
TE
AM
FL
Y

Team-Fly®

JavaScript
Programming

ANDY HARRIS

© 2001 by Prima Publishing. All rights reserved. No part of this
book may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, re-
cording, or by any information storage or retrieval system with-
out written permission from Prima Publishing, except for the
inclusion of brief quotations in a review.

A Division of Prima Publishing

Prima Publishing and colophon are registered trade-
marks of Prima Communications, Inc. PRIMA TECH
is a trademark of Prima Communications, Inc.,
Roseville, California 95661.

Microsoft, Windows, Windows NT, and Internet Explorer are
trademarks or registered trademarks of Microsoft Corporation
in the U.S. and other countries.

Netscape, Netscape Navigator, and JavaScript are trademarks or
registered trademarks of Netscape Communications Corpora-
tion in the U.S. and other countries.

All other trademarks are the property of their respective owners.

Important: Prima Publishing cannot provide software support.
Please contact the appropriate software manufacturer’s techni-
cal support line or Web site for assistance.

Prima Publishing and the author have attempted throughout this
book to distinguish proprietary trademarks from descriptive terms
by following the capitalization style used by the manufacturer.

Information contained in this book has been obtained by Prima
Publishing from sources believed to be reliable. However, because
of the possibility of human or mechanical error by our sources,
Prima Publishing, or others, the Publisher does not guarantee
the accuracy, adequacy, or completeness of any information and
is not responsible for any errors or omissions or the results ob-
tained from use of such information. Readers should be particu-
larly aware of the fact that the Internet is an ever-changing en-
tity. Some facts might have changed since this book went to press.

ISBN: 0-7615-3410-5

Library of Congress Catalog Card Number: 2001086

Printed in the United States of America

01 02 03 04 05 BB 10 9 8 7 6 5 4 3 2 1

Publisher:
Stacy L. Hiquet

Associate Marketing Manager:
Heather Buzzingham

Managing Editor:
Sandy Doell

Series Editor:
Andy Harris

Acquisitions Editor:
Melody Layne

Project Editors:
Melody Layne and Kim Spilker

Technical Reviewer:
Michael Vine

Copy Editor:
Andrew Saff

Proofreader:
Lorraine Gunter

Interior Layout:
Danielle Foster

Cover Design:
Prima Design Team

Indexer:
Sharon Hilgenberg

Send Us Your Comments:

To comment on this book or any other PRIMA TECH title, visit our reader response
page on the Web at http://www.prima-tech.com/comments.

How to Order:

For information on quantity discounts, contact the publisher: Prima Publishing,
P.O. Box 1260BK, Rocklin, CA 95677-1260; (916) 787-7000. On your letterhead, in-
clude information concerning the intended use of the books and the number of
books you want to purchase.

Untitled-7 4/2/03, 4:28 PM2

To Heather, Elizabeth, and Matthew

Untitled-7 4/2/03, 4:28 PM3

Acknowledgments

I
 first acknowledge Him from whom all flows.

Thank you again, Heather, for listening to the keyboard clicking all those
late nights. You are the sun and the stars to me.

Thanks to Melody Layne for being a good friend and a good editor (at the same time, even!).

Thank you to Kim Spilker for your encouragement on this project, and to all the folks
at Prima for being nice people to work with.

A special thank you to Andy Saff for copyediting. If this book makes any sense at all, it’s
because of you.

Thank you also to Michael Vine for technical editing. I appreciate your efforts very much.

A very special thank you goes to Scott Porter for his excellent game development library.
His clever programming and selfless generosity make JavaScript game programming
much more accessible than it has ever been before.

I especially want to thank all my students, present and past. You have taught me so
much more than I was ever able to teach you.

Untitled-7 4/2/03, 4:28 PM4

About the Author

A
ndy Harris began his teaching career as a high school special education
teacher. During that time, he taught himself enough computing to do part-time
computer consulting and database work. He began teaching computing at
the university level in the late 1980s as a part-time job. Since 1995, he has

been a full-time lecturer in the Computer Science Department of Indiana University/
Purdue University—Indianapolis. He manages the IUPUI Streaming Media Lab for the
department and teaches classes in several programming languages. His main interests
are Java, Visual Basic, Perl, JavaScript/dynamic HTML, virtual reality, programming on
portable devices, and streaming media.

Untitled-7 4/2/03, 4:28 PM5

Contents at a
Glance

CHAPTER 1 Variables, Input, and Output 1

CHAPTER 2 The Fortune Teller:
Random Numbers and the if Statement 21

CHAPTER 3 The Number Guesser: for and while Loops 45

CHAPTER 4 The Basic Mad Lib Program and
Object-Based Programming 63

CHAPTER 5 Advanced Mad Lib: Using
the Other Form Elements 89

CHAPTER 6 Petals around the Rose: Dynamic Output 115

CHAPTER 7 Image Swapping and Lookup Tables:
The Basketball Game 139

CHAPTER 8 Dynamic HTML: The Stealth Submarine 171

CHAPTER 9 Sprite Animation: The Racer 203

CHAPTER 10 Using Other gameLib Features:
The Dogfight Game 235

CHAPTER 11 Cookies and the Mouse: The Jigsaw Puzzle 261

CHAPTER 12 The Game Creation Process: The Brick Game 289

APPENDIX A Syntax Reference 321

Index 335

Untitled-7 4/2/03, 4:28 PM6

Contents

Introduction .. xiii

Variables, Input, and Output 1

The Project: Name Game ... 2

Adding Code to HTML .. 3

Using Variables.. 5

Getting Input from the User ... 8

Building More Complicated Text ... 10

Working with Numbers ... 11

Using String Methods ... 16

Summary ... 19

The Fortune Teller:
Random Numbers and
the if Statement 21

The Project: The Fortune Teller .. 22

Getting Random Numbers ... 22

Making Specialized Random Numbers 24

Making Decisions with the if Statement 28

Using the else Structure ... 32

Using Nested if Structures ... 34

Using the switch Structure ... 38

Returning to the Fortune Program .. 42

Summary ... 44

The Number Guesser:
for and while Loops 45

The Project: The Number Guesser .. 46

Counting Forward ... 46

1
C H A P T E R

2
C H A P T E R

3
C H A P T E R

Untitled-7 4/2/03, 4:28 PM7

viii
C

o
n

t e
n

ts

Skipping Values ... 50

Counting Backward ... 52

Using the while Loop .. 53

Returning to the Number Guesser .. 57

Summary ... 62

The Basic Mad Lib Program
and Object-Based
Programming 63

The Project: Mad Lib ... 64

Objects and HTML ... 65

Reading the Properties of an Object .. 68

Methods ... 71

Events ... 74

The Purpose of Functions ... 78

Event-Driven Input and Output .. 79

Back to the Mad Lib Program ... 84

Summary ... 88

Advanced Mad Lib:
Using the Other Form Elements 89

The Project: the Advanced Mad Lib ... 90

Working with Textlike Objects .. 90

Using Check Boxes ... 93

Using Radio Buttons ... 97

Using the select Object ... 102

Using Multiline Select Boxes ... 105

Returning to the Advanced Mad Lib Program 107

Summary ... 114

Petals around the Rose:
Dynamic Output 115

The Project: Petals around the Rose .. 116

Generating Output in Frames .. 118

Displaying Output in Separate Windows 122

Designing the Petals around the Rose Game 127

4
C H A P T E R

5
C H A P T E R

6
C H A P T E R

Untitled-7 4/2/03, 4:28 PM8

C
o

n
te

n
t s

ixCreating Graphics for JavaScript Games 129

Generating the Dice-Rolling Routine 133

Summary ... 137

Image Swapping and Lookup
Tables: The Basketball Game 139

The Project: The Basketball Game ... 140

Swapping Images ... 141

Using the MouseOver Events .. 145

Creating Simple Arrays .. 149

Creating Arrays with Images .. 152

Using Lookup Tables ... 155

Putting Together the Basketball Game 160

Summary ... 168

Dynamic HTML: The Stealth
Submarine 171

The Project: The Stealth Submarine Program 172

Dealing with Browser Dependency ... 173

Using Cascading Style Sheets ... 176

Working with Positionable CSS Elements 179

Changing the Text in a Positionable Element 185

Adding Cross-Platform Sound ... 189

Putting It Together in the Stealth Sub Game 192

Summary ... 200

Sprite Animation: The Racer 203

The Project: The Racer Program .. 204

Introducing the Sprite ... 206

Moving Sprites Around .. 211

Using Frame Animation in Sprites .. 214

Detecting Collision .. 218

Creating a Race Timer ... 221

Returning to the Racer Program .. 224

Summary ... 233

7
C H A P T E R

8
C H A P T E R

9
C H A P T E R

Untitled-7 4/2/03, 4:28 PM9

x
C

o
n

t e
n

ts

Using Other gameLib Features:
The Dogfight Game 235

The Project: The Dogfight Game ... 236

Using Layers and the Keyboard ... 237

Adding Sound ... 242

Improving Sprite Management .. 244

Adding Missiles ... 250

Returning to the Dogfight Game.. 252

Summary ... 260

Cookies and the Mouse:
The Jigsaw Puzzle 261

The Project: The Jigsaw Puzzle Program 262

Using the Mouse to Drag and Drop ... 264

Responding to Button Presses ... 268

Following the Mouse and Sprites .. 272

Storing Information in Cookies .. 275

Creating the Jigsaw Game ... 279

Summary ... 288

The Game Creation Process:
The Brick Game 289

The Project: The Brick Game .. 290

Creating the Game Design ... 290

Setting Up the Playground ... 292

Adding the Paddle ... 295

Bouncing the Ball off the Paddle ... 296

Adding Bricks .. 298

Adding More Bricks and Sound ... 301

Adding Multiple Game Boards .. 304

Changing the Bricks’ Behavior ... 307

Adding Scorekeeping Functionality .. 308

Using a Cookie to Track the High Score 318

Improving the Code Used at the End of Game 319

Summary ... 320

10
C H A P T E R

11
C H A P T E R

12
C H A P T E R

Untitled-7 4/2/03, 4:28 PM10

TE
AM
FL
Y

Team-Fly®

C
o

n
te

n
t s

xiSyntax Reference 321

Index 335
A

APPENDIX

Untitled-7 4/2/03, 4:28 PM11

Untitled-7 4/2/03, 4:28 PM12

This page intentionally left blank

Introduction

I
n the early 1980s, my brother and I bought a computer. My mom thought
we were crazy, because it didn’t do anything. She was right. There was very
little software available. We spent many nights typing in programs (usually
games). They almost never worked when we finished typing, so we always

had to look back carefully over the code. Eventually, we were able to fix typographical
mistakes and make the games work. Then, we found ourselves changing the code, so
we could improve the games that we were typing in.

That was a great way to learn how to program. We were working in a simple language
without too many confusing options. We were writing games that were even more fun to
play because we had crafted them ourselves. We were able to combine both logical think-
ing and our creative drives. Game programming was especially rewarding, because the
results were programs that we actually wanted to use. Our skills improved because game
programming provided lots of challenges. We later found that the skills we learned by
developing games were very useful in more “serious” applications as well.

Today it would appear difficult to learn programming in the same way that my brother
and I did. Computers are much more complicated than that old machine that my
brother and I used. Programming languages have become far more complex at the
same time, and the programmer’s toolbox of compilers, integrated environments, and
debuggers seems expensive, complex, and forbidding to somebody who just wants to
get started and play around a little bit.

Still, it is possible to learn to program in almost the same way. A new crop of beginner-
friendly languages is popping up. Specifically, the JavaScript language has emerged as a
new programming language perfect for beginners who want to see what programming
is all about, and who want to learn in a non-threatening but real way. JavaScript is em-
bedded into popular Web browsers, so the language costs nothing. It is available on nearly
every major type of computer system. The language has a reasonably straightforward
syntax that provides beginners a gentle introduction to some important modern con-
cepts, such as object-oriented and event-based programming. It also does not have so
many features that it requires a degree in computer science to understand.

The purpose of this book is to teach you the main principles of programming. You will
learn the major concepts used in most programming languages, and you will apply
them specifically in JavaScript. I will use the context of game programming to teach
the concepts, but you will find that you can use the techniques for purposes far be-
yond game programming. If you already know JavaScript, you will still probably find
some new ideas in the descriptions of game programming. If you have already done
some game development, you might be surprised at the things that you can do with

Untitled-7 4/2/03, 4:28 PM13

xiv
I n

t r
o

d
u

c
ti

o
n

JavaScript. If both areas are new to you, you’re going to have a great time exploring
some new things.

Although you will probably not immediately make a million dollars selling computer
games, I think that you will find this book’s approach reasonably friendly. You will
also see that you can easily apply the skills that you learn more generally to other
kinds of more serious programming. Besides, the addition of a game to a Web site can
drastically improve its popularity, making game programming a very practical skill for
any Webmaster.

I am not presuming that you have any programming experience at all. I do expect
that you are comfortable with HTML and that you know how to build Web pages
with a plain text editor. You should have a good text editor, a graphics editor, and a
sound editor. The CD-ROM that accompanies this book has examples of all these pro-
grams. Of course, you will need access to a computer that can run these programs.
You will be running your programs in a Web browser, so you should have access to
recent versions of Netscape Navigator (4.0+) and Internet Explorer (5.0+). Some of the
later examples in this book take advantage of gameLib, a special programming li-
brary. The CD-ROM includes a copy of gameLib. Finally, if you wish to publish your
pages, you will need access to some sort of Web server.

How to Use This Book

To learn how to program a computer, you must acquire a complex progression of skills.
If you have never done any programming at all, you will probably find it easiest to go
through the chapters in order. Of course, if you are already an experienced programmer,
it might not be necessary to do any more than skim the earliest chapters. In either case,
programming is not a skill you can learn by reading. You’ll have to write programs to
learn. This book has been designed to make the process reasonably painless.

Each chapter begins with a complete program that demonstrates some key ideas for
the chapter. Then, you’ll look at a series of smaller programs that illustrate each of the
major points of the chapter. Finally, you’ll put these concepts together to build the
larger program that you saw at the opening of the chapter. You’ll be able to see impor-
tant ideas in simple, straightforward code, and you’ll also see more involved programs
that put multiple ideas together. All the programs are short enough that you can type
them in yourself (which is a great way to look closely at code), but they are also avail-
able on the CD-ROM.

Throughout the book, I’ll throw in a few other tidbits, notably the following:

These are good ideas that experienced
programmers like to pass on.

There are a few areas where it’s easy to
make a mistake. I’ll point them out to you
as you go.

TRAP

HINT

IN THE REAL WORLD

As you examine the games in

this book, I’ll show you how the

concepts are used for purposes

beyond game development.

Untitled-7 4/2/03, 4:29 PM14

In
tro

d
u

c
t io

n

xvThese will suggest techniques and shortcuts that will make your life as a
programmer easier.

E X E R C I S E S

At the end of each chapter, I’ll suggest some programs that you can write with the skills you’ve

learned so far. This should help you start writing your own programs.

TRICK

Untitled-7 4/2/03, 4:29 PM15

This page intentionally left blank

1

P
rogramming is nothing more than

controlling in a more direct way what

you want your computer to do. You prob-

ably already use a computer in a number of ways,

and you control it to some extent by the programs

you use and the way that you use them. Still, with-

out programming, you are always at the mercy of

the programs designed by others. In this chapter,

you will look at how you can begin to influence the

computer’s behavior. Specifically, you will:

• Examine how you can put code inside a

HyperText Markup Language (HTML) page

• Use dialog boxes to interact with the user

• Learn how computers store data in variables

• Learn how to get data from the user

• Perform basic operations on data

Variables, Input,
and Output

C H A P T E R

2
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

The Project: Name Game

In Figure 1.1, a special box pops up in a normal Web page that asks the user for his or
her name. Then, a series of other boxes pop up, asking for a last name and then finding
other ways to manipulate the name.

FIGURE 1.1

By the end of this
chapter, you will be
able to create this

simple name game.

C
h

a
p

te
r 1

V
a
r ia

b
l e

s
, In

p
u

t, a
n

d
 O

u
tp

u
t

3No game publishers will throw money at you after this effort, as the game itself is not
exactly thrilling. However, even this mildly interesting game elevates your Web page
far above the ordinary. Most Web pages do not enable the user to interact with them at
all, so this page immediately stands out as something special, even though what it
does is kind of pointless and silly. Don’t underestimate the power of the Web page
appearing to know your user. It can make the page seem much more personal to the
visitor. You can add this functionality to any Web page you have, and your users will
think you’re really clever.

Adding Code to HTML

Web pages provide a rich background for programming. With the knowledge of HTML
that you already have, you can generate pages that look pretty good. For example, you
can control how text looks and add images. You might even have some experience
with the finer-grained control of cascading style sheets. Still, plain HTML pages lack
true interactivity. The only way that the user can really exert any control over the page
is by clicking on links. This is interesting, but that fun takes the user only so far.

Creating the Hello, World! Application

It would be interesting to make the page a little more dynamic. Both of the major
browsers, Netscape Navigator and Microsoft Internet Explorer, support JavaScript, a
scripting language that is perfect for adding interactive features to a Web page. Take a
look at the following snippet of code:

 <html>

 <script>

 //hello world

 //the classic first program

 alert("hello world");

 </script>

 </html>

If you save this code as a Web page, then load that
page into a browser, it generates the screen shown
in Figure 1.2.

This code snippet consists of normal (if very abbre-
viated) HTML, but it uses some features you might
not have seen before. The <script></script> tag
set specifies to the browser that any code between
the tags is not written in HTML, but in a scripting
language. Both the Netscape Navigator and
Microsoft Internet Explorer browsers use JavaScript,
their default language, unless you specify another
language. (Technically, Microsoft Internet Explorer
runs a variant called Jscript, but the code works
the same as either JavaScript or Jscript.)

You can place script tags anywhere in an HTML
document. All of the code between <script> and

IN THE REAL WORLD

Although users typically don’t

love things popping up and

interrupting the flow of the pro-

gram, alert boxes are useful for

a number of reasons. First,

they’re very easy to program.

Some of the more graceful ways

of talking to the user require a

little more effort. Second, they

do succeed in getting the user’s

attention. Third, you will find

them an important utility as you

program. For example, you

might often want the program

to pause momentarily and send

you a message about itself as

you are testing it.

4
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

</script> is written according to the rules of JavaScript. JavaScript is a different lan-
guage than HTML, and its rules are different.

The // characters denote a comment. The interpreter ignores anything that follows on
a line that begins with these characters. However, the information that programmers
provide in comments is still critical. Comments are mainly for the benefit of the pro-
grammer. It’s a great idea to add lots of comments to your programs, because good
comments can make your code much easier to repair. This particular program has lots
of comments. They explain what the program is intended to do. Such comments are
always a good way to begin documenting your program. You’ll look at some other
useful places to put comments as the code becomes more complex later in this book.

Sending a Message to the User

Only one line of the code fragment does anything particularly interesting:

alert("hello world");

You use the alert statement to send a special kind of message. The message pops up in
its own box, called a dialog box. The dialog box is pretty insistent. If you try to click on
the page before you close the dialog box, it will ding at you with a sound, but it will
refuse to do anything else. The box will not close, and the other programs on your
desktop will not receive the focus. It will insist that you respond to it in some way
before you go on to other things in the browser.

You might have noticed the semicolon character (;) at the end of the alert line. This
character indicates the end of the alert statement. Most lines of JavaScript code end
with the semicolon. The comments did not need a semicolon, because the compiler
ignores them. You’ll see some other places later where a semicolon is not needed at
the end of a line, but for now it’s fine simply to assume that most lines require this
character at the end.

FIGURE 1.2

When the Web page
is loaded into the

browser, a special
box pops up.

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r 1

V
a
r ia

b
l e

s
, In

p
u

t, a
n

d
 O

u
tp

u
t

5Using Variables

One of the most important aspects of programming to learn is how the computer uses
data. Data is defined as the information that the computer collects and manipulates.
In your first few programs, the data will be text, such as names or phrases. Later in this
chapter, you will learn how to use other kinds of data, such as numbers. Programming
languages use something called variables as a tool for managing data. In the next
section, you will see how variables are used to store information.

Creating the Hello, Joe! Application

Take a look at the program shown in Figure 1.3. It shows an example of output with
a new twist: This time, the computer generates a message already stored in the
computer’s memory.

This program’s code looks like this:

<html>

<head>

<title>Hello Joe</title>

</head>

<body>

<h1>Hello, Joe</h1>

<script>

//hello Joe

//Demonstrate basic variable concepts

//Andy Harris, 09/00

var greeting;

greeting = "Hi there, Joe";

alert(greeting);

</script>

</body>

</html>

Essentially, this program stores the text “Hi there, Joe,” then displays the message to
the user as soon as the Web page is loaded into the browser. This program illustrates
how the computer can store information for later retrieval. A special kind of element
called a variable is the secret.

Computers essentially work with information. It’s important to understand how com-
puters store the information.

Think of it this way: If you carry a lunch to work or school, you probably don’t just grab
a handful of last night’s leftovers and carry them around in your hands until lunch-
time. Instead, you probably use some kind of container, such as a sack. You put the
lunch in the container, which you then carry around until it’s time to eat. You don’t
actually deal with the food until lunch, because it’s easier to work with the container
than the actual food (that is, you would rather carry the sack containing the food than
carry the various items of your lunch individually). Variables fulfill a similar function
for the computer. They hold information until the computer needs to work with it.

6
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

You’ll learn a lot more about variables later. For now, you simply need to understand
that whenever you want the computer to have some information, such as a user’s name,
a message, or a rate, you’ll need to use a variable.

Using the var Statement

Every computer language provides some kind of support for variables. In JavaScript,
programmers use the var statement to create a new variable. When you create a vari-
able, you need to give it a name. This is just like putting labels on the food containers
in your refrigerator. When you look at the label, you can see what is inside without
having to open the container. Take another look at this statement, which occurs in the
preceding Hello Joe program:

var greeting;

The term var indicates that the computer should create a variable. The word greeting
is the name that I gave the variable. This line ends with a semicolon, as most lines do.
After interpreting this line of code, the computer generates in memory a chunk of
space named greeting. Thereafter, you can write code that writes new values to the
memory chunk, and write code that reads the values from the chunk.

Guidelines for Naming Variables

Computer programmers get to name a lot of things. Experienced programmers have
established a few naming conventions. You might want to keep these guidelines in mind:

Be careful about case. In many languages (including JavaScript), username, userName,
and USERNAME are all completely different variable names.

FIGURE 1.3

A greeting to Joe
pops up.

C
h

a
p

te
r 1

V
a
r ia

b
l e

s
, In

p
u

t, a
n

d
 O

u
tp

u
t

7Make names descriptive. You probably shouldn’t use a name such as r or x, because
later it will be hard to remember exactly what the variable is supposed to contain.
Names such as taxRate or greeting will make your code much easier to follow.

Don’t use spaces or punctuation. Most languages don’t allow multiword variable names.
Many programmers use capitalization (taxRate) or underscore characters (tax_rate) to
make multiple word variable names easier to read. (I’ll use the capitalization conven-
tion in this book.) Many of the punctuation characters have special meanings, so it’s
not a good idea to put these in a variable name.

Don’t make your variable names so long that they are impossible to type correctly.
Many programmers prefer variable names from 5 to 15 characters long.

Assigning a Value to a Variable

Take a look at this line from the Hello Joe program:

greeting = "Hi there, Joe";

Essentially, this line assigns the text “Hi there, Joe” to the variable greeting. Every-
thing between the quotation marks is called a string literal. (Computer programmers
love to give complicated names to simple ideas. Get used to it!) String is the term that
computer programmers use for text, because computers handle text as a string of char-
acters. Literal means that you are actually specifying the literal value "Hi there, Joe".

The equals sign (=) indicates assignment. It might make more sense to read this state-
ment as follows:

greeting gets the string literal "Hi there, Joe".

It would not be exactly correct to say that greeting equals "Hi there, Joe".
Equality is an entirely different issue, which I will deal with in the next chapter.

Finally, the word greeting is the name of a variable that gets the string value
"Hi there, Joe".

If you want to give a variable a particular value, you can do so by using a similar assign-
ment statement. Coding a variable assignment statement is like putting leftovers in a
container.

Using the Contents of a Variable

You carry a lunch bag to keep all your food items neatly in one place. If you pull your lunch
bag out of the refrigerator, you are in effect pulling out the entire lunch. In a similar way,
you specify a variable’s name to refer to a variable. Take another look at this line:

alert(greeting);

When the user runs this Web page, he or she does not see the term “greeting” pop up.
Instead, he or she sees “Hi there, Joe,” which is the content of the greeting variable. It
doesn’t matter what the value of greeting is, as long as it is some kind of text. This line
of code can output any value stored in the variable greeting.

TRAP

8
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Getting Input from the User

In addition to sending information to the user, computers can also retrieve informa-
tion from the user. This kind of exchange is called input.

Sometimes people get confused about whether something is input or output. For
example, suppose that you are reading a text message on a computer screen. As
you read the message, you input it to your brain; however, from the computer’s per-
spective, that message is output to the screen. The convention in programming is
that when you talk about either input or output, you are speaking from the point of
view of the computer.

Creating the Hello User! Application

Take a look at this program, which illustrates a simple kind of input:

This time, the computer asks the user his or her name and uses that information in
another statement.

Here’s the code that made this happen:

<html>

<head>

<title>Hello User</title>

</head>

<body>

<h1>Hello, User</h1>

<script>

//hello user

//ask user for name

//Andy Harris, 09/00

var userName;

userName = prompt("What is your name?");

alert(userName);

</script>

</body>

</html>

This program has a variable, but this time a value embedded in the program does not
determine the variable. Instead, the user gets an opportunity to enter a value into a
special dialog box, and the program copies whatever the user types to the variable. Now
that you can get values from the user, you can create programs that are much more
flexible. For example, you can create a program that calls the user by name, even if you
have no idea what that name will be when you write the program (see Figure 1.4).

HINT

C
h

a
p

te
r 1

V
a
r ia

b
l e

s
, In

p
u

t, a
n

d
 O

u
tp

u
t

9

Using the prompt Statement

The secret weapon that makes it possible to let the user enter data into a variable is the
prompt statement. It is used in this line:

userName = prompt("What is your name?");

As you can see, the line starts out much like the assignment statement in the Joe pro-
gram, but this time, the value that the program is sending to userName is not a literal
value, but the result of some kind of operation.

The prompt statement causes a dialog box much like the alert box to pop up. This dia-
log box is different, however, because it not only sends a message to the user, it also
provides a place for the user to type a response.

The primary purpose of a prompt statement is to get a value back. Every prompt state-
ment includes some sort of variable, ready to catch the value.

Think of eating your lunch at a cafeteria. You have to get a tray to hold your lunch, but
then you have some choices. You tell the person behind the counter what item of food
you want, and he or she then places that selection on your tray. Much like a tray holds
your food selection, your variable provides a place in which to input a value.

An input statement, such as the prompt statement you have seen in this example, is
used when you are going to fill up a variable with the answer to some kind of question.
In later chapters you will see some other forms of input.

The prompt statement calls up a dialog box that presents the user with a question and
a place to type an answer. It is almost always used as part of an assignment statement
to assign the user’s answer to some variable.

When you generate a prompt dialog box, you need to determine the question that you
want to ask, and you also need to have a variable ready in which to store the answer.

FIGURE 1.4

This program asks
the user for his or

her name, then
returns that input in
another dialog box.

TRICK

10
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Saying Hi to the User

Now that you have a variable that contains the user’s name, it is a reasonably simple
task to return that value to the user. The following line does the trick:

alert(userName);

Because userName is not in quotes, the computer interprets it as a variable name and
displays to the user the contents of the userName variable. Of course, the contents pro-
vide a pretty limited greeting, but you’ll fix that in the next section. If you did put
quotes around userName, the actual value “userName” is what the user would see,
rather than the value associated with the userName variable.

Building More Complicated Text

It would be much nicer if the greeting could be friendlier. If the user’s name is
Susan, maybe the program should say “Hi, Susan!!” Figure 1.5 shows the enhanced
program’s output.

Creating the Concatenation Program

To create the screen shown in Figure 1.5, you must combine string literals (the “Hi,”
part and the “!!” part) with the value of a variable. Specifically, you will create userName
and give it a value just as you did in the previous example. The only difference is the
output. The earlier program’s only output was the value of the variable, without any
other text around it. In this program, you’ll figure out a way to include the value of a
variable inside other text.

Concatenating Strings

Creating this program requires a process that is another instance in which program-
mers have given a simple idea a complicated name:

String Concatenation: The combination of two or more text strings. They can be
string literals or string variables (or the values of string expressions, which you will
learn about later). In JavaScript, you concatenate strings by using the plus sign (+).

FIGURE 1.5

Now the greeting
integrates the

user’s name into
another string.

C
h

a
p

te
r 1

V
a
r ia

b
l e

s
, In

p
u

t, a
n

d
 O

u
tp

u
t

11String concatenation is a lot simpler than it sounds. Here’s how the code looks:

<html>

<head>

<title>concatenation</title>

</head>

<body>

<h1>Concatenation</h1>

<script>

//concatenation

//ask user for name

//Andy Harris, 09/00

var userName;

var greeting;

userName = prompt("What is your name?");

greeting = "Hi, " + userName + "!!";

alert(greeting);

</script>

</body>

</html>

If you are testing a page and you want to see it again after it’s finished, just click the
browser’s Refresh button.

Joining Variables and Literals

The concatenation program uses two variables: userName is meant to hold the user’s
name, and greeting contains the text that the program will output to the user. The
program obtains userName from the user through a prompt statement, just as in the
previous program. This is the only new line:

greeting = "Hi, " + userName + "!!";

By now you should recognize that the program assigns a value to greeting. To form
that value, the program concatenates the string literal “Hi,” with the contents of the
userName variable and joins another string literal (“!!”) to the end of that one. You can
use string concatenation to make really long, complex text strings. The great thing is
that the user won’t ever know that you did any manipulations. He or she will just see
that the program used his or her name.

Working with Numbers

Computers are pretty good at working with text values. They are even better at work-
ing with numbers. Deep inside the computer, text and numbers are stored the same
way, but programmers use many schemes and conventions to encode data. (If you re-
ally want the details, consult your neighborhood computer scientist.) JavaScript is pretty
good at hiding this complexity from users and even programmers. It generally guesses

TRICK

12
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

whether you are talking about numbers or text. Still, sometimes you’ll need to do
some special tricks to help JavaScript guess correctly.

Creating the Adder Application

The program shown in Figure 1.6 provides a handy service. It looks at the cost of a
meal, adds a 15 percent tip, and calculates the total bill.

This program does its work with variables, as you can see from the code:

<html>

<head>

<title>Adder</title>

</head>

<body>

<h1>The Adder</h1>

<script>

//Adder

//Demonstrates how a computer does math

var meal = 22.50;

var tip = meal * .15;

var total = meal + tip;

alert ("the meal is $" + meal);

alert ("the tip is $" + tip);

alert ("Total bill: $" + total);

</script>

</body>

</html>

FIGURE 1.6

The Adder program
displays the cost of

a meal, the tip
amount, and the

total cost.

C
h

a
p

te
r 1

V
a
r ia

b
l e

s
, In

p
u

t, a
n

d
 O

u
tp

u
t

13If a program doesn’t work right in Internet Explorer, a dialog box will take you to an
editor. In Netscape, if you type javascript: into the URL area, you’ll get a dialog box
showing information about any errors that Netscape Navigator detects.

Using Numeric Variables

The Adder program has variables, but their values are not text. In this program, you
want the computer to do mathematical computations on the data, so the variables
must be numeric. Notice that there are no quotation marks around the value 22.50.

Also, you can combine the var statement with an assignment statement, so the vari-
able immediately has some kind of value.

The following line calculates the value of the variable tip by multiplying meal by .15
(or 15 percent):

var tip = meal * .15;

In computing, the asterisk (*) usually means multiplication.

The following line creates the total variable:

var total = meal + tip;

This statement adds up the contents of meal and tip, then places the sum in the
total variable.

The alert statements work just as you would expect. The program automatically con-
verts all the numbers to text when generating the output.

Diagnosing the Bad Adder Application

This program would be more useful if it allowed the user to enter the cost of the meal.
Look at this variant of the Adder code:

<html>

<head>

<title>BadAdd</title>

</head>

<body>

<h1>The BadAdd</h1>

<script>

//BadAdd

//Demonstrates a potential pitfall

//Andy Harris, 09/00

var meal;

var tip = meal * .15;

var total = meal + tip;

//get the cost of the meal from the user

TRICK

14
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

meal = prompt("How much was the meal?");

var tip = meal * .15;

var total = meal + tip;

alert ("the meal is $" + meal);

alert ("the tip is $" + tip);

alert ("Total bill: $" + total);

</script>

</body>

</html>

The program looks reasonable, but the results, as shown in Figure 1.7, are definitely
not what you wanted. Something went wrong somewhere. Before reading on, see
whether you can figure out the problem.

Interpreting Numbers and Text

Here’s what happened: The prompt statement returns a string value. The computer stores
this value as text, which is no problem until you try to do math on it. In the following
line, meal gets a string value, because that’s what the prompt statement returns:

meal = prompt("How much was the meal?");

The following line multiplies the value of meal by .15:

var tip = meal * .15;

FIGURE 1.7

This time the user
gets to enter the

cost of the meal, but
the program’s

calculations are
incorrect.

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r 1

V
a
r ia

b
l e

s
, In

p
u

t, a
n

d
 O

u
tp

u
t

15It doesn’t make sense to multiply by a string value, so JavaScript simply converts the
string meal to a number, and the multiplication works. The next line is where the
problems begin:

var total = meal + tip;

The computer still interprets meal as a string and tip as a number. The problem is the
plus sign (+), which is an operator that tells the computer to add up numbers. If the plus
sign is used in the context of string variables, it will concatenate the strings. In this
statement, the plus sign has a number on one side and a string on the other, so it
confuses the computer. In this case, the computer decides to treat both values as strings
and concatenate them. So, the result of concatenating “22.50” and “3.375” is another
string value, “22.503.375”.

Creating the Good Adder Application

JavaScript provides a number of ways to solve this problem, but the easiest is the eval()
function. Take a look at this version of the code:

<html>

<head>

<title>GoodAdd</title>

</head>

<body>

<h1>The GoodAdd</h1>

<script>

//GoodAdd

//Demonstrates eval function

//Andy Harris, 09/00

var meal;

//get the cost of the meal from the user

meal = prompt("How much was the meal?");

//convert the value to a number

meal = eval(meal);

var tip = meal * .15;

var total = meal + tip;

alert ("the meal is $" + meal);

alert ("the tip is $" + tip);

alert ("Total bill: $" + total);

</script>

</body>

</html>

16
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

There’s only one new thing in the code. That is this line:

meal = eval(meal);

This statement simply evaluates the string value that the user entered. The program
reassigns that result to the meal variable. In this case, the program returns a numeric
value. Look at the results shown in Figure 1.8, and you’ll see that the program now
works correctly.

Using String Methods

In addition to enabling you to manipulate numbers, most programming languages
allow you to manipulate text inside string variables. Most languages have features that
you can use to change a variable to uppercase or lowercase, commands that allow you
to determine the length of a string, and techniques for concatenating strings. You can
combine all these feature, commands, and techniques, along with input and output,
to generate your old friend, the Name Game program, from the beginning of the chap-
ter. First, however, Table 1.1 reviews the new syntax you’ve learned in this chapter.

FIGURE 1.8

The user enters the
cost of the meal,
and the program

calculates
everything correctly.

C
h

a
p

te
r 1

V
a
r ia

b
l e

s
, In

p
u

t, a
n

d
 O

u
tp

u
t

17

Returning to the Name Game

Remember the Name Game program that you learned about at the very beginning of
the chapter? Take another look at that program. You should now recognize that the
program’s code demonstrates many of the concepts that you’ve learned in this chap-
ter. You’ll also spot a few new things.

<html>

<head>

<title>The Name Game</title>

</head>

<body>

<center>

<h1>The Name Game</h1>

<script>

//nameGame

//plays around with user's name

TABLE 1.1 SYNTAX SUMMARY

Statement Description Example

var varName Create a variable called varName. var userName;

var varName = value Create a variable called varName var userName = "";

with a starting value of value.

alert(msg) Send the string msg to the user in alert("Hi there");

a dialog box.

varName = prompt Send a dialog box with the string userName =

(question) question and a text box. prompt("What is

Then return the value to varName. your name");

eval(string) Evaluate the string expression. number = eval("3");

If it’s a number, return the number.

stringVar. Convert stringVar to all bigName =

toUpperCase() uppercase letters. userName.

toUpperCase()

stringVar.length Return the number of characters nameSize =

in the stringVar variable. userName.length

18
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

//uses string methods

var firstName = "";

var lastName = "";

var numLetters = 0;

firstName = prompt("Hi, what's your first name?", "");

alert ("That's a nice name, " + firstName);

alert ("I think I'll shout it: " + firstName.toUpperCase());

lastName = prompt("So what's your last name, " + firstName + "?");

alert ("Oh. " + firstName + " " + lastName + ".");

alert ("Sometimes called " + lastName + ", " + firstName);

numLetters = firstName.length + lastName.length;

alert ("Did you know there are " + numLetters + " letters in your name?");

</script>

</body>

</html>

You have seen most of this code before. Basically it is nothing more than some input
and output statements and a few new string manipulation tricks.

Writing the Variable Creation Lines

The first few lines simply create all the variables you will need:

var firstName = "";

var lastName = "";

var numLetters = 0;

Programs typically begin with some comments followed by statements that create the
variables for your code. Most other statements depend on variables, so it’s sensible to
create them all first. It’s also nice to place them somewhere easy to find. Then, when
your code gets longer, it’s easy to spot which variables you have working.

Note that when creating variables, I give them a default value. JavaScript doesn’t re-
quire that you choose whether a variable will contain text or a number, but it still
matters. I like to initialize those variables that I intend to be strings with the "" value,
and if I expect a variable to be a number, I initialize it with 0.

Converting to Uppercase

After the program obtains the user’s first name, it does some manipulation:

alert ("I think I'll shout it: " + firstName.toUpperCase());

In JavaScript, sometimes variables have special powers. Strings have a bunch of things
they can do, called methods. You’ll spend much more time with them later, but for now
it’s fun to explore a few and see what they do. The command firstName.toUpperCase()
converts the value of the firstName variable to all uppercase letters. The command then
concatenates that value to the end of the string "I think I'll shout it: ".

C
h

a
p

te
r 1

V
a
r ia

b
l e

s
, In

p
u

t, a
n

d
 O

u
tp

u
t

19Concatenating Complex Strings
in Input and Output

You can see in this code that complex string concatenation is common in input and
output statements. The following prompt statement includes two literal values and a
variable in the question:

lastName = prompt("So what's your last name, " + firstName + "?");

Such complex string concatenation is completely legal, and often a good idea.

Counting the Letters in Strings

The last alert statement tells how many letters are in the user’s name. Here’s how
that works:

numLetters = firstName.length + lastName.length;

numLetters is a numeric variable. firstName.length returns the number of characters
in the firstName variable. Likewise, lastName.length returns the number of charac-
ters in lastName. The program adds these values together and stores the total in the
numeric variable numLetters.

You might be curious why stringName.toUpperCase() has parentheses at
the end of the command whereas stringName.length does not. This is be-
cause length is technically not a method of string variables, but a property. The
distinction will be much more important later in this book. For now, it’s enough to
just recognize the pattern.

Combining Numbers and Text

At this point, you might be very anxious about when something is a number and when
it’s a string. Don’t panic. JavaScript is a very friendly language. It tries to guess what
you mean, and it is often correct. Test your programs, and if you see a concatenation
happen when you are expecting an addition, use the eval statement on the variables
that JavaScript should interpret as numbers. If you have numbers that your program
needs to concatenate to a string, that concatenation generally happens automatically,
as in this line:

alert ("Did you know there are " + numLetters + " letters in your name?");

Summary

In just one chapter, you have learned a lot. You have seen how you can embed JavaScript
programs inside Web pages. You’ve looked at output with the alert statement, and
input with the prompt statement. You’ve learned about variables and literal values. You
have begun to explore some of the operations you can do with numbers and strings.

In the next chapter, you’ll begin to see how computers can make choices based on the
value of variables. You will also look at how to generate random numbers. These skills,
along with those you’ve already learned, form the foundation for all game programming.

HINT

20
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

E X E R C I S E S

1. Write a JavaScript program that will ask the user for his or her first name, last name, and

middle initial. Return them back in the order of last name, first name, and middle initial,

then in first name, middle initial, and last name format.

2. Write a program that asks the user for two numbers, adds them up, and returns the result

to the user.

3. Improve the preceding program so that it also does subtraction, multiplication, and divi-

sion on the two numbers. (Hint: Division uses the / symbol, and multiplication uses *.)

4. Have a program ask the user his or her name and shoe size. Determine the user’s “lucky

number” by multiplying the number of letters in his or her name by the shoe size. Return

the results.

5. Create a program that asks the user for the height and width of a rectangle and then

returns the area (h * w) and perimeter (2*(h+w)).

2

I
n the last chapter, you learned how to

get data from the user, how to manipu-

late that data, and how to send output

back to the user. In this chapter, you’ll learn how to

do even more with data. Specifically, you’ll learn

how to:

• Generate random numbers

• Manipulate those numbers to be within

a specific range

• Build a condition

• Use conditions to branch program logic

• Build more complex conditional structures

The Fortune Teller:
Random Numbers

and the if
Statement

C H A P T E R

22
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

The Project: The Fortune Teller

Figure 2.1 shows the Fortune Teller program, which generates a random fortune for
the user every time that the page is loaded.

Getting Random Numbers

Games are most interesting when they are not completely predictable. Game program-
mers frequently use random numbers to simulate the unpredictability of the real world.
The ability to generate random numbers in any specified range is an important skill
for game programmers.

Creating the Number Maker Program

The Number Maker program (see Figure 2.2) is very limited, yet it gives you the founda-
tion of many games. Every time that you load the page, you will get a new random
number between 0 and 1. Although such numbers aren’t entirely useful by themselves,

FIGURE 2.1

The Fortune Teller
program generates

a random fortune for
the user each time

that the page is
loaded.

FIGURE 2.2

The Number Maker
program generates
a random number

between zero
and one.

C
h

a
p

te
r 2

T
h

e
 F

o
r tu

n
e
 T

e
l le

r: R
a
n

d
o

m
 N

u
m

b
e
rs

 a
n

d
 th

e
 if S

ta
te

m
e
n

t

23they do turn out to be very flexible. As you’ll see shortly, you can do some clever tricks
to use random numbers for other, more practical applications, such as dice.

Take a look at the code for the Number Maker, to see how it works:

<html>

<head>

<title>numberMaker</title>

<script>

// numberMaker

// Andy Harris

// Demonstrates the random number generator

var number;

number = Math.random();

alert ("Here's my number: " + number);

</script>

</head>

<body>

<center><center>

<h1>numberMaker
</h1>

</center>

<hr>

<h3>Hit the Reload key to see a new number!</h3>

</body>

</html>

As you can see, this code includes very little that is new, except for one line. Clearly,
number is a variable that gets a value, but this value is neither acquired from the user
nor directly coded by the programmer. The value of the number variable comes from
the Math.random() line.

Using the Math Object

JavaScript is referred to as an object-based language. The exact implications of this will
become far more important in later chapters, but you have already begun to see the
importance of objects. Recall from the last chapter that string variables are objects
that have methods attached to them. An object is some sort of entity, and a method is
something that the object can do.

JavaScript supplies the Math object. This object just holds a bunch of interesting (if you
like math) methods and properties. Any time you are looking for some kind of math
function (such as calculating the cosine of an angle, or figuring out a logarithm or
power), you might check in the Math object for a useful function. Table 2.1 describes
many of these functions.

24
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Using the Math.random() Method

The Math.random() method is of particular interest to game developers, because it gen-
erates a random number. The number will be some value between 0 and 1. Most lan-
guages have some form of random number generation, and it is very common for such
functions to return this kind of zero-to-one value. Specifically, the following line gets a
random value and copies it to the number variable:

number = Math.random();

Technically, the values are only pseudorandom, because they are derived by a com-
plex mathematical formula based on the current time. That’s not usually a problem,
because they are close enough to truly random for game development.

Making Specialized Random Numbers

Now you can generate a zero-to-one value, but such values aren’t terribly interesting.
Usually, you will need numbers to be within some other kind of range. If you are creat-
ing a dice game, for example, you might want the values to be between 1 and 6.

TABLE 2.1 USEFUL METHODS AND PROPERTIES OF THE MATH OBJECT

Method Description Example Result

abs() Calculates the absolute value. Math.abs(-3) 3

ceil() Returns the next higher integer. Math.ceil(3.5) 4

cos() Returns the cosine of an angle (in radians). cos(Math.PI/2) 0

floor() Returns the lower integer. Math.floor(3.5) 3

max() Returns the larger of two values. Math.max(3,5) 5

min() Returns the smaller of two values. Math.min(3,5) 3

pow() Returns the first number raised to power Math.pow(2,3) 8
of second.

random() Returns a random value between 0 and 1. Math.random() 0.348557233
(the result
varies)

round() Rounds to the nearest integer. Math.round 3
(3.2)

sin() Returns the sine of an angle (in radians). Math.sin 1
(Math.PI/2)

sqrt() Returns the square root of a number. Math.sqrt(16) 4

tan() Returns the tangent of an angle (in radians). Math.tan 1
(Math.PI/4)

HINT

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r 2

T
h

e
 F

o
r tu

n
e
 T

e
l le

r: R
a
n

d
o

m
 N

u
m

b
e
rs

 a
n

d
 th

e
 if S

ta
te

m
e
n

t

25

Creating the Die Roller

Take a gander at the Die Roller program, which simulates rolling one six-sided die.
Figure 2.3 shows a couple of runs of the program, just so you can see how it works.

The program generates a value between 0 and 1, then does various manipulations on
that value to turn it into an integer between 1 and 6. This particular program prints
the intermediate steps, although the user usually would not be concerned about how
the program generated the number.

The code for the Die Roller program is as follows:

<html>

<head>

<title>dieRoller</title>

<script>

// dieRoller

// Andy Harris

// converts random numbers to six-sided die

var rollRaw = 0;

var rollBigger = 0;

var rollInt = 0;

var rollFinal = 0;

var result = "";

rollRaw = Math.random();

rollBigger = rollRaw * 6;

rollInt = Math.floor(rollBigger);

rollFinal = rollInt + 1;

result = "rollRaw: " + rollRaw + "\n";

result += "rollBigger: " + rollBigger + "\n";

result += "rollInt: " + rollInt + "\n";

FIGURE 2.3

Two dialog boxes
generated by the

Die Roller program.

26
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

result += "rollFinal: " + rollFinal + "\n";

alert(result);

</script>

</head>

<body>

<center><center>

<h1>dieRoller
</h1>

</center>

<hr>

</body>

</html>

The program starts, as usual, with a number of variable creation statements. I made a
bunch of variables to handle the various steps of the number conversion process. Al-
though having so many variables is not absolutely necessary, it does sometimes make
the code a little more clear. The result variable is intended as a string, but all the
other variables are numeric. Although JavaScript isn’t fussy about variable types, my
convention is to indicate at least what type of data I expect the variable to hold.

Getting the Raw Value

The first step in the process is to get the raw (zero-to-one real number) value. You saw
this done in the last project, and you see in this code a now-familiar line:

rollRaw = Math.random();

This line of code generates a zero-to-one random value and assigns it to the variable
rollRaw.

Making Larger Numbers

You now have a zero-to-one value with a lot of digits behind the decimal point stored in
rollRaw. You’re looking for a value between 1 and 6, with no decimal point, because
that range includes the legal values of standard dice. You’ll need to go through a few
steps to get such a value. The first thing that you’ll need to do is get a number in the
zero-to-five range. (You’ll see why I chose this range in just a moment.)

The following line performs the trick:

rollBigger = rollRaw * 6;

This command multiplies the value in rollRaw by 6. This results in a value larger than
0 and less than 6, but still with a huge number of decimal values. To prove this, run the
program a few times and take a careful look at the relationship between rollRaw and
rollBigger. Although you’re getting closer to your goal, the decimal values are still a
problem.

C
h

a
p

te
r 2

T
h

e
 F

o
r tu

n
e
 T

e
l le

r: R
a
n

d
o

m
 N

u
m

b
e
rs

 a
n

d
 th

e
 if S

ta
te

m
e
n

t

27Converting to an Integer

You might remember from grade school math that positive and negative numbers
without decimal values are commonly referred to as integers. Numbers with decimal
values are frequently called real numbers. Specifically, computers use a form of real
numbers called floating point notation.

Deep in the hardware of the computer, integers and floating point numbers are stored
and manipulated in completely different ways. Although you might not care much about
the difference, it’s quite important to the computer. Most languages give you ways to
translate numbers between the different types of variables. Going from a floating point
number to an integer is reasonably easy. JavaScript actually gives you three different
ways to do it. Take a look at this line of code, and you’ll see how I did it in this program:

rollInt = Math.floor(rollBigger);

The Math object has a floor() method, which simply lops off the decimal value. The
program takes rollBigger (a value with decimal points between 0 and 6) and just
chops off everything after the decimal point. The program then copies the resulting
integer value to the rollInt variable. rollInt is now an integer. Its value will be 0, 1,
2, 3, 4, or 5.

Earlier I mentioned that there are three ways to get an integer. The Math object also
supplies the ceil() method and the round() method. You can use either of these
alternatives, although they would give you slightly different results. ceil() always
rounds up, and round() rounds according to normal conventions. Not every lan-
guage supports these functions, but almost every programming language has some
form of the floor method (although it might have a very different name, such as
parseInt or intValue). If you learn how to generate random numbers with the
floor() method, you’ll have a strategy that you can easily transport to other pro-
gramming languages.

It’s a good idea to look again at the program running a few times. Examine the rela-
tionship between rollBigger and rollInt.

Getting Values Larger Than 0

The rollInt variable gets pretty close to what you’re looking for, but it still has one
big problem. Although it generates six different values, they are not in exactly the
correct range. A typical die has values from 1 to 6, not 0 to 5. This line takes care of
that problem:

rollFinal = rollInt + 1;

This line simply increases the value of rollInt by one. Now, every time the program
runs, it generates a number in the range 1 through 6. Try the program a few times and
see how it works. It’s also instructive to look at the results of this program and exam-
ine the relationships between the variables, so you understand how this code works.

HINT

28
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Developing an Algorithm for Random Numbers

Getting random numbers in a certain range is a very common problem in game pro-
gramming. Here’s a summary of my solution for making random integers between low
and high:

1. Get a random floating point value.

2. Multiply the value by high.

3. Convert the value to an integer.

4. Add the value of low.

You will use this technique often when you write games. Even when you write pro-
grams in other languages, the same strategy will apply. Such generic strategies are
called algorithms. Algorithms are proven strategies for solving specific problems. Once
you have a good algorithm, it is generally pretty easy to implement it in code.

Making Decisions with the if Statement

So far, all of my programs have been sequential. They have simply been a list of instruc-
tions for the computer to carry out. This is a completely legitimate form of program-
ming, but in other cases you might want the computer to perform different tasks in
different situations. The way that you get computers to make decisions requires much
the same process that you use when making decisions yourself, although a computer
must rely on a much more formulated process.

When you got up this morning, you probably listened to the radio. Most people like to
know what the weather will be like before they get dressed in the morning. They say to
themselves something like “If it’s cool out today, I’ll wear a sweater.” Although you
probably did not have to concentrate very hard on this thought process, it more than
likely did occur at some level.

This is an example of logic in action. It relies on a very important construct, called a
condition. A condition is an expression that can be evaluated as true or false. In the
weather problem, the condition is “It will be cool today.” That statement will be either
true or false. As you can see, in human terms, conditions are a lot like yes/no questions.
When you are designing algorithms, you will often need to think about your logic so
that you can turn it into this kind of yes/no question. You can usually turn such ques-
tions into conditions easily, then use those conditions in a number of interesting ways.

Creating the Low Temp Program

Figures 2.4, 2.5, and 2.6 show a few runs of the Low Temp program. This game gener-
ates a random number to indicate the current temperature, then recommends dress
appropriate for the weather if the temperature is under a threshold temperature of
65 degrees.

C
h

a
p

te
r 2

T
h

e
 F

o
r tu

n
e
 T

e
l le

r: R
a
n

d
o

m
 N

u
m

b
e
rs

 a
n

d
 th

e
 if S

ta
te

m
e
n

t

29

The code for this program is as follows:

<html>

<head>

<title>lowTemp</title>

<script>

// lowTemp

// Andy Harris

// Demonstrates the basic if statement

var temp = 0;

var perfectTemp = 65;

temp = Math.floor(Math.random() * 100) + 1;

alert ("It's " + temp + " degrees outside. ");

if (temp < perfectTemp){

 alert("Wear a sweater!!");

FIGURE 2.4

The Low Temp
program generates
a random value for
the temperature.

FIGURE 2.5

The program
suggests attire

appropriate for the
current weather

conditions.

FIGURE 2.6

This run of the
program generates

a random
temperature that is
above the threshold

of 65 degrees. No
“Wear a Sweater”
message appears.

30
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

} // end if

</script>

</head>

<body>

<center><center>

<h1>lowTemp
</h1>

</center>

<hr>

<h3>Hit Reload to see another temperature</h3>

</body>

</html>

Generating the Temperature

The temperature-generation line looks intimidating:

temp = Math.floor(Math.random() * 100) + 1;

If you look at the line closely, you will see that it is really just another way of stating
the algorithm that you developed in the last section. The parentheses denote the order
of operation, just as in math, so the program executes Math.random() first. The pro-
gram then multiplies the resulting random value by 100. The computer then adds 1 to
the floor of that value, resulting in a number between 1 and 100. This is a reasonable
range for temperatures.

Making Decisions with Conditions

Of course, the computer is never as flexible as the human mind. Consider all these
statements:

 It will be cool.

 It is cool.

 Today will be cool.

 It will be a little brisk today.

 Temperatures will be in the low 60s.

 Today will be a lot like yesterday.

Your mind is flexible enough that you might correctly interpret all these statements
(and many more) as meaning the same thing. Humans are blessed with the ability to
understand many different kinds of syntax (the basic structure of the statement) and
determine the correct semantics (meaning). Computer languages do not handle subtle-
ties well. Most of the time, there are very few ways to say something that the computer
will understand. The art of programming is refining the expressive language of hu-
mans to a more restrictive computer language such as JavaScript without losing too
much of the meaning.

C
h

a
p

te
r 2

T
h

e
 F

o
r tu

n
e
 T

e
l le

r: R
a
n

d
o

m
 N

u
m

b
e
rs

 a
n

d
 th

e
 if S

ta
te

m
e
n

t

31

To express this kind of condition in JavaScript, you need a condition construct. Usually,
a condition compares some variable to a value or another variable. For example, the
weather statement might be as follows:

temperature < 65

Take a careful look at how this works: Temperature is a variable. The programmer has
presumably already created it and given it a starting value. You can use any type of
variable in a condition (usually) but you must be careful not to compare different types
of values. (More on that later.) The less-than sign (<) is a comparison operator. Table 2.2
lists JavaScript’s comparison operators.

Using the if Statement

Once you understand conditions, the if statement is simple to understand. Look again
at this code from the Low Temp program:

if (temp < perfectTemp){

 alert("Wear a sweater!!");

} // end if

The if statement contains a condition in parenthe-
ses, and then a left bracket ({). This line tells the
computer to analyze the condition. Any condition
will evaluate to either true or false. The computer
will execute the code between the left brace ({) and
the right brace (})only if the condition evaluates to
true. In this case, only one line of code is between
the braces, but you can put as much code as you
wish there.

The if statement is incredibly powerful, because it
allows you to write code that will execute only in certain circumstances, as long as you
can write a condition to describe those circumstances. In this program, the message
“Wear a sweater” should pop up only when the value of the temp variable is less than

IN THE REAL WORLD

The if statement is an example

of a logic structure. Logic struc-

tures are the programming ele-

ments that allow you to write

flexible programs. Most of the

logic structures you will learn

are based on conditions, so it is

vital that you understand how

conditions work. This is true in

any kind of programming.

TABLE 2.2 COMPARISON OPERATORS IN JAVASCRIPT

Operator Meaning

< Less than

> Greater than

== Is equal to

!= Is not equal to

<= Less than or equal to

>= Greater than or equal to

32
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

the value of the perfectTemp variable. If temp is greater than or equal to perfectTemp,
nothing at all happens, and the next line of code after the right brace (}) executes. In
this program, the brace is on the last line, so program execution simply stops.

Indenting Lines and Using the Semicolon

You might have noticed some things about the structure of the if statement. First, the
alert line is indented from the margin. JavaScript is not very picky about spaces, in-
dentation, or carriage returns, but clever programmers have learned to adopt some
conventions that improve the readability of their code. You should indent any code
inside a pair of braces. I indent two spaces, but it doesn’t matter that much as long as
you are consistent. The right brace aligns vertically under the beginning of the line
containing the left brace. This helps me see the beginning and end of the structure
plainly. In this case, I am indenting an if statement, but you will see other structures
that require indentation. You will be learning some other kinds of structure state-
ments soon, and you can nest them inside each other. It can be really tricky to know
exactly where you are, so indenting is a great idea. As you look at other books or source
code, you will run across many other conventions. Programmers often develop their
own personal styles, but this style of indentation is reasonably common.

You might have also noticed that the brace lines do not have semicolons at the end.
Semicolons are not needed on any lines that end with a left or right brace.

Using the else Structure

The if statement is used to deal with logic that should execute only when a condition
is true. Sometimes you will want one set of statements to execute when a condition is
true, and another set of statements to execute if the condition is false. For example,
you might wish to wear a sweater or a bathing suit. If the weather is cold, you’ll wear
the sweater. If it is not cold, you’ll want the bathing suit. The following section de-
scribes a program that simulates exactly that situation.

Creating the High or Low Program

Figures 2.7 and 2.8 show the High or Low program’s output. Once again, the program
generates a temperature randomly, then presents a message related to the tempera-
ture. This time, however, that message varies depending on the temperature.

FIGURE 2.7

If the temperature is
high, the program

presents the
message “It’s hot!!”

C
h

a
p

te
r 2

T
h

e
 F

o
r tu

n
e
 T

e
l le

r: R
a
n

d
o

m
 N

u
m

b
e
rs

 a
n

d
 th

e
 if S

ta
te

m
e
n

t

33

The High or Low program starts out much like the last program, but it has one new
feature. See whether you can spot this feature in the code:

<html>

<head>

<title>highOrLow</title>

<script>

// highOrLow

// Andy Harris

// Demonstrates the if / else structure

var temp = 0;

var perfectTemp = 77;

temp = Math.floor(Math.random() * 100) + 1;

alert ("It's " + temp + " degrees outside. ");

if (temp < perfectTemp){

 alert("It's cold!!");

} else {

 alert("It's hot!!");

} // end if

</script>

</head>

<body>

<center><center>

<h1>highOrLow
</h1>

</center>

<hr>

FIGURE 2.8

If the temperature is
low, the program

presents the
message “It’s cold!!”

34
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

<h3>Hit Reload to see another temperature</h3>

</body>

</html>

Using the else Clause

The only thing that is new in the High or Low program’s code is the else clause. Take
a look at the segment around the if statement:

if (temp < perfectTemp){

 alert("Wear a Sweater!!");

} else {

 alert("Wear a Bathing Suit!!");

} // end if

The if clause works exactly the same as in the previous program, but now there is an
else clause. The part between else { and the closing brace (}) will run only if the condi-
tion evaluates to false. If the computer evaluates the condition to true, the Sweater mes-
sage pops up and the next line of code after the else clause runs. If the condition turns
out to be false, the computer runs only the else clause. The else clause can contain
several lines of code. It is customary to indent the if-else structure as I did in this ex-
ample. This helps you to see at a glance how the programmer organized the code.

Using Nested if Structures

It’s common to have more complex types of conditions. For example, what if you want
the program to recommend more than two options for clothing for different condi-
tions? You might want to wear a jacket if it’s cold, a sweater if it’s cool, short sleeves if
it’s warm, and a bathing suit if it’s hot. You can nest if statements inside each other to
handle such situations.

Creating the Many Temps Program

Figures 2.9 through 2.12 show the Many Temps program, which displays four different
messages to the user depending on the temperature range that the program selects
randomly.

FIGURE 2.9

This run of the Many
Temps program
generated the

bathing suit
message.

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r 2

T
h

e
 F

o
r tu

n
e
 T

e
l le

r: R
a
n

d
o

m
 N

u
m

b
e
rs

 a
n

d
 th

e
 if S

ta
te

m
e
n

t

35

As you can see, this version of the program is capable of presenting a different mes-
sage for four different temperature ranges. Look at the code to see how the program
accomplishes this:

<html>

<head>

<title>manyTemps</title>

<script>

// manyTemps

// Andy Harris

FIGURE 2.10

This time the Many
Temps program

generated the short
sleeves message.

FIGURE 2.11

Here the
temperature is cool,

so the program
recommends a

sweater.

FIGURE 2.12

Now the
temperature is cold,

so the program
suggests a jacket.

36
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

// Demonstrates the if/else structure

var temp = 0;

temp = Math.floor(Math.random() * 100) + 1;

alert ("It's " + temp + " degrees outside. ");

if (temp < 70){

 if (temp < 30){

 alert("Wear a jacket!!");

 } else {

 alert("Wear a sweater!!");

 } //end 30 if

} else {

 if (temp > 85){

 alert("Wear a bathing suit!!");

 } else {

 alert("Wear short sleeves");

} // end 85 if

} // end 70 if

</script>

</head>

<body>

<center><center>

<h1>manyTemps
</h1>

</center>

<hr>

<h3>Hit Reload to see another temperature</h3>

</body>

</html>

The code begins like most of the earlier programs. An if statement checks for a warm
temperature (that for this case is defined as 70 degrees). However, this program in-
cludes two other if statements, which enable it to identify four distinct temperatures
ranges and provide a different message for each range.

Nesting Layers of if Statements

The first if statement checks whether the temperature is less than 70 degrees:

if (temp < 70){

Any code between this line and the corresponding right brace (}) will occur only when
temp is less than 70. Notice what follows this line:

 if (temp < 30){

C
h

a
p

te
r 2

T
h

e
 F

o
r tu

n
e
 T

e
l le

r: R
a
n

d
o

m
 N

u
m

b
e
rs

 a
n

d
 th

e
 if S

ta
te

m
e
n

t

37This second if statement is nested inside the first one. It now checks for temperatures
above 30 degrees. Any code placed between this line and its right brace will execute
only when the temperature is less than 30 degrees. (Of course, because of the first if
statement, the program has already determined that the temperature is less than 70
degrees.) The code that executes under these conditions is as follows:

 alert("Wear a jacket!!");

The jacket message appears only when the temperature is below 30 degrees. The next
line is an else statement:

 } else {

 alert("Wear a sweater!!");

The program displays the sweater message only when the temperature is over 30 de-
grees, because the command to display the message is in the else clause of the if
(temp < 30) statement.

To recap, then, the program prints this message only when the temperature is less
than 70 degrees (because it’s inside the first if statement) and greater than 30 degrees
(because it’s inside the else clause of the second if statement). For example, if the
computer generated a temperature of 47 degrees, the program would evaluate the
(temp < 70) condition as true. Then the computer would check the condition (temp <
30). This would be false, so the program would defer to the else clause of the (temp <
30) statement and print the message “Wear a sweater!!”

The following line simply ends the inner if structure:

 } //end 30 if

You can see how useful indentation and commenting are in such nested statements.
Without them, each right brace looks pretty much like another. It’s very hard to tell
what structure you are ending unless you use indentation and comments.

The next else clause relates to the very first if statement:

} else {

The fact that this clause is indented directly under the first if statement indicates the
clause belongs within the statement. Any code after this else line and the correspond-
ing right brace will execute only when the (temp < 70) condition is false.

This particular else clause contains its own if statement, to check where the tempera-
ture falls within the 70 to 100 degree range:

 if (temp > 85){

 alert("Wear a bathing suit!!");

 } else {

 alert("Wear short sleeves!!");

 } // end 85 if

Finally, the program closes the outermost if statement with this line:

} // end 70 if

It is lined up vertically with the if (temp < 70) statement and the corresponding } else {
line to help clarify which structure it is ending. I also commented the line to clarify
even further what is going on.

38
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

If you’re still confused about how these nested statements work, run the program
while you’re looking at the code. When the computer first outputs the number, see
whether you can figure out which line of code will execute next. This technique is
very useful, because it helps you find difficult bugs in your programs.

Using the switch Structure

JavaScript supplies one more structure that can be very useful when you have one
variable that might have a lot of different values. To illustrate, I wrote a program that
adds a very crude graphical interface to the Die Roller program from earlier in this
chapter:

Creating the Fuzzy Dice Program

Figure 2.13 shows a fancier die-rolling program. Appropriately enough, I call it the
Fuzzy Dice program. You’ll get to make even better graphics later, but this program
demonstrates how you can at least generate crude images.

As you can see, the program generates a random number, then draws a text-based
image of the die on the alert box.

Here’s the code that does the work. Although it looks kind of long, it’s really very
repetitive, so don’t let the length of the listing intimidate you.

TRICK

FIGURE 2.13

Several rolls of the
Fuzzy Dice program.

C
h

a
p

te
r 2

T
h

e
 F

o
r tu

n
e
 T

e
l le

r: R
a
n

d
o

m
 N

u
m

b
e
rs

 a
n

d
 th

e
 if S

ta
te

m
e
n

t

39<html>

<head>

<title>fuzzyDice</title>

<script>

// fuzzyDice

// Andy Harris

// Demonstrates switch statement

var roll = 0;

var die = "";

roll = Math.floor(Math.random() * 6) + 1;

switch (roll){

 case 1:

 die = "|--------|\n";

 die +="| |\n";

 die +="| * |\n";

 die +="| |\n";

 die +="|--------|\n";

 break;

 case 2:

 die = "|--------|\n";

 die +="| * |\n";

 die +="| |\n";

 die +="| * |\n";

 die +="|--------|\n";

 break;

 case 3:

 die = "|--------|\n";

 die +="| * |\n";

 die +="| * |\n";

 die +="| * |\n";

 die +="|--------|\n";

 break;

 case 4:

 die = "|--------|\n";

 die +="| * * |\n";

 die +="| |\n";

 die +="| * * |\n";

 die +="|--------|\n";

 break;

 case 5:

 die = "|--------|\n";

 die +="| * * |\n";

 die +="| * |\n";

 die +="| * * |\n";

40
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 die +="|--------|\n";

 break;

 case 6:

 die = "|--------|\n";

 die +="| * * |\n";

 die +="| * * |\n";

 die +="| * * |\n";

 die +="|--------|\n";

 break;

 default:

 die = "ERROR!"

} // end switch

alert(die);

</script>

</head>

<body>

<center><center>

<h1>fuzzyDice
</h1>

</center>

<hr>

<h3>reload to see another die</h3>

</body>

</html>

The code begins in a now-familiar way:

var roll = 0;

var die = "";

roll = Math.floor(Math.random() * 6) + 1;

These first few lines set up a variable for the numeric die roll, and roll the die using
the technique that you learned earlier in this chapter. (Generating a zero-to-one num-
ber, multiplying it by six, and adding one). The die variable contains characters that
together create a crude image representing the side of the die that the program rolled.

Using the switch Statement

The new stuff begins with the switch statement:

switch (roll){

This statement accepts the name of a variable. It tells the computer to start thinking
about the value of roll. It ends with a right brace, signifying the beginning of a logical
structure. As usual, the code between the braces is indented. The rest of the structure
will look at various possible values for the variable:

 case 1:

C
h

a
p

te
r 2

T
h

e
 F

o
r tu

n
e
 T

e
l le

r: R
a
n

d
o

m
 N

u
m

b
e
rs

 a
n

d
 th

e
 if S

ta
te

m
e
n

t

41This line checks whether roll’s value is equal to ()1. The code between this line and the
next case statement will execute if roll is equal to 1.

The actual code is simply a bunch of assignment statements that add to the die string
variable:

 die = "|--------|\n";

This line assigns a value for the top of the die. The \n part is a special placeholder
called newline. This placeholder represents pressing the carriage return. I include this
newline so that the die image takes up more than one line on the alert dialog box.

The other lines are all pretty similar:

 die +="| |\n";

 die +="| * |\n";

 die +="| |\n";

 die +="|--------|\n";

The only significant difference between these lines and the first line in the case state-
ment is the += operator. This operator is simply a shortcut for concatenation.

die +="| |\n";

is exactly the same as

die = die + "| |\n";

Using the break Statement

At the end of each case statement, you will see a line such as the following:

 break;

The break statement tells the computer to move on to the end of the switch structure.

Don’t forget to put a break statement at the end of each case block. If you don’t put
a break statement there, the computer will also evaluate the next case block. This
is a very common mistake, especially for people who have programmed using lan-
guages based on BASIC, which does not require anything like the break command.

Using the default Clause

You can add a default clause to a switch structure. The computer executes a default
clause only when none of the other conditions are true. I added a default clause to
this switch structure, although the computer should never execute the clause. If I
designed my algorithm correctly, the value will never be anything other than an inte-
ger between 1 and 6. Still, I often include a default clause even when I do not expect
the program to need it. Then, the program will be ready for the unexpected.

You’ve learned a lot of new syntax in this chapter. Here’s a table of what has been
covered so far.

TRAP

42
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Returning to the Fortune Teller Program

Finally you are ready to examine the Fortune Teller program from the beginning of
this chapter. It turns out to be incredibly simple after everything you’ve learned. In
fact, it’s just like the Die Roller program, except I’ve used messages instead of images.
Here’s the code:

<html>

<head>

TABLE 2.3 DISPLAYING DYNAMIC CONTENT

Statement Description Example

Math.random() Generates a random MyVar=Math.random();

number between 0
and 1.

Math.floor(varName) Lops off trailing decimal newVar = Math.floor(oldVar);

values, converting a real if (condition){ expression

number to its next lowest
integer.

} Branches program logic if (score > 50) {

based on the value of alert("Winner!");

a condition.

} else { Denotes code within an } else { alert ("Loser");

if structure to execute } //end if

when the condition
is false.

switch(varName){ Sets up one variable to switch (year){

check against multiple
values.

case value: Denotes a value for case 1964:

a variable within alert("Correct");

a switch structure.

break; Moves execution directly break;

to the end of the current
structure. The break
statement is used most
frequently with switch
statements.

default: Catches any case default:

clauses not caught by alert("Incorrect");

case statements within
a switch structure.

C
h

a
p

te
r 2

T
h

e
 F

o
r tu

n
e
 T

e
l le

r: R
a
n

d
o

m
 N

u
m

b
e
rs

 a
n

d
 th

e
 if S

ta
te

m
e
n

t

43<title>fortune</title>

<script>

// fortune

// Andy Harris

// The Fortune-teller

var roll = 0;

var fortune = "";

roll = Math.floor(Math.random() * 5) + 1;

switch(roll){

 case 1:

 fortune = "It looks really bad.";

 break;

 case 2:

 fortune = "It's kinda gloomy.";

 break;

 case 3:

 fortune = "Whatever.";

 break;

 case 4:

 fortune = "Things are pretty good.";

 break;

 case 5:

 fortune = "You're in for a perfect day!";

 break;

 default:

 fortune = "ERROR";

} // end switch

alert(fortune);

</script>

</head>

<body>

<center><center>

<h1>fortune
</h1>

</center>

<hr>

<h3>reload for another fortune</h3>

</body>

</html>

44
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Summary

In this chapter, you learned how to generate random numbers and refine them so that
they fit within a specific range. You also learned how to make the computer’s logic branch.
The chapter showed you examples of conditions and explained how programmers use
them in if statements. You looked at more advanced variants of the if statement, in-
cluding the else clause, nested if statements, and the switch structure. In the next
chapter, you’ll learn how to use conditions to make the computer repeat certain actions.

E X E R C I S E S

1. Modify the Fortune Teller program so that it contains your own set of fortunes.

2. Write a program that greets the user and asks his or her name. If the user enters your

name, compliment him or her on being such a fine programmer.

3. Write a simple quiz program that asks the user five questions. Keep track of how often the

user answers correctly, and give the user a score at the end of the quiz.

4. Write a program that randomly pops up a saying as your Web page begins.

5. Write a die program with a “loaded” die. Have the die roll a one half the time and a

random number the rest of the time.

6. Certain types of games use multisided dice. Write a program that asks the user how many

sides he or she wants, then rolls a die with that many sides and returns the result.TE
AM
FL
Y

Team-Fly®

3

Y
ou are starting to learn all the important

tasks involved in programming. So far,

you have learned how to store informa-

tion in variables, send messages to the user, retrieve

information from the user, and make your program

branch. Now you’ll add another critical element,

which is the ability to make your program repeat itself.

Specifically, you will learn how to do the following:

• Use for loops to repeat a given number of times

• Modify for loops to skip values

• Make for loops go backward

• Use code tracing to verify your understanding

of the code’s behavior

• Create while loops

• Prevent endless loops

• Plan complex programs with pseudocode

The Number
Guesser: for and

while Loops

C H A P T E R

46
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Project: The Number Guesser

As usual, you’ll start by looking at an example. By the end of this chapter, you will be
able to write this program. It’s a classic guessing game. The computer will think of a
number between 1 and 100 (see Figure 3.1). The user will try to guess the computer’s
number (see Figure 3.2). After each guess, the computer tells the user whether the
user’s guess is high, low, or correct (see Figures 3.3 and 3.4). The computer keeps track
of the number of turns it takes the user to guess the number.

As you can see, this program repeatedly asks the user for a number until the user
guesses correctly. Clearly this program relies on the branching behavior that you learned
about in the last chapter. After all, the user gets a different message if he or she guessed
high or low. In addition to branching, the program also repeats. It repeats the same set
of instructions over and over until the user gets the answer right. This repeating be-
havior is called looping.

Counting Forward

Most programming languages offer a couple of types of loops. The first kind you’ll exam-
ine is useful for those times when you want something to happen a certain number of
times. It’s called a for loop, and the following program, the Racer, shows it in action.

FIGURE 3.1

Here’s the opening
screen of the

Number Guesser.

FIGURE 3.2

This screen enables
the user to input

a number.

FIGURE 3.3

The user’s guess
was too high.

FIGURE 3.4

The user finally
guessed correctly.

C
h

a
p

te
r 3

T
h

e
 N

u
m

b
e
r G

u
e
s
s
e
r: fo

r a
n

d
 w

h
i le

 L
o

o
p

s

47Creating the Racer Program

The Racer program is a silly simulation of a 10-lap race. All it does is present an alert
box that tells the user which lap the driver is on. Figure 3.5 shows the program.

Although you could write this program as a series of alert statements, the program
actually has only one alert statement. I got the program to repeat by putting that
alert statement inside a for loop. Here’s how the code looks:

<html>

<head>

<title>Racer</title>

<script>

// Racer

// Andy Harris

// Demonstrates the basic for loop

var lap = 0;

for (lap = 1; lap <= 10; lap++){

 alert("Now on lap: " + lap);

} // end for loop

</script>

</head>

<body>

<center><center>

<h1>Racer
</h1>

</center>

<hr>

</body>

</html>

The program has one variable, called lap, and one alert statement. I nested the state-
ment inside a set of braces. The for statement causes the alert statement to execute
10 times. The advantage of using a loop rather than a number of alert statements is
flexibility. If I want the race to be five or 100 laps, all I have to do is change one state-
ment in the code.

FIGURE 3.5

A few of the dialog
boxes that pop up

as the Racer
program runs.

48
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Using the for Statement

The for statement sets up a loop. It is especially useful when you know exactly how
many times you want something to repeat. Take another look at this line from the
Racer program:

for (lap = 1; lap <= 10; lap++){

for loops have three parts inside the parentheses. The first segment initializes a vari-
able. The second part is a condition used to determine when the loop ends. The third
part tells the computer how to change the variable each time through the loop.

The initialization segment, lap = 1;, specifies the name of a variable that will be used
in the loop and the variable’s starting value. To make a for loop, you must have a
numeric variable. In this case, I used the variable lap, which will specify which lap the
program is currently on. The semicolon separates this part of the for loop from the
next part.

You specify the condition of the for loop code as follows:

lap <= 10;

The code inside the loop will keep on running as long as this condition is true. In this
example, the lap variable begins with a value of one, and the code continues execut-
ing as long as the value of lap is less than or equal to 10.

The last part of the for line looks like this:

lap++

The ++ operator is shorthand for “add 1.” So, you could also write lap++ as lap = lap +
1. The function of this part of the for loop is to change the value of the variable so the
condition will eventually become false. Basically, this is what the line means: “Use the
variable lap. Start it out at 1, and keep going as long as it is less than or equal to 10.
Each time the loop is completed, add 1 more to the value of lap.”

Tracing Code

To help explain what’s going on in this loop, I’ll employ a programmer’s trick called
code tracing. This is a good technique to use when you’re trying to figure out how a
piece of code works or why it isn’t doing what you want it to do. To trace code, make a
table. (You can draw the table on paper, as it doesn’t need to be anything formal.) Write
the names of all your variables and conditions along the top of the table, like this:

lap lap <= 10
____ _________________
____ _________________
____ _________________

Now study the code line by line. Each time the value of a variable changes, write the
new value in the table. If the program uses that variable in a condition, write down
whether that condition is true or false. The first line of code is as follows:

var lap = 0;

C
h

a
p

te
r 3

T
h

e
 N

u
m

b
e
r G

u
e
s
s
e
r: fo

r a
n

d
 w

h
i le

 L
o

o
p

s

49After the computer evaluates this line, your table will look like this:

lap lap <= 10
0 true

____ _________________
____ _________________

The value of lap is now 0, and 0 is less than 10, so lap <= 10 is true. Now go on to the
next line, and continue with the process:

for (lap = 1; lap <= 10; lap++){

After this line executes the first time, here’s what your chart will look like:

lap lap <= 10
0 true
1 true

____ _________________

The first time through the loop, the program initializes the value of lap to one. The
condition evaluates to true, so the program executes the code inside the braces. The
alert statement tells the user the lap value. When the computer encounters the right
brace signifying the end of the loop, control automatically reverts to the for loop line.

This time through, the computer increases the value of lap by 1, so by the end of the
second time through the for line, here’s how your chart will look:

lap lap <= 10
0 true
1 true
2 true

The value of lap is now 2, and the condition is still true, so the loop will continue to
execute. Things get interesting when lap is equal to 10. Look at how the code trace
looks up to this point:

lap lap <= 10
0 true
1 true
2 true
3 true
4 true
5 true
6 true
7 true
8 true
9 true

10 true

50
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

The next time through the for statement, the value of lap becomes 11. This is interest-
ing, because the value of the condition will finally change:

lap lap <= 10
0 true
1 true
2 true
3 true
4 true
5 true
6 true
7 true
8 true
9 true

10 true
11 false

Now the condition lap <= 10 evaluates to false, so the loop no longer executes, and
program control reverts to the next line of code after the right brace (}). As promised,
the code executes exactly 10 times, outputting values between 1 and 10.

Skipping Values

The form of the for loop in the Racer program demonstrates the most common way to
use the for loop structure. You can use the for loop in other ways, however. The Count
by Five program shows one of these ways.

Creating the Count By Five Program

Figure 3.6 shows the Count by Five program, which is a simple application that in-
cludes a loop that counts by five with each pass.

This program uses a variation of exactly the same type of loop as in the Racer program.
Take a look at its code to see what is different:

<html>

<head>

<title>Count By Five</title>

<script>

// CountByFive

FIGURE 3.6

The Count by Five
program counts by
five with each pass

through the loop.

C
h

a
p

te
r 3

T
h

e
 N

u
m

b
e
r G

u
e
s
s
e
r: fo

r a
n

d
 w

h
i le

 L
o

o
p

s

51// Andy Harris

// demonstrates how to vary the for loop

var i = 0;

for (i=5; i <= 100; i += 5){

 alert (i);

} // end for loop

</script>

</head>

<body>

<center><center>

<h1>Count By Five
</h1>

</center>

<hr>

</body>

</html>

This program is very much like the Racer program. The only significant difference is in
the for loop line. That line looks like this:

for (i=5; i <= 100; i += 5){

As you can see, the variable is now named i. I chose this name because in this case I’m
not necessarily thinking of laps. When programmers need a counter for a for struc-
ture and that counter does not have any particular meaning except as a counter, it’s
traditional to name it i.

It might seem strange that an endeavor as young as computer programming would
have tradition and folklore, but this particular tidbit (using i as a for loop counter)
is an example of the richness of computing lore. The reason that programmers use i
in this way dates all the way back to FORTRAN, one of the earliest programming
languages. In early versions of FORTRAN, integer variables had to start with i, j, k,
and a few other letters. Oddly enough, even though FORTRAN has not been a main-
stream programming language for several decades, the practice of using i as a
generic name for a counter is still very common.

You might want to determine for yourself what you think the line for (i=5; i <=
100; i += 5){ means. i starts at 5 and goes to 100. Each time through the loop, the
program increases i by five.

Using the += Operator

You have already seen the += operator in action in the context of string concatenation.
You can also use this operator with numeric variables. In this context, it means to add
five to i. You could also write the code fragment i += 5 as i = i + 5. Most programmers

HINT

52
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

prefer the += operator, because it’s faster to type. As you have no doubt deduced, this
program works exactly like the Racer program except that the Count by Five program
counts from 5 to 100 by five.

Counting Backward

You can also design for loops so that they run from larger values to smaller ones.
Essentially, all you need to do is to modify the for loop line.

Creating the Back Racer Program

Figure 3.7 shows another version of the Racer program, but this one goes backward. It
starts at lap 10 and counts down to lap 1.

Making a for Loop Count Backward

The code is very similar to earlier programs in this chapter. Here’s the entire program:

<html>

<head>

<title>Back Racer</title>

<script>

// Back Racer

// Andy Harris

// demonstrates counting backward through a for loop

var i = 0;

for (i = 10; i > 0; i--){

 alert(i);

} // end for loop

</script>

</head>

<body>

<center><center>

<h1>Back Racer
</h1>

</center>

<hr>

</body>

</html>

FIGURE 3.7

This time the loop
goes from 10 to 1.

C
h

a
p

te
r 3

T
h

e
 N

u
m

b
e
r G

u
e
s
s
e
r: fo

r a
n

d
 w

h
i le

 L
o

o
p

s

53As you might expect, the only differences occur in the for line. This time I initialized the
variable to a large value, which the program decreases each time through the loop.

The initialization part of the loop starts the value of i at 10. The condition now checks
whether i is greater than 0, and the program decreases the variable by 1 each time
through the loop.

Some programmers misuse the for loop. The way that you build for loops in
JavaScript (and the other languages derived from C) allows you to use the struc-
ture in all kinds of other ways. However, doing so is a dangerous practice. Use the
for loop when you know how many times you want a loop to execute, when you
want to have a variable take on every fifth value, or in similar circumstances. If
you need any other kind of looping behavior, use the while loop, which the next
section describes.

Using the while Loop

The for loop is an easy structure to build, and it is terrific at certain kinds of repeti-
tion. However, sometimes the for loop does not provide enough flexibility. Take a look
at the following program, the Joke Teller, and see whether you can figure out why a
for loop would not be a useful structure for controlling the program.

Creating the Joke Teller Program

Figures 3.8 and 3.9 show the Joke Teller program, which asks the user a very old riddle,
then asks the user for an answer.

This program needs to keep repeating, but the number of repetitions depends entirely
on the user’s actions. The part of the program that poses the riddle is inside the loop.
That code might execute only once, or it may execute many times. In fact, if the user
never enters the correct answer, the loop will continue forever.

FIGURE 3.8

The Joke Teller
program asks the
user a riddle, then

prints a response if
the user guesses

incorrectly.

TRAP

54
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Looping an Indeterminate Number of Times

Look at the code behind the Joke Teller program. It uses a loop, but not a for loop.

<html>

<head>

<title>Joke Teller</title>

<script>

// Joke Teller

// Andy Harris

// Demonstrates the while loop

var correct = "to get to the other side";

var guess = "";

while (guess != correct){

 guess = prompt ("Why did the chicken cross the road?", "");

 if (guess == correct){

 alert ("Pretty funny, huh?");

 } else {

 alert ("that's not it...");

FIGURE 3.10

When the user
enters the

correct answer,
the loop ends.

FIGURE 3.9

The program keeps
asking the user for
the correct answer

until he or she
gets it right.

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r 3

T
h

e
 N

u
m

b
e
r G

u
e
s
s
e
r: fo

r a
n

d
 w

h
i le

 L
o

o
p

s

55 } // end if

} // end while

</script>

</head>

<body>

<center><center>

<h1>Joke Teller
</h1>

</center>

<hr>

</body>

</html>

The program starts with two variables. One is intended to hold the correct answer.
That variable is called correct. The other variable is called guess.

These choices for variable names are very deliberate. By looking at the variable
names, it is clear which one contains the intended correct answer, and which one
contains the user’s guess. Novice programmers might be tempted to call one of the
variables answer. The problem with that name is that it does not make it clear
whether the variable contains the correct answer or the user’s answer. It’s surpris-
ing how easily you can get confused about what your variables are supposed to
contain. Try hard to come up with names that are unambiguous whenever possible.

Using the while Statement

A while structure contains the main body of this program. That structure begins with
this line:

while (guess != correct){

The structure ends with a corresponding right brace:

} // end while

IN THE REAL WORLD

Even if the user knows the correct answer to this riddle, it is very possible that he or she would

type it incorrectly and not get credit for knowing the answer. If this were a serious program

(one that was meant to do more than demonstrate the while loop), I would have added code

to check the capitalization, perhaps look at alternate punctuation, and check for multiple spaces.

Better yet, I might have designed the program so that the user didn’t have to type in the

answer at all but could choose it from some sort of menu. Still, the program is really designed

to show how while loops work. In later chapters, you’ll learn some techniques for getting

input from the user that do not require as much error checking.

TRICK

56
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

The code between these lines is the part meant to be repeated. The syntax of the while
statement is much simpler than that of the for loop. It simply consists of a condition.
In this particular case, the loop should continue to execute as long as guess is not
equal to correct. while loops always have a condition, and the code in the loop contin-
ues to execute as long as the condition evaluates to true. As soon as the condition
evaluates to false, the next line of code after the end of the loop executes.

Recognizing Loops That Never Execute

while loops are very simple to build, but they can be dangerous. The design of the for
loop makes it reasonably safe, because the user is required to put certain elements in
it. The structure of the while loop is less rigid, which means some bad things could
happen. See whether you can guess what would happen if a program contained this
code:

var i = 10;

while (i < 10){

 alert(i);

 i++;

} // end while

The variable i is initialized to 10. The condition then checks whether i is less than 10.
The condition is false, so the computer never executes the code inside the loop. This
program will end as soon as it is run, and you’ll never see any results. When designing
a loop, you have to be careful that your condition can execute at least one time.

Recognizing Endless Loops

Here’s another problem that’s harder to spot:

var i = 0;

while (i < 10){

 alert (i);

} // end while

This time the code initializes the variable properly, and the condition in the while
loop is fine, but there’s a worse problem. There’s no code to increment the variable, so
its value will always be 0. Here’s a partial code trace of the program:

i i < 10
0 true
0 true
0 true

The value of i will never become larger than 0, so the condition will remain true for-
ever. The code will never stop spinning through the loop. This is an example of an
endless (or infinite) loop. It’s reasonably easy to make such a loop accidentally when
you’re learning to program (or even when you’re a professional!). The only way to stop
an endless loop is to shut down the program. Press Ctrl, Alt, Delete to go to the task
manager in Windows 95/98/00/NT and shut down your browser. Go back and edit your
program before you try it again.

C
h

a
p

te
r 3

T
h

e
 N

u
m

b
e
r G

u
e
s
s
e
r: fo

r a
n

d
 w

h
i le

 L
o

o
p

s

57Making Well-Behaved Loops

Experienced programmers have learned a few tricks that prevent many of the looping
problems noted in this chapter:

• Design your condition carefully. Think carefully about the variables that you will
use in your condition, and make sure that they are spelled correctly, with correct
capitalization. Make sure that your condition tests what you think it tests.

• Be sure to initialize variables. Any variables used in your condition should be ini-
tialized outside the loop, so you can predict what will happen the first time
through the loop. If you have a loop that seems as though it never executes at all,
check whether the variables have the values that you think they should before the
loop starts. (In fact, you may want to include temporarily an alert statement in-
forming you what the values of the appropriate variables are.)

• Ensure that the condition can be triggered. The loop must contain some code that
changes the value of a variable in the condition so that the condition can become
false and the code can exit. This problem is usually the cause of an endless loop.

Returning to the Number Guesser

The number-guessing game that made its debut at the beginning of this chapter is a
nice program, because it ties together many concepts used in the first few chapters
and incorporates a looping structure. Rather than simply showing you the code, this
section will show you how I planned the program. The planning phase is often the
most difficult part of programming.

Planning the Program

The first thing I did was think through what the program should do. Then I wrote
down a sample transcript of the “conversation” between the user and the computer.
That transcript looked a little like this:

Computer User
I’m thinking of a number. 50
Too high. 25
Too low. 30
That’s it! It took three tries. X

Although this is clearly a simplistic form of the program, it illustrates the basic
elements that I need to think about as I build the program. The user needs to be
able to input some values, and the computer must evaluate the input. Specifically,
the computer must compare the input to some randomly generated number. The
code should be capable of executing an unspecified number of times (until the
user gets the right answer), and the computer must keep track of how many times
the user went through the loop.

It’s a great idea to write down this summary of your program. It will be much easier
to put together all the parts of your program if you know what they are.

TRICK

58
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Writing Pseudocode

The process described in the preceding section might not give you enough informa-
tion to get started programming. Many programmers like to write a form of their plan
in a language called pseudocode. Pseudocode expresses the main ideas of the program,
but is easier to work with because it does not require you to follow all the strict laws of
programming language syntax. Here’s my pseudocode representation of the Number
Guesser program:

make variables

 guess = user's guess

 target = random number generated by computer

 turns = how many turns it takes user to guess

get a random number between 1 and 100

explain game to user

ask user for a guess

as long as user has not guessed right answer,

 increment turn counter

 if user's guess is too high,

 say so

 get another guess

 if user's guess is too low,

 say so

 get another guess

 if user's guess is correct,

 tell user he or she won

 tell how many turns it took

You write your pseudocode in English, with each line conveying a specific thought. If
you can look at each line of pseudocode and figure out how to translate that line into
JavaScript, your pseudocode is detailed enough. If the pseudocode appears to solve the
problem at hand, it’s probably complete enough.

The number one problem of beginning programmers is the tendency to write code
too early. If you ever find yourself staring at the computer wondering what you should
type next, turn the monitor off and get out some paper. When you have solid
pseudocode, you’ll write better programs.

It is not a major step to go from the pseudocode to a working program. Here’s my
version:

<html>

<head>

<title>NumberGuesser</title>

<script>

// NumberGuesser

TRAP

C
h

a
p

te
r 3

T
h

e
 N

u
m

b
e
r G

u
e
s
s
e
r: fo

r a
n

d
 w

h
i le

 L
o

o
p

s

59// Andy Harris

// The classic number guessing game

var guess = 50;

var target = 0;

var turns = 0;

var msg = "";

target = Math.floor(Math.random() * 100) + 1;

//alert(target);

msg = "I'm thinking of a number between 1 and 100. \n";

msg += "Guess my number, and I'll tell you if it's too high, \n";

msg += "too low, or correct. Try to guess in the fewest turns.";

alert (msg);

guess = eval(prompt("What is your guess?", guess));

while (guess != target){

 turns++;

 if (guess > target){

 guess = eval(prompt (turns + ". Too high!! Next guess?", guess));

 } // end if

 if (guess < target){

 guess = prompt (turns + ". Too low!! Next guess?", guess);

 } // end if

 if (guess == target){

 msg = "YOU WIN!!! \n";

 msg += "It took you ";

 msg += turns + " turns! ";

 alert (msg);

 } // end if

} // end while

</script>

</head>

Generating the Target

Once I knew that I needed to generate a number between 1 and 100, I remembered the
algorithm from Chapter 1, “Variables, Input, and Output.” Writing the code turned
out to be pretty easy once I knew what I wanted to do.

60
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Notice this line in the code:

//alert (target);

It is a very useful debugging tool. When I first wrote the target generation code, I
wanted to be sure that it was generating the kinds of values I was looking for. The
alert statement shows the value of target, so it helped to reassure me that the
target code was working. Also, when the entire program was working, it was
nice to know the value of target right away, so I could test the program more
quickly without having to guess the variable’s value every time through the loop.
Because this line is so useful, I decided not to destroy it completely after testing my
program. Instead, I simply put the comment characters (//) in front of the line. This
way, if I need the line again, it will be easy to bring back. Whenever you are unsure
about the status of a variable, use an alert statement like this to make sure that it
has the value that you think it does. Of course, don’t forget to comment out the line
before posting the code to your Web site.

Setting Up the Loop

The pseudocode says, “as long as user has not guessed right answer.” The trick of turn-
ing this into actual working code is to figure out how to translate that line of English
into a condition with which the computer can work. My solution was this:

while (guess != target){

The condition uses two variables, so I was careful to ensure that both were initialized
before the loop began. The computer generated a value for target, so it is initialized. I
ensured that guess had a legal initial value by asking for a guess before the loop began.

Getting User Input

The user input is pretty straightforward. Notice that I immediately evaluated the re-
sponse from the user (with the eval statement) so I wouldn’t have to worry about
nonnumeric values. Notice also that the user input occurs multiple times. I first ask
for a value from the user outside the loop (to initialize guess), and then I ask for a
value inside the loop. The prompt informs the user whether the current guess is high
or low and asks for another guess. This is necessary, because the value of guess must
change before the loop can end. The prompt also includes the current value of guess
as the default value, so the user can see what his or her last guess was. This also pro-
vides a subtle clue to the user that numeric input is expected.

Evaluating the Input

When the user inputs a guess, the program evaluates that guess to turn it into a nu-
meric value. Then I use a series of if statements to compare guess to correct. If the
value is too high or too low, the next prompt informs the user of this situation and
asks for another input. If the value is correct, an appropriate message goes to the user,
including the number of turns it took to get the correct answer. Note that I use a

TRICK

C
h

a
p

te
r 3

T
h

e
 N

u
m

b
e
r G

u
e
s
s
e
r: fo

r a
n

d
 w

h
i le

 L
o

o
p

s

61special variable (msg) whenever my output strings involve complicated concatenations.
I find that using a variable in such situations decreases the likelihood of syntax errors.
As an example of this phenomenon, look carefully at the following line of code:

var msg = num1 + " + " + num2 + " = " eval(num1 + num2)

It might not be obvious what the line does, and it will be very easy to make a mistake
with the quote signs and plus signs. Compare that line to the following series of state-
ments:

var msg;

msg = num1;

msg += " + ";

msg += num2;

msg += " = ";

msg += eval(num1 + num2);

The second code fragment is longer, but it much more clearly describes what is going
on (the program is concatenating a variable which shows the addition of two other
variables). If you get a syntax error in the first version, you won’t have much more
information to go on. If you have a syntax error in the second version of the code,
you’ll know exactly which part of that complex structure is giving you trouble.

Table 3.1 provides a summary of the new syntax covered in this chapter.

TABLE 3.1 SYNTAX SUMMARY

Statement Description Example

for (init; condition; Sets up a loop that executes for(i=1; i<10; i++){ }

increment){ repeated a set number of times. // end for

code } // end for

Init Sets the starting value of a i++

counting variable.

Condition Specifies a condition that i < 10

evaluates to true or false.
The loop continues executing
as long as condition is true.

Increment Changes the value of i++

the counter.

while (condition) Creates a loop that While (finished ==

{ code body } // continues as long as false){ }

end while condition is true.

62
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Summary

In this chapter, you extended the notion of conditions to add looping behavior to your
programs. You learned how to use the for loop to handle situations involving a speci-
fied number of repetitions. You also learned variations of the basic for loop, including
loops that increment by an arbitrary value and loops that count backward.

This chapter also introduced the powerful while loop. You learned how to write pro-
grams using the structure, and you learned how to avoid some of the common pitfalls
of its use. Finally, you looked at how to use pseudocode to help you write complex programs.

In the next chapter, you will learn how to access the objects inherent in the JavaScript
model and learn new ways to get information to and from the user.

E X E R C I S E S

1. Write a program that asks the user for the answer to 2 + 3 (or some other math problem).

Your program should keep asking the question until the user enters the correct answer.

2. Change the preceding program so that it generates the numbers to add randomly.

3. Modify this program so it gives a total of five random math problems, but repeats each

one until the user gets the right answer. Only move on to the next question when the user

gets a question correct. (You’ll need a for loop and a while loop for this one.)

4. Improve the Number Guesser so that it asks the user whether he or she wants to play

again. Repeat the entire game until the user indicates that he or she is done.

5. Write a version of the Number Guesser with the roles reversed. This time, the user comes

up with the random value, and the computer guesses what the number is. Have the user

respond with “h” (for high), “l” (for low), or “c” (for correct). You’ll need to write

pseudocode for this program. The logic is totally different than for this chapter’s Number

Guesser program.

4

T
he programming principles discussed in

the last few chapters have not changed

much since the advent of the early pro-

gramming languages. JavaScript also supports

some modern ideas that have revolutionized com-

puter applications and computer programming.

Next, you will begin to explore the world of object-

based programming. Here are some of the things

you will learn in this chapter:

• The basic characteristics of objects

• How properties, methods, and events work

• How to use some properties of the document object

• How to use some methods of the document object

• How to use events

• How to write functions to encapsulate your code

• How to handle input and output the modern way

The Basic Mad Lib
Program and
Object-Based
Programming

C H A P T E R

64
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

The Project: Mad Lib

The main project for this chapter will be a lot of fun. When the Mad Lib program
starts, the Web page contains a form with a number of screen elements (see Figure 4.1).

The Web page consists of an HTML form with a series of text boxes, a command button,
and a large text area. This program does not use dialog boxes at all. Instead, the pro-
gram integrates all of the input and output directly into the Web page itself (see Fig-
ures 4.2 and 4.3).

FIGURE 4.1

In the Mad Lib
program, the HTML
page itself plays a

critical role.

FIGURE 4.2

The user has typed
some values into

a form.

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r 4

T
h

e
 B

a
s
i c

 M
a
d

 L
i b

 P
r o

g
ra

m
 a

n
d

 O
b

j e
c
t-B

a
s
e
d

 P
r o

g
ra

m
m

in
g

65

The results of this program can be very funny. Of course, the program is even more fun
when you make up your own story and have the user enter more words.

From a programming standpoint, this game brings a lot of new elements to the table.
Before now, your programs have had very little relationship to any other HTML you
may have had on your pages. This game tightly integrates HTML and JavaScript.

Objects and HTML

To get your JavaScript programs to interact with the pages in which you place them,
you need to understand how JavaScript sees Web pages. This concept might seem a
little strange at first, but it is a very important idea, and you’ll have a lot of power
when you understand it.

The Color Flasher Program

Figures 4.4 and 4.5 show the Color Flasher program, which demonstrates how a
JavaScript program can interact with the Web page in which it resides.

The program steps through a number of colors, dynamically changing the Web page’s
background color. This effect would not be possible with ordinary HTML. Here is the
code for this program:

<html>

<head>

<title>Color Flasher</title>

<script>

// Color Flasher

// Andy Harris

FIGURE 4.3

After the user
presses the Click for

Story button, the
text box displays a

silly story.

66
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

// Demonstrates use of the bgColor method

document.bgColor = "red";

alert("ready for another color?");

document.bgColor = "orange";

alert("ready for another color?");

document.bgColor = "yellow";

alert("ready for another color?");

document.bgColor = "green";

alert("ready for another color?");

document.bgColor = "blue";

alert("ready for another color?");

document.bgColor = "indigo";

alert("ready for another color?");

document.bgColor = "violet";

alert("ready for another color?");

document.bgColor = "black";

alert("ready for another color?");

document.bgColor = "white";

</script>

</head>

<body>

<center><center>

<h1>Color Flasher
</h1>

</center>

<hr>

</body>

</html>

The Color Flasher code is very repetitive. The only new concept is demonstrated in a
bunch of lines that look like this:

document.bgColor = "violet";

As you can tell, the program copies the value violet to something called
document.bgColor, which is a special variable-like entity that is used to refer to the
background color of the document.

C
h

a
p

te
r 4

T
h

e
 B

a
s
i c

 M
a
d

 L
i b

 P
r o

g
ra

m
 a

n
d

 O
b

j e
c
t-B

a
s
e
d

 P
r o

g
ra

m
m

in
g

67

The Characteristics of Objects

JavaScript uses object-based programming, a scheme whereby certain elements (such
as the parts of a Web page, for example) are defined as objects. In the real world, you
use objects all the time. Any kind of object—whether it is a Web page, a stapler, or an
elephant—has certain defining elements. Programmers call these features of an object
properties, methods, and events. To explain these concepts, I’ll start by talking about
the kinds of objects you know in the real world (cows and staplers, to be specific). Then
I’ll explain how JavaScript uses objects to manage the Web page.

FIGURE 4.4

Although this black
and white

screenshot doesn’t
indicate the color,

the program is
displaying the Web

page with a red
background.

FIGURE 4.5

After the user clicks
the OK button,

the background
changes to

another color.

68
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Properties

A property of an object is some particular characteristic of an object. A cow object
might have properties such as name, breed, age, weight, and owner. A stapler object
could have properties such as color , manufacturer, numberOfStaples , and
stapleCapacity. Properties are like adjectives in human languages. They contain data,
like variables do. Some properties contain text, and some contain numbers or boolean
(true/false) values. Properties give the object the capacity to hold information.

Methods

If a property is an adjective, a method is like a verb. A method is something that the
object can do. You’ve already seen some examples of methods in this book. You might
recall the toUpperCase() method of the String object, or Math.random(), which is a
reference to the random() method of the Math object. The cow object’s methods might
include eat, moo, and giveMilk. A stapler object might have methods like fasten (to
staple pages together) and openFlat (to staple things to the wall). Methods give objects
the ability to do things.

Events

The closest counterparts to events in the English language are messages such as “Hous-
ton, we have a problem. An event is a message that the object can send to other objects.
It is also like a stimulus or prompt. An object’s events are automatically triggered when
something occurs. The cow object could have hungry, tipping, or givingBirth events,
for example. If somebody is tipping the cow over, the tipping event would occur. Pre-
sumably some other object (such as a sheriff or farmer object, perhaps) will respond
to the tipping event and chase away all the sophomore objects. The stapler might have
a jammed event, which would occur whenever the stapler gets all gummed up. It also
might have a pressed event that occurs whenever somebody tries to press down on the
stapler. Events enable an object to indicate its state to other objects.

If you’re confused about the distinction between methods and events, here’s another
way to think about it: Events are things the object can do, and methods are things that
happen to an object. If you’re still confused, read on. The rest of the chapter looks at
some examples in JavaScript, and the programming examples should help you make
plenty of sense of properties, methods, and events as they are used in JavaScript.

Reading the Properties of an Object

You actually used some properties already in the Color Flasher program. You repeat-
edly changed the .bgcolor property of the document object. Document Info is another
program that draws a little more deeply from the mysterious document object and a
few of its key properties.

TRICK

C
h

a
p

te
r 4

T
h

e
 B

a
s
i c

 M
a
d

 L
i b

 P
r o

g
ra

m
 a

n
d

 O
b

j e
c
t-B

a
s
e
d

 P
r o

g
ra

m
m

in
g

69

The Document Info Program

The Document Info program pops up a number of dialog boxes that give information
about the page containing the JavaScript code (see Figure 4.6).

JavaScript has an object called document. This object refers to the HTML page in which
the JavaScript code resides. The document object, like most objects, has properties,

IN THE REAL WORLD

The practice of using objects in programming has become a very important part of the modern

computing world. JavaScript is an example of an object-based programming language. This

means that JavaScript has support for objects, but the implementation of these objects falls

short of some technical criteria. Visual Basic and Perl are also examples of object-based lan-

guages. Languages such as C++ and Java follow more exacting rules in the ways that objects

are created and can be used. Computer scientists generally only refer to those languages that

meet these more stringent standards as truly object-oriented languages.

Regardless, the ability to describe entities as objects has revolutionized programming. Using

objects makes it easier for code to be written by teams of programmers, and it makes pro-

grams easier to repair than the older types of programming schemes. If you are interested in

learning more about object-oriented programming, it is a great idea to get some practice in an

object-based language such as JavaScript first.

FIGURE 4.6

The Document Info
program’s dialog
boxes describe

characteristics of a
document that are

stored in the
document

object’s properties.

70
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

events, and methods. Here’s the code that demonstrates some properties of the
document object:

<html>

<head>

<title>Document Info</title>

<script>

 // Document Info

 // Andy Harris

 // Demonstrate some properties of the document object

 alert("background: " + document.bgColor);

 alert("domain: " + document.domain);

 alert("last changed: " + document.lastModified);

 alert("URL: " + document.location);

 alert("Last page: " + document.referrer);

 alert("Title: " + document.title);

</script>

</head>

<body>

<center>

<h1>Document Info<hr></h1>

</center>

<hr>

</body>

</html>

The code consists of a series of alert statements. These statements all include refer-
ences to the document object.

Document Properties

The document object is very important in JavaScript programming. It represents the
Web page containing the JavaScript code. The properties of the object reveal impor-
tant information about the Web page. Table 4.1 details a partial list of the properties of
the document object.

In addition to these properties, if a Web page contains forms and form elements, they
are also available as properties. You will see this soon.

A document property is very much like a variable, except that you do not have to define it
yourself. The property is built into the browser. Some properties, such as the bgColor
property, can be written to and read from. You can print out the value of document.bgColor,
or you can assign a value to it to change the document’s background color.

C
h

a
p

te
r 4

T
h

e
 B

a
s
i c

 M
a
d

 L
i b

 P
r o

g
ra

m
 a

n
d

 O
b

j e
c
t-B

a
s
e
d

 P
r o

g
ra

m
m

in
g

71

Platform Issues

Whereas JavaScript itself is a reasonably standard environment, browser manufactur-
ers have been horribly inconsistent in how they define document objects. Netscape Navi-
gator and Microsoft Internet Explorer both have document objects, but these objects
are not identical. Each browser manufacturer has implemented different properties,
events, and methods for its specific document object. Even when both of the major
browsers provide their document objects with properties that share the same name,
those properties do not always behave exactly the same. This is a very frustrating prob-
lem for JavaScript programmers. Fortunately, there is a subset of document properties
that act pretty much the same on both browsers. This book sticks with the properties
that work the same on either browser. That way, your Web page won’t exclude any
users simply because they do not have the browser that you used to create your page.

Always check your programs in both the major browsers. Something that works
great in one browser won’t necessarily work in the other without some tweaking.

Methods

The document object also has some interesting methods. These are things that the
document can do. The Document Methods program demonstrates some of the most
important of the document object’s methods.

The Document Methods Program

The Document Methods program has an old-fashioned prompt for getting input to the
user, but the program then incorporates that value directly into the Web page (see
Figures 4.7 and 4.8).

TABLE 4.1 DOCUMENT OBJECT PROPERTIES

Property Description

bgColor The background color assigned to the page’s body.

taglastModified The date that the document was last changed.

title The title of the document.

url The address of the document.

domain The domain name of the document’s host.

referrer If the user got to this page via a hyperlink, this property shows the
address of the page that referred to the current one.

TRICK

72
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

After getting input from the user, the program uses that input to modify the actual
Web page as it is being written to the browser. The program does so by invoking the
write() method of the document object. Take a look at the code for this program:

<html>

<head>

<title>Document Methods</title>

<script>

// Document Methods

FIGURE 4.7

The Document
Methods program

prompts for the
user’s name with a
prompt statement.

FIGURE 4.8

The program
incorporates the

user’s name into the
actual Web page.

C
h

a
p

te
r 4

T
h

e
 B

a
s
i c

 M
a
d

 L
i b

 P
r o

g
ra

m
 a

n
d

 O
b

j e
c
t-B

a
s
e
d

 P
r o

g
ra

m
m

in
g

73// Andy Harris

// Demonstrates writing to the document

var userName = prompt("Hi! What's your name?");

</script>

</head>

<body>

<center><center>

<h1>Document Methods
</h1>

</center>

<h3>

<script>

document.write("Welcome, ");

document.write(userName);

document.write("!!");

document.close();

</script>

</h3>

<hr>

</body>

</html>

This document actually has two script areas. The first one creates the variable userName
and gets its value from the user via the prompt statement. Inside the document body is
another script pair. This second script invokes the write() method of the document
object several times, then the close() method of document. After the script finishes,
there is a little more HTML.

The preceding code is actually the code used to build this page. If you look at the
source code of the page after the program has run, it will not be exactly the same.
I’ll explain this anomaly in just a moment.

Using document.write()

The document.write method allows you to write text to the current document. This is
a nice capability, because it means you can modify the actual HTML that the user sees.
In addition to writing plain text, you can write HTML tags that the browser will inter-
pret as though they came directly from the original text file.

Using document.close()

HTML documents don’t come across the Internet in one big piece. Instead, a Web page
comes across as a long stream of text, which the browser then interprets for information
about how to lay out the page. When a Web page comes across the Internet, you can’t
really count on the browser laying it out until the entire page has come across. In fact,

TRAP

74
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

the page sends a signal telling the browser, in ef-
fect, that it is finished sending the information nec-
essary to display the page. When you generate por-
tions of a Web page via JavaScript, you are essentially
changing the page as it loads. The browser will not
necessarily write new information just because a
document.write method has executed. You can signal
to the browser that you are done writing by invok-
ing the close() method of the document object.

Events

Recall that objects have properties, methods, and
events. To demonstrate how events work, I’ll move
away from the document object a little bit and ex-
amine the most common kind of event in the
graphical programming world, clicking a button.

The Don’t Click Program

The Don’t Click program poses an irresistible chal-
lenge to the user. It incorporates an HTML form with
a button, as shown in Figures 4.9 and 4.10.

IN THE REAL WORLD

Although the document.

write() method looks like a

great way to interact with the

user, it has some serious limita-

tions. The method can’t really be

interactive, because the docu-

ment can be closed only one

time. Programmers usually use

the method only for very simple

tasks such as reporting the cur-

rent time or customizing the

page. Chapter 6, “Petals around

the Rose: Dynamic Output,” will

show you how you can work

with other frames and windows.

In these cases, the document.

write() method will be more

useful. Still, it is a good example

of a method.

FIGURE 4.9

There’s that button,
just daring the user

to click it.

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r 4

T
h

e
 B

a
s
i c

 M
a
d

 L
i b

 P
r o

g
ra

m
 a

n
d

 O
b

j e
c
t-B

a
s
e
d

 P
r o

g
ra

m
m

in
g

75

When the user clicks the button, the program complains. It then waits for the user to
click again. Here’s the code for the Don’t Click program:

<html>

<head>

<title>Don't Click</title>

</head>

<body>

<center><center>

<h1>Don't Click
</h1>

</center>

<hr>

<form name = myForm>

<input type = "button"

 value = "Don't Click Me!!"

 onClick = 'alert("ouch!!")'>

</form>

</body>

</html>

This program is unusual because it does not contain a script tag pair. Still, it does
have some JavaScript code. The other interesting thing about this program is its use of
HTML forms.

FIGURE 4.10

The user couldn’t
resist the

temptation.

76
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

The form Object

Many JavaScript programs are related to HTML forms, because forms are containers for
interesting components such as text boxes and command buttons. To make a form, just
surround a part of your HTML code with a <form></form> pair. Inside that form, you
can add the <input> elements such as text boxes, command buttons, and radio but-
tons. It’s a good idea to name forms and the elements that they contain, so you can
refer to these objects in code. Note that I named the form object when I defined it:

<form name = myForm>

The name attribute is used to add a name to various HTML elements. I almost always
name my forms something like myForm. It usually doesn’t matter too much what you
name a form, but you should name it something.

Do not forget to close your form. If you do not include a </form> tag, some brows-
ers will display very strange results.

Inside the form, I have placed a command button. Here is the code that does that work:

<input type = "button"

 value = "Don't Click Me!!"

 onClick = 'alert("ouch!!")'>

The input object is a versatile HTML object. It is used to generate several elements; in
this example, it creates a button. The type attribute determines which type of element
to generate. The value element describes what to write on the button. The onClick
attribute is the part that performs the magic.

The onClick Event

HTML buttons have an onClick attribute. The value of this attribute is very special. It
can contain one line of JavaScript code. Whenever a user clicks the button, the onClick
event is triggered and the browser runs that one line of JavaScript. In this case, the
onClick attribute contains the JavaScript code to generate the alert statement.

Note the use of single and double quotation marks. JavaScript and HTML both allow
you to alternate single and double quotes, to avoid confusion.

Although the onClick event is very useful, it can be somewhat limiting to be restricted
to that one line of JavaScript code. Fortunately, JavaScript, like most languages, en-
ables you to generate new virtual commands, so that just one statement in the onClick
attribute can call an unlimited number of commands. As usual, an example, the Don’t
Click Function program, helps to explain this concept better than plain old text.

The Don’t Click Function Program

Figures 4.11 and 4.12 show the Don’t Click Function program. This variation of the
Don’t Click program looks very similar to the original program, but it is not identical.

TRICK

TRAP

C
h

a
p

te
r 4

T
h

e
 B

a
s
i c

 M
a
d

 L
i b

 P
r o

g
ra

m
 a

n
d

 O
b

j e
c
t-B

a
s
e
d

 P
r o

g
ra

m
m

in
g

77

When the user clicks the button this time, the program does two things: It displays an
alert dialog box and changes the background color. Clearly the one-line limitation
will not allow this without some minor trickery. If you look under the hood, you’ll see
that this program has some new structural elements:

<html>

<head>

<title>Don't Click Function</title>

<script>

FIGURE 4.11

The Don’t Click
Function program

starts out the same
way as the Don’t
Click program.

FIGURE 4.12

The alert
statement pops up

and the background
color changes.

78
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

function sayOuch(){

 // Don't Click Function

 // Andy Harris

 // demonstrates use of functions

 document.bgColor = "red";

 alert ("ouch!!");

 document.bgColor = "white";

} // end function

</script>

</head>

<body>

<center>

<h1>Don't Click Function
</h1>

<hr>

<form name = myForm>

<input type = button

 value = "really, don't click me."

 onClick = sayOuch()>

</form>

</center>

</body>

</html>

The header area includes a script that the button’s onClick event seems to invoke. The
button still has one line of JavaScript in the onClick attribute, but that line of code is
not standard JavaScript.

The Purpose of Functions

If someone were to ask you what you did this morning before work, you would prob-
ably say something like “I got up, took a shower, got dressed, ate breakfast, and drove
to work.” You probably wouldn’t describe all the details of your breakfast (“I walked
into the kitchen, got a spoon and a bowl, found the cereal, got milk from the refrigera-
tor…”) because the phrase “ate breakfast” covers all of those details.

Functions work in exactly the same way. You can put together a series of commands
and give them a name. Then, whenever you want the computer to follow that series of
steps again, you just use the name as if it were a command built into the language.
This is exactly how the Don’t Click Function program is built.

Creating a Function

Look again at the script inside the header area of the HTML:

function sayOuch(){

C
h

a
p

te
r 4

T
h

e
 B

a
s
i c

 M
a
d

 L
i b

 P
r o

g
ra

m
 a

n
d

 O
b

j e
c
t-B

a
s
e
d

 P
r o

g
ra

m
m

in
g

79 // Don't Click Function

 // Andy Harris

 // demonstrates use of functions

 document.bgColor = "red";

 alert ("ouch!!");

 document.bgColor = "white";

} // end function

The header section begins with a function definition. The term sayOuch() is the name
of the function. The parentheses are used to indicate that no special values will be sent
to this function. (You’ll get to send parameters in another chapter.) Most of the code is
enclosed inside a pair of braces and indented to indicate it is part of some kind of
structure. Most JavaScript programs are actually defined in the header as a function or
as multiple functions. These functions are called from events of form elements inside
the body of the HTML document. Defining a function in the header area guarantees
that the function will be in memory by the time it is needed as the browser is inter-
preting the rest of the document.

Calling a Function from an Event

Once a function is defined, it is a simple matter to use it. In the rest of the document,
the function simply becomes another JavaScript command. Here’s where I used
sayOuch():

<input type = button

 value = "really, don't click me."

 onClick = "sayOuch()">

When the user clicks the button, the program automatically calls the sayOuch() func-
tion. Program control jumps to that function, which changes the document color, alerts
the user, and changes the color back.

Event-Driven Input and Output

The use of HTML forms and event-handling capabilities can be combined to allow more
graceful input and output than the dialog boxes that you have been using so far. Dia-
log boxes are functional, but they tend to annoy the user, because they interrupt the
natural flow of the program. It would be much better to have the input and output be
more naturally integrated into the Web page.

Creating the Name Grabber Program

Figures 4.13 and 4.14 show the Name Grabber program, which uses text boxes to handle
input and output. This program doesn’t use any dialog boxes at all.

The Name Grabber program does input and output by manipulating elements of the
form. This program introduces only one new feature: HTML text boxes. The text boxes
replace both the prompt and the alert dialog boxes.

80
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Here’s the code in its entirety:

<html>

<head>

<title>Name Grabber</title>

<script>

function copyName(){

 // Name Grabber

 // Andy Harris

FIGURE 4.13

The page that the
Name Grabber

program displays
contains text boxes.

Users type their
name into the first

text box.

FIGURE 4.14

After the user clicks
the button, a

greeting pops up in
the second text box.

C
h

a
p

te
r 4

T
h

e
 B

a
s
i c

 M
a
d

 L
i b

 P
r o

g
ra

m
 a

n
d

 O
b

j e
c
t-B

a
s
e
d

 P
r o

g
ra

m
m

in
g

81 // demonstrates form-based I/O

 var userName = document.myForm.txtName.value;

 var greeting = "Hi there, ";

 greeting += userName;

 greeting += "!";

 document.myForm.txtGreeting.value = greeting;

} // end copyName

</script>

</head>

<body>

<center>

<h1>Name Grabber
</h1>

<form name = myForm>

<table border = 1>

<tr>

 <td>Please type your name:</td>

 <td><input type = "text"

 name = "txtName"></td>

</tr>

<tr>

 <td colspan = 2><center>

 <input type = "button"

 value = "click me"

 onClick = "copyName()">

 </center></td>

</tr>

<tr>

 <td colspan = 2><center>

 <input type = "text"

 name = "txtGreeting">

 </center></td>

</tr>

</table>

</form>

</center>

The code consists of a JavaScript function written in the header, with a series of HTML
form elements playing parts in the process. The easiest way to understand what’s
happening is to look at the code as two main segments: the HTML code and the
copyName() function.

82
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Writing the HTML Code

First, take a look at the HTML code. When you’re looking at somebody else’s JavaScript
code, it’s generally a good idea to look at the HTML code before you worry about the
JavaScript code, because the HTML sets the stage. This program’s HTML code consists
of a form with three elements. The form is named myForm, and it has a text box, a
button, and another text box.

Tables and forms are a really great combination. Often I hide the table border (<table
border = 0>), but I have learned that forms lend themselves to the kind of organi-
zation that I want on the screen. As you gain more experience, try other ways of
arranging HTML (such as cascading style sheet positionable elements, discussed
in Chapter 8, “Dynamic HTML: The Stealth Submarine,”) and develop a style that
works best for your pages.

Take a look at the code that generated the first text box:

<input type = "text"

 name = "txtName">

This is another form of the input tag, but this time the type is set to text, giving the
text box a totally different appearance and behavior. The browser places a text box on
the form. The code specifies no value attribute, so the text box starts out blank but
enables the user to type into it. The text box’s name attribute is set to txtName. You’ll see
in a moment that it is critical to name this text box.

Many programmers use prefixes such as txt to denote text boxes and cmd to de-
note command buttons. This convention makes it easier to manage your code when
you have a large number of objects defined. When you look at the term txtName,
it’s easy to guess that it describes a text box that has something to do with a name.

The code that generates the other text box is not terribly different, but the second text
box is named txtGreeting. It also has no value specified, so it also starts out blank.

The code for the button is as follows:

<input type = "button"

 value = "click me"

 onClick = "copyName()">

This code generates a button with the label “click me.” When the user clicks the but-
ton, the copyName() function should execute. The next section explains what the
copyName() function does.

Writing the copyName() Function

The copyName() function is built in the header of the HTML document. It looks a bit
different than some of the other scripts that you have seen so far:

function copyName(){

TRICK

TRICK

C
h

a
p

te
r 4

T
h

e
 B

a
s
i c

 M
a
d

 L
i b

 P
r o

g
ra

m
 a

n
d

 O
b

j e
c
t-B

a
s
e
d

 P
r o

g
ra

m
m

in
g

83 // Name Grabber

 // Andy Harris

 // demonstrates form-based I/O

 var greeting = "Hi there, ";

 var userName = document.myForm.txtName.value;

 greeting += userName;

 greeting += "!";

 document.myForm.txtGreeting.value = greeting;

} // end copyName

The script starts by creating some variables, greeting and userName. Take a careful
look at the line that gets a value for userName. It looks really intimidating, but it
actually isn’t that complex. document.myForm.txtName.value is another name for the
contents of the txtName text box. The document object has as a property the form
myForm. This object has a txtName property, which is the text box. The text box in turn
has a value property, which represents whatever text is in the text box (see Figure
4.15). It works very much like a complex path in an operating system. If you see a
filename like c:\documents\memos\incriminating\extortion.doc, you can tell that
the filename is referring to a specific file in a tree structure.

When you build an HTML form, you are also building a complex structure just as you
do as you build new folders in a file management system. In HTML, however, the pat-
tern is a little more rigid. The form is a node, and all the objects inside the form are
nodes. Each of these objects might have its own properties, such as value. It’s actually
quite an elegant solution. Note the following line:

var userName = document.myForm.txtName.value;

The net result of this line is to copy the value of txtName to the userName variable.
document.myForm.txtName.value essentially becomes a variable that you can assign
values to and from, just like any other variable. Once you understand this, the follow-
ing line makes perfect sense as well:

document.myForm.txtGreeting.value = greeting;

This line simply copies the value of the greeting variable to txtGreeting, which makes
the value visible to the user.

FIGURE 4.15

This diagram
illustrates how the
various elements of
the Name Grabber

Web page are
connected.

value

txtGreeting

value

txtName

myForm

document

84
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Back to the Mad Lib Program

The Mad Lib program turns out to be very straightforward once you know how to do
form-based input and output. Since the code is getting a little long, I will show it to
you broken into sections. You should look on the CD included with this book for the
entire program. Besides, it’s more fun to play the game yourself.

Planning the Game

The first step is to build the story. There are a lot of ways to do this. If you are naturally
creative, just write a story and keep track of the words that you want to use as “fill-in”
words—the words that you want to replace with the user’s choices. Be sure to write out
the entire story and the list of “fill-in” words before you start programming. Have the
story written out so you know exactly what you will need to be doing in the code.
Sketch out the form on paper. Write down the names of any of the objects that you will
be using (most likely text boxes, a text area, and a button). This planning will make
your coding much easier.

Building the HTML Code

Build the HTML first. Match closely the visual layout of the program that you sketched
earlier, with all the text boxes and text areas generally in the right places. Don’t forget
to name the form, text boxes, and text area. You don’t need to name the button, be-
cause you will never access any of its properties, but you can if you wish. Here is my
HTML code: (Note that it does not yet include any JavaScript code. I will show you that
in the next section.)

<body>

<center>

<h1>Mad Lib<hr></h1>

<form name = myForm>

<h3>Please enter the following information</h3>

<table border = 1>

<tr>

 <td>A person's name</td>

 <td><input type = text name = txtPerson></td>

</tr>

<tr>

 <td>A silly sound</td>

 <td><input type = text name = txtSound></td>

</tr>

<tr>

 <td>A body part</td>

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r 4

T
h

e
 B

a
s
i c

 M
a
d

 L
i b

 P
r o

g
ra

m
 a

n
d

 O
b

j e
c
t-B

a
s
e
d

 P
r o

g
ra

m
m

in
g

85 <td><input type = text name = txtPart></td>

</tr>

<tr>

 <td>A vehicle</td>

 <td><input type = text name = txtVehicle></td>

</tr>

<tr>

 <td>A type of animal</td>

 <td><input type = text name = txtAnimal></td>

</tr>

<tr>

 <td colspan = 2><center>

 <input type = button

 value = "click for story"

 onClick = makeML()>

 </td>

</tr>

</table>

<textarea name = txtStory

 rows = 10

 cols = 40

 wrap>

</textarea>

</form>

</center>

<hr>

</body>

</html>

Note especially the use of the text area. The output will be a long story, and I need a
place to put it. A text area is perfect for this. Turning on the word-wrap feature (with
the wrap attribute) ensures that the entire story will be visible without requiring you
to put in carriage returns. Also notice that I rigged up the button to trigger the makeML()
function (which doesn’t yet exist). It’s a great idea to test your HTML code before you
start working on the JavaScript code.

86
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Getting the Inputs

Once the HTML is solid, you can turn your attention to the function itself. Here is the
beginning of the function definition:

function makeML(){

 // Mad Lib

 // Andy Harris

 // make a silly story from a bunch of input terms

 //get variables from form

 var person = window.document.myForm.txtPerson.value;

 var sound = document.myForm.txtSound.value;

 var part = document.myForm.txtPart.value;

 var vehicle = document.myForm.txtVehicle.value;

 var animal = document.myForm.txtAnimal.value;

 var story = "";

This part of the program simply creates variables and extracts them from the various
elements of the form. It is not coincidental that person and txtPerson are so similar.
In a repetitive program such as this one, it is wise to generate some kind of naming
convention so that you can keep track of all the various form elements and the vari-
ables to which they are related. The story variable will contain the entire story before
it is displayed in the text area.

Building a Long String

Building the story turns out to be one of the easier things to do. Take a look at how I
did that:

story = "One day, a person named " ;

 story += person;

 story += " was walking down the street. Suddenly, ";

 story += person;

 story += " heard an awful ";

 story += sound;

 story += " sound. ";

 story += person;

 story += " looked around and saw that the ";

 story += sound;

 story += " sound was coming from a ";

 story += vehicle;

 story += " careening madly down the street. ";

 story += person;

 story += "'s fear turned to terror as "

 story += person;

C
h

a
p

te
r 4

T
h

e
 B

a
s
i c

 M
a
d

 L
i b

 P
r o

g
ra

m
 a

n
d

 O
b

j e
c
t-B

a
s
e
d

 P
r o

g
ra

m
m

in
g

87 story += " realized that the ";

 story += vehicle;

 story += " was driven by none other than the evil Super-";

 story += animal;

 story += ". Once an ordinary ";

 story += animal;

 story += ", it had befallen a strange transformation after ";

 story += "being dropped in a vat of nuclear waste. ";

 story += "Super-"

 story += animal;

 story += " continued to taunt ";

 story += person

 story += " with the horrible ";

 story += sound;

 story += " noise, but ";

 story += person;

 story += " was unconcerned. \"You can't bother me, Super-";

 story += animal;

 story += "! I know how to turn the other ";

 story += part;

 story += "!\" \nThe End."

 document.myForm.txtStory.value = story;

} // end makeML

I alternated text and variables. It would be very tempting to write long concatenations,
as in the following example:

story += "Super-" + animal + " continued to taunt ";

The problem is that lines like this can be very difficult to debug.

The reason lines like these can be difficult to debug is that it gets hard to figure out
what is inside the quotes and is meant to be interpreted as a literal value, and what
is outside the quotes, which will be interpreted as a variable or function name. For
example, will the preceding line actually print the word “animal” or will it print the
value of the animal variable? It all depends on the placement of the quotes and the
plus signs.

One more interesting thing to note is the use of \" in the last line of the story (as well
as a few other places). The backslash character indicates that the quotation mark
should not be interpreted as the end of the string, but literally as a quotation mark.

Once the story is built, it is a simple matter to copy it to the txtStory text area for output.

Table 4.2 provides an easy reference of the new syntax covered in this chapter.

TRAP

88
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Summary

This chapter covered some major territory. You learned about the notion of objects
and their principal characteristics. You began to explore properties, methods, and
events. You took a first look at the document object, and at how event-driven program-
ming ties JavaScript more closely to the Web page. You also learned how to copy values
to and from text fields and text areas. In the next chapter, you will learn how to work
with other kinds of screen components, such as radio buttons, check boxes, and drop-
down lists. The next chapter continues to develop the Mad Lib program by adding a
number of other user interface elements to the screen.

E X E R C I S E S

1. Write a program that uses a prompt to ask the user’s favorite color, then changes the

form’s background to that color.

2. Modify the preceding program so that the user types the color into a text box and then

clicks a button to get the color.

3. Write a program that gets the user’s first, middle, and last names, and returns the user’s

full name in another text box.

4. Write a program that writes the current date and time at the top of a Web page. (Hint: var

theTime = new Date() will create a variable with the date in it.)

5. Modify the Number Guesser game from Chapter 3 so that it uses form-based input and

output. (Tip: It will not need a loop!)

TABLE 4.2 SYNTAX SUMMARY

Statement Description Example

function funcName() { } Creates a new function. function doIt(){

 alert("I did it");

} // end function

5

I
n the last chapter, the programs accepted

all user input in text boxes and text areas.

Although the basic text elements are ex-

tremely flexible, HTML and JavaScript allow you

to use a number of other screen components. In this

chapter, you will learn how to work with other ele-

ments of an HTML form, and how JavaScript inter-

acts with them. Specifically, you will learn how to

do the following:

• Use other text-based elements, such as pass-

word and hidden input boxes

• Create and interact with forms that use

check boxes

• Use radio buttons and understand how they

differ from check boxes

• Organize screen elements into arrays

• Build and use selection lists for user input

Advanced Mad Lib:
Using the Other
Form Elements

C H A P T E R

90
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Project: The Advanced Mad Lib

In this chapter, you will build a variation of the Mad Lib game from Chapter 4, “The
Basic Mad Lib Program and Object-Based Programming.” The basic idea will be the
same, but the form on this version will have a number of elements that users expect
from a graphical user interface (see Figure 5.1).

These elements make the user interface a little more convenient for users, because
they usually do not have to type as much. The elements are also convenient for the
programmer, because they limit the user’s choices to only legitimate values.

Working with Text-Like Objects

You learned how to manipulate the text box and text area in the last chapter. JavaScript
has a number of elements that are very similar from the programmer’s perspective.
These elements (like most form components) are created with variations of the HTML
<input> tag.

The Password Program

The Password program demonstrates some of the text-like input elements (see Figure
5.2). Although only four elements are visible on the page, the page actually includes
five elements.

FIGURE 5.1

In this version of the
Mad Lib program,

the form features a
number of special

elements.

Here the user
selects one or more

elements from a
group of

checkboxes.

The user can
choose only one of

these options.

The user chooses an option from a drop-down list.

C
h

a
p

te
r 5

A
d

v
a
n

c
e
d

 M
a
d

 L
ib

: U
s
in

g
 th

e
 O

t h
e
r F

o
rm

 E
l e

m
e
n

ts

91

The layout of the screen is reasonably straightforward. Here is the HTML code that
generates the screen layout:

<body>

<center>

<h1>Password<hr></h1>

<form name = "myForm">

<table border = 1>

<tr>

 <td>Please enter password</td>

 <td><input type = "password"

 name = "pwdGuess">

</tr>

<tr>

 <td colspan = 2><center>

 <input type = "button"

 value = "click me"

 onClick = "checkPass()"></center>

 </td>

</tr>

<tr>

 <td colspan = 2>

FIGURE 5.2

The Password
program’s interface

features several
text-like input

elements.

92
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 <center>

 <textArea name = "txtOutput"

 rows = 1

 cols = 35>

 </textarea>

 </center>

 </td>

</tr>

</table>

<input type = "hidden"

 name = "hdnSecret"

 value = "JavaScript">

</form>

<hr>

</center>

</body>

The form is laid out inside a table, and the table contains four elements. The first is a
password box, then a button, and finally a text area. Outside the table is a fifth input
element, a hidden field. This fifth field contains the correct password. When the user
clicks the button, a function called checkPass() is executed. Here is the code for the
checkPass() function:

<head>

<title>Password</title>

<script>

function checkPass(){

 // Password

 // Andy Harris

 // demonstrates several textlike elements

 var guess = document.myForm.pwdGuess.value;

 var secret = document.myForm.hdnSecret.value;

 if (guess == secret){

 document.myForm.txtOutput.value = "You may proceed.";

 } else {

 document.myForm.txtOutput.value = "That is incorrect.";

 } // end if

} // end checkPass

</script>

</head>

This function extracts the relevant details from the various form elements, compares
the values, and returns an appropriate message.

C
h

a
p

te
r 5

A
d

v
a
n

c
e
d

 M
a
d

 L
ib

: U
s
in

g
 th

e
 O

t h
e
r F

o
rm

 E
l e

m
e
n

ts

93Password Boxes

Password boxes are almost identical to text boxes as far as HTML and JavaScript are con-
cerned. The only real differences are that an <input type = password> HTML statement
generates the password and that asterisks (*) replace any values that the user types into the
text field. The actual characters that the user types are still recorded, but the field displays
only the asterisks. This prevents the KGB, Mafia, aliens, or whoever else from stealing your
password by looking over your shoulder as you enter your password into the page. Pass-
word fields have a value property, and you can use JavaScript to copy values to and from
the password in exactly the same way as you do with an ordinary text field.

The password field is notoriously insecure, especially when used in JavaScript.
The user can figure out the correct password by looking at the source code.
JavaScript is not secure enough for any transaction that involves real security, but
the password field can still be fun in game programming. You might use it as a “mood
enhancer” if you’re writing a game where the player is supposed to be a hacker, for
example. You might also use the field in other instances where you want light secu-
rity but secrecy isn’t vital, such as to allow players to skip levels in an arcade game.

Hidden Fields

The other interesting element in this example is the hidden field. If you look closely at
the HTML code, you will see this element listed:

<input type = "hidden"

 name = "hdnSecret"

 value = "JavaScript">

The code is much like that of text boxes and password boxes, but the hidden field has
different behavior. It stores a value in a form, but the value is not visible at all to the
user. In this example, I used the hidden field to store the correct password. You can use
hidden fields in game programming to store values in the form. However, as a JavaScript
programmer, you can do the same thing with variables, so hidden fields usually aren’t
necessary in JavaScript programs.

Why does the hidden field exist? If the hidden field isn’t necessary, you might be
surprised that it is supported at all in HTML. HTML supports the hidden field be-
cause programmers can attach HTML forms to programs written in many other kinds
of languages. Sometimes an HTML form is connected to a program on the Web server.
In these kinds of programs, hidden fields can be very useful, because the program
can store information in the form that the program will need later.

Using Check Boxes

In some situations, the user should be able to choose from a group of elements. In other
situations, the user should be able to choose any number of available options. The Music
Chooser program presents users with check boxes that enable them to do both.

TRAP

HINT

94
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

The Music Chooser Program

As shown in Figure 5.3, the Music Chooser program asks users to select their favorite
music genre through a group of check boxes.

The user can choose any of a series of check boxes. It’s important to note that these
boxes are not mutually exclusive. The status of any one check box has no particular
effect on all the other check boxes. Most users have seen this type of input element
before and know the kind of behavior to expect from it.

The Code for Creating Check Boxes in HTML

To understand how to write code for a group of check boxes, it is helpful to look at the
HTML code. Check boxes are another variant of the input element. The HTML code that
generates the Music Chooser screen looks like this:

Note that this code is only the HTML. The JavaScript code will be added in the next
section.

<body>

<center>

<h1>Music Chooser<hr></h1>

<form name = myForm>

<h3>Please tell me what music you like:</h3>

<table border = 0>

<tr>

 <td><input type = "checkbox"

 name = "chkCountry"

FIGURE 5.3

The form accepts
any number of

check-box inputs
and returns an

appropriate output.

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r 5

A
d

v
a
n

c
e
d

 M
a
d

 L
ib

: U
s
in

g
 th

e
 O

t h
e
r F

o
rm

 E
l e

m
e
n

ts

95 value = "country">country

 </td>

</tr>

<tr>

 <td><input type = "checkbox"

 name = "chkRock"

 value = "rock">rock

 </td>

</tr>

<tr>

 <td><input type = "checkbox"

 name = "chkRap"

 value = "rap">rap

 </td>

</tr>

<tr>

 <td><input type = "checkbox"

 name = "chkClassical"

 value = "classical">classical

 </td>

</tr>

<tr>

 <td><input type = "checkbox"

 name = "chkBlues"

 value = "blues">blues

 </td>

</tr>

<tr>

 <td><input type = "button"

 value = "click me"

 onClick = "processMusic()">

 </td>

</tr>

</table>

<textarea name = "txtOutput"

 rows = 10

 cols = 35>

</textarea>

</form>

96
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

</center>

<hr>

</body>

The preceding is reasonably straightforward HTML code. It includes the expected form,
with a series of check boxes. Each check box has a name and a value. Note that the
value of a check box is not visible to the user. If you want to connect a label to a check
box, you need to write that label as ordinary HTML code. It is very common to put
checkbox elements in a list or table as I did here, to keep them neat. The code also
contains a button to trigger the processMusic() function and a text area to contain
the output of that function.

The Behavior of Check Boxes

The code to manipulate check-box components is also reasonably straightforward. The
checkbox object has a value property, which corresponds to the value stored when the
object was created in HTML. Check boxes also have another important property, checked.
This property contains a true or false value. If the user selects the check box (and it was
previously unchecked), the checked property is true. Usually you will want your pro-
gram to do something only if the user has selected the check box. In this program, you
want to execute the processMusic() function if the user selects a check box.

Here’s the code for the processMusic() function:

function processMusic(){

 // Music Chooser

 // Andy Harris

 // demonstrates check boxes

 document.myForm.txtOutput.value = "";

 if (document.myForm.chkCountry.checked == true){

 document.myForm.txtOutput.value += "You like ";

 document.myForm.txtOutput.value += document.myForm.chkCountry.value;

 document.myForm.txtOutput.value += "\n";

 } // end if

 if (document.myForm.chkRock.checked == true){

 document.myForm.txtOutput.value += "You like ";

 document.myForm.txtOutput.value += document.myForm.chkRock.value;

 document.myForm.txtOutput.value += "\n";

 } // end if

 if (document.myForm.chkRap.checked == true){

 document.myForm.txtOutput.value += "You like ";

 document.myForm.txtOutput.value += document.myForm.chkRap.value;

 document.myForm.txtOutput.value += "\n";

C
h

a
p

te
r 5

A
d

v
a
n

c
e
d

 M
a
d

 L
ib

: U
s
in

g
 th

e
 O

t h
e
r F

o
rm

 E
l e

m
e
n

ts

97 } // end if

 if (document.myForm.chkClassical.checked == true){

 document.myForm.txtOutput.value += "You like ";

 document.myForm.txtOutput.value += document.myForm.chkClassical.value;

 document.myForm.txtOutput.value += "\n";

 } // end if

 if (document.myForm.chkBlues.checked == true){

 document.myForm.txtOutput.value += "You like ";

 document.myForm.txtOutput.value += document.myForm.chkBlues.value;

 document.myForm.txtOutput.value += "\n";

 } // end if

} // end processMusic

Although this looks like a lot of code, the function isn’t nearly as complex as it seems
at first glance. If you examine the code more closely, you can see that it really is very
repetitive. The code is basically nothing more than a series of if statements. Each one
checks a specific check box to see whether the user has selected it. If so, the function
writes the value of that check box to the text area.

Check boxes are usually used to let the user turn certain options on or off. You might
use a check box in a preferences screen, for example, to indicate a number of op-
tions that the user can turn on or off.

It is important to remember that each check box is basically an independent entity.
The values of the various check boxes are not related in any particular way, and each
check box must be evaluated independently in the code.

Using Radio Buttons

Check boxes have a cousin called radio buttons. Radio buttons are similar to check
boxes, but they behave differently when you place them in groups. They are used when
you want the user to choose only one element from a group. Radio buttons get their
name from the old car radios that had little buttons sticking out for the preselected
stations. When you pressed a button, all the others would automatically stick out,
because radios can be tuned to only one station at a time.

Creating the Size Chooser Program

The Size Chooser program provides an example of an HTML-JavaScript radio button
group in action. Figures 5.4 and 5.5 show the program.

When the user clicks the OK button, the program agrees to get the appropriate size of
whatever it is the user is ordering.

HINT

98
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Generating Radio Buttons in HTML Code

The HTML code to make radio buttons starts out very much like that of the other screen
components that you have seen. But see whether you can spot the one significant dif-
ference in the code:

Please note that this is simply the HTML code for this program. I’ll show you the
JavaScript in the next section.

<body>

<center>

FIGURE 5.5

When the user then
selects Large, the

Small option is
automatically
unchecked.

FIGURE 5.4

The user has
selected a
small size.

C
h

a
p

te
r 5

A
d

v
a
n

c
e
d

 M
a
d

 L
ib

: U
s
in

g
 th

e
 O

t h
e
r F

o
rm

 E
l e

m
e
n

ts

99<h1>Size Chooser<hr></h1>

<form name = myForm>

<h3>Which size would you like?</h3>

<table border = 0>

<tr>

 <td>

 <input type = "radio"

 name = radSize

 value = "small">Small

 </td>

 <td>

 <input type = "radio"

 name = radSize

 value = "medium">Medium

 </td>

</tr>

<tr>

 <td>

 <input type = "radio"

 name = radSize

 value = "large">Large

 </td>

 <td>

 <input type = "radio"

 name = radSize

 value = "jumbo">Jumbo

 </td>

</tr>

<tr>

 <td colspan = 2>

 <center>

 <input type = "button"

 value = "OK"

 onClick = "processSize()">

 </center>

 </td>

</tr>

</table>

<textarea name = "txtOutput"

 rows = 5

 cols = 40>

100
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

</textarea>

</form>

</center>

<hr>

</body>

If you didn’t see the strange new feature, take another look at the names of the radio
buttons. All the radio buttons have the same name! I’ll explain in the next section why
I did that. For now, just note that the rest of the HTML code is pretty straightforward.
There is a button attached to a function and a text area for output, just as in all the
other programs in this chapter.

Placing Buttons in Arrays

What makes radio buttons special is the way that they act when placed in groups.
Check boxes, as you recall, are pretty independent creatures. They don’t really care
whether the user has selected any other neighboring check boxes. Radio buttons, on
the other hand, are team players. Each radio button expects to be part of a group.
Whenever one button in the group is turned on, all the others will be turned off.
Somehow you need to make all the buttons in a group aware of which group they are
in. In HTML code, you make all the radio buttons part of a group by giving them all the
same name.

Although it seems kind of strange to have a bunch of things with the same name, it
isn’t really all that unusual. If you’re playing golf, you might have a scorecard that
looks something like Figure 5.6.

A small golf course might have nine holes. The holes are usually numbered. Each golfer
keeps track of how many strokes it takes to get the ball in the cup. In effect, the golfer
has a score for each hole. The golfer might refer to the first score as the score for hole
1. The next score would be the score for hole 2, and so on.

FIGURE 5.6

A scorecard for a
golfer.

Hole Score

1 4

2 3

3 5

4

5

6

7

8

9

Hyper Links

C
h

a
p

te
r 5

A
d

v
a
n

c
e
d

 M
a
d

 L
ib

: U
s
in

g
 th

e
 O

t h
e
r F

o
rm

 E
l e

m
e
n

ts

101Programming languages usually refer to this kind of structure as an array. An array is
a group of similar things, all with the same name, but with different numeric indices.
JavaScript refers to an array with square bracket ([]) notation. By generating a series of
radio buttons all with the same name, you have created an array. Programming lan-
guages usually count beginning at 0, so the Small radio button is also known as
radSize[0], the Medium radio button is radSize[1], and so on.

Using Variables to Simplify the Code

The code for a series of radio buttons looks a little bit intimidating, but when you look
at it a little bit at a time, it isn’t too bad. Before you see the code itself, here’s the
strategy. I’ll use a for loop to generate numbers from 0 to 3. Each time through the
loop, I’ll look at the appropriately numbered radio button. If the user selected that
button, I’ll remember the value associated with that button in a variable. After the
loop completes, the variable will contain the value of whichever button the user clicked.
Take a look at the code, and you’ll see how I did it:

<script>

function processSize(){

 // Size Chooser

 // Andy Harris

 // Demonstrates radio buttons

 var size;

 var i;

 var theOption;

 for (i = 0; i <= 3; i++){

 theOption = document.myForm.radSize[i];

 if (theOption.checked == true){

 size = theOption.value;

 } // end if

 } // end for loop

 document.myForm.txtOutput.value = "OK, I'll get you the ";

 document.myForm.txtOutput.value += size + " one.";

} // end function

</script>

The function starts out simply enough. The size variable will eventually contain the
size of object that the user is ordering. The variable i is used in the for loop. (This is
one of those instances where the actual value of the for loop counter does not matter,
so i is an appropriate variable name.) The last variable, theOption, is a little more
puzzling. JavaScript allows you to store many kinds of things in variables. You can even
store an object in a variable. Doing so can make your life quite a bit simpler, as you will
see in a moment.

The following line begins a for loop that will repeat three times:

for (i = 0; i <= 3; i++){

The value of i will (at various times) be 0, 1, 2, and 3. Remember that JavaScript begins
counting at 0. Because there are four radio buttons, they will be numbered 0 to 3.

102
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

The following line gets the ith button:

theOption = document.myForm.radSize[i];

When i is 0, document.myForm.radSize[0] (the radio button associated with the value
small) will be copied to the variable theOption. Every time through the loop, i will have
a different value, and another radio button will be copied to the theOption variable.

The next line checks whether the user has selected the current radio button:

if (theOption.checked == true){

If the value is true, the following line copies the value property of the object to the
size variable:

size = theOption.value;

If the current radio button is not selected, nothing happens. The loop continues until
all four radio buttons have been checked.

The last two lines generate output for the txtOutput text area:

 document.myForm.txtOutput.value = "OK, I'll get you the ";

 document.myForm.txtOutput.value += size + " one.";

You can replicate the following general strategy any time you want to get the value of
the currently selected radio button:

1. Create variables for the loop, for the result, and to hold a reference to a radio
button.

2. Make a for loop that steps from 0 to the number of buttons in the group
minus 1.

3. Assign the current button to the button variable.

4. If the button is selected, copy the value to the result variable.

5. Repeat the loop until it has checked all buttons.

Of course, for every group of radio buttons that you use on the page, you will need to
repeat this procedure. Fortunately, you can copy and paste it and just modify the new
version to fit each particular group of radio buttons.

Using the select Object

The last of the new elements that you will look at in this chapter is the select object.
This is also known as a list box in many programming languages. The Color Chooser
program is an example that uses a select object.

Creating the Color Chooser Program

The Color Chooser program displays a list of colors (see Figure 5.7). When the user
clicks the list box, the list of colors drops down. After the user selects a color from the
list, the selected color is then displayed in the list box. When the user clicks the OK
button, the document’s background color is reset to the selected color (see Figure 5.8).

This type of selection object is efficient because it takes up less space on the screen
than the equivalent set of option buttons.

C
h

a
p

te
r 5

A
d

v
a
n

c
e
d

 M
a
d

 L
ib

: U
s
in

g
 th

e
 O

t h
e
r F

o
rm

 E
l e

m
e
n

ts

103

Creating the select Object in HTML

Here’s the HTML that was used to generate the select object:

<body>

<center>

<h1>Color Chooser<hr></h1>

<h3>Please select a color</h3>

<form name = "myForm">

FIGURE 5.7

The user is about to
select yellow from
the drop-down list.

FIGURE 5.8

The background has
changed to the
selected color.

104
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

<select name = selColor>

 <option value = red>red</option>

 <option value = orange>orange</option>

 <option value = yellow>yellow</option>

 <option value = green>green</option>

 <option value = blue>blue</option>

 <option value = indigo>indigo</option>

 <option value = violet>violet</option>

</select>

<input type = "button"

 value = "change color"

 onClick = "changeColor()">

</form>

</center>

<hr>

</body>

You may recall that the HTML select object is basically a container for a series of
option objects. The select object should have a name, and each option object will
have a value. It is not necessary to name each option object. Because the select object
contains a bunch of option objects, they are stored as an array.

Getting the Choice

The procedure for obtaining the value of the currently selected option is actually a bit
easier in a selection object than it is with a set of radio buttons, because the select
object itself can supply you with some useful information. When you wanted to evalu-
ate a set of radio buttons, you had to look at each button to figure out which one was
clicked. The select object has a built-in property that tells you which button was clicked.
Here’s my code:

<script>

function changeColor(){

 // Color Chooser

 // Andy Harris

 // demonstrates select object used as a drop-down list box

 var theSelect = document.myForm.selColor;

 var theOption = theSelect[theSelect.selectedIndex];

 var theColor = theOption.value;

 document.bgColor = theColor;

} // end changeColor

</script>

This code’s brevity might surprise you. Essentially, the code simply picks apart the
selection object until it gets the value that I need. Then the code stores the value in the
theColor variable. The following line of code begins this process:

var theSelect = document.myForm.selColor;

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r 5

A
d

v
a
n

c
e
d

 M
a
d

 L
ib

: U
s
in

g
 th

e
 O

t h
e
r F

o
rm

 E
l e

m
e
n

ts

105This line creates a variable called theSelect. That variable is a reference to the
selection object itself. This line isn’t absolutely necessary, but it makes the follow-
ing lines much easier to read, because you don’t have to write all that
document.myForm.selColor.blah.blah business every time.

The next line is similar:

var theOption = theSelect[theSelect.selectedIndex];

This line generates a variable to hold an option button. The variable contains the
currently selected element. The select object has a selectedIndex property, which
returns the index of the selected element. The theSelect variable has an array of
options, and by indicating the theSelect.selectedIndex value, this line copies to
the theOption variable a reference to the option that the user selected.

It then becomes a simple matter to retrieve the value of this option, with the follow-
ing line:

var theColor = theOption.value;

Once the color is stored in a variable, you can copy it to the bgColor property of the
document and thus change the page’s background color:

document.bgColor = theColor;

Using Multiline Select Boxes

The select box turns out to be a very adaptable feature. In addition to the behavior that
you have just seen, a select box can be set up to show multiple lines on the screen, and
to allow the user to select more than one option at a time. The Color II program de-
scribed in this section is a variation of the Color Chooser program that takes advan-
tage of these capabilities.

Creating the Color II Program

The Color II program is modified from the Color Chooser program. Figure 5.9 shows
this modified program.

For this program, you change the select box so that it can accept multiple values. Also,
the program adds a text area for output. The user can select a series of elements in the
select box, using Shift+click or Ctrl+click combinations. When the user clicks the but-
ton, the selected element nearest to the top of the box will be used as the form’s new
background, and all the selected values will be copied to the text area.

Modifying the HTML to Handle Multiple Selections

It just takes a couple of modifications in the select object’s HTML code to get the
desired effect:

<select name = selColor

 multiple

 size = 7>

The multiple attribute tells the browser to allow multiple selections. However, mul-
tiple selection doesn’t make sense in a typical drop-down list box. To have a number of

106
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

options visible at the same time, you must set the size attribute to some value. This
page has seven elements, so I set the size attribute to seven, although any number
larger than 1 would do the trick. To get multiple selections, you must set the size
larger than 1 and also specify the multiple attribute.

The only other change to the HTML code is the creation of the text area for output.
You’ve already seen this code several times in this chapter.

Writing Code to Handle Multiple Selections

The JavaScript code for the multiple selection Color II program starts just like the
original Color Chooser program. It uses exactly the same code to extract a color for the
background. When you set a select box for multiple selections, the selectedIndex prop-
erty returns the index of the first selected item found. Here’s the code:

function changeColor(){

 // Color Chooser

 // Andy Harris

 // demonstrates select object used as a multiline list box

 //change color to the first selected color

 var theSelect = document.myForm.selColor;

 var theOption = theSelect[theSelect.selectedIndex];

 var theColor = theOption.value;

 document.bgColor = theColor;

 //list all the selected colors

 var colorList = "";

FIGURE 5.9

The user has
chosen several

colors. The first one
was applied to the
form’s background.
All selected colors

are listed in the
text area.

C
h

a
p

te
r 5

A
d

v
a
n

c
e
d

 M
a
d

 L
ib

: U
s
in

g
 th

e
 O

t h
e
r F

o
rm

 E
l e

m
e
n

ts

107 var i = 0;

 for (i = 0; i < theSelect.length; i++){

 theOption = theSelect.options[i];

 if (theOption.selected == true){

 colorList += theOption.value + "\n";

 } // end if

 } // end for loop

 document.myForm.txtOutput.value = colorList;

} // end changeColor

The new code appears after the comment to list all selected colors. If you look carefully
at this code, however, you will see that it is not as new as it might at first appear. The
code looks very similar to the code used to check a series of radio buttons. First, I set up
some variables to make a for loop counter and a string to contain the text that the
program is to print to the text area. Then, I started a for loop:

for (i = 0; i < theSelect.length; i++){

This loop continues as many times as there are elements in the select object. The
length property indicates the number of elements in the select object. The i variable
gets values from 0 up to the number of options in the select object minus one.

The next line grabs the current option, then puts the option in the theOption variable:

theOption = theSelect.options[i];

Next I use an if statement to check whether the user has selected the current option:

if (theOption.selected == true){

If the user selected the option, the next line copies the value related to that option to
the colorList variable, which the program prints in the text area:

colorList += theOption.value + "\n";

Returning to the Advanced Mad Lib Program

The advanced Mad Lib program becomes simple to understand once you learn how to
read the various elements. It introduces absolutely nothing new, but just combines
the elements that you have already seen.

The HTML Code for the Advanced
Mad Lib Program

The HTML code sets the stage. It is not that complex, but you must plan it well or it will
cause you great difficulty when you are writing the JavaScript code. Here is the HTML
code: (I’ll show you the JavaScript in the next section)

<body>

<center>

<h1>Mad Lib<hr></h1>

<form name = myForm>

<h3>Please enter the following information</h3>

108
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

<table border = 1>

<tr>

 <td>A person's name</td>

 <td><input type = text name = txtPerson></td>

</tr>

<tr>

 <td>description(s)</td>

 <td>

 <input type = "checkbox"

 name = "chkEvil"

 value = "evil">evil

 <input type = "checkbox"

 name = "chkGoofy"

 value = "goofy">goofy

 <input type = "checkbox"

 name = "chkDysfunc"

 value = "dysfunctional">dysfunctional

 <input type = "checkbox"

 name = "chkWacky"

 value = "wacky">wacky

 </td>

</tr>

<tr>

 <td>A silly sound</td>

 <td>

 <input type = "radio"

 name = "optSound"

 value = "phht!"> phht!

 <input type = "radio"

 name = "optSound"

 value = "boing!"> boing!

 <input type = "radio"

 name = "optSound"

 value = "whoosh!"> whoosh!

 <input type = "radio"

 name = "optSound"

 value = "splat!"> splat!

 </td>

</tr>

<tr>

C
h

a
p

te
r 5

A
d

v
a
n

c
e
d

 M
a
d

 L
ib

: U
s
in

g
 th

e
 O

t h
e
r F

o
rm

 E
l e

m
e
n

ts

109 <td>A body part</td>

 <td>

 <select name = selBody>

 <option value = "tooth">tooth</option>

 <option value = "kidney stone">kidney stone</option>

 <option value = "cheek">cheek</option>

 <option value = "elbow">elbow</option>

 <option value = "brain">brain</option>

 </select>

 </td>

</tr>

<tr>

 <td>A vehicle</td>

 <td><input type = text name = txtVehicle></td>

</tr>

<tr>

 <td>A type of animal</td>

 <td><input type = text name = txtAnimal></td>

</tr>

<tr>

 <td colspan = 2><center>

 <input type = button

 value = "click for story"

 onClick = makeML()>

 </td>

</tr>

</table>

<textarea name = txtStory

 rows = 10

 cols = 40

 wrap>

</textarea>

</form>

</center>

<hr>

</body>

110
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

The entire form is wrapped in a table. It is very difficult to create a professional-
looking form without using tables. If you aren’t already comfortable with tables, now
is a good time to learn. It’s also a great idea to get used to the colspan and rowspan
attributes (which allow cells to take up more space than they normally would be allot-
ted). These attributes give you reasonable flexibility in your page design.

The form contains a number of standard text input
elements. These were copied directly from the pro-
gram in the last chapter and need no modification.

The description element is new. I introduced it into
the story just so you could see how you might use
check boxes. The user can choose any combination
of checkbox elements. It makes sense to group them
together on the page, but such grouping is not ab-
solutely necessary. Note that each checkbox element
has a different name.

The program retrieves the sound value via a radio
button set. Although the story can easily make use
of more than one descriptive word, it requires only
one sound. Because you want the user to select
only one sound, the sound value is a good candi-
date for a radio button set. Placing all radio but-
tons of a group together makes sense. Note also that
the code assigns all of the radio buttons the same
name, so that they can be accessed as an array.

The user selects the body part value with the assis-
tance of a drop-down select object. This makes
sense for this particular story element, because the
story requires only one body part.

The other elements, such as the button and the text
area for output, remain identical to those of the
original Mad Lib program.

The JavaScript Code

All the JavaScript code for this project derives directly from the projects in the chapter.
Here is the function:

function makeML(){

 // Mad Lib

 // Andy Harris

 // make a silly story from a bunch of input terms

 //create variables

 var sound;

 var part;

 var descrip;

IN THE REAL WORLD

Your choice of user interface

elements can be more than a

matter of aesthetics. Using the

correct type of input element

can greatly simplify the user’s

life by allowing mouse input

instead of typing.

These elements (the check box,

radio group, and select element)

are also very useful from the

programmer’s point of view, be-

cause they give the user very

limited input options. Recall

from the last chapter the warn-

ings about how difficult it is to

check information typed into

text boxes and prompt state-

ments. If you use the input ele-

ments described in this chapter,

you can be assured that all in-

puts will be legitimate, because

the values were designed into

the program.

C
h

a
p

te
r 5

A
d

v
a
n

c
e
d

 M
a
d

 L
ib

: U
s
in

g
 th

e
 O

t h
e
r F

o
rm

 E
l e

m
e
n

ts

111 var vehicle;

 var animal;

 var story = "";

 //get text box variables

 person = window.document.myForm.txtPerson.value;

 vehicle = document.myForm.txtVehicle.value;

 animal = document.myForm.txtAnimal.value;

 //get description

 descrip = "";

 if (document.myForm.chkEvil.checked==true){

 descrip += document.myForm.chkEvil.value;

 descrip += ", ";

 } // end if

 if (document.myForm.chkGoofy.checked==true){

 descrip += document.myForm.chkGoofy.value;

 descrip += ", ";

 } // end if

 if (document.myForm.chkDysfunc.checked==true){

 descrip += document.myForm.chkDysfunc.value;

 descrip += ", ";

 } // end if

 if (document.myForm.chkWacky.checked==true){

 descrip += document.myForm.chkWacky.value;

 descrip += ", ";

 } // end if

 //story += "descrip: \t" + descrip + "\n";

 //get sound

 for (i = 0; i <= 3; i++){

 if (document.myForm.optSound[i].checked == true){

 sound = document.myForm.optSound[i].value;

 } // end if

 } // end for loop

 //story += "sound: \t" + sound + "\n";

 //get body part

112
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 var theSelect = document.myForm.selBody;

 var theOption = theSelect[theSelect.selectedIndex];

 part = theOption.value;

 //story += "part: \t" + part + "\n";

 story = "One day, a person named " ;

 story += person;

 story += " was walking down the street. Suddenly, ";

 story += person;

 story += " heard an awful, ";

 story += descrip;

 story += "mysterious ";

 story += sound;

 story += " sound. ";

 story += person;

 story += " looked around and saw that the ";

 story += sound;

 story += " sound was coming from a ";

 story += vehicle;

 story += " careening madly down the street. ";

 story += person;

 story += "'s fear turned to terror as "

 story += person;

 story += " realized that the ";

 story += vehicle;

 story += " was driven by none other than the evil Super-";

 story += animal;

 story += ". Once an ordinary ";

 story += animal;

 story += ", it had befallen a strange transformation after ";

 story += "being dropped in a vat of nuclear waste. ";

 story += "Super-"

 story += animal;

 story += " continued to taunt ";

 story += person

 story += " with the horrible ";

 story += sound;

 story += " noise, but ";

 story += person;

 story += " was unconcerned. \"You can't bother me, Super-";

 story += animal;

 story += "! I know how to turn the other ";

 story += part;

C
h

a
p

te
r 5

A
d

v
a
n

c
e
d

 M
a
d

 L
ib

: U
s
in

g
 th

e
 O

t h
e
r F

o
rm

 E
l e

m
e
n

ts

113 story += "!\" \nThe End."

 document.myForm.txtStory.value = story;

} // end makeML

The program has very little that is new.

As a program gets large, it becomes more important to document carefully what is
happening inside the program. Note the comments that explain what each part of the
code is supposed to be doing. It’s also a good idea to use vertical space (that is, blank
lines) to separate parts of the code from each other.

I made all the variables necessary for the story. The only new variable is the descrip
variable, which did not exist in the original story.

TABLE 5.1 OBJECTS AND PROPERTIES USED FOR INPUT

Object.property Description Example

Checkbox.value Returns the value associated theVar = myCheck.value;

with a specific check box
object (defined in HTML).

Checkbox.checked Returns true or false if (myCheck.checked){

depending on whether the theVar = myCheck.value; }

box is currently checked. // end if

Radio[i].value Returns the value associated for(i=0; i <5; i++){

with a specific radio button theVar = myRadio[i].value;

object (defined in HTML). } // end for loop

Radio buttons are usually
defined in an array.

Radio[i].checked Returns true or false for(i=0; i <5; i++){ if

depending on whether the (radio[i].checked){

radio button is currently theVar = myRadio[i].value;

checked. Radio buttons are } // end if } // end for

usually defined in an array. loop

Selection. Returns the index of alert ("you chose option #

whichever option is currently " + mySelect.

selected. selectedIndex);

selectedIndex

Selection[i] Returns the ith option in myOption = mySelect[3];

the array.

Option.value Returns the value of a alert (myOption.value);

specified option (usually
called as part of an array).

114
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

It is very easy to get values from ordinary text boxes, so I extracted values from the text
boxes first and copied them all to the appropriate variables.

To get a value for the descrip variable, I needed to evaluate all the check boxes. I checked
whether each check box’s value was true; if the value was true, I copied the check box’s
value to the descrip variable.

Take a careful look at the following line:

//story += "descrip: \t" + descrip + "\n";

The line is commented out, but it fulfills a very useful purpose. As I was testing the
program, I wanted to be sure that the program was generating the value of the
descrip variable correctly. I didn’t want to worry about all the string concatena-
tion until I was sure that the variables were right, so I just wanted a simple version
of the story that would just output the correct values. This line is part of that simple
version that I used for debugging. I commented it out when I finished the debugging.
However, I didn’t remove it completely, because I might want it back if I find some-
thing else is going wrong. This kind of feedback line makes a great debugging tool.

I got values for the sound and the body part by using variations of exactly the same
code that you saw earlier in this chapter. To reuse the code, all I had to do was change
a few variable names. This is a very good strategy.

I built the story just as I did for the original Mad Lib program, with a series of string
concatenations. One neat trick is to embed the descrip list inside another list so that
I don’t have to worry about whether a particular element needs a trailing comma.

Summary

In this chapter, you learned much more about integrating HTML form elements into
JavaScript. You got a feel for several of the main elements in GUIs, including check
boxes, radio buttons, and selection objects. You also learned general strategies for get-
ting values from each of these elements in your JavaScript code. In the next chapter,
you will look at some new ways to send output to the user.

E X E R C I S E S

1. Build a version of the Number Guesser program that uses radio buttons for input instead

of text fields.

2. Create a prototype order form that involves all the screen elements that you have learned

about so far. Have a text area return a summary of the information on the form.

3. Write a Rock Paper Scissors game using form elements for input.

TRICK

TE
AM
FL
Y

Team-Fly®

6

I
n this chapter, you will add the ability

to use HTML code itself as a form of output.

Up to now, all your output has been

through text areas. Although this use of text areas

is reasonably straightforward, it is limited. You will

learn how you can use HTML itself as an output

medium. Specifically, you will explore how to do

the following:

• Incorporate JavaScript and HTML frames

• Write code that writes to another frame

• Generate external windows

• Control the behavior and appearance of

external windows

• Write to external windows

• Generate graphic images for games

• Incorporate graphics in a simple game

Petals around
the Rose: Dynamic

Output

C H A P T E R

116
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Project: Petals around the Rose

The game that you will write in this chapter is based on an old dice game. It is actually
more like a puzzle. When played by humans, one person rolls five dice and asks “How
many petals around the rose?” There is a specific pattern to the correct answers. The
game turns out to be remarkably simple, but it can take you some time to figure out
the solution. Figures 6.1 through 6.4 show the game’s interface.

FIGURE 6.1

The Petals around
the Rose program

opens in two
frames, with a form
on the top and five
dice on the bottom.

FIGURE 6.2

When the user asks
for help, a new

window pops up.

C
h

a
p

te
r 6

P
e
ta

l s
 a

r o
u

n
d

 th
e

R
o

s
e
: D

y
n

a
m

ic
 O

u
tp

u
t

117

The game introduces a lot of new elements. It is the first game in this book that relies
heavily on graphics. It also is the first game that integrates at least some of the output
directly into the Web page itself, without using a text area or alert statement. The
game also introduces a pop-up help screen, which is implemented as a second Web
page. To build this game, you will need to spend some time on each of these new
elements. Fortunately, the game itself is reasonably easy to build once all the pieces
are in place.

FIGURE 6.3

After the user clicks
the OK button, the

computer
determines whether

the guess was
correct.

FIGURE 6.4

Finally the user has
figured out the

pattern.

118
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Generating Output in
Frames

The first skill to master is to generate a page that
can write HTML on the fly. This is a very important
skill, because HTML is a very expressive language.
If you want to incorporate graphics into your pro-
grams, or have your program repeatedly build pages
on-the-fly, you will need HTML, because it just isn’t
possible to do these things well with the techniques
that you’ve learned so far.

As you might remember from Chapter 4, you can
use the document.write() method to write HTML to
a document. However, this method has a significant
drawback: It does not allow you to write to a docu-
ment after it finishes loading to the browser. This is
a big problem, because you cannot run functions
until the browser has finished loading the page.

Creating the HTML Frame Tester Program

It would seem impossible to write functions that can generate Web pages, but there is
a loophole. Take a look at the Frame Tester program shown in Figures 6.5 and 6.6.

The Frame Tester program is a tool for teaching and practicing HTML. When you’re
learning HTML, you can type any code into the text area, click the button, and see the
results. You don’t even need a text editor.

The secret is that the input and output happen in two completely different pages. The
form with the text area, the button, and the function is in the left side of a frameset,

IN THE REAL WORLD

Most Web applications involve

some sort of dynamic interac-

tion with the screen. Dialog

boxes are ugly and interrupt

the flow of the program. The

capability to generate output

dynamically is critical to any

professional Web application.

The techniques in this chapter

that allow you to generate

HTML in a JavaScript function

and display HTML in a separate

frame or window are useful in

any kind of Web application.

FIGURE 6.5

The left side of the
page has a text
area filled with

HTML code.

C
h

a
p

te
r 6

P
e
ta

l s
 a

r o
u

n
d

 th
e

R
o

s
e
: D

y
n

a
m

ic
 O

u
tp

u
t

119

and the right side is rebuilt by the function. Creating this program is not as compli-
cated as it might sound.

Building the Frames

Perhaps it will be helpful to review quickly frames in HTML. As you recall, a frameset
involves a number of documents. Here’s the source of the main page in the Frame
Tester program. The file name is ftMas.

<html>

<head>

<title>HTML Tester - Frame version</title>

<frameset border = 0

 cols = "50%, 50%">

 <frame src = "FrameTester.html">

 <frame src = "blank.html"

 name = "frameOutput">

</frameset>

</html>

The page has no body area, only a head. The page contains a frameset element with
two frames. The first frame contains the FrameTester.html page, and the second is set
to blank.html. Note that I set the page to hide the frame border (border = 0). Such
hiding is common when you are working in JavaScript if you want the results to look
like one page. I have named the second frame frameOutput. It is especially important
that you name frames that will handle output if you’ll be working with the frame
through JavaScript. The blank.html page is simply an empty page that I use to initial-
ize framesets.

FIGURE 6.6

When the user
clicks the Show
Page button, the

code in the text area
is used to build a
new page on the

right side.

120
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Writing to a Second Frame

The HTML code in FrameTester.html is very standard. As usual, the JavaScript will come
later.

<body>

<center>

<h1>Frame Tester<hr></h1>

<form name = "myForm">

<textArea name = txtInput

 rows = 10

 cols = 30>

<html>

<head>

<title>practice</title>

<body bgColor = "lightblue">

<h3>practice page</h3>

</body>

</html>

</textarea>

<input type = "button"

 value = "show page"

 onClick = "buildPage()">

</form>

</center>

<hr>

</body>

The HTML code simply sets up a text area and button. Note that the browser does not
directly interpret the code between the <textarea> and </textarea> tags as HTML
code, but simply as the text inside the text area. The button triggers the buildPage()
function. Here is how that function looks:

function buildPage(){

 // Frame Tester

 // Andy Harris

 // Demonstrates how to write HTML to another frame

 var theCode = document.myForm.txtInput.value;

 var theDoc = window.parent.frameOutput.document;

 theDoc.open();

 theDoc.write(theCode);

 theDoc.close();

} // end buildPage

C
h

a
p

te
r 6

P
e
ta

l s
 a

r o
u

n
d

 th
e

R
o

s
e
: D

y
n

a
m

ic
 O

u
tp

u
t

121The first line gets the text from the text area and copies it to the theCode variable. The
second line is a little trickier:

var theDoc = window.parent.frameOutput.document;

This line also creates a variable, but this variable is a reference to the document in the
frameOutput frame. When a page has multiple frames, it becomes necessary to refer to
the frameset itself. In this instance, I did so by adding a reference to window.parent.
frameOutput is the name of the specific frame, and it has a document object. So,
window.parent.frameOutput.document is a reference to the document object of the
frameOutput frame of the browser’s frameset.

This whole naming scheme seems pretty unwieldy, but it isn’t really all that new.
Think of the children’s song The Green Grass Grows All Around. That song describes
“a wing on a bird in a nest on a branch on a tree in a hole in the ground.” If it helps,
you can think of the document syntax in the same way.

The window.parent.frameOutput.document syntax is very ugly and difficult to work
with. I copied the whole mess over to a variable called theDoc so I wouldn’t have to
worry about typing that long reference correctly anymore.

Once I have a reference to the output document, I can invoke its methods to manipu-
late it. The call to theDoc.open() clears out any existing contents in the document and
prepares the document for new text. theDoc.write(theCode) simply writes the con-
tents of theCode to the page. Finally, the call to theDoc.close() signals the browser
that the page is complete and that the browser can begin rendering the document.

You cannot count on any document.write() output being visible to the user until
you have closed the document. Don’t forget to close the document with the close()
method. This method is the equivalent of the signal sent to the browser that tells it
that the document is done loading. If you don’t close the document, there is no guar-
antee that all the elements will be shown in the right places, or at all.

All it takes to write output to another frame is some careful planning. Just set up the
frameset, making sure to name any frames that will contain output. Then, build a
function that assembles a Web page in a string variable. Make a reference to the frame,
then open the frame, write to it, and close it.

If you simply want to load a page into a frame, set a value to the document’s
location.href property. For example, the following line of code would launch
my main page in the frameOutput frame from a function:

theDoc.location.href = "http://www.cs.iupui.edu/~aharris"

This technique can be useful when the page that you need is already complete and
available on the Web. You might use the technique to create a Help screen or to load
different parts of a complex program onto the main frame of your page.

TRICK

TRAP

HINT

122
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Displaying Output in Separate Windows

Although it is nice to be able to write HTML code into another frame, you might
instead wish to have another window pop up altogether. This can be done easily
in JavaScript.

Showing an Existing Page

You can easily create a new window to display an existing page. This is exactly how I
implemented the Help screen in the Petals around the Rose game. The help screen is
simply an HTML page. Figures 6.7 and 6.8 show the Show Help program, which pops up
that page into a new window.

The ability to pop up a page like this can be very useful, because it displays output
without disturbing the current page layout.

The HTML code for the Show Help program is quite predictable (it consists of a
button that calls the showHelp() function). You may want to look at this program
on the CD-ROM.

Here is the code for the showHelp() function:

<script>

function showHelp(){

 // Show Help

 // Andy Harris

 // demonstrates opening an HTML page in a new window

 var winHelp = window.open("petalHelp.html",

 "pHelp", "width=450,height=450,resizable");

 winHelp.focus();

} // end showHelp

</script>

The code is very short, but very powerful. The first line generates a variable called
winHelp. It invokes the window.open() method, which simply opens a new window.
The method takes three parameters. The first is the name of the file to load. The sec-
ond parameter is the HTML name for this document. You would use the HTML name if
you had HTML hyperlinks to the document in the new window. (Generally you will not
have such hyperlinks, but you will need to specify a value for this parameter anyway.)
The last parameter is a list of features for the new window. Table 6.1 lists the most
important features that you might want to use.

This table includes only attributes that are common to both of the major browsers,
Netscape Navigator and Microsoft Internet Explorer. A few more attributes are avail-
able that work in only one browser or the other, but those listed in Table 6.1 should
serve most of your purposes.

HINT

HINT

C
h

a
p

te
r 6

P
e
ta

l s
 a

r o
u

n
d

 th
e

R
o

s
e
: D

y
n

a
m

ic
 O

u
tp

u
t

123

To determine the features of your new window, create a string that contains a list of
the features that you want, separated by commas. For example, if you want a 300×300
window with no menus or toolbars, you would use this string:

height=300,width=300

To add the standard toolbar, you would instead use this string:

height=300,width=300,toolbar

FIGURE 6.8

The user asks for
help by clicking

the button, and a
page appears.

FIGURE 6.7

The Show Help
program is just a

page with a button.

124
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Note that there are no spaces between values. Also
note that only those elements that you include in
the list will be added. If you do not specify a fea-
ture string, the new window will have exactly the
same features as the window that contains the
JavaScript code.

There’s one more line of code in the function:

winHelp.focus();

This line tells the new window to seek the focus as
if the user has clicked it. The first time that a win-
dow is created, it automatically has the focus; how-
ever, the user might call the Help screen and then
pull the main program to the foreground, thus
obscuring the Help screen. Without the focus()
command, the next time that the user clicks the
Show Help button, the page will be updated, but it
will remain in the background. The focus() com-
mand ensures that the Help window is brought to
the forefront.

Building the Window Tester Program

You can combine the page-writing features of the HTML tester with the ability to open
a new window. Figures 6.9 and 6.10 show another version of the HTML tester. This
version creates a new window to which the browser writes the Web page.

TABLE 6.1 COMMON ATTRIBUTES OF THE FEATURE PARAMETER

Attribute Description Example

height How high the window will be. height=200

width How wide the new window will be. width=200

location Whether the location toolbar will be shown. location

menubar Whether the menubar will be shown. menubar

resizable Whether the user will be able to resize the window. resizable

scrollbars Whether scrollbars will be present (if needed). scrollbars

status Whether the status bar will be present. status

toolbar Whether the standard toolbar will be present. toolbar

directories Whether a directory toolbar will be present. directories

IN THE REAL WORLD

You might think that a page with

no toolbars is kind of useless,

but it is actually a very common

device. When you don’t include

menus or toolbars, the user

doesn’t know that the page is

actually another browser win-

dow. Instead, the user gets the

impression that your program

popped up a window. Often,

this is exactly the impression

that you want to give the user.

Of course, the page that you

pop up can contain any HTML

and JavaScript elements that

you want.

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r 6

P
e
ta

l s
 a

r o
u

n
d

 th
e

R
o

s
e
: D

y
n

a
m

ic
 O

u
tp

u
t

125

The program’s code is mainly just a combination of the Frame Tester and the Show
Help programs. It involves only one file. Here’s the HTML code of that document:

<body>

<center>

<h1>Window Tester<hr></h1>

<form name = "myForm">

<textArea name = txtInput

 rows = 10

 cols = 30>

FIGURE 6.9

This program looks
just like the Frame
Tester, but it does

not have any frames.

FIGURE 6.10

When the user
clicks the Show
Page button, the

HTML is printed to a
new window.

126
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

<html>

<head>

<title>practice</title>

<body bgColor = "lightblue">

<h3>practice page</h3>

</body>

</html>

</textarea>

<input type = "button"

 value = "show page"

 onClick = "buildPage()">

<input type = "button"

 value = "close window"

 onClick = "closePage()">

</form>

</center>

<hr>

</body>

As you can see, this HTML code is just like that of the code page of the Frame Tester
program. I added a Close Window button, but otherwise this HTML is much like the
Frame Tester page. The JavaScript code is also similar to that in the Frame Tester, but it
includes some new instructions for making a window.

var theWindow;

function buildPage(){

 // Window Tester

 // Andy Harris

 // Demonstrates how to write HTML to a new window

 theWindow = window.open("", "practice", "height=300,width=300");

 var theCode = document.myForm.txtInput.value;

 var theDoc = theWindow.document;

 theDoc.open();

 theDoc.write(theCode);

 theDoc.close();

 theWindow.focus();

} // end buildPage

function closePage(){

 theWindow.close();

} // end function

C
h

a
p

te
r 6

P
e
ta

l s
 a

r o
u

n
d

 th
e

R
o

s
e
: D

y
n

a
m

ic
 O

u
tp

u
t

127This code has a few features that you haven’t seen yet in this book. For the first time,
more than one function is defined in the page. You can in fact define as many functions
as you want. In this case, I made a different function for each button. Doing so is a
reasonably common practice. Notice also that I defined one of the variables outside of
either function. This is because both of the functions need access to the variable that
refers to the new window. I’ll talk a little more about how variables and multiple func-
tions are related shortly. For now, make sure that you understand the rest of the code.

Opening a New Window

The buildPage() function is much like the buildPage() function in the Frame Tester
program. Notice that there are two different calls to the open() method. The first opens
up a new window by invoking the open() method of the window object.

theWindow = window.open("", "practice", "height=300,width=300");

The second call opens the document for writing.

theDoc.open();

The window object and the document object both have
open() methods, but the meaning of the term open
is different.

After opening the document, I wrote the HTML code
to it, closed it, then set the focus to the new win-
dow. Note that I closed the document, which tells
the browser that the document has finished load-
ing and can be rendered.

Closing a Window

The user triggers the closePage() function by click-
ing the Close button. The function is simple once
you understand polymorphism. It invokes the
close() method of the window created by
buildPage(). The close() method of a window ob-
ject makes the window disappear.

Designing the Petals
around the Rose Game

The Petals around the Rose game that you saw at
the beginning of the chapter uses the techniques
of this chapter to make a much more impressive
front end for the dice games that you started mak-
ing in Chapter 2. In addition, it is the first program
in the book that takes advantage of graphics.

IN THE REAL WORLD

It might seem disconcerting that

window.open() is different

from document.open(). It is

completely legal for different

kinds of objects to have meth-

ods with the same name as well

as similar but not identical be-

havior. This demonstrates a con-

cept of object-oriented program-

ming called polymorphism.

Polymorphism can be defined in

a couple of ways, but, basically,

it means that objects can adapt

the way that they perform cer-

tain functions.

While the term open is reason-

ably universal, the way that

different objects invoke the

method may be different. Think

about how you would open a

garage door, a treasure chest,

and a birthday present. You

open all these objects, but the

details of opening are different

in each case.

128
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

If you haven’t played the Petals around the Rose game yet, you should do so before
reading the rest of this chapter. The next section will reveal the secret of the game,
which might spoil your fun. Try the game out first, then come back and read about
how it was made.

Understanding the Overall Design Strategy

Here’s the spoiler for the Petals around the Rose game: The center dot of the die is the
rose, and any dots around it are petals. So, only the values 1, 3, and 5 have a rose. The
value 1 has no petals, 3 has two petals, and 5 has four petals. The program determines
the number of petals around the rose by counting how many total petals are around
the rose in the currently visible set of dice. If this description doesn’t clarify the
program’s scheme, try running the game for a little while and you will understand.

The game is all housed inside a frameset, in a page called petalMas.html. It divides the
main page into two sections. The top section has the user interface, with a text box and
a couple of buttons. This page contains all the JavaScript code. The bottom of the
frameset shows five dice (and the winning screen). Usually, the code in the top frame
generates the HTML code in the bottom frame. The bottom frame does not contain any
code. The program also features a Help screen, which is implemented as a new browser
window. Here is the HTML for the frameset (petalMas.html):

<html>

<head>

<frameset rows = "30%, 70%"

 border = 0>

 <frame src = petals.html>

 <frame src = "begin.html"

 name = "output">

</frameset>

</head>

</html>

The top frame contains petals.html, which has all the JavaScript code. The bottom
frame is called output. It will usually contain very simple HTML, with tags for
five dice.

The HTML code in the top frame sets up the user interface. The code is as follows:

<body bgcolor = "tan">

<center>

<h1>Petals around the rose<hr></h1>

<form name = "myForm">

How many petals around the rose?

<input type = "text"

 name = "txtGuess">

<input type = "button"

TRAP

C
h

a
p

te
r 6

P
e
ta

l s
 a

r o
u

n
d

 th
e

R
o

s
e
: D

y
n

a
m

ic
 O

u
tp

u
t

129 value = "OK"

 onClick = "rollEm()">

<input type = "button"

 value = "help"

 onClick = "helpScreen()">

</form>

</center>

</body>

As you can see, the form is very basic, with a text box and two buttons. Each button
calls a different function.

Creating Graphics for JavaScript Games

The most obvious new feature in the Petals around the Rose game is the addition of
graphics. Images add tremendously to the feel of a program. By learning a few tricks,
you can add really great graphics to your games even if you aren’t a terrific artist.

You can add images in a couple of ways. First, you can use images that somebody else
has generated. There are numerous archives of images on the Web that depict nearly
anything that you might want in a game. It is very easy to use any image you can see on
the Web. Simply right-click on the image (or, if you are using a Macintosh, click and
hold down on the image); a menu then pops up. One of the options allows you to save
the image locally.

However, just because you can use an image easily
doesn’t mean that you should do so. Many images
available on the Web are the intellectual property
of somebody, and might be copyrighted material.
Now that you are producing intellectual property of
your own, you should be especially sensitive to the
rights of other authors. You should get permission
from the original author of any kind of work before
you use it in your own projects.

You can also buy the services of a professional
artist. For commercial-quality games, this may be
required. You can get very good results from a
professional artist, but they will be expensive

Finally, you can generate graphics on your own. Although I have an art disability, I
have found this to be the best option for a number of reasons. First, because you are
the images’ creator, you will have no problem obtaining permission for them. Second,
modern image-creation programs do a lot to help you make at least passable graphics.
Third, the specific needs of game art are a little different from those of other kinds of
programs, and nobody will know the requirements of your game better than you.

Even if I hire a professional artist to create images for me, I still usually design some
crude mock-ups of my own, just to illustrate what I want the artist to accomplish.

IN THE REAL WORLD

Although image manipulation is

especially important in game pro-

gramming, the ability to include

corporate logos, product images,

or other graphical information

can be an important asset to your

Web site.

130
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Making the Dice

Figure 6.11 shows the tools that I book’s used to build the dice.

I used The GIMP (included on the CD-ROM) as my main image-editing tool. It is not in a
final release, but it is free and exceptionally powerful, so I don’t mind the fact that it
crashes once in a while. I started by making a rectangle. I then inserted a texture onto
the background of the rectangle. Using a special tool called the bump map filter, I
then generated the three-dimensional effect.

A bump map is a gray-scale image. When you apply the bump map to another image,
all the dark areas are interpreted as concave, and the white areas are left alone.
The graphics editor then applies a shading effect. The effect is a very realistic-
looking texture. I actually applied two bump maps to the die images, using one to
round off the die’s edges and the other to create the depressions for the dots.

Of course, you can just paint the dots if you prefer. Notice that I drew all the dots first.
I saved this file, and then erased dots as needed to get each particular face of the die.

Finally, I saved the images as die1 through die6. You need to save your image files in a
jpeg or gif format. In general, a photorealistic image works better as a jpeg, and an image
created from scratch (or one that requires transparency) is better as a gif file. For this
particular set of images, it doesn’t matter too much which format you choose. It is im-
portant to make your image files as compact as possible, because they will all have to be
downloaded. If the downloading takes too long, the user will never play your game.

FIGURE 6.11

Using The GIMP, I
create a master die.

HINT

C
h

a
p

te
r 6

P
e
ta

l s
 a

r o
u

n
d

 th
e

R
o

s
e
: D

y
n

a
m

ic
 O

u
tp

u
t

131Making the Cartoon Figures

Although the dice are very nice, what really gives this game its tone is the cartoon
figure. The figure shows up originally in the Help screen and when the player wins.
Caricatures such as this are terrific for games for a number of reasons. First, they are
reasonably easy to learn how to draw. Also, they are very forgiving. The image is a
cartoon, so nobody expects it to be perfect. My base image looks like Figure 6.12.

The guy in the drawing is a very straightforward cartoon. I stuck with a set of features
I knew I could replicate: tall skinny head, short hair, goofy smile, and bushy eyebrows.
(Any resemblance to a certain programming author is purely coincidental.)

I drew the image in black on a transparent background. This made the image easier to
draw, because no shading was involved. Also, the transparent background makes it
easy to reuse the image in other programs. Finally, an image with a transparent back-
ground integrates easily into your page.

If you know how to use layering tools in your graphics editor, you can put each feature
(eyes, mouth, nose, and so on) in another layer so that it is reasonably easy to modify
one feature without changing the rest. This gives you an easy way to generate, for
example, a frowning version of the figure when the player loses.

I concentrated on the head but deliberately gave myself room on one side of the image
for a hand. I then saved this image in the gif format, because the gif format supports a
transparent background.

For the Petals around the Rose program, I decided not to use the original image at all,
but instead made two variants. The first is the guy holding a rose, as shown in Figure
6.13. I use this image in the Help screen.

FIGURE 6.12

This is the basic
form of the

cartoon image.

132
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

For the winning screen, I decided to go for sort of a tango flavor and put the rose in the
guy’s mouth, as shown in Figure 6.14.

As you can see, a little imagination and some clever use of the tools in a graphics
editor can amplify even poor drawing skills enough to achieve very usable images.

FIGURE 6.13

The Help screen
shows the man
holding a rose.

FIGURE 6.14

The winning screen
shows the man with
a rose in his mouth.

C
h

a
p

te
r 6

P
e
ta

l s
 a

r o
u

n
d

 th
e

R
o

s
e
: D

y
n

a
m

ic
 O

u
tp

u
t

133Generating the Dice-Rolling Routine

The functions in petals.html do all the real work. One function is called rollEm(). It is
activated every time that the user clicks the OK button. The pseudocode for the rollEm()
function is as follows:

get the user's guess from the text area

If the user was correct,

 Send the "winner" screen to the output variable

If the user was incorrect,

 Tell the correct answer in a dialog box

 Clear the output frame

 Do this five times:

 Get a random value between 1 and 6

 Add the appropriate graphic to the output variable

 End of the loop

End If

Write out the output variable to the bottom frame

This kind of plan is called pseudocode. The number one mistake that beginning (and
advanced) programmers make is to write code without a plan. Now that your pro-
grams are starting to get longer, they are going to be harder to keep track of. You
should write out in English the basic steps in your program before you even open
your editor. Once you have a list of steps, it’s reasonably easy to convert the
pseudocode into actual JavaScript code. It is a really great habit to write out your
steps as I have done here. It can prevent those moments when you are staring at a
blank screen, trying to figure out what to do next.

Checking User Input

The first task of the rollEm() function is to get the user’s guess. I do this with a text
box. Here’s the code for the first part of the function:

var numPetals = 12; //stores the correct answer

function rollEm(){

 // Petals around the rose

 // Andy Harris

 // An adaptation of an old dice game

 // requires that a document named "output" is available

 var theSource = "";

 var roll = 0;

 var guess = 999; //stores the user's guess

 //check user's guess

 guess = eval(document.myForm.txtGuess.value);

TRICK

134
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

This program declares one variable outside any function. The variable numPetals con-
tains the current correct number of petals. The starting value of numPetals is set to 12,
because the default page in the bottom frame has the answer 12. Whenever a new set
of dice is generated, the program changes the value of numPetals appropriately. The
numPetals variable is declared outside the function because the program needs to pre-
serve its value even when the function is not running. Remember that any variables
declared inside a function do not preserve their values when the function has fin-
ished. The numPetals variable will be defined during one run of the function, and the
value is needed the next time that the user clicks the OK button, so this variable needs
to be declared outside the function.

The function begins with the normal comments and generates a number of more tra-
ditional variables. theSource is a string variable that will contain the source code of
the output frame. I find it easier to compile an HTML page into a long string, then
write that string to the page in one command. theSource is the string variable that
contains that page.

The variable roll is an integer that contains the current randomly generated die
roll. One more variable, guess, is used to hold the user’s guess. Notice that I initial-
ized guess to 999, which is guaranteed to be incorrect. I did that to ensure that the
program does not start with the winner screen so that the user gets at least one
chance to guess the answer.

The following line pulls the user’s guess from the text box, evaluates it into a numeric
variable, and assigns it to the variable guess:

guess = eval(document.myForm.txtGuess.value);

Dealing with the Winning Position

The program then contains the following if structure:

if (guess == numPetals){

 theSource += "<html>";

 theSource += "<body bgColor = tan>";

 theSource += "<center>";

 theSource += "<H1>YOU WIN!!!</H1>";

 theSource += "";

 document.myForm.txtGuess.value = "";

 } else {

 //player is incorrect

 } // end if

The if statement checks whether the player has guessed correctly. If the user’s guess
is the same as the previously stored value of numPetals, the function creates the
HTML for the winning page and stores that HTML code in the theSource variable. The
following line resets the text box to blank, to remove whatever value the user last
had in the text box:

 document.myForm.txtGuess.value = "";

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r 6

P
e
ta

l s
 a

r o
u

n
d

 th
e

R
o

s
e
: D

y
n

a
m

ic
 O

u
tp

u
t

135Generating the Dice Page

A bit more work is involved if the user’s guess was incorrect, because the program will
have to generate a new puzzle. Fortunately, most of this process should be familiar to
you, since it uses a number of techniques from Chapter 2. Here is the code:

if (guess == numPetals){

 // user got it correct

 } else {

 alert("there are " + numPetals + " petals around the rose.");

 numPetals = 0;

 document.myForm.txtGuess.value = "";

 theSource += "<html>";

 theSource += "<body bgColor = black>";

 theSource += "<center>";

 theSource += "

";

 for (i = 1; i <= 5; i++){

 roll = Math.floor(Math.random() * 6) + 1;

 switch (roll){

 case 1:

 theSource += " ";

 break;

 case 2:

 theSource += " ";

 break;

 case 3:

 theSource += " ";

 numPetals += 2;

 break;

 case 4:

 theSource += " ";

 break;

 case 5:

 theSource += " ";

 numPetals += 4;

 break;

 case 6:

 theSource += " ";

 break;

 default :

 theSource += "ERROR!!";

 } // end switch

 } // end loop

 } // end if

136
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

If the user did not guess correctly, the first order of business is to inform the user what
the correct answer was. I decided to use an alert statement, because that would hold
the rest of the code’s processing until the user clicked the button. This means that the
user can still see the last puzzle while looking at the correct answer. As soon as the
user clicks the OK button in the alert box, the program puts the new set of images in
the output frame.

I then reset the value of numPetals to 0, because the program will determine the ap-
propriate value of the variable as it generates the screen.

Next I generate a for loop, because I want five die on the screen. The procedure for
generating each is identical. I use the algorithm from Chapter 2 for generating a num-
ber from 1 to 6, and then use a switch structure to add the appropriate image to the
page. Take a careful look at the code for case 3 and case 5. These are the only dice that
have “petals around the rose,” so whenever a 3 is generated, I add 2 to numPetals.
Whenever a 5 is generated, I add 4 to numPetals. I put a default case in the switch
structure, even though it should never occur.

I designed my algorithm so the only possible values should be 1 to 6, but it is pos-
sible that there is a mistake in my algorithm that will occur in very rare cases (What
if the Math.random turns out to be exactly 0?).

Finally, I added code to close up the HTML page when the loop is finished, then wrote
the value of theSource to the output frame.

Making the Online Help

The Online Help is simply a Web page that I already made. To make it appear, I use the
same code as in the Show Help program from earlier in this chapter. Here’s the version
in the Petals around the Rose program:

function helpScreen(){

 //pop up a new window with a help screen in it

 //requires petalHelp.html

 var helpWindow = window.open("petalHelp.html", "pHelp",

 "height=450,width=450");

 helpWindow.focus();

} // end helpScreen

The function generates a new pop-up window, then sets the focus to that window.
Nothing else is necessary.

Table 6.2 provides you with an easy reference for the new syntax used in this chapter.

TRAP

C
h

a
p

te
r 6

P
e
ta

l s
 a

r o
u

n
d

 th
e

R
o

s
e
: D

y
n

a
m

ic
 O

u
tp

u
t

137

Summary

In this chapter, you looked at how to generate output external to the function’s own
page. Specifically, you learned how to write to another frame, and how to write to a
new browser window that you created through the code. The benefit of external out-
put is that you can build an entire Web page as the output of your program, which
enables you to incorporate any HTML features into your program’s output. You exam-
ined the object-oriented programming concept of polymorphism, and you took a first
look at the special characteristics of graphics for JavaScript games. Finally, you got a
look at a reasonably complete game and saw many of the features from earlier chap-
ters put together to build one program.

TABLE 6.2 SYNTAX SUMMARY

Object.property Description Example

window.parent. Refers to the document window.parent.frameOutput.

framename.document object of the frameName document.write

frame. ("I'm a frame");

document.open() Opens up a document for window.parent.frameOutput.

writing. document.open();

document.close() Signals that nothing else window.parent.frameOutput.

will be written to document.close();

the document, and that
the browser can render
the document.

window.open Opens a new window. myWindow = window.open("",

(url, targetName, The starting address "goofyWin", "height=400,

properties) url. targetName refers to width=400,resize");

the name of the window if
you are using the window
as an HTML target.
You describe window
characteristics in
properties.

windowName.close() Destroys the window myWindow.close();

called windowName.

windowName.focus() Pulls the window called myWindow.focus();

windowName in front of all
other windows.

138
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

E X E R C I S E S

1. Design graphics for the Number Guesser game so that rather than printing words, the

program provides the user an up arrow for “too low,” a down arrow for “too high,” and a

medal or certificate when the user guesses correctly.

2. Write online help for one of your earlier programs and use a pop-up window to display the

text to the user.

3. Make a graphical version of a Rock, Paper, Scissors game. For each round, the computer

will guess and display a rock, paper, or scissors symbol, and the user will have to input

some value to indicate rock, paper, or scissors. The program should then display the val-

ues as graphics and determine a winner for the round. Scissors cut paper; paper covers

rock; and rock breaks scissors. Have the game continue indefinitely, with the program

keeping track of the number of rounds.

4. Write a program that deals a poker hand. Have it choose five values between 1 and 52,

and display a card corresponding to that value. You can use one of the many card deck

graphics available on the Web, or you can make your own.

7

I
n this chapter, you will use two of the

most powerful features of modern pro-

gramming. Image swapping is the ability

to change images dynamically. You will see how

these effects are used in traditional Web design

and how you can apply them to game development.

You will also learn one way that a computer pro-

gram can store and retrieve complex information:

lookup tables. The specific skills you will learn in

this chapter include:

• Using the DOM image object

• Changing an image with the .src property

• Using the onload, onMouseOver, and onMouseOut

event handlers

• Building arrays of variables and Making

two-dimensional arrays

Image Swapping
and Lookup Tables:

The Basketball
Game

C H A P T E R

140
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

The Project: The Basketball Game

Figures 7.1 through 7.3 show the Basketball program. The game enables the user to
play a crudely simulated game of basketball. The user controls five players that com-
pete against an (unseen) computer-operated opponent.

The interface has very few controls. The user controls the action by clicking the players
and the basket. The ball appears to move from one player to the next. A text box at the
bottom of the screen displays current information. The game goes to 21 points. As
simple as the game seems, it is surprisingly engaging.

FIGURE 7.2

A new screen
pops up with a

basketball court.

FIGURE 7.1

When the program
starts, it shows a

Help screen with a
Start Game button.

C
h

a
p

te
r 7

Im
a
g

e
 S

w
a
p

p
in

g
 a

n
d

 L
o

o
k

u
p

 T
a
b

le
s
: T

h
e
 B

a
s
k

e
t b

a
l l G

a
m

e

141

Swapping Images

You have already learned that it is difficult to change much in a Web page (besides
form elements such as text boxes) once it has finished loading. There is one very im-
portant exception to this rule. You can use JavaScript to change images on the fly.
Figures 7.4 and 7.5 show a program, Simple Image Swap, that demonstrates how you
can accomplish this.

FIGURE 7.3

The user clicks on a
player to pass, or on
the basket to shoot.

FIGURE 7.4

The Simple Image
Swap program’s

interface displays a
triangle in the larger

image, then three
other images with

buttons below them.

142
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

The HTML Code

The code behind the Simple Image Swap program is especially interesting, because it
illustrates three different ways that you can manipulate images through JavaScript. As
usual, you start with the HTML code:

<body>

<h1>Simple image swap</h1>

<form name = theForm>

<hr>

<table border = 1>

<tr>

 <td colspan = 3>

 <center>

 <img name = imgDisplay

 src = "triangle.gif"

 height = 100

 width = 100>

 </center>

</tr>

<tr>

 <td><img src = "triangle.gif"

 height = 50

FIGURE 7.5

When the user
clicks a button,

the corresponding
image shows up

in the larger
image area.

C
h

a
p

te
r 7

Im
a
g

e
 S

w
a
p

p
in

g
 a

n
d

 L
o

o
k

u
p

 T
a
b

le
s
: T

h
e
 B

a
s
k

e
t b

a
l l G

a
m

e

143 width = 50

 name = "imgTriangle">

 </td>

 <td><img src = "circle.gif"

 height = 50

 width = 50

 name = "imgCircle">

 </td>

 <td><img src = "square.gif"

 height = 50

 width = 50

 name = "imgSquare">

 </td>

</tr>

<tr>

 <td><input type = "button"

 value = "triangle"

 onClick = "showTriangle()">

 </td>

 <td><input type = "button"

 value = "circle"

 onClick = "showCircle()">

 </td>

 <td><input type = "button"

 value = "square"

 onClick = "showSquare()">

 </td>

</tr>

</table>

</form>

</body>

The page is a basic form with one button on it. The interface displays one large image
and several smaller ones. Note that each image has a name associated with it. Each
of the smaller images has a button underneath it. The onClick event of each button
calls a different function. As you will see, each of these functions uses a different
technique to display the image. I’ll show you the functions one at a time, so you can
see how they work.

144
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

The Triangle Technique

The code for the showTriangle() function is as follows:

function showTriangle(){

 window.document.imgDisplay.src = "triangle.gif";

} //end showTriangle

The code here is simplicity itself. Images are objects in the document object model. They
live right below the document. An image can be referred to as document.imageName
and have an src property, which can be read from and written to. If you assign a new URL
to the src property, the effect is to change the image on the page.

The size of the image on the screen can be something of a problem. If you expect to
change a particular image through JavaScript code, be sure that the HTML image
tag has height and width properties set. In fact, adding these properties to any HTML
image is a very good idea anyway, as it prevents a number of unpleasant surprises.

The Circle Technique

The code for the circle function is slightly different. Here’s how it is written:

function showCircle(){

 window.document.theForm.imgDisplay.src =

 window.document.theForm.imgCircle.src;

} // end showCircle

The code here is similar to the code in the previous function. There is one significant
difference: Instead of assigning a URL to the src property of imgDisplay, the function
copies the source property of imgDisplay from the source property of the circle image.
This particular approach is used to copy an image from one image on the screen to
another. This technique can be useful if you already have an image on the screen that
can be copied.

The Image Object and the Square

The showSquare() function relies on a different technique. Essentially, I created a new
object to hold an image, and I preset the image variable’s source to be the rectangle
image. Here is the code.

var imgObjectSquare = new Image(100,100);

imgObjectSquare.src = "square.gif";

function showSquare(){

 window.document.theForm.imgDisplay.src = imgObjectSquare.src;

} // end showSquare

First, I created the image object outside any functions, so that it is available to other
functions. When you create an image object, you use the new keyword and specify a
height and width for the image. After creating an image object, you can refer to its src
property as you would for any other image. This technique has one very important

TRAP

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r 7

Im
a
g

e
 S

w
a
p

p
in

g
 a

n
d

 L
o

o
k

u
p

 T
a
b

le
s
: T

h
e
 B

a
s
k

e
t b

a
l l G

a
m

e

145advantage: As you create the image object, it is not displayed on the page. Using this
approach, you can preload an image into a variable object and copy the src property
whenever you wish.

Using the MouseOver Events

Figures 7.6 and 7.7 show another version of the Simple Image Swap program. The
MouseOver Image Swap program has a couple of differences from the Simple Image

FIGURE 7.6

The MouseOver
Image Swap

program has no
buttons. Instead, the

main image
changes when the
mouse moves over
the smaller images.

FIGURE 7.7

When the mouse is
not over a particular

element, the
program simply
leaves the main

display area blank.

146
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Swap program. First, the page has no buttons! The main image changes when the user
moves the mouse over the smaller figures. When the mouse is not over a particular
element, the display reverts to blank.

Creating Images with Event Handlers

The lack of buttons is the most obvious new feature, but the code also introduces a
number of other improvements. First, take a look at the HTML code. The only part that
is different is that which surrounds the smaller images. All the images call exactly the
same function, so the key differences are embedded in the HTML code itself. The tri-
angle code follows; the code for the other images is all pretty much the same. Of course,
you really should look at the actual program on the CD-ROM that accompanies this
book.

…

<tr>

 <td><a href = "#dummy"

 onMouseOver = show("imgObjTriangle")

 onMouseOut = "document.imgDisplay.src = 'blank.gif'">

 <img src = "triangle.gif"

 height = 50

 width = 50

 name = "imgTriangle"

 border = 0>

 </td>

A couple of interesting features are apparent in this code. The essential problem is
this: You want the main image to change when the mouse moves over the triangle
image. It would be great if the image object had some sort of “the mouse is over me”
event. Unfortunately, images do not have any events at all. Web authors have devised a
clever way to work around this problem. Anchors (created with the <A> tag) have some
event handlers built into them. Here are the key event handlers of the anchor object:

TABLE 7.1 KEY EVENT HANDLERS OF THE ANCHOR OBJECT

Event Description

onClick The user clicks the anchor.

onDblClick The user double-clicks the anchor.

onMouseOver The mouse moves over the anchor.

onMouseOut The mouse moves off of the anchor.

C
h

a
p

te
r 7

Im
a
g

e
 S

w
a
p

p
in

g
 a

n
d

 L
o

o
k

u
p

 T
a
b

le
s
: T

h
e
 B

a
s
k

e
t b

a
l l G

a
m

e

147Note that other event handlers are possible, but those listed in the table are the most
commonly used, and they are proven to work well in both the major browsers. Use
online references to check for the existence of other event handlers.

The other interesting feature of the anchor tag is that it can surround images or text,
so if you want to apply an event handler to an image, you can simply surround the
image with an anchor tag and apply the events to the anchor.

In this particular situation, the URL used in the anchor’s href attribute is irrelevant—
you don’t really intend for the user ever to click the anchor, but just to move over it.
There are a number of ways to deal with this situation. You can simply point the
href attribute back to the file that contains the code. A more elegant solution (the
one I used in this code) is to build a named anchor in the current page and link to
that anchor. As long as the page all fits on the screen, the user will not notice the
jump to the anchor at all.

To pull off the illusion well, you need to make sure that the anchor isn’t obvious.
Setting the image’s border to 0 eliminates the blue border that would normally appear
when an image serves as a hyperlink. Notice that I added the onMouseOver event han-
dler. This calls a function that will change the image. I also added an onMouseOut event
handler. This second event handler changes the display image’s source to blank as
soon as the mouse exits the triangle image.

HINT

IN THE REAL WORLD

Several variations of this technique have become staples in the Web world recently. The most

prevalent of these is the MouseOver technique. No doubt you have seen many pages that use

the effect: When your mouse goes over a certain part of the screen, the particular word or

image changes color, swells, glows, or does something similar. To achieve this effect, you

attach both an onMouseOver and an onMouseOut event to the image. The code might look

something like this:

<a href = "http://www.whatever.com"

 onMouseOver = "document.theImage.src = 'glow.gif'"

 onMouseOut = "document.theImage.src = 'normal.gif'">

 <img src = "normal.gif"

 name = "theImage">

This code displays the glowing image whenever the mouse is over the anchor object. As soon

as the mouse exits the image and anchor, the onmouseOut event triggers the image to revert

to its default value. Note the nested single and double quotation marks.

148
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Writing JavaScript to Change the Images

Now that you know how to set up an image with an event handler, you need to look at
the code that will call it. Here’s the JavaScript code for the imgOver page:

<script>

//create the image objects

var imgObjSquare = new Image(100,100);

var imgObjTriangle = new Image(100,100);

var imgObjCircle = new Image(100,100);

//initialize the image objects

imgObjSquare.src = "square.gif"

imgObjCircle.src = "circle.gif"

imgObjTriangle.src = "triangle.gif"

function show(imgToShow){

 //receives image as a parameter

 //copy the value to the display image

 document.imgDisplay.src = imgToShow.src;

} // end show

</script>

Before starting the function, I created a series of image objects and initialized them.
The function code will refer to these image objects.

Using Parameters with Functions

It would have been reasonably easy to make a separate function for each image. The
code would be almost identical in every function, except that it would replace the
display image with a different value. Although it would be easy to build these func-
tions with the copy and paste features of your editor, experienced programmers often
try to find ways to avoid such code repetition. Imagine if you had written the code five
(or 500) times and then discovered that there was a problem. You would then have to
make five (or 500) changes. There is a better way.

The show() function is a little unique, because it contains a parameter. In most of the
programs in this book, you created functions with empty parentheses. The parameter
allows you to create a function that can work with a special value. By changing the
value sent to a function, you can make it operate on a number of different things.
You’ve already seen this many times in your programming career. Think about the
alert() function. It always pops up a message box with a message in it, but the value
in the parentheses determines the specific message. To specify a function that will
work with a parameter, just write a variable name in the parentheses when you define
the function. Then, when you call the function, specify a value. When the function is
running, the parameter variable will be automatically created, and it will contain the
value specified by the function call.

C
h

a
p

te
r 7

Im
a
g

e
 S

w
a
p

p
in

g
 a

n
d

 L
o

o
k

u
p

 T
a
b

le
s
: T

h
e
 B

a
s
k

e
t b

a
l l G

a
m

e

149Here’s how parameters are used in the show() function: The function will always be
used to copy the src property of an image object to the imgDisplay picture. The prob-
lem is that the specific image to be copied will differ based on which of the smaller
images the mouse passed over. The onMouseOver events each specify the name of the
object to be displayed. When the user passes the mouse over the triangle image, for
example, its onMouseOver event triggers the show() function with the value
imgObjTriangle sent as a parameter. Likewise, the square image code sends the
imgObjSquare, and so on. When the show() function runs, whatever value was sent
in the parentheses is stored in the variable imgToShow. The src property of whatever
image object that the imgToShow variable contains is copied over to display the im-
age. Function parameters are often used to make a function more flexible, as I have
done in this example.

Creating Simple Arrays

The programs that you are writing are becoming more complex, and they are begin-
ning to have a large number of variables. To make the variables more manageable,
programmers tend to use structures such as arrays. You might recall arrays from Chap-
ter 5, “Advanced Mad Lib: Using the Other Form Elements”. In that chapter, you simply
built a series of HTML components with the same name, and they automatically be-
came an array. You can also make arrays out of any type of JavaScript variable. Figures
7.8 and 7.9 show a simple program, Simple Array Demo, that features an array of strings.

The program switches from blank to triangle, circle, square, and back to blank when
the user clicks the button. In a moment, you’ll add matching images, but for now, just
concentrate on the structure that will give you the captions in sequence.

FIGURE 7.8

The Simple Array
Demo program

starts with the word
“blank” visible in a

text box.

150
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

The HTML consists of one text area, named txtDescription, and one button, which
calls the upDate() function when clicked. Here’s the JavaScript for the program:

var description = new Array(3)

var counter = 0;

function initialize(){

 // sets up the array with some starting values

 // Andy Harris

 description[0] = "blank";

 description[1] = "triangle";

 description[2] = "circle";

 description[3] = "square";

} // end initialize

function upDate(){

 //increments the counter and shows the next description

 counter++;

 if (counter > 3){

 counter = 0;

 } // end if

 document.myForm.txtDescription.value = description[counter];

} // end upDate

FIGURE 7.9

As the user clicks
the button, the text
box changes values

in a set pattern.

C
h

a
p

te
r 7

Im
a
g

e
 S

w
a
p

p
in

g
 a

n
d

 L
o

o
k

u
p

 T
a
b

le
s
: T

h
e
 B

a
s
k

e
t b

a
l l G

a
m

e

151Creating a Variable Array

The first line of code creates a variable called description:

var description = new Array(3)

This is a very special type of variable, because it houses an array. To make an array, you
use the new Array() syntax. The value inside the parentheses indicates the number of
elements in the array. JavaScript does not actually require the number, so the follow-
ing line would work just as well:

var description = new Array()

Still, most languages require the programmer to state the number of elements in an
array when it is created, so it is traditional to do so even in a more lenient language
such as JavaScript.

Don’t forget to capitalize the term Array! This is a very easy mistake to make, and it
can be very difficult to debug.

Populating the Array

Once an array is created, it is essentially a list of variables. Somehow, you will need to
fill up the array with values. In this program, I chose to use a special function called
initialize(). The function contains a series of assignment statements that fill up all
the array elements with the appropriate values. JavaScript arrays are extremely flex-
ible. You can mix and match variable types in the same array, and you can even add
more elements than you specified when creating the array.

Be aware that JavaScript’s cavalier attitude toward arrays is not typical. Most other
languages are much pickier about how arrays are defined. It’s fine to take advantage
of the lax rules in JavaScript, but don’t be surprised when you find that the habits you
learned in JavaScript array creation are seen as a bit sloppy in some other language.

The initialize() method needs to occur early. I
chose to attach it to a special event handler to force
the initialize() function to occur as soon as the page
is loaded. The HTML body tag has an onLoad event.
Any function in the onLoad event will execute as
soon as the browser loads the body. Therefore, this
function is a perfect place for initialization code.
Although I did not show you the HTML code for
this program, here is the relevant line:

<body onLoad = "initialize()">

TRAP

TRAP

IN THE REAL WORLD

In any kind of program that re-

quires some code to execute

before the user gets control of

the environment, you might

want to consider this kind of

initialize() function. Such

a function is useful any time you

want to set up variables, initial-

ize form values, or get some kind

of initial information from the

system (such as the current time

or the user’s domain name).

152
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Showing the Next Element

The button calls the upDate() function. The job of this function is to show the next array
element. To do this, the function keeps track of a variable called counter. Note that
counter is created outside any functions, because the program must retain the variable’s
value through multiple function calls. Each time that the user clicks the Next button,
the program increments counter. Then the program checks whether the value of counter
has gotten too large. If it has, the program resets counter to 0. Finally, the program
updates the text box with the member of the array related to the counter variable.

Any time that you increment or decrement a variable, you should consider using
some kind of boundary checking to make sure that the variable does not get too
large or too small. You should follow most increment or decrement operations with
some kind of if statement checking for a boundary, and take action if the value
exceeds that boundary.

Creating Arrays with Images

JavaScript supports arrays of anything that can be placed in variables, even images.
Figures 7.10 and 7.11 show an improved version of the array program called the Image
Array Demo. This version supports graphics.

This program sports two arrays. One array contains all the descriptions, and the other
contains all the images. I carefully designed the arrays to be in exactly in the same
order, so that image[1] refers to the same thing as description[1].

HINT

FIGURE 7.10

When the
description in the

text field is
“triangle,” a triangle

image appears.

C
h

a
p

te
r 7

Im
a
g

e
 S

w
a
p

p
in

g
 a

n
d

 L
o

o
k

u
p

 T
a
b

le
s
: T

h
e
 B

a
s
k

e
t b

a
l l G

a
m

e

153

Writing the HTML Code for the
Image Array Demo Program

The HTML for this version of the array program is reasonably straightforward:

<body onLoad = "initialize()">

<center>

<h1>Image Array Demo<hr></h1>

<form name = "myForm">

<img src = "blank.gif"

 name = "imgDisplay"

 height = 100

 width = 100>

<input type = "text"

 name = "txtDescription"

 value = "blank">

<input type = "button"

 value = "next"

 onClick = "upDate()">

</form>

</center>

<hr>

</body>

FIGURE 7.11

The Image Array
Demo program

synchronizes the
circle image with

the circle
description in the

text box.

154
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

The most significant features are the initialization function in the body onLoad()
method and the image object called imgDisplay.

Creating and Initializing the Arrays

The Image Array Demo program contains an array of strings and an array of images.
The code initializes the two array types differently. Take a look at this code:

var description = new Array("blank", "triangle", "circle", "square");

var pictures = new Array(3);

var counter = 0;

function initialize(){

 // sets up the array with some starting values

 // Andy Harris

 pictures[0] = new Image(50, 50);

 pictures[0].src = "blank.gif";

 pictures[1] = new Image(50, 50);

 pictures[1].src = "triangle.gif";

 pictures[2] = new Image(50, 50);

 pictures[2].src = "circle.gif";

 pictures[3] = new Image(50, 50);

 pictures[3].src = "square.gif";

} // end initialize

The counter variable is created as you would expect, and the pictures array creation
looks much like you would guess, but the description array is a little bit different.
JavaScript allows you to define arrays on the fly in certain circumstances. Since I al-
ready know the values that I want in the description array, I simply list them in the
array creation statement, and the array is automatically built for me.

Sadly, image objects require a bit more work, because I need to create the image object
and then assign a value to its source property. For the picture array, I decided to use
the standard initialization function.

Updating the Page

The upDate() function is very similar to that in the Simple Array Demo program, but I
added one line to update the image. Here’s the entire function:

function upDate(){

 //increments the counter and shows the next description

 counter++;

 if (counter > 3){

 counter = 0;

 } // end if

 document.imgDisplay.src = pictures[counter].src;

 document.myForm.txtDescription.value = description[counter];

} // end upDate

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r 7

Im
a
g

e
 S

w
a
p

p
in

g
 a

n
d

 L
o

o
k

u
p

 T
a
b

le
s
: T

h
e
 B

a
s
k

e
t b

a
l l G

a
m

e

155The only new line is the one that refers to imgDisplay. Here’s what that line means:
Take the member of the pictures array referred to by counter. Grab the source property
of that image and copy it to the source property of imgDisplay. This has the net effect
of changing imgDisplay so that it shows the current image.

Using Lookup Tables

Arrays can be exceptionally useful when you have large amounts of data to manage. As
an example, think back to the Basketball program featured at the beginning of this
chapter. To illustrate how arrays can be useful, I started with a simpler program, Lookup
Table Demonstration, that determines the likelihood that a given player will succeed
with a shot or a pass to another player.

Creating the Basketball Lookup Table
Demonstration Program

Figures 7.12 and 7.13 show the Lookup Table Demonstration program. The drop-down
lists enable the user to choose a shooter (the player who is passing the ball) and a
target (either the basket or the player to whom the user is passing the ball). Then,
when the user clicks the Throw It button, the text screen analyzes the likelihood (ex-
pressed as a percentage) that the play will succeed.

When you are writing complex programs, it is often a great idea to isolate new
ideas into smaller test programs, so that you can ensure that each of the main
concepts works in isolation before you piece all the tested concepts together in
potentially more complex ways.

You’ll see the code for the lookup program in a moment, but it is important to under-
stand the underlying concepts first.

FIGURE 7.12

The user can
choose a shooter

and receiver.

HINT

156
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Encoding One Player’s Percentages

Imagine that the in-bounder has the ball. This player can choose to pass to each of the
other four players on the team, and can even attempt to score by directing a shot at the
basket (at least in the very simplified form of basketball that I modeled in my game). It
is very likely that the in-bounder will succeed in a pass to the nearest player. It is much
less likely that the player could make a basket from the other end of the court. You
could summarize the likelihood (expressed in a percentage) of each of this player’s
options in a chart such as the following:

Player Basket Center Forward 3-Pt Guard
In-bounder .01 .05 .10 .30 .90

This table describes the likelihood of the in-bounder passing a ball to each of the other
players. In other words, I am suggesting that there is a 1% (.01) chance that the in
bounder would successfully complete a basket. The same player would have a 5% chance
of completing a pass to the center, a 10% chance of passing successfully to the forward,
a 30% chance of a successful pass to the 3-point shooter (maybe a shooting guard stand-
ing outside the three-point arc), and a 90% chance of a successful pass to the guard.

It is good that these values are expressed as percentages, because percentages can be
thought of as values between 0 (0%) and 1 (100 %).

You already know how to get a random number between 0 and 1, so if you want to
simulate that a certain pass is successful 30% of the time, all you need to get is a 0-to-1
random number and compare it to .3. The random number will be less than .3 30% of
the time and larger than .3 70% of the time.

You can store this information in an array that looks like this:

var INVals = new Array(.01, .05, .10, .30, .90);

FIGURE 7.13

The Lookup Table
Demonstration

program calculates
how likely it is that

the pass will
succeed.

C
h

a
p

te
r 7

Im
a
g

e
 S

w
a
p

p
in

g
 a

n
d

 L
o

o
k

u
p

 T
a
b

le
s
: T

h
e
 B

a
s
k

e
t b

a
l l G

a
m

e

157Then, if you want to see whether the in-bounder succeeded in passing to the center,
you could use code like this:

//inbounder passes to center

if (Math.random() < INVals[1]){

 alert("pass from inbounder to center succeeded!");

} // end if

Adding the Other Players

Of course, you have five players on the court, so you need five of these charts to man-
age all the possible pass permutations. I made another chart combining my estimates
of each player’s chances for each type of pass or shot. My complete chart looks like this:

Player Basket Center Forward 3-Pt Guard In-bounder
Center .50 –1 .70 .30 .80 .80
Forward .30 .60 –1 .70 .80 .80
3-Pt .25 .50 .70 –1 .80 .80
Guard .05 .40 .50 .70 –1 .80
In-bdr .01 .05 .10 .30 .90 –1

Each row represents a shooter, and each column represents a target. A cell in the table
designates the likelihood, expressed as a percentage, that a particular shooter will
succeed with a particular pass or shot attempt. For example, to find out how likely it is
that the three-point shooter will successfully pass to the center, find the 3-Pt row, then
read across to the Center column. The value that you will find is .50, so this means that
there is a 50% chance this particular pass will succeed.

The center has a 50% chance at a basket, whereas the in-bounder has a 1 in 100 chance.
I decided that a player should never pass to himself, so I set those values at –1.

There is absolutely no scientific method behind the assignment of these values. I sat
down and wrote this chart just off the top of my head. It seemed to me that these were
reasonable assumptions, and after testing the completed game, they made an inter-
esting game. Of course, in a more realistic simulation, you would find ways to get
more accurate percentages, perhaps by researching actual basketball statistics.

Coding a Lookup Table

This kind of two-dimensional chart is called a lookup table. To make one in JavaScript,
you simply create a series of arrays (one per row) and then join these arrays together in
a bigger array. A look at the source code should help you understand how this works.
The first thing I did was to make a set of variables to represent the players on the court:

//define constants for positions

var BK = 0; //basket

var CT = 1; //center

var FD = 2; //forward

HINT

158
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

IN THE REAL WORLD

Lookup tables are useful any time

you want to deal with some sort

of a chart of information. You

could use such a structure to look

up shipping cost information, tax

rates, customer information, or

nearly anything that could be

written in a two-dimensional

table. In fact, lookup tables are

not limited to two dimensions.

By placing the large arrays into

even larger arrays, you can cre-

ate lookup tables with three, four,

or even more dimensions. (In

Chapter 12, “The Game Creation

Process: The Brick Game,” you

will see an example of a three-

dimensional lookup table.)

var TP = 3; //three point shooter

var GD = 4; //guard

var IN = 5; //in-bounder

I’ll be making a lot of arrays, and in each array the 0 element represents the basket and
the fifth element represents the in-bounder. To make the coding easier to read, I named
some of the variables using mnemonics for the positions.

Sometimes, though, I might really want the position names, so my first array will be a
list of the actual player names:

var plName = new Array("basket", "center", "forward", "three point

shooter", "guard", "in-bounder");

Note that the player names are in order, so plName(BK) is “basket.” You can also modify
this array so that it contains the actual names of players on your favorite team.

Next, I’ll make a series of arrays that encode the percentages for each player:

//define arrays to hold rows

var CTVals = new Array(.50, -1, .70, .30, .80, .80);

var FDVals = new Array(.30, .60, -1, .70, .80, .80);

var TPVals = new Array(.25, .50, .70, -1, .80, .80);

var GDVals = new Array(.05, .40, .50, .70, -1, .80);

var INVals = new Array(.01, .05, .10, .30, .90, -1);

Each array specifies one row in my original chart. The order of values in the arrays is
very important. If you want to know the likelihood of the guard successfully passing to
the center, you could write a code statement such as alert(GDVals[CT]);.

Finally, I combined all the individual player arrays into one larger array.

var allVals = new Array (0, CTVals, FDVals, TPVals, GDVals, INVals);

Note that the elements in the arrays are other ar-
rays. Also note that the 0 value is just a placeholder,
because the basket won’t ever shoot. Now all the
data about all the players is stored into one big vari-
able called allVals. You can determine any value
in the table by referring to the allVals array of ar-
rays. For example, alert(allVals[IN][CT]) would
return the likelihood of a pass from the in-bounder
to the center. The [IN] value would specify use of
the fifth element of allVals (remember, IN is just a
shortcut for 5). Since the fifth element of allVals is
another array, you can ask for the [CT] (or first) value
of that array. This type of structure (an array of ar-
rays) is a two-dimensional array. Other languages
use other techniques to generate two-dimensional
arrays, but most languages support them.

C
h

a
p

te
r 7

Im
a
g

e
 S

w
a
p

p
in

g
 a

n
d

 L
o

o
k

u
p

 T
a
b

le
s
: T

h
e
 B

a
s
k

e
t b

a
l l G

a
m

e

159Getting Values from the Lookup Table

It is very easy to use a lookup table once you have defined it. Here’s the throwIt()
function in the Lookup Table Demonstration example:

function throwIt(){

 // Lookup Table Demonstration

 // Andy Harris

 // alert("got to throwIt");

 var scoreboard = document.m+yForm.txtOutput;

 var shooter;

 var target;

 var rndVal = Math.random();

 var result;

 //theSelect = document.myForm.selShooter;

 shooter = document.myForm.selShooter.selectedIndex;

 target = document.myForm.selTarget.selectedIndex;

if (rndVal < allVals[shooter][target]){

 result = "Made it!";

 } else {

 result = "Failed";

 } // end if

 scoreboard.value = "Shooter: " + shooter + " " + plName[shooter] + "\n";

 scoreboard.value += "Target: " + target + " " + plName[target] + "\n";

 scoreboard.value += "Percentage: " + allVals[shooter][target] + "\n";

 scoreboard.value += "Result: " + rndVal + "\n" + result;

} // end

The function generates variables for the shooter, the target, and a random value. The
values for shooter and target are extracted from the two select objects. The follow-
ing is the key line:

if (rndVal < allVals[shooter][target]){

It compares the randomly generated value to the appropriate percentage from the
lookup table. If the condition is true, the function considers the pass or shot complete.

All the rest of the code simply sends information to the text box to clarify what is
happening.

160
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Putting Together the Basketball Game

The Basketball game is simply a combination of the main ideas in this chapter. Its
basic core is the lookup table described in the previous section. I added a graphical
interface and scorekeeping capabilities to turn the table into a game.

The Game Window

The graphical appearance of the game is important, if it is to feel like a basketball
simulation. I started by drawing a basketball court with my painting program. This
court is intended as a background image, because the other images (the players) are
superimposed on top of it.

The tricky thing about background images is the way that they automatically tile. This
means that if the basketball court image is smaller than the window, the image will
appear more than once. If the background image is too large, the entire court will not
be visible. I needed a way to guarantee the size of the browser window, so I decided to
make the actual game appear in a secondary window. The screen that the user sees
first has only one button. The code for that button pops up a secondary window, which
is pre-sized to be the right size for the background graphic and the scoreboard. Be-
cause the user cannot resize the new window, the tiling effect of the background im-
age will not be a problem. Here’s the code that pops up the game window:

function startGame(){

 // Basketball

 // Andy Harris

 // loads up basketball court in new window

 var stadium = window.open("bball.html", "bbAnch",

"height=450,width=300");

 stadium.focus();

} // end startGame

IN THE REAL WORLD

Beginning programmers are often put off by the notion of arrays and lookup tables. You could in

fact write this program without any arrays at all. On my first attempt at this program, I did exactly

that. I used a switch statement to figure out who had the ball, and inside that switch statement

I placed another switch statement to figure out which player was the target of the pass. Each

receiver switch statement took 22 lines of code, and the passer switch statement had five of

these receiver structures, plus some of its own overhead. The entire logic structure for determin-

ing the percentages required over 130 lines of code, with logic structures sometimes four and five

layers deep. Even though I’m a reasonably experienced programmer, I was having a hard time

keeping the logic structure straight. Updating the code would have been really difficult, and tweaking

the code so that it performed exactly as I wanted would have been nearly impossible. In contrast,

the version that uses a lookup table requires a total of 15 lines of code. All the data is in the same

place, where it can be easily modified. Sometimes spending a little bit of time up front designing a

more elaborate data structure can save you a huge amount of grief down the road.

C
h

a
p

te
r 7

Im
a
g

e
 S

w
a
p

p
in

g
 a

n
d

 L
o

o
k

u
p

 T
a
b

le
s
: T

h
e
 B

a
s
k

e
t b

a
l l G

a
m

e

161Displaying a game in a separate window is a pretty standard technique.

You have no control of the browser’s configuration when the user first comes to your
Web page. You can only achieve precise control of a window that you create. By creat-
ing a window, you can determine its exact size, and you can ensure that the user can-
not resize the screen.

The Graphic Design

The basketball court is the background of the main game page. The page also contains
figures for the five positions on the court. Getting the images placed on the court
correctly is a real challenge using standard HTML techniques. To position these images
correctly, I relied on a few tricks of the HTML designer. Figure 7.14 shows the basketball
page with some modifications to illustrate how I placed the figures.

Each player is in a table. The tables each have one row containing a blank image and a
player image. In Figure 7.14, I changed the blank image to an all-white image, so you
could see more clearly how the spacing was done. By changing the size of the spacing
image, I gave myself a fair degree of control over the placement of the player. For ex-
ample, the height of the white image over the basket ensures that the forward will be
completely below the basket. The width of the image to the left of the forward ensures
that the forward will be placed to the right of the basket. Of course, the white bars are
distracting, so once I got all the players positioned correctly, I replaced the all-white
image with a completely transparent gif image.

IN THE REAL WORLD

HTML is a wonderfully expressive language. The HTML author can be reasonably confident

that the content of his or her page will be displayed on a wide variety of platforms. The cross-

platform flexibility comes at a cost, however. It is very difficult to control exactly how ele-

ments are positioned on a page. In Chapter 8, “Dynamic HTML: The Stealth Submarine,” you

will learn about how cascading style sheets (CSS) technology can be used to position ele-

ments. For this chapter, though, I will rely on techniques that are used even in the older brows-

ers that do not support CSS elements.

HTML authors discovered that tables were a very nice way to position elements onscreen.

Many of the forms in this book have been created with tables. It is theoretically possible to

exactly determine the height and width of a table cell in pixels. It would seem that this would

give the HTML author a terrific way to place things more precisely on the screen, but the

browsers are notoriously inconsistent in their support for these table features.

You can also directly determine the size of an image in pixels, and all the major browsers do

this very well. HTML authors began using blank images to put blank space in their Web pages.

By building a table with blank images in it, you can achieve a surprising amount of control of

your screen layout without use of CSS or other advanced techniques.

You will learn several more elegant solutions to positioning HTML elements as you go through

the book, but this technique is still useful in some situations.

162
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Here’s the HTML code that shows the placement of the images:

<body background = court.gif

 onLoad = "resetGame()">

<form name = myForm>

<!-- basket and center -->

<table border = 0>

<tr>

 <td>

 <img src = "blank.gif"

 height = 20

 width = 130>

 <img src = "blank.gif"

 name = "img0"

 height = 30

 width = 20

 border = 0>

 <img src = "player.gif"

 name = "imgPlay1"

 height = 40

 width = 40

 border = 0>

FIGURE 7.14

The images are
placed in tables

with invisible
images as

placeholders.

C
h

a
p

te
r 7

Im
a
g

e
 S

w
a
p

p
in

g
 a

n
d

 L
o

o
k

u
p

 T
a
b

le
s
: T

h
e
 B

a
s
k

e
t b

a
l l G

a
m

e

163 </td>

</tr>

</table>

<!-- Forward -->

<table border = 0>

<tr>

 <td>

 <img src = "blank.gif"

 height = 20

 width = 180>

 <img src = "player.gif"

 name = "imgPlay2"

 height = 40

 width = 40

 border = 0>

 </td>

</tr>

</table>

This code fragment handles only the first two tables, but shows the technique that I used
for all the tables. You can check the CD-ROM for the full source code. Note that I hid
the borders of the images and tables so that the graphics would appear to be inte-
grated into the page. Note also the use of JavaScript:throwTo() as the bref of the
anchor tags. Any place you can put a url or an href, you can also put “JavaScript:” and
a line of JavaScript code. In this case I called the throwto() function. All the images
call the same function but send their own ID as a parameter.

In later chapters, I will describe some more precise positioning techniques that use
positional style sheet elements. It is good also to know the more “old-fashioned”
technique used in this example, as the technique is still reliable and useful for cer-
tain situations.

The player image is very crude but does the job (see Figure 7.15). I drew the image
at 100×100 resolution with a blank background. I saved versions with and without
the basketball.

The Global Variables

The lookup table is the key to this program. I started by defining the lookup table
exactly as it was in the Lookup Table Demonstration program. I also added a few other
variables for scorekeeping:

//define main variables

var playerScore;

HINT

164
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

var opScore;

var currentPlayer;

//define constants for positions

var BK = 0; //basket

var CT = 1; //center

var FD = 2; //forward

var TP = 3; //three point shooter

var GD = 4; //guard

var IN = 5; //in-bounder

//define array for player names

var plName = new Array("basket", "center", "forward", "three point

shooter", "guard", "in-bounder");

//define arrays to hold rows

var CTVals = new Array(.50, -1, .70, .30, .80, .80);

var FDVals = new Array(.30, .60, -1, .70, .80, .80);

var TPVals = new Array(.25, .50, .70, -1, .80, .80);

var GDVals = new Array(.05, .40, .50, .70, -1, .80);

var INVals = new Array(.01, .05, .10, .30, .90, -1);

//make an array of arrays

var allVals = new Array (0, CTVals, FDVals, TPVals, GDVals, INVals);

FIGURE 7.15

Using The GIMP to
create the original

player image.

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r 7

Im
a
g

e
 S

w
a
p

p
in

g
 a

n
d

 L
o

o
k

u
p

 T
a
b

le
s
: T

h
e
 B

a
s
k

e
t b

a
l l G

a
m

e

165The resetGame() Function

The program must initialize all the variables to suitable starting values. The program
will also need to execute the exact same code whenever the user wins or loses the
game. So, I put all the code for resetting the game into a function, resetGame(). Here’s
the code for that function.

function resetGame(){

 //reset all game variables

 playerScore = 0;

 opScore = 0;

 currentPlayer = IN;

 document.myForm.scoreBoard.value = "";

 updateScreen(currentPlayer);

} // end resetGame

The code just sets up key variables with the values necessary to start up the game.
ScoreBoard is a reference to a text box that displays all information to the user.
The function ends with a call to another function, updateScreen. You’ll see what that
function does in just a moment.

The updateScore() Function

Another function is meant to be called each time the player or the computer scores a
basket. Here’s how it works:

function updateScore(){

 var scoreCard = "";

 scoreCard += "Player \tComputer \n";

 scoreCard += playerScore;

 scoreCard += "\t" + opScore;

 document.myForm.scoreBoard.value += scoreCard;

 //check for win

 if (opScore >= 21) {

 alert ("You LOST!!!");

 resetGame();

 } else if (playerScore >= 21) {

 alert ("You WIN!!!");

 resetGame();

 } // end if

} // end updateScore

The function builds a string with scoring information. Because this function is called
after every score, it’s a great place to check for winning and losing positions.

166
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

The updateScreen() Function

The program calls the updateScreen() function every time that the ball is supposed to
change hands. The player who is to receive the ball is passed as a parameter to the
function. Here is the function’s code:

function updateScreen(currentPlayer){

 //clears all the images, shows only current player with ball

 //clear all images

 for (i = 1; i <= 5; i++){

 var imgPlayer = eval("document.imgPlay" + i);

 imgPlayer.src = "player.gif"

 } // end for loop

 //show current image

 imgPlayer = eval("document.imgPlay" + currentPlayer);

 imgPlayer.src = "ball.gif";

 window.status = plName[currentPlayer];

} // end updateScreen

The program puts the player image (with no ball) in every position, then puts the ball
image in the position specified by the currentPlayer parameter. Notice the use of the
eval statement. The images for the players are called imgPlay1, imgPlay2, and so on. I
concatenated the string variable document.imgPlay with the variables i (in the loop, this
variable will have values between 1 and 5) and currentPlayer. I then used the eval state-
ment to force the computer to evaluate the resulting string as a JavaScript statement.
The evaluation generates an image object, which I stored to a variable for convenience.

The throwTo() Function

Every time the user clicks one of the player images, the program calls the throwTo()
function. This function’s job is to determine whether the pass or throw should be
completed. Here’s the code for the function:

function throwTo(receiver){

 if (Math.random() < allVals[currentPlayer][receiver]){

 //successful pass or shot

 //check for score

 if (receiver == BK){

 document.myForm.scoreBoard.value = "SCORE!!! \n";

 playerScore += 2;

 //look for three pointers!

 if (currentPlayer >= TP){

 document.myForm.scoreBoard.value += "It's a three-pointer! \n";

 playerScore +=1;

 } // end three point if

C
h

a
p

te
r 7

Im
a
g

e
 S

w
a
p

p
in

g
 a

n
d

 L
o

o
k

u
p

 T
a
b

le
s
: T

h
e
 B

a
s
k

e
t b

a
l l G

a
m

e

167 updateScore();

 currentPlayer = IN;

 } else {

 document.myForm.scoreBoard.value = "made the pass to " +

plName[receiver] + "\n";

 currentPlayer = receiver;

 } // end score if

 } else {

 //pass or shot did not succeed

 currentPlayer++;

 document.myForm.scoreBoard.value = "blocked!!";

 if (currentPlayer > IN){

 currentPlayer = IN;

 } // end opponent scores

 //give opponent a random chance of scoring

 if (Math.random() < .20){

 document.myForm.scoreBoard.value += "Opponent scored!! \n";

 opScore += 2;

 updateScore();

 currentPlayer = IN;

 } // end if

 } // end if

 updateScreen(currentPlayer);

} // end throwTo function

The function expects a receiver to be sent as a parameter. All the calls to this function
include the code variable for whichever player is supposed to receive the ball.

The main order of business is to determine whether the shot succeeded. That is done
in the following line of code.

if (Math.random() < allVals[currentPlayer][receiver]){

currentPlayer is a global variable, and it will always contain the code for the player
that currently has the ball. The code line makes a reference to the lookup table and
retrieves the percentage stored for this combination of passer and receiver. The pro-
gram then compares this value to a random value.

If the pass succeeded, the program must check whether the pass was an attempt to
score. This is easy to do, because the pass will be a score only if the receiver is the
basket. In all other cases, the pass is simply a pass to another player. If an attempt for a
basket succeeds, the program should increment the score by two. One more check
determines whether the scoring player was behind the three-point line. If so, the pro-
gram tacks on another point. Since the score has changed, the program makes a call to
upDateScore() so that the user knows the current score.

168
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

If the receiver was not the basket, the attempt was a pass. In this case, the program
simply sends a message to the scoreboard indicating the pass and changes the
currentPlayer variable to reflect the player that currently has the ball.

If the pass or shot failed, the program moves the ball back one position. For example, if
the three-point shooter missed a shot, the ball goes to the guard. If the passer was the in-
bounder, I chose to let that player keep the ball. Any time a shot or pass is blocked, the
opponent has the opportunity to make a score. I chose to give the opponent a 20% chance
of scoring. This seems to give balanced game play. The player wins often enough to stay
interested, but not every time. The opponent’s likelihood of scoring is the single easiest
way to change the difficulty of the game. If you make this number larger, the opponent
will score more often. If you make it smaller, the opponent will not score as frequently.

Summary

In this chapter, you looked at two very useful concepts. The first concept was that of
image swapping. You learned about the JavaScript image object, and how to manipu-
late the source property of that object to make new images appear on the screen. You
also learned how to add event handlers to an image by surrounding the image with an
anchor tag, and you learned how to make your functions more flexible by adding pa-
rameters to them.

The other main concept of the chapter was the use of data arrays as lookup tables. You
learned how to build basic one-dimensional arrays of normal variables and of image

TABLE 7.2 SYNTAX SUMMARY

Statement Description Example

varName = new Image Creates a new image object var myImage = new

(height, width) called varName with the Image(100, 100);

specified height and width.

imgVar.src = URL Assigns the URL as the myImage.src =

source of the given image "face.gif";

object. The URL must point
to a valid image file.

varName = new Array() Creates a new array var myArray =

variable called varName. new Array();

varName = new Array Creates a new array var myArray = new

(length) variable called varName Array(3);

with the specified number
of elements.

varName = new Array Creates a new array var myArray = new

(valA, valB, valC) variable called varName Array("small",

preloaded with the values "medium", "large");

in the parentheses.

C
h

a
p

te
r 7

Im
a
g

e
 S

w
a
p

p
in

g
 a

n
d

 L
o

o
k

u
p

 T
a
b

le
s
: T

h
e
 B

a
s
k

e
t b

a
l l G

a
m

e

169objects. You wrote code that allows you to step through an array one value at a time, and
you learned how to build two-dimensional arrays to encapsulate larger data structures.

You also learned a few graphics tricks to make the Basketball program work. You learned
how a custom window can be useful in controlling the size of a game window. You also
learned how to position images with blank gif files and tables. Finally, you explored a
reasonably involved simulation of a basketball game and saw how a number of utility
functions can come together to make a reasonably interesting game program.

In the next chapter, you will see how cascading style sheets and other advanced HTML
topics can be used to add motion and sound to JavaScript programs.

E X E R C I S E S

1. Modify the Basketball game so that it reflects the names of players on your favorite bas-

ketball team.

2. Modify the percentage table to reflect the characteristics of your team. For example, you

might have a three-point shooter who’s a great shot, but who does not pass well. You can

tweak the data in all kinds of ways to simulate this characteristic.

3. Add multiple levels of difficulty to the game. For the easier levels, make the opponent less

likely to score a basket. At the more difficult levels, make an opponent score more likely.

4. Modify the graphics and the data table to simulate another similar sport, such as soccer,

hockey, or water polo.

5. Add randomly occurring penalties.

6. Many role-playing games and war games rely on two-dimensional data tables and dice

throws. Modify the lookup program so that it simulates one of these tables and returns

the results.

This page intentionally left blank

8

S
o far, this book has tread on reasonably

safe ground. All the projects done so far

should work even with the older brows-

ers. For more sophisticated programs, you need to

push the limits of JavaScript’s capabilities. In this

chapter, you begin to do exactly that. Specifically,

you will be looking at how to do the following:

• Write cross-browser code

• Write a browser-detection routine

• Create positionable style sheet elements

• Move floating elements

• Change the text in floating elements

• Work with sound files

Dynamic HTML:
The Stealth
Submarine

C H A P T E R

172
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

All these techniques (and a few others) constitute dynamic HTML (DHTML). The tricks
in this chapter pretty much push the modern browsers to their limits. As you read
through the chapter, you will see a lot of detail, but don’t get overwhelmed. You should
get a flavor for how to accomplish these tasks in typical DHTML, so that you can appre-
ciate the library approach taken in the rest of the book. If you find the chapter a bit too
challenging, feel free to skip ahead, then come back again after you have read some of
the later chapters in the book.

The Project: The Stealth Submarine Program

The program you will build is a strategy-puzzle game called Stealth Submarine. Here’s
the premise: The player is a spy who has finished a dangerous mission. The player
gets into a stealth minisub and has to maneuver the sub out of the harbor. Unfortu-
nately, the enemy has been tipped off, and patrol boats lurk everywhere. If the player
moves into a square occupied by an enemy patrol, the patrol will recognize the sub
with a sonar ping.

If the enemy manages to get three pings on the submarine, the game is over. The spy
has a device in the sub that tells how many patrol boats are in the vicinity. The player
must use this device to find a safe way to the open ocean. When the player reaches the
ocean, a nuclear submarine picks up the spy, and the player has won. Figures 8.1 through
8.3 show the game’s interface.

The Stealth Sub game introduces some new challenges. The submarine figure actually
moves around on the screen under program control. In addition, the scoreboard and
control pad are special elements that can also be moved and specially modified. The
game also features sound.

FIGURE 8.1

The instruction and
startup screen for

the Stealth Sub
program.

C
h

a
p

te
r 8

D
y
n

a
m

i c
 H

T
M

L
: T

h
e
 S

t e
a
lt h

 S
u

b
m

a
ri n

e

173

Dealing with Browser Dependency

The interesting new features of the sub program come at a cost: Both of the major
browsers can do all the necessary tasks, but they do them in completely different ways.
For example, you can store a sound file in a property of the Internet Explorer browser,
but you must embed all sound files as plug-ins for Netscape Navigator. I’ll take you
through that mess later in the chapter, but this is a good illustration of the major

FIGURE 8.3

In addition to seeing
dialog boxes, the

player hears various
sound effects

associated with
winning, being sunk,

and sonar pings.

FIGURE 8.2

The player must
sneak through a
10×10 patrol grid

to win.

174
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

plague troubling client-side Web developers. The browser manufacturers have selectively
ignored standards bodies in their attempts to build more powerful browsers. Although
this means that each of the browsers has many interesting features, it is very difficult to
write code that works properly on both browsers at the same time. Often you will find
yourself having to write completely different code for the two main browsers. One solu-
tion is simply to write code for one browser or another. This solution is fine on an intranet,
or when you don’t mind losing part of your audience. On the other hand, many would
claim that the Internet is all about inclusiveness, and getting beyond hardware and
software boundaries. In that spirit, I’ve tried to write every program in this book so that
it works with both browsers. In this chapter, you’ll see how you can write such code.

Creating the Browser Detective

The key to writing cross-browser code is to have a browser detection script. Figures 8.4
and 8.5 show the interface for such a program.

The program is simple but very important. It determines by looking at the document
object model which browser is running the script, then returns an appropriate message.

Here is the code that generates the Browser Detective program.

<html>

<head>

<title>Browser Detective</title>

<script>

var bVersion = 0;

var isNav = false;

var isIE = false;

function checkBrowser(){

FIGURE 8.4

The page
recognizes that it is

in Netscape
Navigator.

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r 8

D
y
n

a
m

i c
 H

T
M

L
: T

h
e
 S

t e
a
lt h

 S
u

b
m

a
ri n

e

175

 // Browser Detective

 // Andy Harris

 // Checks which browser is working

 if (navigator.appName == "Netscape"){

 isNav = true;

 } else {

 if (navigator.appName == "Microsoft Internet Explorer"){

 isIE = true;

 } // end IE if

 } // end Netscape if

 bVersion = parseInt(navigator.appVersion);

 if (bVersion < 4){

 alert("Consider getting a newer browser! This code might not work!");

 } // end if

 if ((!isNav) && (!isIE)){

 alert("I do not recognize this browser. This code might not work");

 } // end if

} // end checkBrowser

</script>

</head>

<body>

FIGURE 8.5

This time the page
was brought up in
Internet Explorer.

176
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

<center>

<h1>Browser Detective<hr></h1>

<script>

checkBrowser();

if (isNav){

 document.write("Netscape Navigator");

} else {

 if (isIE){

 document.write("Internet Explorer");

 } // end if

} // end if

</script>

</center>

<hr>

</body>

</html>

Detecting Which Browser Is Being Used

There are many ways to do browser detection, but I prefer to work with three variables.
I created a Boolean variable called isNav. This variable will be true when the program
confirms that it is running in the Netscape Navigator browser. Another variable, called
isIE, will be true only after the browser is confirmed as Internet Explorer. Another
variable checks the version number of the browser. Since most dynamic HTML (includ-
ing that which you will write throughout the rest of this book to accomplish many
other tasks) requires version 4+ of one of these two browsers, it makes sense to check
all these things.

Both of the major browsers have a navigator object, which contains information about
the browser. The navigator object has a property called appName, which holds the name
of the current browser, and another called appVersion, which holds the version number.
The checkBrowser() function simply looks at these properties and assigns appropriate
values to the three variables. Note that the version number is returned as a string value,
so the program forces it into numeric format. To see how the program uses the
checkBrowser() routine, take a look at the body of the HTML document. You can see a
second script that starts with a call to the checkBrowser() function. The program then
sends an appropriate message to the screen, based on the browser type detected.

Using Cascading Style Sheets

Many of the most intriguing capabilities of JavaScript come from an understanding
of cascading style sheets (CSS). This technology was intended to add flexibility to
HTML. It does that, and it also adds a number of interesting possibilities for the
JavaScript program.

C
h

a
p

te
r 8

D
y
n

a
m

i c
 H

T
M

L
: T

h
e
 S

t e
a
lt h

 S
u

b
m

a
ri n

e

177

The Basics of CSS

One use of CSS is simply to extend the capabilities of HTML. Figure 8.6 shows an ex-
ample of a page that uses this basic form of cascading style sheets.

CSS elements extend HTML. The basic idea of CSS elements is that you can use them to
extend any HTML tag. The CSS elements add an entirely new set of property character-
istics to a document. Although there are a number of interesting CSS elements, the list
of such elements that both browsers support is quite short. Table 8.1 illustrates a few
of the key CSS options.

How to Add CSS Styles to an HTML Page

There are a number of ways to incorporate style sheet elements into an HTML docu-
ment. The easiest is to place a string containing CSS commands into an HTML tag’s style
attribute. You should use semicolons (;) to separate the commands. For example, to
display a paragraph with green letters on a yellow background, you could use this
variant of the <p> tag:

<p style = "color:green; background-color:yellow">

This is the green text on the yellow background

</p>

If you want to add a CSS style to an otherwise unremarkable piece of text, you can
surround the text with the or <div></div> tags and then attach a style
to these tags. span and div are very useful as placeholders for CSS, because they do not
have any other side effects of their own.

FIGURE 8.6

A CSS style tag
manages all the

special effects, the
border, the colors,
and the large font.

178
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

TABLE 8.1 CSS OPTIONS

Element Description Example

background-color Sets the color of whatever background-color:blue

element is being described.

background-image Adds a background image to background-image:

the element. bg.gif

border-color Sets a border of the border-color:blue

specified color around
the element.

border-style Sets the type of border. border-style: double

Both browsers support
double, groove, inset,
outset, ridge, and solid
borders, or you can specify
the none variable if you don’t
want any border.

border-width Describes the width of the border-width: 3px

border in pixels (px), inches
(in), or centimeters (cm).

color Defines the foreground color color:red

of the element.

font-family Sets the font of the element to font-family:'Arial',

the first font in the list that is 'Times New Roman'

found on the browser’s system.

font-size Determines the size of the font-size: 20pt

font in points.

height Defines the minimum height height: 2in

of the element in inches(in),
centimeters(cm), or pixels (px).

width Defines the minimum width width:2%

of the element in percent (%),
inches (in), centimeters (cm),
or pixels (px).

left Determines where the left:2.5cm

element is placed horizontally.

top Determines where the top: 4in

element is placed vertically.

position Makes the element position:absolute

positionable. Legal values
are absolute and relative.

C
h

a
p

te
r 8

D
y
n

a
m

i c
 H

T
M

L
: T

h
e
 S

t e
a
lt h

 S
u

b
m

a
ri n

e

179Here’s the HTML that generated the CSS demonstration program.

<html>

<head>

<title>Cascading Style Sheets</title>

</head>

<body>

<center>

<h1>Cascading Style Sheets<hr></h1>

<span style = "height: 50px;

 width: 100px;

 border-style: groove;

 border-color: blue;

 border-width: 9px;

 background-color: yellow;

 color: red;

 font-size: 14pt">

Here is some code affected by a style sheet

</center>

<hr>

</body>

</html>

The span tag’s style attribute controls all the characteristics of the special text.

Working with Positionable CSS Elements

CSS technology gives a level of control over HTML output that is very welcome to HTML
authors. There is a special category of CSS commands that are even more important to
a game author, because they enable elements to move around dynamically in the Web
page. Figure 8.7 shows an example of this phenomenon, the Move Sub program.

Standard HTML (without CSS) does not let you move images (or anything else, for that
matter) around on a page. Both of the major browsers allow a form of this behavior
using elements that are formatted with special CSS characteristics. Start by looking at
the HTML.

<body>

<center>

<h1>Move Sub<hr></h1>

<form name = "myForm">

<input type = "button"

180
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 value = "Move the sub"

 onClick = "moveSub()">

</form>

</center>

<span name = "sub"

 id = "sub"

 style = "position: absolute;

 left: 50px;

 top: 200px;

 height: 30;

 width: 30;">

<hr>

</body>

</html>

Creating a Positionable Element

The page features a form with a button on it and a span object containing the sub
graphic. A span object is a special HTML container that has almost no characteristics of
its own. This makes it a great container for a style.

Notice the position: absolute part of the style definition. The position attribute
specifies that the element it describes can be positioned on the screen. Rather than

FIGURE 8.7

When the user
clicks the button,
the sub moves to

the right.

C
h

a
p

te
r 8

D
y
n

a
m

i c
 H

T
M

L
: T

h
e
 S

t e
a
lt h

 S
u

b
m

a
ri n

e

181having the sub follow the normal rules of HTML
positioning, you can use the left and top CSS at-
tributes to define the sub’s position. You can set
the position as relative or absolute. Relative po-
sitioning means that the left and top positions are
calculated from where the HTML element would
normally go. Absolute positioning refers to distance
from the top-left corner of the current document,
window, or frame. For game programming, you will
usually be concerned with absolute positioning.

The left, top, height, and width elements are used
to describe the position and size of the object. Like
most CSS elements, these tags can use a variety of
units of measurement, including inches (in), cen-
timeters (cm), and pixels (px).

For game elements, I prefer to use pix-
els, because then the relationships
among various objects on the screen re-
main constant even though the screen
resolution is unpredictable. (You don’t
know the resolution of every player’s
screen, but a pixel is always a pixel.)

Moving a Positionable CSS Element with Code

Once you have defined an HTML element with a positionable style, you can write code
to move this element around the screen. Although both Netscape Navigator and Internet
Explorer support this behavior, they differ in the implementation details. The Browser
Detective script from earlier in this chapter will be an important part of this page.

var bVersion = 0;

var isNav = false;

var isIE = false;

function checkBrowser(){

 // Browser Detective

 // Andy Harris

 // Checks which browser is working

 if (navigator.appName == "Netscape"){

 isNav = true;

 } else {

 if (navigator.appName == "Microsoft Internet Explorer"){

 isIE = true;

 } // end IE if

IN THE REAL WORLD

Cascading style sheets were de-

veloped as a way to give more

control to more advanced HTML

authors without compromising

the basic simplicity of the lan-

guage. Positionable elements

can give the programmer fine-

grained control over page layout

of any type of Web page—a level

of control that is not possible

with standard HTML. Still, you

should be very careful to test any

pages that you build with CSS

elements, because the major

browsers do not follow the stan-

dards in exactly the same way.
TRICK

182
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 } // end Netscape if

 bVersion = parseInt(navigator.appVersion);

 if (bVersion < 4){

 alert("Consider getting a newer browser! This code might not work!");

 } // end if

 if ((!isNav) && (!isIE)){

 alert("I do not recognize this browser. This code might not work");

 } // end if

} // end checkBrowser

checkBrowser();

function moveSub(){

 // Move Sub

 // Andy Harris

 if (isNav){

 document.sub.moveBy(20, 0);

 if (document.sub.left > 300){

 document.sub.moveTo(50, 200);

 } // end if

 } else {

 document.all.sub.style.pixelLeft+= 20;

 if (document.all.sub.style.pixelLeft > 300){

 document.all.sub.style.pixelLeft = 50;

 } // end if

 } // end if

} // end moveSub

The first part of the code is the checkBrowser() function copied directly from the
earlier example in this chapter. The browser-detection variables are also copied verba-
tim from the Browser Detective example.

Copying and pasting code is often not such a great idea. When you find yourself
replicating code, it’s usually a sign that you could write the code more efficiently.
Even though it is very easy to copy and paste code, you will almost always end up
spending a great deal of time and effort making small modifications to each of the
copies. A little bit of time spent designing the code to be reused can reap large
benefits down the road. You’ll learn a way to import code from an external library in
the next chapter. For now, however, the copying and pasting technique is accept-
able for a code fragment as small as this one.

HINT

C
h

a
p

te
r 8

D
y
n

a
m

i c
 H

T
M

L
: T

h
e
 S

t e
a
lt h

 S
u

b
m

a
ri n

e

183The checkBrowser() line runs the checkBrowser() function to determine which
browser is active.

Moving an Element in Netscape Navigator

Both of the major browsers allow you to work with positionable elements, but they use
different syntax. Ultimately, they use a different object model to describe the same
kinds of elements. Figure 8.8 shows how Netscape Navigator sees positionable elements.

Netscape Navigator provides a special object called a layer. This is essentially a float-
ing frame that can be positioned dynamically. When you assign the position attribute
to a CSS style in Netscape Navigator, the browser automatically converts that element
to a layer object. The name attribute of any element contained in the style tag be-
comes the name of the layer object.

The layer object has some very useful properties and methods. If you want to move a
layer object to a specific spot, you can use the moveTo() method to move to a specific
x,y coordinate (in pixels). If you want to move a specific amount, you can use the moveBy()
method instead. Additionally, you can directly access the left and top properties of
the layer to determine where the layer object is or to set the object’s position.

Here again is the Netscape Navigator-specific code for the Move Sub program:

if (isNav){

 document.sub.moveBy(20, 0);

 if (document.sub.left > 300){

 document.sub.moveTo(50, 200);

 } // end if

The element in question is called sub. Because it has a position attribute, Netscape
Navigator treats it as a layer. The moveBy command moves the object 20 pixels to the
left. An if statement checks to see if the sub has moved past pixel 300. If so, it resets
the sub’s position.

Remember, whenever you have code that increments or decrements a variable, you
should think about checking for boundaries.

document

layerName

moveTo(x,y)

moveBy(x,y)

top

left

Netscape Navigator Model

FIGURE 8.8

A positionable
element in

Netscape Navigator
becomes a

layer object.

TRICK

184
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

The Internet Explorer Approach

Internet Explorer has a different but similar way of looking at positionable elements.
IE does not recognize layer objects, but can directly move an element specified by a
positionable style. Figure 8.9 shows how the Internet Explorer document model sees
positionable elements.

IE has a special feature called all, which is a container for all the objects on the form.
The sub object is one of the elements on the form, so you can reach it from all. Note
that IE does not use layer objects, but allows you to consider any object potentially
moveable. However, the element with the positionable CSS style does not have the
left and top properties directly. These properties belong to the style property of the
object. Finally, the properties are not called left and top, but pixelLeft and pixelTop.
The IE-specific code in the Move Sub program looks like this:

 document.all.sub.style.pixelLeft+= 20;

 if (document.all.sub.style.pixelLeft > 300){

 document.all.sub.style.pixelLeft = 50;

 } // end if

The first line moves the sub element 20 pixels to the left. The if statement checks
whether the sub is past pixel 300. If so, the statement resets the position.

If you are a Netscape Navigator fan, you might be feeling smug about how much
easier this process is in Netscape than in IE. Moving an object is easier in Netscape
Navigator, but you’ll find a lot of other tasks to be easier in Internet Explorer. If you
want to write cross-browser programs, it doesn’t really matter which is easier; you
have an obligation to write for both browsers.

document

all

elementName

style

pixelLeft

pixelTop

Internet Explorer Model

FIGURE 8.9

The element is part
of something called
all and has a
style property
with some useful

features.

HINT

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r 8

D
y
n

a
m

i c
 H

T
M

L
: T

h
e
 S

t e
a
lt h

 S
u

b
m

a
ri n

e

185

Changing the Text in a Positionable Element

Once you have defined an HTML element with a position style, you can also write new
HTML to that element. This is (of course) done differently in Netscape Navigator and
Internet Explorer, but the result is the same. Figures 8.10 and 8.11 show the interface
for the program that illustrates how you can write new HLML to a defined element.

IN THE REAL WORLD

If you think it’s crazy that the browser manufacturers cannot agree on how to move an object

around, you are not alone. Most of the interesting things you can do in dynamic HTML require

you to consider similar problems.

You could choose to write your programs for only one browser, but then you might lose part of

your audience. You could also write two complete versions of each program, but users would

still end up at the wrong version of the page.

My preferred technique is to check the browser type, then put a branch in each function that

has browser-specific techniques. Executing this technique is a pain, but it will have to do until

the browser manufacturers decide to agree on a standard.

Starting with the next chapter, you’ll see another solution that eliminates some of these prob-

lems, but I want you to see how to build browser-independent code yourself so that you can

appreciate the code library techniques that you’ll see in the later chapters.

FIGURE 8.10

The user can
type data into the

text box.

186
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

The program copies the contents of the text box to a positionable element. Unfortu-
nately, the two major browsers have entirely different ways of performing this feat.
Still, the HTML is the same, regardless of the browser. Here is the HTML code:

<body>

<center>

<h1>Writing to a layer<hr></h1>

</center>

<span name = "output"

 id = "output"

 class = "output"

 style = "position:absolute;

 left: 200px;

 top: 200px;">

Default text

<form name = "theForm">

<input type = "text"

 name = "txtInput">

<input type = "button"

 value = "change output"

 onClick = "changeIt()">

<hr>

</body>

FIGURE 8.11

The program
repeats the text in a

positionable
element.

C
h

a
p

te
r 8

D
y
n

a
m

i c
 H

T
M

L
: T

h
e
 S

t e
a
lt h

 S
u

b
m

a
ri n

e

187Note the existence of the span object with a positionable style. This is the part of the
code that will be modified. It has a name attribute and an ID attribute. Netscape gener-
ally refers to the span object with the the name attribute, and IE generally prefers the
ID attribute, so I simply add them both with the same value.

The code for changing the text in the span object is very browser-dependent. The func-
tion starts by checking which browser is active, and then writes to the span object in a
manner appropriate to that browser. Here is the changeIt() function:

function changeIt(){

 // Writing to a layer

 // Andy Harris

 checkBrowser();

 var theText = document.theForm.txtInput.value;

 if (isNav){

 document.output.document.open();

 document.output.document.write(theText);

 document.output.document.close();

 } else {

 document.all.output.innerHTML = theText;

 } // end if

} // end changeIt

The code between the if statement and the else statement will execute only if Netscape
navigator is the current browser. The code between the else clause and the end if
statement will execute only when Internet Explorer is running.

As you can see, the browsers take a very different approach to this particular problem.

IN THE REAL WORLD

You might use the ability to change an element selectively anywhere that you want to change

output directly on the page, without resorting to text areas or frames for output. This ap-

proach could be useful in any applications in which you want it to seem as though parts of the

page are changing on the fly. You can get a very seamless look with dynamic elements such as

these, but the capability comes at the cost of some simplicity.

For example, I once wrote an online catalog, which looked to the user like a database. The user

saw a product on the screen with an image and a description. The screen also contained buttons

to go to the next or previous product. When the user clicked the buttons, the description and the

image changed, apparently in the current page. The description and other text fields were all

span objects, and I rewrote the text in the spans each time the user asked for a new element.

188
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Writing to a span Object in Internet Explorer

The Internet Explorer document model recognizes a span as an object accessible from
the all group, as you may remember from earlier in the chapter. The span object has
an innerHTML property. You can change the text of the span object by assigning new
HTML to it. You can send plain text to a span object, or send more complex HTML code
to the span object if you wish. Figure 8.12 is a diagram of the Microsoft model.

The IE version of the code is very straightforward:

document.all.output.innerHTML = theText;

Any value that you want to write to the element can be copied to the innerHTML prop-
erty of that element.

Writing to a span Object in Netscape Navigator

The Netscape document object model does not recognize the innerHTML property. In-
stead, the positionable element is more like a frame or an external window. It has a
document object of its own, with all the characteristics of any other document object.
Figure 8.13 is a diagram of the Netscape point of view.

document

all

elementName

innerHtml

Internet Explorer Model

document

layerName

document

open()

write()

close()

Netscape Navigator Model

FIGURE 8.12

The positionable
element has an
innerHTML

property.

FIGURE 8.13

The layerName
has a document

object. You can
open, write to, and

close the new
document just as if

it were a frame.

C
h

a
p

te
r 8

D
y
n

a
m

i c
 H

T
M

L
: T

h
e
 S

t e
a
lt h

 S
u

b
m

a
ri n

e

189The Netscape approach is to treat the new element like a frame. It has a document
object to which you can write. Of course, before you write to a document object, you
should open it; then, after you write to the document object, you should close it. Here’s
the Netscape version of the code:

 document.output.document.open();

 document.output.document.write(theText);

 document.output.document.close();

The document.output.document syntax looks very strange, but it makes sense
if you understand how Netscape is viewing the structure. The first reference to
document refers to the primary document object. Almost every object reference
in JavaScript begins like this. output is the name of a property in the document
object, specifically a positionable element. The full name of this element is
document.object. Because it has its own document object, you refer to the docu-
ment object of the output layer as document.object.document. The code is
writing to the document object of the layer.

Adding Cross-Platform Sound

Sound effects are an important part of game devel-
opment. They can add quite a bit to the ambiance
of the game and can provide important cues to the
user without taking up real estate on the screen.

Both major browsers allow you to play sounds from
your JavaScript code. You might not be surprised
to find that the technique for storing and playing
sounds are totally different for Netscape and
Internet Explorer. Figure 8.14 shows a program that
demonstrates sound files.

It is not terribly difficult to add sound to a page as
a hyperlink, but the browsers have very different
techniques for embedding a sound into the page to
be played under the control of a program. Here is
the HTML code for the sound demo program:

<body>

<!-- embedded sound for Nav-->

<embed mayScript

 name = "sndPing"

 src = "ping.wav"

 hidden = "true"

 autostarts = "false">

<!--bgsound for IE -->

HINT

IN THE REAL WORLD

Many kinds of pages can benefit

from audio support. Educational

programs often benefit from au-

dio. You might have the program

say the names of different parts

of an engine as the user clicks an

image, or you could write a pro-

gram that speaks short phrases

in several languages. Remember

that sound files can take a long

time to download, so you will

need to be creative about using

them. Still, the potential benefits

of sound are tremendous.

190
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

<bgsound id = bgPing>

<form>

<input type = button

 value = "ping!"

 onClick = playPing()>

</form>

</body>

When it comes to sound manipulation, the browsers don’t even agree on the HTML
technique. You embed sound in a page via the embed tag in Netscape and through the
bgSound tag in IE.

The Netscape Navigator Approach to Sound

The Netscape view relies on helper applications. If you want to generate a sound in a
Netscape document, you use the embed tag to indicate that a certain type of file should
be embedded into the application (see Figure 8.15). When attempting to render the
page, the browser looks at the src property of the embed tag to determine a plug-in to
use. In the case of .wav or .midi files, Netscape uses a default media player. For sounds
that a program will control, you should probably set the hidden and autostart at-
tributes to false. The mayScript attribute indicates that the application will access
some of the methods or properties of the actual object through a script.

The media player object that Netscape uses to load the sound has a play() method.
When invoked, this method plays the sound. In addition, you can dynamically change
the value of the src property to change the sound being played.

FIGURE 8.14

When the user
clicks the button, a

sound plays.

C
h

a
p

te
r 8

D
y
n

a
m

i c
 H

T
M

L
: T

h
e
 S

t e
a
lt h

 S
u

b
m

a
ri n

e

191

The Netscape-specific technique for playing the sound is as follows:

 document.sndPing.src = "ping.wav";

 document.sndPing.play();

Netscape’s approach to scriptable sound is notoriously fragile. The user might in-
stall some other kinds of helper applications or plug-ins, which would make the
browser incapable of playing the sounds. You might want to add a “no sound” op-
tion to your programs, so those users who experience problems can simply skip
sound but still have a working program.

The Internet Explorer Approach to Sound

Fortunately, the sound model for Internet Explorer is a little more robust. IE supports
the bgSound HTML tag. This tag is often used to generate a sound to play in the back-
ground. Many people find background sounds that cannot be turned off irritating, so
the IE sound model enables you to control the tag through scripts. Figure 8.16 shows
how the IE document model sees sounds.

The JavaScript code to play the sound is reasonably simple. It is as follows:

document.all.bgPing.src = "ping.wav";

document

embedName

src

play()

Netscape Navigator Sound

FIGURE 8.15

To play a sound in
Netscape, you must

have an embed
object, which has
src property and a
play() method.

document

all

bgSound

src

Sounds in Internet Explorer

FIGURE 8.16

The bgSound
object has a

scriptable src
property.

TRAP

192
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Putting It Together in the Stealth Sub Game

The Stealth Sub game takes all the elements in this chapter, plus a few ideas from earlier
in the book, to make an interesting action/strategy game. The game’s design utilizes
positionable elements heavily. It also features sound and a simple lookup table. The main
screen is called from another page, just as in the Basketball game in Chapter 7, “Image
Swapping and Lookup Tables: The Basketball Game”. This technique guarantees that the
new browser page will be an appropriate size and will not be resized by the user.

Writing the HTML Code

The design of the main sub page is reasonably simple: The background is drawn in
with a grid on it. The page contains three positionable elements. The sub itself is a
span object. The scoreboard also is a span object. This element does not move but con-
tains all the scoring results. The score is updated inside the scoreboard dynamically
and looks like it’s a natural part of the game screen. Finally, the control buttons are
also part of a positioned element. This approach offers the easiest way to make sure
that the buttons are positioned well.

Here is the HTML code for the Stealth Sub game:

<body onLoad = "init()"

 background = "ocean.gif">

<span name = "sub"

 id = "sub"

 style = "position:absolute; left:22px; top:125px">

<img src = "sub.gif"

 height = 30

 width = 30>

<span id = "output"

 name = "output"

 style = "position:absolute;

 left:330px; top:30px;

 color:white;

 background-color:red;

 border-style:ridge;

 height:60;

 width:60;">

row: 5

col: 0

boats: 0

detected 0 times

<center>

C
h

a
p

te
r 8

D
y
n

a
m

i c
 H

T
M

L
: T

h
e
 S

t e
a
lt h

 S
u

b
m

a
ri n

e

193

<center>

<form name = "myForm">

<input type = "button"

 value = "/\"

 onClick = "moveSub(NORTH)">

<input type = "button"

 value = "<--"

 onClick = "moveSub(WEST)">

<input type = "button"

 value = "-->"

 onClick = "moveSub(EAST)">

<input type = "button"

 value = "\/"

 onClick = "moveSub(SOUTH)">

</form>

<!-- Embedded sounds for NS -->

<Embed src = "ping.wav"

 name = "ping"

 hidden = "true"

 mayScript = "true"

 autostart = "false"

 mastersound></embed>

<Embed src = "boat.wav"

 name = "boat"

 hidden = "true"

 mayScript = "true"

 autostart = "false"

 mastersound></embed>

<Embed src = "dive.wav"

 name = "dive"

 hidden = "true"

194
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 mayScript = "true"

 autostart = "false"

 mastersound></embed>

<Embed src = "torp.wav"

 name = "torp"

 hidden = "true"

 mayScript = "true"

 autostart = "false"

 mastersound></embed>

<!-- bgsound for IE -->

<bgsound id = "soundPlayer">

</center>

</center>

</body>

As you can see, the HTML code defines the positionable elements and embeds all the
sounds as hidden sounds for Netscape. It also provides a bgSound object for IE. When
the body of the page loads, it calls the init() function to do some initializing. All four
buttons call the moveSub() function, but with a different value indicating which direc-
tion to move the submarine.

Making the Global Variables

When you are examining a new program, one of the best ways to get an overview is to
look at the variables that are defined outside the functions. These should give you
some idea of the data that is used in the program. Here’s the code that generates these
variables:

var isNav = false;

var isIE = false;

var NORTH = 0;

var EAST = 1;

var SOUTH = 2;

var WEST = 3;

var rows = 10;

var cols = 10;

var currentRow = 5;

var currentCol = 1;

var numHits = 0;

var grid = new Array();

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r 8

D
y
n

a
m

i c
 H

T
M

L
: T

h
e
 S

t e
a
lt h

 S
u

b
m

a
ri n

e

195The program has variables to determine which browser is active. It also has a series of
variables (NORTH, SOUTH, EAST, and WEST) to simplify working with the directions. Since
the value of these variables should not change, I capitalized them to remind myself
that I consider them constants.

The rows and cols variables specify how many rows and columns are in the grid structure.

The actual white grid that the user sees is simply a graphic background, and it has
no real relationship to the program. I carefully designed the graphic background so
that it would have the right number of rows and columns, but all the program needs
is the value of the variables. The background could be anything. My first draft of the
program didn’t have a grid drawn on the screen at all, but my primary beta tester (my
wife) said that the game was dumb without a visible grid. Always listen to your beta
testers, especially if you are married to them!

The currentRow and currentCol variables are used to determine where the submarine
currently is inside the grid structure. The numHits variable tracks how many times the
player has been pinged.

The most critical variable in the game is called grid. It is a two-dimensional array that
keeps track of where the patrol boats are. Since the player cannot see the boats directly,
it is important to have some way of tracking their position. The grid array does this.

The grid variable is the key data structure underlying the program. Everything else in
the game somehow relates to this two-dimensional array. Figure 8.17 shows how the
grid might actually look.

The playing surface is 10 by 10 cells. The program includes a function that analyzes a
cell and counts the values in all its neighbors. It would be very difficult to account for
all the variations around the edges, so the easiest solution is to add a border of 0s all
around. The only grid spaces that you will allow as positions for the sub are in the 1–10
range; however, other cells containing the value 0 surround this range of cells, so any
cell the sub is on is guaranteed to have four neighbor cells.

HINT

FIGURE 8.17

The grid is a 10×10
matrix with a border

of 0s around it.

196
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Creating the Functions

In addition to looking at the global variables in a program, it’s a great idea to look
briefly at the functions provided in a program. This can give you a useful overview of
how the program will work. Once you have a wide view, you can look more carefully at
the specific functions and see how they work.

checkBrowser()

The checkBrowser() function checks the browser and sets isNav or isIE variables to true
or false. This section doesn’t repeat the code, because you’ve seen it several times already.

init()

The init() function initializes key variables in the game, calls the checkBrowser()
routine, calls the grid-creation routine, and positions the sub graphic in the appropriate
starting position. The function is called in the onLoad event of the body and whenever
the user restarts the game. Here’s the code for the init() function:

function init(){

 checkBrowser();

 makeGrid();

 playSound("dive");

 currentRow = 5;

 currentCol = 1;

 numHits = 0;

 //updateScore();

 //move sub to starting position

 if (isNav){

 document.sub.moveTo(22, 125);

 } else {

 document.all.sub.style.pixelLeft = 22;

 document.all.sub.style.pixelTop = 125;

 } // end if

} // end init

makeGrid()

This function turns the grid array into a two-dimensional array to contain the boat data.
The resulting grid is actually larger than the number of rows and columns the user will
see, to account for the border of 0 cells around the edges. Each element in the grid will
contain a 0 (no boat present) or a 1 (there is a boat in this cell). Each square has a 30
percent chance of having a boat in it. The boats are placed randomly. The simplest way to
change the difficulty of the game is to change the likelihood that each cell has a boat in
it. A value less than .30 makes the game easier, and a value greater than .30 makes the
game more difficult. The code for makeGrid() looks like the following:

function makeGrid(){

 var row = 0;

C
h

a
p

te
r 8

D
y
n

a
m

i c
 H

T
M

L
: T

h
e
 S

t e
a
lt h

 S
u

b
m

a
ri n

e

197 var col = 0;

 //clear out borders

 for (row = 0; row <= rows+1; row++){

 grid[row] = new Array();

 grid[row][0] = 0;

 grid[row][cols+1] = 0;

 } // end row

 for (col = 0; col <= cols+1; col++){

 grid[0][col] = 0;

 grid[rows + 1][col] = 0;

 } // end col

 //randomly populate middle

 for (row = 1; row <= rows; row++){

 for (col = 1; col <= cols; col++){

 if (Math.random() < .30){

 grid[row][col] = 1;

 } else {

 grid[row][col] = 0;

 } // end if

 } // end col for

 } // end row for

} // end makeGrid

getGrid()

The getGrid() function is a utility function that I used for debugging the program. Since
there is no visual representation of the grid, I wanted to make sure that it was being
created properly, so I wrote a little function to display the grid contents quickly in an
alert box. The final program does not need the function, but it’s so handy for debugging
that I decided not to take it out. However, this section does not repeat the code. If you
want to see the code for this function, look on the CD-ROM that accompanies this book.

countBoats()

The countBoats() function looks at the grid cell related to currentRow and currentCol
and determines how many of the cell’s neighbors contain patrol boats. The function
adds up the grid values for the four cells immediately surrounding the current cell.
The program returns this value as the sensor’s value. Recall that the sensor is the
instrument on the player’s submarine that returns how many patrol boats are nearby.
This procedure would have been much more complicated if it had to act differently on
those cells that do not have four neighbors (such as corners and borders). I added a
padding of 0-value cells around the edge of the grid to simplify coding of this function.

198
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

It is interesting that this function doesn’t simply stop when it is finished, but returns
the number of boats. Here’s how the function looks:

function countBoats(){

 //given current row and column, count how many boats are nearby

 var numBoats = 0;

 numBoats += grid[currentRow - 1][currentCol];

 numBoats += grid[currentRow][currentCol - 1];

 numBoats += grid[currentRow][currentCol + 1];

 numBoats += grid[currentRow + 1][currentCol];

 return numBoats;

} //end countBoats

updateScore()

The updateScore() function does exactly what it says: It updates the scoreboard. It
examines several of the key variables and concatenates them into an HTML string,
which the function then prints out to a positionable element.

function updateScore(){

 var score = "";

 score += "";

 score += "row: " + currentRow + "
";

 score += " col: " + currentCol + "
";

 score += " boats: " + countBoats() + "
";

 score += " detected: " + numHits + " times ";

 score += "";

 if (isNav){

 document.output.resizeTo(50,50);

 document.output.document.open();

 document.output.document.write(score);

 document.output.document.close();

 } else {

 document.all.output.innerHTML = score;

 } // end if

} // end updateScore

Note the way that the program invokes the countBoats() function. Since countBoats()
returns a number, the program can assign that value directly to a variable.

playSound()

Given the name of a sound file, the playSound() routine attempts to play that sound
in a platform-appropriate manner. Here’s the code for playSound():

function playSound(soundName){

 if (isNav){

C
h

a
p

te
r 8

D
y
n

a
m

i c
 H

T
M

L
: T

h
e
 S

t e
a
lt h

 S
u

b
m

a
ri n

e

199 var player = eval("document." + soundName);

 player.play();

 } else {

 var soundFile = soundName + ".wav";

 document.all.soundPlayer.src = soundFile;

 } // end if

} // end playSound

This particular approach depends on the embedded objects having exactly the same
name as the filename of the .wav file.

moveSub()

The sub expects to receive a direction variable (NORTH, SOUTH, EAST, or WEST). The moveSub
routine is called by all the button-press events. When the user clicks a button, it calls
the moveSub routine with a parameter describing the direction the sub should be moved.
The function analyzes that parameter, moves the submarine image appropriately, and
checks to see if the sub has been pinged.

function moveSub(direction){

 var dx = 0;

 var dy = 0;

 switch (direction){

 case 0:

 dx = 0;

 dy = -30;

 currentRow--;

 break;

 case 1:

 dx = 30;

 dy = 0;

 currentCol++;

 break;

 case 2:

 dx = 0;

 dy = 30;

 currentRow++;

 break;

 case 3 :

 dx = -30;

 dy = 0;

 currentCol--;

 break;

 } // end switch

 if (isNav){

 document.sub.moveBy(dx, dy);

 } else {

200
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 document.all.sub.style.pixelLeft += dx;

 document.all.sub.style.pixelTop += dy;

 } // end if

 //check for win

 if (currentCol > 10){

 playSound("dive");

 alert("You Win!!!");

 init();

 } // end if

 //check for hit

 if (grid[currentRow][currentCol] == 1){

 playSound("ping");

 numHits++;

 if (numHits >=3){

 playSound("torp");

 alert("You've been sunk!!");

 init();

 } // end sunk if

 } // end hit if

 updateScore();

} // end moveSub

For each direction, the routine updates the currentRow and currentCol variables and
changes the position of the sub graphic.

The moveSub() function then checks whether the sub has reached the open ocean. If
so, the player wins, and the program resets the game by calling the init() function.

Finally, the moveSub() function checks for a boat in the current cell. If there is one, the
function plays the ping sound, then checks whether this is the third ping. If so, the
game is over, so the program plays the explosion sound and resets the game with a call
to init(). Table 8.2 details the new syntax I’ve covered in this chapter.

Summary

This chapter took you through the somewhat frightening world of cross-platform dy-
namic HTML. You learned how to write code that can determine which browser the user
is running. You experimented with cascading style sheet (CSS) syntax as a way to add
formatting to your HTML code. You learned how you can use positionable CSS to posi-
tion your HTML elements more precisely. You built programs that moved an element,
changed its text, and played sounds. You have started to grapple with the intricacies of
cross-platform design, and have no doubt struggled to make your code work well on
either browser. In short, you have earned the right to call yourself a DHTML program-
mer. In the next chapter, you’ll learn an easier way to develop code that works on any
modern browser, that allows you to concentrate more on your game and less on how
each browser performs each particular task.

C
h

a
p

te
r 8

D
y
n

a
m

i c
 H

T
M

L
: T

h
e
 S

t e
a
lt h

 S
u

b
m

a
ri n

e

201TABLE 8.2 SYNTAX SUMMARY

Statement Description Example

navigator.appName Returns the browser’s name var theBrowser =

as a string. This statement is navigator.appName;

used for browser detection.

document.layerName. Moves a CSS element to document.sub.

moveTo(x,y) (x, y). This statement applies moveTo(30,100);

to Netscape only.

document.all. Moves a CSS element to a document.all.sub.

layerName.style. specified coordinate. This style.pixelLeft = 30;

pixelLeft document. statement applies to IE only.
all.layerName.

style.pixelTop

document.all.sub. Writes new content to a CSS document.output.

style.pixelTop = 100; element. This statement document.open();

document.layerName. applies to Netscape only.
document.open(),

document.layerName.

document.write(),

document.layerName.

document.close(),

document.output. Writes a new value to the document.all.output.

document.write element. This statement innerHTML =

("Hello World!"); applies to IE only. "Hello World!";

document.output.

document.close();

document.all.

layerName.innerHTML

document.embedName. Plays a sound file previously document.ping.play();

play() loaded into the specified
embed tag. This statement
applies to Netscape only.

document.all. Enables you to assign a new document.all.

bgSoundName.src URL to play a sound file. soundPlayer.src =

"ping.wav";

202
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

E X E R C I S E S

1. Modify the sub program so that it has another theme. (You are escaping from prison,

sneaking into enemy headquarters, or searching for some type of treasure.) Consider adding

multiple levels of difficulty.

2. Make an enhanced version of the sensor that would still return a number, but with the

following difference: a boat to the north is 1 point, one to the west is 2, a boat to the south

is 4, and a boat to the east is 8. If the user can figure out the code, he or she can always tell

exactly where the boats are. As a bonus, this would be a fun way to teach binary notation,

if you happen to be a computer science teacher or something similar.

3. The sound techniques described in this chapter can also be used to play .midi files. Build

a jukebox that plays a sound file based on a particular button press. Be sure to check with

the owner of a file before using it. Change the output of one of your earlier programs so

that it uses a CSS element instead of a frame or text box.

4. Make a home page that the user navigates by moving some object around on the page.

For example, if you have a page about turtles, let the user move a turtle around the page.

When the turtle is at an appropriate place (for example, over the word “photos”), the

appropriate page (a photo gallery) automatically pops up in another frame.

9

A
s your programs have become more

powerful, you have spent more effort

making them function across browsers.

It would be nice to have a trick that would elimi-

nate browser-dependency issues and let you con-

centrate on writing functional programs. Such a

technology exists, and you will learn about it in this

chapter. Specifically, you will learn:

• What an API library is

• How to import external JavaScript libraries

• What a sprite is and how to make one

• How to move sprites

• How to deal with frame animation in sprites

• How to react to collisions between sprites

• How to determine elapsed time for

scorekeeping

Sprite Animation:
The Racer

C H A P T E R

204
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

The Project: The Racer Program

To illustrate all these points, you will build a program that simulates a top-down view
of a racing car. The user will be able to control the car through on-screen controls and
will have to drive the car as quickly as possible through a series of tracks. Figures 9.1
through 9.4 show the game’s interface.

The game looks interesting enough, but some of its features make the game impres-
sive from a technical point of view. The game is designed to be very easy to customize.

FIGURE 9.1

The instruction form
contains a button to

launch the game.

FIGURE 9.2

You control the car
with the little

dashboard and
the mouse.

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r 9

S
p

ri te
 A

n
im

a
t io

n
: T

h
e
 R

a
c
e
r

205

It is reasonably simple to build new tracks. As long as you understand the principles,
you can easily customize the tracks however you wish. In fact, you could even add a
track editor and let the user design new tracks. (That will be one of the exercises at the
end of the chapter.) The racing game is reasonably browser-independent; it does not
appear to have a single line of browser-checking code, yet it uses positionable elements
and dynamic images.

FIGURE 9.3

Avoid the black
obstacles; the car
stops if you hit one

of them.

FIGURE 9.4

The tracks get more
difficult as you

advance in
the game.

206
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Introducing the Sprite

Game developers have been using graphic objects for a long time. They invented a
term for a special kind of graphic used in game programming, called the sprite. In
theoretical terms, a sprite is an object that can be used in a game environment. The
user can move a sprite to a specific position. The sprite should be able to change its
image on demand. A sprite also should be able to recognize collisions with other sprites,
and it is quite useful if a sprite has some other attributes such as speed and direction.

JavaScript does not directly provide the sprite element, but theoretically you can give
an object all the characteristics of the sprite object through the techniques that you
learned in the last chapter. It would be great if there was some kind of object you could
just magically invoke that would act like a sprite. It would be even better if you
could just tell the sprite object to move or change its graphic; then you wouldn’t
have to worry about what kind of positionable element or layer manipulation was
happening behind the scene.

Fortunately, a number of reusable JavaScript objects
have been invented. Several authors have been work-
ing on special libraries, called Application Program-
ming Interfaces (APIs), that simplify the tedium of
programming with positionable elements in
JavaScript. Using these libraries can spare you the
challenges of writing cross-platform dynamic HTML
and let you focus on the interesting things, such as
writing your games and other programs.

Throughout the rest of this book, I will demonstrate
one library that is optimized for game program-
ming. The library, called gameLib, was written by
Scott Porter. This excellent set of programs makes
JavaScript game development much easier than it
was just a couple of years ago.

The latest version of the gameLib library and its
documentation are provided on the CD-ROM that
accompanies this book. Refer to that documenta-
tion for instructions on installing the library.

Creating the Sprite Program

You can investigate the gameLib API by examining a very simple program that uses the
library to draw a sphere on the screen. Figure 9.5 shows the program’s interface. At
first the API will not seem to provide much benefit, but you soon will see how power-
ful sprite objects can be.

Although this page could be produced using standard HTML, it was not. There are a
number of interesting things happening in this program.

IN THE REAL WORLD

The ability to use APIs is one of

the most important skills in

modern programming. It is ex-

tremely common to have prob-

lems that extend beyond the

original scope of a language.

Programmers working on all

kinds of projects can often find

or build APIs to help solve such

problems. There are APIs for cre-

ating graphics, adding special

input/output devices, and work-

ing with databases and many

other kinds of applications.

C
h

a
p

te
r 9

S
p

ri te
 A

n
im

a
t io

n
: T

h
e
 R

a
c
e
r

207

Importing a Code Library

The programs in this chapter all use modules from the gameLib library. Rather than
copying all the code of the library, you can use a variation of the script tag to export
text files with JavaScript functions. Following is the code that performs that function
in the Sprite program:

<html>

<head>

<title>Sprite</title>

<!-- import the basic libraries -->

<script language="Javascript" src="../gamelib196/gamelib/gamelib_core.js">

</script>

<script language="Javascript" src="../gamelib196/gamelib/gamelib_core.js">

</script>

The script tag has an src parameter that can be assigned a URL. In this case, the
program is loading two modules. The first one is called gamelib_core.js. This module
contains a bunch of utility functions and methods that are used by the other modules.
As a programmer, you will not need all these features directly, but you may want to
look at the documentation to see which ones might be useful. Every program that uses
the gameLib library must import the gamelib_core module.

FIGURE 9.5

The page looks
unremarkable from

the user’s point
of view.

208
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

The program also imports the gamelib_sprites module. This is also a text file that
contains JavaScript code for manipulating sprite objects. This code contains the defi-
nition of the sprite object, as well as all the code that will enable the sprite objects
to operate in a platform-appropriate manner. Importing the library in this way has
the same effect as copying the entire JavaScript file and pasting it into your pro-
gram, but you don’t have to look at all the details of the code.

Using the Sprite Object

The sprite object defined by the gameLib API is a very powerful object. It uses
JavaScript’s variation of object-oriented programming, which means that the sprite
object has properties and methods. Properties are characteristics that describe the
object, such as x, y, height, and width. In the gameLib API, most properties are read-
only, which means that you use them to get information about the sprite object. To
change the sprite’s behavior or appearance, you use methods instead. A method is a
special function that is attached to a particular type of object. Tables 9.1 and 9.2 list
the sprite object’s primary methods and properties.

Don’t worry if you don’t understand these tables on your first glance. You’ll get to
see most of these properties and methods in action as the chapter progresses. The
tables simply give you a bird’s-eye view of the sprite object’s properties and meth-
ods before you actually begin using them.

From a quick look at these tables, you can see that the sprite object is quite powerful.
In general, you can use the sprite’s methods to control the sprite, and use its proper-
ties to inquire about the sprite. The tables might seem a little bit intimidating, but
managing sprites is not very difficult at all.

Initializing the Sprite

Here is the code fragment that starts up the sprite for the Sprite program.

<script>

var ball;

function init(){

 ball = new Sp_Sprite();

 ball.setImage("redball.gif", 20, 20, 1, 1);

 ball.moveTo(100,100);

 ball.setXlimits(0, 500);

 ball.setYlimits(0, 300);

 ball.setFrame(0);

 ball.switchOn();

} // end init

</script>

HINT

C
h

a
p

te
r 9

S
p

ri te
 A

n
im

a
t io

n
: T

h
e
 R

a
c
e
r

209TABLE 9.1 KEY PROPERTIES OF THE SPRITE OBJECT IN GAMELIB

Property Description Example

on (read-only) Describes whether the sprite if (mySprite.on){

is visible. //do something }

x, y, height, width Describes the current size if (mySprite.x < 0){

(read-only) and position of the sprite. mySprite.x = 0; }

Bounces (read-write) Determines behavior when mySprite.bounces = true;

the sprite reaches defined
limits; if true, the sprite
bounces off the border.

Xdir, ydir (read-only) Determines the speed of if (mySprite.xdir == 0)

the sprite in x and y { alert ("not going

directions.sideways!"); }

Xydegs (read-only) Shows the direction that if (mySprite.xydegs ==

the sprite is moving in 0){ alert ("going

degrees. north!"); } // end if

Speed (read-only) Shows the speed of alert (mySprite.speed);

the sprite.

Collides (read-write) Determines whether the mySprite.collides = true;

sprite registers collisions.

The code starts by creating a variable (ball) that will contain the sprite. The variable is
declared outside any functions, so it can be used anywhere. The code also defines an
init() function, which the program will call when the body loads. This init() func-
tion is normal for any type of initialization, and you will usually need something like
this function when you work with sprites.

Inside init(), I created a new sprite with this line:

ball = new Sp_Sprite();

Notice the new keyword. You have used it before when creating instances of objects.
This line generates a new Sp_Sprite object called ball.

The sprite object in gameLib is technically called a Sp_Sprite because that’s
the name of the class that Porter built. He decided to begin the name of everything
defined in his sprite module with Sp_ so that it would be easier to sort out when
debugging the API package. You will almost always refer to your sprite objects by
the variable names you assign to them, so the distinction between sprites (a generic
term) and Sp_Sprites (the specific term used in gameLib) is not very important.

HINT

210
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

TABLE 9.2 PRINCIPAL METHODS OF THE SPRITE OBJECT IN GAMELIB

Method Description Example

HasHit(object) Determines whether one if (car.hasHit

sprite has collided with (barrier)){

another. alert("crash!"); }

MoveTo(x,y) Moves the sprite directly to mySprite.moveTo(100, 50);

the given x,y coordinates.

SetDir(x,y) Determines how many mySprite.setDir(1,3);

pixels in x and y dimensions //moves sprite 1 to

that the sprite will move at left, 3 down

each interval.

SetXYdegs(direc) Sets the direction of the mySprite.setXYdegs(45);

sprite in degrees. //moves sprite northeast

SetSpeed(speed) Determines how many mySprite.setSpeed(3);

pixels the sprite will move
at each interval.

SetImage(image, Determines the image of a mySprite.setImage

width, height, sprite; see below for details. ("car.gif", 20, 20,

frames, anims) 1, 1);

SetFrame(number) Sets a particular frame of mySprite.setFrame(2);

the image.

SwitchOn(), Turns the sprite on or off, mySprite.switchOn();

switchOff() controlling its visibility.

SetXlimits(min, max), Determines where the sprite mySprite.setXlimits

setYlimits(min, max) can be placed or moved on (0,300); //sprite's x will
the screen. stay between 0 and 300

Setting the Sprite’s Image

A sprite is not very interesting unless it is displaying some sort of image, so you’ll
almost always want to attach an image to a sprite. When you set up a sprite’s image,
you need to specify a number of parameters about the object. For the ball example,
here is the setImage() line:

ball.setImage("redball.gif", 20, 20, 1, 1);

Because ball is an instance of the Sprite class, you can invoke all of its methods. I set
its image to "redball.gif". You can assign any image to a sprite with an absolute or
local URL. The next two numbers (20, 20) indicate the size of the sprite. This does not
have to be the same as the size of the starting image. The next two parameters (1, 1)

C
h

a
p

te
r 9

S
p

ri te
 A

n
im

a
t io

n
: T

h
e
 R

a
c
e
r

211refer to the frame and animation levels of the image. You’ll learn about frame anima-
tion later in this chapter and in the next chapter, but for now, you’ll leave these values
at 1 to make a simple image with one frame and one animation.

Setting the Ball’s Initial Position

The following line moves the ball to the indicated position:

ball.moveTo(100,100);

When the sprite is displayed, this position is where the ball will appear on the screen.
Remember that (0, 0) is in the upper-left corner. The coordinates indicate the location
of the top-left corner of the sprite.

The next two lines determine boundaries on the screen. Whenever you create a sprite,
you should set its limits using these two methods.

 ball.setXlimits(0, 500);

 ball.setYlimits(0, 300);

The playing field thus will extend from (0, 0) to (500, 300). This is a reasonable size for
a game, as it will fit inside most commonly used screen resolutions. Of course, the ball
isn’t moving yet, so specifying boundaries might seem silly at this point. However, you
will be modifying this program soon to move the ball.

Even if you have sprites that will not move at all, be sure to set limits for them. The
default values for the x and y limits seem to be very small, and your sprite might not
appear in the right place (or at all) on the screen. Be sure that you have limits broad
enough to show the sprite. Also be careful to place the sprite far enough inside
these limits so that it is still visible. If you create sprites that are not appearing in the
correct places, check whether you have set the limits correctly.

Turning On the Sprite

The last two lines of the init() function do some more housekeeping. The following
line specifies that the original frame be used:

ball.setFrame(0);

You’ll learn more about frames in the next section. For now, just accept that it is neces-
sary to set the frame to 0.

Then the last line turns the ball on and makes it visible to the user, like this:

ball.switchOn();

Moving Sprites Around

All of the sprite stuff seems like a lot of work, but it really pays off when you start
making the sprites do interesting things, like move around on the screen and crash
into things.

TRAP

212
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Creating the Moving Sprite Program

By making a few modifications to the Sprite program, you can make a ball that bounces
around on the screen. Figure 9.6 shows just such a program.

Although you can’t see it in Figure 9.6, the ball automatically bounces off any of the
limits and reverses direction appropriately. The most exciting thing about this pro-
gram is that most of the new code is HTML for the buttons. The sprite object contains
most of the code required to handle the motion of the ball.

Modifying the init() Method

I added two modifications to the init() method.

 ball.bounces = true;

 Gl_start();

The ball.bounces line tells the ball sprite that it should use ”bouncy” behavior. This
means that when it hits a wall, the ball should reverse its direction. Note that this is
one of the unusual cases where you control a sprite by a property.

The Gl_start() line contains a subtle but powerful command. It starts up the actual
gameLib engine. This in turn starts up a special timer that repeats 20 times per second.
This timer activates all the motion in your program.

If you want to have this type of behavior in your code without using the gameLib
library, you should investigate the setTimeOut() function supplied by both
browsers. It is the underlying technology that the gameLib API uses to manage
timed behavior.

FIGURE 9.6

When the user
clicks a button, the
ball moves in the

direction indicated
by the button.

TRICK

C
h

a
p

te
r 9

S
p

ri te
 A

n
im

a
t io

n
: T

h
e
 R

a
c
e
r

213Writing the HTML for the Moving Sprite Program

The HTML is reasonably straightforward. It is a form with a set of command buttons on
it. I used a table for neatness, and placed that table in a span object aligned to the right
so it will stay out of the area in which the ball will move. Here’s the HTML for one row
of the table.

<tr>

 <td><input type = "button"

 value = "W "

 onClick = "moveBall(270)">

 </td>

 <td><input type = "button"

 value = " "

 onClick = "moveBall(999)">

 </td>

 <td><input type = "button"

 value = "E "

 onClick = "moveBall(90)">

 </td>

</tr>

All the buttons call the moveBall() function, but they pass a different parameter. You
might recognize that west is 270 degrees and east is 90 degrees on a standard compass.
The center button causes the ball to stop, so I encoded the special value 999, which
usually would not be considered a valid direction.

Changing Speed and Direction

The moveBall() function manipulates the ball sprite
to make the animation occur. Following is the code
for that function:

function moveBall(direc){

 if (direc == 999){

 ball.setSpeed(0);

 } else {

 ball.setSpeed(10);

 ball.setXYdegs(direc);

 } // end if

} // end moveBall

The direction value is stored in the parameter direc.
The first thing that this function does is check
whether the user clicked the center button. If so,
the function sets the ball’s speed to 0, effectively stop-
ping the ball. If the direc value is anything other
than 999, the function sets the ball’s XYdegs value
to that direction and sets the ball’s speed to 10. The
next time that the timer loop occurs (remember, this

IN THE REAL WORLD

Sprites are clearly useful in

game programming, but they

can also be handy in any appli-

cation where you need some

kind of flashy movement or im-

age swapping. If, for example,

you’re building a page for a

courier company, you can in-

corporate vans and aircraft that

move across the screen as part

of the page’s navigation

scheme. If you are doing some

sort of site for an engineering

firm, you might feature a mov-

ing parade of some of the parts

the company produces.

214
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

happens 20 times per second), the function moves the ball approximately 10 pixels in
the indicated direction.

The capability to work with direction and speed is one of the most useful features of
the sprite object. In game development, the direction and speed of a sprite are
probably what you are most concerned about, but all the document object model
gives you is the ability to set an element to a specified x,y coordinate. Without the
sprite object, you would need to do some trigonometric conversions. The sprite
object handles all the math necessary to convert a speed and direction into a pair of
coordinates. This is pretty handy if your trig skills are a bit rusty.

Once the sprite is set up and the gameLib is started, movement is automatic. The ball
pretty much moves on its own, bounces when it hits a boundary, and responds to
button clicks from the user.

Using Frame Animation in Sprites

If you wish to animate the movement of a ball, you can get away with only one image.
However, if the image that you are working with is a car or other vehicle, you have to
change the graphic when the direction changes; otherwise, the car will look silly. A
vehicle usually goes in the direction of its nose, so it would be great to have some way
to point the car in the current direction.

Creating the Moving Sprite Program

The Moving Sprite program faces exactly this dilemma (see Figure 9.7). The sprite is an
arrow, and the arrow is always pointing in the direction in which the arrow is traveling.

HINT

FIGURE 9.7

The arrow is moving
to the southeast and

pointed in that
direction.

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r 9

S
p

ri te
 A

n
im

a
t io

n
: T

h
e
 R

a
c
e
r

215Since the arrow is a sprite object, it has special methods that make it easy to choose
one of a set of images.

Using Clip Graphics

The gameLib library uses a special technique called graphic clipping. The best way to
describe how this technique works is to look at the actual image file that is applied to
the car sprite (see Figure 9.8).

To create the illusion of an arrow that can go in all directions, you need eight different
image files. You then display the appropriate image for the current direction. In Web
programming, there is considerable overhead for each image that comes to the page.
One large image is transferred more quickly than several smaller images. The clipping
technique requires you to build a large composite image with all the component im-
ages on it. When you attach an image to a sprite object, only a small part of the total
image is shown. You can control which part of the image is visible. Although it sounds
complicated, it is reasonably simple to use such an image once you have created it.

The image file was specially prepared for use as a sprite image. I designed the car
facing north as a 30×30 pixel image. I then made a copy, which I rotated by 45 degrees.
I made a larger image that was 40 pixels tall by 320 pixels wide. I carefully placed the
first (north) car image so it was centered at (20, 20) in the long skinny image. I then
centered the next (northeast) car image at (40, 20) of the longer image. I repeated the
process until I had all eight cardinal directions represented in the long image. I saved
this image as car.gif. It is important that the smaller images are all the same distance
apart, but the exact number of images does not matter.

FIGURE 9.8

The arrow image is
actually a set of
eight images in

one file.

216
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Setting Up Direction Variables

This program starts with a set of variables to make things a little easier.

var arrow;

var NORTH = 0;

var NORTHEAST = 1;

var EAST = 2;

var SOUTHEAST = 3;

var SOUTH = 4;

var SOUTHWEST = 5;

var WEST = 6;

var NORTHWEST = 7;

var direction = EAST;

The arrow variable will hold the sprite. The capitalized variables will be used for
convenience, to hold the various directions. The directions correlate to the order of
the arrow images in the graphic. The variable called direction holds the direction
that the arrow sprite is currently facing.

Creating a Sprite with Frame Animation

You need to change only one line of code in the initialization to deal with a sprite that
uses frame animation.

function init(){

 arrow = new Sp_Sprite();

 arrow.setImage("arrow.gif", 30, 30, 8, 1);

 arrow.moveTo(100,100);

 arrow.setXlimits(0, 500);

 arrow.setYlimits(0, 300);

 arrow.setFrame(0);

 arrow.switchOn();

 arrow.setSpeed(0);

 Gl_start();

} // end init

The only line that changes is the setImage() method of the sprite. In this case, the code
specifies that the sprite’s image should be set to "sprite.gif". Recall that this image
actually is 40×320 pixels, and it actually contains eight different arrow images. The next
two parameters (30, 30) indicate the size at which the sprite should be drawn on the
screen. The function will draw the sprite as a 30×30 square. The next parameter deter-
mines how many frames are in the image. This number is set to 8, which indicates that
the original image should be split into eight even pieces. In effect, the sprite will show
only one-eighth of the original image at any one time, and it will show that piece of the
image as a 30×30 square. You will use the last parameter (1) in the next chapter to add
another element of animation. For now, leave the parameter’s value set to 1.

C
h

a
p

te
r 9

S
p

ri te
 A

n
im

a
t io

n
: T

h
e
 R

a
c
e
r

217I also turned off the bouncing feature, because I didn’t think it made sense for the
arrow to bounce off the wall like a ball would.

Why not simply have eight different images? It might seem crazy to force all the small
images into one long image, but it actually makes sense. First of all, because the im-
ages are all related, it’s much easier to keep track of one image than eight. But the
most important reason is efficiency. Every time that the browser has to load an image,
there is a lot of overhead. The browser contacts the server, sends the image over the
Internet, and closes the connection. Eight small images take much longer to download
than one larger one. Also, all the image clipping will happen on an image that exists in
the computer’s memory. This is much faster than swapping between multiple image
files. Most browsers have a limited image cache and can keep very few images in memory.
This means that if a lot of image swapping is going on, you could have even more
network accesses slowing down the system. With the single-image technique, the im-
age is entirely in memory.

Modifying the Direction Parameter

The rest of the Moving Sprite program is also similar to the ball sprite program, with a
few significant differences. Here’s the new version of the button code. The following
HTML code listing shows only the middle row, but you should easily grasp what’s go-
ing on from this portion of the HTML.

<tr>

 <td><input type = "button"

 value = "W "

 onClick = "moveArrow(WEST)">

 </td>

 <td><input type = "button"

 value = " "

 onClick = "moveArrow(999)">

 </td>

 <td><input type = "button"

 value = "E "

 onClick = "moveArrow(EAST)">

 </td>

</tr>

This time, rather than specifying the new angle in degrees, I decided to specify the
direction through the special constants that I had created. The center button still has
the 999 value, because this button is still used to stop the arrow.

The moveCar() function manages the arrow’s direction and changes the frame so that
the arrow image is pointing in the right direction.

function moveArrow(direc){

 if (direc == 999){

 arrow.setSpeed(0);

 } else {

HINT

218
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 arrow.setSpeed(3);

 arrow.setXYdegs(direc * 45);

 arrow.setFrame(direc);

 } // end if

} // end moveArrow

The setXYdegs() method changes the sprite’s direction based on the value of direc. I
noticed that all the directions were multiples of 45 degrees, so I could use some simple
math to correlate the 0–7 direction values to compass points. I also used the setFrame()
method of the arrow sprite to set the frame to the number associated with the arrow’s
direction. So, if the user clicks the west button, the value of direc will be WEST, which
evaluates to 6. The function would set the arrow’s direction to 6 * 45, or 270 degrees. The
sprite would load with the sixth frame, which shows the arrow pointing to the west.

Detecting Collision

If sprites are moving around on the screen, they will eventually collide. Collision de-
tection is an important element of game programming, because many of the events in
a game are triggered by sprites bumping into each other. The sprite class provided by
the gameLib API can detect collisions in a number of ways.

Creating the Collision Program

To practice collision detection, you need to create something for your car sprite to
crash into. Figures 9.9 and 9.10 show a variation of the Moving Sprite program, called
Checking for Collisions.

I introduced another sprite, which I called barrier. This sprite is simply a big black box.

FIGURE 9.9

The car sprite works
just as it did in the

last program.

C
h

a
p

te
r 9

S
p

ri te
 A

n
im

a
t io

n
: T

h
e
 R

a
c
e
r

219

Creating the Sprites

The Checking for Collisions program has two sprites. One is the car (almost identical
to the car in the previous program) and the other one is the barrier. Following is the
code that sets up the sprites:

function init(){

 car = new Sp_Sprite();

 car.setImage("car.gif", 30, 30, 8, 1);

 car.moveTo(100,100);

 car.setXlimits(0, 500);

 car.setYlimits(0, 300);

 car.setFrame(0);

 car.switchOn();

 car.setSpeed(0);

 car.collides = true;

 barrier = new Sp_Sprite();

 barrier.setImage("black.gif", 100, 100, 1, 1);

 barrier.setXlimits(0, 500);

 barrier.setYlimits(0, 300);

 barrier.moveTo(200, 200);

 barrier.setFrame(0);

 barrier.switchOn();

 barrier.collides = true;

 Gl_hook("checkCollision()");

FIGURE 9.10

When it hits
the black box,
the car stops.

220
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 Gl_start();

} // end init

Notice the use of the collides property in both sprites. I set this property to true in
both the sprites so that they would register collisions.

The image for the barrier sprite is simply a 10×10 black square. I made a whole
series of images of solid colors that are perfect for situations like this. Because the
image is a solid color, it will size up very gracefully. It has a very small file size and
will transfer quickly across the Internet. These little solid color images are great for
normal HTML and game programming purposes, because you can easily use them to
make a rectangle of any color. I also have an image that is simply a small transpar-
ent gif image. This image is also useful if you want a spacer, such as we used to
position the images in the basketball game in the last chapter, or a sprite that re-
sponds to collisions but is not visible, such as a ghost or an invisible wall.

Hooking to the Timer Loop

If you look closely, you’ll notice one other new line in the init() method. That line is
as follows:

Gl_hook("checkCollision()");

Remember that when you call Gl_start(), you start a timer loop that occurs 20 times
per second. This timer is used to manage sprite movement. The hook() method allows
you to specify a function to run every time that the timer loop occurs. In this specific
case, the method tells the library to run the checkCollision() function (which you
will see shortly) every time that the timer loop occurs, which will be 20 times per
second. Hooking functions to the timer in this way is the principal method for adding
logic to your program in gameLib.

If you have looked carefully at the gameLib documentation, you might have noticed
that there is a way to do collision detection without hooking a function to the timer.
The approach that this application demonstrates is not always the best choice. How-
ever, because the ability to hook up functions is so important, I wanted to demonstrate
at least one approach right away. Of course, you can always decide for yourself the
best approach for creating your programs.

Creating the checkCollision() Function

After you go through the trouble of hooking up a function, you have an obligation to
write the function. Fortunately, the checkCollision() function is pretty simple.

function checkCollision(){

 if (car.hasHit(barrier)){

 car.setSpeed(0);

HINT

TRICK

C
h

a
p

te
r 9

S
p

ri te
 A

n
im

a
t io

n
: T

h
e
 R

a
c
e
r

221 Gl_unhook("checkCollision()");

 } // end if

} // end checkCollision

The hasHit() method of a sprite determines whether a car has hit whatever sprite is
specified. This method always returns a Boolean value. If the car has hit the barrier in
this iteration of the function, the value is returned as true. Otherwise, it returns as false.

When the car hits the barrier, you want to stop the car. To do so, you set its speed to 0
with the setSpeed() method.

Remember that the program calls the checkCollision() function quite often. With
the speed set to 0, the car continues hitting the barrier until it has changed direction
and the speed has been changed to some other value. I found it best to unhook the
checkCollision() function temporarily so that the car sprite could be moved. The
Gl_unhook() function is used to stop calling the checkCollision() function each time
that the timer ticks.

The moveCar() function in this program has been modified slightly, to rehook the
checkCollision() function whenever the car is pointed in a new direction:

function moveCar(direc){

 if (direc == 999){

 car.setSpeed(0);

 } else {

 Gl_hook("checkCollision()");

 car.setSpeed(3);

 car.setXYdegs(direc * 45);

 car.setFrame(direc);

 } // end if

} // end moveCar

Of course, this is just a starting point. You could generate multiple barriers and do
more complex collision detection.

Creating a Race Timer

Sprites and collision-detection techniques provide almost all of the functionality
needed for the racing program except scorekeeping. It would be nice to have some
way to keep track of how long the race lasts. JavaScript provides a Date object that
helps with this task.

Writing the Timer Program

Web browsers have ways of querying the system clock of the client machine to figure out
the time. JavaScript supplies this information to the programmer via a special object called
the Date object. Figure 9.11 shows a program that demonstrates the Date object in action.

The Timer program evaluates the current date, then evaluates each precise time that
the user clicked the button. The program does some mathematical manipulations of
these values to determine the elapsed time.

222
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Using the Date Object

The key to this program is the timer object built into JavaScript.

Following is the code for the program:

var startTime = new Date();

var startInt = startTime.getTime();

var elapsedTime = new Date();

var currentTime = new Date();

function getTime(){

 var output = "";

 currentTime = new Date();

 var currentInt = currentTime.getTime();

 var elapsedInt = currentInt - startInt;

 elapsedTime = new Date(elapsedInt);

 output += elapsedTime.getMinutes() + ":";

 output += elapsedTime.getSeconds() + ".";

 output += elapsedTime.getMilliseconds() + "\n";

 document.myForm.txtOutput.value += output;

} // end getTime

You invoke the Date object with new Date(). This function creates a new Date object
based on the current time. The Date object has a number of interesting methods and
properties, which Table 9.3 lists.

The Date object is usually used simply to get the current date from the system. Here’s a
simple script, embedded in the HTML code, that uses the Date object in a more typical way.

FIGURE 9.11

Each time that the
user clicks the

button, the Timer
program adds to the

text area the
elapsed time since
the browser loaded

the page.

C
h

a
p

te
r 9

S
p

ri te
 A

n
im

a
t io

n
: T

h
e
 R

a
c
e
r

223

<script>

document.write(new Date());

</script>

This code is embedded directly into the HTML code and generates a Date object imme-
diately. The value of that Date object is translated to the Web page as a long string.

TABLE 9.3 KEY PROPERTIES AND METHODS OF THE DATE OBJECT

Method Description Example

new Date() Creates a Date object based var myDate = new Date();

on the current date and time.

new Date(integer) Creates a new Date object var myDate =

based on the integer passed. new Date(intValue);

getTime() Returns the number of var myInt =

milliseconds since midnight myDate.getTime;

GMT, as an integer.

getDate() Returns the day of the month. alert(myDate.

getDate());

getMonth() Returns the month. alert ("today is the "

+ myDate.getDate() +

" of " + myDate.

getMonth());

getYear() Returns the year that alert(myDate.

corresponds with this getYear());

Date object.

getHours() Returns the hour of the day. alert(myDate.

getHours());

getMinutes() Returns the minutes. alert(myDate.

getMinutes());

getSeconds() Returns the seconds. alert(myDate.

getSeconds());

toString() Returns the entire date as alert(myDate.

a string value. toString());

IN THE REAL WORLD

The ability to deal with dates and times is very important in many aspects of programming. You

might use similar techniques to determine how long it has been since the user last visited your

site, or you might want to be able to calculate a person’s age in years, months, and days. Of

course, it’s nice to just be able to display the current date and time in whatever format you wish.

224
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Dealing with Elapsed Time

For the Racer game, you will not need the date or time of day, but the elapsed time
between the start and end of a race. This is not difficult to do, but it requires that you
understand how the Date object really works.

The date is actually stored as a very long integer that counts how many milliseconds
(1,000th of a second) have occurred since midnight Greenwich Mean Time (GMT). The
Date object is basically just a series of methods that extract more useful information
(such as the month, day, or hour) from that big integer.

The getTime() method returns the actual number that relates to the time. This num-
ber wouldn’t seem very useful, except that you can subtract the integer value two
times. The result gives you an integer that can be translated to a date value. You can
count the minutes, seconds, and milliseconds of this new Date object to get an elapsed
time. Here’s how I got the elapsed time:

Outside the method, I created startTime and elapsedTime as new Date objects.

The program calls the getTime() function each time that the user wants to find a new
elapsed time. The first thing that the function does is reinitialize elapsedTime as a
new Date object so that it will have a different value than startTime (whose value
indicates when the browser loaded the page).

The following two lines get integer values related to the two Date objects:

 var startInt = startTime.getTime();

 var currentInt = currentTime.getTime();

The following line creates a new integer by subtracting the millisecond value of startInt
from that of currentInt:

var elapsedInt = currentInt - startInt;

The next line creates a new date based on the difference.

elapsedTime = new Date(elapsedInt);

Finally, I use a set of date methods to get other useful values from the Date object:

 output += elapsedTime.getMinutes() + ":";

 output += elapsedTime.getSeconds() + ".";

 output += elapsedTime.getMilliseconds() + "\n";

 document.myForm.txtOutput.value += output;

Returning to the Racer Program

The Racer program is primarily a combination of the techniques described through-
out this chapter. It relies heavily on sprite technology. The program actually features
11 different sprites, and you can easily customize it to use more if you want more
complex tracks. The basic organization of the program relies on a sprite for the car, an
array of sprites for barriers, and another array of sprites for time sensors. The barriers
are placed on the track to make the different track designs, and the sensors are placed

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r 9

S
p

ri te
 A

n
im

a
t io

n
: T

h
e
 R

a
c
e
r

225around the track. The program considers a lap complete only when the car has trig-
gered all five time sensors.

Creating the CarStart Page

The initial page for the Racer program uses a now-familiar strategy. This page contains
the Help screen and a button that calls up the actual page.

Writing the HTML for Car.html

The HTML for the page is very simple, because most of the work happens with sprites. The
body calls the init() function, and all the user interaction is done with an image map.

<body bgColor = "gray"

 onload = "init()">

<MAP NAME="map">

<!-- #$-:Image Map file created by GIMP Imagemap Plugin -->

<!-- #$-:GIMP Imagemap Plugin by Maurits Rijk -->

<!-- #$-:Please do not edit lines starting with "#$" -->

<!-- #$VERSION:1.3 -->

<!-- #$AUTHOR:Unknown User -->

<AREA SHAPE="RECT" COORDS="351,454,371,489" HREF="javascript:accel()">

<AREA SHAPE="RECT" COORDS="227,455,247,489" HREF="javascript:decel()">

<AREA SHAPE="POLY" COORDS="303,395,325,403,342,424,344,448,335,468,317,482,

307,485,301,485" HREF="javaScript:turnRight()">

<AREA SHAPE="POLY" COORDS="299,396,280,400,261,418,255,440,259,461,270,475,

288,485,299,486" HREF="javascript:turnLeft()">

</MAP>

</body>

Creating an Image Map for User Input

An image map is one way to get input from the user without having to use form con-
trols. I wanted the user to interact with a steering wheel and control pedals, so I drew
them in an image and created an HTML image map. If you are working with simple
regions (such as rectangles), you can build image maps by hand; however, for more
complex images, you may want to use an editor. The CD-ROM that accompanies this
book includes The GIMP, a powerful, free image editor (see Figure 9.12). I used the
image map tool that comes with The GIMP to generate the image map automatically
for this program. The image map tool is available by right-clicking an image, then
choosing Filters, Web, then Image Map.

Note that instead of specifying a normal URL, I called the turnLeft() function by set-
ting JavaScript:turnLeft() as the URL for this region.

The image map editor creates a text file that you can copy and paste into your page.

226
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Using Libraries and Variables

The car program is reasonably complex, and it has a number of variables. It is also not
surprising that it uses the gameLib core and sprite libraries. Here is the code that sets
up the program:

<!-- import the basic libraries -->

<script language="Javascript" src="gamelib/gamelib_core.js">

</script>

<script language="Javascript" src="gamelib/gamelib_sprites.js">

</script>

<script>

var car;

var barrier = new Array();

var numSensors = 5;

var timeSensor = new Array(numSensors);

var lapStatus = new Array(numSensors);

var NORTH = 0;

var NORTHEAST = 1;

var EAST = 2;

var SOUTHEAST = 3;

var SOUTH = 4;

FIGURE 9.12

Defining an image
map in The GIMP.

C
h

a
p

te
r 9

S
p

ri te
 A

n
im

a
t io

n
: T

h
e
 R

a
c
e
r

227var SOUTHWEST = 5;

var WEST = 6;

var NORTHWEST = 7;

var direction = EAST;

var speed = 3;

var startTime = new Date();

var trackNum = 1;

var lap = 0;

The car is a sprite, just like the one used earlier in this chapter. Additionally, the pro-
gram sets up an array of barriers (which will be sprites) and an array of time sensors
(which will also be sprites). Another array is used to keep track of the car’s position on
the screen. These arrays make the game flexible, because you can place the barriers
and time sensors anywhere on the screen and the program will be able to tell whether
the car has completed a lap. A set of variables is used to manage the directions, just as
in the program earlier in the chapter.

The code initializes the direction to EAST, sets the starting speed to 3, and establishes a
new startTime (which is useful for determining the elapsed time later). Finally, the
code sets the track number to 1 (so that the user starts with the easiest track) and sets
the lap to 0.

Creating the init() Function

The program calls the init() function when the page’s body loads. It is chiefly con-
cerned with initializing sprites. Here’s the code:

function init(){

 car = new Sp_Sprite();

 car.setImage("car.gif", 40, 40, 8, 1);

 car.moveTo(30,40);

 car.setXlimits(20, 600);

 car.setYlimits(30, 400);

 car.setFrame(EAST);

 car.setZ(99);

 car.switchOn();

 car.setSpeed(3);

 car.setXYdegs(EAST * 45);

 car.collides = true;

 //set up barriers

 var barCounter = 0;

 for(barCounter = 0; barCounter < 5; barCounter++){

 barrier[barCounter] = new Sp_Sprite();

 barrier[barCounter].setXlimits(20, 600);

 barrier[barCounter].setYlimits(30, 400);

 barrier[barCounter].setImage("black.gif", 20,20,1,1);

228
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 barrier[barCounter].moveTo(10,10);

 barrier[barCounter].setFrame(0);

 barrier[barCounter].switchOn();

 barrier[barCounter].collides = true;

 } // end for loop

 //set up time sensors

 for (tsCount = 0; tsCount < numSensors; tsCount++){

 timeSensor[tsCount] = new Sp_Sprite();

 timeSensor[tsCount].setImage("white.gif", 10, 10, 1, 1)

 timeSensor[tsCount].setXlimits(20, 600);

 timeSensor[tsCount].setYlimits(30, 400);

 timeSensor[tsCount].moveTo(10,10);

 timeSensor[tsCount].setFrame(0);

 timeSensor[tsCount].switchOn();

 timeSensor[tsCount].collides = true;

 } // end for loop

 Gl_hook("checkCollision()");

 Gl_start();

 setUpTrack();

} // end init

The program sets up the car sprite. This setup should be very familiar now. The only
new technique is the setZ() method. Notice that the program sets the z value of the
car to 99. This setting tells the system to display the car as if it were on top of every-
thing else. All sprites with lower z values will appear to be underneath the car if they
happen to be drawn in the same place.

The array includes five barriers. The program initially sets up each one to be exactly
the same, although the program will move them later. For convenience, all the barrier
creation is done in a for loop.

The code also includes an array of five time sensors. These are simply sprites that the player
is to drive over. You’ll place them all over the track later so that the driver can’t cheat by
driving over the start line, then turning around and driving over the start line again to
finish. The program also initializes the time sensors in a for loop for convenience.

I hooked the checkCollision() function to the timer loop so that the program will
call the function frequently. I also started up the gameLib engine with Gl_start().

The last line of init() is a call to the setUpTrack() function, which is described next.

Writing the setUpTrack() Function

The setUpTrack() function examines the value of the trackNum variable and sets up
the track in one of three configurations. To add or modify tracks, you can simply change
this function. Here’s the code:

C
h

a
p

te
r 9

S
p

ri te
 A

n
im

a
t io

n
: T

h
e
 R

a
c
e
r

229function setUpTrack(){

 //preset for a specific track

 switch(trackNum){

 case 1:

 // oval

 barrier[0].resize(400, 200);

 barrier[0].moveTo(100, 110);

 barrier[1].resize(400, 200);

 barrier[1].moveTo(100, 110);

 barrier[2].resize(400, 200);

 barrier[2].moveTo(100, 110);

 barrier[3].resize(400, 200);

 barrier[3].moveTo(100, 110);

 barrier[4].resize(400, 200);

 barrier[4].moveTo(100, 110);

 timeSensor[0].resize(10, 80);

 timeSensor[0].moveTo(100, 30);

 timeSensor[1].resize(10, 80);

 timeSensor[1].moveTo(300, 30);

 timeSensor[2].resize(90, 10);

 timeSensor[2].moveTo(500, 200);

 timeSensor[3].resize(10, 80);

 timeSensor[3].moveTo(300,310);

 timeSensor[4].resize(70, 10);

 timeSensor[4].moveTo(30, 200);

 break;

. . . //other track definitions

} // end switch

 resetStatus();

 alert("ready?");

 lap = 0;

 startTime = new Date();

} // end setUpTrack

To save space, I showed only the portion of this code that creates the first track. See the
code on the CD-ROM for the other track descriptions.

You create new tracks by changing the size and location of the barrier and time sensor
sprites. The first track is very simple, so I put all the barriers in the same place. Notice
how the track sensors are placed around the track to ensure that the player has to
complete the entire circuit to be credited for a lap. After the track is set up, the
resetStatus() function cleans up the lap counter (for details and a description of that
function, see the section “Writing the resetStatus() Function”). An alert statement

230
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

gives the player an opportunity to start the program when he or she is ready. Finally,
the setUpTrack() function resets the startTime variable to the current time.

Building the checkCollision() Function

The checkCollision() function checks for collisions with the barriers and the time
sensors. If a barrier collision occurs, the function stops the car. The time sensor code
calls the lapFinished() function to check whether the car has hit each sensor. If the
lap is finished and the sensor that was hit is sensor 0 (the start-finish line), the func-
tion calls the showTime() and resetStatus() functions to display the time and reset
the sensor counter. Here’s the checkCollision() function’s code:

function checkCollision(){

 var newDir;

 //check for crashes

 for (barCounter = 0; barCounter < 5; barCounter++){

 if (car.hasHit(barrier[barCounter])){

 Gl_unhook("checkCollision()");

 newDir = Math.floor(Math.random() * 7);

 speed = 0;

 //direction = newDir;

 car.setSpeed(speed);

 //car.setXYdegs(direction);

 //car.setFrame(direction);

 } // end if

 } // end for loop

 //check for sensors

 for (tsCount = 0; tsCount < 5; tsCount++){

 if (car.hasHit(timeSensor[tsCount])){

 if(lapFinished()){

 if (car.hasHit(timeSensor[0])){

 showTime();

 resetStatus();

 } // end 'start gate' if

 } //end 'finished' if

 lapStatus[tsCount] = 1;

 } // end ' hit sensor' if

 } // end for loop

} // end checkCollision

C
h

a
p

te
r 9

S
p

ri te
 A

n
im

a
t io

n
: T

h
e
 R

a
c
e
r

231Creating the lapFinished() Function

The lapFinished() function checks the lapStatus array to see whether all the ele-
ments of the array have been turned on, which indicates that the car has hit every
sensor at least once. If so, the function returns the value true; otherwise, it returns the
value false. The code follows:

function lapFinished(){

 var finished = true;

 for (counter=0; counter < numSensors; counter++){

 if (lapStatus[counter] == 0){

 finished = false;

 } // end if

 } // end loop

 return finished;

} // end lapFinished

Writing the resetStatus() Function

The resetStatus() function resets the value of the lapStatus array to all 0s. The pro-
gram calls the function at the beginning of each lap. Here’s the code:

function resetStatus(){

 for (tsCount = 0; tsCount < numSensors; tsCount++){

 lapStatus[tsCount] = 0;

 } // end for loop

} // end resetStatus

Building the showTime() Function

The showTime() function calculates the elapsed time for the current race and displays
that time on the screen. It also checks for the lap number; if the car is on the last lap,
the function displays the race time. The program then moves on to the next track. The
code for the showTime() function is as follows:

function showTime(){

 //returns back the time from this lap.

 var currentTime = new Date();

 var currentInt = currentTime.getTime();

 var startInt = startTime.getTime();

 var elapsedInt = currentInt - startInt;

 var elapsedTime = new Date(elapsedInt);

 lap++;

 var output = "";

232
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 output += elapsedTime.getMinutes() + ":";

 output += elapsedTime.getSeconds() + ".";

 output += elapsedTime.getMilliseconds();

 window.status = output;

 if (lap==5){

 alert(output);

 trackNum++;

 if (trackNum > 3){

 trackNum = 1;

 } // end if

 setUpTrack();

 } // end if

} // end showTime

Creating the turnLeft() and turnRight() Functions

The turnLeft() and turnRight() functions manipulate the direction variable in
response to the user’s mouse clicks on the steering wheel. The program sets the
car’s direction and image based on the new value of direction. Here’s the code for
these functions:

function turnLeft(){

 direction--;

 if (direction < NORTH){

 direction = NORTHWEST;

 } // end if

 car.setXYdegs(direction * 45);

 car.setFrame(direction);

} // end turnLeft

function turnRight(){

 direction++;

 if (direction > NORTHWEST){

 direction = NORTH;

 } // end if

 car.setXYdegs(direction * 45);

 car.setFrame(direction);

} // end turnRight

Writing the decell() Function

The decell() function decrements the speed of the car, as follows:

function decell(){

 speed--;

C
h

a
p

te
r 9

S
p

ri te
 A

n
im

a
t io

n
: T

h
e
 R

a
c
e
r

233 if (speed < 0){

 speed = 0;

 } // end if

 car.setSpeed(speed);

} // end decell

the accell() Function

The acell() function rehooks the checkCollision() function (in case the car had
crashed into a barrier) and increases the car’s speed:

function acell(){

 Gl_hook("checkCollision()");

 car.collides = true;

 speed++;

 if (speed > 10){

 speed = 10;

 } // end if

 car.setSpeed(speed);

} // end accell

Summary

In this chapter, you learned how you can use an Application Programming Interface
(API) to simplify greatly the process of writing cross-browser dynamic HTML. Specifi-
cally, you learned how to set up the gameLib core library and the sprite module. You
learned how to create and use sprites, add motion, and detect collisions. You also learned
how to check elapsed time using the built-in Date object. You then put all these things
together in a program that you can easily modify and improve.

E X E R C I S E S

1. Add another track to the Racer program. Modify the setUpTrack() function so it has a

fourth track, and set the values of the barriers and time sensors to build a totally new

track configuration.

2. Improve the sprite images to make your own car, better-looking barriers and sensors, or

an entirely different theme.

3. Write a track editor so the user can edit tracks in the racing game. You might use a form to

let the user type in the location and size of each barrier and time sensor, then display how

the track will look with these options.

4. Make a simple version of Pacman. Define a path with barriers, and build a sprite to travel

on the path.

5. Add ghosts to your version of the Pacman game.

This page intentionally left blank

TE
AM
FL
Y

Team-Fly®

10

S
prite graphics are a very powerful tool.

With a few more enhancements, you are

well on your way to building sophisti-

cated 2-D games. In this chapter, you will learn

about some of the other great tools that gameLib

gives you for building better games. Specifically,

you will learn how to do the following:

• Build multiplayer games

• Trap keyboard events

• Manage sound

• Generate layers

• Add missiles

• Improve your animations

Using Other
gameLib Features:
The Dogfight Game

C H A P T E R

236
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

The Project: The Dogfight Game

To demonstrate these features, you will build a simple two-player arcade game. The
game is simple: Two players sit at the same keyboard and control little biplanes.
The players try to blast each other out of the sky. Figures 10.1 and 10.2 show the
game’s interface.

The game has a number of interesting features that might not all be apparent from
the screenshots.

FIGURE 10.1

Two planes enjoying
a blissful afternoon.

FIGURE 10.2

Take that,
Red Baron!

C
h

a
p

te
r 1

0
U

s
i n

g
 O

t h
e
r g

a
m

e
L
ib

 F
e
a
t u

re
s
: T

h
e
 D

o
g

f ig
h

t G
a
m

e

237First, this is a two-player game. Although it might seem that writing a game for two players
is more difficult than writing one for a single player, this is not always the case. The hard-
est part of “player versus the computer” style games is developing the artificial intelli-
gence for the computer player. With a two-player game, this is not a problem, as the com-
puter does not need to store any strategies, but simply respond to two sets of input.

The game uses keyboard input. Both versions of the document object model provide
techniques to read mouse and keyboard events, but these two models are (surprise)
very different in the browser implementations. The gameLib API provides a simpler
multibrowser interface, which makes managing keystrokes reasonably straightforward.
Keyboard input provides a much smoother type of input for many types of games than
the techniques that you have used previously in this book.

Because JavaScript is an Internet technology, you might be tempted to write a two-
player game with the players on different computers. Sadly, JavaScript does not
have the communication functions to enable you to accomplish this. You would prob-
ably need a language like Java to write multicomputer games.

The Dogfight game features sound effects when the players shoot at each other and
when they score hits. The gameLib library encapsulates the techniques demonstrated
in Chapter 8, “Dynamic HTML: The Stealth Submarine,” for generating sound. You might
recall from the chapter that generating sound can be quite challenging, but it is rea-
sonably easy using gameLib.

To create the Dogfight game’s documentation and scorekeeping parts of the game, I
used gameLib layers. A layer is gameLib’s way of specifying an object such as a Netscape
layer or CSS element. In fact, you will see that with liberal use of layer and sprite ob-
jects, you can write the entire program as a series of gameLib objects. The HTML in the
program is almost nonexistent.

You will notice some new animation techniques in the Dogfight game. The planes can shoot
bullets, and if you look very carefully, you will note that the propellers appear to spin.

Using Layers and the Keyboard

Begin your tour of the new gameLib features by looking at a program that demon-
strates keyboard input and gameLib layers. Figure 10.3 shows the program’s interface.

The program traps for the A, B, and C keys. The yellow box is a layer. Its content can be
changed dynamically, and it appears to be part of the original page.

Setting Up the Program

As usual, you will begin by importing gameLib modules and setting up some variables.

<script language="Javascript" src="../gamelib196/gamelib/gamelib_core.js">

</script>

<script language = "Javascript" src="../gamelib196/gamelib/

gamelib_keyboard.js">

HINT

238
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

</script>

<script>

var display;

var a;

var b;

var c;

I first added the gamelib_core library, and also added the keyboard module. There is
not a separate module for layers. Layer handling is done as a part of the core module.

The four variables will all hold various components of the program. The display vari-
able will contain a reference to the layer. The a, b, and c variables refer to each keystroke
that I intend to trap. (You’ll learn more about trapping keystrokes in a moment.)

Creating a Layer

A layer is an object in gameLib, so it is set up like most other objects in JavaScript.

function init(){

 // Keyboard and Layer Demo

 // Andy Harris

 //set up display

 display = new Gl_layer(350, 200, 100, "");

 display.setBgcolor("yellow");

 display.show();

FIGURE 10.3

When the user
presses the A key,

the letter A appears
in a yellow box.

C
h

a
p

te
r 1

0
U

s
i n

g
 O

t h
e
r g

a
m

e
L
ib

 F
e
a
t u

re
s
: T

h
e
 D

o
g

f ig
h

t G
a
m

e

239The new Gl_layer() command generates a new layer object. The first two parameters
refer to the starting location of the layer. The next parameter (100) refers to the start-
ing width of the layer. The starting height of the layer will be defined when something
is added to the layer or when the layer is explicitly resized. The last parameter is the
HTML text of the layer. This can be a variable containing an entire HTML page or actual HTML
text, or you can leave the variable blank and fill it in later.

Is this layer a Netscape layer, a gameLib layer, or a CSS element? The short answer is
yes; it’s a combination of all these things. To simplify coding, Scott Porter (the author
of gameLib) defined a new object called a Gl_layer, which encapsulates the best
features of both the Netscape and IE approaches to positionable elements. It is conve-
nient to call this new element a layer, but keep in mind that it is not exactly like the
two types of layering objects defined in the browser Document Object Models. Fortu-
nately, gamLib’s layer object seems to be much better behaved than either of the other
layer objects, especially when used across browser platforms.

The gamLib layer object is a very intriguing little monster. Table 10.1 lists the most
commonly used methods of the layer object.

TABLE 10.1 COMMON METHODS OF THE LAYER OBJECT

Method Description Example

new Gl_layer(x, y, Creates a new layer at var myLayer = new

width, startingHTML) (x, y) that is width pixels Gl_layer (0, 0, 100,

wide and contains the "<H1>Hi there!</H1>");

startingHTML as its body.

.load (filename, type) Loads the specified file into myLayer.load

the layer. If type is set to ("instructions.html",

true, the file will be always true);

be loaded from the server.

.moveTo(x, y) Moves the layer’s top-left myLayer.moveTo

corner to the specified pixels. (100, 200);

.resizeTo(x, y) Resizes the layer to the myLayer.resizeTo

specified size. (50, 50);

.setXlimits(a, b), Sets the boundaries for the myLayer.setXlimits

setYlimits(a, b) layer. This method works as (0, 500); myLayer.
it does in the sprite library. setYlimits(0, 300);

.write(newHTML) Replaces the content of the myLayer.write

layer with newHTML. ("<h3>Whoo Hoo!</h3>");

.setBgcolor(color) Sets the layer’s background myLayer.setBgcolor

to a specified color. ("red");

.show() Makes the layer visible. myLayer.show();

HINT

240
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

In game development, layers are great for text that
you want to place precisely on the screen. It is much
easier to get a good screen layout with layers than
it is using plain HTML formatting. Also, the ability
to access the write() method of layers makes them
great tools for communicating with the user. It’s
common to use layers for scorekeeping, help
screens, or any other place where you might want
to place dynamic text.

In the Keyboard and Layer Demo program, I set up
display as a new layer at position (300, 200) with a
starting width of 100 pixels and no beginning text.
I then set the background color of the layer to yel-

low and showed it. The layer object is not automatically shown until you invoke its
show() method.

Creating Keyboard Handler Objects

The gameLib approach to keyboard handling simplifies the process of getting user
input from the keyboard. The key (pun intended) is the trapkey() method. Look at the
rest of the init() function to see how this approach works:

//set up keyboard traps

 a = Kb_trapkey("a");

 b = Kb_trapkey("b");

 c = Kb_trapkey("c");

 //start up program:

 Gl_hook("mainLoop()");

 Gl_start();

} // end

You probably noticed that the init() function initializes the a, b, and c variables by
calling the Kb_trapkey() function. This function generates an instance of the key han-
dler object. Table 10.2 lists the commands by which you control these objects.

Generally, you initialize keystrokes in some type of initialization function (as I have
done in this program) and check whether the user has pressed the key in some type of
main loop procedure.

Responding to Keystrokes

If the user presses the a, b, or c key, the program should display the appropriate value
in the yellow layer. Here’s the code for the main loop:

function mainLoop(){

 var letter = "";

IN THE REAL WORLD

The layer object is useful any

time you want to have a dy-

namic part of the screen. I have

used layers in a catalog program

that displayed parts of a small

database. You could use layers

in a menu system for your Web

page or as an easy way to add

dynamic content (such as a mes-

sage of the day).

C
h

a
p

te
r 1

0
U

s
i n

g
 O

t h
e
r g

a
m

e
L
ib

 F
e
a
t u

re
s
: T

h
e
 D

o
g

f ig
h

t G
a
m

e

241 var message = "";

 if(a.pressed){

 letter = "A";

 } // end if

 if(b.pressed){

 letter = "B";

 } // end if

 if(Kb_lastkey == c){

 letter = "C";

 } // end if

 message = "<font color = Blue";

 message += " size = 7>";

 message += letter

 message += "";

 display.write(message);

} // end mainLoop

The function starts by setting up two utility variables. letter will contain one charac-
ter denoting the value of a keypress. The message variable will contain a simple HTML
document that the program will send to the display layer.

TABLE 10.2 KEYBOARD HANDLER COMMANDS

Command Description Example

.pressed (read-only) Returns true if the user is if (myKey.pressed)

currently pressing the key. { alert("A"); }

// end if

Kb_trapkey(keyName) Sets up a new key object myKey = Kb_trapKey("a");

that responds when the
user presses keyName.

Kb_lastkey Contains a reference to if (Kb_lastkey ==

the last key pressed. myKey){ alert("A"); }

// end if

242
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

The function looks at a and b using the .pressed method. (Remember that this func-
tion has been hooked to the timer loop, so it executes 20 times per second.) If the
user is currently pressing the a or b key, the value of letter changes. Just for demon-
stration purposes, I used the Kb_lastkey technique to determine whether the user
had pressed the c key.

The underlying JavaScript routines can trap only for normal keyboard characters.
You cannot (yet) use this technique to trap for arrow keys, function keys, or other
special keys on the keyboard. Also, this routine does not distinguish between up-
percase and lowercase characters. For most game development purposes, the ca-
pabilities of the JavaScript routines are sufficient.

After a value has been assigned to the letter variable,
the rest of the mainLoop() function involves build-
ing an HTML string and writing it to the display
layer using the display.write() method.

This is a unique approach to keyboard handling.
The keyboard-handling technique used in gameLib
is terrific for game development. In this type of
programming, developers usually use keystrokes to
control a sprite or send other very quick signals
from the user to the program. However, if you use
other languages (including the JavaScript code on
which the gameLib libraries were based), the algo-
rithm used is a little bit different. Most languages
have some sort of function or method that looks at
the entire keyboard, determines which key has been
pressed, then returns some type of integer code
relating to the keypress. The programmer then ana-
lyzes this code to determine what has happened
and writes corresponding code.

Adding Sound

You might recall that sound can be challenging because of the completely different
approaches that the major browsers take to embedding sound in Web pages. The
gameLib API provides a very easy interface to sound programming in JavaScript.

Creating the Sound Demo Program

Figure 10.4 shows a simple program that demonstrates the basic sound features in
gameLib. The program features two sound effects that are controlled by buttons on
the Web page. The user can start and stop a music file, or play a sound effect, by click-
ing the appropriate buttons.

The process of using sounds follows a pattern that you’ve seen a few times now: You
import a special module of the API, create variables that refer to sound objects, then
manipulate methods and properties of the sound objects.

TRAP

IN THE REAL WORLD

Developers sometimes use

keyboard handling as an error-

detection scheme. For example,

you might want to ensure that a

text box contains no numeric

characters. Also, you can use key-

board handling as a control tech-

nique on certain kinds of appli-

cations. For example, I wrote a

program that generates presen-

tations with several slides on one

long HTML page. I set up the n

key to move to the next slide, and

p to go to the previous slide.

C
h

a
p

te
r 1

0
U

s
i n

g
 O

t h
e
r g

a
m

e
L
ib

 F
e
a
t u

re
s
: T

h
e
 D

o
g

f ig
h

t G
a
m

e

243

Creating a Sound Object

The sound object is created through a function of the sound library. Here’s the startup
code for the Sound Demo program:

<script language="Javascript" src="../gamelib196/gamelib/gamelib_core.js">

</script>

<script language="Javascript" src="../gamelib196/gamelib/gamelib_sound.js">

</script>

<script>

var sndBang;

var sndMusic;

function init(){

 sndBang = new Sd_add_sound("bang.wav");

 sndMusic = new Sd_add_sound("canyon.mid");

} // end init

I created variables for two sounds, sndBang and sndMusic. Then I used the Sd_add_sound()
method to generate sound objects to assign to the two variables. Table 10.3 lists the key
characteristics of the sound object.

The sound object can use either .wav files or .midi files. Generally, .wav files are used
for sound effects, and .midi files are used for background music. You can find plenty of
sounds on the Internet, although you should get permission of the file’s owner before
using the sound file in your game.

FIGURE 10.4

The Sound Demo
program lets the

user play a sound
effect, as well as
start and stop a

music file.

244
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Playing and Stopping Sounds

Once you have created a sound object, it is very simple to start and stop the sound
effect. Here’s the rest of the code for the Sound Demo program.

<body onload = "init()">

<center>

<h1>Sound Demo<hr></h1>

<form>

<input type = button

 value = "bang"

 onclick = "sndBang.play()">

<input type = button

 value = "start music"

 onClick = "sndMusic.play()">

<input type = button

 value = "stop music"

 onClick = "sndMusic.stop()">

</form>

</center>

<hr>

</body>

Because the code is so basic, I integrated it directly into the HTML. Of course, you can
also use the sound object’s play() and stop() methods inside more traditional code.

Improving Sprite Management

Using the keyboard to control a sprite’s behavior is one obvious way to spruce up
your games. There are some other things that you can do to make your game much
more interesting. The Simple Plane Demo program is a simple prototype of the bi-
plane game that illustrates how to add keyboard input, as well as a few other new
features of sprite objects.

TABLE 10.3 COMMONLY USED METHODS OF THE SOUND OBJECT

Method Description Example

Sd_add_sound Generates a new sound var mySound =

(fileName) object based on fileName, Sd_add_sound

which is a .wav or .midi file. ("bang.wav");

.play() Plays the sound. mySound.play();

.stop() Stops playing the sound. mySound.stop();

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r 1

0
U

s
i n

g
 O

t h
e
r g

a
m

e
L
ib

 F
e
a
t u

re
s
: T

h
e
 D

o
g

f ig
h

t G
a
m

e

245

Creating the Simple Plane Program

Figure 10.5 shows this reasonably simple program, which demonstrates a number of
new techniques.

Using a Sprite as a Background Image

The background image is actually a sprite with a cloud image set as its only image.
There are a number of reasons that you might want to use a sprite as a background:

• If you set the z value of the sprite very low, all other sprites will pass over it.

• It is much easier to position a sprite than it is to position a normal HTML image.

• If you wish, you can have multiple frames of the image to create an animated
background, or perhaps a series of different backgrounds (for example, you could
add a morning sky with a red background, or a night sky with stars).

• You can use the clipping methods of the sprite object to support scrolling back-
grounds. Check the gameLib sprite documentation for information on using clipping.

The beginning code of the Simple Plane Demo program follows. Most of this code is
very familiar. Take a look at the cloud sprite code. The program uses this sprite as a
background graphic.

To get a nice cloud texture, I used a fractal pattern generator in my image program,
then tuned it up with a feathered brush. This is a pretty easy way to generate certain
natural patterns, such as clouds, waves, and certain types of mountains. Look in the
documentation of your image editing software for information about any special
effects tools that might be useful for game graphics.

FIGURE 10.5

The program
presents a basic

airplane with
keyboard control

and a rotating
propeller.

TRICK

246
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

var plane;

var clouds;

var upKey;

var downKey;

var NORTH = 0;

var NORTHEAST = 1;

var EAST = 2;

var SOUTHEAST = 3;

var SOUTH = 4;

var SOUTHWEST = 5;

var WEST = 6;

var NORTHWEST = 7;

var direction = EAST;

function init(){

 Sp_xoffset=100;

 Sp_yoffset=100;

 clouds = new Sp_Sprite();

 clouds.setImage("clouds.gif", 500, 300, 1, 1);

 clouds.moveTo(0,0);

 clouds.setXlimits(0, 500);

 clouds.setYlimits(0, 300);

 clouds.setFrame(0);

 clouds.switchOn();

The plane and clouds variables both contain sprites. upKey and downKey will hold key-
board handlers. The direction constants should be familiar from Chapter 9, “Sprite
Animation: The Racer,”as should the direction variable.

The Sp_xoffset and Sp_yoffset variables are special variables used in the sprite li-
brary. By giving values to these variables, you can specify a new origin for all sprites.
This approach can be very useful for centering your game on the screen. All the other
code in this segment sets up the clouds as normal sprites.

Creating a More Involved Animation Graphic

If you run the Simple Plane Demo program and look carefully at the biplane, you will
notice that the propeller appears to spin. Now there are two versions of each plane
picture: one picture of an airplane pointing east with a large propeller, and another
picture that is identical, but the airplane has a smaller propeller. The program swaps
quickly between these versions of the image to give the illusion of a moving propeller.

C
h

a
p

te
r 1

0
U

s
i n

g
 O

t h
e
r g

a
m

e
L
ib

 F
e
a
t u

re
s
: T

h
e
 D

o
g

f ig
h

t G
a
m

e

247

This illusion is accomplished by another trick of the sprite object. Figure 10.6 shows
the actual aircraft picture in the graphics editor. (Note that I increased the size of the
graphic and added a blue background to make the image easier to see.)

Recall that sprites can have several frames, even though they have only one image. The
gameLib API accomplishes this feat by clipping the image into a number of evenly
sized frames. In the last chapter, you created an image with eight frames by generating
a graphic with eight evenly spaced images in a row. You can also specify another kind
of animation by swapping a number of images within a frame. If you arrange your
sprite graphic as I did here, you can animate each frame very easily. Just remember
that each column represents the animations in a particular frame. Generally your code
will explicitly set the frame, but you will automate the animations within the frame.

Although I chose to have only two animations per frame, you can have as many as
you wish. In fact, you are not required to have the same number of animations in
each frame. See the gameLib documentation for details on how you control differing
lengths of animations.

Incorporating Frame Animation

If you look back at the init() function for the Simple Plane Demo program, you will
see the plane sprite definition:

FIGURE 10.6

Now there are two
images of the

biplane for each
direction.

HINT

248
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 plane = new Sp_Sprite();

 plane.setImage("plane1.gif", 20,20,8,2);

 plane.moveTo(0,100);

 plane.setSpeed(3);

 plane.setXYdegs(90);

 plane.setXlimits(0, 500);

 plane.setYlimits(0, 300);

 plane.bounces=false;

 plane.setFrame(direction);

 plane.setAnimationSpeed(3, "forward");

 plane.collides = true;

 plane.switchOn();

This code looks very much like the car code from Chapter 9, but there are a couple of
subtle differences that involve animation. First, note the difference in the setImage()
method. The program instructs the sprite to use the plane1.gif image, size it to 20, 20,
and use 8×2 frames. If you compare this to the actual image, you will see that these
parameters should allow the display of eight different frames with two cells of anima-
tion apiece. You must ensure that the number of images used in the graphic is the
same as that referenced in the setImage() method. If the number of images is not the
same as the value in the setImage() method call, the program will still work, but it
will look very strange.

To simplify this discussion, I will refer to the row of elements as frames (manipu-
lated by the .setFrame() method) and the columns as cells (manipulated by the
setAnimation() method).

The other new effect is the setAnimationSpeed() method call. This method of the
sprite object takes two parameters. The first is the number of cycles to hold a cell on
the screen. I set the value to 3, so each piece of the animation is visible for .15 sec-
onds, which means that the propeller image changes about six times a second. If you
set a larger value here, the image will animate more slowly. Smaller values cause the
sprite to animate more quickly. The second parameter must contain the string "forward"
or the string "back". This parameter determines whether the animation will run
forward or backward.

The library automatically animates all the images that you have set in the column,
unless you instruct it to do otherwise.

Table 10.4 describes the sprite animation commands that are available.

Adding Keyboard Input

The remainder of the code in the init() function handles creating keyboard handlers
and starting up the gameLib engine:

 //enable keyboard handling

 upKey = Kb_trapkey("v");

HINT

C
h

a
p

te
r 1

0
U

s
i n

g
 O

t h
e
r g

a
m

e
L
ib

 F
e
a
t u

re
s
: T

h
e
 D

o
g

f ig
h

t G
a
m

e

249 downKey = Kb_trapkey("f");

 Gl_start();

 Gl_hook("mainLoop()");

} // end init

Responding to the Keyboard Input

The code in the main loop is reasonably straightforward. All it does is check each key
handler and change the aircraft’s position and direction accordingly. The cell anima-
tion is completely automatic.

I chose to model the behavior of an aircraft’s joystick. When the pilot pushes the joy-
stick forward, the plane’s nose goes down, and when the joystick is pulled back, the
nose goes up. It would be great if you could use the arrow keys, but JavaScript does
not trap for any keys but the normal alphanumeric keys. I decided to go for a set of
keys near the middle of the keyboard and arrange them as if they were the control
yoke of an aircraft. That’s why the v key pulls the nose up and the f key points the nose
down. If you don’t like this arrangement, just assign different keys to up and down.

TABLE 10.4 SPRITE ANIMATION COMMANDS

Command Description Example

.setImage(img, x, y, Describes the number of mySprite.setImage

frames, cells) animation cells in a ("car.gif", 10, 10, 2,

specified frame. 4); //2 frames,

4 animation cells each.

.setAnimation(cell) Sets the animation to a mySprite.

specified cell. setAnimation(2);

.setAnimationLoop Sets up the animation to mySprite.

(min, max) display cells between setAnimationLoop(1,3);

min and max. //animate but skip

the 0th image.

.setAnimationRepeat Determines how many times mySprite.

(times) to repeat the animation setAnimationRepeat(4);

(–1 specifies an indefinite //do the animation

number of repeats). 4 times, then stop.

.setAnimationSpeed Determines the speed and mySprite.

(speed, dir) direction in which to run the setAnimationSpeed

animation. speed determines (20, "forward); //

how many cycles to hold change the cell

each cell. dir can be "back" animation once per

or "forward". second.

HINT

250
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

function mainLoop(){

 //check for keyboard inputs

 if (upKey.pressed){

 direction--;

 if (direction < NORTH) {

 direction = NORTHWEST;

 } // end boundary check

 plane.setFrame(direction);

 plane.setXYdegs(direction * 45);

 } // end upkey

 if (downKey.pressed){

 direction++;

 if (direction > NORTHWEST) {

 direction = NORTH;

 } // end boundary check

 plane.setFrame(direction);

 plane.setXYdegs(direction * 45);

 } // end downkey

} // end main loop

Adding Missiles

Although it can be very pleasant to glide peacefully around the sky, all this pastoral
calm is no way to run a video game. It’s time to shoot something!

Creating the Balloon Buster Game

Figure 10.7 shows the Balloon Buster game, which is a variation of the plane game that
adds a target (a balloon) and the ability to shoot at the target.

This variation of the game has a fire button and a balloon suitable for shooting.

Initializing the Sprites

In addition to providing the cloud and plane sprites, I added two more sprites, the
target and the bullet. Here is the code that initializes these two sprites:

target = new Sp_Sprite();

 target.setImage("blimp.gif", 50, 50, 1,1);

 target.moveTo(50, 50);

 target.setSpeed(2);

 target.setXYdegs(90);

 target.setXlimits(0, 500);

 target.setYlimits(0, 300);

 target.bounces = true;

C
h

a
p

te
r 1

0
U

s
i n

g
 O

t h
e
r g

a
m

e
L
ib

 F
e
a
t u

re
s
: T

h
e
 D

o
g

f ig
h

t G
a
m

e

251

 target.setFrame(0);

 target.switchOn();

 target.collides = true;

 bullet = new Sp_Sprite();

 bullet.setImage("bullet.gif", 10, 10, 1, 1);

 bullet.setXlimits(0,500);

 bullet.setYlimits(0,300);

 bullet.bounces = false;

 bullet.setFrame(0);

 bullet.collides = true;

The target is a slow balloon. I set its speed to 2 and its initial direction to 90 degrees. I
turned on the bounces feature, so that the balloon will always simply bounce off the
wall and stay in a predictable pattern. The bullet is a tiny sprite, also with only one
image. It should not bounce, but stop when it reaches the edge of the boundary area.
Both sprites check for collisions.

Writing the Collision-Detection Routines

The plane-movement commands are exactly like those in the Simple Plane Demo pro-
gram. All the new information has to do with firing the bullets and detecting colli-
sions. Here is the additional code in the mainLoop() function:

 if (fireKey.pressed){

 bullet.moveTo(plane.x, plane.y);

FIGURE 10.7

Finally, a game with
some needless

violence!

252
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 bullet.setSpeed(7);

 bullet.setXYdegs(plane.xydegs);

 bullet.switchOn();

 } // end fireKey

 //check for collisions

 if (plane.hit == target){

 window.status = "crashed into target!!";

 } // end if

 if (bullet.hit == target){

 window.status = "shot down target!!";

 bullet.switchOff();

 bullet.moveTo (600, 600);

 } // end if

 //check for bullet bounds

 if ((bullet.x >= bullet.xmax - bullet.width) ||

 (bullet.x <= bullet.xmin) ||

 (bullet.y >= bullet.ymax - bullet.width) ||

 (bullet.y <= bullet.ymin)){

 bullet.switchOff();

 bullet.moveTo(600,600);

 } // end if

First the program checks the fire-key handler to see whether the player has fired. If so,
the bullet’s initial direction and position are copied from the plane, and its speed is set
to 7. This causes the bullet to fly in the current direction that the plane is going. Then
the program checks for various collisions. If the bullet hit the target, something good
should happen (good for the player, bad for the balloon). The program also checks for a
collision between the balloon and the plane, which would presumably be bad for both.

Of course, the code for this particular example could be far more robust. It would be
nice to add code for some explosions and scorekeeping functionality. Feel free to add
those things if you wish. I chose to develop the game in another direction, so I left this
code as it is. At a minimum, it’s a good idea to include code that says “a collision
occurred” so that you can add actual functionality later if you wish. This type of code
that serves as a placeholder for future development is sometimes called a stub.

Returning to the Dogfight Game

As usual, this chapter has introduced all the required elements to create the game at
the beginning of the chapter, so all you have to do to create the Dogfight game is put
the pieces together. The only thing that’s really new in the Dogfight game is the two-
player capability.

HINT

C
h

a
p

te
r 1

0
U

s
i n

g
 O

t h
e
r g

a
m

e
L
ib

 F
e
a
t u

re
s
: T

h
e
 D

o
g

f ig
h

t G
a
m

e

253Creating the Variables

This program involves four different libraries, so I imported them all. To shorten the
code, I decided to make the planes and bullets into arrays. I had variables handle the
keystrokes, direction, and damage for each plane. I also created a variable for the in-
structions and scoreboard (which will be layers) and for the sounds. Here’s the code
that creates the variables:

<script language="Javascript" src="../gamelib196/gamelib/gamelib_core.js">

</script>

<script language="Javascript" src="../gamelib196/gamelib/

gamelib_sprites.js">

</script>

<script language = "Javascript" src="../gamelib196/gamelib/

gamelib_keyboard.js">

</script>

<script language = "Javascript" src="../gamelib196/gamelib/

gamelib_sound.js">

</script>

<script>

//sprites

var plane = new Array(2);

var bullet = new Array(2);

var cloud;

//keyboard handling variables

var up0;

var dn0;

var fire0;

var up1;

var dn1;

var fire1;

//scorekeeping variables

var damage0 = 100;

var damage1 = 100;

//direction constants

var NORTH = 0;

var NORTHEAST = 1;

var EAST = 2;

var SOUTHEAST = 3;

254
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

var SOUTH = 4;

var SOUTHWEST = 5;

var WEST = 6;

var NORTHWEST = 7;

var direction0 = EAST;

var direction1 = WEST;

var scoreboard;

//sound

var sndBang;

var sndHit;

Setting Up the Keyboard and Sounds

The init() function has a lot of work to do. First, I set up sprite offsets, which are
variables I will use to make the program look more centered in the Web page. I then
generated all the keyboard handlers with the Kb_trapkey() function. Next, I gener-
ated the sound files with the Sd_add_sound() function. Here’s the code:

function init(){

 //set offsets

 Sp_xoffset = 100;

 Sp_yoffset = 100;

 //set up key traps

 up0 = Kb_trapkey("z");

 dn0 = Kb_trapkey("q");

 fire0 = Kb_trapkey("a");

 up1 = Kb_trapkey("m");

 dn1 = Kb_trapkey("o");

 fire1 = Kb_trapkey("k");

 //set up sounds

 sndBang = new Sd_add_sound("bang.wav");

 sndHit = new Sd_add_sound("hit.wav");

Setting Up the Sprites

The core elements of this game are the sprites. I chose to make arrays of both planes
and bullets to make the code a little shorter and easier to debug. The planes and bul-
lets are nearly identical to those in the earlier plane programs, except that they are
elements of arrays. Here’s the code:

//set up background graphic

 cloud = new Sp_Sprite();

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r 1

0
U

s
i n

g
 O

t h
e
r g

a
m

e
L
ib

 F
e
a
t u

re
s
: T

h
e
 D

o
g

f ig
h

t G
a
m

e

255 cloud.setImage("clouds.gif", 500, 300, 1, 1);

 cloud.moveTo(0, 0);

 cloud.setXlimits(0, 500);

 cloud.setYlimits(0, 300);

 cloud.setFrame(0);

 cloud.switchOn();

 for (i = 0; i < 2; i++){

 plane[i] = new Sp_Sprite();

 plane[i].setSpeed(3);

 plane[i].setXYdegs(90);

 plane[i].setXlimits(0, 500);

 plane[i].setYlimits(0, 300);

 plane[i].bounces = false;

 plane[i].setFrame(0)

 plane[i].setAnimationSpeed(3, "forward");

 plane[i].collides = true;

 plane[i].switchOn();

 bullet[i] = new Sp_Sprite();

 bullet[i].setImage("bullet.gif", 10, 10, 1, 1);

 bullet[i].moveTo(-20, -20);

 bullet[i].setXlimits(-20,520);

 bullet[i].setYlimits(-20, 320);

 bullet[i].bounces = false;

 bullet[i].setFrame(0);

 bullet[i].collides = true;

 bullet[i].switchOn();

 } // end for loop

 plane[0].setImage("plane0.gif", 20, 20, 8, 2);

 plane[1].setImage("plane1.gif", 20, 20, 8, 2);

I set up the initial images of the plane to be different graphics, so they would not be
the same color.

Setting Up the Layers

The scoreboard and the instructions are both layers. The scoreboard will be dynami-
cally updated with the score. The instruction layer will simply sit there. The code for
the instruction layer is long, but very simple, because it simply builds the HTML for the
instructions. (I could have put the instructions in a simple HTML page and loaded it
up, but I liked having the HTML accessible here in the program for debugging pur-
poses.) Here’s the code for the layers:

//set up scoreboard layer

 scoreboard = new Gl_layer(0, 100, 100, "");

256
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 scoreboard.write("player 1
player 2");

 scoreboard.show();

 scoreboard.setXlimits(0,300);

 scoreboard.setYlimits(0,300);

 resetGame();

 //set up instruction layer

 var instructions = new Gl_layer(0, 150, 100, "");

 var inText = "";

 inText+= "<h3>Instructions</h3>";

 inText+= "<table border = 1 bgcolor = white>";

 inText+= "<tr><td>cmd</td>";

 inText += "<td>red</td>";

 inText += "<td>blue</blue></td></tr>";

 inText+= "<tr><td>up</td>";

 inText += "<td>m</td>";

 inText += "<td>z</blue></td></tr>";

 inText+= "<tr><td>down</td>";

 inText += "<td>o</td>";

 inText += "<td>q</blue></td></tr>";

 inText+= "<tr><td>fire</td>";

 inText += "<td>k</td>";

 inText += "<td>a</blue></td></tr>";

 inText+= "</table>";

 inText+= "";

 inText+= "";

 instructions.write(inText);

 instructions.show();

 Gl_hook("mainLoop()");

 Gl_start();

} // end init

The init() function closes with the expected hook() and start() functions.

Writing the resetGame() Function

The program calls the resetGame() function when the game starts or restarts. It is
responsible for resetting the score variables and placing the planes in the appropriate
starting positions. Here’s the function’s code:

function resetGame(){

 //starts up the main game variables

C
h

a
p

te
r 1

0
U

s
i n

g
 O

t h
e
r g

a
m

e
L
ib

 F
e
a
t u

re
s
: T

h
e
 D

o
g

f ig
h

t G
a
m

e

257 direction0 = EAST;

 direction1 = WEST;

 damage0 = 100;

 damage1 = 100;

 plane[0].moveTo(10, 10);

 plane[0].setXYdegs(direction0 * 45);

 plane[0].setFrame(direction0);

 plane[1].moveTo(380, 10);

 plane[1].setXYdegs(direction1 * 45);

 plane[1].setFrame(direction1);

 writeScore();

} // end resetGame

Checking for Direction Changes in the Main Loop

The main loop has a number of jobs that all involve checking for various events in the
game. The first part of the function checks whether either player has chosen to change
the attitude of his or her aircraft:

//check for direction key presses

 if (up0.pressed){

 direction0--;

 if (direction0 < NORTH){

 direction0 = NORTHWEST;

 } // end if

 } // end if

 if (dn0.pressed){

 direction0++;

 if (direction0 > NORTHWEST){

 direction0 = NORTH;

 } // end if

 } // end if

 if (up1.pressed){

 direction1--;

 if (direction1 < NORTH){

 direction1 = NORTHWEST;

 } // end if

 } // end if

 if (dn1.pressed){

258
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 direction1++;

 if (direction1 > NORTHWEST){

 direction1 = NORTH;

 } // end if

 } // end if

 plane[0].setFrame(direction0);

 plane[1].setFrame(direction1);

 plane[0].setXYdegs(direction0 * 45);

 plane[1].setXYdegs(direction1 * 45);

After setting up the directions, you set up the planes to use the appropriate frame
and direction.

Checking for Gunfire

Now the main loop checks the fire keys to determine whether either player is cur-
rently firing:

//check for bullet firing

 if (fire0.pressed){

 sndBang.play();

 bullet[0].moveTo(plane[0].x, plane[0].y);

 bullet[0].setXYdegs(plane[0].xydegs);

 bullet[0].setSpeed(10);

 } // end plane 0 fires

 if (fire1.pressed){

 sndBang.play();

 bullet[1].moveTo(plane[1].x, plane[1].y);

 bullet[1].setXYdegs(plane[1].xydegs);

 bullet[1].setSpeed(10);

 } // end plane 0 fires

If a player fired, the main loop sets the appropriate bullet into motion and plays an
appropriate sound effect.

Checking for Hits

In this program, I decided to check only for hits that involve the bullet striking the
plane. The code is reasonably straightforward:

//check for hits

 if (bullet[0].hasHit(plane[1])){

 sndHit.play();

 damage0--;

 writeScore();

C
h

a
p

te
r 1

0
U

s
i n

g
 O

t h
e
r g

a
m

e
L
ib

 F
e
a
t u

re
s
: T

h
e
 D

o
g

f ig
h

t G
a
m

e

259 } // end if

 if (bullet[1].hasHit(plane[0])){

 sndHit.play();

 damage1--;

 writeScore();

 } // end if

} // end mainLoop

When a hit occurs, the function plays a sound and decrements the damage amount of
the victim. It then calls the writeScore() function so that the players can tell what
occurred. Each plane starts out at 100 percent functional. When the damage value
falls below 0, the plane is destroyed.

Creating the writeScore() Function

The writeScore() function writes a new score into the scoreboard layer. It also checks
whether either player’s plane has been destroyed and sends appropriate messages. Here’s
the function’s code.

function writeScore(){

 var scoreText = "";

 scoreText += "";

 scoreText += "red: " + damage0 + "%
";

 scoreText += "blue: " + damage1 + "%";

 scoreText += "";

 scoreboard.write(scoreText);

 //check for a win

 if (damage0 < 1){

 alert("blue wins!!");

 resetGame();

 } //end if

 if (damage1 < 1){

 alert("red wins!!");

 resetGame();

 } // end if

} // end writeScore

Summary

In this chapter, you have seen how you can improve sprites to handle cell animation.
You have also learned how to respond to keyboard input and add sound to your pro-
grams. You also learned how to use layers to add dynamic content to your program,
and how to use sprites as background graphics.

260
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

E X E R C I S E S

1. Improve the Balloon Buster game by adding explosion animations.

2. Add a scorekeeping function (or two) to the Balloon Buster game.

3. Add keyboard handling to the Racer game from the last chapter.

4. Write a version of Space Invaders in which the player controls a spaceship that moves

along the bottom of the screen. The aliens can be an array of sprites. Start with just one

alien, then add more once the first is working correctly.

11

I
n this chapter, you will add sophisticated

mouse-handling techniques to your reper-

toire, and you will learn how to add a

measure of permanence to your programs through

the use of cookies. Here are the things that you will

learn in this chapter:

• How gameLib allows you to react to the mouse

• How to make sprites and layers draggable

• How to respond to a button press on any sprite

or layer

• How to make sprites follow the mouse or

other sprites

• How to create cookies for data storage

• How to store and retrieve information

from a cookie

Cookies and the
Mouse: The

Jigsaw Puzzle

C H A P T E R

C
h

a
p

te
r 1

1
C

o
o

k
ie

s
 a

n
d

 th
e
 M

o
u

s
e
: T

h
e
 J

ig
s
a
w

 P
u

z
z
l e

263

FIGURE 11.2

The program can
automatically solve
the puzzle (but what

fun is that?).

FIGURE 11.3

The Hint button
shows what the

puzzle will look like
when finished.

Changing the Puzzle Image

If the user clicks the New Pic button, a dialog box appears asking the user to supply the
address of an image on the Internet. The program then uses that image for the puzzle
(see Figures 11.4 and 11.5).

As an added feature, the next time that the user plays the jigsaw game on the same
browser, the program will automatically call up the newly selected image.

264
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Using the Mouse to Drag and Drop

The most obvious new element in the puzzle game is the enhanced input from the
mouse. To understand how this element works, you’ll start by looking at a simpler
program that illustrates how you can use the mouse to move a sprite around.

Creating the Dragger Program

The Dragger program features a sprite that the user can move anywhere on the screen
by dragging it with the mouse (see Figures 11.6 and 11.7).

FIGURE 11.4

The user can
request a new

image for the puzzle.

FIGURE 11.5

The new image
shows up as a

scrambled puzzle.

C
h

a
p

te
r 1

1
C

o
o

k
ie

s
 a

n
d

 th
e
 M

o
u

s
e
: T

h
e
 J

ig
s
a
w

 P
u

z
z
l e

265

Both of the major browsers have techniques for reading and responding to the mouse
events, but (you guessed it) these techniques are not the same in the two browsers.
Fortunately, gameLib simplifies the process of reading the mouse object considerably.

Creating a Mouse Object

The secret to mouse manipulation in gameLib is the mouse object. It is no surprise that
you will incorporate a new module and build a mouse object. Here’s the script inclu-
sion and variable creation code for the Dragger program:

FIGURE 11.6

The ball is in the
upper-left corner.

FIGURE 11.7

The user can
move the ball by

dragging it around
the screen.

TE
AM
FL
Y

Team-Fly®

266
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

<html>

<head>

<title>dragger</title>

<script language="Javascript" src="../gamelib196/gamelib/gamelib_core.js">

</script>

<script language="Javascript" src="../gamelib196/gamelib/

gamelib_sprites.js">

</script>

<script language="Javascript" src="../gamelib196/gamelib/gamelib_mouse.js">

</script>

<script>

var thePic;

var theMouse;

The only major new element is the gamelib_mouse.js code module. This module en-
capsulates a series of objects and functions for using the mouse.

I created variables for the sprite and mouse objects. As usual, I will give the objects
values in an init() function.

Making a Sprite Draggable

Inside the init() function, I created a mouse object with the Ms_initmouse() function.
I also created a sprite called theImage. All it takes to make theImage draggable is to set
its draggable property to true. Here’s the code for the init() function:

function init(){

 // dragger

 // Andy Harris

 theMouse = Ms_initmouse();

 thePic = new Sp_Sprite();

 thePic.setImage("ball.gif", 50, 50, 1, 1);

 thePic.setXlimits(0, 500);

 thePic.setYlimits(0, 300);

 thePic.setFrame(0);

 thePic.setAnimation(0);

 thePic.draggable = true;

 thePic.switchOn();

 thePic.moveTo(200, 200);

} // end init

C
h

a
p

te
r 1

1
C

o
o

k
ie

s
 a

n
d

 th
e
 M

o
u

s
e
: T

h
e
 J

ig
s
a
w

 P
u

z
z
l e

267Be sure that you have generated a mouse
object before you set the draggable
property of a sprite to true. If there is no
mouse object, the sprite will not drag.

Layers also have a draggable property that works
in exactly the same way.

The mouse object has very few proper-
ties and methods of its own. In gameLib,
making an instance of the mouse object
allows you to activate features of other
elements (such as the draggable prop-
erty). Mouse manipulation is usually
done differently in other languages. (In
many languages, you have to look at the
x and y values of the mouse to figure out
whether it is over a particular object.)
The gameLib technique is a very easy ap-
proach to using the mouse as it is needed
in game programming.

Table 11.1 describes the members of the mouse object, and Table 11.2 describes the
draggable elements.

TRAP

HINT

IN THE REAL WORLD

Dragging and dropping objects

is useful in a number of other

more serious applications as

well as in games.

If you are writing an anatomy tu-

torial, for example, you could

make sprites for each of the ma-

jor organs and allow the user to

drag them around and fit them

together in an abdomen image.

Likewise, if you were writing a

promotional page for a cruise

line, you might let the user drag

a ship icon around on a map and

pop up relevant information

whenever the user drops the

ship over a specific port.

TABLE 11.1 PRIMARY MEMBERS OF THE MOUSE OBJECT

Member Description Example

Ms_initmouse(); Creates a reference to the var myMouse =

mouse object. Ms_initmouse();

.x, .y Specifies the current x and alert(myMouse.x + ",

y coordinates of the mouse. " myMouse.y);

.mousedown Returns whether the user if(myMouse.mousedown){

is currently clicking the
mouse button.

alert("ouch!"); } Returns the sprite object that if (myMouse.over ==

// end if .over the mouse is currently over. ball) { score++; }
// end if

268
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

TABLE 11.2 DRAGGABLE ELEMENTS

Object and Member Description Example

sprite.draggable If set to true, enables mySprite.draggable =

the user to drag and drop true;

the sprite.

layer.draggable If set to true, enables myLayer.draggable =

the user to drag and drop true;

the layer.

Responding to Button
Presses

In addition to knowing when the user is dragging
and dropping a sprite, you might be interested in
knowing when the user has passed over or clicked
on a particular sprite. These are reasonably easy
things to check with gameLib’s mouse module.

Writing the Button Program

Figures 11.8 through 11.10 show the Button pro-
gram, which is a form that includes a sprite that

looks like a button. When the user places the mouse cursor over the button, the sprite
changes appearance, and when he or she clicks the mouse button over the sprite, the
program displays a message.

FIGURE 11.8

This form has a
sprite that looks like

a button.

IN THE REAL WORLD

As you can see, games are not

the only medium in which this

behavior is useful. You can use

the technique outlined in this

section any time that you want

buttons with a more specialized

look than you can achieve with

standard form buttons.

C
h

a
p

te
r 1

1
C

o
o

k
ie

s
 a

n
d

 th
e
 M

o
u

s
e
: T

h
e
 J

ig
s
a
w

 P
u

z
z
l e

269

Initializing a Sprite for Mouse Input

This program again uses the mouse object, but it also relies on some properties of the
sprite object to do the real work. Take a look at the initialization of the Button program:

<script>

var theButton;

FIGURE 11.9

When the mouse is
over the sprite, the

button looks
pushed in.

FIGURE 11.10

When the user
clicks the sprite, the

program pops up
a message.

270
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

var theMouse;

function init(){

 // button

 // Andy Harris

 theMouse = Ms_initmouse();

 theButton = new Sp_Sprite();

 theButton.setImage("button.gif", 100, 40, 1, 2);

 theButton.setXlimits(0, 400);

 theButton.setYlimits(0, 300);

 theButton.setFrame(0);

 theButton.setAnimation(0);

 theButton.moveTo(100,100);

 theButton.switchOn();

 theButton.onclickdown = "click()";

 theButton.onmouseout = "out()";

 theButton.onclickup = "sayOuch()";

} // end init

Table 11.3 lists the mouse event handlers of the sprite and layer objects.

I imported the core, sprite, and mouse objects, then created objects for the button
itself and the mouse. The button is a basic two-frame sprite (see Figure 11.11).

FIGURE 11.11

This is the
image used in the

button sprite.

C
h

a
p

te
r 1

1
C

o
o

k
ie

s
 a

n
d

 th
e
 M

o
u

s
e
: T

h
e
 J

ig
s
a
w

 P
u

z
z
l e

271

I set up the sprite in all the typical ways, but added a few more lines. The onclickdown,
onmouseover, onmouseout, and onclickup properties are used much like the event han-
dlers in typical JavaScript. You can assign a JavaScript command or function call to
each of these properties, and the sprite will automatically call the appropriate method
when the corresponding mouse action occurs. For these special sprite properties to
work, you must define a mouse object.

onclickdown occurs when the user presses the mouse button while the mouse cursor
is within the boundaries of the sprite. onclickup executes when the user releases the
mouse button while the mouse cursor is within the sprite object. onmouseover occurs
when the mouse cursor moves over the sprite (whether the button is pressed or not).
onmouseout occurs when the mouse cursor leaves the sprite’s boundaries (again, re-
gardless of the button’s condition).

Responding to the Mouse Events

Of course, when you respond to mouse events, you usually must write a function to handle
each of the appropriate events. Here’s the rest of the code for the Button program:

function click(){

 theButton.setAnimation(1);

TABLE 11.3 MOUSE EVENT HANDLERS OF THE SPRITE

AND LAYER OBJECTS

Property Description Example

,onclickdown Binds a function to call mySprite.onclickdown =

when the user presses the "click()";

mouse button while the
cursor is over the element.

,onclickup Binds a function to call mySprite.onclickup =

when the user releases "released()";

the mouse button while the
cursor is over the element.

.onmouseover Binds a function to call mySprite.onmouseover =

when the mouse cursor is "over()";

over an element (regardless
of button status).

.onmouseout Binds a function to call mySprite.onmouseout =

when the mouse cursor "out()";

leaves an element
(regardless of button status).

These are properties of both the sprite and the layer objects. All are read and write properties. They work just
like the event handlers in traditional HTML/DHTML.

272
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

} // end over

function out(){

 theButton.setAnimation(0);

} //end out

function sayOuch(){

 alert("ouch!");

 theButton.setAnimation(0);

The click() function is associated with onmousedown. This function executes when the
user clicks the mouse button while the mouse cursor is over the button sprite. The
function sets the animation to frame 1, which makes the image look as though it is
pressed down.

The out() function is set up to run whenever the mouse leaves the sprite. It sets the
animation back to frame 0, which makes the button look like it’s sticking up again.

The sayOuch() function displays an alert message to the user. It is set to the onclickup
event of the sprite.

You might find it surprising, but it is more common to put code in the mouse-up
procedure than in the mouse-down procedure. Users typically don’t expect the criti-
cal action to happen until they release the mouse button. If you place your code in
the mouse-up procedure, you give users a chance to move the mouse cursor off of
the sprite before releasing the mouse button if they made a mistake.

Following the Mouse and Sprites

Although not used in the jigsaw puzzle program, the sprite object works with the
mouse in another interesting way. Sprites in the latest version of gameLib have the
ability to follow and target the mouse or other sprites. This allows for some very inter-
esting effects.

The Follower Program

In the Follower program (see Figure 11.12), as the
user moves the mouse around the screen, a series
of balls follow the mouse around.

You’ll probably have to run the program to get the
full effect, but it is captivating and reasonably easy
to create.

The Follow Method

Sprites have a follow method, which allows you to
specify a particular sprite (or the mouse) to follow,
and an X and Y offset to follow the sprite or mouse.

TRICK

IN THE REAL WORLD

The follow method might be

useful if you want to use a sprite

as a caption to another sprite, or

if you want to supplement the

mouse pointer with another

kind of pointer. (Sadly, there

does not appear to be a plat-

form-independent way to turn

off the standard mouse cursor.)

C
h

a
p

te
r 1

1
C

o
o

k
ie

s
 a

n
d

 th
e
 M

o
u

s
e
: T

h
e
 J

ig
s
a
w

 P
u

z
z
l e

273

When told to follow another sprite or the mouse, a sprite will stay with that object as
if the sprite and the object were one object.

The Target Method

The target method of the sprite object works much like the follow method. However,
instead of causing the sprite to follow the targeted object immediately, the method
ensures that the sprite will move toward the targeted object according to the speed
setting of the sprite.

Targeting an object is a great way to add some “artificial intelligence” to sprites on
the screen. You can have enemy sprites target the player sprite, and they will head
straight for the player. You can also target your bullets at an enemy to simulate “smart
missiles” that are guaranteed to hit the enemy.

How the Follower Works

The Follower program is simply a set of sprite objects that follow each other and ulti-
mately follow the mouse. I’ve added code for the first three sprites; all the others work
pretty much the same way.

<script>

var biggest;

var bigger;

var big;

var medium;

FIGURE 11.12

My three-year-old
calls this a “choo-
choo train of dots.”

TRICK

274
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

var small;

var smaller;

var smallest;

var theMouse;

function init(){

 theMouse = Ms_initmouse();

 biggest = new Sp_Sprite();

 biggest.setImage("ball.gif", 20, 20, 1, 1);

 biggest.moveTo(100,100);

 biggest.setXlimits(0, 500);

 biggest.setYlimits(0, 300);

 biggest.setFrame(0);

 biggest.switchOn();

 biggest.setSpeed(8);

 biggest.target(theMouse, 5, 15);

 bigger = new Sp_Sprite();

 bigger.setImage("ball.gif", 19, 19, 1, 1);

 bigger.moveTo(100,200);

 bigger.setXlimits(0, 500);

 bigger.setYlimits(0, 300);

 bigger.setFrame(0);

 bigger.switchOn();

 bigger.setSpeed(7);

 bigger.target(biggest, 0, 5);

 big = new Sp_Sprite();

 big.setImage("ball.gif", 18, 18, 1, 1);

 big.moveTo(100,200);

 big.setXlimits(0, 500);

 big.setYlimits(0, 300);

 big.setFrame(0);

 big.switchOn();

 big.setSpeed(6);

 big.target(bigger, 0, 5);

As you can see, the biggest sprite targets the mouse and has a speed setting of 8. Each
succeeding sprite is smaller and slower and targets the previous sprite.

Table 11.4 describes the following and targeting commands of sprite objects.

C
h

a
p

te
r 1

1
C

o
o

k
ie

s
 a

n
d

 th
e
 M

o
u

s
e
: T

h
e
 J

ig
s
a
w

 P
u

z
z
l e

275

Storing Information in Cookies

Although JavaScript and dynamic HTML are terrific environments for basic game
development, the security restrictions of client-side programming make developing
certain common game elements very difficult. It would be great if your games could
have some type of persistence. You might want to be able to keep track of high scores
or custom configurations. Generally, you would use file-handling techniques for these
kinds of problems, but JavaScript does not allow you to manipulate files on the user’s
computer. (This restriction is actually a good thing, because it prevents malicious
programmers from writing viruses that are embedded in the JavaScript of innocent-
looking Web pages.) JavaScript does support one feature that provides a limited yet
capable way of storing a small amount of information on the user’s computer. This
technology is called a cookie.

Creating the Cookie Demo Program

The Cookie Demo program (see Figures 11.13 through 11.15) illustrates the gameLib
approach to manipulating a cookie. The program illustrates how cookies can be used
to preserve information even after a client has left your site and returned to it.

TABLE 11.4 FOLLOWING AND TARGETING COMMANDS

OF THE SPRITE OBJECT

Command Description Example

.follow(ob, x, y) Causes the sprite to follow mySprite.follow

ob (a sprite or the mouse (theMouse, 0, 10);

object) at a distance of
(x, y) pixels.

.target(ob, x, y) Causes the sprite to move mySprite.target

toward ob at the current (theMouse, 0, 10);

speed, aiming toward
an offset of (x, y) pixels
from ob.

.stopFollowing(ob) Tells the sprite to stop mySprite.stopFollowing

following ob. (theMouse);

.stopTargeting(ob) Tells the sprite to stop mySprite.stopTargeting

targeting ob. (theMouse)

TE
AM
FL
Y

Team-Fly®

276
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

FIGURE 11.13

The user types
some value into the

text box.

FIGURE 11.14

The user has shut
off the computer,

then later returned
to the Web site.

C
h

a
p

te
r 1

1
C

o
o

k
ie

s
 a

n
d

 th
e
 M

o
u

s
e
: T

h
e
 J

ig
s
a
w

 P
u

z
z
l e

277

Creating a Cookie

Cookie information is part of the gameLib core library. You do not have to import any other
modules to use cookies. Here’s the initialization code to the Cookie Demo program:

<script language="Javascript" src="../gamelib196/gamelib/gamelib_core.js">

</script>

<script>

var myCookie;

function init(){

 // Cookie Demo

 // Andy Harris

 myCookie = new Gl_cookie("cookieDemo");

} // end init

Cookies are created like many other gameLib objects. I created a variable called myCookie
and then created an instance of the cookie object by calling the new Gl_cookie() func-
tion. The string parameter is the name of the cookie.

Generally, cookies have names and expiration dates, but the gameLib library auto-
mates the expiration process for you. The cookie data is stored in a text file on the
client’s hard drive. Each cookie is normally restricted to 255 characters, and a lim-
ited number of cookies are allowed from any one site. Cookies contain only text
data, which prevents them from being used as viruses.

Table 11.5 describes gameLib’s cookie-handling commands.

FIGURE 11.15

The stored value
comes back!

HINT

278
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Writing the HTML in the Cookie Demo Program

This program uses a basic HTML form, so it will help you to understand the JavaScript
if you can see how I named the form elements:

<body onload = "init()">

<center>

<h1>Cookie Demo<hr></h1>

<form name = "myForm">

The value is

<input type = "text"

 name = "txtIO">

<input type = "button"

 value = "save cookie"

 onClick = "saveCookie()">

<input type = "button"

 value = "load cookie"

 onClick = "loadCookie()">

</form>

</center>

<hr>

</body>

This is pretty standard HTML with a text box and two buttons on it. One button will
call the load cookie function, and the other will store the cookie.

Storing to the Cookie

Once you have created a cookie object, the process of sending a value to the cookie is
very straightforward. Here’s the saveCookie() function:

function saveCookie(){

 myCookie.setvalue(document.myForm.txtIO.value);

} // end saveCookie

TABLE 11.5 COOKIE-HANDLING COMMANDS

Command Description Example

new Gl_cookie Creates a new cookie var myCookie =

(cookieName) object with cookieName as new Gl_cookie("test");

its name.

.setValue(value) Sets the cookie’s value myCookie.setValue("Hi");

to value.

.value Returns the cookie’s value. alert(myCookie.value);

C
h

a
p

te
r 1

1
C

o
o

k
ie

s
 a

n
d

 th
e
 M

o
u

s
e
: T

h
e
 J

ig
s
a
w

 P
u

z
z
l e

279The cookie object’s setvalue() method is used to send a text value to the cookie. Since
the cookie is actually part of a text file, the value will be retained even if the user turns
off the browser.

Don’t become too reliant on cookies as a major part of your program, because they
have some limitations. First, the user can always turn cookies off, which means
your data will not be stored or retrieved. Second, the data in the cookie is specific to
the particular browser and computer that the user is currently using. If a user stores
data on a Web page at work, then visits the same page at home, the cookie will not
be available. Even if the user switches browsers on the same computer, the cookie
will not be available, because each browser uses a different cookie file.

Retrieving Data from the Cookie

It’s just as easy to get data from a cookie, because the cookie object has a value prop-
erty that contains the text stored in the cookie. Here’s the loadCookie() function from
the Cookie Demo program:

function loadCookie(){

 document.myForm.txtIO.value = myCookie.value;

} // end if

I simply copied the value property of the cookie object back to the text box on the form.

Creating the Jigsaw Puzzle Program

Most of the components in this chapter come together in the Jigsaw Puzzle program.
The program doesn’t introduce much that is new, but it can look a little bit overwhelm-
ing when you see all the pieces working on the same program. This section takes you
through the program one chunk at a time.

Modules and Variable Creation

The puzzle requires the core, sprite, and mouse modules, and it involves a number of
game-level variables. Here’s the startup code:

<script language="Javascript" src="../gamelib196/gamelib/gamelib_core.js">

</script>

<script language="Javascript" src="../gamelib196/gamelib/

gamelib_sprites.js">

</script>

<script language="Javascript" src="../gamelib196/gamelib/gamelib_mouse.js">

</script>

<script>

//puzzle piece variables

TRAP

280
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

var numRows = 5;

var numCols = 5;

var puzzle = new Array(numRows);

//button variables

var btnSolve;

var btnScramble;

var btnHint;

var btnNewImg;

//variables for the hint, the cookie, and the mouse

var lyrHint;

var imgCookie;

var theMouse;

//The image that the puzzle is based on

var theImage = "balls.gif";

var hintShowing = false;

The most important variable in the game is the puzzle array. It will become a two-
dimensional array of sprite objects. Each element of the array contains the entire im-
age, but shows just a small part of it, by assigning a frame and animation value based
on the row and column of the puzzle piece. The buttons are all sprites. The program
uses a layer for the hint screen, a cookie to store the current image, and a variable to
handle the mouse. All the variables for these elements are created outside a function,
but they will be initialized within the init() function.

The init() Function

This game has a lot of initialization. The player does most of the work after the whole
thing is set up. The puzzle game’s logic is almost entirely devoted to setting up the
environment so that the user can play. The program must initialize nearly every ob-
ject, so I decided to break the initialization into several other functions, then call those
functions from init(). Here’s the init() code:

function init(){

 // jigsaw

 // Andy Harris

 //get the previous image from the cookie if you can

 imgCookie = new Gl_cookie("puzzle_image");

 if (imgCookie.value == null){

 //if you cannot get an image, go with the default

 theImage = "balls.gif";

 } else {

 theImage = imgCookie.value;

C
h

a
p

te
r 1

1
C

o
o

k
ie

s
 a

n
d

 th
e
 M

o
u

s
e
: T

h
e
 J

ig
s
a
w

 P
u

z
z
l e

281 } // end if

 //get a reference to the mouse

 theMouse=Ms_initmouse();

 //run functions to manage all the other setup tasks

 setUpButtons();

 setUpPuzzle();

 scramble();

 setUpLayer();

 //start the game loop

 Gl_start();

} // end init

The first order of business is to look for an image file stored in a cookie. If the user
has played this game on this browser on this machine and has chosen an image file,
the cookie will store that file (see the section “The newImg() Function” for details on
how this is done). The init() function looks for the existence of such a cookie. If the
cookie exists, the function uses the image referenced in the cookie. If not, init()
uses a default image.

The init() function creates a reference to the mouse object and calls a bunch of other
functions to set up the various other screen elements. When these functions are done,
the init() function starts up the gameLib engine.

The setUpButtons() Function

The setUpButtons() function is responsible for setting up the buttons. I wanted a cus-
tom feel, so each button is a sprite. To simplify things, the buttons all use the same
graphic (see Figure 11.16).

I simply copied and pasted the original button image from the Button program earlier
in the chapter, then added text for the appropriate buttons.

Here’s the code for the setUpButtons() function:

function setUpButtons(){

 //initialize the button sprites

 //scramble button

 btnScramble = new Sp_Sprite();

 btnScramble.setImage("pzlBtns.gif", 100, 40, 4, 2);

 btnScramble.setFrame(0);

 btnScramble.setAnimation(0);

 btnScramble.setXlimits(0, 500);

 btnScramble.setYlimits(0, 400);

 btnScramble.moveTo(100, 350);

282
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 btnScramble.onmouseover = "over(btnScramble)";

 btnScramble.onclickup = "scramble()";

 btnScramble.onmouseout = "out(btnScramble)";

 btnScramble.switchOn();

 //hint button

 btnHint = new Sp_Sprite();

 btnHint.setImage("pzlBtns.gif", 100, 40, 4, 2);

 btnHint.setFrame(2);

 btnHint.setAnimation(0);

 btnHint.setXlimits(0, 500);

 btnHint.setYlimits(0, 400);

 btnHint.moveTo(210, 350);

 btnHint.onmouseover = "over(btnHint)";

 btnHint.onclickup = "hint()";

 btnHint.onmouseout = "out(btnHint)";

 btnHint.switchOn();

 //solve button

 btnSolve = new Sp_Sprite();

 btnSolve.setImage("pzlBtns.gif", 100, 40, 4, 2);

 btnSolve.setFrame(1);

 btnSolve.setAnimation(0);

 btnSolve.setXlimits(0, 500);

FIGURE 11.16

This graphic
contains all the
button images

needed.

C
h

a
p

te
r 1

1
C

o
o

k
ie

s
 a

n
d

 th
e
 M

o
u

s
e
: T

h
e
 J

ig
s
a
w

 P
u

z
z
l e

283 btnSolve.setYlimits(0, 400);

 btnSolve.moveTo(320, 350);

 btnSolve.onmouseover = "over(btnSolve)";

 btnSolve.onclickup = "solve()";

 btnSolve.onmouseout = "out(btnSolve)";

 btnSolve.switchOn();

 //new Image button

 btnNewImg = new Sp_Sprite();

 btnNewImg.setImage("pzlBtns.gif", 100, 40, 4, 2);

 btnNewImg.setFrame(3);

 btnNewImg.setAnimation(0);

 btnNewImg.setXlimits(0, 500);

 btnNewImg.setYlimits(0, 400);

 btnNewImg.moveTo(430, 350);

 btnNewImg.onmouseover = "over(btnNewImg)";

 btnNewImg.onclickup = "newImg()";

 btnNewImg.onmouseout = "out(btnNewImg)";

 btnNewImg.switchOn();

} // end setUpButtons;

The code sets up each button in basically the same way. The buttons are all typical
sprites. The code sets each to a different frame, so that the program’s interface dis-
plays the appropriate words. All the buttons call the over() function when the mouse
cursor is over the button and the out() function when the mouse cursor leaves. The
event handlers pass a reference to the current button to these functions. The onclickup
event of each button calls a function specific to that event (for example, btnNewImg
calls the newImg() function, and btnSolve calls the solve() function).

The setUpPuzzle() Function

The setUpPuzzle() function sets up the puzzle array:

function setUpPuzzle(){

 //initialize the puzzle sprites

 var row = 0;

 var col = 0;

 //clear out any puzzle currently in memory

 //if we just came from the new image command, for example

 puzzle = null;

 puzzle = new Array();

 //step through each row

 for (row = 0; row < numRows; row++){

 //make each row a new array

284
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 puzzle[row] = new Array(numCols);

 //for each object in the row...

 for (col = 0; col < numCols; col++){

 //create a sprite

 puzzle[row][col] = new Sp_Sprite();

 puzzle[row][col].setImage(theImage, 30, 30, numRows, numCols);

 puzzle[row][col].setFrame(col);

 puzzle[row][col].setAnimation(row);

 puzzle[row][col].setXlimits(0, 500);

 puzzle[row][col].setYlimits(0, 300);

 puzzle[row][col].draggable = true;

 puzzle[row][col].switchOn();

 } // end col loop

 } // end row loop

} // end setUpPuzzle

If there is a puzzle already in memory, the function clears it out and moves all the
pieces out of the way. It then makes a new array for each row, then steps through the
row making a new sprite.

Just as for loops and normal arrays are a natural combination, if you have two-
dimensional arrays (as in the puzzle program), you will frequently find yourself writ-
ing a pair of nested for loops to step through every element of the array. In this
case, the puzzle program has one loop that steps through the rows, and every time
that loop executes, it runs another loop that steps through the columns. As a whole,
the nested loops work together to ensure that every element in the two-dimensional
array is manipulated.

The puzzle sprites are all identical in almost every respect. They all contain the entire
image of the finished graphic. They all are the same size, and they all have all the same
initial characteristics. However, I set the frame to map the current column, and set the
animation cell to map the current row. Since these settings reflect how the original
image was designed, this technique breaks the image into 25 pieces that fit together
perfectly. I played sort of a dirty trick with the clip animation technique used by gameLib,
but the results speak for themselves. Note that I did not worry about the placement of
the pieces, because the scramble() function takes care of that.

The setUpLayer() Function

The setUpLayer() function manages the layer that holds the hint graphic. The layer
setup is reasonably straightforward:

function setUpLayer(){

 //initialize the hint layer

HINT

C
h

a
p

te
r 1

1
C

o
o

k
ie

s
 a

n
d

 th
e
 M

o
u

s
e
: T

h
e
 J

ig
s
a
w

 P
u

z
z
l e

285 lyrHint = new Gl_layer(600, 10, 200, "");

 lyrHint.write("");

 //let the user move the layer outside the puzzle boundaries

 lyrHint.setXlimits (0, 800);

 lyrHint.setYlimits (0, 600);

 lyrHint.setZ(0);

 lyrHint.draggable = true;

 //make the layer invisible until the user asks for it

 lyrHint.hide();

} // end setUpLayer()

The layer contains nothing but an HTML tag referencing the image. I decided to force
the image to 100×100 pixels, so that it did not take over the entire screen. If the origi-
nal image is not square, you will have some distortion, but the hint image will be
exactly proportional to the finished puzzle.

The hint layer is draggable, so the user can choose to move it around.

The over() and out() Functions

over() and out() are utility functions that enable each of the buttons to be pushed
down when the mouse is over the button, and to push back up when the mouse leaves
the button. I added a parameter so that all four buttons can use the same function.
When the program calls these functions, they must include a reference to the button
that the program is activating. Here is the code for the functions:

function over(theButton){

 //respond when mouse is over a button

 theButton.setAnimation(1);

} // end over

function out(theButton){

 //respond when the mouse leaves a button

 theButton.setAnimation(0);

} // end out

The variable theButton stores the button that the mouse cursor is currently over. I
then set the animation of theButton so that the button appears to be up or down.

Whenever possible, it makes a lot of sense to build functions such as these that you
can use for multiple purposes. It would have been very tedious to write separate
over() and out() functions for each button in the program.

TRICK

TE
AM
FL
Y

Team-Fly®

286
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

The scramble() Function

Both the init() method and the Scramble button call the scramble() function. The
function steps through the puzzle array. For each piece of the puzzle, scramble() gen-
erates random x and y values within the appropriate ranges. The piece is then sent to
these coordinates. Here is the function’s code:

function scramble(){

 //put all the puzzle pieces in a random order

 var row = 0;

 var col = 0;

 var x = 0;

 var y = 0;

 for (row = 0; row < numRows; row++){

 for (col = 0; col < numCols; col++){

 //choose random x and y values for the current piece

 x = Math.floor(Math.random() * 500) + 1;

 y = Math.floor(Math.random() * 300) + 1;

 puzzle[row][col].moveTo(x, y);

 } // end col for

 } // end row for

} // end scramble

The solve() Function

The solve() function generates a solution to the puzzle. It basically re-creates the origi-
nal picture, although the function deliberately leaves a small gap between the pieces,
so that the user still has to do a little work to see the complete picture. Here’s the code
for the solve() function:

function solve(){

 //puts all the pieces in order, but not quite touching

 var row = 0;

 var col = 0;

 var x = 0;

 var y = 0;

 for (row = 0; row < numRows; row++){

 for (col = 0; col < numCols; col++){

 //offset the puzzle by (300, 150)

 //put a two pixel gap between pieces

 x = (col * 32) + 300;

 y = row * 32 + 150;

 puzzle[row][col].moveTo(x, y);

 } // end col for

 } // end row for

} // end solve

C
h

a
p

te
r 1

1
C

o
o

k
ie

s
 a

n
d

 th
e
 M

o
u

s
e
: T

h
e
 J

ig
s
a
w

 P
u

z
z
l e

287The hint() Function

The hint() function displays and hides the hint layer:

function hint(){

 //displays or hides the hint layer

 if(hintShowing){

 lyrHint.hide();

 } else {

 lyrHint.write("");

 lyrHint.show();

 } // end if

 //reverse the value of the hintShowing variable

 hintShowing = !hintShowing;

}// end hint

The function checks the value of the hintShowing variable. hint() initializes this vari-
able to false, indicating that the hint is not initially showing. If the hint is currently
showing, the function hides it. If the hint is not currently showing, the function dis-
plays it. I rewrote the HTML of the image just in case the user changed the image since
the last time that the program showed the hint layer. Finally, the ! (not) operator re-
verses the value of the hintShowing variable. If the value is true, it becomes false, and
if it is false, it becomes true.

The newImg() Function

The newImg() function lets the user choose a new image for the puzzle:

function newImg(){

 //prompts user for a new image URL

 theImage = prompt("URL of new Image:", "ball.gif");

 //clean up old puzzle

 for (row = 0; row < numRows; row++){

 for (col = 0; col < numCols; col++){

 puzzle[row][col].setImage("blank.gif", 30, 30, numRows, numCols);

 puzzle[row][col].moveto(-100, -100);

 } // end col for

 } // end row for

 //reset hint

 lyrHint.write("");

 //store URL in cookie

 imgCookie.setvalue(theImage);

 //reset the puzzle with the new image

288
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 setUpPuzzle();

 scramble();

 //reset the button so it is sticking up again

 out(btnNewImg);

} // end newImg

First, the program uses an ordinary prompt to request the URL of the new image. This can
be any valid image file (.gif or .jpg) anywhere on the Internet or on the local machine.

The program then clears out the existing puzzle pieces, to ensure that they did not
stay on the screen. The function uses a pair of nested for loops for this, setting each
element to a blank image and moving it off the screen.

The program then resets the hint layer so that it reflects the new image. Then the
function stores the URL into the cookie, so that the next time that the browser loads
the page, the program will display the new image.

The program calls the setUpPuzzle() and scramble() functions to initialize the new
puzzle. Then finally the program pops up the button, because often the user will move
the mouse off of the button without activating the mouseout event.

Summary

In this chapter, you have seen how the mouse object interacts with sprites and layers.
You have learned how to drag and drop elements around the screen, and how to set up
event handlers for them. You also have learned how to use cookies to store small amounts
of data. Finally, you have put all these things together to make an interesting and
configurable puzzle game.

E X E R C I S E S

1. Use a graphic image with words to make a “refrigerator poetry” game. The page will have

a series of words on it that can be dragged around with the mouse to generate poems.

2. Add a scorekeeping function to the puzzle game. It will need the capability to surmise

that each piece is in the appropriate position. You might do this by looking at the position

of the upper-left image and calculating what the position of each other piece should be in

relationship to this image.

3. Add a timer to the puzzle game. Let the user time how long it takes to solve a puzzle. Use

cookies to add a high-score list.

12

T
hroughout this book, you have built a

number of interesting programs by

learning simple, isolated concepts, then

putting them together to form the games at the end of

each chapter. In this last chapter, you will put together

many of the skills that you learned throughout the book

to make the basis of an arcade game. Specifically,

here are the things you will see in this chapter:

• What a design sketch for a game might look like

• Where to start programming

• How to get the ball rolling

• How to add various sprites

• How to create and then improve data

structures so that they are more flexible

• What to do if you find that you must change

your program design when certain functions

become unwieldy

The Game
Creation Process:
The Brick Game

C H A P T E R

290
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

With all that you know by now, you should have all the skills you need to put together
interesting games on your Web sites. The thing that usually holds programmers back,
however, isn’t lack of programming techniques. The real problem is figuring out the pro-
cess of building a program. Earlier in the book, you saw what programs looked like after I
finished them—which might have given you the mistaken impression that I wrote them
correctly the first time. Game development never happens that way. In this chapter, you
see how to design a game from the beginning of the process until the middle. (The end of
the process is up to you; a computer program is never fully complete, but the program
presented here is stable enough for you to build on and experiment with your own ideas.)
Rather than showing you the finished game at the beginning of this chapter, as I have in
the previous chapters, I’ll start with an idea, as all good programs do. I’ll show you the
same program in several incarnations, so you can see one way to design a game.

The Project:
The Brick Game

It occurred to me that this book ought to pay hom-
age to at least one of the classics of the golden age of
arcade games. I decided to try a version of Breakout.
You might recall the game. Basically, the player has
a paddle that he or she can move across the bottom
of the screen. There is a series of bricks arranged at
the top of the screen, and a small ball that can
bounce off the walls, the bricks, and the paddle. Each
time that the ball hits a brick, that brick disappears.
If the ball moves below the paddle, it is lost. The goal

is to eliminate all the bricks before losing all three balls. Such programs have many
variations, but this is the basic idea behind each of them.

Coming up with game ideas can be one of the most fun parts of game design. Here
are a few ways to get started:

• Go with a variation on an existing theme (Breakout with a goalie played by the
user, or Pacman with the user playing the ghost).

• Simulate some part of a real-life game or a dramatic situation (such as landing
an airplane using only instruments or playing a soccer shootout).

• Modify the graphics and behavior of an existing game (for example, switch the
Basketball game in Chapter 7, “Image Swapping and Lookup Tables: The Bas-
ketball Game,” of this book to hockey or volleyball).

The game’s idea doesn’t really matter, as long as the game is fun. Be careful, though,
that you begin with only modestly ambitious games, because you’ve already seen
how complex even the very simple designs in this book have been to implement.

Creating the Game Design

The first part of the process is to think thoroughly about the game’s design. You can do
part of this by writing down a summary of the game’s play and goals.

IN THE REAL WORLD

So far, the game is nothing but

an idea. In much of program-

ming, you will have to start with

nothing but words (and

sketches, which you will learn

about next). Make sure that you

can describe your program com-

pletely, or you will have troubles

with the later steps.

TRICK

C
h

a
p

te
r 1

2
T
h

e
 G

a
m

e
 C

r e
a
tio

n
 P

ro
c
e
s
s
: T

h
e
 B

ri c
k

 G
a
m

e

291Yes, you really should write down a summary of your idea. Even though you will
probably remember it anyway, it is amazing how often experienced programmers
lose sight of the main goals of their program. Write down your program’s goals, then
paste them on your monitor or somewhere else that draws your attention regularly
to help keep yourself focused.

Sketch of Game

Games tend to be very visual. In addition to writing down your goals, you should sketch
out any of the major screens that you will use. On this sketch, you should write all the
most critical elements of game play, even if you aren’t sure that you will implement
them. Figure 12.1 shows my example for the Brick game.

Note that I usually do sketches on plain paper, nap-
kins, or whatever is handy when inspiration strikes
(I haven’t yet resorted to lipstick on a mirror, but
it’s an idea). I duplicated the sketch with my draw-
ing program, just so you could see what it looks
like (and so you will be able to read the handwrit-
ing). If you have a friend or two who program, you
might want to show them your sketches and ask
for some ideas on implementation.

Don’t get too caught up at this phase in
exactly how you will do things. I made
some mention of images and cookies, but
that was all. The main thing here is to
understand clearly the programming
problems that you will be facing. You will
have plenty of time later in the process to
look more closely at the specific details.

TRICK

Track lives left

Multiple brick

colors

Some bricks

speed up ball,

others change

paddle size

Keep high scores

with cookies

Fun backgrounds?

Paddle moves with mouse

Ball bounces off of walls,

bricks, and paddle

Ball’s new angle based on

where it hits paddle

FIGURE 12.1

Here’s a sketch of
the Brick program.

TRAP

IN THE REAL WORLD

An entire career path exists for

those who design and manage

software projects. Although

techniques for planning physical

constructions such as bridges

and buildings have been around

for a long time, the field of soft-

ware engineering is relatively

new. This endeavor is dedicated

to learning and implementing the

best techniques for managing

and designing software projects.

292
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Feature List

Somewhere, either in your written description or on your sketches, you should have
some sort of a feature list. Figure out what your program should do. It is really easy to
get carried away with adding features before you’ve done any real programming, so be
sure to prioritize your features. You can add “bells and whistles” (animations, fancy
sound effects, and so on) later, but the basic game play must be in place before you
release the game. However, getting the game to work once isn’t the only goal either.
You should conceive your initial design with extensibility in mind. (Think of the mul-
tiple tracks in the Racer game, the ability to switch images in the jigsaw puzzle, or the
multiple board design that you are about to see implemented in the Brick game.) It
takes a little more planning to design a program that you can easily modify, but it
almost always turns out to be worth the effort.

Features of the Brick Game

Before writing a single line of code, you should set up some reasonable expectations. You
will never be completely satisfied with any program that you’ve written, but you should
still have some sort of goal in mind, so that you’ll eventually be willing to release the
game. Here are the basic objectives that I hope to meet in this version of the Brick game:

• The ball should move around the screen bouncing off of walls.

• There should be a paddle under user control (using the mouse). User control
should be intuitive.

• A bunch of bricks should be at the top of the screen.

• When the ball hits a brick, the brick should disappear and the score should incre-
ment. The ball should appear to bounce off the brick.

• When the ball hits the paddle, it should bounce. The direction in which the ball
bounces should be based on where it hits the paddle.

• If the ball gets past the paddle, the game should reduce the number of lives that
the player has left.

• It would be nice to have different types of bricks. Some might speed up the ball,
change the size of the paddle, or change the game’s behavior in other ways.

• There should be a number of different initial settings of the bricks, so that the
player won’t get bored too easily.

• It would be nice to have an interesting background and good graphics for the ball
and bricks.

• A high-score feature using cookies would be nice.

This type of prioritized list, and the accompanying diagram, should give you plenty to
start with. If you have such a list of prioritized goals, you should never end up staring
at a blank screen, wondering, “What do I do next?”

Setting Up the Playground

Once you have some sort of plan in place, you still might wonder what to do first. There
are a number of strategies, but the technique that I’ll describe in this chapter is pretty
good for moderate-size programs written by one programmer. The technique is a form

C
h

a
p

te
r 1

2
T
h

e
 G

a
m

e
 C

r e
a
tio

n
 P

ro
c
e
s
s
: T

h
e
 B

ri c
k

 G
a
m

e

293

of stepwise refinement. The basic idea is to get something small working, save it, then
add a little at a time. You never move ahead on the next part until you have the last
part working, so you always have something working that you can fall back on.

The Brick01 Program

For my first attempt, I decided simply to get a background screen and a ball on the Web
page, with the ball bouncing around. Figure 12.2 shows what I created.

This modest start is admittedly not very glamorous, but it provides a good foundation.
It’s nice to start with something simple and make sure that it works well before mov-
ing on. Here’s the code:

<script language="Javascript" src="../gamelib196/gamelib/gamelib_core.js">

</script>

<script language="Javascript" src="../gamelib196/gamelib/

gamelib_sprites.js">

</script>

<script>

//The moving ball

var ball;

var bg;

function init(){

 //set offsets

FIGURE 12.2

The ball is moving,
and it bounces off

the screens.

294
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 Sp_xoffset = 100;

 Sp_yoffset = 50;

 //set up background

 bg = new Sp_Sprite();

 bg.setImage("clouds.gif", 500, 400, 1, 1);

 bg.setXlimits(0, 500);

 bg.setYlimits(0, 400);

 bg.setFrame(0);

 bg.setAnimation(0);

 bg.moveto(0, 0);

 bg.switchOn();

 bg.setZ(0);

 //set up ball

 ball = new Sp_Sprite();

 ball.setImage("ball.gif", 20, 20, 1, 1);

 ball.setXlimits(0, 500);

 ball.setYlimits(0, 350);

 ball.setFrame(0);

 ball.setAnimation(0);

 ball.collides = true;

 ball.bounces = true;

 ball.moveto(250, 250);

 ball.setXYdegs(0);

 ball.setSpeed(6);

 ball.switchOn();

 ball.setZ(99);

 //start up library

 Gl_start();

} // end init

</script>

I started by including the libraries for the gameLib core and the sprite library. I also set
up variables for the ball background. I added an init() function, which is (as usual)
tied to the onload event of the body tag.

In the init() function, I set up the sprite offset variables so that the sprites will all
appear to be more centered on the page. I also created the background and ball sprites.
The ball is set to an initial speed and direction, and its bounces property is set to true.
I set the z order of both sprites to ensure that the ball is always visible in front of the
background.

Finally, I invoked the Gl_start() function to ensure that the library starts up and that
the ball starts to move.

C
h

a
p

te
r 1

2
T
h

e
 G

a
m

e
 C

r e
a
tio

n
 P

ro
c
e
s
s
: T

h
e
 B

ri c
k

 G
a
m

e

295

Although everything in this version of the program is reasonably basic, be sure to
test it as soon as you can. Make sure that it’s working before you move on, because
things will break down later, and you’ll want to be sure that you know the last point
at which everything was working correctly.

Adding the Paddle

Once you’re sure that you have a solid foundation, you can add elements one or two at
a time. I chose next to add the mouse handler, because it would involve some other
gameLib elements and because it’s a pretty important part of the game.

Creating the Brick02 Program

I imported the mouse library, then created a mouse object. I then made a sprite for the
paddle and had the sprite follow the mouse. Figure 12.3 shows these additions.

IN THE REAL WORLD

If you are writing a program as part of a group or for some type of customer, it is important to

identify several milestones, or points during the program’s development at which you will

have some kind of working prototype to show. The entire project doesn’t need to be done at

one time, but you have to be able to demonstrate your progress by showing working ex-

amples once in a while (or at least you need to do so if you want the customer’s money to keep

flowing into your project).

TRICK

FIGURE 12.3

The paddle moves
under mouse

control, but the
program does not

yet have any
collision detection.

TE
AM
FL
Y

Team-Fly®

296
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Note that I’m only concerned that the paddle is moving correctly. I actually had to ma-
nipulate the X limits and Y limits of the paddle sprite a little bit to get the behavior that
I wanted. I’ll deal with the ball bouncing off the paddle or moving past the paddle later.

Deciding which tasks you’re going to save for later is one of the hardest parts of
actual programming. Have a plan and stick with it. In the case of this particular
version of the program, for example, it’s okay to ignore collision detection until the
paddle is moving correctly.

Adding the mouse handler was simply a matter of importing the mouse library,
like this:

<script language="Javascript" src="../gamelib196/gamelib/gamelib_mouse.js">

</script>

I also had to create a variable for the mouse handler outside the functions.

var theMouse;

Finally, I initialized the mouse object in the init() function, as follows:

theMouse = Ms_initmouse();

Adding the Paddle Sprite

Creating the paddle sprite is reasonably straightforward. I created a suitable image in
my paint program, then created a reasonably typical sprite object:

//set up paddle

 paddle = new Sp_Sprite();

 paddle.setImage("paddle.gif", 50, 10, 1, 1);

 paddle.setXlimits(0, 450);

 paddle.setYlimits(300, 300);

 paddle.setFrame(0);

 paddle.setAnimation(0);

 paddle.follow(theMouse, 0, 0);

 paddle.collides = true;

 paddle.switchOn();

Note that I set the paddle to follow the mouse. This was the only programming neces-
sary to get the paddle working.

Bouncing the Ball off the Paddle

Once the ball and the paddle are working independently, it is time to make them
interact with each other. Remember from the original plan that the ball should bounce
off the paddle, but the location of the ball on the paddle should determine the angle
at which it bounces.

TRICK

C
h

a
p

te
r 1

2
T
h

e
 G

a
m

e
 C

r e
a
tio

n
 P

ro
c
e
s
s
: T

h
e
 B

ri c
k

 G
a
m

e

297

Creating the BrickO3 Program

In this version of the program, the ball bounces off the paddle. Hitting the ball near
the center of the paddle causes the ball to go straight up. Hitting near the ends of the
paddle causes the ball to go in a steep angle to the side. Figure 12.4 shows the ball
bouncing at an appropriate angle.

Hooking Up the Main Loop

The next order of business is to ensure that the game library calls a main loop func-
tion every time that the timer goes off (recall from Chapter 9, “Sprite Animation: The
Racer,” that this will be 20 times per second in an ideal situation). This is done by
adding the following code to the init() function.

Gl_hook("mainLoop()");

Determining the Ball’s New Angle

The code inside the main loop (at least for now) is dedicated to checking whether the
ball is touching the paddle. Here’s the function:

function mainLoop(){

 //check ball hits paddle

 if (ball.hasHit(paddle)){

 var ballLoc = ball.x - paddle.x;

FIGURE 12.4

The ball now
bounces off the

paddle correctly. I
added the arrow so

you can see how
the ball has
bounced off
the paddle.

298
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 var ballPerc = ballLoc/paddle.width;

 var newX = (5 * ballPerc);

 newX = Math.floor(newX -1);

 ball.setDir(newX, 0 - ball.ydir);

 } // end if

} // end mainLoop

The function starts by checking whether the ball has hit the paddle. If so, the function
does some work to set the ball’s new direction. There are a number of ways to do this,
but here’s how I did it. I recalled that you can set a sprite’s direction directly in terms
of x and y values to add each time that the timer occurs. To make the ball bounce back
up, all I have to do is set the ball’s y direction to its negative value. (The ball will be
moving down, so its ydir value will be positive. 0 minus the ydir value will make the
ball move at exactly the same speed in the opposite direction.)

Setting the x direction proved to be a little trickier. I decided to get the ball’s location
on the paddle by subtracting the paddle’s x from the ball’s x. I placed the resulting
value in the ballLoc variable. I then divided that value by the length of the paddle to
get a percentage value. A value of 0 means that the ball was touching the absolute
farthest left pixel of the paddle, and a value of 1 indicates the farthest right pixel. I
then multiplied this value by 5 to get a value between 0 and 4. I next eliminated the
decimal value and subtracted 1, to get values between –2 and 2. I then set the Xdir of
the ball to the appropriate value.

Although this algorithm might appear to be completely new, if you look at it a little
more closely, you might see that it resembles the strategy used for generating dice
introduced in Chapter 6, “Petals around the Rose: Dynamic Output.”

Adding Bricks

Getting the paddle and ball to work together is nice, but the name of the game is
Bricks, so there should be some bricks somewhere in the game.

Creating the Brick04 Program

Bricks aren’t terribly tricky taken one at a time. After all, they are simply sprites. The
tricky part is to determine how a group of bricks will work together. It might be easiest
to start with just one brick, but I decided to make a bunch of them (see Figure 12.5). I
determined to go with a simple array of bricks for now, but I suspect that I’ll need to
make the data structure managing the bricks a little more complex later.

Creating the Simple Brick Array

The bricks themselves are an array of sprites. I created the array outside the functions,
as follows:

var brick = new Array(8);

var numVisible = 8;

HINT

C
h

a
p

te
r 1

2
T
h

e
 G

a
m

e
 C

r e
a
tio

n
 P

ro
c
e
s
s
: T

h
e
 B

ri c
k

 G
a
m

e

299

In addition to the array of bricks, I created another variable, which will be used to keep
track of how many bricks are currently showing on the screen.

Creating the Brick Sprites

As usual, an array of sprites is easiest to initialize and work with inside a for loop.
Here’s the code added to the init() function for creating the array of bricks:

//set up bricks

 for (i = 0; i < 8; i++){

 brick[i] = new Sp_Sprite();

 brick[i].setImage("brick.gif", 50, 20, 1, 4);

 brick[i].setXlimits(0, 500);

 brick[i].setYlimits(0, 200);

 brick[i].setFrame(0);

 brick[i].setAnimation(1);

 brick[i].collides = true;

 brick[i].bounces = false;

 brick[i].moveto(i * 55, 10);

 brick[i].switchOn();

 } // end for loop

The brick is a sprite based on a reasonably simple image. I decided to create an image
that would be useful in the later stages of game development, when I had multiple
bricks. Figure 12.6 shows the image that I created.

For this version of the program, I set all the bricks to the brown animation frame (1). I
used the moveto() method to place the bricks. Each brick is 50 pixels wide, so by mul-

FIGURE 12.5

This version
features one row
of bricks. The ball

can hit and
destroy them.

300
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

tiplying i (the for loop counter) by 55, the computer will place the bricks five pixels
apart. All other settings of the brick sprites are straightforward.

Checking for Brick Collisions

The ball should bounce off the brick as well as the paddle, so I had to add some code to
the mainloop() function to provide this behavior:

//check ball hits brick

 for(i = 0; i < 8; i++){

 if(ball.hasHit(brick[i])){

 ball.setDir(ball.xdir, 0 - ball.ydir);

 brick[i].switchOff();

 brick[i].moveTo(-100, -100);

 brick[i].collides = false;

 brick[i].setAnimation(0);

 //check for win

 numVisible--;

 if (numVisible <= 0){

 alert("You win!!");

 } // end if

 } // end 'ball hit brick' if

 } // end for loop

FIGURE 12.6

The brick image
includes a

transparent version
as well as three

colors of
traditional bricks.

C
h

a
p

te
r 1

2
T
h

e
 G

a
m

e
 C

r e
a
tio

n
 P

ro
c
e
s
s
: T

h
e
 B

ri c
k

 G
a
m

e

301I used a for loop to simplify the process of check-
ing all eight bricks. Inside the loop, I looked to
see whether the ball had hit the current brick. If
so, I reversed the ball’s y direction, but left the x
direction alone. I turned the brick off, but I have
found that this does not always make the sprite
disappear, so I also moved it off the playing field,
set its collision property to false, then set the sprite
to a blank image.

Checking whether All Bricks
Are Gone

The “ball hit a brick” code is a good place to check
for a winning condition, so every time that a brick
is hit, I decrement the numVisible variable. (Remem-
ber, the init() function set this variable to be equal
to the number of bricks visible on the screen.) If
numVisible is less than or equal to 0, I’ll tell the
user but do nothing else at the moment.

Checking whether the Ball Is
Past the Paddle

It also makes sense to check for a losing condition.
If the ball has gotten past the paddle, you will need
to do something as well. This code, in the
mainLoop() function, does exactly that:

//check ball past paddle

 if(ball.y > 300){

 alert("you lost the ball!");

 ball.moveTo(200, 250);

 ball.setXYdegs(0);

 } // end if

The code is reasonably self-explanatory. If the ball moves past a certain y coordinate,
the program informs the user that this has happened. Then the code resets the posi-
tion and direction of the ball to put it back into play.

Adding More Bricks and Sound

The Brick game is really coming into focus now. All the essential pieces are in place, so
you can start adding some of the embellishments. The most important thing to figure
out is how to make rows and columns of bricks. As you probably guessed, this involves
making the brick array two-dimensional rather than the single dimension that it was
in the last iteration. Also, I decided to put the sounds in at this point. (Actually, I handled
the two-dimensional array and sound as two separate steps, but combined them in
this explanation because they are both fairly straightforward processes.)

IN THE REAL WORLD

In the spirit of testing one thing

at a time, it’s entirely appropri-

ate not to worry yet about exactly

what happens when the bricks

are all gone. You have described

what should happen in your

plan, so you don’t need to imple-

ment it yet. In fact, you

shouldn’t, until you know that

the basic brick behavior is work-

ing correctly (that is, you need

to be sure that the bricks appear,

that they respond to collisions

with the ball, and that they go

away appropriately). You

should, however, do something

(such as presenting the alert, in

this case) that will tell you that

the condition is working cor-

rectly. Later on, you can replace

that statement with some more

robust code.

302
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Creating the Brick05 Program

This version of the program has a more complex structure of bricks in rows and col-
umns. Figure 12.7 shows the structure.

Although you cannot tell from Figure 12.7, the program now has sound effects: When
the ball hits a brick, it makes a “tick” sound. When the ball hits the paddle, you hear a
“boing” noise, and the game makes a “honk” when the ball moves past the paddle.

Preparing for Two Dimensions of Bricks

Converting the brick array from one- to two-dimensional was pretty easy. First, I added
a few global variables to make things a little bit easier to follow:

var ROWS = 3;

var COLS = 8;

var NUMBRICKS = ROWS * COLS;

var brick = new Array(ROWS);

var numVisible = NUMBRICKS;

I assigned constants to keep track of the number of rows, columns, and bricks, and
changed the brick and numVisible variables to reflect these constants.

Using constants in this way makes your code much easier to change later. If you
want to make a different size grid of bricks, you can just change the value of ROWS
and COLS, and everything else is done for you.

FIGURE 12.7

The program
has rows and

columns of bricks.
It also features
sound effects.

TRICK

C
h

a
p

te
r 1

2
T
h

e
 G

a
m

e
 C

r e
a
tio

n
 P

ro
c
e
s
s
: T

h
e
 B

ri c
k

 G
a
m

e

303Creating a Two-Dimensional Array of Bricks

You need to update the brick initialization section of the init() function to reflect
the two-dimensional array:

//set up bricks

 for (row = 0; row < ROWS; row++){

 brick[row] = new Array(COLS);

 for (col = 0; col < COLS; col++){

 brick[row][col] = new Sp_Sprite();

 brick[row][col].setImage("brick.gif", 50, 20, 1, 4);

 brick[row][col].setXlimits(0, 500);

 brick[row][col].setYlimits(0, 200);

 brick[row][col].setFrame(0);

 brick[row][col].setAnimation(1);

 brick[row][col].collides = true;

 brick[row][col].bounces = false;

 brick[row][col].moveto(col * 55, row * 22);

 brick[row][col].switchOn();

 } // end 'col' for loop

 } // end 'row' for loop

The Brick05 program replaces the single for loop used in Brick04 with a pair of nested
loops. The outside loop steps through the rows. The first thing that the loop does is to
create an array for the row. It then steps through each element of this new array, creat-
ing a sprite. Since brick is now a two-dimensional array, you must use two indices to
refer to any element in the data structure. All the actual properties and settings of
each brick sprite remain exactly the same as in Brick04. The only change to this ver-
sion is in the way that the bricks are addressed.

Checking whether the Ball Hits a Brick

Because the brick data structure is now two-dimensional, you must be careful that all
references to it reflect this fact. The program checks every brick in the mainloop()
function, so you must also update the code in that function:

//check ball hits brick

 for (row = 0; row < ROWS; row++){

 for (col = 0; col < COLS; col++){

 if(ball.hasHit(brick[row][col])){

 ball.setDir(ball.xdir, 0 - ball.ydir);

 brick[row][col].switchOff();

 brick[row][col].moveTo(-100, -100);

 brick[row][col].collides = false;

 brick[row][col].setAnimation(0);

 sndTick.play();

 //check for win

304
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 numVisible--;

 if (numVisible <= 0){

 alert("You win!!");

 } // end if

 } // end 'ball hit brick' if

 } // end col loop

 } // end row loop

This revision is just like the code for Brick04, except that the program now uses two
loops and two indices to check for each brick object.

Adding Sound

Adding the sound is reasonably simple with gameLib. First I imported the sound library:

<script language="Javascript" src="../gamelib196/gamelib/gamelib_sound.js">

</script>

Then I created a number of variables to refer to the various sound effects in the game:

//sound variables

var sndTick;

var sndHonk;

var sndBoing;

I then initialized all the sounds in the init() function:

 //set up sounds

 sndTick = new Sd_add_sound("tick.wav");

 sndHonk = new Sd_add_sound("honk.wav");

 sndBoing = new Sd_add_sound("boing.wav");

Finally, I just invoked the appropriate sound’s play() method when I wanted the sound
to occur. For example, I added sndTick.play() to the code that occurs whenever the
ball hits a brick.

Adding Multiple Game Boards

The capability to add multiple-board setups would greatly increase the game’s capabil-
ity to keep the player interested, because then it would not always be exactly the same.
To perform this feat, I created a new three-dimensional array called board. The board
array consists of game boards, and each game board is a two-dimensional array of inte-
gers. The program uses the integers to determine how to set up each board.

Creating the Brick06 Program

I set up the game with three boards to start with, as shown in Figures 12.8 through
12.10. The game boards will feature different combinations of colored bricks. Later on
I’ll set a specific behavior for each brick color. Also, a brick can start out already blank,
providing to us the capability to have game boards that start with some bricks missing.

C
h

a
p

te
r 1

2
T
h

e
 G

a
m

e
 C

r e
a
tio

n
 P

ro
c
e
s
s
: T

h
e
 B

ri c
k

 G
a
m

e

305

FIGURE 12.8

This is the first
(default) board.

All bricks are the
same color.

FIGURE 12.9

Here is the
second board. It

features bricks of
different colors.

TE
AM
FL
Y

Team-Fly®

306
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Setting Up a Three-Dimensional Array

First it is necessary to set up board as a basic array. I made it three elements long,
because I will start with three different game boards. Of course, you can change this in
your own version of the game.

var boardNum = 0;

var board = new Array(3);

The boardNum variable is used to specify which board is currently being played. The
board variable is used to hold the playing-board data.

Setting Up Multiple Boards

Because I know before the game begins what data I want in the board array, I’ll use a
special trick for filling in the data.

//set up boards

 board[0] = new Array(

 new Array(1, 1, 1, 1, 1, 1, 1, 1),

 new Array(1, 1, 1, 1, 1, 1, 1, 1),

 new Array(1, 1, 1, 1, 1, 1, 1, 1)

);

 board[1] = new Array(

 new Array(3, 2, 1, 1, 1, 1, 2, 3),

 new Array(3, 2, 1, 1, 1, 1, 2, 3),

FIGURE 12.10

This is the third
board. It has

different types of
bricks and begins
with some bricks

already gone.

C
h

a
p

te
r 1

2
T
h

e
 G

a
m

e
 C

r e
a
tio

n
 P

ro
c
e
s
s
: T

h
e
 B

ri c
k

 G
a
m

e

307 new Array(3, 2, 1, 1, 1, 1, 2, 3)

);

 board[2] = new Array(

 new Array(0, 0, 2, 1, 1, 2, 0, 0),

 new Array(0, 2, 3, 0, 0, 3, 2, 0),

 new Array(0, 0, 2, 1, 1, 2, 0, 0)

);

Each element of the board array is itself an array of three arrays. The board array ele-
ments are in effect two-dimensional arrays. When you call the new Array() command
with more than one parameter, JavaScript makes an array with the given values as its
initial contents. The numbers represent which brick should be displayed in a given
position. Board 2, row 0, column 0, for example, will have no brick, so I put a 0 at that
position. I specially set up the brick image so that the 0 image would be transparent
and not visible to the user. If there is a 1 in the array, that specifies that the first
animation (a tan brick) should be displayed.

Drawing the Board

Once the board array is in place, it is easy to copy the values to the bricks themselves as
they are being drawn. This line is all that is needed in init():

 brick[row][col].setAnimation(board[boardNum][row][col]);

This line means the following: “Take the value of brick for board number boardNum, row
row, and column col, and set the animation of the brick at row and col to that value.” At
this point, the appearance of the brick will change, but the brick’s behavior will not.

Changing the Bricks’ Behavior

Now that you can make different types of bricks appear on the screen, you will need to
change the behavior of the various bricks.

The Brick07 Program

In this latest incarnation of the program, the different types of bricks have different
behavior, as shown in Figure 12.11.

A switch statement in the mainloop() function affects all the behavior. After deter-
mining that the ball has hit a brick, the program determines what type of brick was
hit by examining the animpos property of the current brick sprite.

//deal with special bricks

 switch(brick[row][col].animpos){

 case 1:

 //brown: normal ball speed, paddle size

 paddle.resize(50, 10);

 ball.setSpeed(6);

 break;

308
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 case 2:

 //blue: smaller paddle

 paddle.resize(30, 10);

 break;

 case 3:

 //red: faster ball

 ball.setSpeed(8);

 break;

 } // end switch

 brick[row][col].setAnimation(0);

 sndTick.play();

The actions associated with each type of brick are not too complicated. It would be an
easy matter to add new brick types with all kinds of strange behavior, such as a brick
that reverses gravity or that causes the paddle to move backward.

Adding Scorekeeping Functionality

The game is getting close to completion. It is time to add the ability to keep score. The
actual scorekeeping functionality is not tricky, but displaying the score in a way that is
informative and not distracting is a little more challenging. I chose to use a layer for
scorekeeping, because it allows a lot of flexibility without a lot of work.

FIGURE 12.11

After hitting a red
brick, the ball gets

faster. After hitting a
silver brick, the

paddle gets smaller.

C
h

a
p

te
r 1

2
T
h

e
 G

a
m

e
 C

r e
a
tio

n
 P

ro
c
e
s
s
: T

h
e
 B

ri c
k

 G
a
m

e

309

The Brick08 Program

This version of the Brick program sports the classic icon-based life indicator (three
balls in the corner means that the player has three lives left) and a scoreboard indicat-
ing the player’s numeric score (see Figure 12.12).

Adding Some Scorekeeping Variables

Like many variables, the variables for scorekeeping are set up outside the functions:

//utility variables

var lyrScore;

var score = 0;

var ballsLeft = 3;

The lyrScore variable is a reference to a layer object that displays the score. The score
variable contains the actual score, and the ballsLeft variable keeps track of how many
lives the player has remaining. The program changes these variables when the appro-
priate events occur. The game increments score whenever a brick is hit and decre-
ments ballsLeft whenever the ball moves past the paddle.

Setting Up the Scoreboard Layer

The program communicates the score to the player by updating the lyrScore layer.
Here’s the code that creates the layer:

//set up scoreboard

 lyrScore = new Gl_layer(10, 10, 100, "Hi there!");

FIGURE 12.12

In this game, the
player has scored

some points and has
three lives left.

310
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 lyrScore.setXlimits(0,500);

 lyrScore.setYlimits(0, 200);

 lyrScore.show();

 updateScore();

The code sets up the layer in the usual way, at coordinates (10, 10), width 100, and with
the initial value “Hi there!”

The actual HTML text of the scoreboard is created in the updateScore() function, which
the program calls whenever the score needs to be updated.

Writing the updateScore() Function

The updateScore() function does the actual work of updating the score layer:

function updateScore(){

 var scoreText = "";

 scoreText += "<html>";

 scoreText += "Score: ";

 scoreText += score;

 scoreText += "
 ";

 for (i = 0; i < ballsLeft; i++){

 scoreText += "";

 scoreText += " ";

 } // end for loop

 scoreText += "</html>";

 lyrScore.write(scoreText);

} // end updateScore

The scoreText variable contains all the HTML for the scoreboard. The function concat-
enates the numeric score into the HTML right after the text "Score: ". To get the
appropriate number of ball icons to appear, I made a for loop that executes as many
times as the ballsLeft variable indicates. For each ball remaining, the function adds
another tag of a ball to the scoreText variable.

At the end of the function, I simply wrote the value of the scoreText variable to lyrScore
using the layer’s write() method.

Reorganizing and Cleaning Up

The Brick program is really coming along, but it is starting to become unwieldy. The
program is heavily concentrated in two functions, and each function is becoming sev-
eral pages of code long.

Managing the game will become difficult if it gets any longer, so it is probably a good
time to reorganize a little bit. Figure 12.13 shows what I did to reorganize the program’s
internal design. I did not add much code or new functionality to this version, but I did
rearrange things and add comments. Taking the time to reorganize the game provides

C
h

a
p

te
r 1

2
T
h

e
 G

a
m

e
 C

r e
a
tio

n
 P

ro
c
e
s
s
: T

h
e
 B

ri c
k

 G
a
m

e

311

a good opportunity to check the game’s progress, because it requires that you discover
and evaluate what your program is doing and how well it is doing it.

The technique described in this section is called encapsulation. The basic idea is to
take a function that has become large and unwieldy and break it into a number of smaller,
self-contained segments. The advantage of this approach is that your code will presum-
ably be in smaller segments that are easier to read, understand, and debug.

Note that I have already explained most of the code, so in the following section I will
comment only on the things that I did to improve the program.

Library Calls

The Brick program now relies on four gameLib libraries:

<script language="Javascript" src="../gamelib196/gamelib/gamelib_core.js">

</script>

<script language="Javascript" src="../gamelib196/gamelib/

gamelib_sprites.js">

</script>

<script language="Javascript" src="../gamelib196/gamelib/gamelib_mouse.js">

</script>

<script language="Javascript" src="../gamelib196/gamelib/gamelib_sound.js">

</script>

FIGURE 12.13

I changed the
background color
and some other

cosmetics, but most
of the new work is
behind the scenes.

TRICK

312
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Variable Creation

I moved around some of the variables and put them in commented groups based on
their functions:

//constants

var ROWS = 3;

var COLS = 8;

var NUMBRICKS = ROWS * COLS;

//basic sprites

var ball;

var bg;

var paddle;

var brick = new Array(ROWS);

//utility variables

var numVisible = NUMBRICKS;

var lyrScore;

var score = 0;

var ballsLeft = 3;

//the gameboard

var board = new Array(3);

var boardNum = 0;

//sound variables

var sndTick;

var sndHonk;

var sndBoing;

The init() Function

One of my goals was to break down the init() and mainloop() functions so that they
contain only essential statements and calls to other functions. Here’s how I broke up init():

function init(){

 //set offsets

 Sp_xoffset = 100;

 Sp_yoffset = 50;

 //initialize mouse

 theMouse = Ms_initmouse();

 setupSprites();

C
h

a
p

te
r 1

2
T
h

e
 G

a
m

e
 C

r e
a
tio

n
 P

ro
c
e
s
s
: T

h
e
 B

ri c
k

 G
a
m

e

313 setupBoards();

 setupBricks();

 updateBricks();

 //set up sounds

 sndTick = new Sd_add_sound("tick.wav");

 sndHonk = new Sd_add_sound("honk.wav");

 sndBoing = new Sd_add_sound("boing.wav");

 //set up scoreboard

 lyrScore = new Gl_layer(10, 200, 100, "Hi there!");

 lyrScore.setXlimits(0,500);

 lyrScore.setYlimits(0, 200);

 lyrScore.show();

 updateScore();

 //start up library

 Gl_hook("mainLoop()");

 Gl_start();

} // end init

I still used init() to set up the simpler elements, such as the scoreboard layer and the
sound variables, but I delegated all the more complex setup tasks to their own functions.

The setupSprites() Function

The setupSprites() function has the sole purpose of setting up most of the sprites
(except the brick sprites, which have their own setup function):

function setupSprites(){

 //set up background

 bg = new Sp_Sprite();

 bg.setImage("clouds.gif", 500, 400, 1, 1);

 bg.setXlimits(0, 500);

 bg.setYlimits(0, 400);

 bg.setFrame(0);

 bg.setAnimation(0);

 bg.moveto(0, 0);

 bg.switchOn();

 bg.setZ(0);

 //set up ball

 ball = new Sp_Sprite();

 ball.setImage("ball.gif", 20, 20, 1, 1);

314
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 ball.setXlimits(0, 500);

 ball.setYlimits(0, 350);

 ball.setFrame(0);

 ball.setAnimation(0);

 ball.collides = true;

 ball.bounces = true;

 ball.moveto(250, 250);

 ball.setXYdegs(0);

 ball.setSpeed(6);

 ball.switchOn();

 ball.setZ(99);

 //set up paddle

 paddle = new Sp_Sprite();

 paddle.setImage("paddle.gif", 50, 10, 1, 1);

 paddle.setXlimits(0, 450);

 paddle.setYlimits(300, 300);

 paddle.setFrame(0);

 paddle.setAnimation(0);

 paddle.follow(theMouse, 0, 0);

 paddle.collides = true;

 paddle.switchOn();

} //end setupSprites

The setupBoards() Function

The setupBoards() function manages all of the board setup, which is the creation of
that three-dimensional array of bricks:

function setupBoards(){

 //set up boards

 board[0] = new Array(

 new Array(1, 1, 1, 1, 1, 1, 1, 1),

 new Array(1, 1, 1, 1, 1, 1, 1, 1),

 new Array(1, 1, 1, 1, 1, 1, 1, 1)

);

 board[1] = new Array(

 new Array(3, 2, 1, 1, 1, 1, 2, 3),

 new Array(3, 2, 1, 1, 1, 1, 2, 3),

 new Array(3, 2, 1, 1, 1, 1, 2, 3)

);

 board[2] = new Array(

C
h

a
p

te
r 1

2
T
h

e
 G

a
m

e
 C

r e
a
tio

n
 P

ro
c
e
s
s
: T

h
e
 B

ri c
k

 G
a
m

e

315 new Array(0, 0, 2, 1, 1, 2, 0, 0),

 new Array(0, 2, 3, 0, 0, 3, 2, 0),

 new Array(0, 0, 2, 1, 1, 2, 0, 0)

);

} // end setupBoards

The setupBricks() Function

The setupBricks() function initializes the brick sprites:

function setupBricks(){

 //set up bricks

 for (row = 0; row < ROWS; row++){

 brick[row] = new Array(COLS);

 } // end 'row' for loop

} // end setupBricks

The updateBricks() Function

The updateBricks() function sets up the bricks according to the current board vari-
able by looking at the board array.

function updateBricks(){

 //set up bricks

 //destroy old bricks

 brick = null;

 brick = new Array(COLS);

 numVisible = NUMBRICKS;

 for (row = 0; row < ROWS; row++){

 brick[row] = null;

 brick[row] = new Array(COLS);

 for (col = 0; col < COLS; col++){

 brick[row][col] = new Sp_Sprite();

 brick[row][col].setImage("brick.gif", 50, 20, 1, 4);

 brick[row][col].setXlimits(0, 500);

 brick[row][col].setYlimits(0, 200);

 brick[row][col].setFrame(0);

 brick[row][col].setAnimation(board[boardNum][row][col]);

 if (brick[row][col].animpos == 0){

 numVisible--;

 brick[row][col].switchOff();

 brick[row][col].moveTo(-100, -100);

 brick[row][col].collides = false;

 } // end if

 brick[row][col].collides = true;

TE
AM
FL
Y

Team-Fly®

316
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 brick[row][col].bounces = false;

 brick[row][col].moveto(col * 55, row * 22);

 brick[row][col].switchOn();

 } // end 'col' for loop

 } // end 'row' for loop

} // end setupBricks

Note that I did some memory management tricks. I attempted to destroy each old
row and sprite before re-creating them by assigning null to the appropriate vari-
ables. The game appears to get more sluggish as it goes on. I suspect that this is
because JavaScript does not have sophisticated techniques for reclaiming memory
when a program finishes with a particular array, and it is making multiple copies of
the brick array. Assigning null to the values seems to help, but it does not com-
pletely alleviate the problem.

The updateScore() Function

You’ve already seen the updateScore() function, but I made some minor modifica-
tions to the HTML that it generates:

function updateScore(){

 var scoreText = "";

 scoreText += "<html>";

 scoreText += "Score: ";

 scoreText += score;

 scoreText += "
 ";

 for (i = 0; i < ballsLeft; i++){

 scoreText += "";

 scoreText += " ";

 } // end for loop

 scoreText += "</html>";

 lyrScore.write(scoreText);

} // end updateScore

The mainLoop() Function

Again, the mainLoop() function was getting a little long and complex, so I broke it
down into a few major tasks and put each of them into its own function:

function mainLoop(){

 ballHitPaddle();

 ballHitBrick();

 ballPastPaddle();

} // end mainLoop

HINT

C
h

a
p

te
r 1

2
T
h

e
 G

a
m

e
 C

r e
a
tio

n
 P

ro
c
e
s
s
: T

h
e
 B

ri c
k

 G
a
m

e

317The ballHitPaddle() Function

The ballHitPaddle() function encapsulates all the action required to check for the
ball hitting the paddle:

function ballHitPaddle(){

 //check ball hits paddle

 if (ball.hasHit(paddle)){

 sndBoing.play();

 var ballLoc = ball.x - paddle.x;

 var ballPerc = ballLoc/paddle.width;

 var newX = (5 * ballPerc);

 newX = Math.floor(newX -1);

 ball.setDir(newX, 0 - ball.ydir);

 } // end if

} // end ballHitPaddle

The ballHitBrick() Function

The code for the ballHitBrick() function checks whether the ball hit a brick. It also
calls a function that checks for a winning condition (that is, that all the bricks are gone):

function ballHitBrick(){

 //check ball hits brick

 for (row = 0; row < ROWS; row++){

 for (col = 0; col < COLS; col++){

 if(ball.hasHit(brick[row][col])){

 updateScore();

 ball.setDir(ball.xdir, 0 - ball.ydir);

 brick[row][col].switchOff();

 brick[row][col].moveTo(-100, -100);

 brick[row][col].collides = false;

 //deal with special bricks

 switch(brick[row][col].animpos){

 case 1:

 //brown: normal ball speed, paddle size

 paddle.resize(50, 10);

 ball.setSpeed(6);

 score += 10;

 break;

 case 2:

 //blue: smaller paddle

 paddle.resize(30, 10);

 score += 20;

 break;

 case 3:

318
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 //red: faster ball

 ball.setSpeed(8);

 score += 30;

 break;

 } // end switch

 brick[row][col].setAnimation(0);

 sndTick.play();

 checkWin();

 } // end 'ball hit brick' if

 } // end col loop

 } // end row loop

} // end ballHitBrick

The ballPastPaddle() Function

The ballPastPaddle() function checks whether the ball has gone past the paddle:

function ballPastPaddle(){

 //check ball past paddle

 if(ball.y > 300){

 sndHonk.play();

 ball.moveTo(200, 250);

 ball.setXYdegs(0);

 ballsLeft--;

 updateScore();

 } // end if

Using a Cookie to Track the High Score

At this point, I was pretty satisfied with the game. However, after returning to the
sketch that I drew at the beginning of the project, I decided the game needed one
more feature to be complete. The only feature not in place was the ability to add a high
score using a cookie (see Figure 12.14). Fortunately, the reorganization of the program
that I did in the last step made modification much simpler.

Initializing the Cookie

The process for using a cookie is just like the one used in Chapter 11. I added a
cookie variable:

//high score stuff

var scoreCookie;

var highScore = 0;

The scoreCookie variable will contain a reference to a cookie object. The highScore
variable will contain (you guessed it) the high score.

C
h

a
p

te
r 1

2
T
h

e
 G

a
m

e
 C

r e
a
tio

n
 P

ro
c
e
s
s
: T

h
e
 B

ri c
k

 G
a
m

e

319

Getting the High Score

I added some code to the init() function that checks the cookie for a previous high-
score value and loads it into the highScore variable.

//get high score

 scoreCookie = new Gl_cookie("brick score");

 if (scoreCookie.value == null){

 highScore = 0;

 } else {

 highScore = parseInt(scoreCookie.value);

 } // end if

 updateScore();

If the cookie has no previous value, the function returns null. So I trapped for that
value, then instead sent the value 0 to highScore.

Improving the Code Used at the End of Game

The code that handled the end of the game was pretty weak, so I spruced it up a little bit:

//check for end of game

 if (ballsLeft <=0){

 alert("Game Over!");

 if (score > highScore){

 highScore = score;

FIGURE 12.14

Now the program
keeps track of the

high score between
visits to the game.

320
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 alert("New High Score!!");

 scoreCookie.setvalue(score);

 updateScore();

 } // end 'high score' if

 score = 0;

 ballsLeft = 3;

 boardNum = 1;

 updateScore();

 updateBricks();

 } // end 'game over' if

Once the game is over, the program informs the user of his or her bad luck, then
checks the current score against the high score. If the player achieved a new high
score, the function stores the new high score in the cookie.

Summary

Although this chapter didn’t introduce much code syntax that was new, you still man-
aged to cover a lot of ground. You looked at the design and creation of a program from
the ground up. You looked at the stepwise refinement technique for building programs.
You learned a bit about refinement techniques and encapsulation. You saw a program
grow from a simple idea to a workable, if not completely polished, game. You have
come a very long way in a short time. You should be extremely proud of yourself.

E X E R C I S E S

1. Add new boards to the Brick game.

2. Create new types of bricks with different behaviors. (Make the paddle go backward, change

gravity, scramble the bricks, give the player a bomb, and so on.)

3. Design a two-player variant of the game (perhaps one in which one player uses a key-

board, the other the mouse).

4. Write a version of one of the other 1980s classics, such as Space Invaders or

Missile Command.

5. Design an adventure game with a hero figure who climbs ladders, jumps, and

shoots villains.

6. Use your imagination and come up with something that I can’t even dream of! Have a

great time!

A

T
he following tables document the syntax

elements featured in this book. Please

note that this is not a complete refer-

ence to JavaScript or gameLib. Instead, I have tried

to focus on the syntax elements that are proven to

work across browsers. There are more complete

references available on the Web that feature plat-

form-dependent or newer commands. You might

also wish to investigate the gameLib documenta-

tion that comes on the CD-ROM for the original

documentation of that library. You will find some

features there that I did not have room to mention

in this introductory book.

Syntax
Reference

A P P E N D I X

322
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

BASIC VARIABLES AND IO

Expression Description Example

var varName Create a variable called var userName;

varName.

var varName = value Create a variable called var userName = "";

varName with a starting
value of value.

alert(msg) Send the string msg to the alert("Hi there");

user in a dialog box.

varName = prompt Send a dialog box with the userName = prompt("What

(question) string question and a text is your name");

box. Then return the value
to varName.

eval(string) Evaluate the string number = eval("3");

expression. If it’s a number,
return the number.

stringVar. Convert stringVar to all bigName = userName.

toUpperCase() uppercase letters. toUpperCase()

Math,random() Generates a random number MyVar=Math,random();

between 0 and 1.

Math.floor(varName) Lops off trailing decimal newVar = Math.floor

values, converting a real (oldVar);

number to its next lowest
integer.

JavaScript and Dynamic HTML Reference

DOCUMENT OBJECT PROPERTIES

Property Description

bgColor The background color assigned to the page’s body

taglastModified The date that the document was last changed

title The title of the document

url The address of the document

domain The domain name of the document’s host

referrer If the user got to this page via a hyperlink, this property
shows the address of the page that referred to the current one.

A
p

p
e
n

d
ix

 A
S

y
n

t a
x

 R
e
f e

r e
n

c
e

323BRANCHING COMMANDS

Expression Description Example

if (condition) Branches program logic if (score > 50) {

{ expression } based on the value of a alert("Winner!");

condition.

} else { Denotes code within an if } else { alert

structure to execute when ("Loser"); } //end if

the condition is false.

switch(varName){ Sets up one variable to check switch (year){

against multiple values.

case value: Denotes a value for a variable case 1964: alert

within a switch structure. ("Correct");

break; Moves execution directly to break;

the end of the current
structure. The break
statement is used most
frequently with switch
statements.

default: Catches any case clauses default: alert

not caught by case ("Incorrect");

statements within a switch
structure.

LOOPING EXPRESSIONS

Expression Description Example

for (init; condition; Sets up a loop that executes for(i=1; i<10; i++){ }

increment) a set number of times. // end for

{ repeated code }

// end for

Init Sets the starting value of a i++

counting variable.

Condition Specifies a condition that i < 10

evaluates to true or false.
The loop continues executing
as long as condition is true.

Increment Changes the value of i++

the counter.

while (condition) Creates a loop that continues While (finished ==

{ code body } as long as condition is true. false){ }

// end while

324
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

FORM COMPONENT FEATURES

Expression Description Example

function funcName Creates a new function. function doIt()

() { } { alert("I did it");

} // end function

Checkbox.value Returns the value associated TheVar = myCheck.value;

with a specific checkbox
object (defined in HTML).

Checkbox.checked Returns true or false if (myCheck.checked)

depending on whether the { theVar = myCheck.

box is currently checked. value; } // end if

Radio[i].value Returns the value associated for(i=0; i <5; i++)

with a specific radio button { theVar = myRadio

object (defined in HTML). [i].value;

Radio buttons are usually } // end for loop

defined in an array.

Radio[i].checked Returns true or false for(i=0; i <5; i++)

depending on whether the { if (radio[i].

radio button is currently checked){ theVar =

checked. Radio buttons are myRadio[i].value; } /

usually defined in an array. / end if } // end for

loop

Selection. Returns the index of alert ("you chose

selectedIndex whichever option is currently option # " + mySelect.

selected. selectedIndex);

Selection[i] Returns the ith option in myOption = mySelect[3];

the array.

Option.value Returns the value of a alert (myOption.value);

specified option (usually
called as part of an array.

window.parent. Refers to the document window.parent.

framename.document object of the frameName frameOutput.document.

frame. write("I'm a frame");

document.open() Opens up a document window.parent.

for writing. frameOutput.document.

open();

document.close() Signals that nothing else will window.parent.

be written to the document frameOutput.document.

and that the browser can close();

render the document.

A
p

p
e
n

d
ix

 A
S

y
n

t a
x

 R
e
f e

r e
n

c
e

325FORM COMPONENT FEATURES (CONTINUED)

Expression Description Example

window.open Opens a new window. myWindow = window.

(url, targetName, The starting address open("", "goofyWin",

properties) url. targetName refers to "height=400,width=

the name of the window if 400,resize");

you are using the window as
an HTML target. You describe
window characteristics
in properties.

windowName.close() Destroys the window called myWindow.close();

windowName.

windowName.focus() Pulls the window called myWindow.focus();

windowName in front of all
other windows.

navigator.appName Returns the browser’s name var theBrowser =

as a string. This statement is navigator.appName;

used for browser detection.

KEY EVENT HANDLERS OF THE ANCHOR OBJECT

Event Description

onClick The user clicks the anchor.

onDblClick The user double-clicks the anchor.

onMouseOver The mouse moves over the anchor.

onMouseOut The mouse moves off of the anchor.

TE
AM
FL
Y

Team-Fly®

326
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

DYNAMIC HTML TECHNIQUES

Expression Description Example

document.layerName. Moves a CSS element to document.sub.

moveTo(x,y) (x, y). This statement applies moveTo(30,100);

to Netscape only.

document.all. Moves a CSS element to a document.all.sub.

layerName.style. specified coordinate. This style.pixelLeft = 30;

pixelLeft document. statement applies to IE only.
all.layerName.style.

pixelTop

document.all.sub. Writes new content to a CSS document.output.

style.pixelTop = 100; element. This statement document.open();

document.layerName. applies to Netscape only.
document.open(),

document.layerName.

document.write(),

document.layerName.

document.close(),

document.output. Writes a new value to the document.all.output.

document.write element. This statement innerHTML = "Hello

("Hello World!"); applies to IE only. World!";

document.output.

document.close();

document.all.

layerName.innerHTML

document.embedName. Plays a sound file previously document.ping.play();

play() loaded into the specified
embed tag. This statement
applies to Netscape only.

document.all. Enables you to assign a new document.all.

bgSoundName.src URL to play a sound file. soundPlayer.src =

"ping.wav";

A
p

p
e
n

d
ix

 A
S

y
n

t a
x

 R
e
f e

r e
n

c
e

327COMMONLY USED CSS OPTIONS

Element Description Example

background-color Sets the color of whatever background-color:blue

element is being described.

background-image Adds a background image to background-image:bg.gif

the element.

border-color Sets a border of the specified border-color:blue

color around the element.

border-style Sets the type of border. Both border-style: double

browsers support double,
groove, inset, outset,
ridge, and solid borders,
or you can specify the none
variable if you don’t want
any border.

border-width Describes the width of border border-width: 3px

in pixels (px), inches (in),
or centimeters (cm).

color Defines the foreground color color:red

of the element.

font-family Sets the font of the element font-family:'Arial',

to the first font in the list 'Times New Roman'

that is found on the
browser’s system.

font-size Determines the size of the font-size: 20pt

font in points.

height Defines the minimum height height: 2in

of the element in inches(in),
centimeters(cm),
or pixels (px).

width Defines the minimum width width:2%

of the element in percent (%),
inches (in), centimeters (cm),
or pixels (px).

left Determines where the left:2.5cm

element is placed horizontally.

top Determines where the top: 4in

element is placed vertically.

position Makes the element position:absolute

positionable. Legal values
are absolute and relative.

328
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

KEY PROPERTIES AND METHODS OF THE DATE OBJECT

Member Description Example

new Date() Creates a Date object based var myDate =

on the current date and time. new Date();

new Date(integer) Creates a new Date object var myDate =

based on the integer passed. new Date(intValue);

getTime() Returns the number of var myInt =

milliseconds since midnight myDate.getTime;

GMT, as an integer.

getDate() Returns the day of the month. alert(myDate.

getDate());

getMonth() Returns the month. alert ("today is the

" + myDate.getDate() +

" of " + myDate.

getMonth());

getYear() Returns the year that alert(myDate.

corresponds with this Date getYear());

object.

getHours() Returns the hour of the day. alert(myDate.

getHours());

GetMinutes() Returns the minutes. alert(myDate.

getMinutes());

getSeconds() Returns the seconds. alert(myDate.

getMinutes());

toString() Returns the entire date as a alert(myDate.

string value. toString());

A
p

p
e
n

d
ix

 A
S

y
n

t a
x

 R
e
f e

r e
n

c
e

329USEFUL METHODS AND PROPERTIES OF THE MATH OBJECT

Method Description Example Result

abs() Calculates the absolute value. Math.abs(-3) 3

ceil() Returns the next higher integer. Math.ceil(3.5) 4

cos() Returns the cosine of an angle cos(Math.PI/2) 0
(in radians).

floor() Returns the lower integer. Math.ceil(3.5) 3

max() Returns the larger of two values. Math.max(3,5) 5

min() Returns the smaller of two values. Math.min(3,5) 3

pow() Returns the first number raised Math.pow(2,3) 8
to power.

random() Returns a random value between Math.random() 0.348557233
0 and 1. (the result varies)

round() Rounds to the nearest integer. Math.round(3.2) 3

sin() Returns the sin of an angle Math.sin 1
(in radians). (Math.PI/2)

sqrt() Returns the square root of Math.sqrt(16) 4
a number.

tan() Returns the tangent of an angle Math.tan 1
(in radians). (Math.PI/4)

330
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

GameLib Reference

KEY PROPERTIES OF THE SPRITE OBJECT IN GAMELIB

Property Description Example

on (read-only) Describes whether the if (mySprite.on){

sprite is visible. //do something }

x, y, height, width
(read-only) Describes the current size if (mySprite.x < 0)

and position of the sprite. { mySprite.x = 0; }

Bounces (read-write) Determines behavior when mySprite.bounces = true;

the sprite reaches defined
limits; if true, the sprite
bounces off the border.

Xdir, ydir (read-only) Determines the speed of the if (mySprite.xdir == 0)

sprite in x and y directions. { alert ("not going

sideways!"); }

Xydegs (read-only) Shows the direction that the if (mySprite.xydegs ==

sprite is moving in degrees. 0){ alert ("going

north!"); } // end if

Speed (read-only) Shows the speed of the sprite. alert (mySprite.speed);

Collides (read-write) Determines whether the mySprite.collides =

sprite registers collisions. true;

GAMELIB KEYBOARD HANDLER COMMANDS

Command Description Example

.pressed (read-only) Returns true if the user is if (myKey.pressed)

currently pressing the key. { alert("A"); }

// end if

Kb_trapkey(keyName) Sets up a new key object myKey = Kb_trapKey

that responds when the ("a");

user presses keyName.

Kb_lastkey Contains a reference to the if (Kb_lastkey ==

last key pressed. myKey){ alert("A"); }

// end if

A
p

p
e
n

d
ix

 A
S

y
n

t a
x

 R
e
f e

r e
n

c
e

331PRINCIPAL METHODS OF THE SPRITE OBJECT IN GAMELIB

Method Description Example

HasHit(object) Determines whether one if (car.hasHit

sprite has collided with (barrier)){ alert

another. ("crash!"); }

MoveTo(x,y) Moves the sprite directly to mySprite.moveTo

the given x,y coordinates. (100, 50);

SetDir(x,y) Determines how many pixels mySprite.setDir(1,3);

in x and y dimensions that //moves sprite 1

the sprite will move at each to left, 3 down

interval.

SetXYdegs(direc) Sets the direction of the mySprite.setXYdegs(45);

sprite in degrees. //moves sprite northeast

SetSpeed(speed) Determines how many pixels mySprite.setSpeed(3);

the sprite will move at
each interval.

SetImage(image, Determines the image of a mySprite.setImage

width, height, sprite; see below for details. ("car.gif", 20, 20, 1,

frames, anims) 1);

SetFrame(number) Sets a particular frame of mySprite.setFrame(2);

the image.

SwitchOn(), Turns the sprite on or off, mySprite.switchOn();

switchOff() controlling its visibility.

SetXlimits(min, max), Determines where the sprite mySprite.setXlimits

setYlimits(min, max) can be placed or moved on (0,300); //sprite's x
the screen. will stay between zero

and 300

COMMONLY USED METHODS OF THE GAMELIB SOUND OBJECT

Method Description Example

Sd_add_sound Generates a new sound var mySound =

(fileName) object based on fileName, Sd_add_sound("bang.

which is a .wav or .midi file. wav");

.play() Plays the sound. mySound.play();

.stop() Stops playing the sound. mySound.stop();

332
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

COMMON METHODS OF THE GAMELIB LAYER OBJECT

Method Description Example

new Gl_layer(x, y, Creates a new layer at var myLayer = new

width, startingHTML) (x, y) that is width pixels Gl_layer (0, 0, 100,

wide and contains the "<H1>Hi there!</H1>");

startingHTML as its body.

.load Loads the specified file into myLayer.load

(filename, type) the layer. If type is set to ("instructions.html",

true, the file will be always true);

be loaded from the server.

.moveTo(x, y) Moves the layer’s top-left myLayer.moveTo

corner to the specified pixels. (100, 200);

.resizeTo(x, y) Resizes the layer to the myLayer.resizeTo

specified size. (50, 50);

.setXlimits(a, b), Sets the boundaries for the myLayer.setXlimits

setYlimits(a, b) layer. This method works as (0, 500); myLayer.
it does in the sprite library. setYlimits(0, 300);

.write(newHTML) Replaces the content of the myLayer.write("<h3>Whoo

layer with newHTML. Hoo!</h3>");

.setBgcolor(color) Sets the layer’s background myLayer.setBgcolor

to a specified color. ("red");

.show() Makes the layer visible. myLayer.show();

PRIMARY MEMBERS OF THE GAMELIB MOUSE OBJECT

Member Description Example

Ms_initmouse(); Creates a reference to the var myMouse =

mouse object. Ms_initmouse();

.x, .y Specifies the current x and y alert(myMouse.x + ",

coordinates of the mouse. " myMouse.y);

.mousedown Returns whether the user if(myMouse.mousedown){

is currently clicking the
mouse button.

alert("ouch!"); Returns the sprite object that if (myMouse.over ==

} // end if .over the mouse is currently over. ball) { score++; }
// end if

A
p

p
e
n

d
ix

 A
S

y
n

t a
x

 R
e
f e

r e
n

c
e

333GAMELIB SPRITE ANIMATION COMMANDS

Command Description Example

.setImage(img, x, y, Describes the number of mySprite.setImage

frames, cells) animation cells in a ("car.gif", 10, 10, 2,

specified frame. 4); //2 frames,

4 animation cells each.

.setAnimation(cell) Sets the animation to a mySprite.

specified cell. setAnimation(2);

.setAnimationLoop Sets up the animation to mySprite.

(min, max) display cells between min setAnimationRange(1,3);

and max. //animate but skip the

0th image.

.setAnimationRepeat Determines how many times mySprite.

(times) to repeat the animation setAnimationRepeat(4);

(–1 specifies an indefinite //do the animation 4

number of repeats). times, then stop

.setAnimationSpeed Determines the speed and mySprite.

(speed, dir) direction in which to run the setAnimationSpeed(20,

animation. speed determines "forward); //change

how many cycles to hold the cell animation once

each cell. dir can be "back" per second.

or "forward".

FOLLOWING AND TARGETING COMMANDS OF THE GAMELIB SPRITE OBJECT

Command Description Example

.follow(ob, x, y) Causes the sprite to follow mySprite.follow

ob (a sprite or the mouse (theMouse, 0, 10);

object) at a distance of
(x, y) pixels.

.target(ob, x, y) Causes the sprite to move mySprite.target

toward ob at the current (theMouse, 0, 10);

speed, aiming toward an
offset of (x, y) pixels from ob.

.stopFollowing(ob) Tells the sprite to stop mySprite.stopFollowing

following ob. (theMouse);

.stopTargeting(ob) Tells the sprite to stop mySprite.stopTargeting

targeting ob. (theMouse)

334
J
a
v
a
S

c
ri

p
t

P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

DRAGGABLE ELEMENTS IN GAMELIB

Object and Member Description Example

sprite.draggable If set to true, enables the user mySprite.draggable =

to drag and drop the sprite. true;

layer.draggable If set to true, enables the user myLayer.draggable =

to drag and drop the layer. true;

MOUSE EVENT HANDLERS OF THE GAMELIB SPRITE AND LAYER OBJECTS

Property Description Example

,onclickdown Binds a function to call when mySprite.onclickdown =

the user presses the mouse "click()";

button while the cursor is
over the element.

,onclickup Binds a function to call when mySprite.onclickup =

the user releases the mouse "released()";

button while the cursor is
over the element.

.onmouseover Binds a function to call when mySprite.onmouseover =

the mouse cursor is over "over()";

an element (regardless of
button status).

.onmouseout Binds a function to call when mySprite.onmouseout =

the mouse cursor leaves "out()";

an element (regardless of
button status).

These are properties of both the sprite and the layer objects. All are read and write properties. They work just
like the event handlers in traditional HTML/DHTML.

GAMELIB COOKIE HANDLING COMMANDS

Command Description Example

new Gl_cookie Creates a new cookie var myCookie = new

(cookieName) object with cookieName as Gl_cookie("test");

its name.

.setValue(value) Sets the cookie’s value myCookie.setValue

to value. ("Hi");

.value Returns the cookie’s value. alert(myCookie.value);

Index

A
abs() method, 24
absolute positioning, 181
accel() function, 233
Adder application, 12–13
addition (+) operator, 15
Add Number to Variable (+=) operator, 51–52
Advanced Mad Lib program, 90, 107–110
alert dialog boxes, 3, 77
alert() function, 148
alert message, 272
alert statement, 4, 13, 19, 47, 57, 60, 70, 76, 136, 229
algorithm random numbers, 28
all container, 184
allVals array, 158
allVals variable, 158
anchors, 146–147
animation, 246

frame, 247–248
number per frame, 247
running forward or backward, 248
setting to frame, 272

animpos property, 307
answer variable, 55
APIs (Application Programming Interfaces), 206
appName property, 176
arrays, 149–150, 159, 253, 277

coding lookup tables, 157–158
combining, 157–158
creation of, 151, 154
images, 152–155
initializing, 154
next element, 152
number of elements, 151
populating, 151
radio buttons, 100–101
sprites, 254–255
square bracket ([]) notation, 101
three-dimensional, 304, 306
time sensors, 228
two-dimensional, 158, 195, 196–197, 284

arrow sprite, 218
arrow variable, 216
assignment (=) operator, 7, 13
<A> tag, 146–147
autostart attribute, 190
a variable, 238, 240, 242

B
background

color, 66, 77
images, 160
music, 243
sprites as images, 245–246

Back Racer program, 52–53
backslash \ character, 87
Bad Adder application, 13–15
ball

bouncing onscreen, 212
checking if hitting brick, 303–304
checking if past paddle, 301
determining new angle of, 297–298
setting initial position, 211
x direction, 298
ydir value, 298

ballHitBrick() function, 317–318
ballHitPaddle() function, 317
ballLoc variable, 298
Balloon Buster game, 250
ballPastPaddle() function, 318
ballsLeft variable, 309, 310
ball variable, 209
barriers, 228
barrier sprites, 218, 219, 229–230, 277
Basketball game

game window, 160–161
global variables, 163–164
graphic design, 161–163
HTML code, 162–163
position imaging, 161–163
resetGame() function, 165
throwTo() function, 166–168
updateScore() function, 165
updateScreen() function, 166

Basketball Lookup Table Demonstration
program, 155–160

adding other players, 157
encoding one player’s percentages,

156–157
Basketball program, 140–141
bgColor property, 68, 71, 105
bgSound HTML tag, 190, 191
bgSound object, 194
blank.html page, 119
board array, 304, 306–307, 315

Untitled-5 4/2/03, 3:25 PM335

TE
AM
FL
Y

Team-Fly®

336
I n

d
e
x

boardNum variable, 306
board variable, 315
body part value, 110
<body> tag, 151, 294
bounces property, 294
bouncing ball off paddle, 296–298
Breakout, 290
break statement, 41
brick array, 298–299, 316

two-dimensional, 301, 302–303
Brick game, 290

adding bricks, 298–301
ballHitBrick() function, 317–318
ballHitPaddle() function, 317
ballPastPaddle() function, 318
changing brick behavior, 307–308
checking whether ball hits brick, 303–304
communicating score to player, 309–310
cookies to track high score, 318–319
design, 290–291
determining ball’s new angle, 297–298
feature list, 292
hooking up main loop, 297
improving end-of-game code, 319–320
mainLoop() function, 316
multiple game boards, 304–307
scorekeeping functionality, 308–311
scorekeeping variables, 309
sketch, 291
updateScore() function, 316

brick object, 304
Brick program

adding more bricks and sound, 301–304
adding paddle, 295–296
background, 293–295
bouncing ball, 293–295
bouncing ball off paddle, 296–298
checking whether all bricks are gone, 301
checking whether ball is past paddle, 301
gameLib libraries, 311
init() function, 312–313
reorganizing and cleaning up, 310–311
setupBoards() function, 314–315
setupBricks() function, 315
setupSprites() function, 313–314
updateBricks() function, 315–316
variable creation, 312

Brick01 program, 293–295
Brick02 program, 295–296
Brick03 program, 297
Brick04 program, 298
Brick05 program, 302
Brick06 program, 304
Brick07 program, 307–308
Brick08 program, 309
bricks

adding, 298–304
changing behavior, 307–308

checking for collisions, 300–301
checking if ball hits, 303–304
checking whether all are gone, 301
placing, 299–300

brick sprite, 299–300
animpos property, 307
initializing, 315

brick variable, 302
browser dependency, 173–176
Browser Detective program, 174–176
Browser Detector script, 181
browsers

checking for, 196
checking programs, 71
detecting, 176
document objects, 71
event handlers, 147
limited image cache, 217
signaling finished writing to, 73–74

buildPage() function, 120, 127
bullet sprite, 250–251
bump map filter, 130
Button program, 268

initialization, 269–271
responding to mouse events, 271–272

buttons, 92
onClick attribute, 76, 78
onClick event, 143
pushing down, 285
responding to presses, 268–272
setting up, 281–283
specialized look, 268

button variable, 102
b variable, 238, 240, 242

C
C++, 69
car.gif file, 215
Car.html page, 225
Car program, 226–227
car sprite, 215, 219, 227, 228
CarStart page, 225
cartoon figures, 131–132
case sensitivity, 6–7
ceil() method, 24, 27
cells, 248
centimeters (cm), 181
checkbox elements, 110
check boxes, 93, 110

behavior, 96–97
HTML code for, 94–96
names, 96
turning options on or off, 97
values, 96

checkbox object, 96
checkBrowser() function, 176, 182, 183, 196
checkCollision() function, 220–221, 230, 233
checked property, 96

Untitled-5 4/2/03, 3:26 PM336

In
d

e
x

337Checking for Collisions program, 218
hooking to timer loop, 220
sprite creation, 219–220

checkPass() function, 92
circle, 144
click() function, 272
clipping graphics, 247
close() method, 73, 121, 127
closePage() function, 127
closing

forms, 76
windows, 127

clouds variable, 246
code

adding to HTML, 3
browser-specific techniques, 185
copying and pasting, 182
documenting, 113
handling multiple selections, 106–107
incrementing or decrementing variable, 183
lookup tables, 157–158
moving positionable elements with, 181–183
readability, 32
reusable, 182
semicolons (;), 32
tracing, 48–50
writing too early, 58

code library, importing, 207–208
collides property, 220
collision detection

gameLib library, 220
routines, 251–252

color, background, 66, 77
Color Chooser program, 102
Color Flasher program, 65–68
Color II program, 105
colspan attribute, 110
cols variable, 195
command buttons, 76, 82
comments, 4, 113

characters (//), 60
nested statements, 37

comparing variables, 32
comparison operators, 31
complex animation graphics, 246–247
composite images, 215
concatenating

complex strings, 19
strings, 10–11

concatenation (+) operator, 15
concatenation (+=) operator, 41
Concatenation program, 10–11
conditions, 28, 31

designing, 57
for loops, 48
making decisions, 30–31
triggering, 57
true or false, 31

converting to uppercase, 18
Cookie Demo program, 275

HTML code, 278
initialization code, 277

cookie object, 279
cookies, 275

creation of, 277
expiration dates, 277
handling commands, 278
initializing, 318
limitations, 279
names, 277
retrieving data from, 279
sending value to, 278–279
storing image file, 281
tracking high score, 318–319

copying and pasting code, 182
copyName() function, 81, 82–83
copyrights, 129
core library, 294
core module, 238, 279
core object, 270
correct variable, 55
cos() method, 24
countBoats() function, 197, 198
Count by Five program, 50–52
counter variable, 152, 154
counting

backward, 52–53
forward, 46–50

cow object, 68
cross-platform sound, 189–190
CSS (Cascading Style Sheets), 161, 176

adding styles to HTML page, 177–179
basics, 177
options, 178
positionable elements, 179–185
position attribute, 183

CSS demonstration program, 179
currentCol variable, 195, 197, 200
current date, 222–223
currentPlayer parameter, 166
currentPlayer variable, 166–168
currentRow variable, 195, 197, 200
current time, 223
c variable, 238, 240

D
data, 5
Date() method, 222, 223
Date object, 221–222

key properties, 223
methods, 223
operation of, 224

dates, 223
debugging, 114, 197
decel() function, 232–233
default clause, 41

Untitled-5 4/2/03, 3:28 PM337

338
I n

d
e
x

description[] array, 152, 154
description element, 110
descrip variable, 113–114
detecting collision, 218–221
DHTML (dynamic HTML), 172
dialog boxes, 4
dice, 130
dice-rolling routing, 133–136
Die Roller program, 25–26
die variable, 40, 41
direct parameter, 213
direction variable, 216, 232
directories attribute, 124
directory toolbar, 124
displaying output in separate windows, 122–127
display layer, 240, 241, 272
display variable, 238
display.write() method, 242
<div></div> tag, 177
Doc.open() method, 121
document.bgColor, 66
document.close() method, 73–74
Document Info program, 69–70
documenting code, 113
Document Methods program, 71–74
document.myForm.txtName.value variable, 83
document object, 68–70, 121, 127, 188–189

browsers, 71
methods, 71–74
properties, 70–71
txtName property, 83
write() method, 72–73

document object model, 144, 214, 237
document.open() method, 127
documents

background color, 66
writing text to, 73

document.write() method, 73–74, 118, 121
Dogfight game, 236–237, 252

checking for direction changes in main loop, 257–258
checking for gunfire, 258
checking for hits, 258–259
documentation, 237
keyboard and sounds setup, 254
keyboard input, 237
layer setup, 255–256
resetGame() function, 256–257
scorekeeping, 237
setting up, 237–238
sprites setup, 254–255
variable creation, 253–254
writeScore() function, 259

domain property, 71
Don’t Click Function program, 76–78
Don’t Click program, 73–78
double quotation marks, 76
downKey sprite, 246
drag and drop, 264–268

draggable property, 266, 267
draggable sprites, 266–267
Dragger program, 264–265

E
EAST variable, 195
elapsed time, 224, 231
elapsedTime object, 224
elements, naming, 76
else clause, 32–34
else statement, 187
embed tag, 190
encapsulation, 311
ending statements, 4
endless loops, 56, 57
Equal to (==) operator, 31
eval() function, 15–16
eval statement, 19, 60, 166
evaluating input, 60–61
event-driven input and output, 79–84
event handlers

browsers, 147
image creation, 146–147

events, 68, 73–78
calling function from, 79
images, 146

F
feature list

basic objectives, 292
setting up playground, 292–295

feature parameter attributes, 124
fire key handler, 252
firstName.length method, 19
firstName variable, 19
floating point notation, 27
floor() method, 24, 27
focus, 124
focus() command, 124
follow() command, 275
Follower program, 272

operation of, 273–274
follow method, 272–273
for loops, 46–50, 101, 107, 136, 228, 299, 301

conditions, 48
counting backward, 52–53
initializing variable, 48
misuse of, 43
nested, 284, 288
normal arrays and, 284
skipping values, 50–52

<form></form> tag pair, 76
form object, 76
forms, 76, 82, 83, 92

check boxes, 96–97
closing, 76
command button, 76
elements, 76

Untitled-5 4/2/03, 3:30 PM338

In
d

e
x

339radio buttons, 97–102
tables, 110

FORTRAN, 51
Fortune program, 42–43
Fortune Teller program, 22
fractal pattern generator, 245
frame animation

incorporating, 247–248
sprites, 214–217

frameOutput frame, 119, 121
frames, 248

building, 119
generating output in, 118
hiding border, 119
loading page into, 121
naming, 119
setting to zero, 211

framesets, 119
FrameTester.html page, 119–121
ftMas file, 119
functions

calling from events, 79
creation of, 78–79
defining, 79, 127
multiple purpose, 285
naming, 79
parameters, 148–149
Stealth Sub game, 196–200

Fuzzy Dice program, 38–41

G
gameLib API, 247
gameLib_core.js module, 207
gameLib_core library, 238, 277
gameLib library, 206, 226, 311

collision detection, 220
importing, 207–208
layers, 237
multibrowser interface, 237
sound, 304
starting, 212, 228, 248
timed behavior, 212

gamelib_mouse.js code module, 266
gamelib_sprites module, 208
games

dragging and dropping, 267
ideas for, 290

getDate() method, 223
getGrid() function, 197
getHours() method, 223
getMinutes() method, 223
getMonth() method, 223
getSeconds() method, 223
getTime() method, 223
getYear() method, 223
gif format, 130, 131
GIMP, 130, 225
Gl_cookie() function, 277, 278

Gl_layer() method, 239
global variables, 163–164, 194–195
Gl_start() function, 220, 294
Gl_unhook() function, 221
GMT (Greenwich Mean Time), 224
Good Adder application, 15–16
graphic clipping, 215
graphics, 127

See also images
cartoon figures, 131–132
compacting files, 130
complex animation, 246–247
copyrights, 129
dice, 130
gif format, 130, 131
jpeg format, 130
professional artists, 129
self-generating, 129
sprites, 206
transparent background, 131

grayscale images, 130
Greater than (>) operator, 31
Greater than or equal to (>=) operator, 31
greeting variable, 6, 7, 11, 83
grid array, 195, 196
grid variable, 195
guess variable, 55, 60, 134

H
hasHit() method, 210, 221
height attribute, 124, 181
Hello, Joe! application, 5
Hello, World! application, 3–4
Hello User! application, 8
hidden attribute, 190
hidden fields, 93
High or Low program, 32–34
highScore variable, 318, 319
hint() function, 287
hint graphic, 284–285
hint layer, hiding and displaying, 287
hintShowing variable, 287
hook() function, 256
hooking to timer Loop, 220
hook() method, 220
href attribute, 147
HTML

adding code to, 3–4
adding CSS styles to page, 177–179
check boxes code, 94–96
cross-platform flexibility, 161
forms, 83
hidden fields, 93
modifying to handle multiple selections, 105–106
objects, 65–68
select object creation, 103–104
teaching and practicing, 118
writing on the fly, 118

Untitled-5 4/2/03, 3:31 PM339

340
I n

d
e
x

HTML code, 82
Advanced Mad Lib program, 107–110
radio buttons, 98–100

HTML Frame Tester program, 118–119

I
if statement, 28–30, 60, 97, 107, 152, 183, 187

else clause, 32–34
indenting lines, 32
power of, 31

if structure, 134
image[1] array, 152
Image Array Demo program

creating and initializing arrays, 154
HTML code, 153–154
updating page, 154–155

image map, 225
image object, 144–145, 149
images, 144

See also graphics
arrays, 152–155
border to zero, 147
changing when mouse moves over, 146
changing with JavaScript, 148
composite, 215
event handlers creation, 146–147
events, 146
graphic clipping, 215
grayscale, 130
little solid color, 220
size onscreen, 144
src property, 144
swapping, 141–145

image swapping, 139
imgDisplay object, 144, 154, 155
imgDisplay picture, 149
imgOver page, 148
 tag, 128, 310
imgToShow variable, 149
importing gameLib library, 207–208
inches (in), 181
Increase (++) operator, 48
indentation and nested statements, 37
indenting lines, 32
infinite loops, 56
init() function, 194, 196, 200, 209, 211–212, 225,

227–228, 238, 240, 247–248, 254, 256, 266–267,
280–281, 294, 296–297, 299, 303–304, 307,
312–313, 319

initialize() function, 151
input, 8

checking, 133–134
evaluating, 60–61
event-driven, 79–84
getting from users, 8–9
image maps, 225
keyboard, 240

Mad Lib program, 86
from users, 60
users, 71–74

input element, 76, 94, 110
input object, 76
input statement, 19
input tag, 82
instruction layer, 255–256
integers, 27
Internet Explorer

Adder application, 13
detecting, 176
document objects, 71
JavaScript support, 3
positionable elements, 184
sound, 191
span object, 188

isIE variable, 176, 196
isNav variable, 176, 196
i variable, 41, 53, 56, 101, 102, 166

J
jacket message, 37
jammed event, 68
Java, 69
JavaScript

changing images, 148
games and graphics, 129
as object-based language, 23

Jigsaw game, 279
choosing new image for, 287–288
hint() function, 287
init() function, 280–281
modules and variable creation, 279–280
newImg() function, 287–288
scramble() function, 286
setUpButtons() function, 281–283
setUpLayer() function, 284–285
setUpPuzzle() function, 283
solve() function, 286
solving puzzle, 286

Jigsaw Puzzle game
changing puzzle image, 263
Hint button, 262
New Pic button, 263
out() function, 285
over() function, 285
scrambling pieces, 262
Solve button, 262

joining variables and literals, 11
Joke Teller program, 53–57
jpeg format, 130
Jscript, 3

K
Kb_lastkey, 242
Kb_trapkey() function, 240, 254

Untitled-5 4/2/03, 3:33 PM340

In
d

e
x

341Keyboard and Layer Demo program, 240
keyboard handler objects, 240
keyboard handlers, 254

creation of, 248
as error detection scheme, 242

keyboard input, 240
adding, 248–249
responding to, 249–250

keyboard module, 238
keystrokes, responding to, 240–242

L
languages, object-oriented, 69
lapFinished() function, 230, 231
lapStatus array, 231
lap variable, 47, 48, 49
lastName.length method, 19
layer.draggable member, 268
layer object, 183, 184, 238

creation of, 239
methods, 239
mouse event handlers, 271
moving to specific location, 183

layers, 237
communicating with user, 240
creation of, 238–240
draggable property, 267
hint graphic, 284–285
screen layout, 240
set up, 255–256
usage, 240

left attribute, 181
left property, 183, 184
Less than (<) operator, 31
Less than or equal to (<=) operator, 31
letter variable, 241, 242
libraries, 226–227
literals, 7, 11
little solid color images, 220
loadCookie() function, 279
load() method, 239
location attribute, 124
location.href property, 121
location toolbar, 124
logic structures, 31
Lookup Table Demonstration program, 163
lookup tables, 139, 155–156

coding, 157–158
getting values from, 159–160
uses for, 158

loops, 46–50
counting by five, 50–52
endless, 56, 57
indeterminate number of times, 54–55
nested, 303
setting up, 60
that never execute, 56

well-behaved, 57
Low Temp program, 28–32
lyrScore layer, 309–310
lyrScore variable, 309

M
Mad Lib program, 64–65

building long string, 86–87
HTML code, 85–86
inputs, 86
planning, 84

mainloop() function, 240–242, 251–252, 300–301,
303, 307, 316

makeGrid() function, 196–197
makeML() function, 85, 86, 110–113
Many Temps program, 34–36
Math object, 23, 27, 68
Math.random() method, 24, 30
max() method, 24
mayScript attribute, 190
meal string, 15
meal variable, 13, 16
memory management, 316
menubar, 124
menubar attribute, 124
messages, sending to user, 4
message variable, 241
methods, 23, 68, 208

document object, 71–74
strings, 16–19

midi files, 243
milestones, 295
Min() method, 24
missiles, 250–252
modifying direction parameter, 217–218
modules, creation of, 279–280
mouse

changing pointer, 272
drag and drop, 264–268
following, 272–275
images changing when moving over, 146
initializing sprite for input, 269–271

mousedown() function, 267
mouse event handlers, 271
mouse events, responding to, 271–272
mouse handler, 296
mouse library, 296
mouse module, 279
mouse object, 270

creation, 265–266
initializing, 296
member functions, 267

mouseout event, 288
MouseOver events, 145–149
MouseOver Image Swap program,

145–149
moveBall() function, 213

Untitled-5 4/2/03, 3:34 PM341

342
I n

d
e
x

moveBy command, 183
moveBy() method, 183
moveCar() function, 217–218, 221
moveSub() function, 194, 198–200
Move Sub program, 179–185

IE-specific code, 184
Netscape-specific code, 183

moveTo() method, 183, 210, 299
moveTo() method, 239
moving

sprites around, 211–214
submarine, 199–200

Moving Sprite program, 212, 214–215
changing speed and direction, 213–214
direction variables, 216
HTML code, 213
modifying direction parameter, 217–218

msg variable, 61
Ms_initmouse() function, 266, 267
multicomputer games, 237
multiline select boxes, 105–107
multiple attribute, 105, 106
multiple game boards, 304–307
multiple-purpose functions, 285
multiplication (*), 13
music, background, 243
Music Chooser program, 94
myCookie variable, 277
myForm form, 76, 83

N
name attribute, 76, 183
Name game, 2
Name Game program, 16–19
Name Grabber program, 79–84

copyName() function, 82–83
writing HTML code, 82

naming convention, 6–7
naming variables, 6–7
navigator object, 176
nested

for loops, 284, 288
loops, 303
statements, 37
structures, 34–38

Netscape Navigator
Adder application, 13
detecting, 176
document objects, 71
JavaScript support, 3
positionable elements, 183
sound, 190–191
span object, 188–189

new Array() command, 307
new Array() syntax, 151
newImg() function, 283, 287–288
new keyword, 144, 209
newline () placeholder, 41

NORTH variable, 195
Not equal to (!=) operator, 31
not (!) operator, 287
Number Guesser program, 46

basic elements, 57
evaluating input, 60–61
generating target, 59–60
input form users, 60
planning, 57
setting up loop, 60
writing pseudocode, 58–59

Number Maker program, 22–23
numbers, 11–13

combining with text, 19
converting to integer, 27
floating point notation, 27
interpreting, 14–15
random, 22–28
rounding, 27
values larger than zero, 27

number variable, 23
numeric variables, 13
numHits variable, 195
numLetter variable, 19
numPetals variable, 134, 136
numVisible variable, 301, 302

O
object-based language, 23
object-based programming, 63, 67, 69
object-oriented language, 69
objects, 23, 65–68

characteristics of, 67
events, 68, 73–78
holding information, 68
importance of, 23
instances of, 209
methods, 68, 208
properties, 68, 208
reusable, 206
sprites, 206
targeting, 273
textlike, 90–93

onClick attribute, 76
onclickdown event handler, 271
onclickdown property, 271
onClick event, 76, 78, 143
onClick event handler, 146
onclickup event, 272, 283
onclickup event handler, 271
onclickup property, 271
onDblClick event handler, 146
online help, 136
onLoad event, 151, 196, 294
onLoad() method, 154
onmousedown event, 272
onmousein property, 271
onMouseOut event handler, 146, 147, 271

Untitled-5 4/2/03, 3:36 PM342

In
d

e
x

343onMouseOut property, 271
onMouseOver event handler, 146, 147, 271
onMouseOver events, 149
opening windows, 127
open() method, 127
option objects, 104
out() function, 272, 283, 285
output

displaying in separate windows,
122–127

event-driven, 79–84
generating in frames, 118

output statement, 19
over() function, 283, 285
over() function, 267

P
paddle

adding, 295–296
bouncing ball off of, 296–298

paddle sprite, 295–296
password boxes, 92, 93
password fields and security, 93
Password program, 90–93
percentages, 156
Perl, 69
person variable, 86
Petals Around the Rose game, 116–118

checking user input, 133–134
designing, 127–129
dice-rolling routing, 133–136
generating dice page, 135–136
help screen, 122
online help, 136
winning position, 134

petals.html page, 128
petalsMas.html page, 128
pictures array, 154
pixelLeft property, 184
pixels (px), 181
pixelTop property, 184
planel.gif image, 248
plane sprite, 247
plane variable, 246
platform issues, 71
playground setup, 292–295
playing sound, 198–199
play() method, 190, 244, 304
playSound() function, 198–199
polymorphism, 127
Porter, Scott, 206
positionable elements, 206

changing text, 185–189
creation of, 180–181
HTML code for text, 186
Internet Explorer, 184
moving with code, 181–183
Netscape Navigator, 183

position attribute, 180, 183
pow() method, 24
pressed event, 68
pressed method, 242
processMusic() function, 96–97
professional artists, 129
programming, object-based,

63, 67, 69
programs

checking in browsers, 71
debugging, 114
dragging and dropping, 267
evaluating input, 60–61
generating target, 59–60
HTML code, 85–86
indenting lines, 32
input form users, 60
interacting with Web page, 65
milestones, 295
planning, 57, 84
pseudocode, 58
saving tasks for later, 296
sequential, 28
setting up loop, 60
testing one thing at a time, 301

prompt dialog box, 9
prompt statement, 9, 19, 73
properties, 208

document object, 70–71
reading, 68

pseudocode, 58, 133
<p> tag, 177
puzzle array, 280, 283, 286
puzzle sprites, 284

R
Racer program, 47–50, 204–205

accel() function, 233
adding or modifying tracks, 228–230
CarStart page, 225
checkCollision() function, 230
decel() function, 232–233
elapsed time, 224
image map for user input, 225
init() function, 227–228
lapFinished() function, 231
resetStatus() function, 231
setUpTrack() function, 228–230
showTime() function, 231–232
turnLeft() function, 323
turnRight() function, 232

race timer, 221
radio buttons, 97–102, 110

arrays, 100–101
HTML code, 98–100
names, 100
variables to simplify code, 101–102

random() method, 24, 68

Untitled-5 4/2/03, 3:38 PM343

344
I n

d
e
x

random numbers, 22–23
algorithm, 28
current temperature, 28–30
generating, 24
larger numbers, 26
raw value, 26
specialized, 24–26
temperature, 32–34

real numbers, 27
reclaiming memory, 316
referrer property, 71
relative positioning, 181
resetGame() function, 165, 256–257
resetStatus() function, 229, 230, 231
resizable attribute, 124
resizeTo() method, 239
resizing windows, 124
responding to

button presses, 268–272
keystrokes, 240–242
mouse events, 271–272

result variable, 26, 102
reusable code, 182
reusable objects, 206
rollBigger variable, 26, 27
rollEm() function, 133–134
rollInt variable, 27
rollRaw variable, 26
roll variable, 40–41, 134
rounding numbers, 27
round() method, 24, 27
rowspan attribute, 110
rows variable, 195

S
saveCookie() function, 278–279
sayOuch() function, 79, 272
scoreboard layer, 255–256
scorekeeping functionality, 308–311
scorekeeping variables, 309
score layer, updating, 310
scoreText variable, 310
score variable, 309
scramble() function, 284, 288
scripts

case sensitivity, 6–7
comments, 4

<script></script> tag, 3–4, 75, 207
scrollbars, 124
scrollbars attribute, 124
scrolling backgrounds, 245
Sd_add_sound() function, 254
Sd_add_sound() method, 243, 244
security and password fields, 93
selectedIndex property, 105, 106
select object, 102, 107, 110, 160

HTML code for, 103–104

obtaining value of currently selected option,
104–105

selectedIndex property, 105
semantics, 30
semicolons (;), 4, 32
sequential, 28
setAnimationLoop() method, 248–249
setAnimation() method, 248
setAnimationRepeat() method, 249
setAnimationSpeed() method, 248–249
setBgcolor() method, 239
setDir() method, 210
setFrame() method, 210, 218, 248
setImage() method, 210, 216, 248–249
setSpeed() method, 210, 221
setTimeOut() function, 212
setupBoards() function, 314–315
setupBricks() function, 315
setUpButtons() function, 281–283
setUpLayer() function, 284–285
setUpPuzzle() function, 288
setupSprites() function, 313–314
setUpTrack() function, 228–230, 230
setvalue() method, 278–279
setXlimits() method, 210, 239
setXYdegs() method, 210, 218
setYlimits() method, 210, 239
setZ() method, 228
showCircle() function, 144
show() function, 148, 149
showHelp() function, 122
Show Help program, 122
show() method, 239–240
showSquare() function, 144–145
showTime() function, 230, 231–232
showTriangle() function, 144
Simple Array Demo, 149–152
Simple Image Swap program, 141, 145

HTML code, 142–143
Simple Plane Demo program, 244–245

beginning code, 245–246
complex animation graphics, 246–247
incorporating frame animation, 247–248
init() function, 247

single quotes, 76
sin() method, 24
size attribute, 106
Size Chooser program, 97
size variable, 101, 102
skipping values, 50–52
sndBang variable, 243
sndMusic variable, 243
sndTick.play() method, 304
software engineering, 291
solve() function, 283, 286
sound, 242, 254

Brick game, 301–304

Untitled-5 4/2/03, 3:40 PM344

In
d

e
x

345cross-platform, 189–190
gameLib library, 304
Internet Explorer, 191
Netscape Navigator, 190–191
playing, 198–199, 244
stopping, 244

Sound Demo program, 242, 244
HTML code, 189–190
startup code, 243

sound effects, 243
sound library, 243
sound object

creation of, 243
methods, 244
midi files, 243
wav files, 243

sound value, 110
SOUTH variable, 195
span object, 180, 187–188, 192, 213
 tag, 177, 179
specialized random numbers, 24–26
Sprite class, 210
sprite.draggable member, 268
sprite.gif image, 216
sprite library, 294
sprite module, 279
sprite object, 206, 212, 247, 270, 275

attaching images, 215
clipping methods, 245
definition of, 208
direction and speed, 213–214
methods, 210
mouse event handlers, 271
number of cycles to hold cell onscreen, 248
properties, 209
target method, 273

Sprite program, 206
exporting text files, 207
starting up sprite, 208–209

sprites, 206
animation methods, 249
arrays, 254–255
as background image, 245–246
as caption to another sprite, 272
creation of, 219–220
detecting collision, 218–221
draggable, 266–267
following, 272–275
frame animation, 214–217
improving management, 244–250
initializing, 227–228, 250–251
initializing for mouse input, 269–271
limits for, 211
looking like button, 268
moving around, 211–214
offsets, 254
positioning, 245

setting image, 210–211
setting initial ball position, 211
several frames, 247
starting up, 208–209
turning on, 211
uses for, 213
z order, 294
z values, 228, 245

SP_Sprite object, 209
Sp_xoffset variable, 246
Sp_yooffset variable, 246
sqrt() method, 24
square, 144–145
src property, 144–145, 190
standard toolbar, 123, 124
start() function, 256
startTime object, 224, 277
startTime variable, 230
statements, ending, 4
status attribute, 124
status bar, 124
Stealth Sub game

debugging, 197
functions, 196–200
global variables, 194–195
HTML code, 192–194
moving submarine, 199–200
playing sound, 198–199
sensor’s value, 197–198
updating scoreboard, 198

Stealth Submarine program, 172
stepwise refinement, 293
stopFollowing() command, 275
stop() method, 244
stopTargeting() command, 275
storing data, 5
story variable, 86
string literal, 7
String object, 68
strings, 7

building long, 86–87
concatenating, 10–11
concatenating complex, 19
counting letters in, 19
methods, 16–19

string value, 14–15
string variables, 16
structures

nested, 34–38
stub, 252
<style> tag, 183
sub element, 183
sub object, 184
swapping images, 141–145
sweater message, 37
switchOff() method, 210
switchOn() method, 210

Untitled-5 4/2/03, 3:41 PM345

TE
AM
FL
Y

Team-Fly®

346
I n

d
e
x

switch statement, 159, 307
switch structure, 38–41, 136
syntax, 30
syntax errors, 61

T
tables, 82, 92, 110

check boxes, 96–97
positioning elements onscreen, 161
radio buttons, 97–102

taglastModified property, 71
tan() method, 24
target() command, 275
targeting objects, 273
target method, 273
target sprite, 250–251
target variable, 60
temperature, 28–29

generating, 30
ranges, 34–36

temp variable, 31–32
text

changing in positionable elements, 185–189
combining numbers with, 19
concatenating strings, 10–11
converting to uppercase, 18
including value of variable inside, 10
interpreting, 14–15
writing to document, 73

text area, 85, 92
<textarea></textarea> tags, 120
text boxes, 79, 82
textlike objects, 90–93
theButton variable, 285
theCode variable, 121
theDoc.close() method, 121
theDoc.sprite() method, 121
theDoc variable, 121
theImage sprite, 266
theOption variable, 101, 102, 105, 107
theSelect variable, 105
theSource variable, 134
three-dimensional arrays, 304, 306
throwIt() function, 159–160
throwTo() function, 163, 166–168
time, 221, 223
timer loop, hooking to, 220
timer object, 222
Timer program, 221
time sensors, 228, 230, 277
time sensor sprites, 229
tipping event, 68
tip variable, 13
title property, 71
toolbar attribute, 124
top attribute, 181
top property, 183
toStrings() method, 223

total variable, 13
toUpperCase() method, 68
tracking high score, 318–319
tracks

adding or modifying, 228–230
creation of, 229

track sensors, 229
trapkey() method, 240
trapping for normal keyboard characters, 242
turnLeft() function, 225, 323
turnRight() function, 232
two-dimensional arrays, 158, 195–197, 284
two-player game, 237
txtDescription text, 150
txtGreeting text box, 82
txtName text box, 82, 83
txtOutput text area, 102
txtPerson variable, 86
txtStory text area, 87
type attribute, 76

U
updateBricks() function, 315–316
upDate() function, 150, 152
upDateScore() function, 165, 167, 198, 310, 316
upDateScreen() function, 165, 166
updating score layer, 310
upKey sprite, 246
uppercase, converting to, 18
url property, 71
user interface elements, 110
userName variable, 9, 10, 11, 73, 83
users

checking input, 133–134
getting input from, 8–9
input, 71–74
returning value to, 10
sending messages to, 4

V
value element, 76
value() function, 278
value property, 83, 93, 102, 279
values

assigning to variable, 7
larger than zero, 27
skipping, 50–52

variables, 5, 149, 226–227
arrays, 151
assigning value to, 7
changing value of, 48
checking values, 57
comparing, 32
content usage, 7
creation of, 6, 253–254, 279–280, 312
declared inside or outside function, 134
decrementing, 152
default value, 18

Untitled-5 4/2/03, 3:43 PM346

In
d

e
x

347getting user input, 8–9
including value inside text, 10
incrementing, 152
initializing, 57, 196
joining with literals, 11
multiword names, 7
naming, 6–7, 55
numeric, 13
returning value to user, 10
simplifying radio button code, 101–102
storing things in, 101

var statement, 6, 13
violet value, 66
Visual Basic, 69

W
wav files, 243
Web applications, dynamic interaction with

screen, 118
Web pages

alert boxes, 3
background color, 77
changing parts on-the-fly, 187
interactivity, 3
programs interacting with, 65
showing existing, 122–124
swapping images, 141–145

well-behaved loops, 57
WEST variable, 195
while loops, 53–57
width attribute, 124, 181
window object, 127
window.open() method, 122, 127

windows
closing, 127
features, 123–124
focus, 124
height, 124
opening, 127
resizing, 124
showing existing page, 122–124
standard toolbar, 123
width, 124

Window Tester program, 124
HTML code, 125–126
JavaScript code, 126–127

winHelp variable, 122
word-wrap feature, 85
wrap attribute, 85
write() method, 72–73, 239–240, 310
writeScore() function, 259
writing

pseudocode, 58–59
text to documents, 73

X
x direction, 298
x() function, 267
XYdegs parameter, 213

Y
ydir value, 298
y() function, 267

Z
z values, 228

Untitled-5 4/2/03, 3:44 PM347

Let’s face it.
C++, JavaScript, and

Java can be a little

intimidating. That’s why

PRIMA TECH has deve-

loped our newest series,
for theabsolute beginner—

a fun, non-intimidating

introduction to the world

of programming. Each book in

this series teaches a specific programming

language using simple game programming

as a teaching aid. If you are new to program-

ming, want to learn, and want to have fun,

then PRIMA TECH’s for the absolute beginner

series is just what you’ve been waiting for!

ASP Programming
for the Absolute Beginner
ISBN 0-7615-3620-5
U.S. $29.99, Can. $44.95, U.K. £21.99

C++® Programming
for the Absolute Beginner
ISBN 0-7615-3523-3
U.S. $29.99, Can. $44.95, U.K. £21.99

Java™ Programming
for the Absolute Beginner
ISBN 0-7615-3522-5
U.S. $29.99, Can. $44.95, U.K. £21.99

JavaScript™ Programming
for the Absolute Beginner
ISBN 0-7615-3410-5
U.S. $29.99, Can. $44.95, U.K. £21.99

Palm™ Programming
for the Absolute Beginner
ISBN 0-7615-3524-1
U.S. $29.99, Can. $44.95, U.K. £21.99

Visual Basic® Programming
for the Absolute Beginner
ISBN 0-7615-3553-5
U.S. $29.99, Can. $44.95, U.K. £21.99

PRIMA TECH
A Division of Prima Publishing
www.prima-tech.com

Call now to order

(800)632-8676ext. 4444

“Game programming is without a doubt the most intellectually challenging field of Computer Science in the world.
However, we would be fooling ourselves if we said that we are ‘serious’ people! Writing (and reading) a game
programming book should be an exciting adventure for both the author and the reader.”

—André LaMothe,
Series Editor

www.prima-tech.com
www.PrimaGameDev.com

This page intentionally left blank

PRIMA TECH
A Division of Prima Publishing
www.prima-tech.com

In a Weekend® Fast & Easy® Linux® For The
Absolute Beginner

Fast & Easy®

Web Development
Administrator’s Guide Professional ProjectsGame Development

Try a PRIMA TECH Series...

To Order Call
800.632.8676, ext. 4444

NEED A COMPUTER BOOK?
WE’VE GOT YOU COVERED!

License Agreement/Notice of Limited Warranty

By opening the sealed disc container in this book, you agree to the following terms
and conditions. If, upon reading the following license agreement and notice of lim-
ited warranty, you cannot agree to the terms and conditions set forth, return the un-
used book with unopened disc to the place where you purchased it for a refund.

License:

The enclosed software is copyrighted by the copyright holder(s) indicated on the soft-
ware disc. You are licensed to copy the software onto a single computer for use by a
single user and to a backup disc. You may not reproduce, make copies, or distribute
copies or rent or lease the software in whole or in part, except with written permission
of the copyright holder(s). You may transfer the enclosed disc only together with this
license, and only if you destroy all other copies of the software and the transferee agrees
to the terms of the license. You may not decompile, reverse assemble, or reverse engineer
the software.

Notice of Limited Warranty:

The enclosed disc is warranted by Prima Publishing to be free of physical defects in mate-
rials and workmanship for a period of sixty (60) days from end user’s purchase of the
book/disc combination. During the sixty-day term of the limited warranty, Prima will
provide a replacement disc upon the return of a defective disc.

Limited Liability:

THE SOLE REMEDY FOR BREACH OF THIS LIMITED WARRANTY SHALL CONSIST ENTIRELY
OF REPLACEMENT OF THE DEFECTIVE DISC. IN NO EVENT SHALL PRIMA OR THE AU-
THORS BE LIABLE FOR ANY OTHER DAMAGES, INCLUDING LOSS OR CORRUPTION OF
DATA, CHANGES IN THE FUNCTIONAL CHARACTERISTICS OF THE HARDWARE OR OPER-
ATING SYSTEM, DELETERIOUS INTERACTION WITH OTHER SOFTWARE, OR ANY OTHER
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES THAT MAY ARISE, EVEN IF PRIMA
AND/OR THE AUTHORS HAVE PREVIOUSLY BEEN NOTIFIED THAT THE POSSIBILITY OF
SUCH DAMAGES EXISTS.

Disclaimer of Warranties:

PRIMA AND THE AUTHORS SPECIFICALLY DISCLAIM ANY AND ALL OTHER WARRANTIES,
EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY, SUIT-
ABILITY TO A PARTICULAR TASK OR PURPOSE, OR FREEDOM FROM ERRORS. SOME STATES
DO NOT ALLOW FOR EXCLUSION OF IMPLIED WARRANTIES OR LIMITATION OF INCIDEN-
TAL OR CONSEQUENTIAL DAMAGES, SO THESE LIMITATIONS MIGHT NOT APPLY TO YOU.

Other:

This Agreement is governed by the laws of the State of California without regard to choice
of law principles. The United Convention of Contracts for the International Sale of Goods
is specifically disclaimed. This Agreement constitutes the entire agreement between you
and Prima Publishing regarding use of the software.

Untitled-5 4/2/03, 3:44 PM352

	sample.pdf
	sterling.com
	Welcome to Sterling Software

