Igloo",

o4 "Made from top grade snow blocks, and includes a
chimney and " +

65 "5-ton air conditioning unit.",

66 954.76,

67 "each"),

68 new product ("City",

69 "Buildings, streets, lights, skyline. Excellent
volume purchase.",

70 334165.95,

71 "each"),

72 new product ("Castle",

73 "Sturdy medieval design, complete with

alligators in moat, and " +

74 "remote control drawbridge.",

75 93245.59,
76 "each"),
77 new product ("Tower",
78 "Really tall. Ideal for winning friends and
spotting forest " +
79 "fires.",
80 24345.87,
81 "pair™)
82) ;
83
84 Clothing = new Array (
85 new product ("Bowtie",
86 "Swell red fabric. Doubles a bow for Christmas
wreaths or " +
87 "birthday gifts.",
88 5.41,
89 "five™),
90 new product ("Necktie™,
91 "Be the first (and probably only) one (ever) on
your block. " +
92 "Made of genuine burlap.",
93 1.15,
94 "each"),
95 new product ("Purse",
96 "Attractive green material. Wards off most
mammals.",
97 18.97,
98 "each"),
99 new product ("Jacket",
100 "Plush fake fur with fiberglass lining. Washer
safe.",
101 180.72,
102 "each"),
103 new product ("Glove",
104 "Covers all four fingers and one thumb. Fancy
latex design.",
105 6.59,
106 "three"),
107 new product ("Dress",
108 "Found at a garage sale. Also doubles as a
picnic table cover.",
109 7.99,
110 "each"),
111 new product ("Watch",
112 "Geuine replica. Doesn't tell time. You have to
look at it.",
113 6.19,

114 "each")

115) ;

116

117 Electronics = new Array(

118 new product ("Camcorder",

119 "Solar-powered. Free microphone. Custom-built
for blackmailing " +

120 "close relatives.",

121 60.45,

122 "each"),

123 new product ("Stereo",

124 "Quadraphonic, pre 8-track sound. Leisure suit
and roach killer " +

125 "shoes are optional",

126 54.91,

127 "each"),

128 new product ("Speaker",

129 "Extra piece of hi-fi junk. Works best if
discarded.",

130 1.90,

131 "each"),

132 new product ("Remote",

133 "Dozens of buttons. Controls everything- TV,
VCR, stereo, " +

134 "pets, local government.",

135 465.51,

136 "each"),

137 new product ("Cellphone",

138 "Product of tin can technology. 35-ft calling
area. Dandy " +

139 "lavender plastic.",

140 64.33,

141 "each"),

142 new product ("Camera",

143 "Takes brilliant one-color photos. Landfill
safe.",

144 2.95,

145 "each"),

146 new product ("Television",

147 "Two-channel UHF only model. Wow.",

148 22.57,

149 "each™)

150) s

151

152 Food = new Array(

153 new product ("Cheese",

154 "Wait 'til you get a wiff. Puts bleu cheese to
shame.",

155 3.05,

156 "chunk"),

157

158
can't beat

159

160

161l

162

163

164

165

166

167
pleaser.",

168

169

170

171

new product ("Fries",
"More grease than the local car garage. You

the " +
"taste, though.",
1.15,
"bOX") ,

new product ("Eggs",
"The standard breakfast staple.",
1.07,
"dozen"),
new product ("Drumstick",
"This leg of pterodactyl is a sure crowd

100.00,
"half ton"),
new product ("Chips",
"Opened-bag flavor. Guaranteed stale, or your

money back.",

172
173
174
175
176
177
178
179
180
181
182
machine.",
183
184
185
186
Just like
187
188
189
190
191
for hittin
192
193
194
195
196
197
198
199

1.59,
"bag") 4
new product ("Shrimp",
"Great raw, served above room temperature.",
2.95,
"each™)

) ;

Hardware = new Array (
new product ("Chainsaw",
"Be your own eager beaver with this tree-cutting

226.41,
"each"),

new product ("Cycle",
"Mow down the wheat field with a few swipes.

the " +
"Grim Reaper's.",

11.15,
"each") ,

new product ("Hammer",
"Tempered steel head, fiberglass handle. Perfect

g " +
"things.",
9.87,
"each"),

new product ("Lawnmower",
"Self-propelled (you propel it yourself).",
165.95,
"each"),

new product ("Pliers",

200 "Perfect for eye brows and nose hairs.",
201 6.59,

202 "each"),

203 new product ("Stake",

204 "This 2-in-1 miracle secures tents or gets rid
of vampires.",

205 3.95,

206 "pair™)

207) ;

208

209 Music = new Array(

210 new product ("Bongos",

211 "Great little noise makers for even the most
sophisticated " +

212 "occasions.",

213 35.50,

214 "bongo"),

215 new product ("Piano",

216 "It ain't grand, but this baby will make you
sound like tavern " +

217 "material in no time.",

218 1001.40,

219 "each"),

220 new product ("Notes",

221 "Choose from A, B, C, D, E, F, or G. Can be
reused in any song.",

222 2.97,

223 "note"),

224 new product ("Guitar",

225 "Strum, strum. This one is your fast track to
fame and fortune.",

226 241.11,

227 "each"),

228 new product ("Trumpet",

229 "Solid copper body, and not many dents. Extra
spit valve " +

230 "included.",

231 683.59,

232 "each™)

233) s

234

235 categorySet = new Array(

236 new category ("Appliances", "Kitchen machines to
make life easier"),

237 new category("Buildings", "Architectural
structures your can't " +

238 "resist"),

239 new category("Clothing", "Fashionably questionable

apparel for " +

240 "the 21st century"),

241 new category("Electronics", "Nifty gizmos that
drain your wallet"),

242 new category ("Food", "The best product to order
over the Net"),

243 new category ("Hardware", "All kinds of general
purpose " +

244 "construction tools"),

245 new category ("Music", "The hottest new instruments
from places " +

246 "you've never heard of")

247) ;

248 }

8.4.2.1 Product properties

Remember the JavaScript objects we used in the earlier chapters? They're back with a vengeance.
Each product is treated as an object with several properties; that is, each product has the following
properties:

name
The product name
description
A basic description of the product
price
The cost of the product
unit
The unit by which the product is sold, e.g., by the dozen, the pair, per piece
plu
The prige lookup number: an arbitrary product number for inventory tracking and order
processing
icon

An image of each product
To achieve the desired result, the product constructor function is defined as follows in lines 1-10:

function product (name, description, price, unit) {
this.name = name;

this.description = description;

this.price = price;

this.unit = unit;

this.plu = name.substring (0, 3).toUpperCase() +
parselnt (price) .toString () ;

this.icon = new Image();

return this;

}

Notice that there are six properties created, but only four arguments expected. The number of
properties and the number of expected arguments aren't correlated, but consider how each property
receives its value. The first four are obvious. Properties name, description, price , and unit are all
assigned the values of the matching argument names.

plu is a different story, though. It's actually a composite of the name and price properties. The
uppercase of the first three characters of name plus the integer value of price make the PLU number.
So a boat that cost $5501.00 has the p/u property of BOA5501. Keep in mind that this is arbitrary.
The products you sell probably have their own tracking numbers. I did it this way to keep things
simple. The last property is icon, which for now is assigned a new /mage object. There's no need for
an argument to do that.

8.4.2.2 Product category properties

We know that each product is really a product object. Likewise, each product category is really a
category object. Just as products have properties, so do categories. Have a look at the properties of the
category object:

name
The category name
description
A basic description of the category
prodLine
All the products within that category
A category constructor saves the day in lines 11-21:
function category(name, description) {
this.name = name;
this.description = description;
this.prodLine = eval (name) ;
var imgDir = "images/" + name.toLowerCase() + "/";
for (var i = 0; 1 < this.prodLine.length; i++) {
this.prodLine[i] .icon.src = imgDir +

this.prodLine[i] .name.toLowerCase () + ".gif";

}

return this;

}

Each category has three properties—a string called name, another string called description, and an
array called prodLine. Properties name and description seem straightforward, but where does the array
come from, and how do you get it using eval () ? The answers to both will be clearer in a moment,
but this is the basic strategy: whatever you name the category, the product line will be an array of the
same name. For example, if you name a category stereos, then the array containing all the stereo
products will be called stereos. That is, prodLine would be a copy of the variable stereo, which is an
array of different stereo products.

Remember that each product has a property called icon, which is an Image object that hasn't been
assigned a source. Let's get some more mileage from the category name. Not only does every category
keep its product line in an array of the same name, but all the images for the products in that category
are stored in a directory of the same name.

All the products in the Music category are kept in the music/ directory. The Hardware category has
images in the hardware/ directory, and so on. That sounds logical. If this type of directory structure is
in place, then we can preload all the images for the category when the category is constructed. Lines
16-19 handle the job:

var imgDir = "images/" + name.toLowerCase() + "/";
for (var 1 0; 1 < this.prodLine.length; i++) {
this.prodLine[i].icon.src = imgDir +
this.prodLine[i] .name.toLowerCase () + ".gif";

}
If you examine the directory structure in \ci08, you'll see this:

images/
appliances/
buildings/
clothing/
electronics/
food/
hardware/
music/

Line 17 sets the SRC property of each icon (an Image) to images/ + the product name in lowercase + /
+ ".gif." This goes back to those naming conventions I've been talking about in several previous
chapters. Each product has an image of the same name and is located in a folder with the same name
as the category to which the product belongs. Here's the formula:

Each product image URL = images/category/product name.gif

If you browse ch08\images\, you'll notice each image name corresponds with a Shopping Bag product
located in a directory corresponding with a Shopping Bag category. This keeps things simple, and lets
you add, remove, and keep track of products very easily.

i If you have many large images, consider omitting image preloading. It sure is
as nice to have those images on the client machine so that the browsing
‘*. 4 experience has no ('ielay. If you haye lots of hlgh.—quahty, la.rge—51zed images,
" though, the user might not be willing to wait until 500K of images load. Use

your own discretion.

8.4.2.3 Creating products and categories

You've seen the constructor functions; now let's put them to work. The first thing to do is create the
products, then the categories. Function makeProducts () does both. Here are lines 22-248. Since
much of it is the same product constructor called repeatedly, this is the abbreviated version:

function makeProducts () {
Appliances = new Array (
new product ("Dryer",
"Stylish pastel design, contemporary two-button
engineering.",
263.37
"each"),
new product ("Hairdryer",
"Fancy yellowish blast, and durable cord. No expense
spared.",
1.15,
"pair"),
new product ("Oven",
"Made in the 1850's, this coal-powered unit quickly
blackens any" +
"favorite dish.",
865.78,
"each"),
new product ("Radio",
"Revolutionary one-channel technology. White noise and
static" +
"included.",
15.43,
"each"),
new product ("Toaster",
"BBQO-style toaster. Only a moderate shock hazard.",
25.78,
"each"),
new product ("Washer",
"Does a great job on partially everything.",
345.0601,
"each")

) 7
and so on

categorySet = new Array(

new category ("Appliances", "Kitchen machines to make life
easier"),
new category ("Buildings", "Architectural structures you
can't " +
"resist"),
new category("Clothing", "Fashionably questionable apparel
for " +
"the 21st century"),
new category("Electronics", "Nifty gizmos that drain your
wallet"),
new category ("Food", "The best product to order over the
Net"),
new category ("Hardware", "All kinds of general purpose " +
"construction tools"),
new category("Music", "The hottest new instruments from
places " +
"you've never heard of")

) ;

First come the products. Variable Appliances is set to an array. Each element in the array is a product
object. Each call to product carries with it the expected arguments for building a product—a name,
description, price, and unit. This happens for Buildings, Clothing, Electronics, Food, Hardware, and
Music.

All that's left is coming up with the categories. Actually, the category names are already in place
(Appliances, Buildings, Clothing, etc.); we just have to let Shopping Bag know that. Lines 235-248
make it happen:

categorySet = new Array(
new category ("Appliances", "Kitchen machines to make life
easier"),
new category ("Buildings", "Architectural structures your
can't " +
"resist"),
new category("Clothing", "Fashionably questionable apparel
for " +
"the 21st century"),
new category("Electronics", "Nifty gizmos that drain your
wallet"),
new category ("Food", "The best product to order over the
Net"),
new category ("Hardware", "All kinds of general purpose " +
"construction tools"),
new category ("Music", "The hottest new instruments from
places " +
"you've never heard of")

) ;

Variable categorySet is also an array. Each element in the array is a category object constructed with
two arguments, a name, and a description. The first argument is assigned to the name property, and the
second is assigned to the description property. Take another look at line 14 of the category
constructor:

this.prodLine = eval (name) ;

prodLine is set to the value of eval (name). So the call to category () in line 249 means
prodLine equals eval ("Appliances"), which equals Appliances. Now the category named
Appliances knows about all its products (there in the prodLine array). Each element in categorySet
represents another Shopping Bag category. This makes adding and removing them a snap.

8.4.2.4 Creating the shopping bag

The products have all been created. The only thing left to create during load time is . . . well .. . a
shopping bag. All this shopping bag needs is a few properties to handle the payment and an array to
store all the products the user selects. The Bag () constructor in manager.html defines the one and

only shopping bag. Here are lines 21-31 of manager.html, shown in Example 8.4 later in the chapter:

function Bag () {

this.taxRate = .06;
this.taxTotal = 0;
this.shipRate = .02;
this.shipTotal = 0;
this.subTotal = 0;
this.bagTotal = 0;
this.things = new Array();
}

shoppingBag = new Bag/() ;

There are two variables to hold arbitrary rates, taxRate and shipRate . One is a multiple for computing
state sales tax. The other, also a multiple, is used to calculate shipping charges. Your tax structure will
likely differ, but you can at least see the direction here. Three other variables, taxTotal, subTotal , and
shipTotal , represent the sum of the tax, the sum of all the product selections and their quantities, and
the grand sum that the user must pay, respectively. The last variable is an array. things will contain all
the products, including quantities that the user selects. Variable shoppingBag is then set to the value a
new Bag () . Let's shop around.

JavaScript Technique: Maintaining Client State
with JavaScript Objects

Notice that all of the user's products selections and shopping totals are stored in properties
of shoppingBag (). This can be an effective way to organize information that grows
and changes during the life cycle of an application. Generally speaking, the user can make
any changes in quantity or product selection, and the properties of shoppingBag scale
to fit. Keep this technique handy.

8.5 Step 2: Displaying Products

With the application loaded, one of the first things the user will want to do is view the inventory. The
user can navigate from category to category with the "Previous Category" and "Next Category" links
or from product to product with the "Previous Product" and "Next Product" links. Here's how it works.
Recall lines 235-248 in inventory.js:

categorySet = new Array(
new category ("Appliances", "Kitchen machines to make life
easier"),
new category ("Buildings", "Architectural structures you
can't " +
"resist"),
new category("Clothing", "Fashionably questionable apparel
for " +
"the 21st century"),
new category("Electronics", "Nifty gizmos that drain your
wallet"),
new category("Food", "The best product to order over the
Net"),
new category ("Hardware", "All kinds of general purpose " +
"construction tools"),
new category ("Music", "The hottest new instruments from
places " +
"you've never heard of")

)7

categorySethas seven category objects. The first one is referenced as categorySet [0], the next
categorySet [1], and so forth. No matter what product a user is viewing, Shopping Bag knows
the number (in this case, 0-6) of the category to which it belongs. If the user decides to move to the
previous category, Shopping Bag subtracts 1 from the current category number, and shows the first
product in that category. If Shopping Bag is in category and the user wants to move to the previous
category, Shopping Bag starts back at the top category number (in this case, 6).

If the user wants to view the next category, Shopping Bag simply adds 1 to the current category
number. If the user is already in the last category, Shopping Bag starts at again.

The same holds true for the products. Each category has a certain number of products. Shopping Bag
knows the number to reference the current product in view, so choosing "Previous Product" or "Next
Product" will cause the next or previous product to be displayed simply by subtracting or adding one,
depending on what the user wants to do.

When the user reaches the last product in a category (going forwards), Shopping Bag realizes this and
begins with product of the next category. When the user reaches the first product in a category (going
backwards), Shopping Bag realizes this as well, and begins with the last product of the previous
category.

If I've confused you with that last explanation, the next diagram should help. Figure 8.10 shows how
Shopping Bag takes the user through the categories. It works the same way with navigating through
the products. When you reach the last product in one category, you move to the first product in the
following category.

Figure 8.10. Navigating through the categories

Joplnces ;
Buikdings Prerious E
. Category :
Hlectromics i
Food Hox :
Calegory :

Music i
Hardwore :

8.5.1 manager.html

All this functionality comes from the file manager.html. Example 8.4 shows the code.

Example 8.4. manager.html

1 <HTML>
2 <HEAD>
3 <TITLE>Shopping Bag Manager</TITLE>
4 <STYLE TYPE="text/css">
5 <!--
6 TD {font-weight: bold; margin-left: 20; margin-right:
20; padding: 10}
7/ ==>
8 </STYLE>
9 </HEAD>
10 <BODY onLoad="freshStart(); makeProducts();"
11 LINK=BLUE ALINK=BLUE VLINK=BLUE>
12 <SCRIPT LANGUAGE="JavaScriptl.2"
SRC="inventory.js"></SCRIPT>
13 <SCRIPT LANGUAGE="JavaScriptl.2">
14 <!--
15 wvar gimmeControl = false;
16 var browseControl = false;

17 wvar curCLoc = -1;
18 wvar curPLoc = -1;
19 wvar infoStr = '';
20 wvar shoppingBag;
21 function Bag () {

22 this.taxRate = .06;

23 this.taxTotal = 0;

24 this.shipRate = .02;

25 this.shipTotal = 0;

26 this.subTotal = 0;

277 this.bagTotal = 0y

28 this.things = new Array();

29 }

30

31 shoppingBag = new Bag();

32

33 function showStore () {

34 gimmeControl = false;

35 var header = '"<HTML><TITLE>Category</TITLE><BODY
BGCOLOR=FFFFFE>";

36 var intro = '<H2>Shopping Bag Product
Categories</H2>"';

37 var footer = '</DL></BLOCKQUOTE></BODY></HTML>"';

38 var storeStr = '<BLOCKQUOTE><DL>';

39 for (var i = 0; 1 < categorySet.length; i++) {

40 storeStr += '<DT><A HREF="javascript:
parent.frames[1l].reCall ("' +

41 i+ ', 0);">'" + categorySet[i].name + '<DD>'
I

42 categorySet[i] .description + '

';

43 }

44 infoStr = header + intro + storeStr + footer;

45 parent.frames[0].location.replace('javascript:

46 parent.frames[1l].infoStr');

47 }

48

49 function portal() {

50 gimmeControl = false;

51 parent.frames[0].location.href =
"search/index.html";

52 }

53 function display(cOffset, pOffset) {

54 if (!browseControl) {

55 alert ("Start shopping by selecting a product
category from " +

56 "Show All Categories or searching products from
Product Search.");

57 return;

58 }

59 gimmeControl = true;

60 if (curPLoc + pOffset < 0 || curPLoc + pOffset ==

ol categorySet[curCLoc] .prodLine.length) {

62 if (curPLoc + pOffset < 0) {

63 if (curCLoc - 1 < 0) { curCLoc =
categorySet.length - 1; }

64 else { curCLoc--; }

65 curPLoc = categorySet[curCLoc].prodLine.length -
1;

66 }

67 else 1if (curPLoc + pOffset ==
categorySet [curCLoc] .prodLine.length) {

68 if (curCLoc + 1 == categorySet.length) { curCLoc
= 0; }

69 else { curCLoc++; }

70 curPLoc = 0;

71 }

72 }

73 else {

74 if (curCLoc + cOffset < 0 || curCLoc + cOffset ==

75 categorySet.length) {

76 curCLoc = (curCLoc + cOffset < 0 ?
categorySet.length - 1 : 0);

77 }

78 else { curCLoc += cOffset; }

79 if (cOffset == -1 || cOffset == 1) { curPLoc = 0;
}

80 else 1if (pOffset == 0) {

81 curPLoc = (curPLoc >=
categorySet [curCLoc] .prodLine.length ? 0

82 curPLoc)

83 }

84 else { curPLoc = curPLoc + pOffset; }

85 }

86 infoStr = '"<HTML><HEAD><TITLE>Product
Name</TITLE></HEAD>' +

87 '<BODY><TABLE CELLPADDING=3><TR><TD VALIGN=TOP
COLSPAN=2>" +

88 '<H2>Shopping Bag: <I>' +

89 categorySet [curCLoc] .name + '</I></H2><TR>' +

90 '<TD VALIGN=TOP><IMG SRC="' +

91 categorySet[curCLoc] .prodLine[curPLoc] .icon.src +

92 '"></TD><TD VALIGN=TOP>' +

93 'Name: ' +
categorySet [curCLoc] .prodLine[curPLoc] .name +

94 '
Description: ' +

95 categorySet [curCLoc] .prodLine[curPLoc] .description

+ '
' +
96 'Price: S$' +

97
numberFormat (categorySet [curCLoc] .prodLine[curPLoc] .price) +
|/l+

98 categorySet[curCLoc] .prodLine[curPLoc] .unit +
'
' +
99 'PLU: ' +

categorySet[curCLoc] .prodLine[curPLoc] .plu +

100 '</TD></TR></TABLE></BODY></HTML>";

101 parent.frames[0] .location.href = 'javascript:

102 parent.frames[1l].infoStr';

103 }

104

105 function reCall (cReset, pReset) {

106 browseControl = true;

107 curCLoc = cReset;

108 curPLoc = pReset;

109 display (0, 0);

110 }

111

112 function gimmeOne () {

113 if (!gimmeControl) {

114 alert ("Nothing on this screen to give you.");

115 return;

116 }

117 for (var 1 = 0; 1 < shoppingBag.things.length; i++)
{

118 if (categorySet[curCLoc] .prodLine[curPLoc] .plu ==

119 shoppingBag.things[i] .plu) {

120 alert ("That's already in your bag. You can
change the quantity " +

121 "by choosing View/Change Bag.");

122 return;

123 }

124 }

125 shoppingBag.things[shoppingBag.things.length] =

126 categorySet[curCLoc] .prodLine [curPLoc];

127 shoppingBag.things[shoppingBag.things.length -
1].itemQty = 1;

128 shoppingBag.things[shoppingBag.things.length -
1] .category =

129 categorySet [curCLoc] .name;

130 alert ("OK. You put the " +

131 shoppingBag.things[shoppingBag.things.length -
1] .name +

132 " in your bag.");

133 }

134

135 function showBag() {
136 if (shoppingBag.things.length == 0) {

137 alert ("Your bag is currently empty. Put some stuff
in.");

138 return;

139 }

140 gimmeControl = false;

141 var header = '"<HTML><HEAD><TITLE>Your Shopping
Bag</TITLE>' +

142 '</HEAD><BODY BGCOLOR=FFFFFF ' +

143
'onLoad="parent.frames[1l] .runningTab (document.forms[0]);">";

144 var intro = '<H2>Your Shopping Bag!!!</H2>' +

145 '<FORM onReset=""' +

146
'setTimeout (\'parent.frames[1l].runningTab (document.forms[0])\"'
14 ! +

147 '25);">";

148 var tableTop = '<TABLE BORDER=1 CELLSPACING=0
CELLPADDING=5>"' +

149 '<TR>}TH>Index' +

150 '<TH>Product<TH>Category' +

151 '<TH>PLU<TH>Unit Price' +

152 '<TH>Quantity<TH>Product Total' +

153 '<TH>Remove' +

154 '</TR>';

155 var itemStr = '';

156 for (var 1 = 0; 1 < shoppingBag.things.length; i++)
{

157 itemStr += '<TR>' +

158 '<TD ALIGN=CENTER>' + (i + 1) + '</TD>' +

159 '<TD>' + shoppingBag.things[i].name + '</TD>' +

160 '<TD>' + shoppingBag.things[i].category +
'</TD>" +

16l '<TD>' + shoppingBag.things[i].plu + '</TD>' +

162 '<TD ALIGN=RIGHT>S' +

163
parent.frames[1l] .numberFormat (shoppingBag.things([i] .price) +

164 '</TD>' +

165 '<TD ALIGN=CENTER>' +

166
parent.frames[1l] .genSelect (shoppingBag.things[i] .price,

167 shoppingBag.things[i].itemQty, 1) + '</TD>' +

168 '<TD ALIGN=CENTER><INPUT TYPE=TEXT SIZE=10
VALUE="" +

169
parent.frames[1l] .numberFormat (shoppingBag.things[i] .price *

170 shoppingBag.things[i].itemQty) +

171 '" onFocus="this.blur();"></TD>" +

172 '<TD ALIGN=CENTER><INPUT TYPE=CHECKBOX></TD>' +

173 '</TR>"';

174 }

175 var tableBottom = '<TR>' +

176 '<TD ALIGN=RIGHT COLSPAN=6>SubTotal:</TD>"' +

177 '<TD ALIGN=CENTER><INPUT TYPE=TEXT SIZE=10
NAME="subtotal" ' +

178 onFocus="this.blur();"></TD></TR>' +

179 '<TR><TD ALIGN=RIGHT COLSPAN=6> + 6% Tax:</TD>' +

180 '<TD ALIGN=CENTER><INPUT TYPE=TEXT SIZE=10
NAME="tax" ' +

181 'onFocus="this.blur () ;"></TD></TR><TR><TD
ALIGN=RIGHT COLSPAN=6>"' +

182 '2% Shipping:</TD><TD ALIGN=CENTER><INPUT
TYPE=TEXT ' +

183 'SIZE=10 NAME="ship"
onFocus="this.blur();"></TD></TR>"' +

184 '<TR>' +

185 '<TD ALIGN=RIGHT COLSPAN=3><INPUT TYPE=BUTTON
VALUE="Check Out" ' +

186
'onClick="parent.frames[1l].checkOut (this.form);"></TD>' +

187 '<TD ALIGN=RIGHT><INPUT TYPE=RESET VALUE="Reset
Qtys"></TD>"' +

188 '<TD ALIGN=RIGHT><INPUT TYPE=BUTTON VALUE="Change
Bag" ' +

189 'onClick="parent.frames[1l].changeBag(this.form,
true);"></TD>"' +

190 '<TD ALIGN=RIGHT>Total:</TD><TD ALIGN=CENTER>' +

191 '<INPUT TYPE=TEXT NAME="total" SIZE=10
onFocus="this.blur();">" +

192 '</TD></TR>";

193

194 var footer = '</TABLE></FORM></BODY></HTML>"';

195 infoStr = header + intro + tableTop + itemStr +
tableBottom + footer;

196 parent.frames[0].location.replace('javascript:

197 parent.frames[1l].infoStr");

198 }

199

200 function genSelect (priceAgr, gty, idx) {

201 var selStr = '"<SELECT onChange="this.form.elements]['
+ (idx * 3 + 1) +

202 ']T.value =
this.options|[this.selectedIndex] .value;

203 parent.frames[1l].runningTab (this.form);">";

204 for (var i = 1; 1 <= 10; i++) {

205 selStr += '<OPTION VALUE="' + numberFormat (i *
priceAgr) + '"' +

206 (i == gty ? ' SELECTED' : '') + '>' + i;

207 }

208
209
210
211
212
213
214

{
215

selStr += '</SELECT>';
return selStr;

}

function runningTab (formObj) {
var subTotal = 0;
for (var 1 = 0; 1 < shoppingBag.things.length; i++)

1] .value);

216
217
218

219

subTotal += parseFloat (formObj.elements[(i * 3)

}

formObj.subtotal.value = numberFormat (subTotal) ;
formObj.tax.value = numberFormat (subTotal *
shoppingBag.taxRate) ;

formObj.ship.value = numberFormat (subTotal *
shoppingBag.shipRate) ;

+

/

220 formObj.total.value = numberFormat (subTotal +

221 round (subTotal * shoppingBag.taxRate) +

222 round (subTotal * shoppingBag.shipRate));

223 shoppingBag.subTotal = formObj.subtotal.value;

224 shoppingBag.taxTotal = formObj.tax.value;

225 shoppingBag.shipTotal = formObj.ship.value;

226 shoppingBag.bagTotal = formObj.total.value;

227 }

228

229 function numberFormat (amount) {

230 var rawNumStr = round (amount) + '';

231 rawNumStr = (rawNumStr.charAt (0) == '."'" 2 '0' +
rawNumStzr rawNumStr) ;

232 if (rawNumStr.charAt (rawNumStr.length - 3) == '.")

233 return rawNumStr

234 }

235 else if (rawNumStr.charAt (rawNumStr.length - 2) ==
L) A

236 return rawNumStr + '0';

237 }

238 else { return rawNumStr + '.00'; }

239 }

240 function round (number,decPlace) {

241 decPlace = (!decPlace ? 2 : decPlace);

2472 return Math.round (number * Math.pow (10,decPlace))

243 Math.pow (10,decPlace) ;

244 }

245

246 function changeBag (formObj, showAgain) {

247 var tempBagArray = new Array();

248 for (var 1 = 0; 1 < shoppingBag.things.length; i++)
{

249 if (!formObj.elements[(i * 3) + 2].checked) {

250 tempBagArray[tempBagArray.length] =
shoppingBag.things[i];

251 tempBagArray[tempBagArray.length - 1].itemQty =

252 formObj.elements[i * 3].selectedIndex + 1;

253 }

254 }

255 shoppingBag.things = tempBagArray;

256 if (shoppingBag.things.length == 0) {

257 alert ("You've emptied your bag. Put some stuff
in.");

258 parent.frames[1l].showStore ()

259 }

260 else { showBag(); }

261 }

262

263 function checkOut (formObj) {

264 gimmeControl = false;

265 if(!confirm("Do you have every product in the right
quantity " +

266 "you need? Remember that you have to choose Change
Bag to " +

267 "remove products or change quantities. If so,
choose OK to check " +

268 "out.")) {

269 return;

270 }

271 if (shoppingBag.things.length == 0) {

272 showStore () ;

273 return;

274 }

275 var header = '"<HTML><TITLE>Shopping Bag Check
Out</TITLE>' +

276 '<BODY BGCOLOR=FFFFFF>';

277

278 var intro = '<H2>Shopping Bag Check Out</H2><FORM
METHOD=POST ' +

279 '"ACTION="http://your.webserver.com/cgi-
bin/bag.cgi"™ ' +

280 'onSubmit="return
parent.frames[1l].cheapCheck (this);">";

281

282 var shipInfo = '<TABLE BORDER=0 CELLSPACING=0
CELLPADDING=5>"' +

283 '<TR><TD>Shipping Information</TD></TR>"'+

284 '<TR>}<TD>First Name</TD><TD><INPUT TYPE=TEXT
NAME="fname"></TD>"' +

285 '</TR><TR><TD>Last Name</TD><TD>' +

286 '<INPUT TYPE=TEXT

NAME="1name"></TD></TR><TR><TD>Company Name</TD>' +

http://your.webserver.com/cgibin/bag.cgi

287 '<TD><INPUT TYPE=TEXT NAME="cname"></TD></TR><TR>'

+

288 '<TD>Street Addressl</TD><TD><INPUT TYPE=TEXT
NAME="saddressl">"' +

289 '</TD></TR><TR><TD>Street Address2</TD>' +

290 '<TD><INPUT TYPE=TEXT
NAME="saddress2"></TD></TR><TR>' +

291 '<KTD>City</TD><TD><INPUT TYPE=TEXT
NAME="city"></TD></TR>' +

292 '<TR><TD>State/Province</TD>' +

293 '<TD><INPUT TYPE=TEXT NAME="stpro"></TD></TR><TR>'
+

294 '<TD>Country</TD><TD><INPUT TYPE=TEXT
NAME="country"></TD></TR>"' +

295 '<TR><TD>Zip/Mail Code</TD><TD><INPUT TYPE=TEXT
NAME="zip"></TD>' +

296 '</TR><TR><TD>

</TD></TR></TABLE>";

297

298 var payInfo = '<TABLE BORDER=0 CELLSPACING=0
CELLPADDING=5>" +

299 '<TR><TD>Payment Information</TD></TR>'+

300 '<TR>}<TD>Credit Card Type:
</TD>" +

301 '<TD>Visa <INPUT TYPE=RADIO NAME="ctype"
VALUE="visa" CHECKED> ' +

302 ' ' +

303 'Amex <INPUT TYPE=RADIO NAME="ctype" VALUE="amex">
'+

304 ' ' +

305 'Discover <INPUT TYPE=RADIO NAME="ctype"
VALUE="disc"> ' +

306 ' </TD></TR>' +

307 '<TR><TD>Credit Card Number</TD>' +

308 '<TD><INPUT TYPE=TEXT NAME="cnumb"></TD></TR><TR>'
+

309 '<TD>Expiration Date</TD><TD><INPUT TYPE=TEXT
NAME="edate"></TD>' +

310 '</TR><TR><TD><INPUT TYPE=SUBMIT VALUE="Send
Order"></TD>"' +

311 '<TD><INPUT TYPE=RESET VALUE="Clear
Info"></TD></TR>" +

312 '</TABLE>"';

313

314 var itemInfo = '"';

315 for (var i = 0; 1 < shoppingBag.things.length; i++)
{

316 itemInfo += '<INPUT TYPE=HIDDEN NAME="prod' + i +

317 '" VALUE="' + shoppingBag.things[i].plu + '-' +

318 shoppingBag.things[i].itemQty + "'">"';

319

}

320 var totalInfo = '<INPUT TYPE=HIDDEN NAME="subtotal"
VALUE=""'" +

321 shoppingBag.subTotal + "">' +

322 '<INPUT TYPE=HIDDEN NAME="taxtotal" VALUE="' +

323 shoppingBag.taxTotal + "">' +

324 '<INPUT TYPE=HIDDEN NAME="shiptotal" VALUE="' +

325 shoppingBag.shipTotal + '">' +

326 '<INPUT TYPE=HIDDEN NAME="bagtotal" VALUE="' +

327 shoppingBag.bagTotal + "">';

328

329 var footer = '"</FORM></BODY></HTML>';

330

331 infoStr = header + intro + shipInfo + payInfo +
itemInfo +

332 totalInfo + footer;

333 parent.frames[0] .location.replace ('javascript:

334 parent.frames[1l].infoStr"'");

335 }

336

337 function cheapCheck (formObj) {

338 for (var i = 0; 1 < formObj.length; i++) {

339 if (formObjl[i].type == "text" &&
formObj.elements[i].value == "") {

340 alert ("You must complete all fields.");

341 return false;

342 }

343 }

344 if(!confirm("If all your information is correct, " +

345 "choose OK to send your order, or choose Cancel to
make changes.")) {

346 return false;

347 }

348 alert ("Thank you. We'll be living off your hard-
earned money soon.");

349 shoppingBag = new Bag();

350 showStore () ;

351 return true;

352 }

353

354 function help () {

355 gimmeControl = false;

356 parent.frames[0].location.href = "intro.html";

357 }

358

359 function freshStart() {

360 if (parent.frames[0].location.href != "intro.html™) {
help(); }

361

}

362

363 //-——>
364 </SCRIPT>
365 <TABLE ALIGN=CENTER BORDER=0>

366 <TR>

367 <TD>

368 <A HREF="javascript:

369 </TD>

370 <TD>

371 <A HREF="javascript:
Bag<A>

372 </TD>

373 <TD>

374 <A HREF="javascript:
Categories<A>

375 </TD>

376 <TD>

377 <A HREF="javascript:

378 </TD>

379 <TD>

380 <A HREF="javascript:

381 </TD>

382 </TR>

383 </TABLE>
384 <TABLE ALIGN=CENTER BORDER=0>

385 <TR>

386 <TD>

387 <A HREF="javascript:
Category<A>

388 </TD>

389 <TD>

390 <A HREF="javascript:
Product<A>

391 </TD>

392 <TD>

393 <A HREF="javascript:
Product<A>

394 </TD>

395 <TD>

396 <A HREF="javascript:
Category<A>

397 </TD>

398 </TR>

399 </TABLE>
400 </BODY>
401 </HTML>

gimmeOne () ; ">Gimme One<A>

showBag () ; ">View/Change

showStore () ;">Show All

portal () ;">Product Search<A>

help () ;">Help<A>

display(-1,0);">Previous

display(0,-1);">Previous

display(0,1);">Next

display (1,0);">Next

Just a quick note. Did you see that all the JavaScript is embedded after the BODY tag? Since there is a
lot of image preloading and object creation at the beginning, Netscape Navigator will display that dull

gray background in the window (or the frame in this case) until all that work is done. Only then will it
parse the rest of the contents. As it stands, the browser will parse the BODY tag, and hence, the
BGCOLOR attribute, before going about all the work.

8.5.1.1 Variables

Following is the code that makes the product display happen. Lines 15-18 set up four variables, and
lines 53-103 define function display (). Variable gimmeControl indicates to Shopping Bag
whether there is something on the screen (a product) that can be added to the shopping bag. Variable
browseControl enforces the rule that the user must start browsing by clicking on "Show All
Categories" or "Product Search." (See Rule 1.) You'll see both of these variables throughout the
application, but display () deals with them first, so let's introduce them:

var gimmeControl = false;
var browseControl = false;
var curCLoc = -1;
var curPLoc = -1;

Variables curCLoc and curPLoc hold the respective index numbers of the category and product in
view. These are the numbers I mentioned earlier in the section. Though both are set arbitrarily to -1,
they change the moment the user chooses a category or a product. More on these two in a moment.
Now let's see how it all happens. Here are lines 53-103:

function display(cOffset, pOffset) {
if (!browseControl) {
alert ("Start shopping by selecting a product category from
Show " +
"All Categories or searching products from Product
Search.");

return;
}
gimmeControl = true;
if (curPLoc + pOffset < 0 || curPLoc + pOffset ==

categorySet [curCLoc] .prodLine.length) {
if (curPLoc + pOffset < 0) {
if (curCLoc - 1 < 0) { curCLoc = categorySet.length
- 1; }
else { curCLoc--; }
curPLoc = categorySet[curCLoc] .prodLine.length - 1;
}
else if (curPLoc + pOffset ==
categorySet[curCLoc] .prodLine.length) {

if (curCLoc + 1 == categorySet.length) { curCLoc = 0; }
else { curCLoc++; }
curPLoc = 0;
}
}
else {
if (curCLoc + cOffset < 0 || curCLoc + cOffset ==

categorySet.length) {

curCLoc = (curCLoc + cOffset < 0 ? categorySet.length -

else { curCLoc += cOffset; }

if (cOffset == -1 || cOffset == 1) { curPLoc = 0; }
else 1if (pOffset == 0) {
curPLoc = (curPLoc >=
categorySet [curCLoc] .prodLine.length ? 0
curPLoc)

}
else { curPLoc = curPLoc + pOffset; }
} infoStr = '<HTML><HEAD><TITLE>Product
Name</TITLE></HEAD>' +
'<BODY><TABLE CELLPADDING=3><TR><TD VALIGN=TOP COLSPAN=2>"
+
'<H2>Shopping Bag: <I>' +
categorySet [curCLoc] .name + '</I></H2><TR>' +
'<TD VALIGN=TOP><IMG SRC=""' +
categorySet [curCLoc] .prodLine[curPLoc] .icon.src +
'"></TD><TD VALIGN=TOP>' +
'Name: ' +
categorySet [curCLoc] .prodLine[curPLoc] .name +
'
Description: ' +
categorySet[curCLoc] .prodLine[curPLoc] .description +
'
' +
'Price: $' +

numberFormat (categorySet [curCLoc] .prodLine[curPLoc] .price) +
|/l_|_
categorySet [curCLoc] .prodLine[curPLoc] .unit + '
' +
"PLU: ' +
categorySet[curCLoc] .prodLine[curPLoc] .plu +
'</TD></TR></TABLE></BODY></HTML>";

parent.frames[0].location.href =
'javascript:parent.frames[1l].infoStr';
}
8.5.1.2 display()

display () has three jobs:

1. Determine whether it is allowed to display a product.
2. Determine which category/product the user wants to view.
3. Display that product.

Job 1 is pretty simple. If browseControl is true, the answer is yes. browseControl is originally set to
false. Once the user chooses a product from "Product Search" or chooses a category from "Show

All Categories," browseControl is set to true. Now display () can carry out jobs 2 and 3. Since a
product will be displayed, gimmeControl is then set to true.

Notice that display () expects two arguments, cOffset and pOffset . One holds a value to
determine how far to move from the current category number. The other does the same for the product
number. cOffset and pOffset can be positive, negative, or zero. To make things simpler, let's assume
that shopper Daisy Deep Pockets has already satisfied Rule 1 and can now use the "Next" and
"Previous" links to navigate through the inventory. Look at the code for each of these links in lines
386-397:

<TD>

Previous Category<A>
</TD>

<TD>

Previous Product<A>
</TD>

<TD>

Next Product<A>
</TD>

<TD>

Next Category<A>
</TD>

Each of these links calls display () and passes in a pair of integers. Table 8.1 explains what each
function call represents. Remember that curCLoc is the category number, and curPLoc is the product
number.

Table 8.1. Determining the Value of curCLoc and curCPloc

Link Arguments Passed Explanation
Previous Category -1,0 Add -1 to curCLoc; add to curPLoc.
Previous Product 0,-1 Add to curCLoc; add -1 to curPLoc.
Next Product 0,1 Add to curCLoc; add 1 to curPLoc.
Next Category 1,0 Add 1 to curCLoc; add to curPLoc.

8.5.1.3 Exceptions to the Rule

This makes sense. If you want to go back one category, subtract 1 from the category number. If you
want to view the next product, add 1 to the category number. There are three exceptions, however, that
require additional logic:

1. There is no category or product with the number -1. If either the category number or product
number is 0, and the user chooses "Previous Category" or "Previous Product,"” Shopping Bag
is headed straight for an error.

2. There is no category with the number categorySet [categorySet.length].
Since there are only categorySet . length categories, the category number can never
be higher than categorySet.length -1.If the category number is
categorySet.length -1, and the user chooses "Next Product" or "Next Category,"
we get a JavaScript error. The same holds true for the products.

3. Navigating from category to category always displays the first product in the category no
matter what the product number of the product the user is currently viewing.

Lines 60-85 provide the desired functionality and accommodate these three exceptions. This is a fairly
extensive use of nested if-else statements, so you might want to review it for a while.

if (curPLoc + pOffset < 0 || curPLoc + pOffset ==
categorySet [curCLoc] .prodLine.length) {
if (curPLoc + pOffset < 0) {
if (curCLoc - 1 < 0) { curCLoc = categorySet.length -
1; 1}
else { curCLoc--; 1}
curPLoc = categorySet[curCLoc].prodLine.length - 1;
}
else if (curPLoc + pOffset ==
categorySet[curCLoc] .prodLine.length) {

if (curCLoc + 1 == categorySet.length) { curCLoc = 0; }
else { curCLoc++; }
curPLoc = 0;
}
}
else {
if (curCLoc + cOffset < 0 || curCLoc + cOffset ==
categorySet.length) {
curCLoc = (curCLoc + cOffset < 0 ? categorySet.length - 1
0) 7

}

else { curCLoc += cOffset; }

if (cOffset == -1 || cOffset == 1) { curPLoc = 0; }
else 1f (pOffset == 0) {
curPLoc = (curPLoc >= categorySet[curCLoc].prodLine.length
20
curPLoc)

}

else { curPLoc = curPLoc + pOffset; }
}

The following pseudo-code rendition should clear up how this block works. The line numbers of the
actual code follow each line of our translation:

IF the product number will be too small or too big THEN (73)
IF the product number will be too small THEN (74)
IF the category number will be too small THEN the
category number
equals the number of categories minus 1 (75)
ELSE The category number equals itself minus 1 (76)
The product number equals the number of products in
the category
number minus 1 (77)

ELSE IF the product number will be too big THEN (79)
IF the category number will be too big THEN the
category number
equals 0 (80)
ELSE the category number equals itself plus 1 (81)
The product number equals 0 (82)
ELSE (85)
IF the category number will be too small OR too big THEN
(86)
IF the category number is too small THEN category
number equals
the number of categories minus 1 (87)
ELSE the category number equals 0 (88)
ELSE the category number equals itself plus the category
offset (89)
IF the category offset equals -1 OR 1 THEN the product
number
equals 0 (90)
ELSE IF the product offset equals 0 THEN (91)
IF the product number is greater than or equal to the
number of
products in the category number THEN the product
number
equals 0 (92)
ELSE the product number equals itself plus the product
offset (94)

The outermost if block handles the variables if the product number falls under either of the first two
exceptions. The outermost else block handles the variables if the category number falls under either of
the first two exceptions. To accommodate the third exception, line 80 sets the product number equal to
0 if the category offset moves up or down by 1.

8.5.1.4 Building the display page

Knowing the category and product number, Shopping Bag can now build the HTML to display the
correct product. Nearly all of the remaining code in display () is dedicated to getting that product
on the screen. Look at lines 86-102:

infoStr = '"<HTML><HEAD><TITLE>Product Name</TITLE></HEAD>' +
'<BODY><TABLE CELLPADDING=3><TR><TD VALIGN=TOP COLSPAN=2>'
'<H2>Shopping Bag: <I>' +
categorySet [curCLoc] .name + '</I></H2><TR><TD
VALIGN=TOP><IMG SRC="' +
categorySet[curCLoc] .prodLine[curPLoc] .icon.src +
'"></TD><TD VALIGN=TOP>Name: ' +
categorySet [curCLoc] .prodLine[curPLoc] .name + '
' +
'Description: ' +
categorySet[curCLoc] .prodLine[curPLoc] .description +
'
' +

'Price: $' +

numberFormat (categorySet [curCLoc] .prodLine [curPLoc] .price)
+ '/ 4

categorySet[curCLoc] .prodLine[curPLoc] .unit + '
' +

'PLU: ' + categorySet[curCLoc].prodLine[curPLoc].plu
+

'</TD></TR></TABLE></BODY></HTML>";

parent.frames[0].location.href = 'javascript:
parent.frames[1l].infoStr';

As you can see, everything is based on one large concatenation of HTML to the initially empty string
value of variable infoStr. Notice that the values of curPLoc and curCLoc are vital in referencing all
the correct product information. categorySet [curCLoc] refers to the correct category, while
categorySet [curCLoc] .prodLine[curPLoc] refers to the correct product. Once the
values of curCLoc and curPLoc have been determined, you can display the product information any
way you like.

After infoStr has all the HTML it needs to display the product, the sref property of the top frame is set
to its value by way of a Javascript : protocol. Remember that because of the scope of this
protocol, you must provide an absolute reference to it (i.e., parent.frames[1] .infoStr
instead of just infoStr). See the JavaScript technique in Chapter 2, for the details.

8.6 Step 3: Showing All the Categories

Choosing "Show All Categories" is another way to navigate through the products. Function
showStore () is readily equipped to handle this task, as lines 33-47 show:

function showStore () {
gimmeControl = false;
var header = "<HTML><TITLE>Category</TITLE><BODY
BGCOLOR=FFFFFE>";
var intro = '<H2>Shopping Bag Product Categories</H2>';
var footer = '</DL></BLOCKQUOTE></BODY></HTML>"';

var storeStr = '<BLOCKQUOTE><DL>';
for (var i = 0; 1 < categorySet.length; i++) {
storeStr += '<DT><A HREF="javascript:
parent.frames[1l].reCall (' + i +
', 0);">'" + categorySet[i].name + '<DD>' +
categorySet[i] .description + '

';
}
infoStr = header + intro + storeStr + footer;
parent.frames[0].location.replace('javascript:
parent.frames[1l].infoStr'");

}
8.6.1 Displaying the First Product

Of course, Rule 1 imposes that the first (and only first) time the user displays a product must come
from either "Show All Categories" or "Product Search." The "Product Search" feature is discussed

shortly. Let's look at "Show All Categories" now. Showing all categories is fairly easy.

showStore () simply iterates through all the elements in categorySet, generating a linked list with
the name and description of each. After the last category, this linked list string (a.k.a., infoStr) is set as
the Aref property of the top frame. Notice the code provided in each HREF tag is equal to:

javascript: parent.frames[1l].reCall(' + i + ', 0)

Clicking any of the category links will call the function reCall () in manager.html. Here it is in
lines 105-110:

function reCall (cReset, pReset) {
browseControl = true;
curCLoc = cReset;
curPLoc = pReset;
display (0, 0);
}

reCall () expects two arguments, the category number represented by the value of 7 in line 42 and
the number 0. The value of i is assigned to curCLoc. This determines, of course, the category that the
user wants to view. The number 0 is assigned to curPLoc. Remember exception number 3? Viewing
by category always starts the user at the first product in that category, which is prodLine [0].

After this happens, reCall () summons function display (), passing in two zeros as
arguments. When we first examined the if statements in lines 60-85, we assumed that the user would
always be viewing a product or category with a lower or higher value than curCLoc or curPLoc. The
thing is, function reCall () has already set the values of these variables, so there is no need to "go
anywhere." The user wants to see the product associated with the current values of curCLoc and
curPLoc. That is what passing in the two zeros means, and the code in lines 60-85 accommodates that.

8.6.1.1 Where's the DHTML?

Notice that the product pages have no DHTML. No layers. Why shouldn't there be? Most browsers
out there support JavaScript 1.2. I've even spent a couple of chapters incorporating cross-browser
DHTML. Why back out now? When Shopping Cart initially loads, can't you just create a layer for
each product, then hide and show the layer at will? Yes, you can, but . . .

Too much image preloading can hurt you. As mentioned earlier, if you have a lot of graphics, all that
preloading might test the shopper's patience. Creating a layer for each product loads those images.
Using plain HTML gets the job done with or without image preloading.

Now the user can navigate to and from products and categories at will. It's time to see what happens
when the user sees something worth purchasing and decides to put one in the shopping bag.

8.7 Step 4: Adding Products to the Shopping Bag

Putting things in the shopping bag is easy. Users need only click the affectionately titled link "Gimme
One." This calls the correspondingly named function gimmeOne () . Lines 112-133 have the details:

function gimmeOne () {

if (!gimmeControl) {
alert ("Nothing on this screen to give you.");
return;
}
for (var i = 0; 1 < shoppingBag.things.length; i++) {
if (categorySet[curCLoc] .prodLine[curPLoc] .plu ==
shoppingBag.things[i] .plu) {
alert ("That's already in your bag. You can change the
quantity " +
"by choosing View/Change Bag.");
return;
}
}
shoppingBag.things[shoppingBag.things.length] =
categorySet [curCLoc] .prodLine [curPLoc];
shoppingBag.things[shoppingBag.things.length - 1].itemQty =
1;
shoppingBag.things[shoppingBag.things.length - 1].category =
categorySet[curCLoc] .name;
alert ("OK. You put the " +
shoppingBag.things[shoppingBag.things.length - 1] .name +
" in your bag.");

The first thing gimmeOne () does is to ensure that there is actually something on the screen to put
in the shopping bag. Variable gimmeControl is set to true immediately before a product is displayed.
Otherwise, any other functions displaying information on the screen set gimmeControl to false.
Therefore, if gimmeControl is £al se, there is no product on the screen. The user is alerted, and
gimmeOne () returns. Otherwise, gimmeOne () iterates through the elements of the things array,
which is a property of the user's shoppingBag object to check whether the product currently in view is
already in the user's bag.

gimmeOne () doesn't expect any arguments. It relies instead upon the current values of curCLoc
and curPLoc. Assuming that each product has a unique PLU number, gimmeOne () looks for a
match with any of the PLU numbers of the products currently in the bag. If it finds a match, the user is
alerted that the product is already in the bag.

If the product isn't already in the bag, gimmeOne () puts it in. This poses an interesting situation,
however. Answer this question: a product in the shopping bag is still a product object—true or false?
If you answered true, you're right. However, any product in the user's shopping bag must be an
extended, more complex product. Each product in the bag still has a name, description, PLU, and
price, but each also needs a property to represent the quantity ordered and has to "know" to which
category it belongs.

Each element in things, therefore, must have properties dynamically added to it. Lines 125-129 show
how function gimmeOne () adds these specialized products to things and adds the properties to

each object:

shoppingBag.things[shoppingBag.things.length] =

categorySet [curCLoc] .prodLine[curPLoc];
shoppingBag.things[shoppingBag.things.length - 1].itemQty = 1;
shoppingBag.things[shoppingBag.things.length - 1].category =
categorySet [curCLoc] .name;

shoppingBag.things[shoppingBag.things.length] creates a reference to the
product object currently at categorySet [curCLoc] .prodLine [curPLoc]. This adds a
"regular" product to the shopping bag. The next two lines add respective properties itemQty , initially
set to 1, and category to the name of the category in which the current product object belongs.

JavaScript Technique: Adding Object Properties

There are a couple of ways to add properties to user-defined objects. The easiest is just to
think of a property name and value, then add it to the object. Each element in things is a
product, but these products are assigned two new values, 1 temQty and category. The
following lines reflect that:

shoppingBag.things[shoppingBag.things.length -
1].itemQty = 1;
shoppingBag.things[shoppingBag.things.length -
1] .category =

categorySet[curCLoc] .name;

Those objects have already been constructed, however, so properties must be added every
time. If you want to add properties to all objects constructed in the future, use the prototype
property. Suppose you want to add a sale price to any other products made:

product.prototype.salePrice = 0.00;

Any other objects constructed will now have a salePrice property with the default value of
0.00.

The last thing gimmeOne () does is to advise the user that the product was successfully
added to the shopping bag.

This process repeats itself for every product the user puts in the shopping bag until it is time to check
out.

8.7.1 Searching for Products

You've probably noticed by now: the "Product Search" feature is a Chapter 1 transplant. The client-
side search engine has been modified to suit the needs of Shopping Bag users. Everything is pretty
much the same. The search capabilities, however, have been reduced to only a default Boolean OR
search. In other words, if any of the text the user enters is found in the product information, that
product is considered a match. There is no Boolean AND search and no search by URL. Still, the
capability should be more than enough to fit the bill. There is one extra feature that the Chapter 1
engine doesn't have. Users can enter an empty string simply by pressing the Enter key. This performs
a null search, which returns all the products in the database.

We won't get into the same level of detail as Chapter 1 does, but you should read over the next few
paragraphs to see how easy it can be to extend organized JavaScript applications. After all, like any
other search engine, the user just wants to enter text to generate a list of linked results. To make this
work for Shopping Bag without causing serious code changes to either application, the search engine
needs to make the following accommodations:

o Display linked results that support the product/category navigation system explained in Step 2
e Be able to search the existing product database
e Return links to all the products in the database

Fortunately, these changes all can be made in one file—search/nav.html. So that you don't have to
stare at another couple hundred lines of code, I'll show you only the relative code in search/nav.html.

8.7.2 Mapping the Products and Categories

We need to change things just a little for everything to operate smoothly. These changes come in the
form of two new variables and a new function, as shown by:

var ref = top.frames[1l];
var prodProfiles = new Array();
function genProfile() {
for (var i = 0; i < ref.categorySet.length; i++) {

for (var j = 0; J < ref.categorySet[i].prodLine.length;
Jj++) |

prodProfiles[prodProfiles.length] = new Array (i, 7j);

}

Variable refis used as an alias to top . frames [1]. Since most of the objects and variables
referenced in this search engine application are located within manager.html, the object buried within
objects will make for some pretty lengthy references with plenty of dot notation. Using ref instead of
top. frames [1] shortens the writing somewhat. prodProfiles starts as an empty array but is soon
filled with a call to function genProfile ().

genProfile () hasone job and one job only—establish a system to reference any product object
in any category by its category number and product number. The category number is paired with a
product number.

For example, assume that i, the category number, is 1 and j, the product number, is 2. If you check
inventory.js, you'll see that categorySet [i] .prodLine [7] refers to the "Igloo" in the
"Buildings" category. It's like plotting coordinates on a map.

The nested for loops in genProfile () iterate through each category (i) and product (7).
genProfile () makes a mental note, if you will, of each products location in the category by
storing the i,/ integer pair in an array of its own. When all is finished, each element in prodProfiles
represents a category/product number pair that references a unique product in a category.

You may ask: isn't that how the products are already referenced? The answer is yes. However, the
search engine function now knows all of the possible combinations. Each pair is stored as an element

in prodProfiles. This makes it very easy to refer to (and search and display) information about any
product in the database.

8.7.3 Searching the Existing Database

The original version searched a web page name, description, and URL. Shopping Bag has similar
items to search. The problem is that you have to do it according to the existing database. Fortunately,
you can make a few changes to function al lowAny (). Here it is in search/nav.html:

function allowAny (t) {

var findings = new Array();
for (var i = 0; 1 < prodProfiles.length; i++) {
var compareElement = ref.categorySet[prodProfiles[i][0]].
prodLine[prodProfiles[i] [1]] .name + ' ' +

ref.categorySet [prodProfiles[i1] [0]] .prodline[prodProfiles[i] [1
11.

description + ' ' +

ref.categorySet [prodProfiles[i1] [0]] .prodline[prodProfiles[i] [1
].

price.toString() + ' ' +

ref.categorySet [prodProfiles[i] [0]].prodLine[prodProfiles[i] [0
11.
plu;
compareElement = compareElement.toUpperCase() ;
for (var jJ = 0; j < t.length; J++) {
var compareString = t[]j].toUpperCase();
if (compareElement.indexOf (compareString) != -1) {
findings[findings.length] = new
Array (prodProfiles[i] [0],
prodProfiles[i][1]);
break;
}
}
}
verifyManage (findings) ;

}

Not much has really changed. The only thing we need to be concerned about is what to search. So the
user can search product name, description, price, and PLU. allowAny () concatenates those four of
each product in the database together. That makes one long string to compare against each of the
words the user has entered. If a match occurs, the next available findings element is set to a new array
with prodProfiles[i] [0] and prodProfiles[i] [1] asits elements. Remember that
these two elements are integers that will be used to print out the results shortly.

8.7.4 Supporting Product/Category Navigation

Suppose you perform a search that returns a result set. Now you have to get it on the page. You would
be a prime candidate for carpal tunnel syndrome if you decided to code it to display products from the
search engine while ignoring the current product/category system. That is, whatever product links are
displayed on the results page, users must be able to display the products as usual and then navigate
freely with the "Next" and "Prev" buttons. Let's simply make changes to function
formatResults ():

function formatResults (results, reference, offset) {
docObj.open () ;
docObj.writeln ('<HTML>\n<HEAD>\n<TITLE>Search
Results</TITLE></HEAD>"' +
'<BODY BGCOLOR=WHITE TEXT=BLACK>' +
'<TABLE WIDTH=780 BORDER=0 ALIGN=CENTER
CELLPADDING=3><TR><TD>"' +
'<HR NOSHADE WIDTH=100%></TD></TR><TR><TD VALIGN=TOP>'
+
'Search Query: <I>' +
parent.frames[0] .document.forms[0].query.value +
'</I>
\n' +
'Search Results: <I>' + (reference + 1) + ' - ' +
(reference + offset > results.length ? results.length
reference + offset) +
' of ' + results.length + '"</I>

' + '' +
"\n\n<!- Begin result set //-->\n\n\t<DL>'");

var currentRecord = (results.length < reference + offset ?
results.length : reference + offset);
for (var i1 = reference; 1 < currentRecord; i++) {

docObj.writeln ('\n\n\t<DT>' + '' +
'<A HREF="javascript: top.frames[1l].reCall (' +
results[i] [0] +
', ' + results[i][1] + ")">' +

ref.categorySet[results[i] [0]].prodLine[results[i][1]].name +
'\t<DD>"' +

ref.categorySet[results[i] [0]].prodLine[results[i][1]].descrip
tion +

"\t<DD>' + 'Price: <I>$' +

prodLine[results[i] [1]].price) +

'</I> ' + 'PLU Number: <I>' +

ref.categorySet[results[i] [0]].prodLine[results[i][1]].plu +
'</I><P>") ;
}
docObj.writeln ("\n\t</DL>\n\n<!- End result set //-->\n\n');
prevNextResults (results.length, reference, offset);
docObj.writeln ('<HR NOSHADE WIDTH=100%>' +
'</TD>\n</TR>\n</TABLE>\n</BODY>\n</HTML>") ;
docObj.close () ;
document.forms[0] .query.select () ;

>Each result displays the product name, description, price, and PLU number. This function iterates
through the elements of results and accesses the respective prodLine information using the integers in
results[i] [0] and results[i] [1].In other words, if results looks like this:

results = new Array(
new Array (0, 1), // Remember that the 0 element represents
new Array (2, 2), // the category number and the 1 element
new Array (4, 1) // represents the product number

) ;

then the search results would contain the hairdryer (category 0, product 1), the purse (category 2,
product 2), and the fries (category 4, product 1). Using these number pairs makes it easy to store a
small amount of information and reference them later.

JavaScript Technique: Reusing a JavaScript Database

Happy is the coder who can use a bunch of data stored as JavaScript objects and arrays. Even happier is the
coder who can access that information from a different application without re-inventing the wheel. That's
what happens with Shopping Bag and the product search feature. Because of the relatively simple design,
the database needs no changes when the search engine wants to search it.

A few lines of code changes in the search engine, and things are humming again like they always were. If
you anticipate a situation like this, where your JavaScript database might be accessed from more than one
application, keep it simple enough so that all apps can get at the data without extra coding.

All you have to do to get the product info on the screen is use the number pairs. The for loop in
formatResults () prints the name, description, price, and PLU number by inserting the number pairs
to the following variables:

ref.categorySet[results[i] [0]].prodLine[results[i][1]].name
ref.categorySet[results[i] [0]].prodLine[results[i][1l]].description
ref.numberFormat (ref.categorySet [results[i]
[0]] .prodLine[results[i] [1]]

price)
ref.categorySet[results[i] [0]].prodLine[results[i][1]].plu

Each result is displayed with the above values contained in the string. A sample result would be:
Hairdryer

Fancy yellowish blast, and durable cord. No expense spared.
Price: $1.15 PLU Number: HAI1

8.7.5 The Code in the Link

The results have been displayed, but how can we code it so that the link utilizes the navigation system
I've been preaching?

formatResults () offers the following solution:

'<A HREF="javascript: top.frames[l].reCall (' + results[i][0]+
|, 1 _I_
results[1i][1] + ")">!

Each link uses a javascript : protocol to call function reCall (), which is the same function
used to view products from the "Show All Categories" list. reCall () as you may "reCall" (sorry, I
couldn't resist) expects two arguments—a category number and a product number. That's what we've
been using in the search engine. All we have to do is to include each of the elements of the number
pairs in the call, and we're set. So the hairdryer, for example would have the following link:

Hairdryer
Look what happens to the and 1 when they show up at reCall ():

function reCall (cReset, pReset) {
browseControl = true;
curCLoc = cReset;
curPLoc = pReset;
display (0, 0);
}

Variable curCLoc is set to the value of the category number in cReset; likewise, with curPLoc and
PpReset . The search engine coexists with the rest of Shopping Bag, and there were very few
adjustments needed.

8.8 Step 5: Changing the Order/Checking Out

When the user is either out of cash or doesn't see anything else desirable, it's time to head for the door.
Clicking the "View/Change Bag" link opens the screen, similar to that in Figure 8.8. The user's
shopping bag has to do more than just display his or her selections. Consider all the requirements:

e Display each product and its category, PLU number, and price per unit.

¢ Provide an interactive form to change product quantities, delete product selections, and
recalculate product costs.

e Display running totals including the total for each product and quantity, the subtotal, and any
applicable taxes.

It probably doesn't surprise you to know, then, that there are also several functions ready and waiting
to accommodate these Shopping Bag needs. They are as follows:

showBag ()

Display the contents of the shopping bag.

genSelect ()

Generate dynamic select lists to change product quantities.

runningTab ()
Manage the calculation and display of any prices or costs.
numberFormat ()
Ensure accurate calculations and consistent displays in 0.00 format.
round ()
Ensure accurate calculations.
changeBag ()
Remove product selections from and change product quantities of the user's shopping bag.

Function showBag () gets the call as soon as the user follows the link. Look at lines 135-198:

function showBag () {
if (shoppingBag.things.length == 0) {
alert ("Your bag is currently empty. Put some stuff in.");
return;
}
gimmeControl = false;
var header = '<HTML><HEAD><TITLE>Your Shopping Bag</TITLE>'
+

'</HEAD><BODY BGCOLOR=FFFFFF ' +
'onLoad="parent.frames[1l] .runningTab (document.forms[0]);">";
var intro = '<H2>Your Shopping Bag!!!</H2><FORM onReset=""' +

'setTimeout (\'parent.frames[1l].runningTab (document.forms[0])\"
p ot
125)’.">|’.

var tableTop = '<TABLE BORDER=1 CELLSPACING=0
CELLPADDING=5>" +

'<TR><TH>Index' +
'<TH>Product<TH>Category' +
'<TH>PLU<TH>Unit Price' +
'<TH>Quantity<TH>Product Total' +
'<TH>Remove' +
'</TR>";

var itemStr = '';

for (var 1 = 0; i1 < shoppingBag.things.length; i++) {

itemStr += '<TR>' +

'<TD ALIGN=CENTER>' + (1 + 1) + '</TD>' +

'<TD>' + shoppingBag.things[i].name + '</TD>' +
'<TD>' + shoppingBag.things[i].category + '</TD>' +
'<TD>' + shoppingBag.things[i].plu + '</TD>' +

'<TD ALIGN=RIGHT>S$' +

parent.frames[1l].round (shoppingBag.things[i] .price) +

'</TD>"' +

'<TD ALIGN=CENTER>' +
parent.frames[1l] .genSelect (shoppingBag.things[i] .price,
shoppingBag.things[i].itemQty, 1) + '</TD>' +

'<TD ALIGN=CENTER><INPUT TYPE=TEXT SIZE=10 VALUE="' +

parent.frames[1l] .numberFormat (shoppingBag.things[i] .price *
shoppingBag.things[i].itemQty) + '"
onFocus="this.blur();"></TD>"' +
'<TD ALIGN=CENTER><INPUT TYPE=CHECKBOX></TD></TR>';

var tableBottom = '<TR>' +
'<TD ALIGN=RIGHT COLSPAN=6>SubTotal:</TD>' +
'<TD ALIGN=CENTER><INPUT TYPE=TEXT SIZE=10

NAME="subtotal”™ ' +
'onFocus="this.blur () ;"></TD></TR><TR>"' +
'<TD ALIGN=RIGHT COLSPAN=6> + 6% Tax:</TD>' +
'<TD ALIGN=CENTER><INPUT TYPE=TEXT SIZE=10 NAME="tax" ' +
'onFocus="this.blur () ;"></TD></TR><TR>"' +

'<TD ALIGN=RIGHT COLSPAN=6> + 2% Shipping:</TD>' +
'<TD ALIGN=CENTER><INPUT TYPE=TEXT SIZE=10 NAME="ship" '

I
'onFocus="this.blur () ;"></TD></TR>' +
'<TR><TD ALIGN=RIGHT COLSPAN=3>' +
'<INPUT TYPE=BUTTON VALUE="Check Out" ' +
'onClick="parent.frames[1l].checkOut (this.form) ;"></TD>"
+

'<TD ALIGN=RIGHT><INPUT TYPE=RESET VALUE="Reset

Qtys"></TD>"' +

'<TD ALIGN=RIGHT><INPUT TYPE=BUTTON VALUE="Change Bag" '
+

'onClick="parent.frames[1l].changeBag(this.form,
true) ;"></TD>' +

'<TD ALIGN=RIGHT>Total:</TD><TD ALIGN=CENTER>' +

'<INPUT TYPE=TEXT NAME="total" SIZE=10

onFocus="this.blur();">"' +
'</TD></TR>"';
var footer = '</TABLE></FORM></BODY></HTML>';

infoStr = header + intro + tableTop + itemStr + tableBottom
+ footer;
parent.frames[0].location.replace('javascript:

parent.frames[1l].infoStr"');

You'll see that showBag () does nothing more than generate the table and form you see in Figure
8.8. However, showBag () must first verify that there is something in the shopping bag to display:

if (shoppingBag.things.length == 0) {
alert ("Your bag is currently empty. Put some stuff in.");
return;

}

If things.length equals 0, then the user hasn't put anything in the bag. There is no use
continuing. If the user's bag contains at least one thing, the process continues. Lines 140-154 set
variables header, intro, and tableTop to the top of the table with the headings and necessary columns.
You can see that showBag () calls several other functions:

gimmeControl = false;

var header = '<HTML><HEAD><TITLE>Your Shopping Bag</TITLE>' +
'</HEAD><BODY BGCOLOR=FFFFFF ' +

'onLoad="parent.frames[1].runningTab (document.forms[0]);">";

var intro = '<H2>Your Shopping Bag!!!</H2><FORM onReset=' +

'""setTimeout (\'parent.frames[1l].runningTab (document.forms[0])\

1, v +

|25);">|;
var tableTop = '<TABLE BORDER=1 CELLSPACING=0 CELLPADDING=5>"
+

'"<TR>}TH>Index' +
'<TH>Product<TH>Category' +
'<TH>PLU<TH>Unit Price' +
'<TH>Quantity<TH>Product Total' +
'<TH>Remove' +

'</TR>"';

Everything generated is pretty static, except for the onLoad event handler call to
parent.frames[1].runningTab (). We'll see how that works in a moment. When the
table header info has been established, it's time to iterate through all the products in the user's
shopping bag. As you might have guessed, that showBag () makes things.length iterations,
and constructs a table row full of data for each. Here is the code again in lines 155-174:

var itemStr = '';
for (var i = 0; i < shoppingBag.things.length; i++) {
itemStr += '<TR>' +
'<TD ALIGN=CENTER>' + (i + 1) + '</TD>' +
'<TD>' + shoppingBag.things[i].name + '</TD>' +

'<TD>' + shoppingBag.things[i].category + '</TD>' +

'<TD>' + shoppingBag.things[i].plu + '</TD>' +

'<TD ALIGN=RIGHT>S$' +

parent.frames[1].round (shoppingBag.things[i] .price) +
'</TD>"' +

'<TD ALIGN=CENTER>' +

parent.frames[1l].genSelect (shoppingBag.things[i] .price,

shoppingBag.things[i].itemQty, i) + '</TD>' +

'<TD ALIGN=CENTER><INPUT TYPE=TEXT SIZE=10 VALUE="' +

parent.frames[1l] .numberFormat (shoppingBag.things[i] .price

shoppingBag.things[i].itemQty) + ""
onFocus="this.blur ();"></TD>' +

'<TD ALIGN=CENTER><INPUT TYPE=CHECKBOX></TD>' +

'</TR>"; }

8.8.1 Making Select Lists

To match the table headers just created, the for loop creates a product index column (so that you can
count the products one by one), a name, the category, the PLU, the price per unit, a quantity select list,
a total cost for the quantity, and even a checkbox to remove the product. Each of these is contained in
its own TD tag. The creation of the quantity select list is more involved than usual, and worth a closer
look. The list is created by function genSelect (). There are other versions in this book that
you're probably familiar with. Here is yet another take in lines 200-210:

function genSelect (priceAgr, gty, idx) {
var selStr = '"<SELECT onChange="this.form.elements[' + (idx
* 3+ 1) +
'].value = this.options[this.selectedIndex] .value; ' +
'parent.frames[1].runningTab (this.form);">";
for (var i = 1; 1 <= 10; i++) {
selStr += '<OPTION VALUE="' + numberFormat (i * priceAgr) +
Tway +
(i == gty ? ' SELECTED' : ''") + '>' + 1i;
}
selStr += '</SELECT>';
return selStr;

}

This function accepts three arguments—the product price, the current quantity, and the number (which
is the value of i in the current for loop of showBag ()) to access the text field that will be printed
next to the select list. [have preset the maximum quantity of products that a user can order as 10. You
can increase that number as high as you like. To create this list, genSelect () iterates from 1-10
inclusive, and creates an OPT I ON tag out of the following syntax, which is assigned cumulatively to
selStr:

selStr += '<OPTION VALUE="' 4+ numberFormat (i * priceAgr) + '"'
+
(i == gty ? ' SELECTED' : '') + '>' + i;

Each OPT ION tag created is pretty simple. Its VALUE attribute is set to the per-unit price of the
product multiplied by i, which is the quantity associated with that option. For example, a product
valued at $1.00 per unit would generate the following OPTION tags:

<OPTION VALUE="1.00" SELECTED>1
<OPTION VALUE="2.00">2

<OPTION VALUE="3.00">3

<OPTION VALUE="4.00">4

<OPTION VALUE="5.00">5

<OPTION VALUE="6.00">6

<OPTION VALUE="7.00">7

<OPTION VALUE="8.00">8

<OPTION VALUE="9.00">9

<OPTION VALUE="10.00">10

Another thing: if i is equal to the current quantity (g#y) of the product, the OPT ION tag of the same
quantity is marked as SELECTED. Since the default value of every item initially put in the shopping
bagis 1, the OPTION tag with the text 1 is always selected. This comes in very handy when the user
wants to make changes in quantity. We'll get there shortly.

I skipped the original value of selStr . Allow me to backtrack:

var selStr = '<SELECT onChange="this.form.elements[" + (idx *
3+ 1) +
'].value = this.options[this.selectedIndex].value; ' +

'parent.frames[1l].runningTab (this.form);">";

Each select list has associated with it an onChange event handler that changes the value of
elements|[(idx * 3)+ 1] to the value of the current selected option. Remember that each
OPTION value is the product of the product's unit price times 1-10. Using the $1.00 example from
above, if the user chooses 4 from the select list, the value of elements [(idx * 3) + 1] will
change to 4.00. That's a little tricky. Which form element is that? To help answer that, review the code
in showBag () atlines 166-167:

parent.frames[1] .genSelect (shoppingBag.things[i] .price,
shoppingBag.things[i] .itemQty, 1)

Now look at the arguments that genSelect () expects in line 200:
function genSelect (priceAgr, gty, idx) {

From both of these, you can see that the value of idx is always the current value of 7, which is
initialized and incremented by 1 in line 156. If the user has 10 products in the shopping bag, idx will
range from 1-10. Therefore, the select tags that showBag () will create will look as follows:

<!-- For the 1lst Product //-->

<SELECT onChange='this.form.elements[l].value =
this.options[this.selectedIndex] .value;
parent.frames[1l] .runningTab (this.form);

'><!--For the 2nd Product //-->

<SELECT onChange='this.form.elements[4].value =
this.options[this.selectedIndex] .value;
parent.frames[1l].runningTab (this.form);"'>

<!--For the 3rd Product //-->

<SELECT onChange='this.form.elements[10].value =
this.options[this.selectedIndex] .value;
parent.frames[1l].runningTab (this.form);"'>

...and so on. Think about it. form.elements [1] is the text field immediately following the
first select list. Or at least it will be: at the time onChange event handler was created, that field didn't
exist. form.elements [4] refers to the text field immediately following the select list in the next
row. Referencing the text field is a matter of calculating which element index it will have after the
form has been created. Here is how I came up with (idx * 3) + 1.

Each product selected is displayed in one table row. Each table row has the three form elements in the
same order:

e A select list for the quantity
o A text field to display the product total
e A checkbox for removing the product

That means the first text field is elements [1]; the nextis elements [4]. The text field,
therefore, is the second element in each group of three. genSelect () creates the correct code by
continually multiplying by 3 and adding 1.

8.8.2 Keeping Track of the Bill

How about the rest of the code in the onChange event handler? Not only does this event handler
populate the respective product total field with the correct total, but it calls runningTab () to
recalculate the total cost of the purchase. Here is runningTab () in lines 212-227:

function runningTab (formObj) {
var subTotal = 0;
for (var i = 0; 1 < shoppingBag.things.length; i++) {
subTotal += parseFloat (formObj.elements[(i * 3) +
1] .value);

}

formObj.subtotal.value = numberFormat (subTotal) ;

formObj.tax.value = numberFormat (subTotal *
shoppingBag.taxRate) ;

formObj.ship.value = numberFormat (subTotal *
shoppingBag.shipRate) ;

formObj.total.value = numberFormat (subTotal +

round (subTotal * shoppingBag.taxRate) + round(subTotal *

shoppingBag.shipRate)) ;
shoppingBag.subTotal = formObj.subtotal.value;
shoppingBag.taxTotal = formObj.tax.value;
shoppingBag.shipTotal = formObj.ship.value;
shoppingBag.bagTotal = formObj.total.value;
}

This function is pretty easy. It performs three basic operations:

1. Calculate and display the subtotal, which is the sum of all the product totals (lines 213-217).
2. Calculate and display the sales tax, shipping charges, and grand total (lines 218-222).
3. Store those totals in the shoppingBag object properties (lines 223-226).

Functions numberFormat () and round () ensure that all the math is done correctly and
displayed in 0.00 or .00 format. Here they are in lines 229-239:

function numberFormat (amount) {

var rawNumStr = round (amount) + '';

rawNumStr = (rawNumStr.charAt(0) == '." 2 '0'" + rawNumStr
rawNumStr) ;

if (rawNumStr.charAt (rawNumStr.length - 3) == '.") {

return rawNumStr
}
else if (rawNumStr.charAt (rawNumStr.length - 2) == ".") {
return rawNumStr + '0';
}
else { return rawNumStr + '.00'; }

}

numberFormat () simply returns a rounded-off version of amount in 0.00 format. This is
accomplished by calling round () and passing amount as an argument. Function round ()
rounds the number to the default two decimal places, as shown here:

function round (number,decPlace) {
decPlace = (!decPlace ? 2 : decPlace);
return Math.round (number *
Math.pow (10,decPlace)) / Math.pow(10,decPlace) ;
}

JavaScript Technique: Number Rounding and
String Conversion

You'd think that asking JavaScriptto alert () the product of 1.15 * 3, the price per unit
of fries times a quantity of 3, would not be a big deal. We all know it is going to be 3.45,
right? Try it, though. You'll get 3.4499999999999997. Where did that come from?
JavaScript represents floating numbers with signed 64-bit IEEE-754 floating-point values.
The bits of precision from floating-point values can cause the result. If you'd like to know

more, check out the following URLSs:

http://help.netscape.com/kb/client/970930-1.html
http://www.psc.edu/general/software/packages/ieee/ieee.html

Whatever the cause, we need a workaround. How about asking JavaScript to alert the
product of 115 * 3? Notice this is 100 times the amount of the previous multiplication,
which is 345. That's the same answer JavaScript reports, too. Arithmetic works fine for
integers. The workaround here is to perform arithmetic on integers, then convert the
JavaScript Number to a JavaScript String , inserting the decimal point where it needs to go.
That is exactly what functions numberFormat () and round () do together. If you
need to perform more calculations, you can change the String back to a number, remove the
decimal point, and you're back in business.

If the argument named amount , which is a number, equals itself rounded off with
Math.round (), then amount is an integer, so it needs .00 added on the end to have the
correct format. If amount * 10 equals Math.round (amount *10), that means
amount 1s in 0.0 format and needs concatenated to it to conform. Otherwise, the amount has
a value that extends at least to the hundredths place (.00). No string manipulation is
necessary.

After any necessary formatting, round () receives a string equivalent of amount.

8.8.3 Wrapping Up showbag(): Displaying the Totals and More

Now each selected product has its own table row with widgets for computing quantities and for
removing them from the shopping bag. It's time to add the last couple of rows. These rows contain
form fields to display the subtotal, tax totals, and grand total. They also contain user action buttons
"Check Out," "Reset Qtys," and "Change Bag." Here are lines 175-194:

var tableBottom = '<TR>' +
'<TD ALIGN=RIGHT COLSPAN=6>SubTotal:</TD>' +
'<TD ALIGN=CENTER><INPUT TYPE=TEXT SIZE=10 NAME="subtotal"
'+
'onFocus="this.blur () ;"></TD></TR><TR>' +
'<TD ALIGN=RIGHT COLSPAN=6> + 6% Tax:</TD><TD
ALIGN=CENTER>"' +
'<INPUT TYPE=TEXT SIZE=10 NAME="tax"
onFocus="this.blur();">" +
'</TD></TR><TR><TD ALIGN=RIGHT COLSPAN=6> + 2%
Shipping:</TD>' +
'<TD ALIGN=CENTER><INPUT TYPE=TEXT SIZE=10 NAME="ship" ' +
'onFocus="this.blur () ;"></TD></TR><TR>' +
'<TD ALIGN=RIGHT COLSPAN=3><INPUT TYPE=BUTTON VALUE="Check
out"™ ' +
'onClick="parent.frames[1].checkOut (this.form);"></TD>"' +
'<TD ALIGN=RIGHT><INPUT TYPE=RESET VALUE="Reset
Qtys"></TD>"' +
'<TD ALIGN=RIGHT><INPUT TYPE=BUTTON VALUE="Change Bag" ' +

http://help.netscape.com/kb/client/970930-1.html
http://www.psc.edu/general/software/packages/ieee/ieee.html

'onClick="parent.frames[1l].changeBag(this.form,
true) ;"></TD>"' +

'<TD ALIGN=RIGHT>Total:</TD><TD ALIGN=CENTER>' +

'<INPUT TYPE=TEXT NAME="total" SIZE=10
onFocus="this.blur();">" +

'</TD></TR>"';
var footer = '</TABLE></FORM></BODY></HTML>"';

Upon reviewing this HTML, you can see that the fields to display the totals are initially empty. The
call to runningTab () in the onLoad event of this document will populate those fields with the
required values shortly. Also notice that each field has the following code:

onFocus="this.blur () ;'

Since there is no need for the user to modify these fields, clicking the mouse in the text field
immediately blurs the field. This code keeps people from changing the text, and is also in the product
total input fields.

There are three buttons: "Check Out," "Reset Qtys," and "Change Bag." Here is a look at each.
8.8.3.1 The "Check Out" button

When the user has had enough, he or she just needs to enter payment information and send off the
order. Clicking this button calls function checkOut () . This function does two things:

e Generates an order form to enter payment information
e Generates additional HTIDDEN fields that represent all of the selected products

The function is long, so let's take it in two parts. Here are lines 263-312:

function checkOut (formObj) {
gimmeControl = false;
if(!confirm("Do you have every product in the right quantity
"o+
"you need? Remember that you have to choose Change Bag to
remove " +
"products or change quantities. If so, choose OK to check
out."m)) {

return;
}
if (shoppingBag.things.length == 0) {
showStore () ;
return;
}
var header = '<HTML><TITLE>Shopping Bag Check Out</TITLE>' +
'<BODY BGCOLOR=FFFFFF>';
var intro = '<H2>Shopping Bag Check Out</H2><FORM

METHOD=POST " +
'"ACTION="http://your web server/cgi-bin/bag.cgi" ' +

http://your_web_server/cgi-bin/bag.cgi

'onSubmit="return parent.frames[1l].cheapCheck (this);">";

var shipInfo = '<TABLE BORDER=0 CELLSPACING=0
CELLPADDING=5>"' +
'<TR><TD>Shipping Information</TD></TR><TR>' +
'<TD>First Name</TD><TD><INPUT TYPE=TEXT
NAME="fname"></TD></TR>"' +
'<TR><TD>Last Name</TD><TD><INPUT TYPE=TEXT NAME="Ilname">'
+
'</TD></TR><TR><TD>Company Name</TD>' +
'<TD><INPUT TYPE=TEXT NAME="cname"></TD></TR><TR>' +
'<TD>Street Addressl</TD><TD><INPUT TYPE=TEXT
NAME="saddress1l">"' +
'</TD></TR><TR><TD>Street Address2</TD><TD>' +
'<INPUT TYPE=TEXT NAME="saddress2"></TD></TR><TR>' +
'<KTD>City</TD><TD><INPUT TYPE=TEXT
NAME="city"></TD></TR>' +
'<TR><TD>State/Province</TD><TD><INPUT TYPE=TEXT
NAME="stpro">"' +
'</TD></TR><TR><TD>Country</TD><TD>" +
'<INPUT TYPE=TEXT NAME="country"></TD></TR><TR>' +
'<TD>Zip/Mail Code</TD><TD><INPUT TYPE=TEXT
NAME="zip"></TD>' +
'</TR><TR><TD>

</TD></TR></TABLE>";

var payInfo = '<TABLE BORDER=0 CELLSPACING=0
CELLPADDING=5><TR>"' +
'<TD>Payment Information</TD></TR><TR>' +
'<TD>Credit Card Type: </TD>' +
'<TD>Visa <INPUT TYPE=RADIO NAME="ctype" VALUE="visa"
CHECKED> ' +

' ' +
'Amex <INPUT TYPE=RADIO NAME='ctype' VALUE="amex"> ' +
' '+

'Discover <INPUT TYPE=RADIO NAME="ctype" VALUE="disc"> '

' </TD></TR><TR>' +

'<TD>Credit Card Number</TD><TD><INPUT TYPE=TEXT
NAME="cnumb">"' +

'</TD></TR><TR><TD>Expiration Date</TD>' +

'<TD><INPUT TYPE=TEXT NAME="edate"></TD></TR><TR>' +

'<TD><INPUT TYPE=SUBMIT VALUE="Send Order"></TD>' +

'<TD><INPUT TYPE=RESET VALUE="Clear
Info"></TD></TR></TABLE>";

It is pretty long, but all of it is 100% static. The code here provides the check-out form as shown in
Figure 8.8. The form contains fields for the user to enter basic payment information. Each field is
uniquely named so that the server-side processing script can correctly identify each piece of info.

The last part of function checkOut () prepares the HIDDEN fields to record all the user product
selections. Here are lines 314-319:

for (var i = 0; 1 < shoppingBag.things.length; i++) {
itemInfo += '<INPUT TYPE=HIDDEN NAME="prod' + i +
'" VALUE="' + shoppingBag.things[i].plu + '-' +
shoppingBag.things[i].itemQty + '"">';

This generates a HIDDEN field named prod + the value of i. The value is set to the syntax of PLU-
quantity. So if the user requests two orders of fries, the value attribute for this HIDDEN field would
be VALUE="FRI1-2". Aftera HIDDEN field for each selected product and quantity is created,
checkOut () concatenates all the totals as the value of a HIDDEN field.

Lines 320-327 show how:

var totalInfo = '<INPUT TYPE=HIDDEN NAME="subtotal" VALUE="' +
shoppingBag.subTotal + '"">' +
'"<INPUT TYPE=HIDDEN NAME="taxtotal" VALUE="' +
shoppingBag.taxTotal + '"">' +
'"<INPUT TYPE=HIDDEN NAME="shiptotal" VALUE="' +
shoppingBag.shipTotal + '"">' +
'<INPUT TYPE=HIDDEN NAME="bagtotal" VALUE="' +

shoppingBag.bagTotal + '"">';

Add a "Send Order" button to submit the information and a "Clear Info" button to clear the form, and
that accounts for the entire check-out form. Before we move on, notice that the onSubmit event
handler of this on-the-fly form calls function cheapCheck () . This function does nothing more
than check to make sure that when the form is submitted none of the fields in which the user has to
enter information is left empty.

Here are lines 337-352:

function cheapCheck (formObj) {
for (var i = 0; 1 < formObj.length; i++) {
if (formObj[i].type == "text" && formObj.elements[i].value
")
alert ("You must complete all fields.");
return false;
}
}
if(!confirm("If all your information is correct, choose OK
to send " +
"your order, or choose Cancel to make changes.")) {
return false;
}
alert ("Thank you. We'll be living off your hard-earned money
soon.");
shoppingBag = new Bag();
showStore () ;

return true;

}

If any of the fields is blank, cheapCheck () alerts the user, and returns false to prevent submitting
the form. You'll probably want to custom-design a form validation function to suit your own needs,
but at least this gives you a starting point. Notice, too, that if the user has filled out the form correctly,
that variable shoppingBag is set to a fresh new Bag (), and the user is redirected to the display of all
Shopping Bag categories, performed by calling showStore ().

8.8.4 Finishing the Display

Now that showBag () has set variables header, intro, tableTop, itemStr , totallnfo , tableBottom ,

and footer to all the values needed to create a cohesive display, the function puts all that information
on the screen. Check out lines 195-197:

infoStr = header + intro + tableTop + itemStr + tableBottom +
footer;
parent.frames[0].location.replace('javascript:parent.frames|[1]
.infoStr'") ;

8.8.5 What About the Server Side?

The shopping experience has come to an end on the client side. So how does the user actually pay for
and receive the goods? You will ultimately need some type of server-side processing to log the orders
into, say, a database for processing. I've included a bare-bones CGI script written in Perl that creates a
unique ASCII file on the server for each transaction that occurs and writes all of the product and
payment information to that file. You can find it in \ch08\bag.cgi. The following procedure shows you
how to get it working for Shopping Bag. It assumes that your web server has Perl installed and that the
directory in which bag.pl resides has write and execute permissions enabled.

1. Copy bag.cgi to the folder (say, cgi-bin) where you can run CGI scripts.
2. Inline 279, change the ACT ION attribute to the URL of wherever you put bag.cgi on your
web server.

When shoppers choose "Check Out," bag.cgi will be called to process the information and return a
basic confirmation of receipt. By the way, for secure transactions, you'll also want to use an SSL
(Secure Socket Layer) server or some type of encryption to exchange sensitive credit card and
ordering information between the server and the client.

8.8.5.1 "Reset Qtys"

This is simply a "Reset" button that clears the form of any changes. If you choose "Change Bag,"
however, you change the contents and quantities of the bag permanently.

8.8.5.2 "Change Bag"

Suppose the user has made several changes to product quantities and also checked the "Remove"
checkbox in a couple of other products. Choosing "Change Bag" registers those changes, then displays

the bag again, reflecting the new contents and quantities. Here is function changeBag () in lines
246-261:

function changeBag (formObj, showAgain) {
var tempBagArray = new Array();
for (var i = 0; i < shoppingBag.things.length; i++) {
if (!formObj.elements|[(i * 3) + 2].checked) {
tempBagArray[tempBagArray.length] =
shoppingBag.things[i];
tempBagArray[tempBagArray.length - 1].itemQty =
formObj.elements[i * 3].selectedIndex + 1;
}
}
shoppingBag.things = tempBagArray;
if (shoppingBag.things.length == 0) {
alert ("You've emptied your bag. Put some stuff in.");
parent.frames[1].showStore ()
} else { showBag(); }

The technique is fairly simple:

Create an empty array called tempBagArray.

Iterate through each element (a product) of the things array.

If the associated checkbox is not checked, add it as the next element of tempBagArray.

Set the quantity of the most recently added product of tempBagArray to the quantity selected
by the user in the associated select list.

5. Set things equal to tempBagArray, and redisplay the bag contents.

oD =

Referencing the respective checkbox is done the same way that function runningTab () set the
value of each product total. Each following checkbox is accessed by the element of index (i * 3) +
2. If there are no elements in tempBagArray after all the iterations, then the user has deleted all the
products from the bag. The user is reminded of this and told to load up once again.

8.8.6 The Forgotten Functions

We've gone through almost everything, except for three functions that have not yet been covered.
They play a fairly small role, but are worth noting. They are portal (), help (),
freshStart ().Hereisportal () atlines 49-52:

function portal () {
gimmeControl = false;
parent.frames[0] .location.href = "search/index.html";

}

Since displaying the product search engine interface won't display any products, variable
gimmeControl is set to £a 1l se before loading the search/index.html. It's the same routine for
help () inlines 354-357:

function help () {
gimmeControl = false;
parent.frames[0].location.href = "intro.html";

}

The only difference is, parent . frames [0] loads intro.htm! instead. Finally, there's
freshStart ():

function freshStart () {
if (parent.frames[0].location.href != "intro.html") { help();

}

Function freshStart () makes certain that every time the user loads (more specifically, reloads)
shopset.html, parent . frames [0] always begins with intro.html. You can find this in the
onLoad event handler in line 10.

8.9 Potential Extensions

Even a little bit of creativity can take you places with this application. Here are a few of the
possibilities that come to mind:

e Make "smarter" products.
e Add refined search capabilities.
e Add cookie features for frequent shoppers.

8.9.1 Making Smarter Products

It's not as though each product has its own 1Q. Suppose, however, you added a property, an array, to
the product constructor that held the names and category/product number pairs of those products
related to the one currently in view. The product constructor might then look like so:

function product (name, description, price, unit, related) {
this.name = name;

this.description = description;
this.price = price;
this.unit = unit;

this.related = related;

this.plu = name.substring (0, 3).toUpperCase() +
parselnt (price) .toString () ;

this.icon = new Image();

return this;

}

The argument related represents an array that you can assign to the related property. Whenever the
user views a product, you could then iterate through the related elements, generating links to them.
This is a way to cross-market your products.

If this sounds a little new to you, visit http://www.amazon.com. Search for a book on one of your
favorite topics. When you click on one of the links from the results list, the page profiling your book
will also provide links to other books purchased by those who bought the book you're viewing.

8.9.2 Add Refined Search Capabilities

This goes back to extending the search engine capabilities, but there are several ways you can modify
it for Shopping Bag. First, consider adding the Boolean AND search capability. It won't be that
difficult. Just copy function requireAll () from the original application in Chapter 1, then
modify it as described earlier for a1l 1owAny (). You'll also have to make an adjustment in
validate () toindicate which of the search functions to use.

Instead of searching the entire product database, the user might want to search only one or more
categories. Consider adding a multiple select list in nav.html:

<SELECT MULTIPLE SIZE=5>

<OPTION VALUE="Appliances">Appliances
<OPTION VALUE="Building">Building
<OPTION VALUE="Clothing">Clothing
<OPTION VALUE="Electronics">Electronics
<OPTION VALUE="Food">Food

<OPTION VALUE="Hardware">Hardware
<OPTION VALUE="Music">Music

</SELECT>

Though it's hard-coded here, you could employ the logic similar to that in genSelect () to
achieve a more dynamic result. When the search is performed, you can search only those products in
the categories that the user has selected, thereby narrowing the search.

Another feature you could add is to be able to search by price range. If a shopper is looking for
products less than $50, more than $100, or perhaps between $50 and $100, you could allow flags such
as >, <,>=, and <=. You will have to make changes in validate () and formatResults ()
in order to accommodate.

8.9.3 Adding Cookies

Suppose your site has products that change rapidly. Maybe it's common for shoppers to return
frequently. It sure would be convenient if they didn't have to fill out their payment information every
time they checked out. Why not add the cookie functions from Chapter 7? That way, the user's
information is kept on the client browser and can be accessed and used to populate the payment form.
This extra functionality is somewhat challenging, but you'll feel like a JavaScript hero when you
finish. Though functions GetCookie () and SetCookie () enable you to write to and extract
from the cookie, you'll need a function to assemble the form field data (probably as a single string)
and a function to populate the form fields once the data has been extracted.

Chapter 9. Ciphers in JavaScript

Application Features JavaScript Techniques

®Message Encryption Application Using Multiple |®Assigning Methods to Your Objects

http://www.amazon.com

Ciphers

®Object-Oriented Design Makes Adding Ciphers
Easy

®More String Matching and Replacing

®Entertaining Application and Utility for Your
Visitors

®Tapping into JavaScript Object
Inheritance

®Using Alternate Syntax

If you just finished the previous chapter, this one will give your brain a little breather. This chapter is
lighter and deals with an application based on pure, simple fun—ciphering techniques with JavaScript.
The application jumbles text messages into what seems like a bunch of junk, meaningful only to those

who possess the key to reveal its secret.

This interface displayed in Figure 9.1 is fairly simple. With the Caesar cipher selected, it's just a
paragraph describing the cipher, a select list used to choose a number key, and a text area to enter text

to encipher and decipher.

Figure 9.1. The cipher interface

Bl R Ues B0 Fpeda EeD W
- . - RE - T [[I 2 g '—J
Bk Sam Aaben Ferw Gpuck Fronie Mooy Chenek fukcwen Wa =
ke [C \TEMP i ciber_spciophar b =] na
]
(PHERS TV JAVASCRIPT
Cagrstr Opbar & Javsferipe iw che meripeing Isrguaps aof)
Choice EIComs ths plmrat, don't yau
Mase famoum by Juime Caran, Hin opher peroma g
skzragier svdinyg maridvben) Plarinst i ercphored by
shfing frwnid pach charscter ol the abhabel & faed
sgrebey af chanmaie
For paoamphe, dhlting by 1 chasges plaisien a0 b, B
sl i e Plainacel Characten o e wad o, sag, U
Bphabal @ roghemd By sladag @ e Egmirg In
sham o, £ becomen @ Thie spakcies sho mcudes
sigrte [HY 5o abeniesd o becomss & snd o plendesd @
secnmex . The procesy i ressasd for decphenng
ziit [6 =] =
BMzla: Cxmunr wxn rurmarssd (o aier a s of 3 Enopler | Ll phsr | Fianst |
- |
£] = [C8] A

The text "JavaScript is the scripting language of choice across the planet, don't you agree?" is entered
in the text area. Selecting 6 from the Shift list, then choosing the "Encipher" button yields the

scrambled text you see in Figure 9.2. Here it is again:

pglgyixovz oy znk yixovzotm rgtmOgmk ul inuoik jutz 4u0 gmxkk

Figure 9.2. Using the Caesar cipher

B B e By Fwies Heb ﬁ
I = B [R - I I I = o
Elack Tan Mebedt Bloew ek Fovodee Moy Chawek Nlicwsn Wal Fuini L]
et [£ TEIP e wick ol Fari =] ik
|
e o =y
(IPHER TV JAVASCRIPT
CanzarCiphar DILTAASOUE OF ERE YiRcVEaCE TorEogwes sl
LR LK PANEYY Eak VEGEHE J9CE 4ul ek
Made tamais by Jebas Caesa, this spher poriomes
chaiscies 8 ling fmsiiaian). Plainbet i e phered by
aha og frwaid Bach chirectes of the slohaba & Sl
sl al chaitame
For sasrghs, shllrg by 1 chaages plasbaclals d, Blo &
ned ur er Plrdeed chanechen of Bhe sad of, wy, He
aiphoiei, s ercpiem e By slatag o e foaerg n
piaerwneds | F becomes & Thes spabcsi on aln me sy
gigns D2, 5o pplvwen 2 bevomes & and o plinied §
BCoa E ThE RO B e for G iphare
il ﬁ =
Ml Carsan s rumand te gt AR OF 3 Enopaer | Oecpher | Fese |
|
] =l ey Compurmn

Choosing "Decipher" returns the text to its original form. Notice that the text is returned in all
lowercase. The Vigenere cipher works about the same way. Choose "Vigenere Cipher" from the
cipher list at the top, and Figure 9.3 is what you'll see.

Figure 9.3. The Vigenere cipher interface

f Ed e G0 Feeso beb ﬁ
e - JOE: - R - =~ I T = o
Dl S Mabach Blors Smuck Freoie Glooy Chewsk Fobcwsn Wal Faind =
ko, [© TR st cpbe_spci o hars =l L
1]
N L -
(IPHERS Tiv JANVASCRIPT
"iganere Uphas T Javascrips ia e Oripring IATgUADE of :l
DEOIGE BIFGAN ThE DIATAL DONT FO0 BITSE
la e farrapn by ot eadtcian Aluss 4 WVigerds, T
g cigher can e sonskdeed 3 “dyramic” weesen of
e Tabnas Daphety, Writuded o shilting ool et
chadscti By a Moo sk, Tk cipi bl Charmis
s Conding Lo e cheracten wkio o @ ko pwn il pou o pus
auth i dig
Sirew o, o, wnd g wrw BeHam 4,75, anad £ oof tha piphaiel,
wach thuee g aviess chassciers are shrafisd By 4, 15, and
eapeciily This speleaton inchdes dgbs 14 5a paar
oo Can P Wity snd rmbees.
FIYNDIE [ED08 iy —I
Mgle Thes ciphes: hos oy sesions, are ol which spe Enopher | Deophar | Fanet |
deassf by Lewin Camel, sothor of Alice in Wenderlsnd
- |
a] 2 by Commpate

With this cipher, there is no select list to choose a number key. This time, there is a field to enter a
word or phrase as the key. Check out how the term "code junky" ciphers the original text. It's listed
here and also shown in Figure 9.4:

loyelwdsdv lw duo ugqumydvx4 zdrpeng2 2i 111s0g dg0852 wvvh
yonx2v gswd 8cw dkOyr

Figure 9.4. The Vigenere cipher in action

3 Ciphas - Micsanli Infara Lsphes =[]

Do L Yen e Faeee liso
., .] 8 H @ ¥ O B 9 &
Each Sl Aemth Howe Sowch Fovwior Heloy Chewat Fihose Bl Fint Edi
deciiman [0] e W 1P ' s sbos' e s’ b ST e e bkl %] | Lnka
|

(IPHERS A JANASCRIPT

[ergartrs Craer 5 P P o P — e e e——— Y]

iilalg dgUELZ wve FEreiv gawd Gow dilyc

Fisde fimacs by muthemabcion Elsie de Vigesin, the
“igersre cohes can B consdend 5 hme e
st Cgher inglend al shelng pach plasnle
bey & Rued perebas, this gpher shifts chamcise
aiat b e ol @ biwywond you ohoosa

e o, 5, Wl g i Wl 4, 15, i 7 o adphit
isich thriw plaintial charsctins an Shllisd by 405, as@ 7
reapecively Trin sapbeaten inciuten digte 04 So your
Jrpeard £31 Aav leHere arg rurrker
Hapwant: [oroe jerky =
s Triu cipher Mas mary vk, o of wach wis Erciptesr | Dmcphes Fimel |
ey by Lesmn Camal | aed® pr of Sies = Wonde fared
| 5 My Coarmrw
BBt) ok - Wbcreantt 1) WP

Of course, choosing "Decipher" using "code junky" as the key returns the text to meaningful form.
Since you might be new to the concept of ciphers, here's a crash course on the subject. It explains
cipher basics and offers details about the two ciphers used in the application—the Caesar cipher and
the Vigenére cipher.

9.1 How Ciphers Work

So, what is a cipher anyway? A cipher is an algorithm or set of algorithms that systematically convert
a sender's intended message text to what appears to be meaningless text, which can be converted back
to the sender's original message only by authorized recipients. The following terms and definitions
will help you understand ciphering and deciphering in general and the code behind them.

The term plaintext refers the sender's original message. The meaning in plaintext is what the sender
wants to convey to the recipient(s).

The term ciphertext refers to plaintext whose appearance has been encrypted, or algorithmically
changed. Ciphertext becomes plaintext once it has been decrypted.

Many ciphers use one or more keys. A key is string of text or bits used to encrypt or decrypt data. RSA
Data Security, Inc. (http://www.rsa.com/), a leading encryption technology firm, states that a key
determines the mapping of the plaintext to the ciphertext. A key could be just about anything, such as
the word "cleveland," the phrase "winners never quit, quitters never win," the binary number
10011011, or even some wild string, such as %_-.;,(<<*&".

Ciphers in which both the sender and the recipient use the same key to encrypt and decrypt the
message are said to be part of a symmetric-key cryptosystem. Ciphers in which data is encrypted and
decrypted with a pair of keys—one freely distributed to the public, the other known only to the
recipient—are said to be part of a public-key cryptosystem . Ciphers in this application employ a
symmetric-key cryptosystem .

There are hundreds of documented ciphers. Some date back thousands of years, devised by great
leaders or scientists of the past; others date back to only last week, devised by some geeky teenager

http://www.rsa.com/

who experienced epiphany after setting a personal high score on Tomb Raider. Whatever the source,
ciphers fall into three general categories: concealment, transposition, and substitution.

Concealment ciphers include the plaintext within the ciphertext. It is up to the recipient to know which
letters or symbols to exclude from the ciphertext in order to yield the plaintext. Here is an example of
a concealment cipher:

1213215321k34e1245ch4560cl201234at567e
Remove all the numbers, and you'll have i like chocolate. How about this one?
Larry even appears very excited. No one worries.

The first letter from each word reveals the message leave now. Both are easy, indeed, but many people
have crafted more ingenious ways of concealing the messages. By the way, this type of cipher doesn't
even need ciphertext, such as that in the above examples. Consider the invisible drying ink that kids
use to send secret messages. In a more extreme example, a man named Histiaeus, during 5™ century
B.C., shaved the head of a trusted slave, then tattooed the message onto his bald head. When the
slave's hair grew back, Histiaeus sent the slave to the message's intended recipient, Aristagoros, who
shaved the slave's head and read the message instructing him to revolt.

Transposition ciphers also retain the characters of the plaintext within the ciphertext. Ciphertext is
created simply by changing the order of the existing plaintext characters. Try this one:

uo yn os dn ep ed yx al ag eh tf oy te fa se ht

Bunch those letters together, then reverse their order. You'll get the message "the safety of the galaxy
depends on you."

Substitution ciphers replace each character of plaintext with another character or symbol. Consider
this:

9-15-14-12-25-20-8-9-14-11-9-14-14-21-13-2-5-18-19

If you substitute each number with the associated letter of the alphabet, you'll reveal the phrase "I only
think in numbers." (For example, "I" is the 9th letter of the alphabet, "o" is the 15th, etc.) Substitution
ciphers can utilize just about any character set for encryption and decryption. Both ciphers in this
application are substitution ciphers.

9.1.1 A Few Words on Cracking the Code

The ciphertext that this application generates can, at first glance, look remarkably complex. In reality,
any decent cryptanalyst could break the cipher in a matter of minutes with only a pencil and paper.
Fortunately, security is much more ensured by using such algorithms as the RSA, IDEA, and triple
DES. I can't show you how to crack those, but I'll give you a hint about why simple substitution and
transposition ciphers are so vulnerable.

The primary weapon against these types of ciphers is letter-frequency distribution. That is, some
letters show up more than others in everyday conversation in the English language. The most common

letters in the English language, from most to least frequent, are E-T-N-R-O-A-I-S. The least common
are I, K, Q, X, and Z.M!

M From the U.S. Army Field Manual 34-40-2.

Another way to compromise a simple cipher is to analyze digraphs and trigraphs. A digraph is a two-
character string, such as ab or cd. A trigraph is a three-letter string, such as abc or bcd. Digraphs and
trigraphs also have high and low frequencies in the English language. The U.S. Army considers the
following digraphs most frequent: en, er, re, nt, th, on, and in. The least frequent are df, hu, ia, It, and
mp. For trigraphs, the most common are ent, ion, and, ing, ive, tho, and for. The least common are er1,
hir, iet, der, and dre.

The most frequent letters, digraphs, and trigraphs not only hint at what many letters might be, but also
indicate what they and surrounding letters probably are not. Consider how many digraphs and
trigraphs you use in everyday conversation: is, be, am, or, not, are, yes, the. The list goes on. Even
though the ciphers used in this application aren't top quality, they're still a lot of fun, and a great way
to keep out the casual nosey intruder.

9.1.2 The Caesar Cipher

Used by Julius Caesar to communicate with his army general, this cipher is one of the first known to
be used for securing messages. The algorithm here is simply to shift the letters of the alphabet
between 1 and 25 places (from b-z) so that a shift of 3 causes a plaintext letter a to become a
ciphertext d, and vice versa. Letters that are shifted past z resume at the beginning. In other words, a
shift of 3 converts a plaintext z to a ciphertext ¢. The number is the key that both sending and
receiving parties use to encipher and decipher the message.

Notice that once a key is chosen, each character always has the same corresponding plaintext or
ciphertext character associated with it. For example, a shift of 3 means that the plaintext @ is always a
ciphertext d. That is, there is only one cipher alphabet. The Caesar cipher is said to be
monoalphabetic.

9.1.3 The Vigenere Cipher

This cipher was proposed by mathematician Blaise de Vigenere in the 16" century. Itis a
polyalphabetic cipher because it uses more than one cipher alphabet. In other words, a plaintext a does
not always equal a ciphertext d, as the Caesar cipher does with a shift of 3.

Instead of a number, this cipher utilizes a keyword. Suppose you want to cipher the plaintext meet at
midnight, and you choose the keyword vinegar. The letters of the keyword are then lined up in
succession with the letters of the plaintext, like so:

vine ga rvinegar
meet at midnight

OK. Vis the 22nd letter in the alphabet. / is 9th. Letters n, e, g, a, and r are 14th, 5th, 7th, 1st, and
18th, respectively. So plaintext letter m is shifted 22, the first e is shifted 9, the second e is shifted 14,

and so on. Here's what you get:

hmrx gt ddlammhk

If you think about it, this cipher is like the Caesar cipher on the fly. A new Caesar is performed on
every character.

s If you want to learn more about ciphers, you can download a multitude of the
- once "classified" U.S. Army documents in PDF format at
. &s http://www.und.nodak.edu/org/crypto/crypto/army.field. manual/separate.chaps/.

This copy is stored on the web site of the Crypto Drop Box. Check out the
home page at http://www.und.nodak.edu/org/crypto/crypto/. You'll find enough
resources there to keep you busy for days.

9.2 Execution Requirements

This application uses JavaScript 1.2 and DHTML, so only browsers 4.x and higher are allowed to
play. There is a lot of string matching and replacement, which makes JavaScript 1.2 really shine.

9.3 The Syntax Breakdown

Fortunately, this application requires only two files. Better yet, we'll only be looking at the code in one
of them. The two files are index.html and dhtml.js (dhtml.js is covered in Chapter 6). Before we look
at any code, let's consider a few abstract concepts about how this application might "look." This
application is constructed from a very basic object-oriented perspective. The shopping cart in Chapter
8, covers another application that utilizes object orientation, but the cipher app takes that approach a
little further.

There are two ciphers in this application. Each cipher has certain things in common with all other
ciphers, no matter what kind of cipher each may be. Remember that there are three basic types of
ciphers—concealment, transposition, and substitution. This application contains two substitution
ciphers: the Caesar cipher and the Vigenére cipher. Figure 9.5 shows a basic structure of the hierarchy
just described.

Figure 9.5. The cipher structure

| T |

Concealment Transpasifion Subsitufion ~ ———
Cipher Cipher Cipher
Vigenere

Caesor -

Figure 9.6. Extending the cipher structure

http://www.und.nodak.edu/org/crypto/crypto/army.field.manual/separate.chaps/
http://www.und.nodak.edu/org/crypto/crypto/

- l

Concenlment ——— Tronspesifion ——— Subsitution
Cipher Cipher Cipher
Invisible Ink Roilfence Vigenere
Scytale - Playfair -~ Coesar .

The figure shows that the ConcealmentCipher , TranspositionCipher , and SubstitutionCipher objects
inherit everything from the Cipher object, somewhat like a subclass. Therefore, the Vigenére cipher
and the Caesar cipher are instances of the SubstitutionCipher object and contain all its properties and
methods.

For the sake of intellectual curiosity, let's see how this model can be extended. Figure 9.6 shows how
other cipher types can easily be added to the hierarchy without redesigning anything. The bold portion
of the structure identifies the part of the hierarchy used in the application.

As you can see, the number of cipher types and individual ciphers can be added to this structure, ad
infinitum, without changing any of the existing code of the ciphers currently in place. You can also
"subclass" the subclasses. Object-oriented design proves beneficial once again. Keep this in mind as
we go through the supporting code in the next few pages. You'll see how easy it is to add more ciphers
to the application without having to retool.

Let's take a look at index.htm/ in Example 9.1.

Example 9.1. index.html

1 <HTML>

2 <HEAD>

3 <TITLE>Cipher</TITLE>

4 <STYLE TYPE="text/css">

5 <I--

6 BODY { margin-left: 50 px; font-family: arial; }
7 I { font-weight: bold; }

8 //-—->

9 </STYLE>

10 <SCRIPT LANGUAGE="JavaScriptl.2"
SRC="dhtml. js"></SCRIPT>
11 <SCRIPT LANGUAGE="JavaScriptl.2">

12 <!--
13
14 wvar caesar = 'Made famous by Julius

Caesar, this cipher ' +

15 'performs character shifting (substitution).
Plaintext is ' +

16 'enciphered by shifting forward each character of
the alphabet a ' +

17 'fixed number of characters.

For example,
shifting by 1 ' +

18 'changes plaintext <I>a</I> to <I>b</I>, <I>b</I> to
<I>c</I>, ' +

19 'and so on. Plaintext characters at the end of, say,
the alphabet, ' +

20 'are enciphered by starting at the beginning. In
other words, ' +

21 '<I>z</I> becomes <I>a</I>. This application also
includes digits ' +

22 '0-9. So a plaintext <I>z</I> becomes <I>0</I>, and
a plaintext ' +

23 '<I>9</I> becomes <I>a</I>. The process is reversed
for deciphering.' +

24 '
<FORM>Shift: ' +

25 genSelect ('shift', 35, 0, 0) +

26 '</FORM>
Note: Caesar was rumored to prefer a
shift of 3.';

27

28 wvar vigenere = 'Made famous by
mathematician Blaise de ' +

29 'Vigenere, the Vigenere cipher can be considered a
"dynamic" ' +

30 'version of the Caesar cipher. Instead of shifting
each plaintext ' +

31 'character by a fixed number, this cipher shifts
characters ' +

32 'according to the character index of a keyword you
choose such as ' +

33 '<I>dog</I>.

Since <I>d</I>, <I>o</I>, and
<I>g</I> are ' +

34 '"letters 4, 15, and 7 of the alphabet, each three
plaintext ' +

35 'characters are shifted by 4, 15, and 7,
respectively. This ' +

36 'application includes digits 0-9. So your keyword
can have letters ' +

37 'and numbers.

<FORM>Keyword: <INPUT TYPE=TEXT
NAME="KeyWord" ' +

38 'SIZE=25></FORM>
Note: This cipher has many
versions, one of ' +

39 'which was devised by Lewis Carroll, author of Alice
in Wonderland.';

40

41 wvar curCipher = "caesar";

42
43 function Cipher () {

44 this.purify = purify;

45 this.chars = 'abcdefghijklmnopgrstuvwxyz0123456789"';

46 }

47

48 function purify(rawText) {

49 if (!'rawText) { return false; }

50 var cleanText = rawText.toLowerCase()

51 cleanText = cleanText.replace(/\s+/g,"' ');

52 cleanText = cleanText.replace(/["a-z0-9\s]l/qg,"'"):;

53 if (cleanText.length == 0 || cleanText.match(/"\s+$/)
= null) {

54 return false;

55 }

56 return cleanText

57 }

58

59 function SubstitutionCipher (name, description,
algorithm) {

60 this.name = name;

61 this.description = description;

62 this.substitute = substitute;

63 this.algorithm = algorithm;

64 }

65 SubstitutionCipher.prototype = new Cipher;

66

67 function substitute (baseChar, shiftIdx, action) {

68 if (baseChar == ' ') { return baseChar; }

69 if (action) {

70 var shiftSum = shiftIdx +
this.chars.indexOf (baseChar) ;

71 return (this.chars.charAt ((shiftSum <
this.chars.length) ?

72 shiftSum : (shiftSum % this.chars.length)));

73 }

74 else {

75 var shiftDiff = this.chars.indexOf (baseChar) -
shiftIdx;

76 return (this.chars.charAt ((shiftDiff < 0) ?

77 shiftDiff + this.chars.length : shiftDiff));

78 }

79 }

80

81 function caesarAlgorithm (data, action) {

82 data = this.purify(data);

83 if(!data) {

84 alert ('No valid text to ' + (action ? 'cipher.'

'decipher."));

85 return false;

86 }
87 var shiftIdx =
88 (NN ?

refSlide ("caesar") .document.forms[0] .Shift.selectedIndex
document.forms[1l].Shift.selectedIndex) ;

89 var cipherData = '';
90 for (var i1 = 0; 1 < data.length; i++) {
91 cipherData += this.substitute (data.charAt (i),
shiftIdx, action);
92 }
93 return cipherData;
94 }
95
96 function vigenereAlgorithm (data, action) {
97 data = this.purify(data);
98 if(!data) {
99 alert ('No valid text to ' + (action ? 'cipher.'
'decipher.'));
100 return false;
101 }
102 var keyword = this.purify ((NN ?
103
refSlide ("vigenere") .document.forms[0] .KeyWord.value
104 document.forms[2] .KeyWord.value));
105 if (!keyword || keyword.match(/\"s+$/) != null) {
106 alert ('No valid keyword for ' + (action ?
'ciphering.'
107 'deciphering. ")) ;
108 return false;
109 }
110 keyword = keyword.replace (/\s+/g, '');
111 var keywordIdx = 0;
112 var cipherData = '';
113 for (var 1 = 0; i < data.length; i++) {
114 shiftIdx =
this.chars.indexOf (keyword.charAt (keywordIdx)) ;
115 cipherData += this.substitute(data.charAt (i),
shiftIdx, action);
116 keywordIdx = (keywordIdx == keyword.length - 1 ? 0
keywordIdx + 1);
117 }
118 return cipherData;
119 }
120
121 wvar cipherArray = |
122 new SubstitutionCipher ("caesar", caesar,

caesarAlgorithm),

123 new SubstitutionCipher ("vigenere", vigenere,
vigenereAlgorithm)

124 1;

125

126 function showCipher (name) {

127 hideSlide (curCipher) ;

128 showSlide (name) ;

129 curCipher = name;

130 }

131

132 function routeCipher (cipherIdx, data, action) {

133 var response =
cipherArray[cipherIdx].algorithm(data, action);

134 if (response) {

135 document.forms[0] .Data.value = response;

136 }

137 }

138

139 //-->

140 </SCRIPT>
141 </HEAD>
142 <BODY BGCOLOR=#FFFFFEF>

143

144 <DIV>

145 <TABLE BORDER=0>

146 <TR>

147 <TD ALIGN=CENTER COLSPAN=3>
148
149 </TD>

150 </TR>

151 <TR>

152 <TD VALIGN=TOP WIDTH=350>
153 <FORM>

154 <SELECT NAME="Ciphers"

155

onChange="showCipher (this.options[this.selectedIndex].value);"
>

156 <OPTION VALUE="caesar">Caesar Cipher

157 <OPTION VALUE="vigenere">Vigenére Cipher

158 </SELECT>

159 </TD>

160 <TD ALIGN=CENTER>

161 <TEXTAREA NAME="Data" ROWS="15" COLS="40"
WRAP="PHYSICAL"></TEXTAREA>

162

163 <INPUT TYPE=BUTTON VALUE="Encipher"

164

onClick="routeCipher (this.form.Ciphers.selectedIndex,
165 this.form.Data.value, true);">

166 <INPUT TYPE=BUTTON VALUE="Decipher"

167

onClick="routeCipher (this.form.Ciphers.selectedIndex,
168 this.form.Data.value, false);">
169 <INPUT TYPE=BUTTON VALUE=" Reset "
170 onClick="this.form.Data.value="'";">
171 </FORM>
172 </TD>
173 </TR>
174 </TABLE>
175 </DIV>
176
177 <SCRIPT LANGUAGE="JavaScriptl.2">
178 <!—--
179 document.forms[0] .Ciphers.selectedIndex = 0;

180 genLayer ("caesar", 50, 125, 350, 200, showName,
caesar) ;

181 genLayer ("vigenere", 50, 125, 350, 200, hideName,
vigenere) ;

182 //-->

183 </SCRIPT>

184 </BODY>

185 </HTML>

The JavaScript source file dhtml.js is the first code interpreted. The code in that file utilizes DHTML
to set up the layers and generate select lists on the fly. We'll get to that shortly. The next code of
interest comes in lines 14-39. Variables caesar and vigenere are designed and set to the value of
HTML strings. Each of these, as you might have guessed, defines an interface layer of a cipher.
Everything is static, expect for the call to function genSelect () in the value of caesar. Here it is:

genSelect ('Shift', 35, 0, 0)

This creates a select list named Shift, which starts at 0, ends at 35, and has Option selected. The
VALUE and TEXT attributes are set to the number used for counting. This code comes straight from
Chapter 5. If you made the JavaScript library that I had suggested in Chapter 6, you should definitely
have included this code in it. You'll find this function defined at the bottom of dhtml js.

9.3.1 Defining a Cipher

The next lines of code define all ciphers that are and will be. Lines 43-46 contain the Cipher ()
constructor:

function Cipher () {
this.purify = purify;
this.chars = 'abcdefghijklmnopgrstuvwxyz0123456789"';
}

That's a pretty small constructor. If you expected some huge complex definition with all sorts of
differential equations and spherical geometry designed to split the fourth dimension, sorry to let you

down. Cipher () defines ciphers at a really high level. The only two assumptions made about all
ciphers in this application is that:

e They all know how to format user data (using its only method), be it plaintext or ciphertext.
e Each cipher knows which characters it will include for ciphering (using its only property).

JavaScript Technique: Assighing Methods to
Your Objects

As small as it is, the Cipher () constructor introduces a new concept. That is, objects
we've created in other chapters contained only properties. The Cipher () constructor has
a property called chars, but also has a method named purify ().

Properties are easy to assign. Just assign the value you want to a variable using the
this.variable name syntax. Assigning methods is a little different. You first
define a function, then use the same this.variable name syntax to refer to the
function. That's exactly what happens in the Ciphexr () constructor. The script has
function purify () defined. Cipher () has a variable named this.purify referencing
the purify method. Notice that there are no parentheses. This identifies a reference. Had
this.purify been set to purify (), the purify () function would have been called, and
this.purify would be set to whatever the function returned.

Referring to a function within a constructor assigns a purify () method to any variable
setto new Cipher (). That's what happens with the elements in cipherArray, as
you'll soon see.

No matter if the data will be enciphered or deciphered, it must conform to certain rules. Here are those
rules:

e FEach character must be a-z or 0-9. All others will be omitted. Case does not matter.

e Whitespaces will be neither enciphered, or deciphered. Multiple adjacent whitespaces will be
reduced to single whitespaces.

e One or more newline characters are converted to single whitespaces.

Nice rules. Simple, too. All we need is something to enforce them. Enter function purify () in
lines 48-57:

function purify(rawText) {
if (!rawText) { return false; }

var cleanText = rawText.toLowerCase():;
cleanText = cleanText.replace(/\s+/g,"' ');
cleanText = cleanText.replace(/["a-z0-9\s]l/qg,"'");
if (cleanText.length == 0 || cleanText.match (/"\s+$/) !=
null) {
return false;
}

return cleanText

}

This function returns one of two values: £a 1l se or formatted text ready for cipher action. Returning
false will cancel any cipher operation. If rawText contains anything to format, purify () first
converts all letters to lowercase. Here's how:

cleanText = cleanText.replace(/\s+/g,' ');

Using regular expression matching, the replace () method of the String object searches for all the
whitespaces in the entire string, which are replaced by a single whitespace, no matter how many
adjacent ones there are. After that, purify () replaces all other characters that are not a-z or 0-9 or
single whitespaces with an empty character. This removes all non-qualifying characters. Here is the
workhorse replace () method at work again:

cleanText = cleanText.replace(/["a-z0-9\s]/qg,"'");

JavaScript Technique: More String Matching and
Replacing

You just have to love JavaScript 1.2's regular expression matching. This application makes
more use of it than previous applications. Let's have another look at the regular expression
in line 52.

/["a-z0-9\s]/g

Although it isn't long, the syntax might be a little confusing. This regular expression is
known as a negated character set. In other words, anything not contained within the
definition constitutes a match. You can utilize square brackets in a regular expression to
specify a range of characters to include (or in this case, exclude). Consider this:

/la-z]1/g

This expression matches any of the lowercase letters of the alphabet. The g indicates that
the search matches all characters in this range, not just the first one encountered You can
include as many ranges as you like.

/la-z0-9\s]/g

This expression matches any of the lowercase letters of the alphabet or any digit or
whitespace. However, the cipher application in this case is interested in anything that does
not match these. The circumflex () inside square brackets negates any special characters
after it, which yields our original syntax.

/[~a-z0-9\s]/g

This is the tip of the string-matching iceberg. You can use these regular expressions to
validate and format social security numbers, email addresses, URLs, phone numbers, zip
codes, dates, times, and more. If you're new to regular expressions, you can get the full
reference of regular expression definitions and special character meanings at "What's New
In JavaScript 1.2" at
http://developer1.netscape.com:80/docs/manuals/communicator/jsguide/regexp.htm.

http://developer1.netscape.com:80/docs/manuals/communicator/jsguide/regexp.htm

The formatting is now complete. The time has come to check whether there is anything useful
remaining to cipher. As long as the formatted string contains at least one character that is a-z or 0-9,
everything is fine. However, there are two cases where this is untrue:

e After all the non-qualifying characters have been removed, there are no characters left.
o After all the non-qualifying characters have been removed, only whitespaces are left.

If either is the case, it's time to call off the operation and hold out for better data. Lines 53-55 perform
the check. This causes purify () toreturn false if either occurs:

if (cleanText.length == 0 || cleanText.match(/"\s+$/) != null)
{
return false;

}
As far as knowing which characters qualify, Cipher uses the following string:

this.chars = 'abcdefghijklmnopgrstuvwxyz0123456789"';

9.3.2 Defining a Substitution Cipher

Now that the mother of all Cipher objects—Cipher () ——has been defined, let's create a more
specific version. That's right—the spec for all substitution ciphers: SubstitutionCipher () .
Study lines 59-65:

function SubstitutionCipher (name, description, algorithm) ({
this.name = name;
this.description = description;
this.substitute = substitute;
this.algorithm = algorithm;
}
SubstitutionCipher.prototype = new Cipher;

The assumption for every Cipher object is that each one knows how to format any user data.
Substitution ciphers contain further assumptions. Here they are:

1. Each has a name and description.
Each uses a general method for substituting characters for both enciphering and deciphering.
3. Each has a specific implementation of the general substitution method. This is what makes
one substitution cipher different from other substitution ciphers.
4. Each SubstitutionCipher object is also a Cipher object.

Assigning a name and description to each is pretty simple. Any two strings you pass in when you call
new SubstitutionCipher () will work just fine. Incidentally, the variables caesar and
vigenere instantiated earlier with all that HTML will be the description of each. That takes care of the
first assumption. Now, what about defining a general substitution method? This method can substitute
one character for another. That's it. Each call to this method returns one character, which is a
substitute for another.

9.3.3 Performing Basic Substitution

Each SubstitutionCipher uses the same method to replace one character in the chars string
with another. The substitute () function, shown below, is defined as a method for each
instantiation of SubstitutionCipher:

function substitute (baseChar, shiftIdx, action) {
if (baseChar == ' ') { return baseChar; }
if (action) {
var shiftSum = shiftIdx + this.chars.indexOf (baseChar) ;
return (this.chars.charAt ((shiftSum < this.chars.length) ?
shiftSum : (shiftSum % this.chars.length)));

else {
var shiftDiff = this.chars.indexOf (baseChar) - shiftIdx;
return (this.chars.charAt ((shiftbiff < 0) ?

shiftDiff + this.chars.length : shiftDiff));

This method expects three arguments. baseChar is the character that will be replaced by another.
shiftldx is an integer that determines "how much" shift to apply in order to find the correct
substitution. action is a Boolean value that specifies whether baseChar should be treated as plaintext
or ciphertext. To leave whitespace unchanged, the first line returns baseChar as is if baseChar is
indeed a whitespace. Otherwise, this method uses action to determine how to calculate the amount of
shift. If action is t rue, the enciphering algorithm is used. If action is fa 1l se, the deciphering
algorithm is used.

Remember that chars contains a string of all the qualifying characters. The enciphering algorithm
simply determines the index of baseChar within chars, then chooses the character of chars at that
index plus the value of shiftldx.

Here's an example. Suppose that baseChar is d, shifildx is 8, and chars.indexOf ("d'") is 3.
That brings us to line 70:

var shiftSum = shiftIdx + this.chars.indexOf (baseChar) ;

Variable shiftSum equals 11 (8 + 3). So chars.charAt (11) isthe letter I. That is what
substitute () would return in this case. That seems straightforward. It is, but suppose baseChar
is letter o, and shiftldx is 30. Check the math. shiftSum now equals 45. The problem is, chars has only
36 characters (a-z and 0-9). Therefore, chars.charAt (45) doesn't exist.

When the algorithm reaches the last character of chars, it must "wrap" around and start over with 0,
and begin adding again from there. You can use the modulus operator to get the desired effect. Think
about it: the modulus operator returns the integer remainder of two operands. Here are several
examples:

4 % 3 = 1. Dividing 4 by 3 leaves a remainder of 1.
5 % 3 = 2. Dividing 5 by 3 leaves a remainder of 2.
6 % 3 = 0. Dividing 6 by 3 leaves no remainder.

All you need to do is use the return of the modulus operation. So instead of using a shi ft Sum of
45, you woulduse shiftSum % chars.length, which equals 9. chars.charAt (9) isthe
letter 7. This explains the ensuing code for the enciphering algorithm:

return (this.chars.charAt ((shiftSum < this.chars.length) 2
shiftSum
(shiftSum % this.chars.length)));

In this case, substitute () returns chars.charAt (shiftSum) or

chars.charAt (shiftSum % this.chars.length), depending on the size of
shiftSum and the length of chars. How about the keyword this? You may be wondering what it is
doing there. Keep in mind that substitute () is not a function; it is a method of whatever
variable is instantiated as a SubstitutionCipher. Using this, within this method will refer to
any property of the instantiated variable. Since SubstitutionCipher inherits all the properties
of Cipher, the instantiated variable "owns" a property called chars.

The procedure isn't much different for the deciphering algorithm. The only change is that it subtracts
shiftldx to reach the correct character in chars. In this case, variable shiftDiff is set to the difference of
the index of baseChar and shiftldx, which is as follows.

var shiftDiff = this.chars.indexOf (baseChar) - shiftIdx;

Again, this is fairly simple. If shiftDiff is less than 0, however, you run into the same problem as when
shiftSum was more than chars.length - 1. The solution is to add shiftDiff to
chars.length. That's right .. . add. shiftDiff is negative, which means adding the two together
yields a number shifiDiff less than chars . 1ength, which is the desired index for deciphering.
The code below reflects whether substitute () uses shiftDiff or shiftDiff + chars.length
as the index for deciphering:

return (this.chars.charAt ((shiftbiff < 0) ?
shiftDiff + this.chars.length : shiftDiff));

9.3.4 Different Substitutions for Different Ciphers

We just examined what all of the SubstitutionCiphers have in common—the substitute ()
method. Now let's take a look at what sets them apart. The SubstitutionCipher constructor expects an
argument named algorithm. This argument is not a string, a Boolean, a number, or even an object.
This argument is a reference to a function that will implement (call) the substitute () method in
a unique way.

For the Caesar cipher, the argument passed in is a reference to function caesarAlgorithm().
The Vigenere cipher, not surprisingly, receives a reference to function vigenereAlgorithm ().
Let's look at the functions of each.

9.3.4.1 Caesar algorithm

The Caesar algorithm is the easier of the two. Lines 81-94 contain the code:

function caesarAlgorithm (data, action) {

data = this.purify(data);
if(!data) {
alert ('No valid text to ' + (action ? 'cipher.'
'decipher.'));
return false;
}
var shiftIdx =
(NN ?
refSlide ("caesar") .document.forms[0] .Shift.selectedIndex
document.forms[1].Shift.selectedIndex) ;
var cipherData = '';
for (var i1 = 0; 1 < data.length; i++) {
cipherData += this.substitute (data.charAt (i), shiftIdx,
action);
}
return cipherData;

}

The first few lines format the data, then check to see whether there is any qualifying character left
over. The string in argument data is formatted by calling purify () and passing in data as the
argument. As long as the call to purify () doesn't return £alse, the cipher continues. See the
earlier section on the purify () method for details about the method's return.

The next thing to do is determine the number of characters by which the user wants to shift the text.
That's pretty easy. It comes from the select list in the form on the layer named caesar. I haven't
mentioned anything about that yet, but you can jump ahead to lines 180-181 if you want to see the call
to create both layers. However, the Navigator DOM differs from the Internet Explorer DOM when it
comes to accessing form elements in different layers. The select list has the name Shift.

In Navigator, it looks like this:

document.layers|['caesar'].document.forms[0].Shift.selectedInde
X

In MSIE, though, it looks like this:

document.forms[1l].Shift.selectedIndex

i As you just saw, accessing forms and form elements in layers requires different
o syntax. The document object model in NN differs from the one in MSIE. This isn't
. 4= the first time we've seen it in this book. In fact, the majority of code in dhtml.js

exists only for creating and manipulating layers in both browsers. Do yourself a
favor. Make sure you know when you'll have to accommodate both and when you
won't. Until we see a unified DOM, keep the following resources handy.

Microsoft's DHTML Objects:

http://www.microsoft.com/workshop/author/dhtml/reference/objects.asp

http://www.microsoft.com/workshop/author/dhtml/reference/objects.asp

Netscape's Style Sheet Reference and Client-Side JavaScript Reference:

http://developer].netscape.com:80/docs/manuals/communicator/dynhtml/jss34.htm
and http://developer.netscape.com/docs/manuals/js/client/jsref/index.htm

Variable shiftldx accounts for that difference by using the NN variable to determine which of the two
to access. The call to refS1ide () in line 88 is a convenient way to refer to
document.layers|["caesar"] . Now that shiftldx has been assigned,
caesarAlgorithm () iterates data.length times, calling substitute () eachtime
and concatenating its return to the once-empty local variable cipherData. Argument action is
passed in each time to properly indicate to substitute () whether to encipher or decipher. After
the last iteration, caesarAlgorithm () returns cipherData, which now contains the properly
ciphered string.

9.3.4.2 Vigenere Algorithm

That is the simpler of the two cipher algorithms explained. Let's look at
vigenereAlgorithm (). The primary difference here is that the argument shifildx passed to
substitute () incaesarAlgorithm () remains constant. With this function, shiftldx can
(and usually does) change with every call to substitute (). The other difference is that the user
chooses a keyword instead of a number. Here are lines 96-119:

function vigenereAlgorithm (data, action) {
data = this.purify(data);
if (!data) {
alert ('No valid text to ' + (action ? 'cipher.'
'decipher.'));
return false;
}
var keyword =
this.purify ((NN ?

refSlide ("vigenere") .document.forms[0] .KeyWord.value
document.forms[2] .KeyWord.value)) ;
if (!keyword || keyword.match (/\"s+$/) != null) {
alert ('No valid keyword for ' +
(action ? 'ciphering.' : 'deciphering.')):;

return false;
}
keyword = keyword.replace (/\s+/g, '');
var keywordIdx = 0;
var cipherData = '';
for (var i = 0; 1 < data.length; i++) {
shiftIdx this.chars.indexOf (keyword.charAt (keywordIdx)) ;
cipherData += this.substitute (data.charAt (i), shiftIdx,
action);
keywordIdx = (keywordIdx == keyword.length - 1 2?2 0
keywordIdx + 1);
}

http://developer1.netscape.com:80/docs/manuals/communicator/dynhtml/jss34.htm
http://developer.netscape.com/docs/manuals/js/client/jsref/index.htm

return cipherData;

}

The first five lines are the same as in caesarAlgorithm (). They do the same formatting and
validating. The next few lines perform similar work on the keyword. The keyword comes from the
form field located on the layer named vigenere. Remember that we have to accommodate both
Navigator and MSIE DOMs.

In Navigator, it looks like this:

document.layers['vigenere'] .document.forms[0] .KeyWord.value
In MSIE, though, it looks like this:

document.forms[2] .KeyWord.value

Variable keyword then is assigned as follows:

var keyword = this.purify ((NN ?
refSlide ("vigenere") .document.forms[0] .KeyWord.value
document.forms[2] .KeyWord.value)) ;

Notice that the purify () method is used again. It is designed for plaintext and ciphertext, but the
demands for the keyword are very similar. Since the substitute () method can substitute only
characters in chars, the keyword must contain characters from chars as well. Acceptable keywords
include people, machines, init2wnit, and lor2or3. However, using characters not in chars can still be
acceptable. Remember that puri £y () removes all characters that aren't a-z or 0-9, and replaces all
newline and carriage return characters and multiple whitespaces with single whitespaces. While the
user might enter L@@#der£ft as akeyword, purify () formats that string and returns /derft,

and that contains qualifying characters. Now consider a keyword with whitespaces, say all the spaces
in between. This contains qualifying characters, except for those whitespaces. Line 110 removes them:

keyword = keyword.replace(/\s+/g, '');

The bottom line is: as long as there is at least one qualifying character in the keyword, that is what will
beusedin vigenereAlgorithm ().

9.3.5 How shiftldx Changes

The plaintext (or ciphertext) and the keyword have been formatted. All that remains is to substitute
each of the characters accordingly. By definition of the Vigenére cipher, each character of text is
enciphered or deciphered according to the index of the next character in the keyword. This brings us
to lines 111-118:

var keywordIdx = 0;
var cipherData 'y
for (var 1 = 0; 1 < data.length; i++) {
shiftIdx = this.chars.indexOf (keyword.charAt (keywordIdx)) ;

cipherData += this.substitute (data.charAt (i), shiftIdx,
action);

keywordIdx = (keywordIdx == keyword.length - 1 2?2 0
keywordIdx + 1);

}

return cipherData;

Using variable keywordldx starting at 0, we can get the index of each keyword character as follows:
keyword.charAt (keywordIdx)

For each character of data (the plaintext or ciphertext), shifildx is set to the index of chars at
keyword.charAt (keywordIdx). Variable cipherData is then set equal to itself plus the
return of the substitute () method, which receives a fresh copy of data.charAt (i) and

shiftldx, along with act i on. Incrementing keywordldx by 1 afterwards sets things up for the next
iteration.

9.3.6 Each SubstitutionCipher Is Also a Cipher

Since all ciphers, no matter what kind they are, must have the same basic characteristics, the
SubstitutionCipher constructor must inherit all the properties of Cipher. That takes place in one line:

SubstitutionCipher.prototype = new Cipher;

Now each instantiated SubstitutionCipher object has a property called chars and a method called
purify (). Every SubstitutionCipher then, is a more specific version of a Cipher.

JavaScript Technique: Tapping into JavaScript
Object Inheritance

As mentioned in the last chapter, JavaScript employs prototype-based inheritance, not class-
based inheritance common to languages such as Java. Chapter 8's "The JavaScript
Technique: Adding Object Properties" shows you how to add properties such as strings or
numbers to existing objects. You can also utilize the prototype property of constructor
functions to create inheritance hierarchy. That's what happens in line 65. SubstitutionCipher
inherits all the properties of Cipher. This lets you leverage the true power of object-oriented
programming (as far as JavaScript is concerned). You can get more information about
JavaScript inheritance at Netscape's DevEdge Online at:

http://developer].netscape.com:80/docs/manuals/communicator/jsobj/contents.htm#1030750

9.3.7 Creating Each Instance of SubstitutionCipher

Up to this point, we've seen how the two ciphers work. Now it's time to examine how to create the
objects that represent the two ciphers and how to construct the interface for using them. Creating the
objects takes only four lines. Here they are, lines 121-124:

var cipherArray = |

http://developer1.netscape.com:80/docs/manuals/communicator/jsobj/contents.htm#1030750

new SubstitutionCipher ("caesar", caesar, caesarAlgorithm),
new SubstitutionCipher ("vigenere", vigenere,
vigenereAlgorithm)

1;

Variable cipherArray is set to an array. Each of the elements is a SubstitutionCipher. Why put them in
an array? The reason is that the application knows which cipher to use according to the OPTION
selected in the first select list on the page. We'll cover that in a moment.

JavaScript Technique: Using Alternate Syntax

As of JavaScript 1.2, you can replace code such as:

var myArray = new Array(l,2,3);

with a shortened version like this:

var myArray = [1,2,3];

You can also create objects on the fly as follows. Instead of this:

function myObj () {
this.name="A New Object";

this.description = "0Old School Object";
vai objOne = new myObj () ;
try this:
var myObj = {name: "A New Object", description: "New

School Object"};

Notice that the property and method name-value pairs are separated by a comma. Both 4.x
versions of MSIE and Navigator support these. Take your pick.

For now, notice that each call to the SubstitutionCipher () constructor passes with it the
expected strings, a name and a description, and a reference to a function, which will be assigned to the
algorithm property of each SubstitutionCipher object created. That creates the objects. Let's look
at the interface. This happens between the BODY tags:

<DIV>
<TABLE BORDER=0>
<TR>
<TD ALIGN=CENTER COLSPAN=3>

</TD>
</TR>

<TR>

<TD VALIGN=TOP WIDTH=350>
<FORM>
<SELECT NAME="Ciphers"

onChange="showCipher (this.options[this.selectedIndex].value); ;"
>
<OPTION VALUE="caesar">Caesar Cipher
<OPTION VALUE="vigenere">Vigenére Cipher
</SELECT>
</TD>
<TD ALIGN=CENTER>
<TEXTAREA NAME="Data" ROWS="15" COLS="40"
WRAP="PHYSICAL"></TEXTAREA>

<INPUT TYPE=BUTTON VALUE="Encipher"
onClick="routeCipher (this.form.Ciphers.selectedIndex,
this.form.Data.value, true);">
<INPUT TYPE=BUTTON VALUE="Decipher"
onClick="routeCipher (this.form.Ciphers.selectedIndex,
this.form.Data.value, false);">

<INPUT TYPE=BUTTON VALUE=" Reset "
onClick="this.form.Data.value="";">
</FORM>
</TD>
</TR>
</TABLE>
</DIV>

This code creates a two-row table. The top row houses the graphic in a TD with COLSPAN set to 2.
The bottom row contains two data cells. The one at the left contains a single select list, and looks like
this:

<SELECT NAME="Ciphers"

onChange="showCipher (this.options[this.selectedIndex].value);"
>

<OPTION VALUE="caesar">Caesar Cipher

<OPTION VALUE="vigenere">Vigenére Cipher

</SELECT>

This list determines which cipher interface is currently displayed. Since there are only two, it's either
one or the other. The onChange event handler calls the showCipher () function, passing in the
value of the option currently selected. This function is pretty short. You'll find it in lines 126-130:

function showCipher (name) {
hideSlide (curCipher) ;
showSlide (name) ;
curCipher = name;

}

The code inside might look familiar. It hails from previous chapters like Chapter 3, or Chapter 6.
You'll find functions hideSlide () and showS1lide () in dhtmljs. Refer to Chapter 3 for
detailed coverage.

Notice that the data cell is set to a width of 350 pixels. Other than a select list, that data cell is pretty
empty. Fortunately, two layers will fill in that available browser real estate. You can see the calls to
create them in lines 180-181. Function genLayexr () creates the cipher layers and is also in
dhtml js. This, too, is a function from the past and won't be covered here:

genLayer ("caesar", 50, 125, 350, 200, showName, caesar);
genLayer ("vigenere", 50, 125, 350, 200, hideName, vigenere);

This creates the text displays for each cipher, along with the additional select list for the Caesar cipher
and the text field for the Vigenere cipher. As just mentioned, you can change the option between
Caesar cipher and Vigenére cipher in the top select list, which then displays the proper cipher layer.

As for the other data cell in the bottom table row, it contains a text area and three buttons. Here they
are again in lines 161-170:

<TEXTAREA NAME="Data" ROWS="15" COLS="40"

WRAP="PHYSICAL"></TEXTAREA>

<INPUT TYPE=BUTTON VALUE="Encipher"
onClick="routeCipher (this.form.Ciphers.selectedIndex,
this.form.Data.value, true);">

<INPUT TYPE=BUTTON VALUE="Decipher"
onClick="routeCipher (this.form.Ciphers.selectedIndex,
this.form.Data.value, false) ;">

<INPUT TYPE=BUTTON VALUE=" Reset "

onClick="this.form.Data.value="";">

The textarea field holds the plain text (or ciphertext). The "Encipher" button causes the text contained
within it to be enciphered. It's the reverse for the "Decipher" button. Both call the same function,
routeCipher (). Both pass in the value of the textarea field. The difference is that the last
argument is true for one and false for the other.

9.3.8 Choosing the Right Cipher

Choosing the right cipher is easy. The correct cipher always corresponds with the index of the top
select list in the form and the index of cipherArray. You can see this in routeCipher ()
shown here:

function routeCipher (cipherIdx, data, action) {
var response = cipherArray|[cipherIdx].algorithm(data,
action);
if (response) {
document.forms[0] .Data.value = response;

}

This function accepts three arguments. We've already discussed the last two. data is the text in the
textarea, and action is either t rue or false. The first one, cipherldx , comes from
document.forms[0] .Ciphers.selectedIndex. It hasto be or 1. Whichever it is, the
algorithm () method of the corresponding SubstitutionCipher object in cipherArray gets
the call. Ifalgorithm () returns a non-false value, it must be qualified enciphered (or deciphered)
text.

9.3.9 A Final Thought

You've probably realized by now, but the code in line 179:
document.forms[0] .Ciphers.selectedIndex = 0;

simply resets the selected OPTTON in the top select list to the first one. This forces the OPTION
selected to match the cipher layer in view, even if the user reloads the page.

9.4 Potential Extensions

While this application is cool to play with as is, the next level is to send it in email. You can do that in
three easy steps. First, copy the following function, and paste it between your SCRIPT tags:

function sendText (data) {
paraWidth = 70;
var iterate = parselnt (data.length / paraWidth);

var border = '\n------- \n';
var breakData = '';
for (var i = 1; 1 <= iterate; 1i++) {

breakData += data.substring((i - 1) * paraWidth, i *
parawWidth) +
’\r’;
}
breakData += data.substring((i - 1) * paraWidth,
data.length);
document.CipherMail .Message.value = border + breakData +
border;
document.CipherMail.action =
"mailto:someone@somewhere.com\?subject=The Secret
Message";
return true;

}

This performs some last millisecond formatting before sending the email. The formatting inserts
carriage returns every paraWidth characters. This ensures that the email message that the recipient
receives isn't one line of text 40 miles long. The next thing to do is add the second form required.
Insert this code after the closing FORM tag in the current document:

FORM NAME="CipherMail" ACTION="" METHOD="POST"
ENCTYPE="text/plain"
onSubmit="return sendText (document.forms[0].Data.value) ;">

mailto:someone@somewhere.com\?subject=The

<INPUT TYPE=HIDDEN NAME="Message">
<INPUT TYPE=SUBMIT VALUE=" Send ">
</FORM>

This form, named CipherMail , contains a lone HIDDEN field. The last thing to do is change the
form references in the cipher algorithm functions.

Change lines 87-89:

var shiftIdx = (NN ?
refSlide ("caesar") .document.forms[0] .Shift.selectedIndex
document.forms[1l].Shift.selectedIndex);

to this:

var shiftIdx = (NN ?
refSlide ("caesar") .document.forms[0] .Shift.selectedIndex
document.forms[2] .Shift.selectedIndex) ;

Then lines 102-104 from this:

var keyword = this.purify ((NN ?
refSlide ("vigenere") .document.forms[0] .KeyWord.value
document.forms[2] .KeyWord.value)) ;

to this:

var keyword = this.purify ((NN ?
refSlide ("vigenere") .document.forms[0] .KeyWord.value
document. forms [3] .KeyWord.value)) ;

You need to make these changes because you added another form to the hierarchy in the previous
step. sendText () sets the value of this hidden field to the value of whatever text is entered in the
textarea. sendText () then submits this form, which has the ACT ION attribute set to
mailto:your e-maill@your mail server.com. Figure 9.7 shows what the message
looks like when it arrives. That's the view from my Hotmail account. Upon receipt, the user can cut
and paste the text between the dashed lines, then decipher the message with the previously agreed-
upon cipher and key. Now your visitors are using encrypted mail, and you're the genius behind it!

Figure 9.7. The encrypted email

mailto:your_e-mail@your_mail_server.com

B Nt - bellis - bl i s Diadisit [il i

B EE e o Fpede pen
= . S - JRE N - N I R IR =1 < B .|

Back Sap Fsfemh Hoee fmeack P Holwy Themsk fulowsn Me é]

bden [87) bl 4207 1202 20 b s il T I 250 T Sl e ' TPt T T g ST G ST, B TS s TS] ek
. -~ T IS T T e — - - =

nr‘-'".;&-- Feanived: by garskeeper, IV eeoRToomg .. oot id <0871 Tue, LI Jan 1598 [N 04T

LT
E-Eailesy Basilla 9.8 [=nl dWasmy L
E-RSCEpl -LARJIAHE] &R

. Ecazagueld: ¥ anli DMI24Tpet . (00T pacckosper - fremsntoonp. oo
Outibink

EETHETTE T T T T T T

CONCORE-BIARGAAGIAN ERAITeS SoUTe-Sara

uile riowld 36 clzgil kizdiz lpgd kpges smzascud bpiziklne Opgnigqeo

2 f Iigwe xrigeisis gl svkgrps 96 Opgnigquo owrdizl mikg kpizikies wr dps
1 dimz wn kpimik 0 ez eSiuce Opgaiagws 16 8@ Tpaivonl

1 Bl O1EE PWE W 036 B

Tupliml 1w kel 38 G1LELEM 1T Npe o gy Wlpml AEELD T ke |

1960 IMAVHELIGW LLOW gwHEZlsD LEsald Bk 0% R e s e T T T

mtigrleSl B jekamnd i lpm xseksdl g0 cedpclzl mws Iekgepecqes

| ooy | Fnolp A | Focward § Delote | Fresaas | ot | Chise |
e T IlHrw o Selacied Folde) =

Keep your resolutions. d_‘ ||

& P el an B b b o indonmaien g LT T Y

P.S. This will work only if the user has the NN or MSIE email client correctly configured, which is
most likely the case.

P.P.S. \ch09\cipher2.html has the email functionality added.

Chapter 10. Cyber Greetings: Drag-and-Drop Email

Application Features JavaScript Techniques
®Ships Custom Greetings You Design ®Differentiating Web Code
®Users Can Position Multiple Logos on Their Choice of ®Cross-Frame
Background Communication
®User-Friendly Interface
®Message Tester for Previewing |- Optimizing Your Functions

JavaScript Techniques

This application is built simply for fun. Users can kill plenty of time at your site by sending friends
and loved ones custom-made greetings with silly characters and wild backgrounds, all included with
the snappiest message they can conjure up. Figure 10.1 shows the opening interface.

On the left is an entry form. Users fill in the necessary ingredients, including recipient address,
message, and greeting. This is also where users can choose the background, by clicking "Backgrounds
- ->" until they see the one they want. The same goes for the icons. "Icons - ->" has the same effect.

To the right is the display. This is where the user can see the available backgrounds and icons. The
user can then "pick up" an icon and drag it onto the background display area. Any icons like this are
included on the greeting as shown. Figure 10.2 shows a nice example.

Figure 10.1. The Cyber Greetings default screen

A A 2 = 3 o
Eesh Fonsd Road Hese Seasch Howae ook
o Wknmbn e e e e coun e e e e b
qowebted Y Leetsa Sl Pomse d vebmPars Y (ueekad) CRaech

Eyﬁhl Graatlngs
T [
Mgssags 0|
|

nages kos-> | Bockgrouncs -+ |

Grasdng |[Choosa Ons =

Saning Tewn | T | Send |
= [T L | i W 0 @ A
How| S HEEROMBLF AP [Fr s Gt ER RELY

Figure 10.2. Recognize anyone in this group photo?

B

Cyber Greetings
Te [erche e it apmu i coens
WeEsags [bk Hary =

an! i R a0 o din Kol it nar
wek'n iamily muraon Wik wore gr bng leta
i your woald benea e ela sabd Heyowe
bouchi mades cumem, s wsre gonro Sim
G dow ¢ anngebails 0 the i pool =

T Family Reun

Graaing [Family Reumon! -
Sandng Test | Cewr | Send | ! -~Iv|.
4 SRS
e LB
wh oo AraeY
Sy
e e for

Han| gHEGNELT AT T R T T

When the greeting is done, users can preview the work in progress by choosing "Test." This opens a
remote window that shows what the greeting will look like when the recipient views it. See Figure
10.3.

Figure 10.3. This is how the recipient will see it

.B"' - Cpbes Gisstbrg Tact Mags - Haiscaps EED

Your Cyber Greeting

=l [ERTE A = T ST el e]

Family Reunion!

M Lincie Hairy,

<ust a remnder 50 you dont forget about nest week's famity reunion. Make sue
o bang bots. ot your workd-Samicus jelio salad. Fey, e Dought & video camera
oA TE ponna fim Granny doin’ cannonbals e kdde pool

Cya theral
La Puephawr

ol I D [ee 2 ol o LE

S| s EEHFBONALFAC G st et Hetzcoce [Eybes Ganaing Taid 4

Once satisfied, the user simply chooses "Send." That submits all the form info to a ready-and-willing
server-side script that creates the greeting and returns a final confirmation page containing a "Send"
button (Figure 10.4). When the button is pressed, the script sends email to the recipient, providing the
URL of the card.

Figure 10.4. Success: just submit this form, and off the message goes

B Ed o G5 Lownaces Hob

i 4 3 4 a2 A 3 & @
Bk Febad Hame fesch Moscigs Par o ey
o Mmbwwks) Locwion frap e mive core b et b esanc Ly e 23 ﬂ (F " e’y Frmsend

1 5 wikkial 3 oo D Pasgie 9 vel Page 5 Duenkad | Doaesk

Congratulations!
Vo b muccmprridiy cresse a Cytar Chesing for

il B sy s oomio L en AL o baree £ o b seoed b o betw oo ¢ e
arnrece the grecking, Tt pesh B btton below, and B somad ol he oo the

=
Sienil Cybarizsting I

¥ou nah rpenezce & celay whie your r-mml acdwae coslacis powr mal

parr
o =k Do fora B ek e LA
How| gESG ROy AT A | ey — T

Now it's up to the user to read the mail. (I don't have an Uncle Hairy, so I sent this one to my Hotmail
account.) Figure 10.5 shows what a greeting announcement looks like. Not much to it, just a simple
message and a link. Once the recipient follows the link in the email message, the document that loads
is exactly what the sender created. Figure 10.6 proves it.

Figure 10.5. The Cyber Greeting announcement

T e [- |
Bs [4 Yew Oo [owsnceo b
a 3 A 2 m o o il
Bk Eaad How Twch Hsoma P Seual Sw
o Mo Locaion [Fromtersgee v L+ 201 115 SRL7D_T0 kg s 117 I e L L bbb g o 3 S0 0L 0k el bl] 1 Wl et

Frwime b o Brodenbaigh <hannednall sere. cime o Adliess Bk Seni
Tor spaceedictmud com Save Addros

Tulbject Vo Waes & Cpher Goeetiag)

4, X D 1555 0l 50 ' L0000

s [T 1 G| b Pt | g P i IEST TP i Bl ol g A LA N DN 07l ORI O, Wi e 0 WG 1

ANy dsirvl cors (B8 TEA Thowth ESMTP b8 REAIBI 1R dawadiSbatsad cons, 'Wad, 20 Dt 7339 13043 18 0500
Frors Balugiafms | sase com Vel 1

i e bl < PR LI RAD HAA
E aika £ 5 fan] fArlT;)

ot e e e e s ot orahen §ee Serde e os-iee. Sead mdard manesgee
4 s L gt paar FREE dessload of BSH Nessnpe Serdced To st pew bk ot 1va
e MR Chd | s fee

1 | Drendored bunic | Erc sciugudn
it | Tusesd gmr | Yooy Pages | ore
Smarch e wel: | Saath
T 1S ol Cirpaeation A eghl srierad Tar u Slalurscl ||
o e e e S T]
L Ty FEAsATrEShHRADA . BB e

Figure 10.6. The Cyber Greetings flow

Server-side seript

: User sends recipient Recipient follows link
User creates ond rentes greeting ond .
send greeting refurns email form h’rh_e IernuT: ITL in el !n load
. submitting the form greeling

10.1 Execution Requirements

You'll need MSIE or Navigator 4.x or higher because of the DHTML and massive stylesheet
positioning. The program is designed for a monitor with a resolution of at least 1024x768, though you
can modify it to accommodate 800x600. I wouldn't go any lower.

This program also requires a web server with a server-side scripting environment. Don't let that scare
you if you aren't familiar with server-side scripting. I've provided a script that is fairly easy to install
on just about every web server on Earth. It is written in Perl. You just have to copy to the correct
directory and set up some permissions. You can get those details in Appendix C.

10.2 Syntax Breakdown

This is another application that warrants a flowchart before we look at any code. Figure 10.7 shows
how the user enters the recipient's email address and message, chooses a greeting and background,
then positions desired icons "on top" of the greeting card. The user then previews the work. Once
satisfied, it's off to the server, and so on.

Figure 10.7. Cyber Greeting logic: how the recipient gets the message

Enter amall addras (froeesa bockgrownd
and message, choose [+——— thoose and position
gresting ions

+—1 FProview greafing

Creafe file on | Subemit greoting
server sida o server
Recaive confirmation i L) seripd ereates

ondamalform |+ ﬂmrﬁmﬁgwmn ;

Send email fo Recipient recefves
recipient emol

containing dhe

... ey

This application works on two levels—in the client browser and on the web server. The browser is
obviously where the user creates the entire greeting—background, icon graphics, and message. When
the user submits the HTML form, the information is sent back to a web server, where a file is created
to match the greeting. The web server returns an HTML form so the greeting sender can send an email
message to the recipient. This message contains nothing more than an announcement of the cyber
greeting and a link that the recipient must follow to "pick it up." The recipient follows the link to load
the awaiting Cyber Greeting.

Let's go over this app first in terms of the client and then the server. There are four files. The
following list gives a quick rundown:

index.html

Top level; holds the frameset
back.html

Contains the workspace for choosing the greeting, background, and icons
front.html

Contains the interface for creating and sending the message

greet.pl

The server-side script used to create and store each greeting in a file, then create an HTML
form to send email to the recipient

As you can see from the screen captures, there are two sides to this interface. The back (back.html) is
the greeting display where the user can see what he or she has after choosing the greeting and
positioning any graphics. The front (front.html) contains the entry form and is responsible for entering
email address and a message, choosing backgrounds, and producing the available graphics, referred to
as icons. Both documents are referenced in index.html. Example 10.1 has the details.

Example 10.1. index.html

1 <HTML>

2 <HEAD>

3 <TITLE>Cyber Greetings</TITLE>

4 <SCRIPT LANGUAGE="JavaScriptl.2">

5 <!--

6

7 var greetings = |

8 '"Choose One', 'Family Reunion!’',

9 'Get Well Soon', 'Thinking Of You',

10 'Big Party!', 'Psst... Youl're Invited.',
11 '"Happy Birthday!', 'Congratulations!',
12 '"We\'re Gonna Miss U', 'Just A Reminder',
13 'Don\'t Forget'

14 17
15
16 wvar baseURL = ".";

17
18 //-->

19 </SCRIPT>

20 </HEAD>

21 <FRAMESET COLS="450,*" FRAMEBORDER="2" BORDER="0">

22 <FRAME SRC="front.html" NAME="Front" NORESIZE>

23 <FRAME SRC="back.html" NAME="Back" NORESIZE
SCROLLING="NO">

24 </FRAMESET>

25 </HTML>

index.html contains an array called greetings in lines 7-14. These are the greetings that users can
choose from. baseURL contains the base directory on the web server of this application. Everything is
contained within it: all four files, all the images, and the directory that will contain each user-created
greeting. baseURL is even included in the greeting itself. When you change this value, you change it
for the entire application—client and server.

So why declare a variable and an array in this file? Both files defined in the frames of index.html need
those greetings to create the respective pages as they load. If greetings were defined in one of the
other two files, it might not have loaded by the time the JavaScript code in the other file tried to access
it. The same goes for baseURL. This helps avoid load-time errors.

10.2.1 The Other Two Documents

The concept of front and back sides are analogous to a traditional postcard. The front (I think) has the
address and message on it, and the back has the pretty picture of picknickers on the beach. In this case,
back.html contains the background display area and the icons for you to drag. This file is responsible
for much of the initial setup during the document loading. front.html facilitates things after the
document loads, such as entering a message and choosing and sending a greeting. It makes sense,
then, to cover back.html first. Fortunately, you've probably seen much of it in earlier chapters. Take a

look at Example 10.2.

Example 10.2. back.html

1 <HTML>

2 <HEAD>

3 <TITLE>Cyber Greetings</TITLE>

4 <STYLE TYPE="text/css">

5 <!--

6

7 .Greeting

8 {

9 font-family: Arial;

10 font-size: 48px;

11 font-weight: bold;

12 }

13

14 //-->

15 </STYLE>

16 <SCRIPT LANGUAGE="JavaScriptl.2">

17 <!'--

18

19 wvar NN = (document.layers ? true : false);
20 wvar hideName = (NN ? 'hide' : 'hidden');
21 wvar showName = (NN ? 'show' : 'visible');
22 var zIdx = -1;
23
24 var ilconNum = 4;
25 wvar startWdh = 25;
26 var imgIdx = 0;
27 var activate = false;
28 wvar activelayer = null;
29

30 wvar backImgs = [];

31 wvar icons = |

32 'bear', 'cowprod', 'dragon', 'Jjudo',
33 'robot', 'seniorexec', 'dude', 'Jjuicemoose',
34 'logol', 'logo2', 'logo3', 'tree',

35 'sun', 'gator', 'tornado', 'cactus'
36 1

37

38 function genLayout () {

39

40 for (var i = 0; 1 <= 7; 1i++) {

41 backImgs[i] = new Image () ;

42 backImgs[i].src = top.baseURL +
'/images/background' + i +

43 'pg';

44 }

45

46 genLayer ("Back", 10, 250, backImgs[1l].width,
backImgs[1l].height,

47 showName, '<IMG NAME="background" SRC="' +
top.baseURL +

48 '/images/background0.Jjpg">") ;

49

50 for (var 7 = 0; Jj < parent.greetings.length; Jj++) {

51 genlLayer ("greeting" + j, 50, 275, 500, 100,
hideName,

52 '' + parent.greetings[7j]
+ '") ;

53

54

55 for (var i = 0; 1 < icons.length; i++) {

56 if (i % iconNum == 0) { startWdh = 25; }

57 else { startWdh += 110; }

58 genLayer (icons[i], startWdh, 15, 100, 100, (i <
iconNum ? showName

59 hideName), '<A HREF="javascript:
changeAction(\'' + icons[i] +

60 "\'," + (i + 1) + ");"><IMG SRC="' + top.baseURL
+

61 '/images/' + icons[i] + '.gif"
BORDER="0">") ;

62 }

63 startWdh = 25;

64 }

65

66 function genlayer (sName, sLeft, sTop, sWdh, sHgt,
sVis, copy) {

67 if (NN) {

68 document.writeln ('<LAYER NAME="' + sName + '"
LEFT='" + sLeft +

69 ' TOP=' + sTop + ' WIDTH=' + sWdh + ' HEIGHT=' +
sHgt +

70 ' VISIBILITY=""'" + sVis + '"" z-Index=' + (++zIdx) +
'>'" + copy +

71 '</LAYER>") ;

72 }

73 else {

74 document.writeln ('<DIV ID="' + sName +

75 '" STYLE="position:absolute; overflow:none;

left:"' +

76 sLeft + 'px; top:' + sTop + 'px; width:' + sWdh
+ 'px; height:' +

77 sHgt + 'px; visibility:' + sVis + '; z-Index=' +
(++zIdx) + "">' +

78 copy + '</DIV>"

79) s

80 }

81 }

82

83 function hideSlide (name) {

84 refSlide (name) .visibility = hideName;

85 }

86

87 function showSlide (name) {

88 refSlide (name) .visibility = showName;

89 }

90

91 function refSlide (name) {

92 if (NN) { return document.layers|[name]; }

93 else { return eval ('document.all.' + name +
'.style'); }

94 }

95

96 function motionListener () {

97 if (NN) {

98 window.captureEvents (Event .MOUSEMOVE) ;

99 window.onmousemove = grabXY;

100 }

101 else {

102 document.onmousemove = grabXY;

103 }

104 }

105

106 function grabXY (ev) {

107 if (activate) {

108 if (NN) |

109 var itemWdh =
refSlide (activelayer) .document.images[0] .width;

110 var itemHgt =
refSlide (activelayer) .document.images[0] .height;

111 refSlide (activelayer) .left = ev.pageX -
parselnt (itemWdh / 2);

112 refSlide (activelayer) .top = ev.pageY -
parselnt (itemHgt / 2);

113 }

114 else {

115 var itemWdh = document.images[imgldx].width;

116 var itemHgt = document.images|[imgIdx].height;

117 refSlide (activelayer) .left = event.x -
parselInt (itemWdh / 2);

118 refSlide (activelayer) .top = event.y -
parselnt (itemHgt / 2);

119 }

120 }

121 }

122

123 function changeAction (name, MSIERef) {

124 activate = lactivate;

125 activelLayer = name;

126 imgIdx = MSIERef;

127 }

128

129 //-—>

130 </SCRIPT>
131 </HEAD>
132 <BODY onLoad="motionListener();">

133

134 <SCRIPT LANGUAGE="JavaScriptl.2">
135 <!--

136

137 genLayout () ;

138

139 //-->

140 </SCRIPT>

141

142 </BODY>
143 </HTML>

Before the sender can create a greeting, several functions have to generate a lot of layers and
determine the location of the mouse-pointer arrow relative to the document. There is very similar
functionality discussed in Chapter 3, and Chapter 8. In fact, several of the functions came directly
from those chapters. I'll mention them as we go along. For now, look at the onslaught of variables
declared at the top in lines 19-36:

var NN = (document.layers ? true : false);
var hideName = (NN ? 'hide' : 'hidden'):;

var showName = (NN ? 'show' : 'visible');
var zIdx = =-1;

var iconNum = 4;

var startWdh = 25;

var imgIdx = 0;

var activate = false;

var activelayer = null;

var backImgs = [];

var icons = |

'bear', 'cowprod', 'dragon', 'judo',
'robot', 'seniorexec', 'dude', 'Jjuicemoose',
'logol', 'logo2', 'logo3', 'tree',

'sun', 'gator', 'tornado', 'cactus'

1

The first four variables were brought in from earlier scripts. NN helps determine which browser is
being used. showName and hideName are different strings for showing and hiding layers, depending
on the browser, and z/dx represents an integer that will be used to set the z-index of each layer created.
Variable iconNum is an integer that determines how many icons to display on the screen at a time. We
start with 4. startWdh is used to initially position all the icons. You'll see that shortly in function
genLayout ().

imgldx tracks images. activate is a Boolean variable that determines whether a layer should be
dragged or dropped. activeLayer determines which layer the user currently has the mouse pointer over
after clicking.

If that isn't enough, there are also two array variables. backimgs is originally set to an empty array. It
will soon be populated with /mage objects, each containing a background image. The background
images are named background(.jpg, backgroundl jpg, background?.jpg, and so forth.

icons is an array of strings that identifies the name of each icon. That means that each icon will be
created on a layer of the icon element's name. The image used for the icon is also the same name. The
layer named bear, for example, will contain the image bear.gif. By the way, all the icon images are
transparent GIFs. White is the transparent color. Since the background images are primarily white,
you can place icons on top of one another and still see "all the way" to the background without one
icon covering a portion of the other.

10.2.2 Walking on Familiar Ground

If you have been working with other chapters in this book, you'll be glad to know that some of your
hard work will be rewarded. A few functions used here have been used throughout, so you can breeze
through them. This happens in other chapters, too, but even more so here.

Table 10.1 will help identify which functions you have probably seen.

Table 10.1. Functions for Layer Manipulation

Function Purpose Chapter(s)
genLayer () Create the layers in NN or MSIE 3,4,6,9,11
hideSlide () Hide layers by name 3,4,6,9,11
showSlide () Show layers by name 3,4,6,9,11
refSlide () Refer to layers by name 3,4,6,9,11
motionListener () Track mouse movement 11
grabXyY() Obtain x and y positions of element 11

The first four functions in the table are exactly the same as in other chapters. If you aren't familiar
with these functions, see the discussion in Chapter 3. motionListener (), however, has been

altered slightly, making it worthy of discussion. Function grabXY () can be found in Chapter 11. It,
too, has undergone significant changes. Here are the rest of the functions that make things happen.

10.2.3 Places Everyone!

While the application loads, back.html is working diligently to preload all the images, create and
position all the layers, then show or hide them as needed. Function genLayout () coordinates
every bit of this. Watch how things unfold in lines 38-64:

function genLayout () {

for (var 1 = 0; i <= 7; i++) {
backImgs[i] new Image()
backImgs([i] .src = top.baseURL + '/images/background' + 1 +
".Jpg';
}

I~

genlayer ("Back", 10, 250, backImgs[l].width,
backImgs[1l].height,
showName, '<IMG NAME="background" SRC="' + top.baseURL +
'/images/background0.Jjpg">") ;

for (var 7 = 0; Jj < parent.greetings.length; Jj++) {
genLayer ("greeting" + 3, 50, 275, 500, 100, hideName,
'' + parent.greetings[j] +
'") ;
}

for (var i1 = 0; 1 < icons.length; i++) {
if (i % iconNum == 0) { startWdh = 25; }
else { startWdh += 110; }
genlLayer (icons[i], startWdh, 15, 100, 100, (i < iconNum °?
showName
hideName), '<A HREF="javascript: changeAction(\'' +
icons[1] +
"\'," 4+ (14 + 1) + ");"><IMG SRC="' + top.baseURL +
'/images/' + icons[i] + '.gif" BORDER="0">'");
}
startWdh = 25;
}

The first thing genLayout () handles is preloading the background images. The user will likely
want to see all the images before choosing one, so preloading is a good idea. Using backlmgs, the
function creates an /mage object for each element and assigns its source accordingly using
top.baseURL (declared earlier in index.html, remember?), the string background, the value of i,
and the string .jpg:

for (var i = 0; i <= 7; i++) {
backImgs[i] = new Image();

backImgs[i].src = top.baseURL + '/images/background' + i +
".Jpg'i)

After loading all the images, the first thing to set up is the default background. You can choose any of
them, but for simplicity, I chose background0.jpg, and put it in a layer named Back. The layer width
and height are set to those of the background image. This becomes important when positioning the
icons later:

genLayer ("Back", 10, 250, backImgs[1l].width,

backImgs[1l] .height,
showName, '<IMG NAME="background" SRC="' + top.baseURL +
'/images/background0.Jjpg">") ;

Now the background layer and default image are in place. The next thing to do is set up the greetings.
These are simply layers with large text, such as "Family Reunion" or "Thinking Of You." These
greetings come from the greetings array in index.html. Let's apply them in lines 50-53:

for (var 7 = 0; Jj < parent.greetings.length; Jj++) {
genLayer ("greeting" + j, 50, 275, 500, 100, hideName,
'' + parent.greetings[j] +
'") ;
}

This means there will be parent .greetings. length greetings, all of which have the same
left and top positions of 50 and 275, respectively. The user can't move these, but they are nicely
positioned at the upper left of the background display area. Each greeting is contained within its own
layer. The layer contains a set of SPAN tags to make use of the stylesheet class definition named
Greeting, defined at the top of the document.

With the background and greetings in place, all that is left is the icon placement. See lines 55-62:

for (var i = 0; 1 < icons.length; i++) {
if (i % iconNum == 0) { startWdh = 25; }
else { startwWdh += 110; }
genlLayer (icons[i], startWdh, 15, 100, 100, (i < iconNum °?
showName
hideName), '<A HREF="javascript: changeAction(\'' +
icons[i] +
"N',U 4+ (4 + 1) + ");"><IMG SRC="' + top.baseURL +
'/images/' + icons[i] + '.gif" BORDER="0">'");

Each element in icons will represent an icon layer. Variable iconNum dictates that four icons be shown
at a time. Also, each of the images is 100 pixels wide. The heights vary. Variable startWdh starts at
25. Its value will determine the left pixel position of each layer created. I chose an arbitrary width of
10 pixels between each of the four icons. In other words, starting at 25 pixels to the right of the left
margin, a new icon is positioned every 110 pixels (100 pixels of width for the layer and 10 pixels
between). After iconNum of icons has been created and positioned, the process starts over with the
same 25-pixel reference point. Two programming features enable this process. One is an if-else

statement executed before each layer is created with genLayer () ; the other is the use of the
modulus (%) operator. Take a closer look at both:

if (1 % iconNum == 0) { startWdh = 25; }

else { startWdh += 110; }

As the for loop executes, i becomes larger and larger. Every time i is a multiple of iconNum (4, in this
case), it's time to start a new group of icons with the first one in the group again being left-positioned
at 25 pixels. startWdh is set to a value of 25. For example, it is time to start over when i reaches 4, 8,
12, 16, and 20. If i is any other value, this indicates that the next icon should be left-positioned 110
pixels from that of the last icon. That's why 110 is added to the current value of startWdh. The
modulus operator returns an integer indicating the remainder of a quotient. If the remainder is 0, i is a
multiple of iconNum.

Knowing where to left-position the layer is the hard part. Now genLayout () finishes its duties by
creating a layer for each icon with a custom call to genLayer () each time:

genlLayer (icons[i], startWwdh, 15, 100, 100, (i < iconNum °?
showName

hideName), '<A HREF="javascript: changeAction(\'' +
icons[1] + "\',' +
(1 + 1) + '");"><IMG SRC="' + top.baseURL + '/images/' +

icons[i] + '.gif" BORDER="0">');

Each icon layer contains a lone IMG tag surrounded by an anchor tag. Note that the second and third
arguments passed to genLayer () are values for the left and top properties of the layer. startWdh
always represents the left; the top is fixed at 15 pixels. The sixth argument passed determines whether
the icon should be visible or hidden. The default is to show only the first set of icons created. In this
case, that's the first four layers. Therefore, the conditional operator in the sixth argument is such that if
i is less than iconNum (e.g., 0, 1, 2, or 3), the layer should be visible. All others should be hidden. If
the icon should be visible, variable showName is passed in. Otherwise, hideName gets the call.

The last thing to consider before moving on is the nature of the anchor tag. What does it do? Consider
this. Whenever the user passes the mouse over the icon and clicks for the first time, he or she
obviously wants to "pick up" that icon and drag it somewhere. To make that happen, a
Jjavascript: protocol in the HREF attribute makes a call to function changeAction (),
discussed shortly. All HREF attributes make the same call to this function, but each icon link must
pass to changeAction () information specific to itself.

First, changeAction () needs to know the name of the icon it will be dealing with. That's easy.
Passin icons [1], which holds the correct string. Next, we have to pass in an integer that
represents the icon in the MSIE document object model. That is, in order for this drag-and-drop
functionality to work, MSIE will need to know to which image it is referring. Remember that the first
image created on the page was the background image, so it is document . images [0]. The first
icon is document . images [1]. All other icons represent document .images[i +1].
That's why the value of (1 + 1) is passed. This will become more apparent when we look at
changeAction () and grabXY ().

That's a lot of explaining for a 27-line function. Let's set startWdh to 25 and move on.

10.2.4 Tracking the Mouse Location

motionListener () enables JavaScript to capture the mouse activities with the onmousemove
event handler. It is very easy to set up. The only difference between the two browsers is that Navigator
needs the captureEvents () method called, and that it implements the mousemove event from
the window. MSIE does so from the document. Here are lines 96-104:

function motionListener () {
if (NN) {
window.captureEvents (Event.MOUSEMOVE) ;
window.onmousemove = grabXY;
}
else {
document.onmousemove = grabXY;

}

Whenever the user moves the mouse, function grabXY () is called. Remember that there are no
parentheses needed to call the function. onmousemove is referring to grabXY, not calling it. The
onLoad event calls motionListener () function in line 132. It is called only once, so mouse
tracking occurs for the duration of the application.

10.2.5 Calling All Icons

When the user clicks an icon, the call to changeAction () essentially brings the icon to life,
making it available for transport. Lines 123-127 have the details:

function changeAction (name, MSIERef) {
activate = lactivate;
activelLayer = name;
imgIdx = MSIERef;
}

Remember variables activate and activeLayer? They were declared long ago at the top of the
document. activate starts out as false, which means—as we'll soon see in grabXY () —not to
reposition any layers according to mouse movement. The first time changeAction () is called,
activate becomes true, putting grabXY () in action. The layer will follow wherever the mouse
pointer may go. The only way to stop this is to click again. This time global variable activate is
changed to its opposite, which is false. The dragging stops.

Remember how changeaction () is designed to pass in two arguments? One is the name of the
layer on which to perform the action, assigned to name. The other is the image index to properly
reference the image in the document . images array for MSIE. This value is assigned to
MSIERef. activeLayeris set to the value of name, and imgldx is set to the value of MSIERef. That's just
what we need to drag these icons around, whichever browser is being used.

10.2.6 Moving the Icons

motionListener () hasitso grabXY () is called every time the user moves the mouse. You
can see what happens in lines 106-121:

function grabXY (ev) {
if (activate) {
if (NN) A
var itemWdh =
refSlide (activelayer) .document.images[0] .width;
var itemHgt =
refSlide (activelayer) .document.images[0] .height;
refSlide (activelayer) .left = ev.pageX - parselnt (itemWdh

/ 2);

refSlide (activelayer) .top = ev.page¥Y - parselnt (itemHgt
/ 2);

}

else {

var itemWdh = document.images[imgIdx].width;

var itemHgt = document.images[imgIdx].height;

refSlide (activelayer) .left = event.x - parselnt (itemWdh
/ 2);

refSlide (activelayer) .top = event.y - parselnt (itemHgt /
2);

}

grabXY () is called, but the only way any of the code in the function runs is if variable activate is
true. The first time the user clicks one of the icon links, activate becomes true. The nested if-else
statement runs. If the user has Navigator, the if statement block is executed. Otherwise, the else block
is executed. Both perform the same function, but for a particular browser.

Both code blocks declare local variables itemWdh and itemHgt. These will determine the left and top
positions of the icon clicked. So why not just set them to the coordinates of the mouse pointer's
current location? After all, that is by nature what we are using to track the mouse movement.

You could, but there's a catch. If you do, that means the mouse-pointer arrow will be at the upper-left
corner of the icon for the duration of the drag. That looks a little odd, but even worse, the user might
be able to move the mouse fast enough to escape the dragging motion and click while not over the
icon. The user might have to click a couple of times to "release"” the icon.

The solution is to position the icon so that the mouse-pointer arrow is always located in the center of
the icon. Regardless of browser, itemWdh and itemHgt represent the respective width and height of the
icon image that the user clicked. You have to get these values differently, depending on the browser.
Notice the difference. Navigator wants it like this:

var itemWdh = refSlide (activelLayer) .document.images[0].width;
var itemHgt refSlide (activelayer) .document.images[0] .height;

To get at the image, you have to reference the appropriate layer, then the document, then
images [0] (it's the only image in the layer). It's not the same in MSIE:

var itemWdh = document.images[imgldx].width;
var itemHgt = document.images[imgldx].height;

MSIE has no layer array. You can access the images straight from the images array. However, you
need to know the correct image, which is referenced by imgldx. Remember, we set that with every call
to changeAction (). Review that function if this doesn't make sense.

We now have a handle on the correct image width and height. All we need is some quick math to
center the mouse pointer over the icons.

Let's tackle this by example. Suppose the user clicks on an icon to begin dragging. At the time of the
click, the mouse-pointer arrow was at 100 pixels right of the document's left border and 100 pixels
below the document's top border (not the screen). Let's suppose that the icon image is 100 pixels in
width and 150 pixels in height. If we set the left and top properties of the icon to 100, 100, that puts
the icon's upper-left corner directly "underneath" the pointer arrow. Nice, but we want the pointer
arrow in the middle of the icon.

You can get to the middle of the icon by subtracting half the image width from the left position and
half the image height from the top position. We know that item Wdh is 100, and itemHgt is 150. Here's
how the new positions break down:

Icon left = pointer arrow horizontal (x) location-(100/2)=100-
(50)=50

Icon top = pointer arrow vertical (y) location-(150/2)=100-
(75)=25

Instead of setting left and top to 100, 100, they are set to 50, 25. This puts the pointer arrow smack in
the center of the icon. To be sure that the division by two comes out with an integer, we'll use
parselnt () to return the integer portion. Look once again at the code in grabXY () . Here's how
this is implemented in Navigator:

refSlide (activelLayer) .left = ev.pageX - parselnt (itemWdh / 2);
refSlide (activelayer) .top = ev.pageY - parselnt (itemHgt / 2);

The event model in Navigator utilizes an event object created on the fly, reflected here in the local
variable ev. The pageX and pageY properties of that event object contain the values for the x,y
coordinates of the active layer. MSIE, on the other hand, has a global event object from which the
coordinates can be accessed:

refSlide (activelayer) .left = event.x - parselnt (itemWdh / 2);
refSlide (activelayer) .top = event.y - parselnt (itemHgt / 2);

Properties x and y contain the equivalent values. Now the icon can be dragged and dropped at will.

10.2.7 After the Documents Load

The real action begins in front.html. Example 10.3 shows the code. The first dozen lines or so contain
style sheet properties. The next couple hundred lines define the JavaScript variables and functions
responsible for capturing all the information for creating, testing, and finally sending the greeting.

Example 10.3. front.html

1 <HTML>
2 <HEAD>
3 <TITLE></TITLE>
4 <STYLE TYPE="text/css">
5 <!--
6
7 TD
8 {
9 font-family: Arial;
10 }
11
12 .Front
13 {
14 position: absolute;
15 left: 25;
16 top: 25;
17 width: 325;
18 border: lpx solid;
19 background: #ffffee;
20 }
21
22 //=-=>
23 </STYLE>
24 <SCRIPT LANGUAGE="JavaScriptl.2">
25 <!--
26
277
28 wvar curGreet = iconlIdx = 0;
29 wvar backgroundIdx = 0;
30 wvar bRef = parent.Back
31
32 function showGreeting(selldx) {
33 if (selldx > 0) {
34 bRef.hideSlide ("greeting" + curGreet);
35 bRef.showSlide ("greeting" + selldx);
36 curGreet = selldx;
37 }
38 }
39
40 function nextBackground() {
41 backgroundIdx = (backgroundIdx ==
bRef.backImgs.length - 1 ?
42 backgroundIdx = 0 backgroundIdx + 1);
43 if (document.all) {
44 bRef.document.background.src =

bRef.backImgs [backgroundIdx].src;

45 }

46 else {

47
bRef.document.layers["Back"] .document.images[0].src =

48 bRef .backImgs [backgroundIdx].src;

49 }

50 }

51

52 function nextIcons () {

53 for (var i = bRef.iconNum * iconIdx; i <
(bRef.iconNum * iconIdx) +

54 bRef.iconNum; i++) {

55 if (1 < bRef.icons.length && !'onCard(i)) {

56 bRef.hideSlide (bRef.icons[i]) ;

57 }

58 }

59 iconIdx = (iconIdx >= (bRef.icons.length /
bRef.iconNum) -1 2 0

60 iconIdx + 1);

ol for (var i = bRef.iconNum * iconIdx; 1 <
(bRef.iconNum * iconIdx) +

62 bRef.iconNum; i++) {

63 if (1 < bRef.icons.length) {

04 bRef.showSlide (bRef.icons[1i]);

65 }

06 else { break; }

67 }

68 }

69

70 function resetForm() {

71 if (document.all) {

72 bRef.hideSlide ("greeting" +

73 document.EntryForm.Greetings.selectedIndex) ;

74 document.EntryForm.reset () ;

75 }

76 else {

77 bRef.hideSlide ("greeting" +

78

document.layers["SetupForm"].document.EntryForm.Greetings.sele
ctedIndex) ;

79
document.layers["SetupForm"].document.EntryForm.reset () ;

80 }

81 }

82

83 function onCard (iconRef) {

84 var ref = bRef.refSlide (bRef.icons[iconRef]) ;

85 var ref2 = bRef.refSlide ("Back");

86 if (document.all) {

87 if ((parselnt (ref.left) >= parselnt(ref2.left)) &&

88

89
parselnt (r

90

91
parselnt (r

92

93

94

95

96

97

98

99
ref2.left

100

101
ref2.top +

102

103

104

105

106
bRef.start

107

108

109

110

(parselnt (ref.top) >= parselnt(ref2.top)) &&

(parselnt (ref.left) + parselnt (ref.width) <=
ef2.left) +

parselnt (ref2.width)) &&

(parselnt (ref.top) + parselnt(ref.height) <=
ef2.top) +

parselnt (ref2.height))) {

return true;

}

}

else {
if ((ref.left >= ref2.left) &&
(ref.top >= ref2.top) &&
(ref.left + ref.document.images[0].width <=
|
ref2.document.images[0] .width) &&
(ref.top + ref.document.images[0].height <=

ref2.document.images[0] .height)) {

return true;

}

}

ref.left = ((iconRef % bRef.iconNum) * 110) +
wWdh;
ref.top = 15;
return false;

}

111 function shipGreeting (fObj) {

112 if

113
field');
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

(fObj.Recipient.value == "") {
alert ('You need an email address in the To:
return false;
}

else if (fObj.Message.value == "") {
alert ("You need to type a Message.");
return false;
}

else if (fObj.Greetings.selectedIndex == 0) {
alert ('You need to choose a Greeting.');
return false;
}

fObj.EntireMessage.value = genGreeting (fOb7j) ;

fObj.BaseURL.value = top.baseURL;
return true;

}

131 function testGreeting (fObj) {

132 var msgStr = '"<HTML><TITLE>Cyber Greeting Test
Page</TITLE>' +

133 genGreeting (fObj) + '<TABLE
ALIGN="CENTER"><TR><TD><FORM>"' +

134 '<INPUT TYPE=BUTTON VALUE=" OK "
onClick="self.close();">"' +

135 '</FORM></TD></TR></TABLE></HTML>";

136 newWin = open('', '', 'width="' + (

137 bRef.backImgs [backgroundIdx] .width + 50) +

138 ', height=600, scrollbars=yes');

139 with (newWin.document) {

140 open () ;

141 writeln (msgStr) ;

142 close () ;

143 }

144 newWin. focus () ;

145 }

146

147 function genGreeting (fObj) {

148 var greetingIdx = fObj.Greetings.selectedIndex;

149 var msg = fObj.Message.value;

150

151 msg = msg.replace(/\r+/g, "");

152 msg = msg.replace(/\n+/g, "

");

153

154 var msgStr = '"<TABLE BORDER=0><TR><TD
COLSPAN=2>' +

155 '<H2>Your Cyber Greeting</H2>To: ' +
fObj.Recipient.value +

156 '

</TD></TR><TR><TD VALIGN=TOP><IMG SRC="'
I

157 top.baseURL + '/images/background' + backgroundIdx
+ '.Jjpg">"' +

158 '<DIV STYLE="position:relative;left:40;top:-
255; font-family:Arial;"' +

159 'font-size:48px; font-weight:bold;">"' +
parent.greetings|[greetingldx] +

160 '</DIV>"';

161

162 var iconStr = '';

163 for (var i = 0; 1 < bRef.icons.length; 1i++) {

164 if (onCard(i)) {

165 iconStr += '<DIV STYLE="position:absolute;left:'
+

166 bRef.refSlide (bRef.icons[i]) .left + ';top:' +

167 (parselInt (bRef.refSlide (bRef.icons[i]) .top) -

168 (document.all ? 140 : 150)) + ';"><IMG SRC="' +

169

top.baseURL + '/images/' + DbRef.icons[i] +

'.gif"></DIV>"';

170
171
172
173
174

}

msgStr += iconStr + '</TD></TR><TR><TD WIDTH=' +
bRef.backImgs [backgroundIdx] .width + '><FONT

FACE=Arial>' + msg +

175
176
177
178
179
180
181
182
183
184
185
186

'</TD></TR></TABLE>";
return msgStr;

}

//==>
</SCRIPT>

</HEAD>

<BODY onLoad="resetForm() ;">

<DIV ID="SetupForm" CLASS="Front'">

<FORM NAME="EntryForm"
ACTION="http://www.your domain.com/cgi-

bin/greetings/greet.pl"

187

METHOD="POST" TARGET=" top" OnSubmit="return

shipGreeting (this) ;">

188
189
190
191
192
193

<INPUT TYPE=HIDDEN NAME="EntireMessage'">

<INPUT TYPE=HIDDEN NAME="BaseURL">
<TABLE CELLSPACING="0" CELLPADDING="5" WIDTH="375">
<TR>
<TD COLSPAN="3"><CENTER><H2>Cyber

Greetings</H2></CENTER></TD>

194
195
196
197
198
199
200
201
202
203
204
205
206

</TR>
<TR>
<TD HEIGHT="40" VALIGN="TOP">
To:
</TD>
<TD COLSPAN="2" VALIGN="TOP">
<INPUT TYPE=TEXT NAME="Recipient" SIZE="25">
</TD>
</TR>
<TR>
<TD HEIGHT="80" VALIGN="TOP">Message: </TD>
<TD COLSPAN="2" VALIGN="TOP">
<TEXTAREA ROWS="7" COLS="25" NAME="Message"

WRAP="PHYSICAL">

207
208
209
210
211

</TEXTAREA>
</TD>
</TR>
<TR>
<TD>Images:</TD>

http://www.your_domain.com/cgibin/greetings/

212
213

<TD HEIGHT="40" COLSPAN="2">
<INPUT TYPE=BUTTON VALUE=" Icons - > "

onClick="nextIcons();">

214
215
216
217
218
219
220
221
222
223
224
225
226

<INPUT TYPE=BUTTON VALUE="Backgrounds - >"
onClick="nextBackground() ;">
</TD>
</TR>
<TR>
<TD>Greeting:</TD>
<TD HEIGHT="40" COLSPAN="2">
<SCRIPT LANGUAGE="JavaScriptl.2">
<!--

var sel = '"<SELECT NAME="Greetings"

onChange="showGreeting (this.selectedIndex);">";

227
i++) |
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

for (var 1 = 0; 1 < parent.greetings.length;

sel += '"<OPTION>' + parent.greetings([i];
}

sel += '</SELECT>';

document.writeln (sel);

//==>
</SCRIPT>
</TD>
</TR>
<TR>
<TD VALIGN=TOP>Sending: </TD>
<TD HEIGHT="40" ALIGN="CENTER">
<INPUT TYPE=BUTTON VALUE=" Test "
onClick="testGreeting(this.form) ;">

<INPUT TYPE=BUTTON VALUE=" Clear "

onClick="resetForm() ;">

244
245
246
247
248
249
250
251
252
253

<INPUT TYPE=SUBMIT VALUE=" Send ">
</FORM>
</TD>
</TR>

</TABLE>
</FORM>
</DIV>
</BODY>
</HTML>

10.2.8 Meet the Variables

Though front.html doesn't contain nearly as many variables as back.html, here are the players in lines
28-30:

var curGreet = iconIdx = 0;
var backgroundIdx = 0;
var bRef = parent.Back;

Variable curGreet represents the index of the select list of greetings. It is originally set to 0. iconldx is
a variable used for tracking the icons by index. It, too, is initially set to zero. The last variable in the
list is bRef, which is simply a reference to the script and window object in the frame named Back. This
will make life much easier.

JavaScript Technique: Differentiating Web Code

The application in this chapter, unlike most of the other chapters, actually has a decent
amount of hardcoded HTML. I suggest you make different codes look different. For
example, in all client-side programming, my HTML is always uppercase. I don't use many
uppercase letters in JavaScript. Anyone who has even glanced at these two languages could
tell the difference, but this makes it stand out even more.

This might not sound like a big deal. However, I picked up the habit from a programmer
who uses a lot of Cold Fusion Markup Language (CFML), a popular server-side scripting
language. All his code contains HTML, CFML, JavaScript, and SQL (Structured Query
Language) for database queries. That's four languages in the same script. Suppose you are
using Active Server Pages. That opens the door for HTML, VBScript, JavaScript, JScript,
and SQL. How many more acronyms do you need?

Needless to say, I developed my own strategy, posthaste.

JavaScript Technique: Cross-Frame Communication

You might remember from Chapter 1, that we used a variable named docObj to refer easily to the document
objectin (parent.frames [1]). It's the same here, but we're referring instead to the window Back.
There are variables declared in back.html that are used in front.html as well. Using a variable to refer to
parent .Back makes writing your code a little easier on the eyes (writing only hRef instead of

parent .Back), and lets you easily reference data from other frames. You'll be doing yourself a favor by
creating such a variable and using it in your code. Consider the following function onCaxrd () which is
defined in frront.html. This function not only uses bRef, but also creates two other "alias" variables named ref’
and ref2 to refer to specific layers. This is what the function looks like:

function onCard(iconRef) {
var ref = bRef.refSlide (bRef.icons[iconRef]);
var ref2 = bRef.refSlide ("Back");
if (document.all) {
var ref = bRef.refSlide (bRef.icons[iconRef]);
var ref2 = bRef.refSlide ("Back");
if ((parselnt (ref.left) >= parselnt(ref2.left)) &&
(parselInt (ref.top) >= parselnt(ref2.top)) &&
(parselnt (ref.left) + parselnt(ref.width) <=
parselnt (ref2.left) +

parselnt (ref2.width)) &&

(parselnt (ref.top) + parselnt(ref.height)
parselnt (ref2.top) +

parselnt (ref2.height))) {

return true;

}

<=

}
else {

if ((ref.left >= ref2.left)
(ref.top >= ref2.top) &&
(ref.left + ref.document.images[0].width <=
ref2.document.images[0] .width) &&
(ref.top + ref.document.images[0].height <= ref2.top +
ref2.document.images[0] .height)) {

return true;

}

&&

ref2.left +

}

[©)

ref.left ((iconRef %
ref.top 15;
return false;

}

bRef.iconNum) * 110) + bRef.startWdh;

Certainly not the longest function I've ever written, but consider the same function without bRef, ref, and ref2.
It's quite a bit longer and more unwieldy:

function onCard(iconRef) {
if (document.all) {

if ((parselnt (parent.Back.refSlide (parent.Back.icons[iconRef]) .left)
>=

parselnt (parent.Back.refSlide ("Back") .left)) &&

(parselnt (parent.Back.refSlide (parent.Back.icons[iconRef]) .top)
>=

parselnt (parent.Back.refSlide ("Back") .top)) &&
(parselnt (parent.Back.refSlide (parent.Back.icons[iconRef]) .left) +
parselnt (parent.Back.refSlide (parent.Back.icons[iconRef]) .width) <=

parselnt (parent.Back.refSlide ("Back") .left) +

parselnt (parent.Back.refSlide ("Back") .width)) &&

parselnt (parent.Back.

parselnt (parent.Back.
<=
parselnt (parent.
parselnt (parent.
return true;

}

refSlide (parent.Back.icons[iconRef]) .top) +
refSlide (parent.Back.icons[iconRef]) .height)

Back.refSlide ("Back") .top) +
Back.refSlide ("Back") .height))) {

}
else {
if ((parent.Back.refSlide (parent.Back.icons[iconRef]) .left >=
parent.Back.refSlide ("Back") .left) &&
(parent.Back.refSlide (parent.Back.icons[iconRef]) .top >=
parent.Back.refSlide ("Back") .top) &&
(parent.Back.refSlide (parent.Back.icons[iconRef]) .left +
parent.Back.refSlide (parent.Back.icons[iconRef]) .document.
images[0] .width <=
parent.Back.refSlide ("Back") .left +
parent.Back.refSlide ("Back") .document.images[0] .width) &&
(parent.Back.refSlide (parent.Back.icons[iconRef]) .top +
parent.Back.refSlide (parent.Back.icons[iconRef]) .document.
images[0] .height <= parent.Back.refSlide ("Back") .top +
parent.Back.refSlide ("Back") .document.images[0] .height)) {
return true;
}
}
parent.Back.refSlide (parent.Back.icons[iconRef]) .left =
((iconRef % parent.Back.iconNum) * 110) +
parent.Back.startWdh;
parent.Back.refSlide (parent.Back.icons[iconRef]) .top = 15;
return false;

}

10.2.9 Displaying the Greetings

Now that the select list of greetings is all set, the user can display the greeting of choice by
highlighting the corresponding option. The onChange event handler in the select list calls
showGreeting (), as follows:

function showGreeting(selIdx) {
if (selldx > 0) {
bRef.hideSlide ("greeting" + curGreet);
bRef.showSlide ("greeting”" + selldx);
curGreet = selldx;

}

The next block of logic worth review appears in lines 225-231. As the browser parses the HTML, the
JavaScript executed here creates a select list using the greetings array defined in index.html. Have a
closer look:

var sel = '<SELECT NAME="Greetings" ' +
'onChange="showGreeting (this.selectedIndex) ;">";
for (var i = 0; i < parent.greetings.length; i++) {
sel += '"<OPTION>' + parent.greetings[i];
}
sel += '</SELECT>';

document.writeln(sel);

showGreeting () expects one argument—the selectedIndex of the Greetings select list. As long
as selldx is not (the greeting would read "Choose One"), showGreeting () hides the currently
visible greeting layer and displays the greeting layer associated with the option selected. The value of
selldxthen becomes the current value of the visible layer, which sets things up for the next time.

10.2.10 Moving Through All the Images

To look through the available background images, the user simply clicks the "Backgrounds - ->"
button until he or she finds the one that is most suitable. Clicking this button calls function
nextBackground (), listed in lines 40-50:

function nextBackground() {
backgroundIdx = (backgroundIdx == bRef.backImgs.length - 1 ?
backgroundIdx = 0 : backgroundIdx + 1);
if (document.all) {
bRef.document.background.src =
bRef.backImgs [backgroundIdx].src;
}
else {
bRef.document.layers["Back"].document.images[0] .src =
bRef.backImgs [backgroundIdx] .src;

}

The background images are preloaded in lines 40-44 of file back.html. Since each is named according
to the background(.jpg, backgroundl.jpg, background?.jpg, etc., convention, we can use an integer,
backgroundldx, along with string concatenation to iterate through the images. When the document
loads, backgroundldx is set to 0. Each time the user clicks "Background - ->," that value is increased
by 1 until there are no more images to reference. In other words, when backgroundldx reaches
top.Back.backImgs.length — 1,itis reset to to start again from the beginning.

We can use this newly determined value to change the src property of the correct /mage object. Since
the background image was placed in a layer for more accurate positioning, we have to resort to
accessing the disparate DOMs of NN and MSIE in different ways.

For MSIE, the image is considered a property of the document object, like so:
top.Back.document.background.src

For Navigator, you have to go to the document object within the layer. Since the layer is named Back,
reaching the desired Image looks like this:

top.Back.document.layers["Back"] .document.images[0] .src

Once the syntax has been determined, you just set the path to the src property of the backlmgs Image
using backgroundldx. By the way, this is not the first time I've used this method of iteration. You can
find similar examples in Chapter 3 and Chapter 8. Now the user can cycle through the backgrounds.
We need something similar for the icons. That's where nextIcons () comes in, lines 52-68:

function nextIcons () {
for (var i = bRef.iconNum * iconIdx; 1 < (bRef.iconNum *
iconIdx) +
bRef.iconNum; i++) {
if (1 < bRef.icons.length && !'onCard(i)) {
bRef.hideSlide (bRef.icons[1]);
}
}
iconIdx = (iconIdx >= (bRef.icons.length / bRef.iconNum) -
1?20
iconIdx + 1);
for (var i = bRef.iconNum * iconIdx; 1 < (bRef.iconNum *
iconIdx) +
bRef.iconNum; i++) {
if (1 < bRef.icons.length) {
bRef.showSlide (bRef.icons[1i]);
}
else { break; }

}

The user iterates through these as with the backgrounds, but there is more to it than changing the src
property of a single image. Instead, each icon is an image in its own layer. So clicking the "Icons - ->"
button is a little more involved. Not only do we have to hide each layer currently showing, but we
have to decide which layer to show, and we need to do this in groups.

It doesn't make much sense for the user to click 20 times to see the 20 available icons. That can be
monotonous and a waste of browser real estate. You can see from the earlier graphics that I've chosen
to display the icons in groups of four. Whatever number you choose, it is represented by the value of
variable iconNum set at line 24 of back.html. Since this is front.html, the script refers to it as
top.Back.iconNum. The idea is to display iconNum icons each time the user clicks "Icons - ->."
If you have 20 icons, the user can expect to see five groups of icons. Of course, we also want to make
it easy to add and subtract icons at will. If you remove one icon, the user will see four groups each of
four icons and one group of three. Meanwhile, you don't have to make any changes in
nextIcons().

It's fairly easy. Start with the first four, then hide them and display the next four, and so on until you
run out of icons. Then you start over. So the English translation is: hide four old ones, then show four
new ones. Let's take a closer look at the JavaScript version. To identify each group, we'll use variable
iconldx, originally set to 0. The first group is associated with 0; the second is associated with 1, and so
on.

As soon as the user chooses "Icons - =>," we have to hide whatever icons are in the group associated
with iconldx :

for (var 1 = bRef.iconNum * iconIdx; 1 < (bRef.iconNum *
iconIdx) +
bRef.iconNum; i++) {
if (i < bRef.icons.length && !onCard(i)) {
bRef.hideSlide (bRef.icons[i]);

Variable i is set to 1 conNum * i conIdx. i will be incremented by 1 as long as it is less than
(iconNum * iconIdx) + iconNum. If that seems confusing, think about what happens when
the document finishes loading. iconNum is 4 and iconldx is 0. That means that when this function is
first called, i will be 0, 1, 2, and 3. The next time, iconldx will be 1 (that happens later in the function),
soiwill be 4, 5, 6, and 7. And so it goes.

Variable i holds an integer that will be used to access an element in the icons array. Why? Each icon is
its own layer, correct? The code in back.html names each layer according to the elements in the icons
array. icons [0] refers to the bear layer, for example.

All we need to do is hide the layers associated with 0, 1, 2, and 3, except if the user has dragged one of
those icons on to the background display area. Function onCard () handles that, which we'll cover
shortly. For now, let's assume that none of the icons has been moved so we can get through the
function more easily. With that in mind, we just call hideSlide from back.html and pass in the right
layer name, accessed using 7, no less:

bRef.hideSlide (bRef.icons[i]);

The old icons are out, and we need to make way for the next group. Before we do though, we have to
make sure that we aren't already at the last group of the icons. If so, we have to set iconldx to again.
Otherwise, iconldx will be incremented by one. Lines 59-60 do the trick:

iconIdx = (iconIdx >= (bRef.icons.length / bRef.iconNum) - 1
2 0
iconIdx + 1);

One more iteration and the new group will be visible. Lines 61-67 contain a for loop that takes care of
that:

for (var 1 = bRef.iconNum * iconIdx; 1 < (bRef.iconNum *
iconIdx) +
bRef.iconNum; i++) {
if (i < bRef.icons.length) {
bRef.showSlide (bRef.icons[1i]);
}
else { break; }

}

The plan is to make iconNum iterations and reveal the next group of icons. We previously incremented
or reset iconldx in line 59-60, so all that's left is to make almost the exact same for loop as we did to
hide the old group. This time, though, we'll use showS1ide () instead. There's a catch, however.
Remember that the plan is to make iconNum iterations, but what if this is the last group before starting
over again and there aren't iconNum icons left? If you have 20 icons, and you want to show four at a
time, there will be five groups of four. However, if you have 19 icons and you want to display four at
a time, there are still five groups, but the last group will contain only three icons. That's why we need
the extra if-else statement to test if it is less than the number of total icons. If so, nextIcons ()

makes the icon visible. Otherwise, there aren't any more icons in that group, the loop is broken with
break.

10.2.11 Keeping Dragged Icons in Place

As you just read, iterating through the icons involves hiding some old ones and showing some new
ones. That works pretty well except when the user has dragged one of the icons over to the
background display area. We want to leave it where it is no matter what. Function onCaxrd () works
hard to determine whether each icon it examines should be left alone or hidden and returned to its
rightful position. Here are lines 83-109. onCard () doesn't do any hiding or showing. It returns true
or false so that other functions can take action accordingly:

function onCard(iconRef) {
var ref = bRef.refSlide (bRef.icons[iconRef]);
var ref?2 = bRef.refSlide ("Back");
if (document.all) {
if ((parselnt (ref.left) >= parselnt(ref2.left)) &&
(parselnt (ref.top) >= parselnt(ref2.top)) &&
(parselnt (ref.left) + parselnt (ref.width) <=
parselnt (ref2.left) +
parselnt (ref2.width)) &&
(parselnt (ref.top) + parselnt(ref.height) <=
parselnt (ref2.top) +
parselnt (ref2.height))) {
return true;
}
}

else {
if ((ref.left >= ref2.left) &&
(ref.top >= ref2.top) &&
(ref.left + ref.document.images[0].width <= ref2.left

+

ref2.document.images[0] .width) &&

(ref.top + ref.document.images[0].height <= ref2.top +
ref2.document.images[0] .height)) {

return true;
}
}
ref.left = ((iconRef % bRef.iconNum) * 110) + bRef.startWdh;

ref.top = 15;
return false;

}

Before looking more closely at onCaxrd (), we need to know what qualifies an icon as being over
the background display area. In the simplest case, all edges of the icon (even if the edge is transparent)
must be on or inside al/l the boundaries of the background image. Figure 10.8 demonstrates what stays
and what goes.

Figure 10.8. Out of bounds: only the judo kid stays

Assuming that the whitespace is the background display area, the little guy to the right is way off. The
cactus is close, but a couple of its edges go outside the border of the background image. The cactus,
too, must be returned. Only the judo kid will stay in view. Here's how it all works.

Everything is done according to pixel position. Since the background is contained within a layer, we
can use DHTML to determine its left and top positions in relation to the document's left and top
borders. Since the layer contains only one image, we can use the width and height properties of that
Image object to accurately determine the width and height of the layer. The same holds true for the
icons. We'll use the left and top properties of the layer and the width and height properties of the
Image. This function has a couple of nested if statements, but the outermost if and else clauses
basically perform the same action—one for MSIE; one for Navigator. Here is the first half of
onCard (), the part that works for IE:

if (document.all) {
if ((parselnt (ref.left) >= parselnt(ref2.left)) &&
(parselnt (ref.top) >= parselnt(ref2.top)) &&
(parselnt (ref.left) + parselnt (ref.width) <=
parselnt (ref2.left) +
parselnt (ref2.width)) &&
(parselnt (ref.top) + parselnt (ref.height) <=
parselnt (ref2.top) +
parselnt (ref2.height))) {
return true;

}

The background image has four edges. So does each icon. Therefore, we need four tests to make sure
no icon edge exceeds a background edge. Here is the English version of the hefty if statement in lines
87-94:

IF the left edge of the icon is touching or farther right than the left edge of the background,
AND the top edge of the icon is touching or below the top edge of the background,

AND the right edge of the icon is touching or farther left than the right edge of the
background,

AND the bottom edge of the icon is touching or above the bottom edge of the background,
then

RETURN TRUE.

Determining the left and top edge positions of each layer is fairly simple. Just use the /eft and top
properties of each layer. Determining the right and bottom edge positions of each layer isn't much
more difficult. The right edge is simply the left position plus the width of the layer. The bottom is just
the top position plus the height.

By now, you have probably noticed two things. First, variables ref and ref2 have been set to the layers
of the icon and background, respectively. I did that only to make the code a little easier to read.
Second, the function parseInt () is everywhere. MSIE returns the left and top properties as
strings such as 250px instead of 250. parseInt () converts the string value to a number, so we can
do the math.

The outermost else clause does the same thing for NN. You don't really need the calls to
parselnt () because Navigator returns the top and left properties as a number.

else {
if ((ref.left >= ref2.left) &&

(ref.top >= ref2.top) &&
(ref.left + ref.document.images[0].width <= ref2.left +
ref2.document.images[0] .width) &&
(ref.top + ref.document.images[0].height <= ref2.top +
ref2.document.images|[0] .height)) {
return true;

}

So, if the icon in question passes all four tests, both browsers return true. If not, see what happens:

ref.left = ((iconRef % bRef.iconNum) * 110) + bRef.startWdh;
ref.top = 15;
return false;

onCard () realizes that the icons are not on the background display and returns them to their
original position. All icons have the same top position of 15 pixels. The left position of each, however,
depends on the order in which it comes in the group. No problem. A quick calculation with variables
iconRef and iconNum can determine where the original position of the icon was. As it turns out, each
icon image is 100 pixels wide. There are 10 pixels of horizontal space between each, so the
positioning is fairly easy. Last of all, the function returns false.

10.2.12 Testing the Work

It would be nice if the sender could preview what the recipient was going to get. Choosing "Test"
opens a remote browser window to do this. Lines 131-145 lead the way:

function testGreeting (fObj) {

var msgStr = '"<HTML><TITLE>Cyber Greeting Test Page</TITLE>'
+
genGreeting (f0Obj) + '<TABLE
ALIGN="CENTER"><TR><TD><FORM>"' +
'<INPUT TYPE=BUTTON VALUE=" OK "
onClick="self.close();">" +
'</FORM></TD></TR></TABLE></HTML>"';
newWin = open('', '', 'width=' +
(bRef .backImgs[backgroundIdx] .width +
50) + '",height=600, scrollbars=yes');
with (newWin.document) {
open () ;
writeln (msgStr) ;
close () ;
}

newWin.focus () ;

}

testGreeting () has only two responsibilities: open a window wide enough to display the
message, then write whatever content it is passed to that new window's document stream. The content
is stored in local variable msgStr. It consists of a little bit of static HTML, and the rest is the dynamic
greeting content, which comes from function genGreeting (), which, in turn, is on deck. msgStr
also contains at the end of it a form with a button to close the remote window. Call it a nice touch.
Once msgStr is loaded with goodies, testGreeting () opens a window that is 50 pixels wider
than the width of the background image and arbitrarily 600 pixels high. The function writes the
contents to the document stream, applies focus to the newly opened window, and this one's history.

10.2.13 Creating the Actual Greeting

testGreeting () provides a window for the greeting preview; however, genGreeting ()
creates the work that goes inside.

Here are all 31 lines, 147-177:
function genGreeting (fObj) {
var greetingldx = fObj.Greetings.selectedIndex;

var msg = fObj.Message.value;

msg = msg.replace(/\r+/g, "");
msg = msg.replace (/\n+/g, "

");

var msgStr = '<TABLE BORDER=0><TR><TD COLSPAN=2>"' +
'"<H2>Your Cyber Greeting</H2>To: ' + fObj.Recipient.value
+
'

</TD></TR><TR><TD VALIGN=TOP><IMG SRC="' +

top.baseURL +
'/images/background' + backgroundIdx + '.Jjpg">' +

'<DIV STYLE="position:relative;left:40;top:-255;font-
family:Arial;"' +

'font-size:48px; font-weight:bold;">"' +

parent.greetings[greetingldx] + '</DIV>"';

var iconStr = "'
for (var i1 = 0;
if (onCard(i))
iconStr += '<DIV STYLE="position:absolute;left:' +
bRef.refSlide (bRef.icons[i]) .left + ';top:' +
(parselInt (bRef.refSlide (bRef.icons[1]) .top) -
(document.all ? 140 : 150)) + ';"><IMG SRC="' +
top.baseURL +
'/images/' + DbRef.icons[i] + '.gif"></DIV>';

i < bRef.icons.length; i++) {
{

}
}

msgStr += iconStr + '</TD></TR><TR><TD WIDTH=' +
bRef .backImgs [backgroundIdx] .width + '>'
+ msg +
'</TD></TR></TABLE>"';
return msgStr;

}

This function is a little thorny, but we can makes things much easier by examining the function in
terms of the items it is required to provide. Think about it. genGreeting () only needs to return
HTML to represent the following:

Text that displays the email of the recipient
The background image

The correctly positioned greeting

The correctly positioned icons

The sender's text message

That isn't very much, but before creating the content, we have to do a little housekeeping. See lines
148-152:

var greetingldx = fObj.Greetings.selectedIndex;
var msg = fObj.Message.value;

msg = msg.replace (/\r+/g, "");

msg = msg.replace (/\n+/g, "

");

We declare two local variables, greetingldx and msg. greetingldx is the selectedIndex of the
"Greetings" select list. msg represents the message the user enters in the Message field. Since the
greeting will be displayed as HTML, newline characters aren't interpreted. That means any breaks
must be replaced with
 tags. Now we can start creating the greeting. Let's begin from the top of
the greeting and work down. Lines 154-160 get things going:

var msgStr = '<TABLE BORDER=0><TR><TD COLSPAN=2>"' +

'<H2>Your Cyber Greeting</H2>To: ' + fObj.Recipient.value +

'

</TD></TR><TR><TD VALIGN=TOP><IMG SRC="' +
top.baseURL +

'/images/background' + backgroundIdx + '.Jjpg">' +

'<DIV STYLE="position:relative;left:40;top:-255;font-
family:Arial;"' +

'font-size:48px; font-weight:bold;">" +
parent.greetings[greetingldx] +

'</DIV>"';

Everything is contained within a table, which makes life easier. So local variable msgStr is set to the
beginning of a table. The first row contains a header followed by the first of the four items required—
the recipient's email address. That is located in the value of the Recipientfield of the form named
EntryForm. The background image comes in the next row. Using variables baseURL and
backgroundldx, it isn't hard to create a string that represents the path to the appropriate background
image. Remember that if the Greetings select list has a selectedIndex of 4, then background4.jpg is
currently in view.

Notice that there is no DHTML to position the background image on the page. Since the header and
the greeting will likely only be one line apiece, this really wasn't needed. We know that the image will
wind up somewhere near the top of the page with a left alignment. In the last few lines of this code,
the greeting chosen by the sender is positioned relative to the background image placed just before it.
The left is set to 40 pixels. The top is set to -255. Those are custom settings that compensate for the
position of the background image as shown in back.html and the actual placement of the background
image in the greeting. When you add your backgrounds, you'll probably have to eyeball this between
the look on back.html and the preview document, adjusting the left and top positions until they match.
After that, you won't have to worry about it until you make any significant changes, such as modifying
the background image size.

Three required items down, two to go. The next "item" is the icons that the user dragged into the
display area. Lines 162-171 accommodate:
var iconStr = '
for (var i1 = 0;
if (onCard(i))
iconStr += '<DIV STYLE="position:absolute;left:' +
bRef.refSlide (bRef.icons[i]) .left +
';top:' + (parselInt (bRef.refSlide (bRef.icons[i]) .top) -
(document.all ? 140 : 150)) + ';"><IMG SRC="' +
top.baseURL + '/images/' + DbRef.icons[i] +
'.gif"></DIV>";
}
}

i < bRef.icons.length; i++) {
{

Local variable iconStr, initially set to an empty string, will hold the URLs and positions of all icons
within the background display area. The procedure is fairly easy: iterate through all the icons. For
each one that is within the display area, create the HTML required to duplicate that icon (the image)
on another page in the same location relative to the background image (the left and top positions).
Remember that function onCard () determines the icon placement and hence, its eligibility.

The code generated for each is an TMG tag surrounded by DIV tags. The DIV tag is assigned a
STYLE attribute and assigned an absolute left position of the current icon's left position and an
absolute top position of the current icon's top position, minus 140 or 150 pixels, depending on whether
the browser is Internet Explorer or Navigator. Two questions, right?

1. Why can I use the left position of the icon as it has yet to offset the top position by 100 or so
pixels?
2. Why are the pixel offsets different for each browser?

Good questions.

First think of the whereabouts of the background image on the greetings interface. It's about halfway
down the page, depending on your monitor resolution. Now consider the background image in the test
greeting. It's near the top of the page, just under the heading and the recipient's email address. The
pixel offset compensates for the difference. Had the background image appeared in the same position
in both the interface and the test greeting (which is accurate for the real greeting as well), this extra
positioning wouldn't be necessary. As for the difference in pixel offsets between browsers, each
appears to position its layers slightly differently. The 10-pixel difference corrects that.

After creating a layer for each positioned icon, iconStr is concatenated to msgStr, along with some
closing HTML and msg, to make a complete Cyber Greeting embedded within a table:

msgStr += iconStr + '</TD></TR><TR><TD WIDTH=' +
bRef .backImgs[backgroundIdx] .width + '>' +
msg + '</TD></TR></TABLE>'; return msgStr;

msg is inserted to a data cell the same width as the background image for nicer formatting. This entire
string is then returned.

10.2.14 Sending It Off

The user has crafted a snappy greeting, tested it several times, and is finally satisfied. Choosing
"Send" is all that remains. Doing so calls the function shipGreeting (). Hereitis in lines 111-
129:

function shipGreeting (fObj) {

if (fObj.Recipient.value == "") {
alert ('You need an email address in the From: field');
return false;
}

else if (fObj.Message.value == "") {

alert ("You need to type a Message.");
return false;

}
else if (fObj.Greetings.selectedIndex == 0) {
alert ('You need to choose a Greeting.');

return false;

}
fObj.EntireMessage.value = genGreeting (f0bj) ;
fObj.BaseURL.value = top.baseURL;

return true;

}

This function is fairly short and is called via the onSubmit event handler in line 187. Not only does
shipGreeting () prepare the form for submission to the web server, it also performs quick
validation. As long as the sender has followed some simple instructions, things will go smoothly. The
only rules I've imposed are that the sender must enter something both for an email address and for a
message, and choose a greeting from the select list. You might consider being stricter, but these will
do for now.

If the entered information passes all three "rigorous" tests, shipGreeting () changes the value
of three hidden fields located at lines 188-190. Originally set as empty strings, fields EntireMessage
and BaseURL are set to information that the server-side script will need. To keep the server-side script
from having to create the HTML for the greeting, EntireMessage.value is set to the output
of genGreeting ().

The other piece of information that the script will need on the other side is the base URL that will help
point to all the greetings, background images, and icons. So BaseURL. value is set to the value of
top.baseURL. After that happens, the form is submitted to the URL assigned in the ACT ION
attribute greet.pl. You can see that in line 186.

JavaScript Technique: Optimizing Your
Functions

How do you know how much code to put in one function before it gets too large? When do
you say to yourself, "OK. I'll stop here and create the rest of this in another function"? I've
never been able to devise a set of guidelines for that, but I always try to get the most use
from the least amount of code. Here is what I mean. Consider function

genGreeting (). It helps generate the code for both the greeting preview and the actual
submission. How about onCard () ? This is integral to determining the icon position
when the user is clicking through all the available icons. It also plays a part in creating code
for the preview and the submission. In most cases, you can gain this advantage by making
the function smaller. That isn't always possible or efficient, but it's a great asset when it is.

10.2.15 Note

A final note before we move on to the server-side script. resetForm () in lines 70-81 just keeps
the entry form clean every time the FORM is loaded for the first time or refreshed. It is called with the
onLoad event handler in the BODY tag. With that in mind, let's see what happens when our app hits
the web server.

10.3 The Server Side

Like the Shopping Cart application in Chapter 8, this application requires some type of server-side
mechanism. The greetings the user creates are generated using JavaScript on the client side. This
information is then sent back to the web server to a script in an application-serving environment, such
as Active Server Pages, Server-side JavaScript, or Cold Fusion.

This script environment will read the information that the user submitted, then create a unique file and
write the greeting code inside it. The unique filename is the same one sent in the email message to the
recipient. The file will be ready and waiting when the recipient follows the link in his or her email
message.

After that, the script will print a response to the greeting sender to confirm that all is well, and more
importantly, to prepare a ready-made HTML form that the creator submits to send email to the
recipient.

Now, I realize you picked up this book for JavaScript, but the script I've provided is written in Perl
and is short and sweet. Besides, Perl is a relatively easy and powerful language and is quickly
becoming the WinNT scripting language of choice. See Appendix C, for more information on setting
up Perl to run the scripts and an explanation of how the two Perl scripts for the applications of this
book work.

10.4 Potential Extensions
Let's look at a few ways to take this application further.

10.4.1 Add a Link Back to Cyber Greetings

Why not add a link back to the Cyber Greetings site? You can do so by adding the following code to
function genGreeting () in front.html:

+ ' Go To Cyber
Greeting"';

This assumes that index.html, front.html, and back.html are all located in the directory referred to in
baseURL. If not, replace top .baseURL in the above statement with the hardcoded URL you want
to use.

10.4.2 Add Image Themes

This application is begging for image themes. Christmas, Valentine's Day, St. Patrick's Day,
Halloween, just about anything you can think of. No need to focus on holidays. You can use seasonal
backgrounds and matching icons, get well or happy birthday themes, or just about any other topic you
want to include.

10.4.3 Banner Ad Campaigns

If you're going to let people use this service for free, why not generate a little revenue? In your
shipGreeting () function, you could use some logic to choose a banner and embed the TMG tag
code at the bottom of the greeting. If you use themes as mentioned previously, you could assign
banners that correspond to the theme chosen.

10.4.4 Make the Greetings More Interactive

This application uses JavaScript events to create custom greetings. Custom, yes, but not very
interactive. Try sending people greetings with image rollovers or things to click or move around. If

you have a cool Java applet or two, you could offer those as greetings as well. People love useless
stuff to play with; that accounts for thousands of web sites.

Chapter 11. Context-Sensitive Help

Application Features JavaScript Techniques
. C ® Controlling Remote
[]
Online Help Application Windows
® JavaScript "Intelligence" Automatically Loads Content Related |®Using Links Without the
to Current Screen Click
° .

®Extra Info Display with Mouseovers Tell‘sgers Without LAYER

No matter how easy you think you've made a program to use, someone will inevitably get stuck or
have a question. Some user questions have obvious answers. Others can trip you up, and you're the
one who wrote the thing! Depending on the quality, online documentation can either get users back on
track quickly or derail them even further. The help files have to be easy to use, too. That's what this
application is all about.

Not just easy for the user to navigate, but easy for you to set up and maintain. This is another one of
those applications that, in and of itself, serves little purpose. Yet just like the application in Chapter 7,
the code within it can be dropped into one of your applications to work for you.

I named the application Select List JavaScript; it demonstrates some of the visually unimpressive but
useful things you can do with JavaScript and selectlists. Figure 11.1 shows the opening interface.

Figure 11.1. Select List JavaScript

R [
Gl Ed Yaw e Corencsm ek

& 4 4 =2 = o =
Eu Faliad Howa Fewck Helimss Pl Baerly
JF Boemrsba B B e TN T P b s T VT s o v b =] A ety M

T o wana S ookl O regh 1 velraPaos S Dosnked] el

SELECT List JavaSeript

Changing Background Colors

af | =k Dizcvmant Doea i e D [
| [EELECT List davador... 7 1o

This application shows how selectlists can change background color, load documents, and populate
other select lists, all with a little JavaScript. While this serves little more than academic value,
choosing the bottom link, labeled "Help," opens a remote window with documentation pertaining to
changing the document background color. Look at Figure 11.2.

Figure 11.2. Explaining the process of changing the background color

T ., |||
Ll R

4 = A A & = S F Wl
[Faked Hore twech Hemas Pl Sk
o Dockreabs B G e TR 1V oA A 93T a1 e Lk i conkd_ vl re, ben jqf,."nmﬁw-d

TN e b

Cheangging T Backrou Colar LECT List JavaScript

This EUECT Wi fiea ks B e bacsgsogrdin

Changing B| aresfeighicoies Thei P vy o e
i e At i es secsreng fa e e of

fes DPTION nedeciesd Faofm fhat b izcn in

v =] Fam i SEECT ol s BE s

thirga

= SILCT Lk Livvui cope - Hstoe dhe e oo [E wF
e SELECT Lot dmeaticnpd - [[Fmbntes - Mobscops & 12T

Not exciting, I'll grant. However, clicking the "URL Directory" link (which loads the URL Directory
page), then clicking "Help" loads the documentation for the URL loading procedure. See Figure 11.3.
Pretty cool. Now users don't have to search for the right help file. Chances are, they have a question
about what is currently in view. The help files are now context-sensitive.

Figure 11.3. Same link, different documentation

Ol L& Wew Qe Coranricstm [k

o+ = A A =& o= S &
Eacki Faksd Hora Cfewch Hemwoe Pmb Secwlr
o Bwirrabn & By b T R | P e o T b T kel retan b 3{]"..'MHM
TS e [N 7 T5) | e
T AL Directon LECT List JavaScript

This SEECT Nei fima bwys wveral LRLs of
LRL Diractc| scpizrzears enginos, The TEAT vl of
@ b P TIO | ur ed B reae ca o id

Thita prite vk Sppl Kb0n B N &S soe -sh
vl i SpvaSiana | Landatsn s T kel &

HalHal o CETICN b ol S K E T DR A

Lysas B R0 1200 el UL T 10 mrs ponvd i)

P search asgine. Tre fame o T right |5 men

At 518 wesden vt the conumael s et LIFL

Eanal

S
ol (~br Dacuwant Doma G e A0 R 2
pvea | PESELECT Lmdavaionnd - |[Flmicia - b 3 12de

It's as if the application has some extra intelligence. It always "knows" where the user "is." As an
added touch, some of the documentation text is hyperlinked to other information for follow-up.
However, the user doesn't have to click on the link to load another document. Simply passing the
mouse-pointer arrow over any link reveals the information in a highlighted layer. See Figure 11.4.

Figure 11.4. Extra info, no waiting

Bl Lol =]
Bt Bl Waw Gi Coreisu ek
i i 0 | 1 : = 1 F H .
t-.:ln. % -i.éu o :::.r "-_:d-“ Hird u-‘nlrh d E
T b vockreaka & ol TR TP oA b e D o Lt S oon_ v e beri ;|-J'._"M|Rn-u
© 5 s TR T 1]
T AL Directory LECT List JavaSeript

Tip BELIECT NE1 e BB PvOes LR 0
LIRL DHreche| mopaser csars enginss, Thes TEAT sl of

This parbcple spplkaton i in s Eameast ofh

el awier ;

o 15al 3 botter aaroagni dor Uil .::,"',_':1';'

¢ roc [y b

s Soarch asging. The e 0 o right (5 Ben

Frivense ceaden] wah e nauranl of Featl Py

Earibe

AT
o b Bacumant Goma e M A0 o
Merea| [ESELECT Ldwvsiond - ||t mbein ERRTE-T ¥

Now the user doesn't have to go back to the original document after following the link. Removing the
mouse-pointer arrow from the link hides the layer again. This functionality can be applied to almost
any application for which users need help.

11.1 Execution Requirements

You'll need MSIE or Navigator 4.x or higher because of the DHTML and use of the new event model.
Make sure that you have a monitor with a resolution of at least 1024 x 768. It's not mandatory, but
otherwise the help window will cover much of the main window content.

11.2 Syntax Breakdown
This application is contained in a frameset with a number of files. Here is a quick rundown:
index.html
Top level; holds the frameset and top-level variables
top.html
Displays Select List JavaScript header
nav.html
Displays the page links
background.html
Changes background colors
multiselect.html

Populates one select list based on selections in two others

urldirectory.html

Loads search engines based on select list option
help/background.html

Help document associated with background.html
help/multiselect.html

Help document associated with multiselect. html
help/urldirectory.html

Help document associated with urldirectory.htm!
help/help.js

JavaScript source file.

It's not likely that you'll want to get neck-deep into the logic behind all that that select list functionality
in background.html, multiselect.html, and urldirectory.html. It's really easy to pick up, and that isn't
what this chapter is about. Make sure you at least take a look at repopulating select lists in
multiselect.html, though. It is handy. Instead, let's make our way through this in two steps:

1. Context-sensitive help: loading the right document in the help window (in nav.html)
2. Showing and hiding the extra information: getting the mouseovers running (in kelp/help.js)

11.2.1 Context-Sensitive Help
This one is pretty easy. It all happens in nav.html. Example 11.1 shows the code.

Example 11.1. nav.html

1 <HTML>
2 <HEAD>
3 <TITLE>tOp.html</TITLE>
4 </HEAD>
5 <STYLE TYPE="text/css">
6 <!--
7
8 A
9 {
10 text-decoration: none;
11 }
12
13 BODY
14 {
15 font-family: Arial;

16 text-align: center;
17 }

18

19 //-->

20 </STYLE>

21 <SCRIPT>

22 <!--

23 wvar helpWin;

24

25 function inContext (currFile) {

26 var start = currFile.lastIndexOf('/"') + 1;

277 var stop = currFile.lastIndexOf('."');

28 var helpName = currFile.substring(start, stop);

29 if (helpWin == null || helpWin.closed) {

30 helpWin = open('help/' + helpName + '.html',
'helpFile',

31 'width=' + top.wdh + ',height=' + top.hgt +

32 ',1eft=100, top=100,scrollbars=no');

33 }

34 else {

35 helpWin.location.href = 'help/' + helpName +
'.html"';

36 }

37 helpWin. focus () ;

38 }

39

40 //-->

41 </SCRIPT>

42 <BODY>

43

44 Background
Colors

45

46 URL
Directory

47

48 Multiple
SELECT Lists

49

50 <A HREF="javascript:
inContext (parent.WorkArea.location.href) ; ">Help

51

52 </BODY>

53 </HTML>

Function inContext () works on one premise: for each document for which you want to display
help, create the help documentation in a file of the same name with an ./i#tm/ extension. That is,
background.html, the file that changes background colors, has a corresponding file in the
help/directory named background.html. Lines 25-38 have the details:

function inContext (currFile) {

var start = currFile.lastIndexOf('/') + 1;

var stop = currFile.lastIndexOf('.");

var helpName = currFile.substring(start, stop):;
if (helpWin == null || helpWin.closed) {

helpWin = open('help/' + helpName + '.html', 'helpFile',
'width=' + top.wdh + ', height=' + top.hgt +
', 1eft=100, top=100, scrollbars=no') ;
}
else {
helpWin.location.href = 'help/' + helpName + '.html';

helpWin.focus () ;
}

This function expects a URL as an argument. currFile could be an absolute URL such as
http://some.place.com/some/document.html. currFile could also be a relative URL with a query, such
as document.cgi?search=all. From each URL, we need only the filename, not the host and domain or
upper-level directories before it, and not the file extension or query string after it. In other words, we
need everything after the last slash (/), if there is one, and up to but not including the last period in the
URL (assuming that every filename has an extension, there will always be one).

Therefore, variable start gives us the index of the last forward slash + 1. Suppose there isn't a forward
slash in the URL. No problem. The return from lastIndexOf () if no forward slash is
encountered is -1. Add 1 to that, and you have 0. That's where we need to start. Variable stop is set to
the index of the last instance of a period in the URL. Now the substring () method in line 28
gently plucks the desired substring from the URL and assigns it to he 1 pName. Have a closer look:

var helpName = currFile.substring(start, stop):;

The next few lines open a window using helpNamein accordance with the help file document
convention. The first parameter of the open () method in lines 30-32 dynamically points to the
correct help file:

helpWin = open('help/' + helpName + '.html', 'helpFile',
'width=" +

top.wdh + ',height=' + top.hgt +
', 1eft=100, top=100, scrollbars=no') ;

Notice that the width and height of the remote window is determined on the fly using variables
top.wdh and top.hgt, both set to 300. These two variables are located in index.html. Since the
application refers to these variables in other parts of the app, I put them there to capitalize on the easy
top reference. You'll see why we use the variables to determine the window dimensions a little later.
The only thing you need now is a good link to call the function. Here it is in line 50:

<A HREF="javascript:
inContext (parent.WorkArea.location.href) ; ">Help

http://some.place.com/some/document.html

Following this link calls inContext (), and passes the URL of the document currently loaded in
the frame named WorkArea. As long as you have a like-named document in the Aelp/ directory, your
new pop-up help system can expand or contract to accommodate just about any program.

JavaScript Technique: Controlling Remote
Windows

How many help windows does the user really need open at a time? One is a pretty good
guess. Here's how to keep it that way. Did you notice that global variable helpWin is set to
the remote window object after it is declared without being initialized? In other words,
helpWinis declared but set to nothing, giving it a value of null. Then the help window is
opened by setting the return equal to previously null help Win.

The first time the user clicks for help, the following code "decides" whether to open a new
one or set the location of the existing open window:

if (helpWin == null || helpWin.closed) {
helpWin = open('help/' + helpName + '.html',
'helpFile',

'width=' + top.wdh + ',height=' + top.hgt +
',1eft=100, top=100, scrollbars=no') ;
}
else {
helpWin.location.href = 'help/' + helpName + '.html';
}

If helpWinis null, then it has not been instantiated with the return of the open () method.
inContext () then opens a fresh new remote window. If help Winis already an object,
then as a window object, help Wincontains the closedproperty, which is true if the window is
closed and false otherwise. Therefore, if help Win.closedis true the user has already opened
and closed the remote window. That means we'll need another.

If helpWin.closedis false, the remote window is still open, so line 35 simply loads the
appropriate document without calling open (). So what's the big hoohah? If the user
clicks "Help" again before closing the window he or she just opened, and another pops up.
Click it again, and there will be three. Who needs that? Checking for the null value and the
closedproperty can prevent this. It doesn't matter if the user has the window open.

s This method of yielding the filename by way of / and . is not foolproof. For
s example, URLs that point to default filenames will break the system, such as
‘- &~ hup://web.net.com/ or ../. What kind of file name are you going to reference

with that? Make sure you modify your code for these URLs if you plan on

using them.

g

11.2.2 Showing and Hiding Extra Information

The pop-up technique we just reviewed loads the help documents we need. Using links and
mouseovers to display extra help info requires the wizardry of DHTML—some we've used earlier and

http://web.net.com/

some new stuff. Fortunately, most of it lies in the JavaScript source file help/help.js. Example 11.2
shows the code.

Example 11.2. help/help.js

var x, y, totalWidth, totalHeight;

1 wvar NN = (document.layers ? true : false);
2 var hideName = (NN ? 'hide' : 'hidden');

3 wvar showName = (NN ? 'show' : 'visible');

4 wvar zIdx = =-1;

5 wvar helpWdh = 200;

6 var helpHgt = 200;

7

38

9

function genLayer (sName, sLeft, sTop, sWdh, sHgt,
sVis, copy) {

10 if (NN) {

11 document.writeln ('<LAYER NAME="' + sName + '"
LEFT=' + sLeft +

12 ' TOP=' + sTop + ' WIDTH=' + sWdh + ' HEIGHT=' +
sHgt +

13 ' VISIBILITY="' 4+ sVis + '" z-Index=' + (++zIdx)
'>' + copy +

14 '</LAYER>") ;

15 }

16 else {

17 document..writeln ('<DIV ID="' + sName +

18 '" STYLE="position:absolute; overflow:none;
left:"' +

19 sLeft + 'px; top:' + sTop + 'px; width:' + sWdh
+ 'px; height:' +

20 sHgt + 'px; visibility:' + sVis + '; z-Index='
(++zIdx) + "">' +

21 copy + '</DIV>'

22) ;

23 }

24 }

25

26 function hideSlide (name) {

277 refSlide (name) .visibility = hideName;

28 }

29

30 function showSlide (name) {

31 refSlide (name) .visibility = showName;

32 }

33

34 function refSlide (name) {

35 if (NN) { return document.layers|[name]; }

36 else { return eval ('document.all.' + name +

'.style'); }

|

|

37 }

38

39 function motionListener () {

40 if (NN) {

41 window.captureEvents (Event.MOUSEMOVE) ;
42 window.onmousemove = grabXY;

43 }

44 else {

45 document.onmousemove = grabXY;

46 }

47 }

48

49 function grabXY (ev) {

50 1f (NN) {

51 X = ev.pageX;

52 y = ev.pageY;

53 }

54 else {

55 x = event.x;

56 y = event.y;

57 }

58 }

59

60 function helpDisplay (name, action) {

ol if (action) {

62 totalWidth = x + helpWdh;

63 totalHeight = y + helpHgt;

64 x = (totalWidth > opener.top.wdh ? x -
65 (totalWidth - opener.top.wdh + 75) : x);
66 y = (totalHeight > opener.top.hgt ? vy -
67 (totalHeight - opener.top.hgt) : vy);
68 refSlide (name) .left = x - 10;

69 refSlide (name) .top = y + 8;

70 showSlide (name) ;

71 }

72 else { hideSlide (name); }

73 }

74

75 motionListener () ;

Let's examine this functionality in two steps. First we'll talk about creating the layers that contain the
extra information. Then, we'll look at what goes into showing and hiding those layers.

11.2.3 Creating the Layers

If you've seen any of Chapters 3, 4, 6, 7, or 9, the first two dozen lines will seem very familiar. If you
haven't, take a look at Chapter 3 for the details of functions genLayer (), hideSlide (),
showSlide (),and refSlide (). We'll create the layers just as we did in the other chapters.
We need to add an additional step, though. Variables helpWdh and helpHgt are set to 200 pixels each.

They define the "default"” width and height of each layer. That's important because we'll need these
variables, along with top.wdh and fop.hgt, for positioning in a moment.

Those functions are the tools we need to create the layers. All we need to do is call genLayer (),
and pass in the content, among other variables. You'll find the call to this function in each of the help
files. All things being much the same in other help documents, let's look at the code in
help/background.html:

var helpOne = 'This property is a string
that ' +
'reflects the current background color of the
document ."';
var helpTwo = 'This property of the ' +
'<TT>window</TT> object contains the object hierachy of the
current ' +
'Web page.';

genlLayer ("bgColor"™, 0, 0, helpWdh, helpHgt, hideName,
helpOne) ;
genLayer ("document", 0, 0, helpWdh, helpHgt, hideName,
helpTwo) ;

Variable helpOne contains the string that will display the first extra link ("bgColor™), and
helpTwo performs likewise for the document link. This isn't just text, though. Both strings contain a
pair of SPAN tags assigned to the cascading stylesheet class definition .helpSet. The .helpSet class is
defined in the STYLE tags. Here is a peek. This isn't the most elaborate style sheet class definition
you'll ever see, but it does a good job of defining the layers.

.helpSet
{
background-color: #CCFFCC;
padding: 5px;
border: 2px;
width: 200px;
font: normal 10pt Arial;
text-align: left;

The script contains two calls to genLayer () . Notice that instead of passing in numbers for the
width and height of each layer, variables helpWdh and helpHgt are passed in instead. This will set us
up for better positioning later on. Each of the layers is originally set as hidden with the help of
variable hideName.

The layers have now been created. All the user needs to do is effectively display them on demand.
That functionality comes from functions motionListener (), grabXY¥ (), and
helpDisplay ().FirstmotionListener () from lines 39-47

function motionListener () {
1if (NN) {

window.captureEvents (Event .MOUSEMOVE) ;

window.onmousemove = grabXY;
}
else {
document.onmousemove = grabXY¥;

}

We should display the layer wherever the link to each layer winds up on the page. To do that, we have
to track the location of the mouse on the screen when it passes over the link. Function
motionListener () assigns the onMouseMove event handler to call function grabXY ()

every time the user moves the mouse. Both Navigator and MSIE implement onMouseMove, but
Navigator does so in the window object and MSIE in the document object. Navigator also needs a call
to the captureEvents () method to specify the mousemove event.

Function grabXY () assigns variables x and y to the horizontal and vertical pixel coordinates of the
pointer arrow every time the user moves the mouse. Here are lines 49-58:

function grabXY (ev) {
if (NN) {
X = ev.pageX;
y = ev.pagey;
}

else {
X = event.screenX;
y = event.screenY;

}

These coordinates are implemented differently in MSIE and NN. Navigator 4.x creates an event object
on the fly for each call to the event handler. The object is reflected in parameter ev. Internet Explorer,
on the other hand, has a built-in event object. Calling grabXY () every time the user moves the
mouse keeps variables x and y constantly updated. When the user moves over a link, x and y will
contain values that make a good reference point for positioning the extra help layers.

11.2.4 Showing the Info

When the user passes the mouse over the link, that calls function helpDisplay (). Here first is
the HTML (from background.html) that calls the function, then the function itself:

<A HREF="javascript: void(0);"
onMouseOver="helpDisplay('bgColor', true);"
onMouseOut="helpDisplay('bgColor', false);">
bgColor

The onMouseOver event handler is responsible for revealing the layer; onMouseOut is responsible for
hiding it again. Both are taken care of with helpDisplay (). See lines 60-73:

function helpDisplay(name, action) {

if (action) {
totalWidth = x + helpWdh;
totalHeight = y + helpHgt;

x = (totalWidth > opener.top.wdh ? x -
(totalwWidth - opener.top.wdh + 75) : x);
y = (totalHeight > opener.top.hgt ? y -

(totalHeight - opener.top.hgt) : vy);
refSlide (name) .left = x - 10;
refSlide (name) .top = y + 8;
showSlide (name) ;
}
else { hideSlide (name); }

}

helpDisplay () expects two arguments. One is the name of the layer to show or hide, the other is
a Boolean value that determines whether to show or hide the layer. That's the first decision to make—

decide whether to show or hide the layer. If action is £alse, the procedure is easy. Just call

hideSlide (), and be done with it. If actionis t rue, that means it's time to show the layer. Just

call showSlide (), right? Not quite. It's a little more complicated.

JavaScript Technique: Using Links Without the
Click

Sometimes you'll want links to do something only when you pass the mouse over or away
from them instead of clicking. Here are two ways to prevent undesired effects from
clicking:

Use javascript: void (0) inthe HREF attribute

The void operator ignores the return of any action, including the click event. You
don't have to use 0, but it is an easy operand. You can see an example just before
this sidebar.

Use onClick="return false;"

Returning £a 1l se will cancel loading of any document specified in the HREF
attribute. Try it like this:

<A HREF="" onMouseOver="doSomething();" onClick="return
false; ">Do

Something

No matter what might be in the HREF attribute, the document won't load.

11.2.5 Managing the Link Location

Calling showS1ide () would get the job done, but you might get more than you bargained for.
Remember lines 30-32 of nav.htmi?

helpWin = open('help/' + helpName + '.html', 'helpFile',
'width=" +

top.wdh + ',height=' + top.hgt +
',1eft=100, top=100, scrollbars=no');

The width of the window is 300 pixels. So is the height. Now check back to lines 5 and 6 of &elp.js:

200;
200;

var helpWdh
var helpHgt

The width and height of each layer is set to 200 pixels. Actually, the layer height grows dynamically
according to the amount of content within, much like data cells in a table. However, we still need a
reference. It doesn't take a math whiz to see that if the link winds up on the page further to the right
than 100 pixels (actually less, since those 300 pixels represent the outer width of the window, not the
inner width, where the document is actually displayed), at least a portion of the layer will be displayed
out of view. To prevent this, we'll do some math of our own before we position and show the layer.

It works like this: if the horizontal coordinate of the mouse pointer plus the width of the layer to
display is greater than the viewable width of the remote window, display the layer back to the left by
an offsetting number of pixels. Consider line 62:

totalWidth = x + helpWdh;

Variable fotalWidth is equal to the horizontal coordinate plus the width of the layer. Now you can see
why we use variables to set the dimensions with variables helpWdh and helpHgt instead of numbers
such as 200. Now consider line 64-65.

X = (totalWidth > opener.top.wdh ? x -
(totalwWidth - opener.top.wdh + 75) : x);

If totalWidth is greater than the width of the remote window (less the border), the horizontal
coordinate needs to be adjusted. We simply adjust it to the left by subtracting the difference between
totalWidth and the width of the remote window. This ensures that all the layers are displayed
horizontally. The same goes for the height. You can see this in lines 63 and 66-67. This might not
work if you set the value for helpHgt relatively low and then create the layer with a lot of text.

JavaScript Technique: Layers Without the
LAYER Tags

All this time, you've seen DHTML layers as DIV tags for MSIE and LAYER tags for
Navigator. Actually, the LAYER tag works fine, but it won't become a standard. All
indications from the World Wide Web Consortium point to a standardized document object
model very similar to that supported by MSIE. Consider the following code:

<HTML>

<HEAD>

<TITLE>DHTML Layer</TITLE>
<SCRIPT LANGUAGE="JavaScriptl.2">
<!l--
var action = true;
function display(name) {

if (document.all) {

var layerObj = eval ("document.all." + name +
".style");
var hide = "hidden";
var show = "visible";
}
else {
var layerObj = eval ("document." + name);
var hide = "hide";
var show = "show";
}
layerObj.visibility = (action ? hide : show);
action = laction;
}
//==>
</SCRIPT>
</HEAD>
<BODY>

<DIV ID="dhtml"
STYLE="position:relative;background-
color:#FFACEE; width:200; ">
This is a DHTML layer.
</DIV>

Show/Hide
</BODY>
</HTML>

This is file \chl I\layer.html. As you can see, there are no LAYER tags, yet both NN and
MSIE respond to this code (which hides and shows the layer upon clicking). Though
Navigator won't currently allow access to most elements of the document object model, it
does allow access to positioning properties.

So which is best? Why didn't I use this method in the first place in the other chapters? Both
work well, but I personally prefer the genLayer () method of dynamically creating
LAYER tags in Navigator and DIVs in MSIE. What's important is that you have another
option. Try both. See what works best for you.

11.3 Potential Extensions

The help application presented here would probably work for most small- to medium-sized
applications. As applications scale upwards, however, so can the need for more help features.
Consider the following suggestions for beefing up your online help.

11.3.1 Table of Contents

Sometimes users are looking for documentation about something unrelated to the current screen
content. One of the easiest ways to lets users browse is to offer a table of contents page that neatly lists
links to all help documents. You can do this with a static HTML page, or you can use JavaScript to
generate the list dynamically using an array:

function showContents () {

var helpDocs = ['background', 'multiselect',
'urldirectory'];
var helpLinks = '"';
for (var i = 0; 1 < helpDocs.length; i++) {
helpLinks += '' +

helpDocs[1] + '';
}
helpLinks = '"';
document.writeln (helpLinks) ;

}
11.3.2 Searchable Help Files

If you need a few help documents, why not make use of the search app in Chapter 1 ? That's always a
classy way to spruce up user interactivity.

11.3.3 Ask a Pro

Sometimes users just can't find what they want. If you have the personnel, consider adding a forms-
based email page so that users can answer a few questions and send them to qualified personnel.

11.3.4 Phone Directory

If you really want customer service, provide a list of phone numbers and email addresses so that users
can actually contact a human. Like the forms-based email option, this is resource-intensive. Make sure
you have people to field calls before you post the phone numbers. People will call. I've had people call
me after visiting my site, and my number was hard to get.

Epilogue

This is another reason I wanted my own book. After clawing your way to the last page of the last
chapter of one of those other Web publications whose page count is rivaled perhaps only by the Holy
Bible and War and Peace, what do you usually get? A few appendixes and an index. That's great, but
that's like climbing to the top of a mountain and having nothing to look down upon. Where's the sense
of accomplishment?

If you made it to this side of the book, you've come a long way, and not just by the number of pages
you turned. Think about how good a JavaScript coder you were when you first thumbed through these
pages at the store and decided to buy it. Think of what you know now. It's a good feeling to witness
your own development and take a few steps closer to the top.

Of course, we can enjoy our success, but we shouldn't get too comfortable. Technology is changing at
the speed of competition. As soon as this book hits the shelves, developers will likely have whipped
up another batch of JavaScript extensions and techniques. I'm going to check them out ASAP. Let me
know if you run into any good ones. C'ya on the Net.

Jerry Bradenbaugh

hotsyte(@mail.serve.com

Appendix A. JavaScript Reference

This appendix contains JavaScript syntax reference in the following areas:

e Objects, methods, and properties
e Top-level functions and properties
e Event handlers

In general, JavaScript has a three-pronged structure: core, client-side, and server-side. Core JavaScript
refers to those features that can be used on both the client and server sides. Client- and server-side
JavaScript includes core JavaScript plus extensions of each particular environment. For example,
client-side JavaScript contains the window and the document objects, something the server would have
no use for. Similarly, server-side JavaScript contains the File object.

The material here is current as of client-side JavaScript 1.3 and core JavaScript 1.4. Everything in the
following pages comes straight from the Netscape sites:

http://developer].netscape.com:80/docs/manuals/js/core/jsref/index.htm
http://developer].netscape.com:80/docs/manuals/js/client/jsref/index.htm

You can find Microsoft Jscript resources at:

http://msdn.microsoft.com/scripting/default.htm?/scripting/jscript/default.htm

Keep this as a handy quick reference, but always refer back to the Netscape and Microsoft material for
the latest material.

A.1 Browser Compatibility

Table 1.1 shows which JavaScript version is supported in the various versions of Navigator and
Internet Explorer.

Table A.1. JavaScript Compatibility

JavaScript Version Navigator Version MSIE Version

JavaScript 1.0 Navigator 2.0 MSIE 3.x

http://developer1.netscape.com:80/docs/manuals/js/core/jsref/index.htm
http://developer1.netscape.com:80/docs/manuals/js/client/jsref/index.htm
http://msdn.microsoft.com/scripting/default.htm?/scripting/jscript/default.htm

JavaScript 1.1 Navigator 3.0
JavaScript 1.2 Navigator 4.0-4.05 MSIE 4.x - 5.0
JavaScript 1.3 Navigator 4.06-4.5
JavaScript 1.4

A.2 Objects, Methods, and Properties

This section itemizes JavaScript objects by description, compatibility, properties, and methods.

A.2.1 Anchor

A place in a document that is the target of a hypertext link. Using the HTML A tag or calling the
String.anchor method, the JavaScript runtime engine creates an Anchor object corresponding
to each A tag in your document that supplies the NAME attribute. It puts these objects in an array in
the document.anchors property. You access an Anchor object by indexing this array.
Compatability

JavaScript 1.0 / client

Method summary

This object inherits the wat ch and unwatch methods from Object.

A.2.2 Applet

The HTML <APPLET> tag. The JavaScript runtime engine creates an Applet object corresponding to
each applet in your document. It puts these objects in an array in the document.applets property. You
access an Applet object by indexing this array.
Compatability

JavaScript 1.1 / client

Property summary

The Applet object inherits all public properties of the Java applet. Properties are detailed in
Table 1.2.

Method summary

The Applet object inherits all public methods of the Java applet. Methods are detailed in Table
1.3.

Table A.2. Applet Properties
Property Description Version

constructor Specifies the function that creates an object's prototype. 1.1

. For an array created by a regular expression match, the zero-based index
index . X 1.2
of the match in the string.
. For an array created by a regular expression match, reflects the original
input 1.2
string against which the regular expression was matched.
length Reflects the number of elements in an array. 1.1
prototype |Allows the addition of properties to all objects. 1.1
Table A.3. Applet Methods
Method Description Version
concat |Specifies the function that creates an object's prototype. 1.2
join Joins all elements of an array into a string. 1.1
pop Removes the last element from an array and returns that element. 1.2
Adds one or more elements to the end of an array and returns the new length of
push 1.2
the array.
Transposes the elements of an array: the first array element becomes the last
reverse 1.2
and the last becomes the first.
shift Removes the first element from an array and returns that element. 1.2
slice Extracts a section of an array and returns a new array. 1.2
sort Sorts the elements of an array. 1.1
splice |Adds and/or removes elements from an array. 1.2
toSource Returns an array literal representing the specified array; you can use this value 13
to create a new array. Overrides the Object . toSource method.)
. Returns a string representing the array and its elements. Overrides the
toString Object.toString method. L1
. Adds one or more elements to the front of an array and returns the new length
unshift 1.2
of the array.
valueOf Returns the primitive value of the array. Overrides the Object .valueOf 11
method.
A.2.3 Area

Defines an area of an image as an image map. When the user clicks the area, the area's hypertext
reference is loaded into its target window. Area objects are a type of Link object.

Compatability

JavaScript 1.1 / client

A.2.4 Array

Lets you work with arrays.

Compatability

JavaScript 1.1 / core

A.2.5 Boolean
TheBoolean object is an object wrapper for a boolean value.
Compatability

JavaScript 1.1 / core
Property summary

Boolean properties are detailed in Table 1.4.
Method summary

Boolean methods are detailed in Table 1.5.

Table A.4. Boolean Properties

Property Description Version
constructor Specifies the function that creates an object's prototype. 1.1
prototype Defines a property that is shared by all Boolean objects. 1.1

Table A.5. Boolean Methods
Method Description Version
Returns an object literal representing the specified Boolean object; you can use
toSource [this value to create a new object. Overrides the Object.toSource 1.3
method.
. Returns a string representing the specified object. Overrides the
toString Object.toString method. L1
valueof Returns the primitive value of a Boolean object. Overrides the 1
Object.valueOf method.)

A.2.6 Button
A push button on an HTML form.
Compatibility
JavaScript 1.0 / client
Event handlers
onBlur,onClick, onFocus, onMouseDown, onMouseUp
Property summary
Properties are detailed in Table 1.6.

Method summary

Methods are detailed in Table 1.7. In addition, this object inherits the watch and
unwatch methods from Object.

Table A.6. Button Properties

Property Description Version
form Specifies the form containing the Button object. 1.0
name Reflects the NAME attribute. 1.0
type Reflects the TYPE attribute. 1.1
value Reflects the VALUE attribute. 1.0
Table A.7. Button Methods
Method Description Version
blur Removes focus from the button. 1.0
click Simulates a mouse-click on the button. 1.0
focus Gives focus to the button. 1.0
handleEvent Invokes the handler for the specified event. 1.2

A.2.7 Checkbox

A checkbox on an HTML form. A checkbox is a toggle switch that lets the user set a value on or off.

Compatability

JavaScript 1.0 / client

Event handlers

onBlur,onClick, onFocus

Property summary

Properties are detailed in Table 1.8.

Method summary

Methods are detailed in Table 1.9. In addition, this object inherits the watch and
unwatch methods from Object.

Table A.8. Checkbox Properties

Property Description Version
checked Boolean property that reflects the current state of the checkbox.
defaultChecked |Boolean property that reflects the CHECKED attribute.
form Specifies the form containing the Checkbox object. 1.0
name Reflects the NAME attribute. 1.0
type Reflects the TYPE attribute. 1.1

value Reflects the VALUE attribute. 1.0
Table A.9. Checkbox Methods
Method Description Version
blur Removes focus from the checkbox. 1.0
click Simulates a mouse-click on the checkbox. 1.0
focus Gives focus to the checkbox. 1.0
handleEvent Invokes the handler for the specified event. 1.2
A.2.8 Date
Lets you work with dates and times.
Compatability
JavaScript 1.0 / core
Property summary
Properties are detailed in Table 1.10.
Method summary
Methods are detailed in Table 1.11.
Table A.10. Date Properties
Property Description Version
constructor Specifies the function that creates an object's prototype. 1.1
prototype Allows the addition of properties to a Date object. 1.1
Table A.11. Date Methods
Method Description Version
getDate Returns t'he day of the month for the specified date according 1.0
to local time.
getDay Returgs the day of the week for the specified date according to 1.0
local time.
getFullYear Returns the year of the specified date according to local time. (1.3
getHours Returns the hour in the specified date according to local time. |[1.0
getMilliseconds Returqs the milliseconds in the specified date according to 13
local time.
getMinutes Returns the minutes in the specified date according to local 1.0
time.
getMonth Returns the month in the specified date according to local 1.0
time.
getSeconds Returns the seconds in the specified date according to local 1.0
time.
getTime Returns the numeric value corresponding to the time for the 1.0

specified date according to local time.

getTimezoneOffset |Returns the time-zone offset in minutes for the current locale. |1.0

getUTCDate Retums the day.(date) qf the month in the specified date 13
according to universal time.

getUTCDay ReFurns thc? day of the week in the specified date according to 13
universal time.

getUTCFullYear g;:lt:ms the year in the specified date according to universal 13

getUTCHours Returns the hours in the specified date according to universal 13
time.

getUTCMilliseconds Re.turns th.e milliseconds in the specified date according to 13
universal time.

getUTCMinutes Re.turns th.e minutes in the specified date according to 13
universal time.

getUTCMonth Returns the month in the specified date according to universal 13
time.

getUTCSeconds ReFurns thc? seconds in the specified date according to 13
universal time.

getYear Returns the year in the specified date according to local time. |1.0

arse Returns the number of milliseconds in a date string since 1.0

P January 1, 1970, 00:00:00, local time. ’

setDate Sets the day of the month for a specified date according to 1.0
local time

setFullYear Sets the full year for a specified date according to local time. |1.3

setHours Sets the hours for a specified date according to local time. 1.0

setMilliseconds tSifI‘;Z the milliseconds for a specified date according to local 13

setMinutes Sets the minutes for a specified date according to local time. |1.0

setMonth Sets the month for a specified date according to local time. 1.0

setSeconds Sets the seconds for a specified date according to local time. 1.0

setTime Sets the value of a Date object according to local time. 1.0

setUTCDate Ser the day of the month for a specified date according to 13
universal time.

SsetUTCFullYear Sets the full year for a specified date according to universal 13
time.

setUTCHours Sets the hour for a specified date according to universal time. (1.3

SsetUTCMilliseconds Ser the mlllhseconds for a specified date according to 13
universal time.

setUTCMinutes Sets the minutes for a specified date according to universal 13
time.

setUTCMonth Sets the month for a specified date according to universal time.|1.3

setUTCSeconds S_ets the seconds for a specified date according to universal 13
time.

setYear Sets the year for a specified date according to local time. 1.0

toGMTString Converts a date to a string, using the Internet GMT 1.0

conventions.

toLocaleString

Converts a date to a string, using the current locale's
conventions.

1.0

toSource

Returns an object literal representing the specified Date object;
you can use this value to create a new object. Overrides the
Object.toSource method.

toString

Returns a string representing the specified Date object.
Overrides the Object . toString method.

toUTCString

Converts a date to a string, using the universal time
convention.

UTC

Returns the number of milliseconds in a Date object since
January 1, 1970, 00:00:00, universal time.

valueOf

Returns the primitive value of a Date object. Overrides the
Object.valueOf method.

A.2.9 Document

Contains information about the current document, and provides methods for displaying HTML output

to the user.
Compatability
JavaScript 1.0 / client

Event handlers

onClick,onDblClick, onKeyDown, onKeyPress, onKeyUp,
onMouseDown, onMouseUp

Property summary

Properties are detailed in Table 1.12.

Method summary

Methods are detailed in Table 1.13. In addition, this object inherits the watch and
unwatch methods from Object.

Table A.12. Document Properties

Property Description Version
alinkColor A string that specifies the ALINK attribute. 1.0
anchors An array containing an entry for each anchor in the document. 1.0
applets An array containing an entry for each applet in the document. 1.1
bgColor A string that specifies the BGCOLOR attribute. 1.0
cookie Specifies a cookie. 1.0
domain Specifies the domain name of the server that served a document. 1.1

embeds An array containing an entry for each plug-in in the document. 1.1
fgColor A string that specifies the TEXT attribute. 1.0
formName A separate property for each named form in the document. 1.1
forms An array a containing an entry for each form in the document. 1.1
images An array containing an entry for each image in the document. 1.1
lastModified |A string that specifies the date the document was last modified. 1.0
layers Array containing an entry for each layer within the document. 1.2
linkColor A string that specifies the LINK attribute. 1.0
links An array containing an entry for each link in the document. 1.0
plugins An array containing an entry for each plug-in in the document. 1.0
referrer A string that specifies the URL of the calling document. 1.1
title A string that specifies the contents of the TITLE tag. 1.0
URL A string that specifies the complete URL of a document. 1.0
vlinkColor A string that specifies the VLINK attribute. 1.0
Table A.13. Document Methods
Method Description Version
captureEvents|Sets the document to capture all events of the specified type. 1.2
close Closes an output stream and forces data to display. 1.0
getSelection |Returns a string containing the text of the current selection. 1.2
handleEvent |Invokes the handler for the specified event. 1.2
open Opens a stream to collect the output of write orwriteln 10
methods.
Sets the window or document to release captured events of the
releaseEvents|specified type, sending the event to objects further along the event 1.2
hierarchy.
routeEvent Passes a captured event along the normal event hierarchy. 1.2
write Writes one or more HTML expressions to a document in the specified 1.0
window.
writeln Writes one or more HTML e-xpression.s to a document in the specified 10
window and follows them with a newline character.

A.2.10 Event

The event object contains properties that describe a JavaScript event and is passed as an argument to
an event handler when the event occurs.

Compatability

JavaScript 1.2 / client

Property summary

Properties are detailed in Table 1.14. Not all of these properties are relevant to each event

type.

Table A.14. Event Properties

Property Description Version

data Returns an array of strings containing the URLs of the dropped objects. 12
Passed with the DragDrop event. ’

height Represents the height of the window or frame. 1.2
Number specifying either the object width when passed with the resize event

layerX or the cursor's horizontal position in pixels relative to the layer in which the |1.2
event occurred. Note that 1ayerX is synonymous with x.
Number specifying either the object height when passed with the resize

layerY event, or the cursor's vertical position in pixels relative to the layer in which |1.2
the event occurred. Note that LayerY is synonymous with y.
String specifying the modifier keys associated with a mouse or key event.

modi fiers|Modifier key values are: ALT MASK, CONTROL MASK, SHIFT MASK, |1.2
and META_ MASK.

pageX Number specifying the cursor's horizontal position in pixels, relative to the 12
page.

pageY Number specifying the cursor's vertical position in pixels relative to the page. |1.2

screenX Number specifying the cursor's horizontal position in pixels, relative to the 12
screen.

screeny Number specifying the cursor's vertical position in pixels, relative to the 12
screen.

target String representing the object to which the event was originally sent (all 12
events).

type String representing the event type. (All events) 1.2
Number specifying either the mouse button that was pressed or the ASCII

which value of a pressed key. For a mouse, 1 is the left button, 2 is the middle 1.2
button, and 3 is the right button.

width Represents the width of the window or frame. 1.2

X Synonym for layerX. 1.2

% Synonym for layerY. 1.2

A.2.11 FileUpload

Compatability

JavaScript 1.0 / client

Refers to a file upload element on an HTML form. A file upload element lets the user supply
a file as input.

Event handlers

onBlur, onChange, onFocus

Property summary

Properties are detailed in Table 1.15.

Method summary

Methods are detailed in Table 1.16. In addition, this object inherits the watch and
unwatch methods from ObJject.

Table A.15. FileUpload Properties

Property Description Version
form |Specifies the form containing the FileUpload object. 1.0
name |Reflects the NAME attribute. 1.0
type |Reflects the TYPE attribute. 1.1
value Reflects the current value of the file upload element's field; this corresponds to the 10
name of the file to upload.
Table A.16. FileUpload Methods
Method Description Version
blur Removes focus from the object. 1.0
focus Gives focus to the object. 1.0
handleEvent event. 1.2
select field. 1.0
A.212 Form

Lets users input text and make choices from Form elements such as checkboxes, radio buttons, and
selection lists. You can also use a form to post data to a server.

Compatability

JavaScript 1.0 / client

Event handlers
onReset

Property summary

, onSubmit

Properties are detailed in Table 1.17.

Method summary

Methods are detailed in Table 1.18.

Table A.17. Form Properties

Property Description Version
action Reflects the ACTION attribute. 1.0
elements An array reflecting all the elements in a form. 1.0
encoding Reflects the ENCTYPE attribute. 1.0

length Reflects the number of elements on a form. 1.0
method Reflects the METHOD attribute. 1.0
name Reflects the NAME attribute. 1.0
target Reflects the TARGET attribute. 1.0
Table A.18. Form Methods
Method Description Version
handleEvent |Invokes the handler for the specified event. 1.2
reset Simulates a mouseclick on a reset button for the calling form. 1.1
submit Submits a form. 1.0

A.2.13 Frame

A window can display multiple, independently scrollable frames on a single screen, each with its own
distinct URL. These frames are created using the FRAME tag inside a <FRAMESET > tag. Frames
can point to different URLs and be targeted by other URLSs, all within the same screen. A series of
frames makes up a page. The Frame object is a convenience for thinking about the objects that
constitute these frames. However, JavaScript actually represents a frame using a window object. Every
Frame object is a window object and has all the methods and properties of a window object. There are
a few minor differences between a window that is a frame, and a top-level window. See window for
complete information on frames.

Compatability

JavaScript 1.0 / client

A.2.14 Function

Specifies a string of JavaScript code to be compiled as a function.

Compatability

JavaScript 1.1/ core

Property summary

Properties are detailed in Table 1.19.

Method summary

Methods are detailed in Table 1.20.

Table A.19. Function Properties

Property Description Version
arguments An array corresponding to the arguments passed to a function. 1.1
arguments.callee|Specifies the function body of the currently executing function. |1.2
arguments.caller|Specifies the name of the function that invoked the currently 1.1

executing function.
arguments.length|Specifies the number of arguments passed to the function. 1.1
arity Specifies the number of arguments expected by the function. 1.2
constructor Specifies the function that creates an object's prototype. 1.1
length Specifies the number of arguments expected by the function. 1.1
prototype Allows the addition of properties to a Function object. 1.1
Table A.20. Function Methods
Method Description Version
S Allows you to apply a method of another object in the context of a different 13
bPpPLy object (the calling object). ’
call Allows you to call (execute) a method of another object in the context of a 13
different object (the calling object).)
Returns a string representing the source code of the function. Overrides the
toSource . 1.3
Object.toSource method.
toStrin Returns a string representing the source code of the function. Overrides the L1
g Object.toString method.)
valueOf Returns a string representing the source code of the function. Overrides the L1
Object.valueOf method.)

A.2.15 Hidden

A Text object that is suppressed from form display on an HTML form. A Hidden object is used for
passing name/value pairs when a form submits.

Compatability

JavaScript 1.0 / client

Property summary

Properties are detailed in Table 1.21.

Method summary

This object inherits the watch and unwatch methods from Object.

Table A.21. Hidden Properties

Property Description Version
form Specifies the form containing Hidden object. 1.0
name Reflects the NAME attribute. 1.0
type Reflects the TYPE attribute. 1.1
value Reflects the current value of Hidden object. 1.0

A.2.16 History

Contains an array of information on the URLSs that the client has visited within a window. This
information is stored in a history list and is accessible through the browser's Go menu.

Compatability
JavaScript 1.0 / client
Property summary
Properties are detailed in Table 1.22.

Method summary

Methods are detailed in Table 1.23. This object inherits the wat ch and unwatch methods

from Object.
Table A.22. History Properties

Property Description Version
current Specifies the URL of the current history entry. 1.1
length Reflects the number of entries in the history list. 1.0
next Specifies the URL of the next history entry. 1.1
previous Specifies the URL of the previous history entry. 1.1

Table A.23. History Methods

Method Description Version
back Loads the previous URL in the history list. 1.0
forward Loads the next URL in the history list. 1.0
go Loads a URL from the history list. 1.0

A.2.17 Image
Refers to an image on an HTML form.
Compatability
JavaScript 1.1 / client
Event handlers
onAbort, onkError, onKeyDown, onKeyPress, onKeyUp, onLoad
Property summary
Properties are detailed in Table 1.24.

Method summary

Methods are detailed in Table 1.25. This object inherits the wat ch and unwatch methods

from Object.
Table A.24. Image Properties
Property Description Version
border |Reflects the BORDER attribute. 1.1
complete Boolean yalue indicating whether the web browser has completed its attempt to 11
load the image.
height |Reflects the HEIGHT attribute. 1.1
hspace |Reflects the HSPACE attribute. 1.1
lowsrc |Reflects the LOWSRC attribute. 1.1
name Reflects the NAME attribute. 1.1
src Reflects the SRC attribute. 1.1
vspace |Reflects the VSPACE attribute. 1.1
width Reflects the WIDTH attribute. 1.1
Table A.25. Image Methods

Method Description Version
handleEvent Invokes the handler for the specified event. 1.2
A.2.18 Java

A top-level object used to access any Java class in the package java. *. The java object is a
convenience synonym for the property Packages.java.

Compatability

JavaScript 1.1

A.2.19 JavaArray

A wrapped Java array accessed from within JavaScript code is a member of the type JavaArray.

Compatability

JavaScript 1.1/ core

Property summary

Properties are detailed in Table 1.26.

Method summary

Methods are detailed in Table 1.27.

Table A.26. JavaArray Property

Property Description Version

length |The number of elements in the Java array represented by JavaArray. 1.1
Table A.27. JavaArray Method
Method Description Version

In JavaScript 1.4, this method is overridden by the inherited method
toString|java.lang.Object.toString. InJavaScript 1.3 and earlier, this 1.1
method returns a string identifying the object as a JavaArray.

A.2.20 JavaClass

A JavaScript reference to a Java class. A JavaClass object is a reference to one of the classes in a Java
package, such as netscape. javascript.JSObject. A JavaPackage object is a reference
to a Java package, such as netscape. javascript. In JavaScript, the JavaPackage and
JavaClass hierarchy reflect the Java package and class hierarchy.

Compatability

JavaScript 1.1 / core
Property summary

The properties of a JavaClass object are the static fields of the Java class.
Method summary

The methods of a JavaClass object are the static methods of the Java class.

A.2.21 JavaObject

The type of a wrapped Java object accessed from within JavaScript code. The JavaObject object is an
instance of a Java class that is created in or passed to JavaScript. JavaObject is a wrapper for the
instance; all references to the class instance are made through the JavaObject. Any Java data
brought into JavaScript is converted to JavaScript data types. When the JavaObject is passed back to
Java, it is unwrapped and can be used by Java code.

Compatability
JavaScript 1.1 / core
Property summary

The properties of a JavaPackage are the JavaClass objects and any other JavaPackage
objects it contains.

A.2.22 JavaPackage

In Java, a package is a collection of Java classes or other Java packages. For example, the
netscape package contains the package netscape.javascript;the
netscape. javascript package contains the JSObject and JSException classes.
In JavaScript, a JavaPackage is a reference to a Java package. For example, a reference to
netscapeisaJavaPackage. netscape.javascript isbotha JavaPackage and a
property of the netscape JavaPackage. A JavaClass object is a reference to one of the classes
in a package, such as netscape. javascript.JSObject. The JavaPackage and
JavaClass hierarchy reflect the Java package and class hierarchy. Although the packages and
classes contained in a JavaPackage are its properties, you cannot use a for . . . in statement to
enumerate them as you can enumerate the properties of other objects.
Compatability

JavaScript 1.1 / core

Property summary

The properties of a JavaPackage are the JavaClass objects and any other JavaPackage
objects it contains.

A.2.23 Layer
Corresponds to a layer in an HTML page and provides a means for manipulating that layer.
Compatability
JavaScript 1.2 / client
Property summary
Properties are detailed in Table 1.28.
Method summary

Methods are detailed in Table 1.29. This object inherits the wat ch and unwat ch methods

from ObJject.
Table A.28. Layer Properties
Property Description Version

above The layer object above this one in z-order, among all layers in the 12
document or the enclosing window object if this layer is topmost. ’

background |The image to use as the background for the layer's canvas. 1.2

bgColor The color to use as a solid background color for the layer's canvas. 1.2
The layer object below this one in z-order, among all layers in the

below s . 1.2
document or null if this layer is at the bottom.

clip.bottom :l;iléei:blig)ttom edge of the clipping rectangle (the part of the layer that is 12

clip.height |The height of the clipping rectangle (the part of the layer that is visible). |1.2
clip.left Thg left edge of the clipping rectangle (the part of the layer that is 12
visible).
clip.right Thg right edge of the clipping rectangle (the part of the layer that is 12
visible).
clip.top Th§ top edge of the clipping rectangle (the part of the layer that is 12
visible).
clip.width |The width of the clipping rectangle (the part of the layer that is visible). |1.2
document The layer's associated document. 1.2
left The horizontal position of the layer's left edge, in pixels, relative to the 12
origin of its parent layer. ’
name A string specifying the name assigned to the layer through the ID 12
attribute in the LAYER tag. ’
pageX The horizontal position of the layer, in pixels, relative to the page. 1.2
pageY The vertical position of the layer, in pixels, relative to the page. 1.2
arentLaver The layer object that contains this layer, or the enclosing window object 12
P Y if this layer is not nested in another layer.)
. . The layer object above this one in z-order, among all layers that share
siblinghbove the same parent layer, or null if the layer has no sibling above. 12
. . The layer object below this one in z-order, among all layers that share
siblingBelow the same parent layer, or null if layer is at the bottom. 1.2
src A string specifying the URL of the layer's content. 1.2
to The vertical position of the layer's top edge, in pixels, relative to the 12
P origin of its parent layer. ’
visibility |Whether or not the layer is visible. 1.2
zIndex The relative z-order of this layer with respect to its siblings. 1.2
Table A.29. Layer Methods
Method Description Version
captureEvents ?;I:Z the window or document to capture all events of the specified 12
handleEvent Invokes the handler for the specified event. 1.2
Changes the source of a layer to the contents of the specified file, and
load simultaneously changes the width at which the layer's HTML 1.2
contents will be wrapped.
noveAbove Stacks. this 'layer aboxlle the. layer spemﬁe'd in the-a'rgument, without 12
changing either layer's horizontal or vertical position.
noveBelow Stack's thlS' layer below the spe01.ﬁ'ed layer, without changing either 12
layer's horizontal or vertical position.
moveBy Chapges the layer position by applying the specified deltas, measured 12
in pixels.
Moves the top-left corner of the window to the specified screen
moveTo . 1.2
coordinates.
moveToAbsolute Changes the layer position to .th.e specified pixel coordinates within 12
the page (instead of the containing layer).
releaseEvents |Sets the layer to release captured events of the specified type, 1.2

sending the event to objects further along the event hierarchy.
resizeBy Resizes the layer by the specified height and width values (in pixels). |1.2
resizeTo Resmes the layer to have the specified height and width values (in 12
pixels).
routeEvent Passes a captured event along the normal event hierarchy. 1.2
A.2.24 Link

By using the HTML A or AREA tag or by a call to the St ring.1ink method. The JavaScript
runtime engine creates a Link object corresponding to each A and AREA tag in your document that
supplies the HREF attribute. It puts these objects as an array in the document.links property. You
access a Link object by indexing this array.
Compatability

JavaScript 1.0 / client

Event handlers

Area objects have the following event handlers: onDb1Click, onMouseOut,
onMouseOver

Link objects have the following event handlers: onClick, onDblClick,
onKeyDown, onKeyPress, onKeyUp, onMouseDown, onMouseOut,
onMouseUp, onMouseOver

Property summary
Properties are detailed in Table 1.30.

Method summary

Methods are detailed in Table 1.31. This object inherits the wat ch and unwat ch methods

from Object.
Table A.30. Link Properties
Property Description Version
hash Specifies an anchor name in the URL. 1.0
host Specifies the host and domain name, or IP address, of a network host. 1.0
hostname |Specifies the host :port portion of the URL. 1.0
href Specifies the entire URL. 1.0
pathname |Specifies the URL-path portion of the URL. 1.0
port Specifies the communications port that the server uses. 1.0
protocol |Specifies the beginning of the URL, including the colon. 1.0
search Specifies a query string. 1.0

target Reflects the TARGET attribute. 1.0
text A string containing the content of the corresponding A tag. 1.0
Table A.31. Link Methods
Method Description Version
handleEvent Invokes the handler for the specified event. 1.2

A.2.25 Location

Contains information on the current URL.

Compatability

JavaScript 1.0 / client

Property summary

Properties are detailed in Table 1.32.

Method summary

Methods are detailed in Table 1.33. This object inherits the wat ch and unwatch methods

from Object.
Table A.32. Location Properties
Property Description Version
hash Specifies an anchor name in the URL. 1.0
host Specifies the host and domain name, or IP address, of a network host. 1.0
hostname |Specifies the host :port portion of the URL. 1.0
href Specifies the entire URL. 1.0
pathname |Specifies the URL-path portion of the URL. 1.0
port Specifies the communications port that the server uses. 1.0
protocol |Specifies the beginning of the URL, including the colon. 1.0
search Specifies a query string. 1.0
Table A.33. Location Methods
Method Description Version
reload Loads the specified URL over the current history entry. 1.1
replace Forces a reload of the window's current document. 1.1

A.2.26 Math

A built-in object that has properties and methods for mathematical constants and functions. For
example, the Math object's PI property has the value of pi.

Compatability

JavaScript 1.0 / core

Property summary

Properties are detailed in Table 1.34.

Method summary

Methods are detailed in Table 1.35.

Table A.34. Math Properties

Property Description Version
E Euler's constant and the base of natural logarithms, approximately 2.718. 1.0
LN10 Natural logarithm of 10, approximately 2.302. 1.0
LN2 Natural logarithm of 2, approximately 0.693. 1.0
LOG10E |[Base 10 logarithm of E, approximately 0.434. 1.0
LOG2E |Base 2 logarithm of E, approximately 1.442. 1.0
PI Ratio of the circumference of a circle to its diameter, approximately 3.14159. 1.0
SORTL 2 3(171:)21;6 root of 1/2; equivalently, 1 over the square root of 2, approximately 1.0
SQRT2 |Square root of 2, approximately 1.414. 1.0

Table A.35. Math Methods

Method Description Version
abs Returns the absolute value of a number. 1.0
acos |number. 1.0
asin [Returns the arc sine (in radians) of a number. 1.0
atan |number. 1.0
atan2 |[Returns the arc tangent of the quotient of its arguments. 1.0
ceil |Returns the smallest integer greater than or equal to a number. 1.0
cos Returns the cosine of a number. 1.0
exp Returns E to the number power, Wher§ number is the argument, and E is Euler's 10

constant, the base of the natural logarithms.
floor |Returns the largest integer less than or equal to a number. 1.0
log Returns the natural logarithm (base E) of a number. 1.0
max Returns the greater of two numbers. 1.0
min Returns the lesser of two numbers. 1.0
pow Returns base to the exponent power, that is, base to the exponent power. 1.0
random|Returns a pseudo-random number between 0 and 1. 1.0
round |Returns the value of a number rounded to the nearest integer. 1.0
sin Returns the sine of a number. 1.0
sgrt |Returns the square root of a number. 1.0
tan Returns the tangent of a number. 1.0

A.2.27 MimeType
A MIME type (Multipart Internet Mail Extension) supported by the client.
Compatability
JavaScript 1.1 / client
Property summary
Properties are detailed in Table 1.36.
Method summary

This object inherits the wat ch and unwatch methods from Object.

Table A.36. MimeType Properties

Property Description Version
description |A description of the MIME type. 1.0
enabledPlugin|Reference to the Plugin object configured for the MIME type. 1.0
suffixes A string hnstmg possible filename extensions f(:r the MIME type, for 1.0

example, "mpeg, mpg, mpe, mpv, vbs, mpegv".
type 3;1::; vrvlame of the MIME type, for example, "video/mpeg" or "audio/x- 10

A.2.28 Navigator

Lets you work with numeric values. The Number object is an object wrapper for primitive numeric
values.

Compatability

JavaScript 1.0 / client
Property summary

Properties are detailed in Table 1.37
Method summary

Methods are detailed in Table 1.38. This object inherits the wat ch and unwat ch methods

from ObJject.
Table A.37. Navigator Properties
Property Description Version
appCodeName |Specifies the code name of the browser. 1.0
appName Specifies the name of the browser. 1.0

appVersion |Navigator. 1.0
language Indicates the translation of the Navigator being used. 1.2
mimeTypes An array of all MIME types supported by the client. 1.1
platform Indicates the machine type for which the Navigator was compiled. 1.2
plugins An array of all plug-ins currently installed on the client. 1.1
userAgent Specifies the user-agent header. 1.1
Table A.38. Navigator Methods
Method Description Version
javaEnabled Tests whether Java is enabled. 1.1
pugin. reresh Huks oy nsaled g n vl d picnlylods |,
preference Allows a signed script to get and set certain Navigator preferences. |1.2
taintEnabled Specifies whether data tainting is enabled. 1.1

A.2.29 Netscape

A top-level object used to access any Java class in the package netscape . *. The netscape object
is a top-level, predefined JavaScript object. You can automatically access it without using a
constructor or calling a method.

Compatability

JavaScript 1.1 / core

A.2.30 Number

Lets you work with numeric values. The Number object is an object wrapper for primitive numeric

values.

Compatability

JavaScript 1.1 / core

Property summary

Properties are detailed in Table 1.39.

Method summary

Methods are detailed in Table 1.40.

Table A.39. Number Properties

Property Description Version
constructor Specifies the function that creates an object's prototype. 1.1
MAX VALUE The largest representable number. 1.1

MIN VALUE The smallest representable number. 1.1
NaN Special "not a number" value. 1.1
NEGATIVE INFINITY Special value representing negative infinity; returned on 11
— overflow.
POSITIVE INFINITY |Special value representing infinity; returned on overflow. 1.1
prototype Allows the addition of properties to a Number object. 1.1
Table A.40. Number Methods
Method Description Version
Returns an object literal representing the specified Number object; you can use
toSourcelthis value to create a new object. Overrides the Object.toSource 1.3
method.
. Returns a string representing the specified object. Overrides the
toString Object.toString method. L1
Returns the primitive value of the specified object. Overrides the
valueOt Object.valueOf method. L1
A.2.31 Object
Ob7ject is the primitive JavaScript object type. All JavaScript objects are descended from
Object. That is, all JavaScript objects have the methods defined for Object.
Compatability
JavaScript 1.0 / core
Property summary
Properties are detailed in Table 1.41.
Method summary
Methods are detailed in Table 1.42.
Table A.41. Object Properties
Property Description Version
constructor Specifies the function that creates an object's prototype. 1.1
prototype Allows the addition of properties to all objects. 1.1
Table A.42. Object Methods
Method Description Version
Deprecated. Evaluates a string of JavaScript code in the context of the
eval . . 1.1
specified object.
toSource Returns an object literal representing the specified object; you can use this 13
value to create a new object.
toString|Returns a string representing the specified object. 1.0
unwatch |Removes a watchpoint from a property of the object. 1.2

valueOf |Returns the primitive value of the specified object. 1.1

watch Adds a watchpoint to a property of the object. 1.2

A.2.32 Option
Corresponds to an option in a SELECT list.
Compatability

JavaScript 1.1 / client
Property summary

Properties are detailed in Table 1.43.
Method summary

Methods are detailed in Table 1.44. This object inherits the wat ch and unwat ch methods

from ObJject.
Table A.43. Option Properties
Property Description Version
defaultSelected|Specifies the initial selection state of the option. 1.1
selected Specifies the current selection state of the option. 1.1
text Specifies the text for the option. 1.1
value Specifies the value thqt is retumed to the server when the option is 11
selected and the form is submitted. ’
Table A.44. Option Methods
Method Description Version
reload Loads the specified URL over the current history entry. 1.1
replace Forces a reload of the window's current document. 1.1

A.2.33 Packages
A top-level object used to access Java classes from within JavaScript code.
Compatability
JavaScript 1.1 / core
Property summary
Properties are detailed in Table 1.45.

Table A.45. Packages Properties

Property | Description Version

The fully qualified name of a Java class in a package other than
className .) . . 1.1
netscape, java, or sun that is available to JavaScript.
Jjava Any class in the Java package java. *. 1.1
netscape |Any class in the Java package netscape. *. 1.1
sun Any class in the Java package sun . *. 1.1

A.2.34 Password

A text field on an HTML form that conceals its value by displaying asterisks (*). When the user enters
text into the field, asterisks (*) hide entries from view.

Compatability
JavaScript 1.0 / client
Event handlers
onBlur, onFocus
Property summary
Properties are detailed in Table 1.46.
Method summary

Methods are detailed in Table 1.47. This object inherits the wat ch and unwat ch methods

from Object.
Table A.46. Password Properties
Property Description Version
defaultvalue Reflects the VALUE attribute. 1.0
form Specifies the form containing the Password object. 1.0
name Reflects the NAME attribute. 1.0
type Reflects the TYPE attribute. 1.1
value Reflects the current value of the Password object's field. 1.0
Table A.47. Password Methods

Method Description Version
blur Removes focus from the object. 1.0
focus Gives focus to the object. 1.0
handleEvent Invokes the handler for the specified event. 1.2
select Selects the input area of the object. 1.0

A.2.35 Plugin

A plug-in module installed on the client. Plugin objects are predefined JavaScript objects that you
access through the navigator.plugins array. A Plugin object is a plug-in installed on the client. A plug-
in is a software module that the browser can invoke to display specialized types of embedded data
within the browser.

Compatability
JavaScript 1.1 / client
Property summary
Properties are detailed in Table 1.48.

Table A.48. Plugin Properties

Property Description Version
description |A description of the plug-in. 1.1
filename Name of the plug-in file on disk. 1.1
length Number of elements in the plug-in's array of MimeType objects. 1.1
name Name of the plug-in. 1.1

This object inherits the wat ch and unwatch methods from Object.

A.2.36 Radio

An individual radio button in a set of radio buttons on an HTML form. The user can use a set of radio
buttons to choose one item from a list.

Compatability

JavaScript 1.0 / client
Property summary

Properties are detailed in Table 1.49.
Method summary

Methods are detailed in Table 1.50. This object inherits the wat ch and unwat ch methods

from ObJject.
Table A.49. Radio Properties
Property Description Version
checked Lets you programmatically select a radio button 1.0
defaultChecked Reflects the CHECKED attribute. 1.0
form Specifies the form containing the Radio object. 1.0
name Reflects the NAME attribute. 1.0

type Reflects the TYPE attribute. 1.1
value Reflects the VALUE attribute. 1.0
Table A.50. Radio Methods
Method Description Version
blur Removes focus from the radio button. 1.1
click Simulates a mouse-click on the radio button. 1.0
focus Gives focus to the radio button. 1.1
handleEvent Invokes the handler for the specified event. 1.2

A.2.37 RegExp

A regular expression object contains the pattern of a regular expression. It has properties and methods
for using that regular expression to find and replace matches in strings. In addition to the properties of
an individual regular expression object that you create using the RegExp constructor function, the
predefined RegExp object has static properties that are set whenever any regular expression is used.

Compatability

Property summary

Method summary

JavaScript 1.2 / core

Properties are detailed in Table 1.51.

Methods are detailed in Table 1.52 .

Table A.51. RegExp Properties

Property Description Version
$1, ., $9 |Parenthesized substring matches, if any. 1.2
S_ Same as input. 1.2
S* Sameasmultiline. 1.2
S& Same as lastMatch. 1.2
S+ Same as lastParen. 1.2
$° Same as leftContext. 1.2
S Same as rightContext. 1.2
constructor |Specifies the function that creates an object's prototype. 1.2
global .Wheth§r or not to test 'Fhe regular expression against all possible matches 12
in a string, or only against the first.
ignoreCase |Whether or not to ignore case while attempting a match in a string. 1.2
input The string against which a regular expression is matched. 1.2
lastIndex The index at which to start the next match. 1.2
lastMatch The last matched characters. 1.2

lastParen The last parenthesized substring match, if any. 1.2
leftContext |The substring preceding the most recent match. 1.2
multiline Whether or not to search in strings across multiple lines. 1.2
prototype Allows the addition of properties to all objects. 1.1
rightContext The substring following the most recent match. 1.2
source The text of the pattern. 1.2
Table A.52. RegExp Methods
Method Description Version
compile |Compiles aregular expression object. 1.2
exec Executes a search for a match in its string parameter. 1.2
test Tests for a match in its string parameter. 1.2
foSource Returns an object literal .representir}g the speciﬁed object; you can use this 13
value to create a new object. Overrides the Object . toSource method.)
toString lolf)tljlren(s: i ?tiiggs lsgrfrs;zltri;li l‘ilgz 'speciﬁed object. Overrides the 11
valueOf Retgms the primitive value of the specified object. Overrides the 11
Object.valueOf method. ’

A.2.38 Reset

A reset button on an HTML form. A reset button returns all elements in a form back to their defaults.

Compatability

JavaScript 1.0 / client

Event handlers
onBlur,

Property summary

Properties are detailed in Table 1.53.

Method summary

onClick,

onFocus

Methods are detailed in Table 1.54. This object inherits the wat ch and unwatch methods

from Object.
Table A.53. Reset Properties
Property Description Version
form object. 1.0
name Reflects the NAME attribute. 1.0
type Reflects the TYPE attribute. 1.1

value Reflects the VALUE attribute. 1.0
Table A.54. Reset Methods

Method Description Version
blur Removes focus from the reset button. 1.0
click Simulates a mouse-click on the reset button. 1.0
focus Gives focus to the reset button. 1.0
handleEvent Invokes the handler for the specified event. 1.2

A.2.39 Screen
Compatability
JavaScript 1.0 / client
Property summary
Properties are detailed in Table 1.55.

Table A.55. Screen Properties
Property Description Version

Specifies the height of the screen, in pixels, minus permanent or semi-
availHeight |permanent user interface features displayed by the operating system, such (1.2
as the taskbar on Microsoft Windows.

Specifies the width of the screen, in pixels, minus permanent or semi-
availWidth |permanent user interface features displayed by the operating system, such (1.2
as the taskbar on Microsoft Windows.

The bit depth of the color palette, if one is in use; otherwise, the value is

colorbepth derived from screen.pixelDepth. 1.2
height Display screen height. 1.2
pixelDepth |Display screen color resolution (bits per pixel). 1.2
width Display screen width. 1.2

A.2.40 Select

A selection list on an HTML form. The user can choose one or more items from a selection list,
depending on how the list was created.

Compatability
JavaScript 1.0 / client
Event handlers
onBlur, onChange, onFocus

Property summary

Properties are detailed in Table 1.56.

Method summary

Methods are detailed in Table 1.57. This object inherits the wat ch and unwat ch methods

from ObJject.
Table A.56. Select Properties
Property Description Version
form Specifies the form containing the selection list. 1.0
length Reflects the number of options in the selection list. 1.0
name Reflects the NAME attribute. 1.0
options Reflects the OPTION tags. 1.0
selectedIndex iﬁlggiz tOhI;at ii;f:);r(éfsgiz Cs;lg;ted option (or the first selected option, if 1.0
type Specifies that the object repres.ents a selection list and whether it can 11
have one or more selected options.
Table A.57. Select Methods

Method Description Version
blur Removes focus from the selection list. 1.0
focus Gives focus to the selection list. 1.0
handleEvent Invokes the handler for the specified event 1.2

A.2.41 String

An object representing a series of characters in a string.

Compatability

JavaScript 1.0 / core

Property summary

Properties are detailed in Table 1.58.

Method summary

Methods are detailed in Table 1.59. This object inherits the wat ch and unwat ch methods

from Object.
Table A.58. String Properties
Property Description Version
constructor Specifies the function that creates an object's prototype. 1.1
length Reflects the length of the string. 1.0
prototype Allows the addition of properties to a String object. 1.1

Table A.59. String Methods

Method Description Version
anchor Creates an HTML anchor that is used as a hypertext target. 1.0
big Causes a string to be displayed in a big font as if it were in a <BIG> 10
tag. '

blink Causes a string to blink as if it were in a <BLINK> tag. 1.0

bold Causes a string to be displayed as if it were in a tag. 1.0

charAt Returns the character at the specified index. 1.0

charCodeAt Retums a number indicating the Unicode value of the character at the 12
given index.

concat Combines the text of two strings and returns a new string. 1.2

fixed gzuses a string to be displayed in fixed-pitch font as if it were in a <TT> 1.0
Causes a string to be displayed in the specified color as if it were in a

fonteolor tag. 1.0

. Causes a string to be displayed in the specified font size as if it were in a

fontsize tag. 1.0

fromCharCode Returns a string created by using the specified sequence of Unicode 12
values.

. Returns the index within the calling String object of the first occurrence

indexof . . 1.0
of the specified value, or -1 if not found.

italics Causes a string to be italic, as if it were in an <I> tag. 1.0

lastindexOf Returns thg index within the. calling String object of the last occurrence 1.0
of the specified value, or -1 if not found.

link Creates an HTML hypertext link that requests another URL. 1.0

match Used to match a regular expression against a string. 1.2

revplace Used to find a match between a regular expression and a string, and to 12

P replace the matched substring with a new substring. ’

Executes the search for a match between a regular expression and a

search . . 1.2
specified string.

slice Extracts a section of a string and returns a new string. 1.0
Causes a string to be displayed in a small font, as if it were in a

small <SMALL> tag, 1.0

. Splits a String object into an array of strings by separating the string into
split . 1.0

substrings.

. Causes a string to be displayed as struck-out text, as if it were in a
strike <STRIKE> tag., 1.0
sub Causes a string to be displayed as a subscript, as if it were in a <SUB> 1.0

tag. ’
substr Returns the characters in a string beginning at the specified location 1.0
through the specified number of characters.)
substring Returns the characters in a string between two indexes into the string. 1.0
su Causes a string to be displayed as a superscript, as if it were in a <SUP> 1.0
b tag. ’
toLowerCase |Returns the calling string value converted to lowercase. 1.0

Returns an object literal representing the specified object; you can use

toSource this value to create a new object. Overrides the Object.toSource |1.3
method.

. Returns a string representing the specified object. Overrides the
toString Object.toString method. L1
toUpperCase |Returns the calling string value converted to uppercase. 1.0
valueof Returns the primitive value of the specified object. Overrides the 1

Object.valueOf method.

A.2.42 Submit

Corresponds to a "submit" button on an HTML form. A submit button causes a form to be sent to a
server.

Compatability

JavaScript 1.0 / client
Event handlers

onBlur, onClick, onFocus
Property summary

Properties are detailed in Table 1.60.
Method summary

Methods are detailed in Table 1.61. This object inherits the watch and unwatch
methMds from Object.

Table A.60. Submit Properties

Property Description Version
form Specifies the form containing the Submit object. 1.0
name Reflects the NAME attribute. 1.0
type Reflects the TYPE attribute. 1.1
value Reflects the VALUE attribute. 1.0
Table A.61. Submit Methods
Method Description Version
blur Removes focus from the submit button. 1.0
click Simulates a mouseclick on the submit button. 1.0
focus Gives focus to the submit button. 1.0
handleEvent Invokes the handler for the specified event. 1.2

A.2.43 sun

A top-level object used to access any Java class in the package sun . *. The sun object is a top-level,
predefined JavaScript object. You can automatically access it without using a constructor or calling a
method. The sun object is a convenience synonym for the property Packages . sun.
Compatability

JavaScript 1.1 / core

A.2.44 Text

A text input field on an HTML form. The user can enter a word, phrase, or series of numbers in a text
field.

Compatability
JavaScript 1.0 / client
Event handlers
onBlur, onChange, onFocus, onSelect
Property summary
Properties are detailed in Table 1.62.
Method summary

Methods are detailed in Table 1.63. This object inherits the wat ch and unwatch methods

from ObJject.
Table A.62. Text Properties

Property Description Version
defaultValue Reflects the VALUE attribute. 1.0
form Specifies the form containing the Text object. 1.0
name Reflects the NAME attribute. 1.0
type Reflects the TYPE attribute. 1.1
value Reflects the current value of the Text object's field. 1.0

Table A.63. Text Methods
Method Description Version

blur Removes focus from the object. 1.0
focus Gives focus to the object. 1.0
handleEvent Invokes the handler for the specified event. 1.2
select Selects the input area of the object. 1.0

A.2.45 Textarea

A multiline input field on an HTML form. The user can use a text area field to enter words, phrases, or
numbers.

Compatability
JavaScript 1.1/ client
Event handlers

onBlur, onChange, onFocus, onKeyDown, onKeyPress,
onKeyUp, onSelect

Property summary
Properties are detailed in Table 1.64.
Method summary

Methods are detailed in Table 1.65. This object inherits the wat ch and unwat ch methods

from Object.
Table A.64. Textarea Properties

Property Description Version
defaultvValue Reflects the VALUE attribute. 1.0
form Specifies the form containing the Textarea object. 1.0
name Reflects the NAME attribute. 1.0
type Specifies that the object is a Textarea object. 1.1
value Reflects the current value of the Textarea object. 1.0

Table A.65. Textarea Methods
Method Description Version

blur Removes focus from the object. 1.0
focus Gives focus to the object. 1.0
handleEvent Invokes the handler for the specified event. 1.2
select Selects the input area of the object. 1.0
A.2.46 Window

Represents a browser window or frame. This is the top-level object for each document, Location, and
History object group.

Compatability
JavaScript 1.0 / client

Event handlers

onBlur,
onResize,

Property summary

onDragDrop,

onError, onFocus, onLoad,

onUnload

Properties are detailed in Table 1.66.

Method summary

onMove,

Methods are detailed in Table 1.67. This object inherits the wat ch and unwat ch methods

from Object.
Table A.66. Window Properties
Property Description Version

closed Specifies whether a window has been closed. 1.1

defaultStatus|Reflects the default message displayed in the window's status bar. 1.0

document Contains information on the current document and provides methods 1.0
for displaying HTML output to the user.)

frames An array reflecting all the frames in a window. 1.0

. Contains information on the URLs that the client has visited within a

history . 1.1
window.

innerHeight Specifies the vertical dimension, in pixels, of the window's content 12
area.

innerwidth Specifies the horizontal dimension, in pixels, of the window's content 12
area.

length The number of frames in the window. 1.0

location Contains information on the current URL. 1.0

locationbar |Represents the browser window's location bar. 1.2

menubar Represents the browser window's menu bar. 1.2

name A unique name used to refer to this window. 1.0
Specifies the window name of the calling document when a window is

opener . 1.1
opened using the open method.

outerHeight Specifies the vertical dimension, in pixels, of the window's outside 12
boundary.

outeriidth Specifies the horizontal dimension, in pixels, of the window's outside 12
boundary.

pageXOffset |Provides the current X position, in pixels, of a window's viewed page. |[1.2

pageYOffset |Provides the current y position, in pixels, of a window's viewed page. |[1.2
A synonym for a window or frame whose frameset contains the current

parent frame 1.0
Represents the browser window's personal bar (also called the

personalbar . . 1.2
directories bar).

scrollbars Represents the browser window's scroll bars. 1.2

self A synonym for the current window. 1.0

status Specifies a priority or transient message in the window's status bar. 1.0

statusbar Represents the browser window's status bar. 1.2

toolbar Represents the browser window's tool bar. 1.2

top A synonym for the topmost browser window. 1.0

window A synonym for the current window. 1.0

Table A.67. Window Methods
Method Description Version
alert Plsp'l'ays an Alert dialog box with a message and an 1.0
OK" button.

back Undoes. the last history step in any frame within the top- 12
level window.

blur Removes focus from the specified object. 1.0
Sets the window or document to capture all events of

captureEvents . 1.2
the specified type.
Cancels a timeout that was set with the

clearinterval setInterval method. 12

. Cancels a timeout that was set with the setTimeout

clearTimeout 1.0
method.

close Closes the specified window. 1.0

. Displays a Confirm dialog box with the specified
confirm message and "OK" and "Cancel" buttons. 1.0
. Disables external event capturing set by the

disablekxternalCapture enableExternalCapture method. 1.2
Allows a window with frames to capture events in pages

enablefxternalCapture loaded from different locations (servers). 12

find F1nd§ the spemﬁed text string in the contents of the 12
specified window.

focus Gives focus to the specified object. 1.1

forward Loads the next URL in the history list. 1.2

handleEvent Invokes the handler for the specified event. 1.2
Points the browser to the URL specified in preferences

home . 1.2
as the user's home page.

moveBy Moves the window by the specified amounts. 1.2
Moves the top-left corner of the window to the specified

moveTo : 1.2
screen coordinates.

open Opens a new web browser window. 1.0

print Prints the contents of the window or frame. 1.2

prompt Dlsplays a Prompt dialog box with a message and an 10
input field.
Sets the window to release captured events of the

releaseEvents specified type, sending the event to objects further along|1.2
the event hierarchy.

resizeB Resizes an entire window by moving the window's 12

Y bottom-right corner by the specified amount.)
. Resizes an entire window to the specified outer height
resizeTo 1.2

and width.

routeEvent Pgsses a captured event along the normal event 12
hierarchy.

scroll Scrolls a window to a specified coordinate. 1.1

scrollBy Scrolls the viewing area of a window by the specified 12
amount.
Scrolls the viewing area of the window to the specified

scrollTo coordinates, such that the specified point becomes the |[1.2
top-left corner.

setInterval Eval}lates an expression or calls a function every time a 12
specified number of milliseconds elapses.

setTimeout Evaluates an expression or calls a function one time 1.0
after a specified number of milliseconds has elapsed.)

stop Stops the current download. 1.2

A.3 Top-Level Properties and Functions

Top-level properties and functions are not associated with any object. Table 1.68 details the top-level
properties. Table

1.69 details the top-level functions.

Table A.68. Top-Level Properties

Property Description Version
infinity A numeric value representing infinity. 1.3
NaN A value representing Not-A-Number. 1.3
undefined The value undefined. 1.3
Table A.69. Top-Level Functions
Function Description Version
escape Returns the hexadecimal encoding of an argument in the ISO Latin-1 1.0
character set; used to create strings to add to a URL.
eval Evgluates a string of JavaScript code without reference to a particular 1.0
object.
isFinite |Evaluates an argument to determine whether it is not a number. 1.3
i SNaN Rettllrns a string repr'esenting the specified object. Overrides the 10
Object.toString method.
Number Converts an object to a number. 1.2
parselloat|floating-point number. 1.0
parseInt |integer. 1.0
string Converts an object to a string. 1.2
unescape |Returns the ASCII string for the specified hexadecimal encoding value. 1.0

A.4 Event Handlers

This section contains syntax for JavaScript's 23 event handlers.

A.4.1 onAbort

Event handler for Tmage. Executes JavaScript code when an abort event occurs; that is, when the
user aborts the loading of an image (for example, by clicking a link or by clicking the "Stop" button).

Compatability
JavaScript 1.1
Event properties
onAbort has the following event properties:
Type
Indicates the type of event
Target

Indicates the object to which the event was originally sent
A.4.2 onBlur

Event handler for Button, Checkbox, FileUpload, Layer, Password, Radio,
Reset, Select, Submit, Text, Textarea, and Window. Executes JavaScript code when a
blur event occurs; that is, when a form element loses focus or when a window or frame loses focus.
Compatability

JavaScript 1.0
Event properties

onBlur has the following event properties:
Type

Indicates the type of event
Target

Indicates the object to which the event was originally sent

A.4.3 onChange

Executes JavaScript code when a change event occurs; that is, whena Select, Text, or
Textarea field loses focus and its value has been modified. Event handler for FileUpload,
Select, Text,and Textarea.

Compatability

JavaScript 1.0
Event properties
onChange has the following event properties:
Type
Indicates the type of event
Target
Indicates the object to which the event was originally sent

A.4.4 onClick

Event handler for Button, Document, Checkbox, Link, Radio, Reset, and Submit.
Executes JavaScript code when a click event occurs; that is, when an object on a form is clicked. (A
click event is a combination of the MouseDown and MouseUp events.)
Compatibility
JavaScript 1.0
Event properties
onClick has the following event properties:
Type
Indicates the type of event
Target
Indicates the object to which the event was originally sent
LayerX, layerY, pageX, pageY, screenX, screenY
Represent the cursor location at the time the event occurred
Which
Represents 1 for a left mouseclick and 3 for a right mouseclick
Modifiers

Contains the list of modifier keys held down while the event occurred

A.4.5 onDblIClick

Event handler for Document and L1 nk. Executes JavaScript code when a Db/Click event occurs;
that is, when the user double-clicks a form element or a link.

Compatability

JavaScript 1.2
Event properties

onDDblClick has the following properties:
Type

Indicates the type of event
Target

Indicates the object to which the event was originally sent
LayerX, layerY, pageX, pageY, screenX, screenY

Represent the cursor location at the time the event occurred
Which

Represents 1 for a left mouseclick and 3 for a right mouseclick
Modifiers

Contains the list of modifier keys held down while the event occurred

A.4.6 onDragDrop

Event handler for Document and Link. Executes JavaScript code when a DragDrop event occurs;
that is, when the user drops an object onto the browser window, such as dropping a file.

Compatability

JavaScript 1.2
Event properties

onDragDrop has the following event properties:
Type

Indicates the type of event

Target

Indicates the object to which the event was originally sent
vt

Returns an Array of Strings containing the URLSs of the dropped objects
Modifiers

Contains the list of modifier keys held down while the event occurred
ScreenX, screenY

Represent the cursor location at the time the event occurred

A.4.7 onError

Executes JavaScript code when an error event occurs; that is, when the loading of a document or
image causes an error.

Compatability
JavaScript 1.1
Event properties
onDragDrop has the following event properties:
Type
Indicates the type of event
Target

Indicates the object to which the event was originally sent

A.4.8 onFocus
Event handler for Button, Checkbox, FileUpload, Frame, Layer, Password,
Radio, Reset, Select, Submit, Text, Textarea, and Window. Executes JavaScript

code when a focus event occurs; that is, when a window, frame, or frameset receives focus or when a
form element receives input focus.

Compatability
JavaScript 1.0
Event properties

onFocus has the following event properties:

Type
Indicates the type of event
Target

Indicates the object to which the event was originally sent

A.4.9 onKeyDown

Event handler for Document, Image, Link, and Textarea. Executes JavaScript code when a
KeyDown event occurs; that is, when the user depresses a key.

Compatability
JavaScript 1.2
Event properties
onKeyDown has the following event properties:
Type
Indicates the type of event.
Target
Indicates the object to which the event was originally sent.
LayerX, layerY, pageX, pageY, screenX, screenY

For an event over a window, these represent the cursor location at the time the event occurred.
For an event over a form, they represent the position of the form element.

Which
Represents the ASCII value of the key pressed. To get the actual letter, number, or symbol of
the pressed key, use the String. fromCharCode method. To set this property when the
ASCII value is unknown, use the St ring.charCodeAt method.

Modifiers

Contains the list of modifier keys held down when the event occurred.

A.4.10 onKeyPress

Event handler for Document, Image, Link, and Textarea. Executes JavaScript code when a
KeyPress event occurs; that is, when the user presses or holds down a key.

Compatability
JavaScript 1.2
Event properties
onKeyPress has the following event properties:
Type
Indicates the type of event.
Target
Indicates the object to which the event was originally sent.
LayerX, layerY, pageX, pageY, screenX, screenY

For an event over a window, these represent the cursor location at the time the event occurred.
For an event over a form, they represent the position of the form element.

Which
Represents the ASCII value of the key pressed. To get the actual letter, number, or symbol of
the pressed key, use the String. fromCharCode method. To set this property when the
ASCII value is unknown, use the St ring.charCodeAt method.

Modifiers

Contains the list of modifier keys held down when the event occurred.

A.4.11 onKeyUp

Event handler for Document, Image, Link, and Textarea. Executes JavaScript code when a
KeyUp event occurs; that is, when the user releases a key.

Compatability

JavaScript 1.2
Event properties

onKeyUp has the following event properties:
Type

Indicates the type of event.

Target

Indicates the object to which the event was originally sent.
LayerX, layerY, pageX, pageY, screenX, screenY

For an event over a window, these represent the cursor location at the time the event occurred.
For an event over a form, they represent the position of the form element.

Which
Represents the ASCII value of the key pressed. To get the actual letter, number, or symbol of
the pressed key, use the String. fromCharCode method. To set this property when the
ASCII value is unknown, use the St ring.charCodeAt method.

Modifiers
Contains the list of modifier keys held down when the event occurred.

A.4.12 onLoad

Event handler for Image, Layer, and Window. Executes JavaScript code when a load event
occurs; that is, when the browser finishes loading a window or all frames within a <FRAMESET>
tag.
Compatability
JavaScript 1.0
Event properties
onLoad has the following event properties:
Type
Indicates the type of event
Target
Indicates the object to which the event was originally sent

Width, height

For an event over a window, but not over a layer, these represent the width and height of the
window

A.4.13 onMouseDown

Event handler for Button, Document, and L.ink. Executes JavaScript code when a
MouseDown event occurs; that is, when the user depresses a mouse button.

Compatability
JavaScript 1.2
Event properties
onMouseDown has the following event properties:
Type
Indicates the type of event
Target
Indicates the object to which the event was originally sent
LayerX, layerY, pageX, pageY, screenX, screenY
Represent the cursor location at the time the MouseDown event occurred
Which
Represents 1 for a left-mouse-button down and 3 for a right-mouse-button down
Modifiers
Contains the list of modifier keys held down while the event occurred

A.4.14 onMouseMove

Because mouse movement happens so frequently, by default, onMouseMove is not an event of any
object. You must explicitly set it to be associated with a particular object. Executes JavaScript code
when a MouseMove event occurs; that is, when the user moves the cursor.
Compatability

JavaScript 1.2
Event properties

onMouseMove has the following event properties:
Type

Indicates the type of event

Target

Indicates the object to which the event was originally sent

LayerX, layerY, pageX, pageY, screenX, screenY

Represent the cursor location at the time the MouseMove event occurred

A.4.15 onMouseOut

Event handler for Layer and Link. Executes JavaScript code when a MouseOut event occurs; that

is, each time the mouse pointer leaves an area (client-side image map) or link from inside that area or
link.

Compatability
JavaScript 1.2
Event properties
onMouseOut has the following event properties:
Type
Indicates the type of event
Target
Indicates the object to which the event was originally sent
LayerX, layerY, pageX, pageY, screenX, screenY
Represent the cursor location at the time the MouseOut event occurred

A.4.16 onMouseOver

Event handler for Layer and Link. Executes JavaScript code when a MouseOver event occurs; that
is, once each time the mouse pointer moves over an object or area from outside that object or area.

Compatability

JavaScript 1.2
Event properties

onMouseOver has the following event properties:
Type

Indicates the type of event

Target

Indicates the object to which the event was originally sent
LayerX, layerY, pageX, pageY, screenX, screenY

Represent the cursor location at the time the MouseOver event occurred

A.4.17 onMouseUp

Event handler for But ton, Document, and Link. Executes JavaScript code when a MouseUp
event occurs; that is, when the user releases a mouse button.

Compatability

JavaScript 1.2
Event properties

onMouseUp has the following event properties:
Type

Indicates the type of event.
Target

Indicates the object to which the event was originally sent
LayerX, layerY, pageX, pageY, screenX, screenY

Represent the cursor location at the time the MouseUp event occurred
Which

Represents 1 for a left-mouse-button down and 3 for a right-mouse-button down

Contains the list of modifier keys held down when the MouseUp event occurred

A.4.18 onMove

Event handler for Wi ndow. Executes JavaScript code when a move event occurs; that is, when the
user or script moves a window or frame.

Compatability
JavaScript 1.2

Event properties

onMove has the following event properties:
Type
Indicates the type of event
Target
Indicates the object to which the event was originally sent
ScreenX, screenY
Represent the position of the top-left corner of the window or frame

A.4.19 onReset

Event handler for Form. Executes JavaScript code when a reset event occurs; that is, when a user
resets a form (clicks a "Reset" button).

Compatability
JavaScript 1.1
Event properties
onReset has the following event properties:
Type
Indicates the type of event
Target

Indicates the object to which the event was originally sent

A.4.20 onResize

Event handler for Wi ndow. Executes JavaScript code when a resize event occurs; that is, when a user
or script resizes a window or frame.

Compatability
JavaScript 1.2
Event properties

onResize has the following event properties:

Type

Indicates the type of event
Target

Indicates the object to which the event was originally sent
Width, height

Represent the width and height of the window or frame

A.4.21 onSelect

Event handler for Text and Textarea. Executes JavaScript code when a select event occurs; that
is, when a user selects some of the text within a text or textarea field.

Compatability
JavaScript 1.0
Event properties
onSelect has the following event properties:
Type
Indicates the type of event
Target
Indicates the object to which the event was originally sent

A.4.22 onSubmit

Event handler for Form. Executes JavaScript code when a submit event occurs; that is, when a user
submits a form.

Compatability

JavaScript 1.0
Event properties

onSubmit has the following event properties:
Type

Indicates the type of event

Target

Indicates the object to which the event was originally sent

A.4.23 onUnload

Event handler for Wi ndow. Executes JavaScript code when a submit event occurs; that is, when a
user submits a form.

Compatability
JavaScript 1.0
Event properties
onUnload has the following event properties:
Type
Indicates the type of event
Target

Indicates the object to which the event was originally sent

Appendix B. Web Resources

This appendix provides links to JavaScript- and web-related resources. Sections include JavaScript,
Perl, and CGI references and graphics resources. The last section, "Similar Applications," points to
other web sites that have applications similar to the ones in this book. It's a good idea to see how other
coders solve similar problems.

B.1 Cool JavaScript Sites

These are a few sites that use JavaScript to make things happen. Most of the code is pure JavaScript
and DHTML. One site requires the Macromedia Flash 3 plug-in, but any recent 4.x or 5.x version of
MSIE and NN will have it. Talk about eye candy.

GaboCorp:

http://www.gabocorp.com/

Doc Ozone:

http://www.ozones.com/blueprint.html

Scrutinizer by Vivatrix:

http://vivatrix.com/demos/en/scrutinizer

http://www.gabocorp.com/
http://www.ozones.com/blueprint.html
http://vivatrix.com/demos/en/scrutinizer

Honda Automobiles:

http://www.honda1999.com/

Haznet's Fallout Shelter:

http://www.hudziak.com/haznet/javascript.html

B.2 JavaScript Reference

These URLs helped me big time over the last few months. They'll do they same for you. You'll find
JavaScript reference material, tutorials, scripts, articles, and plenty more.

Core JavaScript Reference:

http://developer].netscape.com/docs/manuals/js/core/jsref/contents.htm

Doc JavaScript:

http://www.webreference.com/js/

HotSyte—The JavaScript Resource:

http://www.serve.com/hotsyte/

Microsoft Scripting Technologies (JScript):

http://msdn.microsoft.com/scripting/default.htm?/scripting/jscript/default.htm

Microsoft Developer Network (JScript):

http://msdn.microsoft.com/developer/default.htm

The JavaScript Source:

http://javascript.internet.com/

Cut-n-Paste JavaScript:

http://www.infohiway.com/javascript/indexf.htm

JavaScriptWorld:

http://www.jsworld.com/

webmonkey/JavaScript:

http://www.hotwired.com/webmonkey/javascript/?tw=javascript

http://www.honda1999.com/
http://www.hudziak.com/haznet/javascript.html
http://developer1.netscape.com/docs/manuals/js/core/jsref/contents.htm
http://www.webreference.com/js/
http://www.serve.com/hotsyte/
http://msdn.microsoft.com/scripting/default.htm?/scripting/jscript/default.htm
http://msdn.microsoft.com/developer/default.htm
http://javascript.internet.com/
http://www.infohiway.com/javascript/indexf.htm
http://www.jsworld.com/
http://www.hotwired.com/webmonkey/javascript/?tw=javascript

CNET Builder.com:

http://builder.cnet.com/Programming/

JavaScripts.com:

http://www.javascripts.com/

eScriptZone.com:

http://www.escriptzone.com/

B.3 JavaScript FAQs

You have questions. They have answers. These FAQs, particularly the one at IRT.org, cover issues
from very basic to complex.

IRT.org:

http://www.irt.org/script/faq.htm

JS Beginners:

http://www.geol.uni-erlangen.de/geojs/JS _tutorial/JS beginners.html

DevEdge NewsGroup FAQ:

http://developer.netscape.com/support/fags/champions/javascript.html

JavaScript Beginner's FAQ:

http://www.it97.de/JavaScript/JS _tutorial/3rdless.html

The JavaScript Mini-FAQ:

http://www.dannyg.com/javascript/jsminifag.html

B.4 DHTML Reference

This is a good grab bag to keep you up to date on the latest DHTML info. Many of the articles at these
sites cover cross-browser topics or thorough discussion of IE- or NN-specific topics.

DevHead dHTML:

http://www.zdnet.com/devhead/filters/dhtml/

Dynamic HTML Zone:

http://www.dhtmlzone.com/index.html

http://builder.cnet.com/Programming/
http://www.javascripts.com/
http://www.escriptzone.com/
http://www.irt.org/script/faq.htm
http://www.geol.uni-erlangen.de/geojs/JS_tutorial/JS_beginners.html
http://developer.netscape.com/support/faqs/champions/javascript.html
http://www.it97.de/JavaScript/JS_tutorial/3rdless.html
http://www.dannyg.com/javascript/jsminifaq.html
http://www.zdnet.com/devhead/filters/dhtml/
http://www.dhtmlzone.com/index.html

Dynamic Drive:

http://www.dynamicdrive.com/

Inside DHTML:

http://www.insidedhtml.com/

The Dynamic Duo:

http://www.dansteinman.com/dynduo/

Dynamic HTML Guru Resource:

http://www.htmlguru.com/

webmonkey/dynamic_html:

http://www.hotwired.com/webmonkey/dynamic_html/

Frequently Asked Questions About Dynamic HTML:

http://www.microsoft.com/workshop/author/dhtml/dhtmlqa.asp

B.5 Document Object Model Reference

These resources provide information about the Document Object Models standard by the World Wide
Web Consortium.

Document Object Model:

http:// www.w3.org/DOM/

Document Object Model FAQ:

http:// www.w3.org/DOM/fag.html

B.6 Perl/CGI Reference

If you want to further explore the Common Gateway Interface and Perl, start here. Perl resources are
as vast as the language. Make sure you download and install plenty of modules for extra functionality.

Perl.com:

http://www.perl.com/pace/pub

Perl Reference Page:

http://reference.perl.com/query.cgi?section=tutorials

http://www.dynamicdrive.com/
http://www.insidedhtml.com/
http://www.dansteinman.com/dynduo/
http://www.htmlguru.com/
http://www.hotwired.com/webmonkey/dynamic_html/
http://www.microsoft.com/workshop/author/dhtml/dhtmlqa.asp
http://www.w3.org/DOM/
http://www.w3.org/DOM/faq.html
http://www.perl.com/pace/pub
http://reference.perl.com/query.cgi?section=tutorials

An Introduction to The Common Gateway Interface:

http://www.utoronto.ca/webdocs/CGl/cgil.html

B.7 Graphics Resources

Since graphics and JavaScript ultimately cross paths, the URLs here give you a few resources to
articles and free graphics.

Cooltype.com:

http://cooltype.webpedia.com/

AndyArt:

http://www.andyart.com/

Site Builder Workshop—Image Gallery:

http://www.microsoft.com/workshop/c-frame.htm#/gallery/images/default.asp

B.8 Similar Applications

This section provides links to sites with applications similar (or in the ballpark, at least) to the ones
discussed in this book.

B.8.1 Client-Side Search Engines

Most JavaScript search engines I've found on the web are designed to pass queries to multiple search
engines such as Yahoo!, Infoseek, and AltaVista. Here are a few sites with client-side JavaScript
search apps. All seem to work well, but don't have the functionality of the app in Chapter 1. Either
way, check them out. You might pick up some pointers if you study the source code.

The Computer Crap Search Engine:

http://www.geocities.com/SiliconValley/Horizon/2188/search.html

I've seen more creative titles, but author Nathan Wiegand uses similar coding to the one
discussed here.

JavaScript Search Functions:

http://www.serve.com/hotsyte/wildman/web_search/site_search.html

You can find this app by Tim Hobbs on http://hotsyte.com.

http://www.utoronto.ca/webdocs/CGI/cgi1.html
http://cooltype.webpedia.com/
http://www.andyart.com/
http://www.microsoft.com/workshop/c-frame.htm#/gallery/images/default.asp
http://www.geocities.com/SiliconValley/Horizon/2188/search.html
http://www.serve.com/hotsyte/wildman/web_search/site_search.html
http://hotsyte.com

B.8.2 Online Tests
You have to look hard, but you can find JavaScript tests out there. Here are a few that I found.
D2 Test:

http://inetpubl.com/psy/psy.htm

This concentration test by Inet Publishing uses JavaScript to pit your concentration and
counting skills against the clock.

Hardware Fundamentals Practice Test:

http://www.cit.ac.nz/smac/hf100/test]1s.htm

This test is pretty neat. It's a practice test about disk formatting, drive partitioning, storage
capacity, and more. The cool thing is that the application lets you know if you are correct as
soon as you answer. It is actually a series of practice tests. Try the same path with test2s.htm
through fest9.htm (nothing at test6.htm). You can find more of the same on the subject of C
programming at http://www.cit.ac.nz/smac/cprogram/c_054s.htm. These tests are provided by
the Central Institute of Technology in New Zealand.

Norm's Multiple Choice Test:

http://lisa.unomaha.edu/2.0/test.html

You might not be crazy about the yellow background, but this test, too, gets the job done
using JavaScript. Instead of rewriting the page every time, this test inserts questions and
answer choices in form fields. It also tracks your cumulative score.

Test 2000:

http://www.jchelp.com/test2000/drvframe.htm

This multiple-choice test is designed to help drivers prepare for the written portion of the
California driver's test. It allows you to view all results at the end rather than one by one. You
can also view the correct answers and explanations.

B.8.3 Slideshows

Here are a few interesting slideshow apps.
Project Management—A Slide Show:

http://www.geocities.com/~mohan_iyer/slideshow.htm

This DHTML application has animated slides. The graphics take a while to download, but it's
worth the wait. You can find the JavaScript in the hard-to-find slideshow.js file.

web blazonry:

http://inetpubl.com/psy/psy.htm
http://www.cit.ac.nz/smac/hf100/test1s.htm
http://www.cit.ac.nz/smac/cprogram/c_054s.htm
http://lisa.unomaha.edu/2.0/test.html
http://www.jchelp.com/test2000/drvframe.htm
http://www.geocities.com/~mohan_iyer/slideshow.htm

http://blazonry.com/javascript/slideshow/

This cool slideshow displays the evolution of the mkaz web site, presumably from its
inception. Pure image rollovers.

Apartment Home Animated Virtual Tour:

http://www.mark-taylor.com/virtualtour/index.htm

This automated slideshow gives users a tour of an apartment home complex. The image
download is fairly lengthy, but the developer realizes this and tries to entertain you so that
you don't click elsewhere.

B.8.4 Multiple Search Engine Interfaces

There is no shortage of JavaScript search engines on the Net. Here are some of the dozens I
encountered.

Ultimate Universal Interface for Search Engines (UUISE):

http://www.cris.com/~anathema/UUISE/index.html

This slick program utilizes cookies to let users customize their multi-engine search. Users can
select up to 10 search engines out of several dozen choices. The rest of the program is
displayed in a simple remote window with a text field and image links to the 10 engines of
choice.

WebSight:

http://rampages.onramp.net/~jnardo/websight/website1.htm

This application is similar to mine, but allows you to perform extra Boolean filtering.
Complete with a help file.

Virtual Meta Search 2:

http://WebcastLinks.com/vmsearch/vmsearch.html

This application lets you choose up to 6 out of 31 search engines and returns results from
each of the engines in separate frames.

Computer ESP Bargain Agent:

http://www.shopper.com/shop/

Rather than querying search engine databases, this application searches online computer store
databases so you can find the gear you need.

B.8.5 Rollover Generators

http://blazonry.com/javascript/slideshow/
http://www.mark-taylor.com/virtualtour/index.htm
http://www.cris.com/~anathema/UUISE/index.html
http://rampages.onramp.net/~jnardo/websight/website1.htm
http://WebcastLinks.com/vmsearch/vmsearch.html
http://www.shopper.com/shop/

There are a number of rollover apps on the Net. Why not visit these sites and see what they're made
of?

The Mighty Mouseover Machine:

http://builder.cnet.com/Programming/Kahn/012898/index.html

Charity Khan's site probably gets more hits than Builder.com knows what to do with. Her app
utilizes a remote window to create an image template and eventually create the code.

OnMouseOver Whipper:

http://wsabstract.com/mousewhipper/index.htm

This web abstraction application allows only one image pair at a time. However, it's quite
cool because the coder added a slick auto-detect feature that accesses the width and height of
the images. The app finds them for you. It's a matter of creating an /mage() object and
grabbing properties from there. Nice work.

JavaScript Rollover Generator:

http://webreview.com/wr/pub/98/03/13/coder/rollover.html

Like the Whipper, you can do only one pair at a time. However, you control lots of settings.
You can also preview the rollover before you keep the code.

B.8.6 Libraries

I certainly don't have the market cornered on JavaScript libraries. The ones listed here contain some
heavy-duty code for cranking out DHTML. When you have a few extra hours, download these
libraries and try to figure out the code. You might lose a few neurons, but your investment will pay
big programming dividends.

DHTMLLIib Version 2:

http://www.insidedhtml.com/dhtmllib/pagel.asp

This library from InsideDHTML.com is the hookup for cross-browser application building.
Based on MSIE's document object model, this library enables you to write code supported in
both object models (NN and MSIE).

FreeDOM:

http://www.builder.com/Programming/FreeDOM/

This library available on C|[Net allows you to better create and manipulate JavaScript objects
outside the context of the DOMs.

The JavaScript Menu Component:

http://builder.cnet.com/Programming/Kahn/012898/index.html
http://wsabstract.com/mousewhipper/index.htm
http://webreview.com/wr/pub/98/03/13/coder/rollover.html
http://www.insidedhtml.com/dhtmllib/page1.asp
http://www.builder.com/Programming/FreeDOM/

http://developer.netscape.com/viewsource/smith_menu/smith _menu.html

The Netscape library files (menu.js) allow you to easily add floating menus with child menus.
Did I mention cross-browser? Check this one out.

JavaScript DHTML Collapsible Lists:

http://developer.netscape.com/docs/technote/dynhtml/collapse/index.html#xbrowser

The code documented here allows you to make Windows Explorer-like collapsing structures
to organize and link your content. You'll even find a link to a code generator that helps you
make the DHTML.

ScriptBuilder.com:

http://www.scriptbuilder.com/netobjects/library.nsf/By+Language

This NetObjects script repository has plenty of cut-and-paste code. Not all the code is in .js
files, but you and your text editor can change all that.

B.8.7 Cookies

The following two links point to a number of cookie apps. They range from simple to advanced,
enough to keep you busy for awhile.

Cookie Demos:

http://www.cookiecentral.com/demomain.htm

This page contains a list of links to cookie demos from Cookie Central. Applications feature
setting user preferences, individual visitor hit counting, and browser detection

Shopping Cart Using Cookies:

http://www.ozemail.com.au/~dcrombie/cartdemo/index.html

Here you can see how cookies can be used in shopping carts apps. You can rework it and add it to the
shopping cart app in Chapter 8.

B.8.8 Shopping Carts

JavaScript shopping carts aren't new to the Net. Check out the ones below. All but the first two are
free.

Shop@ssitant:

http://www.floyd.co.uk/

This commercial application has many features and benefits for the web shopper. This was
developed by a skilled team of JavaScript gurus, so don't feel intimidated.

http://developer.netscape.com/viewsource/smith_menu/smith_menu.html
http://developer.netscape.com/docs/technote/dynhtml/collapse/index.html#xbrowser
http://www.scriptbuilder.com/netobjects/library.nsf/By+Language
http://www.cookiecentral.com/demomain.htm
http://www.ozemail.com.au/~dcrombie/cartdemo/index.html
http://www.floyd.co.uk/

Shopmaster:

http://www.shopmaster.net/shopmaster/shop.htm

The app at this site demos a fairly robust shopping cart, complete with thumbnail images for
group displays, product info display with mouseovers, and more.

A Simple Shopping Cart Program:

http://lymdenlodge.hypermart.net/ShoppingCart.htm

Simple indeed, but it might be all you need if you're hustling only a few well-known
products. Product selection, cost calculation, and payment info are all on one page.

JShop JavaScript Shopping Cart:

http://javaboutique.internet.com/JShop/

This application from JavaBoutique is a good basic shopping cart. It has potential, but you'll
likely need to add significant code to make it work for you.

Wildman's Shopping Cart:

http://www.serve.com/hotsyte/wildman/shopping cart/shop cart. intro.html

Creator Timothy Hobbs left this application on HotSyte. It uses cookies to store user
selections.

Shopping Cart Using Cookies:

http://www.ozemail.com.au/~dcrombie/cartdemo/index.html

A good place to see how cookies can be used in shopping carts apps. Then you can rework it
and add it to the shopping cart app in Chapter 8.

B.8.9 Ciphers

You can find hordes of sites with great cipher information. However, those using JavaScript to
demonstrate them seem sparse. If you find others, please let me know.

Ciphers by Gordon McComb:

http://emccomb.com/commerce/frame.html

This site comes from one of the first authors ever to write about JavaScript. Check out the
JavaScript cipher and JavaScript password-protect examples.

RSA Algorithm JavaScript Page:

http://www.orst.edu/dept/honors/makmur/

http://www.shopmaster.net/shopmaster/shop.htm
http://lymdenlodge.hypermart.net/ShoppingCart.htm
http://javaboutique.internet.com/JShop/
http://www.serve.com/hotsyte/wildman/shopping_cart/shop_cart._intro.html
http://www.ozemail.com.au/~dcrombie/cartdemo/index.html
http://gmccomb.com/commerce/frame.html
http://www.orst.edu/dept/honors/makmur/

This multi-page introduction to RSA encryption shows you how to implement a very basic
form of RSA with JavaScript. Bring a healthy knowledge of factoring prime numbers if
you're going to examine the code.

Ciphers in JavaScript:

http://www.serve.com/hotsyte/ciphers/

Of course, there is always my site. This application covers substitution and transposition
ciphers.

B.8.10 Drag-and-Drop Concepts
This links point to a few resources that leverage browser event models and JavaScript.
DHTMLLib Demos/ Drag and Drop:

http://www.insidedhtml.com/dhtmllib/demos/dragdrop.asp

This demo is part of the SiteExperts DHTMLLIib library mentioned earlier. This incorporates
cross-browser DHTML that allows smooth dragging and dropping.

Dynamic Duo—Drag and Drop Concepts:

http://www.dansteinman.com/dynduo/dragconcepts/dragconcepts.html

Dan Steinman takes you through a JavaScript/DHTML tutorial for mouse events. Plenty of
code and examples.

Netscape's Visual DHTML:

http://developer.netscape.com/docs/examples/dynhtml/visual/index.htm

I'm not real big on sticking with browser-dependent technology, but this Netscape-only Drag-
and-Drop DHTML editor is great. This application uses JavaScript 1.2 to the fullest extent to
give the user a web-based GUI. Even if you don't plan on using the app, run the demo to see
how it all works.

Drag and Drop:

http://www.dpunkt.de/javascript/bsp/script2/dragdrop/index.html

This quickie example page (written in German, I believe) gives you another perspective on
drag and drop.

Coolnerds Dynamic HTML Examples:

http://www.milliscrip.com/webauth/dhtml/dragdrop.htm

http://www.serve.com/hotsyte/ciphers/
http://www.insidedhtml.com/dhtmllib/demos/dragdrop.asp
http://www.dansteinman.com/dynduo/dragconcepts/dragconcepts.html
http://developer.netscape.com/docs/examples/dynhtml/visual/index.htm
http://www.dpunkt.de/javascript/bsp/script2/dragdrop/index.html
http://www.milliscrip.com/webauth/dhtml/dragdrop.htm

I'd call this the online equivalent of Mr. Potato Head. Build your own face by dragging and
dropping your choice of hair, eyes mouth, nose, and more. This is actually a VBScript
example, but you can see how the DOM goes to work anyway.

B.8.11 Context-Sensitive Help

I have yet to run into an online help application on the Net such as the one described in Chapter 11.
However, you'll find the code at the following links more than worth your while. Each uses similar
code to produce cool, yet slightly different effects.

The Microsoft Home Page:

http://www.microsoft.com/ms.htm

Right off the home page, Microsoft developers have embedded expandable lists in the nav
bar. Each list offers links to other pages, or even other lists.

The JavaScript Menu Component:

http://developer.netscape.com/viewsource/smith_menu/smith_menu.html

This article steps you through the process of creating cross-browser DHTML menus similar
to the ones on the Microsoft home page. Author Gary Smith takes a worthwhile object-
oriented approach.

The Menu Toolkit:

http://www.insidedhtml.com/constsets/menus/menubar.asp

This demo comes from one of the many inside DHTML toolkits. Absorb this code.

Appendix C. Using Perl Scripts
This appendix contains four sections:

A Perl/CGI Overview

Getting Perl

The Shopping Bag Script—bag.p!
The CyberGreeting Script—greet.pl

el .

The first section contains a little background on Perl and mentions some of its advantages. The next
section tells you where to download Perl, giving you several choices depending on your operating
system. The last two sections explain how the Perl scripts in Chapter 8, and Chapter 10, work.

C.1 A Perl/CGI Overview

http://www.microsoft.com/ms.htm
http://developer.netscape.com/viewsource/smith_menu/smith_menu.html
http://www.insidedhtml.com/constsets/menus/menubar.asp

The acronym stands for Practical Extraction and Report Language. It was originally designed for text
and file manipulation, but also does well for managing system tasks and creating dynamic content for
the Web. Perl has its roots in programming languages, such as C, sed, awk, and sh.

C.1.1 What's So Good About Perl?

Perl is popular for a number of reasons. As far as languages go, Perl is pretty easy to learn. It is
extremely powerful. It is used in just about every kind of programming scenario imaginable. Here are
some of the many ways Perl is used:

For dynamic web page content

e In CGI scripts for countless web apps

e To access databases

e For building search engines and web robots

e For password protection and other encryption

e For system administration, site logging, and scheduled tasks

e For networking tasks and other scripting
o For chat servers and message boards

Perl is quickly finding its way into many other arenas. You can use Perl:

e To extend Java, C, VisualBasic, Delphi, and other code
e In XML (Extensible Markup Language) applications
e As PerlScript, an ActiveX scripting engine

Perl is free. You can get it at the CPAN (Comprehensive Perl Archive Network) site
http://www.perl.com/CPAN/. Windows users can also get it at the ActiveState site at
http://www.activestate.com/.

Perl has a very large and loyal following. Coders are consistently adding to the hundreds, if not
thousands, of modules and applications that have been written and that you can easily implement on
your web site. The overwhelming majority of this stuff is free. Perl's popularity means that you'll also
find tons of documentation, support, and experienced coders all over the planet.

Perl runs on lots of platforms, including Unix, VMS, MS-DOS, Windows NT/98/95, OS/2, and more.
Most of the code you write is fairly portable from operating system to operating system.

C.1.2 What's Not So Good About Perl?

The biggest gripe developers have with Perl is performance. Perl is comparatively slower to execute
than compiled languages such as C. In the web environment, CGI scripts (the Common Gateway
Interface; more on that shortly) written in Perl (and other languages) must be read from the hard drive
and loaded as a new process each time they are called. Technologies such as Active Server Pages and
Java servlets can run in the same memory space as the web server, which greatly speeds execution.
Developments such as Perl for ISAPI and the more recent PerlEx have increased performance
significantly.

Another downside is that Perl is not considered an elegant (looking) language. Perl exchanges beauty
for utility. It works, but it can be ugly.

C.1.2.1 Perl and CGI

http://www.perl.com/CPAN/
http://www.activestate.com/

If you use your browser to request a file with an .4tml extension from a web server, you're getting a
static document. That means that file exists in a directory on the computer. You could sit down at the
computer containing the file, open it in a text editor, and view the same data that is being sent to your
browser.

If you request a .cgifile (or .pl, .plx, or other file extensions), you're not going to get the code written
in the file. The web server instead executes the file with whatever engine it is configured to use (in our
case, Perl) and returns that output to the browser. What you're viewing in your browser doesn't exist
on the web server. The content was created when you requested it.

This entire process of requesting and receiving output happens through CGI, the Common Gateway
Interface. CGI is a standard for interfacing with HTTP servers. By the way, the server-side language
doesn't have to be Perl. There are plenty of CGI scripts written in C and C++, Python, Fortran,
AppleScript, and others. For more details, check out the Perl CGI Programming FAQ at
http://www.cpan.org/doc/FAQs/cgi/perl-cgi-fag.html.

C.1.2.2 Why use CGI?

Though CGI scripts in general can be outperformed by ColdFusion, Active Server Pages, and other
technologies, the CGI standard is still used all over the Net. There are also plenty of web servers out
there running Perl. And it's free. Since this stuff is nearly everywhere, it made sense to write the
server-side portion of the JavaScript applications in something that everybody can get their hands on
fairly easily. I think you'll find that these scripts are pretty easy to follow, too.

C.2 Getting Perl

You'll need to have Perl installed on your web server. Most web server hosts do. If you need to install
Perl yourself, you can get the latest Perl distribution free at
ftp://ftp.rge.com/pub/languages/perl/ports/index.html.

Just click the link associated with your operating system. If you are running WinNT/98/95, you can
get the latest Perl binaries and info at http://www.activestate.com/pw32/. If you want more power and
features, check out ActivePerl, a significant advance in the Win32 distribution of Perl, at
http://www.activestate.com/ActivePerl/.

Both web sites provide documentation for installing and configuring Perl. If you have Windows,
though, it's pretty simple. Whether you install the regular Win32 binaries or the ActivePerl package,
the install takes only a few steps and will even configure your web server (such as Microsoft's Internet
Information Server, Peer Web Services, or Personal Web Server) to execute Perl scripts. Installing and
configuring Perl for Unix and other operating systems is generally more involved. Be sure to check
the included documentation.

Once Perl is installed, the web server needs to be configured to execute Perl scripts. If your web server
host is running Perl, this is likely taken care of. Contact your web site administrator to find out. If
you're doing this yourself, you'll probably have to configure the web server. Popular web servers such
as Microsoft's Internet Information Server, Netscape's Enterprise Server, O'Reilly's WebSite Pro,
Apache by the Apache Group, and others usually make it a fairly simple operation. Check the online
documentation of your web server software for instructions.

C.3 The Shopping Bag Script—bag.pl

http://www.cpan.org/doc/FAQs/cgi/perl-cgi-faq.html
ftp://ftp.rge.com/pub/languages/perl/ports/index.html
http://www.activestate.com/pw32/
http://www.activestate.com/ActivePerl/

Example 3.1 is the script from Chapter 8. The script is provided mostly so that you can see how
Shopping Bag works from end to end. The script works fine, but it is primitive. If you want a powerful
shopping program with numerous server-side options, I suggest you seek a more robust solution.

e Remember that shoppers provide sensitive credit card information in the order
o form. If that information isn't properly protected before it is submitted, it can
‘*. 4 casily get into the wrong hands and be used illegally. To prevent this, your

web server host should support some type of protection such as Secure Sockets
Layer (SSL), a protocol used for encryption. Most web server hosts support it.
You should contact your web site administrator and find more information
about SSL at http://webopedia.internet.com/TERM/S/SSL.html.

bag.pl has three jobs:

1. Get all the product and customer information
2. Save that information in a uniquely named text file on the web server
3. Print a confirmation page to send back to the browser

Some web server hosts require that you run CGI scripts with a .cgi extension
H@ instead of a .p/ extension. No biggie—just rename the file to bag.cgi. Quick
recovery.

Let's see how bag.pl takes care of all three jobs. As you look at this code, remember that you don't
have to understand the syntax. This book isn't about Perl. Just try to follow what the code is doing
from one step to the next.

Example C.1. bag.pl

1 #!/usr/bin/perl

2

3 require "cgi-lib.pl";

4

5 print "Content-type: text/html\n\n";

6

7 &ReadParse (*in) ;

8

9 srand(SSS © time);

10 Sfilename = $in{'lname'} . 1int (rand(999));
11
12 1f (-e "Sfilename.txt") {

13 print "The order for $filename has already been

placed.";

14 exit 0;
15 }

16

17 open(FILE,">S$filename.txt");
18 select (FILE);

19 printInfo();

20 close (FILE);

http://webopedia.internet.com/TERM/S/SSL.html

21 select (STDOUT) ;

22 printInfo();

23

24 exit 0;

25

26 sub printInfo() {

27 Sclock = localtime();

28

29 print <<CUSTOMER_INFO;

30 <PRE>
31 <H2>Shopping Bag Order Confirmation Receipt</H2>
32

33 S$Sclock

34 Reference Code: $filename

35

36

37 ——— =

38 Customer Information

39

40 Customer First Name: $Sin{'fname'}

41 Customer Last Name Sin{'lname'}

42 Company Name: Sin{'cname'}

43 Street Address 1: $in{'saddressl'}
44 Street Address 2: Sin{'saddress2'}
45 City: Sin{'city"'}

46 State/Province: Sin{'stpro'}

47 Country: Sin{'country'}
48 Zip/Mail Code: Sin{'zip"}

49

50 CUSTOMER INFO

51

52 print <<PAYMENT INFO;

53

54 Payment Information

55

56 Credit Card Type: Sin{'ctype'}

57 Credit Card Number: S$Sin{'cnumb'}

58 Expiration Date: Sin{'edate'}

59

60 PAYMENT INFO

61

62 print "Product Information\n\n";

63

64 S$Sidx = 0;

65

66 while ($in{'prod' . $idx}) {

67 @getProdInfo = split("-", S$in{'prod' . $idx});
68 print "Product PLU:\t\tSgetProdInfo[0]\n";

69 print "\tQuantity:\t$getProdInfol[l]\n\n";

70 Sidx++;

71 }

72

73 print <<TOTAL INFO;

74

75 Total Information (\$US)

76

77 Subtotal: Sin{'subtotal'}
78 Tax Total: $in{'taxtotal'}
79 Ship Total: Sin{'shiptotal'}
80 Bag Total: Sin{'bagtotal'}
81

8§82 e

83 </PRE>
84 TOTAL INFO
85 }

C.3.1 Getting the Product Information

The first step is actually pretty involved. However, the hard work of other coders makes it a breeze.
Let's start with lines 1-7:

#!/usr/bin/perl

require "cgi-lib.pl";

print "Content-type: text/html\n\n";
&ReadParse (*in) ;

The first line is common to all CGI scripts. Nicknamed the "shebang" line, this tells the server where
to find Perl. The path varies from machine to machine, so you might have to ask your web site
administrator. If you're running a Windows machine, this line is ignored. The next line instructs Perl
to include code from a library file called cgi-/ib.p! (which comes standard on most Perl installs). This
contains the code that will read the information submitted from the HTML form. The only thing we
need to do is call the correct Perl subroutine, and the script will read all the information submitted
from the form and store in variables we can get our hands on.

The next line prints an HTTP header. This particular header identifies the MIME type (Multipart
Internet Mail Extension) to the browser, which states which type of information to expect. It is set to
text/html. Other MIME types include image/gif and text/plain.

JavaScript uses functions and methods; Perl uses functions, methods, and subroutines. Subroutine
ReadParse () from cgi-lib.pl reads the HTML form data from the standard input and places the

data in an associative array called %in. We'll get the form data shortly, but it's nice to know that we've
got it. Let's move on.

C.3.2 Saving the Information to a File on the Web Server

Now we have the form data. Let's create a file to put it in. Lines 9-15 create a unique filename:

srand ($$ ~ time);

Sfilename = Sin{'lname'} . int (rand(999));

i1f (-e "Sfilename.txt") {
print "The order for $filename has already been placed.";
exit 0O;

}

The code srand ($$ ~ time) ; initializes Perl's random-number generator. Next, Perl creates a
variable called $filename that will hold the unique filename. The filename is created by concatenating
the shopper's last name with a random integer 0-999:

Sfilename = Sin{'lname'} . int (rand(999));

The shopper's last name comes from the form data, right? Since the data is stored in the associative
array %in, all we have to do is access the element containing the last name. Here is the syntax:

$in{'lname'}.

If you recall, 1 name was one of the form fields on the HTML form submitted. Associative arrays in
Perl (JavaScript, too) are referenced by name, so Sin{'lname'} points to whatever the shopper
entered as his or her last name (e.g., "Jones").

Perl's rand () function generates a random floating-point number between and the number it is
passed, which is 999. To make things cleaner, Perl's int () function returns the integer of whatever
random number rand () chooses. So $filename could have values such as Jones?23,
Jones997, Jones102, etc.

Once the value of filename is determined, Perl checks to see if a file with that name already exists.
This is a mild validation technique to avoid overwriting orders that already exist on the file. For
example, Jones is a pretty common last name. If Ed Jones and Jimmy Jones go shopping on the same
day, and by some chance generate the same random integer, their filenames would be exactly the
same. Whoever shopped last would overwrite the order information of the first:

i1f (-e "Sfilename.txt") {
print "The order for $filename has already been placed.";
exit 0;

}

If the file already exists, Perl prints the message back to the shopper that an order with that number
has been placed, and exits the script. The shopper need only reload the script to generate another
random filename and give it another go. If the file doesn't exist, Perl proceeds with lines 17-20:

open (FILE, ">S$filename.txt") ;
select (FILE) ;
printInfo (),
close (FILE) ;

This code opens (creates) a file using the variable $filename and adds an extension of .zxt. The code
select (FILE) tells Perl to print output to the newly created file until otherwise told. The only

thing to do is pile in the content. That's what subroutine printInfo () does. You can see that in
lines 26-85:

sub printInfo() {
Sclock = localtime () ;

print <<CUSTOMER INFO;
<PRE>
<H2>Shopping Bag Order Confirmation Receipt</H2>

Sclock
Reference Code: S$filename

Customer Information

Customer First Name: S$input{'fname'}
Customer Last Name: Sinput{'lname'}
Company Name: Sinput{'cname'}
Street Address 1: Sinput{'saddressl'}
Street Address 2: Sinput{'saddress2'}
City: Sinput{'city'}
State/Province: Sinput{'stpro'}
Country: Sinput{'country'}
Zip/Mail Code: Sinput{'zip'}

CUSTOMER INFO
print <<PAYMENT INFO;

Payment Information

Credit Card Type: Sinput{'ctype'}
Credit Card Number: Sinput{'cnumb'}
Expiration Date: Sinput{'edate'}

PAYMENT INFO

print "Product Information\n\n";

Sidx = 0;
while (Sinput{'prod' . $idx}) {
@getProdInfo = split("-", Sinput{'prod' . $idx});

print "Product PLU:\t\t$SgetProdInfol[0]\n";
print "\tQuantity:\t$getProdInfo[l]\n\n";
Sidx++;

}

print <<TOTAL INFO;

Total Information (\$US)

Subtotal: Sinput{'subtotal'}
Tax Total: Sinput{'taxtotal'}
Ship Total: Sinput{'shiptotal'}
Bag Total: Sinput{'bagtotal'}
</PRE>

TOTAL INFO
}

As the name implies, porintInfo () prints the form data. The first thing it does is to create a time-
date stamp by setting variable $clock to the output of function 1localtime (). This will be used
shortly. Line 29 is where the printing begins. The code <<CUSTOMER INFO identifies something
called a here string, which is basically a multiline string located between two identifiers.
CUSTOMER INFO is the identifier. Here strings are handy because you don't have to worry about
carriage returns or single and double quotes. You use them as if you were typing a letter. That way,
Perl prints whatever is between CUSTOMER INFO and CUSTOMER INFO, which is this:

<PRE>
<H2>Shopping Bag Order Confirmation Receipt</H2>

Sclock
Reference Code: S$Sfilename

Customer Information

Customer First Name: S$input{'fname'}
Customer Last Name: Sinput{'lname'}
Company Name: Sinput{'cname'}
Street Address 1: Sinput{'saddressl'}
Street Address 2: Sinput{'saddress2'}
City: Sinput{'city'}
State/Province: Sinput{'stpro'}
Country: Sinput{'country'}
Zip/Mail Code: Sinput{'zip'}

Notice you don't have to concatenate strings that span multiple lines. You just type and go. Notice also
that variables are interpreted. In other words, Sinput {'lname'} doesn't print
Sinput{'lname'}; it prints something such as "Jones".

If you study the code carefully, you'll see that the first information printed is the shopper's mailing
information. Then comes the payment information. All this information comes from known form

fields, such as fields named fname, Iname, and city. These are fields that the shopper filled out, so we
know they will be there.

What about the product information, though? There could be any number of products. How will Perl
know how many products there are? It doesn't. Lines 62-71 explain why that's OK:

print "Product Information\n\n";

Sidx = 0;
while ($in{'prod' . $idx}) {
@getProdInfo = split("-", $in{'prod' . $idx});

print "Product PLU:\t\tS$SgetProdInfo[O0]\n";
print "\tQuantity:\tSgetProdInfol[l]\n\n";
Sidx++;

}

Remember that Shopping Bag generated a hidden form field for every product that the shopper
ordered. Each of these hidden fields was named according to a "prod" + integer naming convention
(e.g., prod0, prodl, prod2, etc.). Perl simply declares a variable $idx and sets it equal to 0. Using a
familiar while loop in line 66, Perl uses Sin{ 'prod' . $idx} to see if prod0 exists. If so, the
variable must contain product information.

Perl then uses its split () function to create an array called @GETPRODINFO with two elements.
The first element contains the product PLU number; the second element contains the quantity ordered.
This information is printed, then $idx is incremented. Perl runs through prodI, prod2, etc. until
Sin{'prod' . $idx} doesn't exist.

Once this process is over, Perl prints the subtotal, applicable taxes, and grand total in lines 73-84.
Notice that the dollar sign is escaped with a backslash (\$). Since we actually want to print the string
SUS, we have to tell Perl there is no variable named $US:

print <<TOTAL INFO;

Total Information (\SUS)

Subtotal: Sinput{'subtotal'}
Tax Total: Sinput{'taxtotal'}
Ship Total: Sinput{'shiptotal'}
Bag Total: Sinput{'bagtotal'}
</PRE>

TOTAL INFO

C.3.3 Returning a Confirmation Page to the Shopper

That brings us to the end of the subroutine, so Perl continues executing lines 20-24 below the call to
printInfo():

close (FILE) ;
select (STDOUT) ;
printInfo () ;

exit 0O;

Since the file has all the information, we might has well close it. close (FILE) takes care of that.
What about the shopper? It would be nice to let him or her know that the order has been received.
Why not print out the same info back to the shopper as we did in the file? The call to

select (STDOUT) tells Perl to print once again to the standard output, which means back to the
browser (remember that we switched the output destination to $filename.txt in line 17). Now we just
have to call printInfo () again, and this transaction is complete. The shopper gets a printout.

C.3.4 Setting Up the Script

As it stands, this script creates all the text files for the product orders in the same directory where the
script is located. In other words, wherever you put the bag.pl, that's where your product order files will
be. There is no directory structure you have to set up or adhere to. Any directory with execute
privileges (so that the web server can call the script) and write privileges (so that the script can create
and write to files) will do.

If you're new to the concept of privileges, note that they control the type of access users have to
directories and files. To retrieve basic HTML files, for example, the directory containing the HTML
files needs read privileges assigned to it. To execute CGI and other scripts, the directory must have
execute privileges assigned to it. To create and modify files in a directory, that directory needs write
privileges. The directory that contains bag.p/ needs write and execute privileges. That sounds easy
enough, but there is a catch.

Granting a directory both execute and write privileges opens at least a couple of security risks. If you
have a web server host, the people there know this and so may require you to put the script in a
directory with executing privileges only, such as cgi-bin/ or Scripts/, and write your files to another
directory with write privileges only. If this is the case, you need to make a simple change in the script
to reflect the new directory of the product order files. Just include the directory name when setting the
value of variable $filename. Suppose you are going to write your files in a directory named orders/,
which is located one level "above" the directory where your script resides. Just change line 10 from
this:

Sfilename = $in{'lname'} . int (rand(999));

to this:

Sfilename "../orders/" . Sin{'lname'} . int(rand(999));
If orders/ is off the root directory, the line would look like this:

Sfilename = "/orders/" . $in{'lname'} . int(rand(999));

Now your script is in one directory, and your product order files are in another.

You're ready to go. Make sure the ACTTON attribute in line 276 of \ ch08\manager.html contains the
correct URL of bag.pl.

C.4 The CyberGreeting Script—greet.pl

Example 3.2 is the script from Chapter 10. This script will read the information the user submitted,
then create a unique file and write the greeting code inside it. Afterwards, the script will return to the
sender a confirmation page containing an HTML form. By submitting the form, the sender sends
email to the recipient. This email message contains a link to the file greet.p/ just created. The file will
be ready and waiting when the recipient follows the link in his or her email message.

C.4.1 Setting Up the Script

Unlike the script for Chapter 8, you need to conform to a directory structure in order to use greet.pl. In
whatever directory you place greet.p/, the directory must have both read and execution privileges
assigned to it. You must also have a directory inside it called greetings/ that has write privileges.

As I mentioned earlier in this chapter, if you're new to the concept of privileges, note that they control
the type of access users have to directories and files. To retrieve basic HTML files, for example, the
directory containing the HTML files needs read privileges assigned to it. To execute CGI and other
scripts, the directory must have execute privileges assigned to it. To create and modify files in a
directory, that directory needs write privileges.

In fact, now might be a good time to consider how your directory structure should look. Let's assume
that you are going to place all the files for this application in your web server's cgi-bin/ directory. This
is what your directory structure should look like:

cgi-bin/
greet.pl
index.html
back.html
front.html
greetings/
images/

cgi-bin/ contains greet.p!/ and the three HTML files of the client-side application. The images/
directory contains all of the icons and background images that the user chooses to customize the
greetings. Keep in mind, though, that this is where the code generated from the client side will point to
in order to access those graphics and download them for each greeting.

The greetings/ directory is initially empty. This is where each uniquely named greeting file is created
and stored for the recipient to download. Since the greetings are created here, this directory must have
write privileges assigned to it. With this structure in place and all the files where they should be,
you're ready to go. Make sure the ACTION attribute in line 186 of \chl0\front.html contains the
correct URL of greet.pl.

You might not like the directory structure above. You might want those HTML files somewhere
outside the cgi-bin. No problem. Just make sure your form points to the correct script path.

o

Some web server hosts require that you run CGI scripts with a .cgiextension

o
“wh

instead of a .plextension. No biggie—just rename the file greet.cgi. Quick

i

4+ recovery.

Let's look at the script in terms of three jobs:

1. Get the custom greeting from the submitted form
2. Save that information in a uniquely named text file on the web server
3. Print a confirmation page to send back to the browser, complete with email form

As you look at this code, remember that you don't have to understand the syntax. This book isn't about

Perl. Just try

to follow what the code is doing from one step to the next.

Example C.2. greet.pl

O ~J o Ui WD

Qe
N O P O W

can

W whMNdDNDNDMNDMDNDDNDNMDNNRPERRFRERERPR P
P O WO Jo Ul WDNEFE O WOowJo U W

32

#!/usr/bin/perl
require 'cgi-lib.pl';

&ReadParse (*in) ;

Smsg = Sin{'EntireMessage'};

S$fileID = S$in{'UniqueID'};

Srecip = S$in{'Recipient'};

SbaseURL = $in{'BaseURL'};

open (FILE, ">greetings/greet$fileID.html") || die
sty

select (FILE) ;
print <<GREETING;
<HTML>
<HEAD>
<TITLE>Your Personal Cyber Greeting</TITLE>
</HEAD>
<BODY>
Smsg
</BODY>
</HTML>
GREETING
close (FILE) ;
select (STDOUT) ;

print "Content-type: text/html\n\n";
print <<RESPONSE;
<HTML>

<HEAD>
<TITLE>Cyber Greeting Response</TITLE>

"No

33 </HEAD>
34 <BODY>
35 <TABLE WIDTH="500">

36 <TR>

37 <TD>

38 <H2>Congratulations!</H2>

39 You have successsfully created a Cyber Greeting
for

40 S$Srecip. All you have to do is send
him or her an

41 e-mail to announce the greeting. Just push
the button below,

42 and the e-mail will be on the way.

43 <CENTER>

44 <FORM NAME="SendEmail" ENCTYPE="text/plain"

45 ACTION="mailto:S$Srecip?Subject=You Have A
Cyber Greeting!">

46 <INPUT TYPE=HIDDEN NAME="Message"

47 VALUE="You have a Cyber Greeting. You can
pick it up at

48 SbaseURLgreet$fileID.html">

49 <INPUT TYPE=SUBMIT VALUE="Send CyberGreeting">

50 </FORM>

51 </CENTER>

52

53 You might experience a delay while your e-mail
software

54 contacts your mail server.

55

56 Return To Cyber Greeting

57 </TD>

58 </TR>

59 </TABLE>
60 </BODY>
61 </HTML>

62

63 RESPONSE
64

65 exit 0O;

C.4.2 Getting the Greeting Info

The first thing we need to do is get all the data that the user submitted and put it accessible form. Let's
start with lines 1-5, which are almost identical to the previous PERL script:

#!/usr/bin/perl

require 'cgi-lib.pl';

&ReadParse (*1in) ;

As noted in the "Shopping Bag" section, the first line is the "shebang" line, and tells the server where
to find Perl. Line 3 instructs Perl to include code from a library file called cgi-lib.pl. This contains the
Perl subroutine ReadParse () that will read the information submitted from the HTML form.

ReadParse () reads the HTML form data from the standard input and places the data in an
associative array called %IN, and then creates an array element with the name of each form element
submitted. Each element is assigned a value that corresponds to the value of a submitted form

element. Looking at all the elements in the HTML form in \ch10\front.html, %IN has the following
elements:

Sin{'EntireMessage'}-

This is the formatted message the user typed.
Sin{'UniquelD'}-

This contains a random number used to create a unique file.
Sin{'BaseURL"'}-

This holds the base directory path.
Sin{'Recipient'}-

This is the recipient's email address.
$in{'Message'}-

This is the original unformatted message the user entered. We don't need this because we
already have the formatted versionin $in{'EntireMessage'}.

$in{'Greetings'}-

This contains the name of the greeting the sender chose from the select list in
\ch10\front.html.

To make references to these elements easier, the script assigns their values to shorter variable names.
We need only four of them, though. Here they are in lines 6-9:

Smsg = Sin{'EntireMessage'};
SfileID = S$in{'UniqueID'};
Srecip = S$in{'Recipient'};
SbaseURL = $in{'BaseURL'};

C.4.3 Saving the Greeting to a Uniquely Named File

We have all the information necessary to print the greeting to a file. We just have to create a unique
text file and output the appropriate HTML to it. Check out lines 11-22:

open (FILE, ">greet$fileID.html") || die "No can do: $!";
select (FILE) ;
print <<GREETING;
<HTML>
<HEAD>
<TITLE>Your Personal Cyber Greeting</TITLE>
</HEAD>
<BODY>
Smsg
</BODY>
</HTML>
GREETING

These few lines of code create a new file using that random number JavaScript created in the browser
as part of the file name. If the number was 25000, the file would be named greet25000.html and would
be located in the greetings/ directory. After creating the unique file, Perl writes some HTML to it,
including the DHTML from the EntireMessage form field from front.html, now stored in the $msg
variable.

The code <<GREETING identifies something called a here string, essentially a multiline string
located between two identifiers. GREET ING is the identifier. Here strings are handy because you
don't have to worry about carriage returns or single and double quotes. You use them as if you were
typing a letter. That way, Perl prints whatever is between GREETING and GREETING. You just
type and go. Notice also that variables are interpreted. In other words, $msg doesn't print "$msg"; it
prints the formatted greeting.

That's all there is to it. The script closes the file in line 23, and it's ready for the recipient to view.

C.4.4 Printing a Confirmation Page

The only thing left is to send a confirmation page back to the sender. This page will contain an HTML
form that, upon submission, sends the recipient the greeting announcement and the URL to retrieve it.
Lines 26-63 take care of that.

Line 26, print "Content-type: text/html\n\n" prints an HTTP header. This
particular header identifies the MIME type to the browser, which states what type of information to

expect.

You can see in lines 28 and 63 that RESPONSE identifies another Aere string. Notice the variables in
bold:

print "Content-type: text/html\n\n";
print <<RESPONSE;

<HTML>
<HEAD>

<TITLE>Cyber Greeting Response</TITLE>
</HEAD>
<BODY>
<TABLE WIDTH="500">
<TR>
<TD>
<H2>Congratulations!</H2>
You have successsfully created a Cyber Greeting for
S$recip
All you have to do is send him or her an e-mail to
announce the
greeting. Just push the button below, and the e-mail will
be on the
way.
<CENTER>
<FORM NAME="SendEmail" ENCTYPE="text/plain"
ACTION="mailto:$recip ?Subject=You Have A Cyber
Greeting!">
<INPUT TYPE=HIDDEN NAME="Message"
VALUE="You have a Cyber Greeting. You can pick it up at
SbaseURL/greet$fileID.html">
<INPUT TYPE=SUBMIT VALUE="Send CyberGreeting">
</FORM>
</CENTER>

You might experience a delay while your e-mail software
contacts your mail server.

Return To Cyber Greeting
</TD>
</TR>
</TABLE>
</BODY>
</HTML>

RESPONSE

The majority of the code is HTML, which confirms to the sender a successful greeting and also
provides instructions for sending the email. Have a closer look at lines 44-50. This is the form
responsible for sending email to the recipient:

<FORM NAME="SendEmail" ENCTYPE="text/plain"
ACTION="mailto:$recip?Subject=You Have A Cyber Greeting!">

<INPUT TYPE=HIDDEN NAME="Message"
VALUE="You have a Cyber Greeting. You can pick it up at
SbaseURL/greet$fileID.html">

<INPUT TYPE=SUBMIT VALUE="Send CyberGreeting">

</FORM>

The script outputs a form with amailto: protocol in the ACTTON attribute and the ENCTY PE
setto text /plain. This form has one hidden field named Message, it contains the greeting

announcement and the URL where the recipient can access it. The URL is made with the $baseURL
variable and the $fileID variable.

The form also has a button to submit, and hence, send the email. As long as the sender's browser email
client is correctly set up (though he or she will be prompted for approval), the mail message will be on
its way.

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The animal on the cover of JavaScript Application Cookbook is a hippopotamus. A native of several
regions in Africa, the hippo makes its home in rivers and their bordering grasslands. Hippopotamus is
Greek for "river horse," and these large, cumbersome-looking animals move gracefully through the
water for much of the day. Hippos leave the water to eat at night. Their vegetarian diet consists mostly
of grass, up to 150 pounds a day, as well as some water plants and fallen fruit. Full-grown hippos have
no natural predators other than humans, who have hunted them for their ivory tusk-like teeth, for their
hide, and for food. Hippos can live to be forty years old.

A hippopotamus grows to be five feet tall, twelve feet long, and weighs 6,000-8,000 pounds. Its body
is covered in a relatively hairless, gray-brown skin that secretes a reddish oil, often mistaken for
blood, to keep the skin moist. A hippo's nostrils, ears, and eyes are situated close to the top of its head
so that it can breathe, hear, and see, yet be almost fully submerged when it's swimming or walking on
the riverbed. Several native marsh animals frequently rest on the backs of hippos in the water,
including crocodiles, turtles, and birds.

Nicole Arigo was the production editor for JavaScript Application Cookbook. Clairemarie Fisher
O'Leary, Jeffrey Liggett, and Jane Ellin provided quality control. Bruce Tracy wrote the index.

Edie Freedman designed the cover of this book, using a 19th-century engraving from the Dover
Pictorial Archive. The cover layout was produced by Kathleen Wilson, using QuarkXPress 3.32 and
the ITC Garamond font.

Alicia Cech designed the interior layout based on a series design by Nancy Priest. The book was
implemented in FrameMaker by Mike Sierra. The text and heading fonts are ITC Garamond Light and
Garamond Book. The illustrations that appear in the book were produced by Robert Romano and
Rhon Porter using Macromedia FreeHand 8 and Adobe Photoshop 5. This colophon was written by
Nicole Arigo.

The online edition of this book was created by the Safari production group (John Chodacki, Becki
Maisch, and Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written
and maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

mailto:

	JavaScript Application Cookbook
	Editor's Note
	Preface
	What You Should Know
	Font Conventions
	Book Structure
	Execution Requirements
	Syntax Breakdown
	JavaScript Techniques
	Potential Extensions

	About the Code
	Development and Testing
	We'd Like to Hear From You
	Acknowledgments

	Introduction
	JavaScript Pros
	Easy to Learn, Quick, and Powerful
	Ubiquity
	Reducing the Server Load
	JavaScript Is Growing
	Maybe You Have No Choice
	There Are Probably More

	Basic JavaScript Programming Strategy
	What Are the Application Features?
	Who Is Your Audience?
	How Can You Get Around the Obstacles?
	Try the cross-browser approach
	Elegantly degrade or change performance
	Aim low
	Aim high
	Offer multiple versions of the same app

	JavaScript Approaches in These Applications
	Reuse as Much Code as Possible
	Isolate the JavaScript
	Declare Global Variables and Arrays near the Top
	Declare Constructor Functions After the Global Variables
	Define Functions from Top to Bottom in "Chronological" Order
	Each Function Performs a Single Operation
	Use as Many Local Variables as Possible

	Moving On

	Chapter 1. The Client-Side Search Engine
	1.1 Execution Requirements
	1.2 The Syntax Breakdown
	1.3 nav.html
	1.3.1 records.js
	1.3.2 The Global Variables
	1.3.3 The Functions
	1.3.3.1 validate()
	1.3.3.2 convertString()
	1.3.3.3 allowAny()
	1.3.3.4 requireAll()
	1.3.3.5 verifyManage()
	1.3.3.6 noMatch()
	1.3.3.7 formatResults()
	1.3.3.8 The HTML head and title
	1.3.3.9 Displaying document titles, descriptions, and linked URLs
	1.3.3.10 Adding "Previous" and "Next" buttons
	1.3.3.11 prevNextResults()

	1.3.4 The HTML

	1.4 Building Your Own JavaScript Database
	1.5 Potential Extensions
	1.5.1 JavaScript 1.0 Compatibility
	1.5.2 TANSTAAFL
	1.5.3 Make It Harder to Break
	1.5.4 Display Banner Ads
	1.5.5 Add Refined Search Capabilities
	1.5.6 Cluster Sets

	Chapter 2. The Online Test
	2.1 Execution Requirements
	2.2 The Syntax Breakdown
	2.3 index.html—The Frameset
	2.4 questions.js—The JavaScript Source File
	2.5 administer.html
	2.5.1 HTML Body
	2.5.2 Global Variables
	2.5.3 Functions
	2.5.3.1 itemReset()
	2.5.3.2 shuffle()
	2.5.3.3 buildQuestion()
	2.5.3.4 gradeTest()
	2.5.3.5 printResults()
	2.5.3.6 chickenOut()

	2.6 Potential Extensions
	2.6.1 Making It Cheat-Proof
	2.6.1.1 Removing the answers from the array logic
	2.6.1.2 Removing gradeTest() and modifying buildQuestion()
	2.6.1.3 Modifying printResults()

	2.6.2 Converting to a Survey

	Chapter 3. The Interactive Slideshow
	3.1 Execution Requirements
	3.2 The Syntax Breakdown
	3.3.1 DHTML Layer Defaults
	3.3.2 Browser-Determined Variables
	3.3.3 Image-Related Variables
	3.3.4 Automated Slideshow Variables

	3.3 Application Variables
	3.4 The Application Functions
	3.4.1 Layer-Related Functions
	3.4.1.1 genLayer()
	3.4.1.2 slide()
	3.4.1.3 genScreen()
	3.4.1.4 The elements of slideShow

	3.4.2 Image-Related Functions
	3.4.2.1 preLoadImages()
	3.4.2.2 imageSwap()

	3.4.3 Navigational Functions
	3.4.3.1 refSlide(), hideSlide(), showSlide(), and menuManager()
	3.4.3.2 changeSlide()
	3.4.3.3 setSlide()
	3.4.3.4 autoPilot()
	3.4.3.5 automate()

	3.5 Potential Extensions
	3.5.1 Change Random Slides in AutoPilot
	3.5.2 Animated GIFs or Image Rollovers in the Slides
	3.5.3 Animate the Slides Themselves

	Chapter 4. The Multiple Search Engine Interface
	4.1 Execution Requirements
	4.2 The Syntax Breakdown
	4.2.1 Strolling down Memory Lane
	4.2.2 Dynamically Preloading Images
	4.2.3 Start Your Engines
	4.2.4 engineLinks()
	4.2.4.1 Managing layers
	4.2.4.2 Preloading images
	4.2.4.3 Building the link

	4.2.5 imageSwap()
	4.2.6 callSearch()

	4.3 Potential Extension: Adding User Control

	Chapter 5. ImageMachine
	5.1 Execution Requirements
	5.2 The Syntax Breakdown
	5.2.1 Step 1: The Pages Load
	5.2.2 Step 2: Entering the Image Pairs and Defaults
	5.2.3 Step 3: Filling in Image Paths, HREF Attributes, and More
	5.2.3.1 captureDefaultProfile()
	5.2.3.2 generateEntryForm()
	5.2.3.3 genJavaScript()
	5.2.3.4 Decision time
	5.2.3.5 Generate the code

	5.2.4 Step 4: Choosing "Preview" to Watch the Code in Action
	5.2.5 Step 5: Choosing "Change Info" to Make Changes

	5.3 Potential Extension: Adding Attributes to the Template
	5.3.1 Step 1: Adding the Fields
	5.3.2 Step 2: Creating Arrays in setArrays()
	5.3.3 Step 3: Capturing the New Default Values
	5.3.4 Step 4: Adding Text Fields in generateEntryForm()
	5.3.5 Step 5: Referencing and Assigning the New Values in genJavaScript()
	5.3.6 Step 6: Generating the Additional HTML in genJavaScript()

	Chapter 6. Implementing JavaScript Source Files
	6.1 arrays.js
	6.2 cookies.js
	6.3 dhtml.js
	6.4 events.js
	6.5 frames.js
	6.6 images.js
	6.7 navbar.js
	6.8 numbers.js
	6.9 objects.js
	6.10 strings.js
	6.11 Potential Extensions

	Chapter 7. Cookie-Based User Preferences
	7.1 Execution Requirements
	7.3 prefs.html
	7.2 Syntax Breakdown
	7.3.1 Preferences Form
	7.3.2 Loading Stored Preferences
	7.3.4 Making Changes
	7.3.4.1 Step 1: Iterating through formObj
	7.3.4.2 Step 2: Writing the information to the cookie file(s)
	7.3.4.3 Step 3: Offering users a peek at new choices

	7.3.5 Resetting the Form

	7.4 dive.html
	7.4.1 Parse That Cookie
	7.4.2 Dealing with the Unknown

	7.5 Potential Extensions
	7.5.1 More Choices for the Layout Look
	7.5.2 Adding Themes
	7.5.3 Letting Users Create Their Own Links
	7.5.4 Direct Banner Ad Marketing

	Chapter 8. The JavaScript Shopping Cart
	8.1 Shopping Bag Walk-Through
	8.1.1 Step 1: Loading the Application
	8.1.2 Step 2: Product Browsing and Selection
	8.1.3 Step 3: Viewing and Changing the Order
	8.1.4 Step 4: Check Out

	8.2 Execution Requirements
	8.3 Syntax Breakdown
	8.4 Step 1: Loading Shopping Bag
	8.4.1 Top-Level Members
	8.4.2 inventory.js
	8.4.2.1 Product properties
	8.4.2.2 Product category properties
	8.4.2.3 Creating products and categories
	8.4.2.4 Creating the shopping bag

	8.5 Step 2: Displaying Products
	8.5.1 manager.html
	8.5.1.1 Variables
	8.5.1.2 display()
	8.5.1.3 Exceptions to the Rule
	8.5.1.4 Building the display page

	8.6 Step 3: Showing All the Categories
	8.6.1 Displaying the First Product
	8.6.1.1 Where's the DHTML?

	8.7 Step 4: Adding Products to the Shopping Bag
	8.7.1 Searching for Products
	8.7.2 Mapping the Products and Categories
	8.7.3 Searching the Existing Database
	8.7.4 Supporting Product/Category Navigation
	8.7.5 The Code in the Link

	8.8 Step 5: Changing the Order/Checking Out
	8.8.1 Making Select Lists
	8.8.2 Keeping Track of the Bill
	8.8.3 Wrapping Up showbag(): Displaying the Totals and More
	8.8.4 Finishing the Display
	8.8.5 What About the Server Side?
	8.8.5.1 "Reset Qtys"
	8.8.5.2 "Change Bag"

	8.8.6 The Forgotten Functions

	8.9 Potential Extensions
	8.9.1 Making Smarter Products
	8.9.2 Add Refined Search Capabilities
	8.9.3 Adding Cookies

	Chapter 9. Ciphers in JavaScript
	9.1 How Ciphers Work
	9.1.1 A Few Words on Cracking the Code
	9.1.2 The Caesar Cipher
	9.1.3 The Vigenere Cipher

	9.2 Execution Requirements
	9.3 The Syntax Breakdown
	9.3.1 Defining a Cipher
	9.3.2 Defining a Substitution Cipher
	9.3.3 Performing Basic Substitution
	9.3.4 Different Substitutions for Different Ciphers
	9.3.4.2 Vigenere Algorithm
	9.3.5 How shiftIdx Changes
	9.3.6 Each SubstitutionCipher Is Also a Cipher
	9.3.7 Creating Each Instance of SubstitutionCipher
	9.3.8 Choosing the Right Cipher
	9.3.9 A Final Thought

	9.4 Potential Extensions

	Chapter 10. Cyber Greetings: Drag-and-Drop Email
	10.1 Execution Requirements
	10.2 Syntax Breakdown
	10.2.1 The Other Two Documents
	10.2.2 Walking on Familiar Ground
	10.2.3 Places Everyone!
	10.2.4 Tracking the Mouse Location
	10.2.5 Calling All Icons
	10.2.6 Moving the Icons
	10.2.7 After the Documents Load
	10.2.8 Meet the Variables
	10.2.9 Displaying the Greetings
	10.2.10 Moving Through All the Images
	10.2.11 Keeping Dragged Icons in Place
	10.2.12 Testing the Work
	10.2.13 Creating the Actual Greeting
	10.2.14 Sending It Off
	10.2.15 Note

	10.3 The Server Side
	10.4 Potential Extensions
	10.4.1 Add a Link Back to Cyber Greetings
	10.4.2 Add Image Themes
	10.4.3 Banner Ad Campaigns
	10.4.4 Make the Greetings More Interactive

	Chapter 11. Context-Sensitive Help
	11.1 Execution Requirements
	11.2 Syntax Breakdown
	11.2.1 Context-Sensitive Help
	11.2.2 Showing and Hiding Extra Information
	11.2.3 Creating the Layers
	11.2.4 Showing the Info
	11.2.5 Managing the Link Location

	11.3 Potential Extensions
	11.3.1 Table of Contents
	11.3.2 Searchable Help Files
	11.3.3 Ask a Pro
	11.3.4 Phone Directory

	Epilogue
	Appendix A. JavaScript Reference
	A.1 Browser Compatibility
	A.2 Objects, Methods, and Properties
	A.2.1 Anchor
	A.2.2 Applet
	A.2.3 Area
	A.2.4 Array
	A.2.5 Boolean
	A.2.6 Button
	A.2.7 Checkbox
	A.2.8 Date
	A.2.9 Document
	A.2.10 Event
	A.2.11 FileUpload
	A.2.12 Form
	A.2.13 Frame
	A.2.14 Function
	A.2.15 Hidden
	A.2.16 History
	A.2.17 Image
	A.2.18 Java
	A.2.19 JavaArray
	A.2.20 JavaClass
	A.2.21 JavaObject
	A.2.22 JavaPackage
	A.2.23 Layer
	A.2.24 Link
	A.2.25 Location
	A.2.26 Math
	A.2.27 MimeType
	A.2.28 Navigator
	A.2.29 Netscape
	A.2.30 Number
	A.2.31 Object
	A.2.32 Option
	A.2.33 Packages
	A.2.34 Password
	A.2.35 Plugin
	A.2.36 Radio
	A.2.37 RegExp
	A.2.38 Reset
	A.2.39 Screen
	A.2.40 Select
	A.2.41 String
	A.2.42 Submit
	A.2.43 sun
	A.2.44 Text
	A.2.45 Textarea
	A.2.46 Window

	A.3 Top-Level Properties and Functions
	A.4 Event Handlers
	A.4.1 onAbort
	A.4.2 onBlur
	A.4.3 onChange
	A.4.4 onClick
	A.4.5 onDblClick
	A.4.6 onDragDrop
	A.4.7 onError
	A.4.8 onFocus
	A.4.9 onKeyDown
	A.4.10 onKeyPress
	A.4.11 onKeyUp
	A.4.12 onLoad
	A.4.13 onMouseDown
	A.4.14 onMouseMove
	A.4.15 onMouseOut
	A.4.16 onMouseOver
	A.4.17 onMouseUp
	A.4.18 onMove
	A.4.19 onReset
	A.4.20 onResize
	A.4.21 onSelect
	A.4.22 onSubmit
	A.4.23 onUnload

	Appendix B. Web Resources
	B.1 Cool JavaScript Sites
	B.2 JavaScript Reference
	B.3 JavaScript FAQs
	B.4 DHTML Reference
	B.5 Document Object Model Reference
	B.6 Perl/CGI Reference
	B.7 Graphics Resources
	B.8 Similar Applications
	B.8.1 Client-Side Search Engines
	B.8.2 Online Tests
	B.8.3 Slideshows
	B.8.4 Multiple Search Engine Interfaces
	B.8.5 Rollover Generators
	B.8.6 Libraries
	B.8.7 Cookies
	B.8.8 Shopping Carts
	B.8.9 Ciphers
	B.8.10 Drag-and-Drop Concepts
	B.8.11 Context-Sensitive Help

	Appendix C. Using Perl Scripts
	C.1 A Perl/CGI Overview
	C.1.1 What's So Good About Perl?
	C.1.2 What's Not So Good About Perl?
	C.1.2.1 Perl and CGI
	C.1.2.2 Why use CGI?

	C.2 Getting Perl
	C.3 The Shopping Bag Script—bag.pl
	C.3.1 Getting the Product Information
	C.3.2 Saving the Information to a File on the Web Server
	C.3.3 Returning a Confirmation Page to the Shopper
	C.3.4 Setting Up the Script

	C.4 The CyberGreeting Script—greet.pl
	C.4.1 Setting Up the Script
	C.4.2 Getting the Greeting Info
	C.4.3 Saving the Greeting to a Uniquely Named File
	C.4.4 Printing a Confirmation Page

