Features 15
bonus chapters

Nearly 300 Ready-to-Run
Example Scripts and More
on (D-ROM!

“I highly recommend Danny Goodmanx

W74 CYi “‘:_- [DLe.

 * =

: The Definitive

+ JavaScript Guide
-~ = Over 175,000
‘.| Copies in Print

vadcript

Praise for Danny Goodman’s JavaScript Bible

“JavaScript Bible is the definitive resource in JavaScript programming. | am never
more than three feet from my copy.”

—Steve Reich, CEO, PageCoders

“This book is a must-have for any Web developer or programmer.”
— Thoma Lile, President, Kanis Technologies, Inc.

“Outstanding book. I would recommend this book to anyone interested in learning to
develop advanced Web sites. Mr. Goodman did an excellent job of organizing this
book and writing it so that even a beginning programmer can understand it.”

—Jason Hensley, Director of Internet Services, NetVoice, Inc.

“Goodman is always great at delivering clear and concise technical books!”
— Dwayne King, Chief Technology Officer, White Horse

“JavaScript Bible is well worth the money spent!”
—Yen CY. Leong, IT Director, Moo Mooltimedia, a member of SmartTransact Group

“A must-have book for any Internet developer.”
— Uri Fremder, Senior Consultant, TopTier Software

“I' love this book! I use it all the time, and it always delivers. It’s the only JavaScript
book I use!”

—Jason Badger, Web Developer

“Whether you are a professional or a beginner, this is a great book to get.”
— Brant Mutch, Web Application Developer, Wells Fargo Card Services, Inc.

“I never thought I'd ever teach programming before reading your book [JavaScript
Bible]. It’s so simple to use —the Programming Fundamentals section brought it all
back! Thank you for such a wonderful book, and for breaking through my program-
ming block!”

—Susan Sann Mahon, Certified Lotus Instructor, TechNet Training

“I continue to get so much benefit from JavaScript Bible. What an amazing book! Danny
Goodman is the greatest!”

— Patrick Moss

“Danny Goodman is very good at leading the reader into the subject. JavaScript Bible
has everything we could possibly need.”

— Philip Gurdon

“An excellent book that builds solidly from whatever level the reader is at. A book that
is both witty and educational.”

— Dave Vane

“I continue to use the book on a daily basis and would be lost without it.”

— Mike Warner, Founder, Oak Place Productions

“JavaScript Bible is by far the best JavaScript resource I've ever seen (and I've seen
quite a few).”

—Robert J. Mirro, Independent Consultant, RIM Consulting

JavaScript Bible,
Gold Edition

JavaScript Bible,
Gold Edition

Danny Goodman
With a foreword by Brendan Eich, creator of JavaScript

>

Hungry Minds~
Best-Selling Books e Digital Downloads ® e-Books ® Answer Networks ® e-Newsletters ® Branded Web Sites ® e-Learning

Indianapolis, IN 4+ Cleveland, OH 4 New York, NY

JavaScript® Bible, Gold Edition

Published by

Hungry Minds, Inc.

909 Third Avenue

New York, NY 10022

www . hungryminds.com

Copyright © 2001 Danny Goodman. All rights
reserved. No part of this book, including interior
design, cover design, and icons, may be reproduced
or transmitted in any form, by any means (electronic,
photocopying, recording, or otherwise) without the
prior written permission of the publisher.

Library of Congress Control Number: 2001090713
ISBN: 0-7645-4718-6

Printed in the United States of America
10987654321

1P/RV/QW/QR/IN

Distributed in the United States by Hungry Minds, Inc.
Distributed by CDG Books Canada Inc. for Canada; by
Transworld Publishers Limited in the United
Kingdom; by IDG Norge Books for Norway; by IDG
Sweden Books for Sweden; by IDG Books Australia
Publishing Corporation Pty. Ltd. for Australia and
New Zealand; by TransQuest Publishers Pte Ltd. for
Singapore, Malaysia, Thailand, Indonesia, and Hong
Kong; by Gotop Information Inc. for Taiwan; by ICG
Muse, Inc. for Japan; by Intersoft for South Africa; by
Eyrolles for France; by International Thomson
Publishing for Germany, Austria, and Switzerland; by
Distribuidora Cuspide for Argentina; by LR
International for Brazil; by Galileo Libros for Chile; by
Ediciones ZETA S.C.R. Ltda. for Peru; by WS Computer
Publishing Corporation, Inc., for the Philippines; by

Contemporanea de Ediciones for Venezuela; by
Express Computer Distributors for the Caribbean and
West Indies; by Micronesia Media Distributor, Inc. for
Micronesia; by Chips Computadoras S.A. de C.V. for
Mexico; by Editorial Norma de Panama S.A. for
Panama; by American Bookshops for Finland.

For general information on Hungry Minds’ products
and services please contact our Customer Care
department; within the U.S. at 800-762-2974, outside
the U.S. at 317-572-3993 or fax 317-572-4002.

For sales inquiries and resellers information,
including discounts, premium and bulk quantity sales
and foreign language translations please contact our
Customer Care department at 800-434-3422, fax
317-572-4002 or write to Hungry Minds, Inc., Attn:
Customer Care department, 10475 Crosspoint
Boulevard, Indianapolis, IN 46256.

For information on licensing foreign or domestic
rights, please contact our Sub-Rights Customer Care
department at 212-884-5000.

For information on using Hungry Minds’ products
and services in the classroom or for ordering
examination copies, please contact our Educational
Sales department at 800-434-2086 or fax 317-572-4005.

For press review copies, author interviews, or other
publicity information, please contact our Public
Relations department at 317-572-3168 or fax
317-572-4168.

For authorization to photocopy items for corporate,
personal, or educational use, please contact
Copyright Clearance Center, 222 Rosewood Drive,
Danvers, MA 01923, or fax 978-750-4470.

CONSEQUENTIAL, OR OTHER DAMAGES.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND AUTHOR HAVE USED THEIR
BEST EFFORTS IN PREPARING THIS BOOK. THE PUBLISHER AND AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS BOOK AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. THERE ARE NO WARRANTIES WHICH
EXTEND BEYOND THE DESCRIPTIONS CONTAINED IN THIS PARAGRAPH. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE
ACCURACY AND COMPLETENESS OF THE INFORMATION PROVIDED HEREIN AND THE OPINIONS
STATED HEREIN ARE NOT GUARANTEED OR WARRANTED TO PRODUCE ANY PARTICULAR RESULTS,
AND THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY
INDIVIDUAL. NEITHER THE PUBLISHER NOR AUTHOR SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR
ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL,

Trademarks: JavaScript is a registered trademark or trademark of Sun Microsystems, Inc. All other
trademarks are property of their respective owners. Hungry Minds, Inc. is not associated with any product

or vendor mentioned in this book.

Hungry Minds- is a trademark of Hungry Minds, Inc.

About the Author

Danny Goodman is the author of numerous critically acclaimed and best-selling
books, including The Complete HyperCard Handbook, Danny Goodman’s AppleScript
Handbook, and Dynamic HTML: The Definitive Reference. He is a renowned authority
and expert teacher of computer scripting languages and is widely known for his
“JavaScript Apostle” articles at Netscape’s ViewSource online developer newsletter.
His writing style and pedagogy continue to earn praise from readers and teachers
around the world. To help keep his finger on the pulse of real-world programming
challenges, Goodman frequently lends his touch as consulting programmer and
designer to leading-edge World Wide Web and intranet sites from his home base in
the San Francisco area.

Credits

Acquisitions Editor
Debra Williams Cauley

Project Editor
Neil Romanosky

Technical Editor
David Wall

Copy Editors
Jerelind Charles
Victoria Lee O’Malley

Proof Editor
Cordelia Heaney

Editorial Manager
Colleen Totz

Project Coordinators
Cindy Phipps
Regina Snyder

Graphics and Production Specialists

Sean Decker

John Greenough
LeAndra Johnson
Stephanie Johnson
Gabriele McCann
Jill Piscitelli
Heather Pope

Ron Terry

Erin Zeltner

Quality Control Technicians
Laura Albert

Joel Draper

Andy Hollandbeck

Susan Moritz

Permissions Editor
Laura Moss

Media Development Specialist
Greg Stephens

Media Development Coordinator
Marisa Pearman

Book Designer
Kurt Krames

Proofreading
TECHBOOKS Production Services

Indexer
Johnna VanHoose Dinse

Cover Illustrator
Kate Shaw

Foreword

As JavaScript’s creator, I would like to say a few words about where JavaScript
has been, where it is going, and how the book you’re holding will help you to
make the most of the language.

JavaScript was born out of a desire to let HTML authors write scripts directly in their
documents. This may seem obvious now, but in the spring of 1995 it was novel and
more than a little at odds with both the conventional wisdom (that HTML should
describe static document structure only) and the Next Big Thing (Java applets, which
were hyped as the one true way to enliven and extend Web pages). Once I got past
these contentions, JavaScript quickly shaped up along the following lines:

+ “Javalite” syntax. Although the “natural language” syntax of HyperTalk was fresh
in my mind after a friend lent me The Complete HyperCard Handbook by some fellow
named Goodman, the Next Big Thing weighed heavier, especially in light of another
goal: scripting Java applets. If the scripting language resembled Java, then those pro-
grammers who made the jump from JavaScript to Java would welcome similarities in
syntax. But insisting on Java’s class and type declarations, or on a semicolon after
each statement when a line ending would do, was out of the question — scripting for
most people is about writing short snippets of code, quickly and without fuss.

4+ Events for HTML elements. Buttons should have onC1ick event handlers.
Documents load and unload from windows, so windows should have onLoad and
onUnload handlers. Users and scripts submit forms: thus the onSubmit handler.
Although not initially as flexible as HyperCard’s messages (whose handlers inspired
the onEvent naming convention), JavaScript events let HTML authors take control
of user interaction from remote servers and respond quickly to user gestures and
browser actions. With the adoption of the W3C DOM Level 2 event handling recom-
mendations, JavaScript in modern browsers has fully flexible control over events.

4 Objects without classes. The Self programming language proved the notion of
prototype-based inheritance. For JavaScript, I wanted a single prototype per object
(for simplicity and efficiency), based by default on the function called using the new
operator (for consonance with Java). To avoid distinguishing constructors from
methods from functions, all functions receive the object naming them as the prop-
erty that was called, in the this parameter. Although prototypes didn’t appear until
Navigator 3, they were prefigured in Version 2 by quoted text being treated as an
object (the String object prototype, to which users could attach methods).

4 Generated HTML. Embedding JavaScript in HTML gave rise to a thought: Let the
script speak HTML, as if the emitted text and markup were loaded in place of the
script itself. The possibilities went beyond automating current or last-modified
dates, to computing whole trees of tables where all the repeated structure was
rolled up in a scripted loop, while the varying contents to be tabulated came in min-
imal fashion from JavaScript objects forming a catalog or mini-database.

X

JavaScript Bible, Gold Edition

At first, I thought JavaScript would most often find use in validating input to HTML
forms. But before long, | was surprised to see how many Web designers devised
compelling applications by way of script-generated HTML and JavaScript objects. It
became clear from user demonstration and feedback that Web designers sought to
build significant applications quickly and effectively with just a few images, HTML,
and JavaScript. Eventually they demanded that the browser support what is now
known as “Dynamic HTML” (one fun link: http://www. javascript-games.org/).

As legions of Web authors embraced the authoring power of JavaScript, they, in turn,
demonstrated the crucial advantages of a scripting environment over old-school
application development. Not only were the HTML and JavaScript languages com-
paratively easy to use, but development did not require the programming expertise
needed to light all pixels and handle all events as in a big, traditional application.

The primacy of JavaScript on the Web today vindicates our early belief in the value
of a scripting language for HTML authors. By keeping the “pixel-lighting” bar low,
HTML with images has made Web designers out of millions of people. By keeping
the “event-handling” bar low, JavaScript has helped many thousands of those
designers become programmers. Perhaps the ultimate example of Web develop-
ment’s convergence with application development is the Mozilla browser, wherein
all of the user-interface and even some custom widgets and modular components
are implemented entirely using JavaScript, Cascading Style Sheets (CSS), custom
XML-based markup languages, and images.

JavaScript is also a general language, useful apart from HTML and XML. It has been
embedded in servers, authoring tools, browser plug-ins, and other kinds of browsers
(for such things as 3D graphical worlds). Its international standard, ECMA-262 (ISO
16262), has advanced to a Third Edition. But compared with languages such as Perl
and even Java, it is still relatively young. Work toward a Fourth Edition of the lan-
guage, supporting optional types, classes, and versioning facilities, progresses
within the ECMA technical committee (see the “JS2” proposal to the ECMA technical
committee documented at http://www.mozilla.org/js/language/js20/).

It is clear to me that JavaScript would not have survived without a creative, loyal,
and patient community of developers; | owe them each a huge debt of thanks.
Those developers who took up the beta releases of Navigator 2 and disseminated
vital workarounds and feature requests by e-mail and net-news are the language’s
godparents. Developer support and feedback continue to make JavaScript the
eclectic, rambunctious success it is.

The book in your hands compiles thousands of those “developer miles” with the
insight of an expert guide and teacher. Danny didn’t know at the time how much inspi-
ration [found in his HyperCard book, but it was on my desk throughout the develop-
ment of JavaScript in 1995. His energy, compassion, and clear prose helped me keep the
goal of “a language for all” in mind. It is enormously gratifying to write the foreword to
the Gold edition of this book, which has earned so many “satisfied reader miles.”

I highly recommend Danny Goodman'’s JavaScript Bible to anyone who wants to
learn JavaScript, and especially to those HTML authors who've so far written only a
few scripts or programs —you’re in for a lifetime of fun on the “scripting road” with
a trusty guide at your side.

— Brendan Eich
The Mozilla Organization (http://www.mozilla.org)

Preface

For nearly 20 years, | have written the books I wished had already been written
to help me learn or use a new technology. Whenever possible, I like to get in at
the very beginning of a new authoring or programming environment, feel the grow-
ing pains, and share with readers the solutions to my struggles. This Gold edition of
the JavaScript Bible represents knowledge and experience accumulated over five
years of daily work in JavaScript and a constant monitoring of newsgroups for ques-
tions, problems, and challenges facing scripters at all levels. My goal is to help you
avoid the same frustration and head scratching I and others have experienced
through multiple generations of scriptable browsers.

While previous editions of this book focused on the then-predominant Netscape
Navigator browser, the swing of the browser market share pendulum currently
favors Microsoft Internet Explorer. At the same time, Netscape has accomplished
the admirable task of reinventing its own browser in light of rapidly advancing
industry standards. As a result of both of these trends, this massively revised and
expanded Gold edition treats both brands of browsers as equals as far as scripters
are concerned. You hear my praise and dismay at various scripting features of both
browser families. But empowering you to design and write good scripts is my pas-
sion, regardless of browser. Therefore, the book contains details about proprietary
and standard implementations to equip you to choose the development path that
best fits your content’s audience. If you detect any bias of mine throughout this
book, it is a desire, where possible, to write scripts that work on as many browsers
as possible.

Organization and Features of This Edition

Because of the greatly expanded range of vocabularies that scripts may use in the
latest browser versions, the biggest change to the structure of the book is in the ref-
erence portion. In this edition, you find a greater distinction between the document
object model and core JavaScript language reference sections. This new division
should help those readers who are primarily interested in only the JavaScript lan-
guage (for use in other applications) find what they need more quickly. Here are
some details about the book’s structure.

Part |

Part I of the book begins with a chapter that shows how JavaScript compares with
Java and discusses its role within the rest of the World Wide Web. The Web browser
and scripting world have undergone significant changes since JavaScript first

Xii

(2}

JavaScript Bible, Gold Edition

arrived on the scene. That’s why Chapter 2 is devoted to addressing challenges fac-
ing scripters who must develop applications for both single- and cross-platform
browser audiences amid rapidly changing standards efforts. Chapter 3 provides the
first foray into JavaScript, where you get to write your first practical script.

Part 1l

All of Part Il is handed over to a tutorial for newcomers to JavaScript. Nine lessons
provide you with a gradual path through browser internals, basic programming
skills, and genuine JavaScript scripting. With only a couple of clearly labeled items,
the lessons cover scripting topics that apply to all scriptable browsers. Exercises fol-
low at the end of each lesson to help reinforce what you just learned and challenge
you to use your new knowledge (you'll find answers to the exercises in Appendix C).
The goal of the tutorial is to equip you with sufficient experience to start scripting
simple pages right away while making it easier for you to understand the in-depth
discussions and examples in the rest of the book. By the end of the final lesson,
you’ll know how to script multiple frame environments and even create the mouse-
rollover image swapping effect that is popular in a lot of Web pages these days.

\ You can find all of the Part Il chapters on the CD-ROM that accompanies this
book.

Part Il

Part III, the largest section of the book, provides in-depth coverage of the document
object models as implemented in browsers from the earliest days to today. In all ref-
erence chapters, a compatibility chart indicates the browser version that supports
each object and object feature. One chapter in particular, Chapter 15, contains ref-
erence material that is shared by most of the remaining chapters of Part IIl. To help
you refer back to Chapter 15 from other chapters, a dark tab along the outside edge
of the page shows you at a glance where the chapter is located. Additional naviga-
tion aids include guide words at the bottoms of most pages to indicate which object
and object feature is covered on the page.

Part IV

Reference information for the core JavaScript language fills Part IV. As with refer-
ence chapters of Part IIl, the JavaScript chapters display browser compatibility
charts for every JavaScript language term. Guide words at the bottoms of pages
help you find a particular term quickly.

Part V

In Part V, I get down to the business of deploying JavaScript. Here are the practical
aspects of JavaScript, such as Chapter 43’s coverage of client-side form data valida-
tion and Chapter 44’s coverage of blending Java applets and plug-ins into pages.

Preface

Debugging scripts is the focus of Chapter 45, with tips on understanding error
messages, building your own debugging tools. Chapter 46 goes into great detail
about security issues for JavaScript-enabled applications. Dynamic HTML in a cross-
browser environment is the subject of Chapter 47, while Chapter 48 introduces you
to Microsoft’s behaviors mechanism for Windows.

The remaining nine chapters consist of full-fledged applications of JavaScript. These
applications are designed not necessarily as plug-and-play modules you can put into
your pages right away. Instead, their goal is to demonstrate many of the concepts
described earlier in the book by way of real-world examples. New for this edition are
some examples based on XML data islands in Internet Explorer for Windows.

Part Vi

Finally, several appendixes at the end of the book provide helpful reference informa-
tion. These resources include a JavaScript and Browser Objects Quick Reference in
Appendix A, a list of JavaScript reserved words in Appendix B, answers to Part II's
tutorial exercises in Appendix C, and Internet resources in Appendix D. In Appendix E,
you also find information on using the CD-ROM that comes with this book.

CD-ROM

The accompanying CD-ROM contains over 300 ready-to-run HTML documents that
serve as examples of most of the document object model and JavaScript vocabu-
lary words in Parts Il and IV. You can run these examples with your JavaScript-
enabled browser, but be sure to use the index.html page in the listings folder as a
gateway to running the listings. This page shows you the browsers that are compat-
ible with each example listing. I could have provided you with humorous little sam-
ple code fragments out of context, but I think that seeing full-fledged HTML
documents (simple though they may be) for employing these concepts is impor-
tant. [intentionally omitted the script listings from the tutorial part (Part I) of this
book to encourage you to type the scripts. I believe you learn a lot, even by aping
listings from the book, as you get used to the rhythms of typing scripts in docu-
ments. You also find listings from Parts I and V on the CD-ROM.

The CD-ROM holds another valuable resource: dozens and dozens of Example sec-
tions for Parts Il and IV, which are compiled in Appendix F. Many of these sections
reveal detailed descriptions of HTML listings that illustrate a particular object
model or language feature. Even more Example sections invite you to try out an
object model or language feature with the help of an interactive workbench, called
The Evaluator — a JavaScript Bible exclusive! You see instant results and quickly
learn how the feature works.

The Quick Reference from Appendix A is in .pdf format on the CD-ROM for you to
print out and assemble as a handy reference, if desired. Adobe Acrobat Reader is
also included on the CD-ROM so that you can read this .pdf file. Finally, the text of
the book is in a .pdf file format on the CD-ROM for easy searching.

Xl

XV

JavaScript Bible, Gold Edition

Prerequisites to Learning JavaScript

Although this book doesn’t demand that you have a great deal of programming
experience behind you, the more Web pages you've created with HTML, the easier
you will find it to understand how JavaScript interacts with the familiar elements
you normally place in your pages. Occasionally, you will need to modify HTML tags
to take advantage of scripting. If you are familiar with those tags already, the
JavaScript enhancements will be simple to digest.

Forms and their elements (text fields, buttons, and selection lists) play an espe-
cially important role in much of typical JavaScript work. You should be familiar with
these elements and their HTML attributes. Fortunately, you won’t need to know
about server scripting or passing information from a form to a server. The focus
here is on client-side scripting, which operates independently of the server after
the JavaScript-enhanced HTML page is fully loaded into the browser.

The basic vocabulary of the current HTML standard should be part of your working
knowledge. When we get to using frames, for instance, the focus is on how to script
these elements, not on designing pages with them. Microsoft, Netscape, and other
online sources provide more detailed explanations of frames.

If you've never programmed before

To someone who learned HTML from a slim guidebook a few years ago, the size of
this book must be daunting. JavaScript may not be the easiest language in the
world to learn, but believe me, it’s a far cry from having to learn a full programming
language, such as Java or C. Unlike developing a full-fledged monolithic application
(such as the productivity programs you buy in the stores), JavaScript lets you
experiment by writing small snippets of program code to accomplish big things.
The JavaScript interpreter built into every scriptable browser does a great deal of
the technical work for you.

Programming, at its most basic level, consists of nothing more than writing a series of
instructions for the computer to follow. We humans follow instructions all the time,
even if we don’t realize it. Traveling to a friend’s house is a sequence of small instruc-
tions: Go three blocks that way; turn left here; turn right there. Amid these instruc-
tions are some decisions that we have to make: If the stoplight is red, then stop; if the
light is green, then go; if the light is yellow, then floor it. Occasionally, we must repeat
some operations several times (kind of like having to go around the block until a
parking space opens up). A computer program not only contains the main sequence
of steps, but it also anticipates what decisions or repetitions may be needed to
accomplish the program’s goal (such as how to handle the various states of a stop-
light or what to do if someone just stole the parking spot you were aiming for).

The initial hurdle of learning to program is becoming comfortable with the way a
programming language wants its words and numbers organized in these instruc-
tions. Such rules are called syntax, the same as in a living language. Because com-
puters generally are dumb electronic hulks, they aren’t very forgiving if you don’t

Preface

communicate with them in the specific language they understand. When speaking
to another human, you can flub a sentence’s syntax and still have a good chance of
the other person’s understanding you fully. Not so with computer programming lan-
guages. If the syntax isn’t perfect (or at least within the language’s range of knowl-
edge that it can correct), the computer has the brazenness to tell you that you have
made a syntax error.

The best thing you can do is to just chalk up the syntax errors you receive as learn-
ing experiences. Even experienced programmers get them. Every syntax error you
get —and every resolution of that error made by rewriting the wayward
statement — adds to your knowledge of the language.

If you've done a little programming before

Programming experience in a procedural language, such as BASIC or Pascal, may
almost be a hindrance rather than a help to learning JavaScript. Although you may
have an appreciation for precision in syntax, the overall concept of how a program
fits into the world is probably radically different from how JavaScript works. Part of
this has to do with the typical tasks a script performs (carrying out a very specific
task in response to user action within a Web page), but a large part also has to do
with the nature of object-oriented programming.

In a typical procedural program, the programmer is responsible for everything that
appears on the screen and everything that happens under the hood. When the pro-
gram first runs, a great deal of code is dedicated to setting up the visual environ-
ment. Perhaps the screen contains several text entry fields or clickable buttons. To
determine which button a user clicks, the program examines the coordinates of the
click and compares those coordinates against a list of all button coordinates on the
screen. Program execution then branches out to perform the instructions reserved
for clicking in that space.

Object-oriented programming is almost the inverse of that process. A button is con-
sidered an object —something tangible. An object has properties, such as its label,
size, alignment, and so on. An object may also contain a script. At the same time, the
system software and browser, working together, can send a message to an object —
depending on what the user does —to trigger the script. For example, if a user clicks
in a text entry field, the system/browser tells the field that somebody has clicked
there (that is, has set the focus to that field), giving the field the task of deciding
what to do about it. That’s where the script comes in. The script is connected to the
field, and it contains the instructions that the field carries out after the user acti-
vates it. Another set of instructions may control what happens when the user types
an entry and tabs or clicks out of the field, thereby changing the content of the field.

Some of the scripts you write may seem to be procedural in construction: They
contain a simple list of instructions that are carried out in order. But when dealing
with data from form elements, these instructions work with the object-based nature
of JavaScript. The form is an object; each radio button or text field is an object as
well. The script then acts on the properties of those objects to get some work done.

XV

XVi

JavaScript Bible, Gold Edition

Making the transition from procedural to object-oriented programming may be the
most difficult challenge for you. When I was first introduced to object-oriented pro-
gramming a number of years ago, | didn’t get it at first. But when the concept
clicked —a long, pensive walk helped — so many light bulbs went on inside my
head that I thought I might glow in the dark. From then on, object orientation
seemed to be the only sensible way to program.

If you've programmed in C before

By borrowing syntax from Java (which, in turn, is derived from C and C++), JavaScript
shares many syntactical characteristics with C. Programmers familiar with C will feel
right at home. Operator symbols, conditional structures, and repeat loops follow very
much in the C tradition. You will be less concerned about data types in JavaScript than
you are in C. In JavaScript, a variable is not restricted to any particular data type.

With so much of JavaScript’s syntax familiar to you, you will be able to concentrate
on document object model concepts, which may be entirely new to you. You will
still need a good grounding in HTML (especially form elements) to put your exper-
tise to work in JavaScript.

If you've programmed in Java before

Despite the similarity in their names, the two languages share only surface aspects:
loop and conditional constructions, C-like “dot” object references, curly braces for
grouping statements, several keywords, and a few other attributes. Variable decla-
rations, however, are quite different, because JavaScript is a loosely typed lan-
guage. A variable can contain an integer value in one statement and a string in the
next (though I'm not saying that this is good style). What Java refers to as methods,
JavaScript calls methods (when associated with a predefined object) or functions
(for scripter-defined actions). JavaScript methods and functions may return values
of any type without having to state the data type ahead of time.

Perhaps the most important aspects of Java to suppress when writing JavaScript are
the object-oriented notions of classes, inheritance, instantiation, and message pass-
ing. These aspects are simply non-issues when scripting. At the same time, however,
JavaScript’s designers knew that you'd have some hard-to-break habits. For example,
although JavaScript does not require a semicolon at the end of each statement line,
if you type one in your JavaScript source code, the JavaScript interpreter won’t balk.

If you've written scripts (or macros) before

Experience with writing scripts in other authoring tools or macros in productivity
programs is helpful for grasping a number of JavaScript’s concepts. Perhaps the
most important concept is the idea of combining a handful of statements to perform
a specific task on some data. For example, you can write a macro in Microsoft Excel
that performs a data transformation on daily figures that come in from a corporate
financial report on another computer. The macro is built into the Macro menu, and
you run it by choosing that menu item whenever a new set of figures arrives.

Preface x\/| |

More sophisticated scripting, such as that found in Toolbook or HyperCard, pre-
pares you for the object orientation of JavaScript. In those environments, screen
objects contain scripts that are executed when a user interacts with those objects.
A great deal of the scripting you will do in JavaScript matches that pattern exactly.
In fact, those environments resemble the scriptable browser environment in
another way: They provide a finite set of predefined objects that have fixed sets of
properties and behaviors. This predictability makes learning the entire environ-
ment and planning an application easier to accomplish.

Formatting and Naming Conventions

The script listings and words in this book are presented in a monospace font to
set them apart from the rest of the text. Because of restrictions in page width, lines
of script listings may, from time to time, break unnaturally. In such cases, the
remainder of the script appears in the following line, flush with the left margin of
the listing, just as they would appear in a text editor with word wrapping turned on.
If these line breaks cause you problems when you type a script listing into a docu-
ment yourself, I encourage you to access the corresponding listing on the CD-ROM
to see how it should look when you type it.

As soon as you reach Part Il of this book, you won't likely go for more than a page
before reading about an object model or language feature that requires a specific min-
imum version of one browser or another. To make it easier to spot in the text when a
particular browser and browser version is required, most browser references consist
of a two-letter abbreviation and a version number. For example, IE5 means Internet
Explorer 5 for any operating system; NN6 means Netscape Navigator 6 for any operat-
ing system. If a feature is introduced with a particular version of browser and is sup-
ported in subsequent versions, a plus symbol (+) follows the number. For example, a
feature marked IE4+ indicates that Internet Explorer 4 is required at a minimum, but
the feature is also available in IE5, IE5.5, and so on. Occasionally, a feature or some
highlighted behavior applies to only one operating system. For example, a feature
marked [E4+/Windows works only on Windows versions of Internet Explorer 4 or
later. As points of reference, the first scriptable browsers were NN2, [E3/Windows,
and IE3.01/Macintosh. Moreover, IE3 for Windows can be equipped with one of two
versions of the JScript .dll file. A reference to the earlier version is cited as IE3/J1,
while the later version is cited as IE3/J2. You will see this notation primarily in the
compatibility charts throughout the reference chapters.

'Note Tip Caution Note, Tip, and Ca}ution icons o_ccasionally appear in
— the book to flag important points.

Ll this book’s companion CD-ROM.

\

\ W,

0nthe’"‘\ On the CD-ROM icons point you to useful examples and code listings found on

Acknowledgments

Before closing, I would like to acknowledge the contributions of many folks
who helped make this edition possible: Eric Krock, Tom Pixley, Vidur
Apparao, and especially the ever-patient, all-knowing Brendan Eich (Mozilla);
Martin Honnen (Netscape DevEdge Champion); Tantek Celik (Microsoft’s Macintosh
development group); Brenda McLaughlin, Walt Bruce, Michael Roney, Debra
Williams Cauley, Neil Romanosky, Eric Newman, Cordelia Heaney, Jerelind Charles,
and Victoria Lee O’Malley (Hungry Minds, Inc.); technical reviewer David Wall;
“cookie man” Bill Dortch (hldaho Design); Red and his friends (Mars, Incorporated);
and fellow scripters and newsgroup kibitzers, who unwittingly advised me as to
where scripters were having trouble with the language. Above all, [want to thank
the many readers of the first three editions of this book (with both titles, Danny
Goodman’s JavaScript Handbook and JavaScript Bible) for investing in this ongoing
effort. wish I had the space here to acknowledge by name so many who have sent
e-mail notes and suggestions: Your input has been most welcome and greatly appre-
ciated. Now it’s time to get down to the fun of learning JavaScript. Enjoy!

Contents at a Glance

Foreword ix
Preface. xi
Acknowledgments L xix
Part I: Getting Started with JavaScript 1
Chapter 1: JavaScript’s Role in the World Wide Web and Beyond 3
Chapter 2: Authoring Challenges Amid the BrowserWars 11
Chapter 3: Your First JavaScript Script 19
Part II: JavaScript Tutorial —Summary 29
Chapter 4: Browser and Document Objects CD-1
Chapter 5: Scripts and HTML Documents CD-23
Chapter 6: Programming Fundamentals, Part1 CD-35
Chapter 7: Programming Fundamentals, PartIl CD-47
Chapter 8: Window and Document Objects CD-61
Chapter 9: Forms and Form Elements CD-75
Chapter 10: Strings, Math,andDates CD-89
Chapter 11: Scripting Frames and Multiple Windows CD-99
Chapter 12: Images and Dynamic HTML CD-109
Part Ill: Document Objects Reference 35
Chapter 13: JavaScript Essentials 37
Chapter 14: Document Object Model Essentials 61
Chapter 15: Generic HTML Element Objects 105
Chapter 16: Window and Frame Objects 217
Chapter 17: Location and History Objects 321
Chapter 18: The Document and Body Objects 339
Chapter 19: Body Text Objects 409
Chapter 20: HTML Directive Objects 473
Chapter 21: Link and Anchor Objects 493
Chapter 22: Image, Area, and Map Objects 505
Chapter 23: The Form and Related Objects 527
Chapter 24: Button Objects 549
Chapter 25: Text-Related Form Objects 569
Chapter 26: Select, Option, and FileUpload Objects 589
Chapter 27: Table and List Objects 613
Chapter 28: The Navigator and Other Environment Objects 665
Chapter 29: Event Objects 711

Chapter 30: Style Sheet and Style Objects 777

Chapter 31: Positioned Objects 855

Chapter 32: Embedded Objects 901
Chapter 33: XML Objects e 919
Part IV: JavaScript Core Language Reference 925
Chapter 34: The String Object 927
Chapter 35: The Math, Number, and Boolean Objects 951
Chapter 36: The Date Object 967
Chapter 37: The Array Object 987
Chapter 38: The Regular Expression and RegExp Objects 1007
Chapter 39: Control Structures and Exception Handling 1033
Chapter 40: JavaScript Operators, 1069
Chapter 41: Functions and Custom Objects 1093
Chapter 42: Global Functions and Statements 1127
Part V: Putting JavaScripttoWork 1147
Chapter 43: Data-Entry Validation 1149
Chapter 44: Scripting Java Applets and Plug-ins 1177
Chapter 45: Debugging Scripts 1217
Chapter 46: Security and Netscape Signed Scripts 1239
Chapter 47: Cross-Browser Dynamic HTML Issues 1259
Chapter 48: Internet Explorer Behaviors 1273
Chapter 49: Application: Tables and Calendars 1285
Chapter 50: Application: ALookup Table 1299
Chapter 51: Application: A “Poor Man’s” Order Form 1311
Chapter 52: Application: Outline-Style Table of Contents 1321
Chapter 53: Application: Calculations and Graphics 1355
Chapter 54: Application: Intelligent “Updated” Flags 1365
Chapter 55: Application: DecisionHelper 1375
Chapter 56: Application: Cross-Browser DHTML Map Puzzle 1399
Chapter 57: Application: Transforming XML Datalslands 1415
Part VI: Appendixeso iiennnnnnnns 1431
Appendix A: JavaScript and Browser Object Quick Reference 1433
Appendix B: JavaScript ReservedWords 1447
Appendix C: Answers to Tutorial Exercises 1449
Appendix D: JavaScript and DOM Internet Resources 1465
Appendix E: What'sonthe CD-ROM 1469
Appendix F: Examples from Parts [llandIV CD-117
Index L 1473
End User License Agreement 1512

CD-ROM Installation Instructions. 1516

Contents

Foreword e iX
Preface. Xi
Acknowledgments Xix

Chapter 1: JavaScript’s Role in the World Wide Web and Beyond . . . 3

CompetitionontheWeb 4
Hypertext Markup Language (HTML) 4
CGIScripting e e 5
Of Helpersand Plug-ins 6
Java Applets e 7
JavaScript: A Languagefor All 7
JavaScript: The Right Tool for the RightJob 9
Chapter 2: Authoring Challenges Amid the Browser Wars 11
Leapfrog e 12
Duckand Cover e 12
Compatibility Issues Today 13
Developing a Scripting Strategy 16
Chapter 3: Your First JavaScript Script 19
The Software Tools, 19
Setting Up Your Authoring Environment 20
What Your First ScriptWillDo 23
Entering Your First Script 24
Examining the Script 25
HaveSomeFun 27
Chapter 4: Browser and Document Objects CD-1
Scripts RuntheShow, CD-1

JavaScriptinAction CD-2

XXIV

JavaScript Bible, Gold Edition

The Document Object Model CD-8
WhenaDocumentLoads CD-11
Object References CD-14
AbouttheDotSyntax, CD-17
What Defines an Object? CD-18
Exercises CD-21
Chapter 5: Scripts and HTML Documents CD-23
Where Scripts GoinDocuments CD-23
JavaScript Statements o oL CD-27
When Script Statements Execute CD-28
Viewing Script Exrrors CD-30
Scripting versus Programming CD-32
Exercises CD-33
Chapter 6: Programming Fundamentals, Part1 CD-35
What LanguageIs This? CD-35
Working with Information o Lo L. CD-35
Variables CD-36
Expressions and Evaluation CD-38
Data Type Conversions CD-40
Operators CD-42
Exercises CD-44
Chapter 7: Programming Fundamentals, Partll CD-47
Decisionsand Loops CD-47
Control Structures L CD-48
AboutRepeatLoops CD-50
Functions CD-51
About CurlyBraces CD-54
Arrays CD-55
Exercises CD-59
Chapter 8: Window and Document Objects CD-61
Document Objects CD-61
The Window Object CD-62
Window Properties and Methods CD-65
The Location Object CD-68
The History Object CD-69
The Document Object CD-69
The Link Object CD-73

Exercises e CD-73

Contents

Chapter 9: Forms and FormElements. CD-75
The FORM Object i CD-75
Form Controlsas Objects CD-77
The Button Object CD-79
The Checkbox Object CD-79
The RadioObject CD-80
The SELECT Object it CD-82
Passing Form Data and Elements to Functions CD-83
Submitting and Prevalidating Forms CD-85
Exercises CD-87

Chapter 10: Strings, Math,andDates CD-89
Core Language Objects, CD-89
String Objects CD-90
The Math Object CD-93
TheDate Object CD-94
Date Calculations CD-96
Exercises e CD-97

Chapter 11: Scripting Frames and Multiple Windows CD-99
Frames: Parents and Children CD-99
References among Family Members CD-101
Frame Scripting Tips CD-103
Controlling Multiple Frames —NavigationBars CD-103
More about Window References CD-106
Exercises CD-107

Chapter 12: Images and DynamicHTML CD-109
Thelmage Object CD-109
More Dynamismin HTML CD-115
Exercises CD-116

Chapter 13: JavaScript Essentials 37
JavaScript Versions 37
Core Language Standard —ECMAScript 38
Embedding Scripts in HTML Documents 38
Browser Version Detection 44
Designing for Compatibility 53
Language Essentials for Experienced Programmers 57

OnwardtoObject Models 60

XXV

XX\/i JavaScript Bible, Gold Edition

Chapter 14: Document Object Model Essentials 61
The Object Model Hierarchy 61
How Document Objects AreBorn 64
Object Properties e 64
Object Methods 65
ObjectEventHandlers 66
Object Model Smorgasbord 68
Basic Object Model 68
Basic Object Model PlusImages 69
Navigator 4-Only Extensions 69
Internet Explorer 4+ Extensions 71
Internet Explorer 5+ Extensions 75
The W3CDOM e e e e 76
Mixing Object Models 92
Simulating [E4+ SyntaxinNN6 99
WheretoGofromHere 102
Chapter 15: Generic HTML Element Objects 105
Generic Objects 106
Chapter 16: Window and Frame Objects 217
Window Terminology 217
Frames 218
Window Object e 225
FRAME Element Object, 299
FRAMESET Element Object 305
IFRAME Element Object 310
popup Object 316
Chapter 17: Location and History Objects 321
Location Object 321
History Object 332
Chapter 18: The Document and Body Objects 339
Document Object e 340
BODY Element Object, 399
Chapter 19: Body Text Objects 409
BLOCKQUOTE and Q Element Objects 410
BR Element Object 411
FONT Element Object 412

H1..H6 Element Objects 414

Contents
HR Element Object 415
LABEL Element Object 418
MARQUEE Element Object 420
Methods e 424
EventHandlers e 424
Range Object e 425
selectionObject e 441
Text and TextNode Objects 445
TextRange Object 448
TextRectangle Object 470
Chapter 20: HTML Directive Objects 473
HTML Element Object, 473
HEAD Element Object, 474
BASE Element Object 475
BASEFONT Element Object 477
ISINDEX Element Object 478
LINK Element Object 479
META Element Object, 484
SCRIPT Element Object 487
TITLE Element Object 490
Chapter 21: Link and Anchor Objects 493
Anchor, Link, and A Element Objects 493
Chapter 22: Image, Area, and Map Objects 505
Image and IMG Element Objects 505
AREA Element Object. 520
MAP Element Object 524
Chapter 23: The Form and Related Objects 527
The Form in the Object Hierarchy 527
FORMObject e e 528
FIELDSET and LEGEND Element Objects 545
LABEL Element Object 547
Chapter 24: Button Objects 549
The BUTTON Element Object, and the Button, Submit,
and Reset Input Objects 549
CheckboxInputObject 555
Radio Input Object 559

Image Input Object 565

XXVII

XXVIIl JavaScript Bible, Gold Edition

Chapter 25: Text-Related Form Objects 569
Text Input Object 570
Password Input Object 582
Hidden Input Object 582
TEXTAREA Element Object 583

Chapter 26: Select, Option, and FileUpload Objects 589
SELECT Element Object 589
OPTION Element Object, 607
OPTGROUP Element Object 609
File Input Element Object 610

Chapter 27: Table and List Objects 613
The Table Object Family Hierarchy 614
TABLE Element Object, 628
TBODY, TFOOT, and THEAD Element Objects 643
CAPTION Element Object 645
COL and COLGROUP Element Objects 646
TR Element Object e 648
TD and TH Element Objects 652
OLElement Object 656
UL Element Object e 659
LIElement Object 660
DL, DT, and DD Element Objects 662
DIR and MENU Element Objects 663

Chapter 28: The Navigator and Other Environment Objects 665
clientInformation Object (IE4+) and navigator Object (All) 666
mimeType Object 684
plugin Object e 688
Looking for MIME Types and Plug-ins 691
screen Object e e 698
userProfile Object 703

Chapter 29: EventObjects AL
Why “Events”™? 712
Event Propagation 713
Referencing the event object 732
event Object Compatibility 734
Dueling Event Models, 735
Event Types o e 738
NN4 event Object 741
[E4+event Object 745

NN6+ event Object e 762

Contents
Chapter 30: Style Sheet and Style Objects 777
Making Sense of the Object Names 778
Imported StyleSheets 779
Reading Style Properties 780
STYLE Element Object 780
styleSheet Object 782
cssRuleandruleObjects 792
currentStyle, runtimeStyle, and style Objects 796
filter Object e 840
Chapter 31: Positioned Objects 855
WhatlIsaLayer?. 855
NN4 Layer Object e 856
Positioned Elements in the ModernDOM 874
Chapter 32: Embedded Objects 901
APPLET Element Object 902
OBJECT Element Object 907
EMBED Element Object 913
The Odd Case of the PARAM Element 917
Chapter 33: XMLObjects 919
Elementsand Nodes, 919
XML Element Object 921
Chapter 34: The StringObject 927
String and Number Data Types 927
String Object 930
String Utility Functions 945
URL String Encoding and Decoding 949
Chapter 35: The Math, Number, and Boolean Objects 951
Numbers in JavaScript 951
Math Object e 957
Number Object e 960

Boolean Object 965

XXIX

XXX JavaScript Bible, Gold Edition

Chapter 36: The Date Object 967
Time Zonesand GMT 967
TheDate Object e 969
Validating Date EntriesinForms 983

Chapter 37: The Array Object 987
StructuredData L 987
Creatingan Empty Array 988
Populatingan Array 989
JavaScript 1.2 Array Creation Enhancements 991
Deleting Array Entries 991
Parallel Arrays e 992
Multidimensional Arrays 995
Array Object Properties 996
Array Object Methods 998

Chapter 38: The Regular Expression and RegExp Objects 1007
Regular Expressions and Patterns 1007
LanguageBasics 1009
Object Relationships 1013
Using Regular Expressions 1017
Regular Expression Object 1023
RegExp Object 1027

Chapter 39: Control Structures and Exception Handling 1033
IfandIf.. .ElseDecisions 1034
Conditional Expressions 1038
Repeat (for) Loops 1039
ThewhileLoop e 1044
Thedo-whileLoop 1045
Looping through Properties (for-in) 1046
The with Statement 1047
Labeled Statements 1048
The switch Statement 1050
ExceptionHandling 1053
Using try-catch-finally constructions 1055
Throwing Exceptions 1059
Error Object e 1063

Chapter 40: JavaScript Operators 1069
Operator Categories i 1069
Comparison Operators 1070
Equality of Disparate Data Types 1072
Connubial Operators, 1073

Assignment Operators 1076

Contents XXX|

Boolean Operators 1078
Bitwise Operators 1082
Object Operators i i ittt e 1083
Miscellaneous Operatorso i 1087
Operator Precedence 1089
Chapter 41: Functions and Custom Objects 1093
Function Object 1093
Function ApplicationNotes 1102
Custom Objects e 1108
Object-Oriented Concepts 1120
Object Object e 1123
Chapter 42: Global Functions and Statements 1127
Functions 1128
Statements e 1137
IE/Windows Objects, 1140
Chapter 43: Data-Entry Validation 1149
Real-Time Versus Batch Validation 1149
Designing Filters 1151
Building a Library of Filter Functions 1152
Combining Validation Functions 1156
Date and Time Validation 1158
Selecting Text Fields forReentry 1160
An “Industrial-Strength” Validation Solution 1161
Plan for Data Validation 1176
Chapter 44: Scripting Java Applets and Plug-ins 1177
LiveConnect Overview, 1177
Why Control Java Applets? 1178
AlittleJava 1179
Scripting AppletsinReal Life 1181
Applet-to-Script Communication, 1190
Scripting Plug-ins 1197
Scripting Java Classes Directly 1214
Chapter 45: Debugging Scripts 1217
Syntax versus Runtime Errors 1217
Error Message Notification 1218

Error MessageDetails 1219

XXXII

JavaScript Bible, Gold Edition

Sniffing Out Problems, 1226
ASimple Trace Utility 1232
Browser Crashes 1235
Preventing Problems 1235
Testing Your Masterpiece 1236
Chapter 46: Security and Netscape Signed Scripts 1239
Battening DowntheHatches 1239
When Worlds Collide, 1240
TheJavaSandbox 1241
Security Policies 1241
The Same OriginPolicy 1242
The Netscape Signed Script Policy 1244
The Digital Certificate 1246
Signing Scripts 1247
Accessing Protected Properties and Methods 1251
Blending Privileges into Scripts L L. 1254
Example 1254
Handling Privilege Manager Exrrors 1255
Signed Script Miscellany 1256
Chapter 47: Cross-Browser Dynamic HTML Issues 1259
What IsDHTML? e e 1259
Striving for Compatibility o oo o 1261
Working Around Incompatibilities 1262
ADHTML APl Example 1269
Chapter 48: Internet Explorer Behaviors 1273
Style Sheets for Scripts 1273
Embedding Behavior Components 1274
Component Structure 1275
Behavior Examples 1277
For More Information 1283
Chapter 49: Application: Tables and Calendars 1285
AbouttheCalendars 1285
StaticTables 1286
Dynamic Tables, 1289
Hybrids e 1293
Dynamic HTML Tables 1293

Further Thoughts 1297

Contents
Chapter 50: Application: A LookupTable 1299
A Serverless Database, 1299
TheDatabase. 1300
The ImplementationPlan 1300
TheCode e 1301
Further Thoughts 1308
Chapter 51: Application: A “Poor Man's” Order Form 1311
Definingthe Task 1311
TheFormDesign., 1312
Form HTML and Scripting 1313
Further Thoughts 1319
Chapter 52: Application: Outline-Style Table of Contents 1321
Design Challenges, 1321
The ImplementationPlan 1322
TheCode 1324
Cascading Style Sheet Version 1336
A Futuristic XML) Outline, 1343
Further Thoughts 1353
Chapter 53: Application: Calculations and Graphics 1355
The Calculation 1355
User Interfaceldeas, 1356
TheCode 1357
Further Thoughts 1363
Chapter 54: Application: Intelligent “Updated” Flags 1365
The Cookie Conundrum 1365
Time’s Noton Your Side 1366
The Application 1367
TheCode e 1369
Further Thoughts 1373
Chapter 55: Application: Decision Helper 1375
The Application 1375
TheDesign e 1376
TheFiles 1377
TheCode 1378

Further Thoughts 1397

XXX

XXXiV JavaScript Bible, Gold Edition

Chapter 56: Application: Cross-Browser DHTML Map Puzzle . .. 1399

The Puzzle Design, 1399
Implementation Details 1401
LessonsLearned 1414
Chapter 57: Application: Transforming XML Data Islands 1415
Application Overview 1416
ImplementationPlan 1418
TheCode e 1418
Dreams of Other Views 1428
What About NN6? e 1429

Appendix A: JavaScript and Browser Object Quick Reference . . . 1433

Appendix B: JavaScript ReservedWords 1447
Appendix C: Answers to Tutorial Exercises 1449
Chapter 4 ANSWErS v v v i i e e e e 1449
Chapter 5ANSWErS i ittt e e 1450
Chapter 6 ANSWEIS o v v v e i e e e e e e e 1451
Chapter 7TANSWEIS v v v v e e e e e e e e e 1452
Chapter SAnswers i 1456
Chapter 9ANSWErS v i i e e e e e e e 1457
Chapter 10 Answers o i it e 1461
Chapter 11 Answers o i i e e 1463
Chapter 12 Answers e 1463
Appendix D: JavaScript and DOM Internet Resources 1465
Support and Updates for thisBook 1465
NEWSZIOUPS . . . o o o o e e e e e e e e 1465
FAQs . . . o e 1466
Online Documentation 1467
WorldWideWeb 1467
Appendix E: What'sonthe CD-ROM 1469
System Requirements 1469

DiscContents e 1469

Contents XXXV

Appendix F: Examples from Parts llland IV CD-117
Chapter 1I5Examples CD-117
Chapter 16 Examples CD-253
Chapter 17Examples, CD-336
Chapter 18 Examples CD-354
Chapter 19 Examples CD-397
Chapter 22Examples, CD-453
Chapter 23Examples CD-471
Chapter 24 Examples CD-479
Chapter 25Examples CD-492
Chapter 26 Examples CD-503
Chapter 27Examples CD-514
Chapter 28 Examples, CD-531
Chapter 29 Examples CD-543
Chapter 30 Examples CD-566
Chapter31Examples CD-572
Chapter 3 Examples CD-600
Chapter 35Examples CD-614
Chapter37Examples CD-616

INdeX. e 1473

End User License Agreement 1512

CD-ROM Installation Instructions 1516

Getting Started
with JavaScript

+ 0+
In This Part

Chapter 1
JavaScript’s Role in
the World Wide Web
and Beyond

Chapter 2
Authoring Challenges
Amid the Browser
Wars

Chapter 3
Your First JavaScript
Script

¢+ 4+ o+

CHAPTER

JavaScript's
Role in the L
World Wide Web -~

How JavaScript

and Beyond ms

technologies

The history of

JavaScript

Many of the technologies that make the World Wide .)
Web possible have far exceeded their original visions. What kinds of jobs

Envisioned at the outset as a medium for publishing static you should and
text and image content across a network, the Web is forever should not entrust to
being probed, pushed, and pulled by content authors. By tak- JavaScript
ing for granted so much of the “dirty work” of establishing the
connection and conveying the bits between server and client + + + +

computers, content developers and programmers dream of
using that connection to generate new user experiences and
operating system-independent applications. A developer com-
munity essentially taking ownership of a technology and
molding it to do new and exciting things is not new. It’s the
enormous popularity of the Web and the accessibility of the
technologies to everyday folks who have intriguing ideas that
has led to an unprecedented explosion in turning the World
Wide Web from a bland publishing medium into a highly inter-
active, operating system-agnostic authoring platform.

The JavaScript language is a Web-enhancing technology.
When employed on the client computer, the language can help
turn a static page of content into an engaging, interactive, and
intelligent experience. Applications can be as subtle as wel-
coming a site’s visitor with the greeting “Good morning!”
when it is morning in the client computer’s time zone — even
though it is dinnertime where the server is located. Or appli-
cations can be much more obvious, such as delivering the
content of a slide show in one-page download while JavaScript
controls the sequence of hiding, showing, and “flying slide”
transitions while navigating through the presentation.

Of course, JavaScript is not the only technology that can
give life to drab Web content. Therefore, it is important to
understand where JavaScript fits within the array of

4

Part | + Getting Started with JavaScript

standards, tools, and other technologies at your disposal. The alternative technolo-
gies described in this chapter are HTML, server programs, plug-ins, and Java
applets. In most cases, JavaScript can work side by side with these other technolo-
gies, even though the hype around some make them sound like one-stop shopping
places for all your interactive needs. That’s rarely the case. Finally, you learn about
the origins of JavaScript and what role it plays in today’s advanced Web browsers.

Competition on the Web

Web page publishers revel in logging as many visits to their sites as possible.
Regardless of the questionable accuracy of Web page hit counts, a site consistently
logging 10,000 dubious hits per week is clearly far more popular than one with 1,000
dubious hits per week. Even if the precise number is unknown, relative popularity is
a valuable measure.

Encouraging people to visit a site frequently is the Holy Grail of Web publishing.
Competition for viewers is enormous. Not only is the Web like a ten million-channel
television, but the Web competes for viewers’ attention with all kinds of computer-
generated information. That includes anything that appears onscreen as interactive
multimedia.

Users of entertainment programs, multimedia encyclopedias, and other colorful,
engaging, and mouse finger-numbing actions are accustomed to high-quality
presentations. Frequently, these programs sport first-rate graphics, animation, live-
action video, and synchronized sound. In contrast, the lowest common denomina-
tor Web page has little in the way of razzle-dazzle. Even with the help of recent
advances in Dynamic HTML and style sheets, the layout of pictures and text is
highly constrained compared with the kinds of desktop publishing documents you
see all the time. Regardless of the quality of its content, a vanilla HTML document is
flat. At best, interaction is limited to whatever navigation the author offers in the
way of hypertext links or forms whose filled-in content magically disappears into
the Web site’s server.

With so many ways to spice up Web sites and pages, you can count on competi-
tors for your site’s visitors to do their darndest to make their sites more engaging
than yours. Unless you are the sole purveyor of information that is in high demand,
you continually must devise ways to keep your visitors coming back and entice new
ones. If you design an intranet, your competition is the drive for improved produc-
tivity by the colleagues who use the internal Web sites for getting their jobs done.

These are all excellent reasons why you should care about using one or more
Web technologies to raise your pages above the noise. Let’s look at the major tech-
nologies you should know about.

Hypertext Markup Language (HTML)

As an outgrowth of SGML (Standard Generalized Markup Language), HTML is gen-
erally viewed as nothing more than a document formatting, or fagging, language.
The tags (inside <> delimiter characters) instruct a viewer program (the browser or,
more generically, the clienf) how to display chunks of text or images.

Chapter 1 4 JavaScript's Role in the World Wide Web and Beyond

Relegating HTML to the category of a tagging language does disservice not only
to the effort that goes into fashioning a first-rate Web page, but also to the way
users interact with the pages. To my way of thinking, any collection of commands
and other syntax that directs the way users interact with digital information is pro-
gramming. With HTML, a Web page author controls the user experience with the
content just as the engineers who program Microsoft Excel craft the way users
interact with spreadsheet content and functions.

Recent enhancements to the published standards for HTML (HTML 4.0 and later)
endeavor to define more narrowly the purpose of HTML to assign context to con-
tent, leaving the appearance to a separate standard for style sheets. In other words,
it’s not HTML'’s role to signify that some text is italic, but rather to signify why it is
italic. (For example, you tag a chunk of text that conveys emphasis regardless of
how the style sheet or browser sets the appearance of that emphasized text.)

The most interactivity that HTML lets authors play with is associated with
fill-in-the-blank forms. Browsers display text boxes, radio buttons, checkboxes, and
select lists in response to HTML tags for those types of form controls. But that’s as
far as HTML goes. Any processing of the choices or information entered into the
form by the user is the job of other technologies, such as programs on the server or
client-side scripts.

CGl Scripting

One way to enhance the interaction between user and content is to have the page
communicate with the Web server that houses the Web pages. Popular Web search
sites, such as Yahoo!, Google, and Lycos, enable users to type search criteria and
click a button or two to specify the way the search engine should treat the query.
E-commerce sites enable you to gather products in a virtual shopping cart and then
click a button to submit an order for processing. When you click the Submit or
Search buttons, your browser sends your entries from a form to the server. On the
server, a program known as a CGI (Common Gateway Interface) script formats the
data you enter and sends this information to a database or other program running
on the server. The CGI script then sends the results to your browser, sometimes in
the form of a new page or as information occupying other fields in the form.

Writing customized CGI scripts typically requires considerable programming
skill. Most CGI scripts are written in languages such as Perl, Java, and C or C++.
Very few servers are equipped to run server scripts written in JavaScript.

Whatever language you use, the job definitely requires the Web page author to
be in control of the server, including whatever back-end programs (such as
databases) are needed to supply results or massage the information coming from
the user. Even with the new, server-based Web site design tools available, CGI
scripting often is not a task that a content-oriented HTML author can do without
handing it off to a more experienced programmer.

As interesting and useful as CGI scripting is, it burdens the server with the job of
processing queries. A busy server may process hundreds of CGI scripts at a time,
while the client computers —the personal computers running the browsers — sit
idle as the browser’s logo icon dances its little animation. This wastes desktop pro-
cessing horsepower, especially if the process running on the server doesn’t need to

6 Part | + Getting Started with JavaScript

access big databases or other external computers. That’s why some people regard
browsing a basic Web page as little more than using a dumb terminal to access
some server content.

Of Helpers and Plug-ins

In the early days of the World Wide Web, a browser needed to present only a few
kinds of data before a user’s eyes. The power to render text (tagged with HTML)
and images (in popular formats such as GIF and JPEG) was built into browsers
intended for desktop operating systems. Not to be limited by those data types,
developers worked hard to extend browsers so that data in other formats could be
rendered on the client computer. It was unlikely, however, that a browser would
ever be built that could download and render, say, any of several sound file formats.

One way to solve the problem was to allow the browser, upon recognizing an
incoming file of a particular type, to launch a separate application on the client
machine to render the content. As long as this helper application was installed on
the client computer (and the association with the helper program set in the
browser’s preferences), the browser would launch the program and send the
incoming file to that program. Thus, you might have one helper application for a
MIDI sound file and another for a WAV sound file.

Beginning with Netscape Navigator 2, software plug-ins for browsers enabled
developers to extend the capabilities of the browser without having to modify the
browser. Unlike a helper application, a plug-in can enable external content to blend
into the document seamlessly.

The most common plug-ins are those that facilitate the playback of audio and
video from the server. Audio may include music tracks that play in the background
while visiting a page or live (streaming) audio, similar to a radio station. Video and
animation can operate in a space on the page when played through a plug-in that
knows how to process such data.

Today’s browsers tend to ship with plug-ins that decode the most common
sound file types. Developers of plug-ins for Internet Explorer for the Windows oper-
ating system commonly implement plug-ins as ActiveX controls —a distinction that
is important to the underpinnings of the operating system, but not to the user.

Plug-ins and helpers are valuable for more than just audio and video playback. A
popular helper application is the Adobe Acrobat Reader, which displays Acrobat
files that are formatted just as if they were being printed. But for interactivity,
developers today frequently rely on Macromedia Corporation’s Flash plug-in.
Created using the Macromedia Flash authoring environment, a Flash document can
have active clickable areas and draggable elements. Some authors even simulate
artistic video games and animated stories in Flash. A browser equipped with the
Flash plug-in displays the content in a rectangular area embedded within the
browser page.

One potential downside for authoring interactive content in Flash or similar
environments is that if the user does not have the plug-in installed, it can take some
time to download the plug-in (if the user even wants to bother). Moreover, once the
plug-in is installed, highly graphic and interactive content can take longer to down-
load to the client (especially on a dial-up connection) than some users are willing to
wait. This is one of those situations in which you must balance your creative
palette with the user’s desire for your interactive content.

Chapter 1 4 JavaScript's Role in the World Wide Web and Beyond

Java Applets

When the interaction between user and Web page exceeds the capabilities of
HTML, experienced programmers may prefer to “roll their own” programs to handle
the special needs not available in existing plug-ins. The Java programming language
fills this need. Developed by Sun Microsystems, this language enables programmers
to write small applications (applets) that download to the browser as separate files.
An applet runs as the user needs it and then is automatically discarded from mem-
ory when the user moves elsewhere in the Web.

Animation, including animated text whose content can change over time, is a
popular application of the Java applet in an HTML page. Because applets can also
communicate with the Internet as they run (it is a very network-centric program-
ming language), they are also used for real-time, data-streaming applications that
display up-to-the-minute news, stock market, and sports data as this information
comes across the wires. Standard HTML content can surround all of this activity as
the Web page designer sees fit.

To play a Java applet, a browser company must license the technology from Sun
and build it into its browser (or link up with a Java engine that is part of the operat-
ing system). Netscape was the first third-party browser supplier to license and pro-
duce a browser capable of running Java applets (Navigator 2 under Windows 95 and
UNIX). Today, both Netscape Navigator and Microsoft Internet Explorer (IE) can
load and run Java applets on almost every operating system platform supported by
the browser.

Despite a flash of popularity in the early Java days, Java is used less and less for
browser applets. It is quite popular, however, on the server, where it is used fre-
quently to create small server application modules called servlets. On the client,
Java applets suffer the same problem as some plug-ins: the delay required to down-
load the file. Also, not every browser is equipped with the desired Java component,
causing potential compatibility conflicts.

JavaScript: A Language for All

The Java language is derived from C and C++, but it is a distinct language. Its
main audience is the experienced programmer. That leaves out many Web page
authors. I was dismayed at this situation when I first read about Java’s specifica-
tions. I would have preferred a language that casual programmers and scripters
who were comfortable with authoring tools such as Apple’s once-formidable
HyperCard and Microsoft’s Visual Basic could adopt quickly. As these accessible
development platforms have shown, nonprofessional authors can dream up many
creative applications, often for very specific tasks that no professional programmer
would have the inclination to work on. Personal needs often drive development in
the classroom, office, den, or garage. But Java was not going to be that kind of inclu-
sive language.

My spirits lifted several months later, in November 1995, when I heard of a script-
ing language project brewing at Netscape. Initially born under the name LiveScript,
this language was developed in parallel with Netscape’s Web server software. The
language was to serve two purposes with the same syntax. One purpose was as a

8

Part | + Getting Started with JavaScript

scripting language that Web server administrators could use to manage the server
and connect its pages to other services, such as back-end databases and search
engines for users looking up information. Extending the “Live” brand name further,
Netscape assigned the name LiveWire to the database connectivity usage of
JavaScript on the server.

On the client side—in HTML documents — authors could employ scripts written
in this new language to enhance Web pages in a number of ways. For example, an
author could use LiveScript to make sure that the information a user enters into a
form is of the proper type. Instead of forcing the server or database to do the data
validation (requiring data exchanges between the client browser and the server),
the user’s computer handles all the calculation work — putting some of that other-
wise wasted horsepower to work. In essence, LiveScript could provide HTML-level
interaction for the user.

As the intensity of industry interest in Java grew, Netscape saw another opportu-
nity for LiveScript: as a way for HTML documents (and their users) to communicate
with Java applets. For example, a user might make some preference selections from
checkboxes and pop-up selection lists located at the top of a Web page. Scrolling
down to the next screenful, the user sees text in the Java applet scrolling banner on
the page that is customized to the settings made above. In this case, the LiveScript
script sends the text that is to appear in the scrolling banner to the applet (and per-
haps a new color to use for the banner’s background and text). While this is hap-
pening, the server doesn’t have to worry a bit about it, and the user hasn’t had to
wait for communication between the browser and the server. As great an idea as
this was initially, this connectivity feature didn’t make it into Navigator 2 when
JavaScript first became available.

LiveScript becomes JavaScript

In early December 1995, just prior to the formal release of Navigator 2, Netscape
and Sun jointly announced that the scripting language thereafter would be known
as JavaScript. Though Netscape had several good marketing reasons for adopting
this name, the changeover may have contributed more confusion to both the Java
and HTML scripting worlds than anyone expected.

Before the announcement, the language was already related to Java in some
ways. Many of the basic syntax elements of the scripting language were reminiscent
of the C and C++ style of Java. For client-side scripting, the language was intended
for very different purposes than Java— essentially to function as a programming
language integrated into HTML documents rather than as a language for writing
applets that occupy a fixed rectangular area on the page (and that are oblivious to
anything else on the page). Instead of Java’s full-blown programming language
vocabulary (and conceptually more difficult to learn object-oriented approach),
JavaScript had a small vocabulary and a more easily digestible programming
model.

The true difficulty, it turned out, was making the distinction between Java and
JavaScript clear to the world. Many computer journalists made major blunders
when they said or implied that JavaScript provided a simpler way of building Java
applets. To this day, many programmers believe JavaScript is synonymous with the
Java language: They post Java queries to JavaScript-specific Internet newsgroups
and mailing lists.

Chapter 1 4 JavaScript's Role in the World Wide Web and Beyond

The fact remains today that Java and JavaScript are more different than they are
similar. The two languages employ entirely different interpreter engines to execute
their lines of code. Whereas JavaScript support shipped in every platform-specific
version of Navigator 2 in February 1996, Java was not available for Windows 3.1
users until late in the life of Navigator 3. (Many squirrelly technical issues make it
difficult for this modern language to work in an “ancient” MS-DOS operating system.)

The Microsoft world

Although the JavaScript language originated at Netscape, Microsoft acknowl-
edged the potential power and popularity of the language by implementing it
(under the JScript name) in Internet Explorer 3. Even if Microsoft would rather that
the world use the VBScript (Visual Basic Script) language that it provides in the
Windows versions of IE, the fact that JavaScript is available on more browsers and
operating systems makes it the client-side scripter’s choice for anyone who must
design for a broad range of users.

In keeping with the competitive nature of the Web browser market, Netscape and
Microsoft continue to attract developers to their camps with different philosophies.
As this book is written, Netscape is waving the banner of support for published
Web standards; Microsoft, on the other hand, provides only partial standards
support but many proprietary extensions that are useful, especially when the
clients are running Win32 operating systems exclusively. If you develop pages for
an audience that uses both browser brands and multiple operating systems, this
creates challenges. [address these issues in the next chapter and in several techni-
cal sections in Parts IIl and IV.

JavaScript: The Right Tool for the Right Job

Knowing how to match an authoring tool to a solution-building task is an impor-
tant part of being a well-rounded Web page author. A Web page designer who
ignores JavaScript is akin to a plumber who bruises his knuckles by using pliers
instead of the wrench at the bottom of the toolbox.

By the same token, JavaScript won't fulfill every dream. The more you under-
stand about JavaScript’s intentions and limitations, the more likely you will be to
turn to it immediately when it is the proper tool. In particular, look to JavaScript for
the following kinds of solutions:

4+ Getting your Web page to respond or react directly to user interaction with
form elements (input fields, text areas, buttons, radio buttons, checkboxes,
selection lists) and hypertext links —a class of application I call the
serverless CGI

4+ Distributing small collections of database-like information and providing a
friendly interface to that data

4 Controlling multiple-frame navigation, plug-ins, or Java applets based on user
choices in the HTML document

4+ Preprocessing data on the client before submission to a server

4+ Changing content and styles in modern browsers dynamically and instantly in
response to user interaction

10

Part | + Getting Started with JavaScript

At the same time, understanding what JavaScript is not capable of doing is vital.
Scripters waste many hours looking for ways of carrying out tasks for which
JavaScript was not designed. Most of the limitations are designed to protect visitors
from invasions of privacy or unauthorized access to their desktop computers.
Therefore, unless a visitor uses a modern browser and explicitly gives you
permission to access protected parts of his or her computer, JavaScript cannot
surreptitiously perform any of the following actions:

4+ Setting or retrieving the browser’s preferences settings, main window
appearance features, action buttons, and printing

4 Launching an application on the client computer

4+ Reading or writing files or directories on the client or server computer
4 Capturing live data streams from the server for retransmission

4 Sending secret e-mails from Web site visitors to you

Web site authors are constantly seeking tools that will make their sites engaging
(if not “cool”) with the least amount of effort. This is particularly true when the task
is in the hands of people more comfortable with writing, graphic design, and page
layout than with hard-core programming. Not every Webmaster has legions of expe-
rienced programmers on hand to whip up some special, custom enhancement for
the site. Nor does every Web author have control over the Web server that physi-
cally houses the collection of HTML and graphics files. JavaScript brings program-
ming power within reach of anyone familiar with HTML, even when the server is a
black box at the other end of a telephone line.

+ o+ 0+

Authoring
Challenges
Amid the
Browser Wars

If you are starting to learn JavaScript at this point in the
brief history of scriptable browsers, you have both a dis-
tinct advantage and disadvantage. The advantage is that you
have the wonderful capabilities of the latest browser offerings
from Netscape and Microsoft at your bidding. The disadvan-
tage is that you have not experienced the painful history of
authoring for older browser versions that were buggy and at
times incompatible with one another due to a lack of stan-
dards. You have yet to learn the anguish of carefully devising
a scripted application for the browser version you use only to
have site visitors sending you voluminous e-mail messages
about how the page triggers all kinds of script errors when
run on a different browser brand, generation, or operating
system platform.

Welcome to the real world of scripting Web pages in
JavaScript. Several dynamics are at work to help make an
author’s life difficult if the audience for the application uses
more than a single type of browser. This chapter introduces
you to these challenges before you type your first word of
JavaScript code. My fear is that the subjects I raise may dis-
suade you from progressing further into JavaScript and its
powers. But as a developer myself —and as someone who has
been using JavaScript since the earliest days of its public pre-
release availability —I dare not sugarcoat the issues facing
scripters today. Instead, | want to make sure you have an
appreciation of what lies ahead to assist you in learning the
language. I believe if you understand the big picture of the
browser-scripting world as it stands at the start of the year
2001, you will find it easier to target JavaScript usage in your
Web application development.

CHAPITER

+ 0+ o+
In This Chapter

How leapfrogging
browser develop-
ments hurt Web
developers

Separating the core
JavaScript language
from document
obijects

The importance of
developing a cross-

browser strategy

¢+ 4+ o+

12

Part | + Getting Started with JavaScript

Leapfrog

Browser compatibility has been an issue for authors since the earliest days of
rushing to the Web —long before JavaScript. Despite the fact that browser develop-
ers and other interested parties voiced their opinions during formative stages of
standards development, HTML authors could not produce a document that
appeared the same pixel by pixel on all client machines. It may have been one thing
to establish a set of standard tags for defining heading levels and line breaks, but it
was rare for the actual rendering of content inside those tags to look identical on
different brands of browsers.

Then, as the competitive world heated up—and Web browser development
transformed itself from a volunteer undertaking into profit-seeking businesses —
creative people defined new features and new tags that helped authors develop
more flexible and interesting looking pages. As happens a lot in any computer-
related industry, the pace of commercial development easily outpaced the studied
processing of standards. A browser maker would build a new HTML feature into a
browser and only then propose that feature to the relevant standards body. Web
authors were using these features (sometimes for prerelease browser versions)
before the proposals were published for review.

When the deployment of content depends almost entirely on an interpretive
engine on the client computer receiving the data—the HTML engine in a browser,
for example —authors face an immediate problem. Unlike a standalone computer
program that can extend and even invent functionality across a wide range and
have it run on everyone’s computer (at least for a given operating system), Web
content providers must rely on the functionality built into the browser. This led to
questions such as, “If not all browsers coming to my site support a particular HTML
feature, then should I apply newfangled HTML features for visitors only at the
bleeding edge?” and “If I do deploy the new features, what do I do for those with
older browsers?”

Authors who developed pages in the earliest days of the Web wrestled with
these questions for many HTML features that we today take for granted. Tables and
frames come to mind. Eventually, the standards caught up with the proposed HTML
extensions — but not without a lot of author anguish along the way:.

The same game continues today. But the field of players has shrunk to two pri-
mary players: Netscape and Microsoft. The independent Opera browser runs a
distant third in the browser race. For all of these companies, the stakes are higher
than ever before — market share, investor return on investment, and so on. Pick a
business buzzword, and you'll find a reason behind the competition. What had
begun years ago as a friendly game of leapfrog (long before Microsoft even
acknowledged the Web) has become an out-and-out war.

Duck and Cover

Sometimes it is difficult to tell from week to week where the battles are being
fought. Marketing messages from the combatants turn on a dime. You can'’t tell if
the message is proactive to stress a genuinely new corporate strategy or reactive to
match the opponent’s latest salvo. The combatants keep touting to each other:
“Anything you can do, we can do better!” Or, in a more recent salvo: “We support
Web standards!” and “We integrate seamlessly with the operating system!”

Chapter 2 4 Authoring Challenges Amid the Browser Wars 13

If it were a case of Netscape and Microsoft pitching their server and browser
software to customers for the creation of monolithic intranets, I could understand
and appreciate such efforts. The battle lines would be clearly drawn, and potential
customers would base their decisions on unemotional criteria— how well the solu-
tion fits the customer’s information distribution and connectivity goals. In fact, if
you develop for an organization-wide intranet, whose browser choice is dictated by
management, you are in luck because authoring for a single browser brand and
version is a piece of cake. But you are not in the majority.

As happens in war, civilian casualties mount when the big guns start shooting.
The battle lines have shifted dramatically in only a few years. The huge market
share territory once under Netscape’s command now lies in Microsoft hands (no
doubt aided by the millions of America Online users who receive IE as part of the
AOL software). While a fair amount of authoring common ground exists between
the latest versions of the two browsers, the newest features cause the biggest
problems for authors wishing to deploy on both browsers. Trying to determine
where the common denominator is may be the toughest part of the authoring job.

Compatibility Issues Today

Allow me to describe the current status of compatibility between Netscape
Navigator and Internet Explorer. The discussion in the next few sections intention-
ally does not get into specific scripting technology very deeply — some of you may
know very little about programming. In many chapters throughout Parts Ill and IV,
offer scripting suggestions to accommodate both browsers.

Separating language from objects

Although early JavaScript authors initially treated client-side scripting as one
environment that permitted the programming of page elements, the scene has
changed as the browsers have matured. Today, a clear distinction exists between
specifications for the core JavaScript language and for the elements you script in a
document (for example, buttons and fields in a form).

On one level, this separation is a good thing. It means that one specification
exists for basic programming concepts and syntax that enables you to apply the
same language to environments that may not even exist today. You can think of the
core language as basic wiring. Once you know how electric wires work, you can
connect them to all kinds of electrical devices, including some that may not be
invented yet. Similarly, JavaScript today is used to wire together page elements in
an HTML document. Tomorrow, operating systems could use the core language to
enable users to wire together desktop applications that need to exchange informa-
tion automatically.

At the ends of today’s JavaScript wires are the elements on the page. In program-
ming jargon, these items are known as document objects. By keeping the specifica-
tions for document objects separate from the wires that connect them, you can use
other kinds of wires (other languages) to connect them. It’s like designing tele-
phones that can work with any kind of wire, including a type of wire that hasn’t
been invented yet. Today the devices can work with copper wire or fiber optic
cable. You get a good picture of this separation in Internet Explorer, whose set of
document objects can be scripted with JavaScript or VBScript. They’re the same
objects, just different wiring.

14

Part | + Getting Started with JavaScript

The separation of core language from document objects enables each concept to
have its own standards effort and development pace. But even with recommended
standards for each factor, each browser maker is free to extend the standards.
Furthermore, authors may have to expend more effort to devise one version of a
page or script that plays on both browsers unless the script adheres to a common
denominator (or uses some other branching techniques to let each browser run its
own way).

Core language standard

Keeping track of JavaScript language versions requires study of history and poli-
tics. History covers the three versions developed by Netscape; politics covers
Microsoft’s versions and the joint standards effort. The first version of JavaScript
(in Navigator 2) was Version 1.0, although that numbering was not part of the lan-
guage usage. JavaScript was JavaScript. Version numbering became an issue when
Navigator 3 was released. The version of JavaScript associated with that Navigator
version was JavaScript 1.1. As you will learn later in this book, the version number
is sometimes necessary in an attribute of the HTML tags that surround a script. The
Navigator 4.x generation increased the language version one more notch with
JavaScript 1.2.

Microsoft’s scripting effort contributes confusion for scripting newcomers. The
first version of Internet Explorer to include scripting was Internet Explorer 3. The
timing of Internet Explorer 3 was roughly coincidental to Navigator 3. But as
scripters soon discovered, Microsoft’s scripting effort was one generation behind.
Microsoft did not license the JavaScript name. As a result, the company called its
language JScript. Even so, the HTML tag attribute that requires naming the language
of the script inside the tags could be either JScript or JavaScript for Internet
Explorer. Internet Explorer 3 could understand a JavaScript script written for
Navigator 2.

During this period of dominance by Navigator 3 and Internet Explorer 3, scripting
newcomers were often confused because they expected the scripting languages to
be the same. Unfortunately for the scripters, there were language features in
JavaScript 1.1 that were not available in the older JavaScript version in Internet
Explorer 3. Microsoft improved JavaScript in IE3 with an upgrade to the .dll file that
gives IE its JavaScript syntax. However, it’s hard to know which .dll is installed in
any given visitor’s IE3. The situation smoothed out for Internet Explorer 4. Its core
language was essentially up to the level of JavaScript 1.2 in Navigator 4. Microsoft
still officially called the language JScript. Almost all language features that were new
in Navigator 4 (including the script tag attribute identifying JavaScript 1.2) were
understood when you loaded the scripts into Internet Explorer 4.

While all of this jockeying for JavaScript versions was happening, Netscape,
Microsoft, and other concerned parties met to establish a core language standard.
The standards body is a Switzerland-based organization originally called the
European Computer Manufacturer’s Association and now known simply as ECMA
(commonly pronounced ECK-ma). In mid-1997, the first formal language specifica-
tion was agreed on and published (ECMA-262). Due to licensing issues with the
JavaScript name, the body created a new name for the language: ECMAScript.

Chapter 2 4 Authoring Challenges Amid the Browser Wars 15

With only minor and esoteric differences, this first version of ECMAScript was
essentially the same as JavaScript 1.1 found in Navigator 3. Both Navigator 4 and
Internet Explorer 4 supported the ECMAScript standard. Moreover, as happens so
often when commerce meets standards bodies, both browsers went beyond the
ECMAScript standard. Fortunately, the common denominator of this extended core
language is broad, lessening authoring headaches on this front.

IE5 advances to JavaScript version 1.3, while NN6 has the luxury of implementing
JavaScript 1.5. In the meantime, the ECMA standard has evolved to a new release
that incorporates features found in JavaScript 1.3 and 1.5.

While the core language tends to exhibit the most compatibility between IE and
NN, authors must pay attention to which language features are available in the
browsers visiting scripted pages. Older browser versions are not equipped to han-
dle newer JavaScript features. But you can sometimes script around these incom-
patibilities (as described throughout the language reference in Part IV).

Document object model

If NN and IE are close in core JavaScript language compatibility, nothing could be
further from the truth when it comes to the document objects. Internet Explorer 3
based its document object model (DOM) on that of Netscape Navigator 2, the same
browser level it used as a model for the core language. When Netscape added a
couple of new objects to the model in Navigator 3, the addition caused further
headaches for neophyte scripters who expected those objects to appear in Internet
Explorer 3. Probably the most commonly missed object in Internet Explorer 3 was
the image object, which lets scripts swap the image when a user rolls the cursor
atop a graphic — mouse rollovers, they’re commonly called.

In the Level 4 browsers, however, Internet Explorer’s document object model
jumped way ahead of the object model Netscape implemented in Navigator 4. The
two most revolutionary aspects of IE4 were the ability to script virtually every
element in an HTML document and the instant reflow of a page when the content
changed. This opened the way for HTML content to be genuinely dynamic without
requiring the browser to fetch a rearranged page from the server. NN4 implemented
only a small portion of this dynamism, without exposing all elements to scripts or
reflowing the page. Inline content could not change as it could in IE4. Suffice it to
say IE4 was an enviable implementation.

At the same time, a DOM standard was being negotiated under the auspices of
the World Wide Web Consortium (W3C). The hope among scripters was that once a
standard was in place, it would be easier to develop dynamic content for all
browsers that supported the standard.

Netscape took this wish to heart and designed an almost entirely new browser:
Navigator 6. It incorporates all of the W3C DOM Level 1 and a good chunk of Level
2. Even though Microsoft participated in the W3C DOM standards development, IE5
implements only some of the W3C DOM standard — in some cases, just enough to
allow cross-browser scripting that adheres to the standard. Of course, the standard
is not perfect either, and it brings to the DOM several brand-new concepts for
scripters. When you take these issues into account, and add to the mix the number
of older browsers still in use, scripting HTML objects is touchy business. It requires
a good knowledge of compatibility, as described in the object discussions through-
out this book.

16

Part | + Getting Started with JavaScript

Cascading Style Sheets

Navigator 4 and Internet Explorer 4 were the first browsers to claim compatibil-
ity with a W3C recommendation called Cascading Style Sheets Level 1 (CSS1). This
specification customized content in an organized fashion throughout a document
(and thus minimized the HTML in each tag); it was also an effort to extend the
Web’s tradition of publishing static content. As implementations go, NN4 had a lot
of rough edges, especially when trying to mix style sheets and tables. But IE4 was
no angel, either, especially when comparing the results of style sheet assignments
as rendered in the Windows and Macintosh versions of the browser.

CSS Level 2 adds more style functionality to the standard, and both IE5 and NN6
support a good deal of Level 2. Rendering of styled content is more harmonious
between both browsers, largely thanks to more stringent guidelines about how
styles should render.

JavaScript plays a role in style sheets in [E4+ and NN6 because those browsers’
object models permit dynamic modification to styles associated with any content
on the page. Style sheet information is part of the object model and is therefore
accessible and modifiable from JavaScript.

Dynamic HTML

Perhaps the biggest improvements to the inner workings of the Level 4 browsers
from both Netscape and Microsoft revolve around a concept called Dynamic HTML
(DHTML). The ultimate goal of DHTML is to enable scripts in documents to control
the content, content position, and content appearance in response to user actions.
To that end, the W3C organization developed another standard for the precise posi-
tioning of HTML elements on a page as an extension of the CSS standards effort.
The CSS-Positioning recommendation was later blended into the CSS standard, and
both are now part of CSS Level 2. With positioning, you can define an exact location
on the page where an element should appear, whether the item should be visible,
and what stacking order it should take among all the items that might overlap it.

IE4+ adheres to the positioning standard syntax and makes positionable items
subject to script control. Navigator 4 followed the standard from a conceptual point
of view, but it implemented an alternative methodology involving an entirely new,
and eventually unsanctioned, tag for layers. Such positionable items were scriptable
in Navigator 4 as well, although a lot of the script syntax differed from that used in
Internet Explorer 4. Fortunately for DHTML authors, NN6, by its adherence to the
CSS standard, is more syntactically in line with DHTML style properties employed in
IE4+. Cross-browser scripting can be challenging, yet it is certainly possible if you
understand the limitations imposed by following a common denominator.

Developing a Scripting Strategy

Browsers representing the latest generation contain a hodgepodge of standards
and proprietary extensions. Even if you try to script to a common denominator
among today’s browsers, your code probably won'’t take into account the earlier
versions of both the JavaScript core language and the browser document object
models.

Chapter 2 4 Authoring Challenges Amid the Browser Wars

The true challenge for authors these days is determining the audience for which
scripted pages are intended. You will learn techniques in Chapter 13 that enable
you to redirect users to different paths in your Web site based on their browser
capabilities. In Chapter 14, you will discover the alternatives you can take depend-
ing on the object model version(s) and specific features you need to support. Each
new browser generation not only brings with it new and exciting features you are
probably eager to employ in your pages, it also adds to the fragmentation of the
audience visiting a publicly accessible page. With each new browser upgrade, fewer
existing users are willing to download megabytes of browser merely to have the
latest and greatest browser version. For many pioneers —and certainly for most
nontechie users —there is an increasingly smaller imperative to upgrade browsers,
unless that browser comes via a new computer or operating system upgrade.

As you work your way through this book, know that the common denominator
you choose depends on where you draw the line for browser support. Even if you
wish to adhere to the absolutely lowest common denominator of scripting, I've got
you covered: The Part Il tutorial focuses on language and object aspects that are
compatible with every version of JavaScript and every document object model.

At the same time, I think it is important for you to understand that the cool
application you see running on your latest, greatest browser may not translate to
Internet Explorer 3 or Navigator 2. Therefore, when you see a technique that you’d
like to emulate, be realistic in your expectations of adapting that trick for your
widest audience. Only a good working knowledge of each language term’s compati-
bility and an examination of the cool source code will reveal how well it will work
for your visitors.

+ o+ 4

17

CHAPTER

Your First
JavaScript Script

¢+ 4+ o+

In This Chapter

. . . . How to choose basic
n this chapter, you set up a productive script-writing and JavaScript authoring

previewing environment on your computer, and then you tools
write a simple script whose results you can see in your
JavaScript-compatible browser.

Because of differences in the way various personal comput-
ing operating systems behave, I present details of environ-
ments for two popular variants: Win32 operating systems
(Windows 95/98/NT/2000/ME) and the MacOS. For the most
part, your JavaScript authoring experience is the same regard-
less of the operating system platform you use —including
Linux or UNIX. Although there may be slight differences in
font designs depending on your browser and operating sys-
tem, the information remains the same. Most illustrations of
browser output in this book are made from the Win32 version
of Internet Explorer 5.x. If you run another browser or version,
don'’t fret if every pixel doesn’t match with the illustrations in
this book.

The Software Tools

The best way to learn JavaScript is to type the HTML and
scripting code into documents in a text editor. Your choice of
editor is up to you, although I provide you with some guide-
lines for choosing a text editor in the next section.

Choosing a text editor

For the purposes of learning JavaScript in this book, avoid
WYSIWYG (What You See Is What You Get) Web page author-
ing tools, such as FrontPage and DreamWeaver, for now. These
tools certainly will come in handy afterward when you can
productively use those facilities for molding the bulk of your
content and layout. But the examples in this book focus more
on script content (which you must type in anyway), so there
isn’t much HTML that you have to type. Files for all complete
Web page listings (except for the tutorial chapters) also
appear on the companion CD-ROM.

How to set up your
authoring
environment

How to enter a
simple script fo a
Web page

¢+ 4+ 0+

20

Part | + Getting Started with JavaScript

"Note

An important factor to consider in your choice of editor is how easy it is to save
standard text files with an .html filename extension. In the case of Windows, any
program that not only saves the file as text by default but also enables you to set
the extension to .htm or .html prevents a great deal of problems. If you use
Microsoft Word, for example, the program tries to save files as binary Word files —
something that no Web browser can load. To save the file initially as a text or .html
extension file requires mucking around in the Save As dialog box. This requirement
is truly a nuisance.

Nothing’s wrong with using bare-essentials text editors. In Windows, that
includes the WordPad program or a more fully featured product such as the share-
ware editor called TextPad. For the MacOS, SimpleText is also fine— although the
lack of a search-and-replace function may get in the way when you start managing
your Web site pages. A favorite among Mac HTML authors and scripters is BBEdit
(Bare Bones Software), which includes a number of useful aids for scripters, such
as optional line numbers (which help in debugging JavaScript).

Choosing a browser

The other component that is required for learning JavaScript is the browser. You
don’t have to be connected to the Internet to test your scripts in the browser. You
can perform all testing offline. This means you can learn JavaScript and create cool,
scripted Web pages with a laptop computer —even on a boat in the middle of an
ocean.

The browser brand and version you use is up to you. Until you reach Chapter 12,
virtually everything you script will run in every scriptable browser. For page devel-
opment, however, you want a more modern browser, such as IE5.x or NN6. And to
derive the most benefit from the examples scattered throughout this book, you
should have the latest versions of IE and NN available for your primary operating
system.

Many example listings in this book demonstrate language or document object

~~ model (DOM) features that work on only specific browsers and versions. Check

the compatibility listing for that language or DOM feature to make sure you use
the right browser to load the page.

Setting Up Your Authoring Environment

To make the job of testing your scripts easier, make sure that you have enough
free memory in your computer to let both your text editor and browser run simulta-
neously. You need to be able to switch quickly between editor and browser as you
experiment and repair any errors that may creep into your code. The typical work-
flow entails the following steps:

1. Enter HTML and script code into the source document in the text editor.
2. Save the latest version to disk.

3. Switch to the browser.

Chapter 3 4 Your First JavaScript Script 21

4. Do one of the following: If this is a new document, open the file via the
browser’s Open menu. If the document is already loaded, reload the file into
the browser.

Steps 2 through 4 are the key ones you will follow frequently. I call this three-step
sequence the save-switch-reload sequence. You will perform this sequence so often
as you script that the physical act quickly will become second nature to you. How
you arrange your application windows and effect the save-switch-reload sequence
varies according to your operating system.

Windows

You don’t have to have either the editor or browser window maximized (at full
screen) to take advantage of them. In fact, you may find them easier to work with if
you adjust the size and location of each window so both windows are as large as
possible while still enabling you to click a sliver of the other’s window. Or, you can
leave the taskbar visible so you can click the desired program’s button to switch to
its window (Figure 3-1). A monitor that displays more than 640 x 480 pixels cer-
tainly helps in offering more screen real estate for the windows and the taskbar.

In practice, however, the Windows Alt+Tab task-switching keyboard shortcut
makes the job of the save-switch-reload steps outlined earlier a snap. If you run
Windows and also use a Windows-compatible text editor (which more than likely
has a Ctrl+S file-saving keyboard shortcut), you can effect the save-switch-reload
sequence from the keyboard all with the left hand: Ctrl+S (save the source file);
Alt+Tab (switch to the browser); Ctrl+R (reload the saved source file).

As long as you keep switching between the browser and text editor via Alt+Tab
task switching, either program is always just an Alt+Tab away.

v Metscape - [Welcome to Netscape]

Eile

A E J[=] E3
_B File Edit Wiew Insert Format Help
sEEEEC =

I &

<HTHL>
<HEAD>
<TITLE»Qutline Takble of Contents</TITLE:
</HEAD>

<FRAMESET COLS="35%, "'"»

<NOFRAMES>

<H1>It's really cool,..</Hl>

<HzZ>,..but only if you have Netscape Navigator 3.0</HZ>
<HR>

<Ak HREF="../index.html":Back</Ax

J </MOFRAMES>

<FRAME MNAME="Framel'" SRC="foodol.htm'">

G

of <FRAME NAME="FramezZ"™ 3JRC="olintro.htm>

~ </FRAMESET>

@ </HTHL>

ot

4,
=t

For Help, press F1 A

iﬂStalll ﬂNelscape - [Welcome to Nl ‘5)| outline_htm - WordPad j‘(ﬂ* 810 PM

Figure 3-1: Editor and browser window arrangement in Windows 98

22 Part| + Getting Started with JavaScript

MacOS

If you expand the windows of your text editor and browser to full screen, you
have to use the rather inconvenient Application menu (right-hand icon of the menu
bar) to switch between the programs. A better method is to adjust the size and
location of the windows of both programs so they overlap, while allowing a portion
of the inactive window to remain visible (Figure 3-2). That way, all you have to do is
click anywhere on the inactive window to bring its program to the front.

With this arrangement, the save-switch-reload sequence is a two-handed affair:

1. Press 88-S (save the source file).

2. Click in the browser window.

3. Press 8-R (reload the saved source file).

To return to editing the source file, click any exposed part of the text editor’s
window.

A useful utility called Program Switcher (http://www.kamprath.net/

claireware) puts the Alt+Tab program switching functionality on the Mac key-
board. It is more convenient than using the Application menu.

= File Edit Text Mark Search Extensions Windows @

Netscape: Welcome to Netscape

o © 2 B

I 1 I I I I I I ee——
= ullinehinSSS—"i—--——"|
Bal
- 1] N Last Saved: 2/12/96 st 9:07:57 PM 13
Nets s & Magintosh HD Documents Editorial :Bocks :avaSer.. outlinelhtm
<HTIL> S
IE <HEAD> | apptications

<TITLE*Outline Toble of Contents</TITLE>
< /HERD>

<FRAMESET COLS="358, +">

<NOFRAMES >

<HI>It's really cool.. . </H1»

<HZ>...but only I you hove Metscape Movigator 3.0</Hz>
<HR>

<A HREF="indax.htm| " *Back < /A

< fNOFRANES>

<FRAME NAME="Frame1® SAC="foodo!.htm">

<FRAME MAME="Frame2" SRC="olintro.htm"*
< fFRAMESET>

L1 e

Ba
and] I
s |
I I | Trash
T T
00 |_http o/ Mhomme moom.com /harme fmiso/ ped_betatest html (=7

Figure 3-2: Editor and browser window arrangement on the
Macintosh screen

Chapter 3 4 Your First JavaScript Script

Reloading issues

For the most part, a simple page reload is enough to let you test a revised ver-
sion of a script right away. But sometimes the browser’s cache (with its default
settings) can preserve parts of the previous page’s attributes when you reload,
even though you have changed the source code. To perform a more thorough
reload, hold down the Shift key while clicking the browser’s Reload/Refresh button.
Alternatively, you can turn off the browser’s cache in the preferences area, but that
setting may negatively affect the overall performance of the browser during your
regular Web surfing.

What Your First Script Will Do

For the sake of simplicity, the kind of script you look at in the next section is the
kind that runs automatically when the browser loads the HTML page. Although all
scripting and browsing work done here is offline, the behavior of the page is identi-
cal if you place the source file on a server and someone accesses it via the Web.

Figure 3-3 shows the page as it appears in the browser after you're finished. (The
exact wording differs slightly if you run your browser on an operating system plat-
form other than Win32 or if you use a browser other than Internet Explorer.) The
part of the page that is defined in regular HTML contains nothing more than an
<H1>-level header with a horizontal rule under it. If someone does not use a
JavaScript-equipped browser, all he or she sees is the header and horizontal rule
(unless that person has a truly outmoded browser, in which case some of the script
words appear in the page).

X C:\Documents'SCRIPT1.HTM - Microsoft Internet Explorer

J File Edit View Favorites Tools Help
J « = .2 al Q@ @ @ | B
Back Forward Stop Rehesh Home Search Favori... History Mail
=
' .
Let's Script!
This browser is version 4.0 {compatible, MSIE 5.0, Windows 98, DigExt) of Microsoft
Internet Explorer
K
|@ Done ’_’_E My Computer 4

Figure 3-3: The finished page of your first JavaScript script

23

24

Part | + Getting Started with JavaScript

Below the rule, the script displays plain body text that combines static text with
information about the browser you use to load the document. The script writes a
stream of HTML information to the browser, including a tag to render a portion of
the information in boldface. Even though two lines of code are writing information
to the page, the result is rendered as one line —just as it is when all the text is
hard-coded in HTML.

Entering Your First Script

It’s time to start creating your first JavaScript script. Launch your text editor and
browser. If your browser offers to dial your Internet service provider (ISP) or begins
dialing automatically, cancel or quit the dialing operation. If the browser’s Stop
button is active, click it to halt any network searching it may try to do. You may
receive a dialog box message indicating that the URL for your browser’s home page
(usually the home page of the browser’s publisher — unless you've changed the set-
tings) is unavailable. That’s fine. You want the browser open, but you shouldn’t be
connected to your ISP. If you're automatically connected via a local area network in
your office or school, that’s also fine. However, you don’t need the network connec-
tion for now. Next, follow these steps to enter and preview your first JavaScript
script:

1. Activate your text editor and create a new, blank document.

2. Type the script into the window exactly as shown in Listing 3-1.

Listing 3-1: Source Code for script1.htm

<HTML>
<HEAD>
{TITLE>My First Script</TITLE>
</HEAD>

<BODY>

<HI>Let's Script...</HI>

<HR>

{SCRIPT LANGUAGE="JavaScript">

<l-- hide from old browsers

document.write("This browser is version " + navigator.appVersion)
document.write(" of " + navigator.appName + ".")
// end script hiding -->

</SCRIPT>

</BODY>

<THTMLY

3. Save the document with the name scriptl.htm. (This is the lowest common
denominator filenaming convention for Windows 3.1 —feel free to use an
.html extension if your operating system allows it.)

4. Switch to your browser.

Chapter 3 4 Your First JavaScript Script 25

5. Choose Open (or Open File on some browsers) from the File menu and select
scriptl.htm. (On some browsers, you have to click a Browse button to reach
the File dialog box.)

If you typed all lines as directed, the document in the browser window should
look like the one in Figure 3-3 (with minor differences for your computer’s operating
system and browser version). If the browser indicates that a mistake exists some-
where as the document loads, don’t do anything about it for now. (Click the OK but-
ton if you see a script error dialog box.) Let’s first examine the details of the entire
document so you understand some of the finer points of what the script is doing.

Examining the Script

You do not need to memorize any of the commands or syntax discussed in this
section. Instead, relax and watch how the lines of the script become what you see
in the browser. In Listing 3-1, all of the lines up to the <SCRIPT> tag are very stan-
dard HTML. Your JavaScript-enhanced HTML documents should contain the same
style of opening tags you normally use.

The <SCRIPT> tag

Any time you include JavaScript verbiage in an HTML document, you must
enclose those lines inside a <SCRIPT>...</SCRIPT> tag pair. These tags alert the
browser program to begin interpreting all the text between these tags as a script.
Because other scripting languages (such as Microsoft’s VBScript) can take advan-
tage of these script tags, you must specify the precise name of the language in
which the enclosed code is written. Therefore, when the browser receives this sig-
nal that your script uses the JavaScript language, it employs its built-in JavaScript
interpreter to handle the code. You can find parallels to this setup in real life: If you
have a French interpreter at your side, you need to know that the person with
whom you’re conversing also knows French. If you encounter someone from Russia,
the French interpreter can’t help you. Similarly, if your browser has only a
JavaScript interpreter inside, it can’t understand code written in VBScript.

Now is a good time to instill an aspect of JavaScript that will be important to you
throughout all your scripting ventures: JavaScript is case-sensitive. Therefore, you
must enter any item in your script that uses a JavaScript word with the correct
uppercase and lowercase letters. Your HTML tags (including the <SCRIPT> tag) can
be in the case of your choice, but everything in JavaScript is case-sensitive. When a
line of JavaScript doesn’t work, look for the wrong case first. Always compare your
typed code against the listings printed in this book and against the various vocabu-
lary entries discussed throughout it.

A script for all browsers

The next line after the <SCRIPT> tag in Listing 3-1 appears to be the beginning of
an HTML comment tag. It is, but the JavaScript interpreter treats comment tags in a
special way. Although JavaScript dutifully ignores a line that begins with an HTML
comment start tag, it treats the next line as a full-fledged script line. In other words,
the browser begins interpreting the next line after a comment start tag. If you want
to put a comment inside JavaScript code, the comment must start with a double
slash (//). Such a comment may go near the end of a line (such as after a JavaScript

26

il

Part | + Getting Started with JavaScript

statement that is to be interpreted by the browser) or on its own line. In fact, the
latter case appears near the end of the script. The comment line starts with two
slashes.

Step back for a moment and notice that the entire script (including comments) is
contained inside a standard HTML comment tag (<!--comment-->). The value of
this containment is not clear until you see what happens to your scripted HTML
document in a non-JavaScript-compatible browser. Such a browser blows past the
<SCRIPT> tag as being an advanced tag it doesn’t understand. But it treats a line of
script as regular text to be displayed in the page. If you enclose script lines between
HTML comment tags, most older browsers don’t display the script lines. Still, some
old browsers can get tripped up and present some ugliness because they interpret
any > symbol (not the whole --> symbol) as an end-of-comment character. Figure
3-4 shows the results of your first script when viewed in a now obsolete version of
the America Online Web browser (version 2.5 for Windows).

America Online - [My First Script] [_[O] %]
‘ File Edit GoTo Mal Members Window Help -|ﬂ|5|

] @ renad] [fswsd] [EFooriteFlaces] [Prefs | [@ Home] [Fohew | S A
|me MocalhostiCDOCUME~1 MAY ASC~1 SCRIPT1 HTM j|

-

Let's Script...

"+ navigator. appName + ") /f end script hiding -->

¥

TG

Figure 3-4: If you enclose script lines between HTML comments,
the entire script is ignored by most, but not all, non-JavaScript
browsers. Here, an old America Online browser shows part of the

script anyway.

Remember, too, that some users don’t have access to modern browsers or
graphical browsers. (They use the Lynx text-oriented UNIX Web reader software or
Lynx-like browsers in handheld computers.) By embracing your script lines within
these comments, your Web pages don’t look completely broken in relatively mod-
ern, non-JavaScript browsers.

Notice that the comment lines that shield older browsers from your scripts go
inside the <SCRIPT>...</SCRIPT> tags. Do not put these comment lines above
the <SCRIPT> tag or below the </SCRIPT> tag and expect them to work.

One more issue about the script-hiding comment lines in this book. To save
space on the page, most examples do not have comment lines inserted in them. But
as you can see in the full-fledged application examples from Chapters 49 through
57, the comment lines are where they should be. For any pages you produce for
public consumption, always encase your script lines inside these comments.

Chapter 3 4 Your First JavaScript Script 27

Displaying some text

Both script lines in Listing 3-1 use one of the possible actions a script can ask a
document to perform (document.write(), meaning display text in the current doc-
ument). You learn more about the document object in Chapter 18.

Whenever you ask an object (a document in this case) to perform a task for you,
the name of the task is always followed by a set of parentheses. In some cases —
the write() task, for example — JavaScript needs to know what information it
should act on. That information (called a parameter) goes inside parentheses after
the name of the task. Thus, if you want to write the name of the first U.S. president
to a document, the command to do so is

document.write("George Washington")

The line of text that the script writes starts with some static text ("This
browser is version") and adds some evaluated text (the version of the browser)
to it. The writing continues with more static text that includes an HTML tag ("of
™"), more evaluated text (the name of the browser application), and an HTML
closing tag and the sentence’s period ("."). JavaScript uses the plus symbol
(+) to join (concatenate) text components into a larger, single string of text charac-
ters to be written by the document. Neither JavaScript nor the + symbol knows any-
thing about words and spaces, so the script is responsible for making sure that the
proper spaces are passed along as part of the parameters. Notice, therefore, that an
extra space exists after the word “version” in the first document.write() parame-
ter, and extra spaces exist on both sides of “of” in the second document.write()
parameter.

To fetch the information about the browser version and name for your parame-
ters, you call upon JavaScript to extract the corresponding properties from the
navigator object. You extract a property by appending the property name to the
object name (navigator in this case) and separating the two names with a period.
If you're searching for some English to mentally assign to this scheme as you read
it, start from the right side and call the right item a property “of” the left side: the
appVersion property of the navigator object. This dot syntax looks a great deal
like the document.write() task, but a property name does not have parentheses
after it. In any case, the reference to the property in the script tells JavaScript to
insert the value of that property in the spot where the call is made. For your first
attempt at the script, JavaScript substitutes the internal information about the
browser as part of the text string that gets written to the document.

Have Some Fun

If you encounter an error in your first attempt at loading this document into your
browser, go back to the text editor and check the lines of the script section against
Listing 3-1, looking carefully at each line in light of the explanations. There may be a
single character out of place, a lowercase letter where an uppercase one belongs,
or a quote or parenthesis missing. Make necessary repairs, switch to your browser,
and click Reload.

28 Part| + Getting Started with JavaScript

To see how dynamic the script in scriptl.htmis, go back into the text editor
and replace the word “browser” with “client software.” Save, switch, and reload
to see how the script changes the text in the document. Feel free to substitute
other text for the quoted text in the document.write() statement. Or, add
more text with additional document.write() statements. The parameters to
document.write() are HTML text, so you can even write "
" to make a line
break. Always be sure to save, switch, and reload to see the results of your
handiwork.

4+ + +

JavaScript /]
Tutorial- o
sSummary

Nine Tutorial
Chapters
T What Scripts Do in
he JavaScript tutorial is intended for the newcomer who Documents
has little or no programming experience. But even expe-
rienced programmers who have not worked in an object- Programming

based environment will find many of the tutorial chapters
helpful in grasping basic concepts about the ways scripts
interact with HTML elements on a page. In fact, an experi-
enced programmer may have to “unlearn” some concepts
while making the transition to a looser, interpreted environ-
ment in contrast to the rigorous discipline required in other + + + +
environments.
That’s not to say that JavaScript is anything less than “real”
programming. As several chapters in this tutorial prove, the
JavaScript language provides the same fundamental program-
ming facilities that exist in most heavy-duty languages. At the
same time, however, the language is simplified and forgiving in
an attempt to attract a wider audience than may gravitate to
languages such as C, C++, or Java.
A significant challenge in molding a tutorial about client-
side JavaScript is accommodating the wide range of document
object models that are spread among numerous browser
brands, operating systems, and versions. Despite the large
number of object model permutations implemented in the
browsers that visit a public Web site, the earliest object
model, as implemented in the first scriptable browsers, serves
as a convenient and easily digestible common denominator
for learning the basics. Therefore, the tutorial focuses most of
its energy on the first-generation object model. Everything
you learn from the tutorial is immediately applicable to the
latest browsers. This knowledge also serves as an excellent
foundation for understanding newer object model concepts,
whether your development target is just one browser type for
a corporate intranet or any browser “out there” surfing the
Web. After you have been through the tutorial, Chapter 14’s
overview of the branches of the object model evolutionary
tree becomes crystal clear.

Fundamentals

Infroduction to
Document Obijects

30 Part Il + JavaScript Tutorial — Summary

On the The following sections provide brief summaries of the topics covered in the tuto-
CD\ rial chapters found on the CD-ROM in Acrobat format. Each of the chapters ends
| with exercises, whose answers are also on the CD-ROM in Appendix C.

Chapter 4. Browser and Document Objects

One of the best ways to understand why JavaScript is so valuable on the client
computer is to see how scripts add life to otherwise flat HTML documents. Popular
categories of scripting implementations include interactive user interfaces, instan-
taneous form validation, small data collection lookups (the data is embedded in the
document for JavaScript to search through), multiple frame management, and, in
more recent browsers, dynamic designs that allow dragging elements around the
page. At the same time, it is important to recognize when JavaScript is not the pre-
ferred technology.

This chapter introduces the concept of a document object model (DOM). You can
visualize the object model as a kind of road map to the page elements that become
objects in the browser’s memory as the page loads into the browser. Figure II-1 is
aroadmap for a hypothetical Web page that contains one of each kind of element
recognized as an object in the lowest common denominator model. The containment
notion conveyed by the grey boxes reinforces the way script statements reference
objects, starting with the window object at the top of the hierarchy. For example,
to address a text box, you assemble a reference like this: window.document.
formName.textBoxName.

window

frame| self | top | parent

hisltory document

Ii|I1k l_form_‘ anchor

text | | radio | | button | | select |
| | | |
| textarea | | checkbox | | reset | | option |
| |
| password | | submit |

Figure 11-1: Map of the lowest common denominator document object model

Part Il + JavaScript Tutorial — Summary 31

After a discussion of how “dot syntax” works, the chapter ends with an introduc-
tion to the way objects distinguish themselves from each other by way of their
properties, methods, and event handlers. An object’s properties are like adjectives
that describe various characteristics of the object. Methods are like an object’s
verbs, which provide scripts with ways to ask objects to do something. Event han-
dlers denote the kinds of user and system actions (such as clicking on a button)
that trigger script statements to run. Once you know an object’s properties, meth-
ods, and event handlers, you know everything your scripts can do to make it
“dance.”

Chapter 5. Scripts and HTML Documents

This chapter helps you begin to see the physical relationships between blocks of
scripts and the rest of the tags in an HTML document. By and large, scripts go
inside a set of <SCRIPT> tags. These tags tell the HTML rendering engines of script-
able browsers to ignore the content between the start and end tags. Such script
blocks can occur inside the HEAD or BODY elements, or both, depending on what
your scripts have to do in the page. But non-scriptable browsers do not recognize
the <SCRIPT> tag and try to render the scripts. To avoid this possibility, surround
the content of <SCRIPT> tags with HTML comment symbols. Scriptable browsers
can still run the scripts, but most non-scriptable browsers skip over the com-
mented material.

Script statements — each line of script code is a statement —run either immedi-
ately or in deferred mode. An immediate script statement is one that runs while the
page loads into the browser. Such a statement might use scripting to generate part
of the page’s content dynamically (as the script in Chapter 3 does). Most scripts,
however, load into the browser’s memory and sit quietly until some user or system
action triggers those statements.

While you develop scripts — and especially while you learn JavaScript — script
errors are bound to occur. It is important to view the messages associated with an
error. In this chapter you learn the ways various browsers and browser generations
let you view error messages.

Chapter 6. Programming Fundamentals, Part |

For the next two chapters, you momentarily leave the browser world, and dive
into vital concepts that the JavaScript language shares with just about every pro-
gramming language. The terminology may be foreign at first (if you are a non-pro-
grammer), but you will use this knowledge virtually every day that you apply
JavaScript to your pages.

First is the simple idea that any piece of information —a string of text charac-
ters, a number, a special indicator of “true” or “false” —is a value. To simplify a
script statement’s interaction with values, you typically assign each value to a vari-
able. In the JavaScript world, a variable is simply a name (identifier) that makes it
easy to preserve a value in memory while other statements run.

One of the most important concepts to master is that a script statement usually
consists of one or more expressions — either a value or combination of values, such

32

Part Il + JavaScript Tutorial — Summary

as 3 + 4. Each expression is said to evaluate to some value. The expression 3+4
evaluates to 7; if the value 3 is assigned to a variable named a, and 4 is assigned to
a variable named b, then the expression a+b also evaluates to 7.

To help you experiment with values, expressions, and expression evaluation,
Chapter 6 introduces you to a tool called Evaluator Jr., a simplified version of a
more powerful authoring and learning tool found in Chapter 13. You can type an
expression into one field on Evaluator Jr.’s page, and immediately see the value to
which it evaluates.

Every value is of some fype, such as a number or string of text characters. While
so-called data typing is not as rigid in JavaScript as it is in other languages, it is
sometimes necessary to convert a value of one type to another. Thus, the chapter
demonstrates simple conversions between number and string values. You then
meet basic operators for simple arithmetic and comparisons.

Chapter 7. Programming Fundamentals,
Part I

The tour of programming fundamentals continues with ways to influence the
sequence that the browser follows to execute statements in a script. A few
approaches to these control structures allow a script to follow different paths based
on decisions (using the comparison operators shown in Chapter 6) or on criteria
for repetition (such as inspecting each character of a text string). You learn about
if constructions and simple repeat loops.

Next you learn how to gather a related sequence of script statements into a
group called a function. A function contains the statements of a deferred script.
Functions are most commonly invoked by user actions (from object model event
handlers), but they are also invoked by statements in other functions. You can also
hand off values from one function to another in the form of parameters to a function.

To round out the fundamentals discussion, this chapter introduces the very
important concept of arrays. An array is an organized list of values (visualize a one-
column spreadsheet). You can use arrays to keep a set of related values together,
very commonly as a way to facilitate looking for a value within a collection (with the
help of the repeat loops you learned earlier). Arrays also play a role in related
groups of objects in the document object model, as you learn in subsequent chapters.

Chapter 8. Window and Document Objects

Starting with Chapter 8, you come back to the browser objects, and begin to
apply your working knowledge of the core JavaScript language to understanding the
way scripts work with objects in a document. This chapter focuses on object high
up the hierarchy shown earlier in Figure II-1.

At the top of the hierarchy is the window object, which represents the window
created by the browser program. You can also use scripts to create subwindows.
For the tutorial, you learn about setting text in the window’s status bar, three types
of dialog boxes, and how to trigger scripts when a pages finishes loading all of its
content into the window.

Part Il 4+ JavaScript Tutorial — Summary

The Tocation and history objects are not quite as concrete as the window
object. The Tocation object is the more important of the two, because it contains
information about the URL (and various pieces of the URL) of the page currently in
the window. For privacy and security reasons, scripts have very little access to the
browser’s history, but the history object provides limited script access to actions
that simulate the Back and Forward navigation buttons.

A pivotal object is the document. It is the master container of all content that
arrives with the page. Scripts reference elements on the page by way of the document
object, such that the term, document, becomes part of the reference to an element.
You can use one of the document object’s methods to generate content on the page
as it loads (as demonstrated in Chapter 3).

Chapter 9. Forms and Form Elements

Most interactive Web pages contain forms, which provide text boxes to fill in,
lists to choose from, and buttons to click. The form, itself, is an object. Many of its
properties reflect the attributes you typically assign to a form, such as METHOD,
ACTION, and TARGET. Thus, scripts can change the values of those attributes based
on other user settings in the form.

A form object is also a container. Nested inside are the form controls with which
users interact. In this chapter you meet the most common properties and event
handlers of text fields, buttons, radio buttons, checkboxes, and SELECT elements.
Because form control interaction so often triggers script execution, you learn how to
pass information from the form to a function invoked by a control’s event handler.

While you're on the subject of forms, you see the basics of client-side validation
of data to assure that form settings or text in a desired format get submitted to the
server. Client-side validation is much faster and more user-friendly than having the
server return the form for the user to complete.

Chapter 10. Strings, Math, and Dates

In Chapter 10, you come back momentarily to the core JavaScript language to
learn about a few objects that many of your document object scripts use to manipu-
late form or other kinds of values. You see more and more how the core JavaScript
language and document object models work together to produce your applications.

A string object represents a sequence of text characters. Script statements often
need to assemble longer strings out of smaller components. Operators (introduced
back in Chapter 6) play a role. But a string object also has several methods avail-
able to simplify the copying of sections of a string or finding out if a longer string
contains a shorter one (for example, whether a text box for an e-mail address con-
tains an @ character).

The JavaScript Math object is a resource that is always available to any script
statement. Use the object’s properties to get copies of constant values, such as pi;
use its methods for operations such as getting the absolute value of a number or
raising a number to a power.

Calculations involving dates and times take advantage of a huge assortment of
methods associated with the Date object. With the help of this object, your scripts

34

Part Il + JavaScript Tutorial — Summary

can grab a snapshot of the date and time of the client’s system clock or create a
date object for dates in the past or future. Want to display on your page how many
shopping days remain until next Christmas? That’s one application for Date object
calculations.

Chapter 11. Scripting Frames and Multiple
Windows

One of the strengths of a scriptable browser is that scripts facilitate the manage-
ment of multiple frames far better than server-based applications. For example, you
can script a link in one frame of a three-frame window to change the documents
loaded into the other two frames. Or you can use one static frame to preserve accu-
mulated data from pages that come and go from one of the other frames.

The trickiest part of managing frames is knowing how script statements refer to
other frames and elements in those other frames. In this chapter you learn the
three possible relationships among a parent (that is, the framesetting document)
and two or more child frames. Depending on which document contains the script
and which document contains the element to reference, the format of the reference
needs to be assembled properly.

Some of the same techniques apply to managing multiple windows. Not only are
multiple windows more difficult to manage from a user interface point of view,
scripting them also presents several challenges. In this lesson you begin to appreci-
ate the issues involved.

Chapter 12. Images and Dynamic HTML

In the final chapter of the tutorial, you travel beyond the confines of the lowest
common denominator to embrace concepts that work with a lot of browsers and
can greatly improve the user experience on your page.

At the core is the image object. The image object has a split personality. On one
side is the object represented in a page by its tag; on the other side is an
image object in memory that allows scripts to preload images invisibly into the
browser’s memory cache. Through these two mechanisms, scripts can pre-cache an
alternate version of, say, an iconic button so that when the user rolls the mouse
atop the normal version, a script instantly swaps the visible image with a preloaded
one. Here you learn how to implement simple mouse rollovers with pre-cached
images.

With even more advanced browsers, particularly those that reflow their content
automatically, scripts make pages far more dynamic. Not only can elements be
dragged around the page, but table rows can be added or deleted, and entire sec-
tions of pages can be inserted or removed. These are just the tip of the iceberg of
Dynamic HTML.

+ + +

Browser and
Document
Objects

This chapter marks the first of nine tutorial chapters
(which compose Part II) tailored to Web authors who
have at least basic grounding in HTML concepts. In this chap-
ter, you see several practical applications of JavaScript and
begin to see how a JavaScript-enabled browser turns familiar
HTML elements into objects that your scripts control. Most of
what you learn throughout the tutorial can be applied to all
scriptable browsers (back to Navigator 2 and Internet
Explorer 3). I clearly label a handful of fancy features that
require recent browser versions.

Scripts Run the Show

If you have authored Web pages with HTML, you are famil-
iar with how HTML tags influence the way content is rendered
on a page when viewed in the browser. As the page loads, the
browser recognizes angle-bracketed tags as formatting
instructions. Instructions are read from the top of the docu-
ment downward, and elements defined in the HTML document
appear onscreen in the same order in which they appear in
the document’s source code. As an author, you do a little work
one time and up front — adding the tags to text content —and
the browser does a lot more work every time a visitor loads
the page into a browser.

Assume for a moment that one of the elements on the page
is a text input field inside a form. The user is supposed to
enter some text in the text field and then click the Submit
button to send that information back to the Web server. If that
information must be an Internet e-mail address, how do you
ensure the user includes the “@” symbol in the address?

One way is to have a Common Gateway Interface (CGI)
program on the server inspect the submitted form data after
the user clicks the Submit button and the form information is

CHAPTER

+ 0+ o+
In This Chapter

What client-side

scripts do

What happens when
a document loads

How the browser
creates objects

How scripts refer to
obijects

How to find out what
is scriptable in an

object

¢+ 4+ o+

CD-2

Part Il + JavaScript Tutorial

transferred to the server. If the user omits or forgets the “@” symbol, the CGI pro-
gram serves the page back to the browser — but this time with an instruction to
include the symbol in the address. Nothing is wrong with this exchange, but it
means a significant delay for the user to find out that the address does not contain
the crucial symbol. Moreover, the Web server has to expend some of its resources
to perform the validation and communicate back to the visitor. If the Web site is a
busy one, the server may try to perform hundreds of these validations at any given
moment, probably slowing the response time to the user even more.

Now imagine that the document containing that text input field has some intelli-
gence built into it that makes sure the text field entry contains the “@” symbol
before ever submitting one bit (literally!) of data to the server. That kind of intelli-
gence would have to be embedded in the document in some fashion —downloaded
with the page’s content so it can stand ready to jump into action when called upon.
The browser must know how to run that embedded program. Some user action
must start the program, perhaps when the user clicks the Submit button. If the
program runs inside the browser and detects a lack of the “@” symbol, an alert
message should appear to bring the problem to the user’s attention. The same pro-
gram also should be capable of deciding if the actual submission can proceed or if
it should wait until a valid e-mail address is entered into the field.

This kind of pre-submission data entry validation is but one of the practical ways
JavaScript adds intelligence to an HTML document. Looking at this example, you
might recognize that a script must know how to look into what is typed in a text
field; a script must also know how to let a submission continue or how to abort the
submission. A browser capable of running JavaScript programs conveniently treats
elements such as the text field as objects. A JavaScript script controls the action and
behavior of objects —most of which you see on the screen in the browser window.

JavaScript in Action

By adding lines of JavaScript code to your HTML documents, you control
onscreen objects in whatever way your applications require. To give you an idea of
the scope of applications you can create with JavaScript, I show you several appli-
cations on the CD-ROM (in the folders for Chapters 49 through 57). I strongly sug-
gest you open the applications and play with them in your browser as they are
described in the next several pages.

Interactive user interfaces

HTML hyperlinks do a fine job, but they’re not necessarily the most engaging
way to present a table of contents for a large site or document. With a bit of
JavaScript, you can create an interactive, expandable table of contents listing that
displays the hierarchy of a large body of material (see Figure 4-1). Just like the text
listings (or free views) in operating system file management windows, the expand-
able table of contents lets the user see as much or as little as possible while dis-
playing the big picture of the entire data collection.

Chapter 4 + Browser and Document Objects

0 e Table o Dhte 050 Dre =1 ES
J File Edit View Favorites Tools Help ‘
J@,@v@ﬁ@@@%v =
Back Forward Stop Refiesh Home Search Favori... History Mail Print Edit RealG...
Pickles-- Cucumber--Dill o
Composition of Selected
Foods Water (percent)
93.3
Food energy (calories)
B FPeas 11
B Boiled Proten (grams)
Canned 0.7
@ Picldes Fat (grams)
8 Cucumber 0.2
B Ds
mF Fickles--Cucumber--Fresh
® Sour
Water (percent)
787
Food energy {calories)
73
Protein (grams)
0%
Fat (grams) |
0.2
Pickles--Cucumber--Sour
=
€] Pucker up... ’_’_‘Q Internet

Figure 4-1: An expandable table of contents

Click a gray widget icon to expand the items underneath. An endpoint item has
an orange and black widget icon. Items in the outline can be links to other pages or
descriptive information. You also maintain the same kind of font control over each
entry, as expected from HTML. While such outlines have been created with server
CGlIs in the past, the response time between clicks is terribly slow. By placing all of
the smarts behind the outline inside the page, it downloads once and runs quickly
after each click.

As demonstrated in the detailed description of this outline in the application
Outline-Style Table of Contents (Chapter 52 on the CD-ROM), you can implement
the scriptable workings within straight HTML for Navigator 2 and 3 —although
limitations in page rendering require rewriting the page after each click. Internet
Explorer 4+ and Navigator 6+ automatically reflow the page in response to changes
of content, turning this outliner into a truly dynamic HTML application. Either way
you do it, the quick response and action on the screen makes for a more engaging
experience for Web surfers who are in a hurry to scout your site.

Small data lookup

A common application on the Web is having a CGI program present a page that
visitors use to access large databases on the server. Large data collections are best
left on the server where search engines and other technologies are the best fit. But
if your page acts as a front end to a small data collection lookup, you can consider
embedding that data collection in the document (out of view) and letting JavaScript
act as the intermediary between user and data.

CD-3

CD-4

Part Il + JavaScript Tutorial

I do just that in a Social Security prefix lookup system shown in Figure 4-2. I con-
vert a printed table of about 55 entries into a JavaScript list that occupies only a
few hundred bytes. When the visitor types the three-character prefix of his or her
Social Security number into the field and clicks the Search button, a script behind
the scenes compares that number against the 55 or so ranges in the table. When the
script finds a match, it displays the corresponding state of registration in a second
field.

If the application were stored on the server and the data stored in a server
database, each click of the Search button would mean a delay of many seconds as
the server processed the request, got the data from the database, and reformulated
the page with the result for the user. Built instead as a JavaScript application, once
the page downloads the first time, scripts perform all lookups instantaneously.

Forms validation

I've already used data entry form validation as an example of when JavaScript is a
good fit. In fact, the data entry field in the Social Security lookup page (see Figure
4-2) includes scripting to check the validity of the entered number. Just as a CGI
program for this task has to verify that the entry is a three-digit number, so, too,
must the JavaScript program verify the entered value. If a mistake appears in the
entry — perhaps a finger slips and hits a letter key—the visitor is advised of the
problem and directed to try another entry. The validation script even preselects the
text in the entry field for the visitor so that typing a new value replaces the old one.

Z§Where Were You Born? - Microsoft Internet Explorer

JEiIe Edit View Favorites Tools Help

Where Were You Born?

According to an article in the Wall Street Journal, the first three digits of a .5 Social Security number is a code that may
indicate the state or territory in which your application stated you were born (because the code reveals the state in which you
registered). For recent immigrants, the number is supposed to match up with the state or territory m which vou were living
when you recerved proper working papers.

Mote: The database in this document 13 not 100 percent complete. Populous states have added numenic ranges not contained
here.

Instructions
1. Enter the first three digits of a T1.3. Social Security number in question.
2. Chck on the Search butten
3. See the corresponding state or territory in the field

For the paraneid: Mo information vou enter here is recorded or monitored--it stays entirely within your browser.

Enter the first three digits of a Social Security number{HEE | _Search !

The Feds link this number to‘IWESt Yirginia

] Done ’_’_‘Q Internet
Figure 4-2: Looking up data in a small table

[4]

Chapter 4 + Browser and Document Objects

Interactive data

JavaScript opens opportunities for turning static information into interactive
information. Figure 4-3 shows a graphical calculator for determining the value of an
electrical component (called a resistor) whose only markings are colored bars.

2l Graphical Resistance Calculator - Microsoft Internet Explorer

JEiIe Edit View Favorites Tools Help ‘ 4

« s @ a4 @ @ @ (s 5 59
Back Forward Stop Refiesh Home Search Favori... History Mail Print Edit RealG...

Calculate Resistor Values from Color Codes

[Red [=][vellow =] [Bue =] [Gow =]
Black
Brown
Fed

. 24 bohms, +-6%
Resistance Va%

Green

Blue
Violet
Gray
‘White

Tustration: VO (Zan Francisco)

] Done ’_’_‘O Internet
Figure 4-3: An interactive graphical calculator

The image in the bottom half of the page is composed of seven images in vertical
slices all bunched up against each other. Four slices display the colored bands,
while the remaining three slices contain the ends of the resistor and the spacer
between groups of bands. As the visitor selects a color from a pop-up list near the
top, the associated image slice changes to the selected color and the resistance
value is calculated and displayed.

Again, once the page is loaded, response time is instantaneous. Conversely, a
server-based version of this calculator would take many seconds between color
changes. Moreover, JavaScript provides the power to preload all possible images
into the browser cache while the main page loads. Therefore, with only a slight
extra delay to download all images with the page, no further delay occurs when a
visitor chooses a new color. Not only is the application practical (for its intended
audience), but it’s just plain fun to play with.

Multiple frames

While frames are the domain of HTML, they suddenly become more powerful
with some JavaScript behind them. The Decision Helper application shown in
Figure 4-4 takes this notion to the extreme.

CD-5

CD-6

Part Il 4+ JavaScript Tutorial

ZKDecision Helper - Microsoft Internet Explorer
JEiIe Edit View Favorites Tools Help |

Jév».@ﬁ@@ge%véﬁv”
Back Forward Stop Refresh Home Search Favori... Historp Mail Print Edit
=
Buying a FAX machine
Results Ranking
| FaxO-Matic 1000 [72 | mom
| DkyFax300 56 | e
| LagFaIX [—
|Lnnse Cannon M-200 ‘I?Z 4 ‘_
D —
Results = |
Results are calculated based on the various weights and rankings you entered in previous
: i screens. The specific mimbers are not particularly important: their relative positions, however, |
% are what you're loclang for. The highest number represents the alternative rating the hughest =l
||@ ’_’_|O Internet 4

Figure 4-4: The Decision Helper

The Decision Helper is a full-fledged application that includes four input screens
and one screen that displays the results of some fairly complex calculations based
on the input screens. Results are shown both in numbers and in a bar graph form,
as displayed in Figure 4-4.

Interaction among the three frames requires JavaScript. For example, suppose
the user clicks one of the directional arrows in the top-left frame. Not only does the
top-right frame change to another document, but the instructions document in the
bottom frame also shifts to the anchor point that parallels the content of the input
screen. Scripting behind the top-right frame documents uses various techniques to
preserve entry information as the user navigates through the sequence of input
pages. These are the same techniques you might use to build an online product
catalog and shopping cart — accumulating the customer’s selections from various
catalog pages and then bringing them together in the checkout order form.

Certainly you could fashion this application out of a CGI program on the server.
But the high level of interaction and calculation required would turn this now
speedy application into a glacially slow exchange of information between user and
server.

Dynamic HTML

Starting with the version 4 browsers from both Netscape and Microsoft, you can
modify more and more content on the page with the help of client-side scripts. In
Figure 4-5, for example, scripts in the page control the dragging of map pieces in the
puzzle. Highlighted colors change as you click the state maps, instruction panels fly
in from the edge of the screen, and another item appears when you place all the
states in their proper positions.

Chapter 4 + Browser and Document Objects

3 a 050 Brne Dre =1 ES
J File Edit View Favorites Tools Help ‘
J - 4| @ @m & | B 5 = . D
Back Forward Stop Refiesh Home Search Favori... History Mail Print Edit RealG...
"Lower 48" U.S. Map Puzzle
LI
] Done ’_’_‘Q Internet

Figure 4-5: A map game in scriptable Dynamic HTML

The browser feature that makes this level of script control possible is Dynamic
HTML (DHTML). JavaScript becomes the vital connection between the user and
dynamically respositionable elements on the screen. Not even a program on the
server could help this application because you need immediate programmatic
control in the page to respond to user mouse motion and instantaneous changes to
screen elements.

When to use JavaScript

The preceding examples demonstrate a wide range of applications for JavaScript,
but by no means do they come close to exhausting JavaScript’s possibilities. When
faced with a Web application task, I look to client-side JavaScript for help with the
following requirements:

4+ Data entry validation: If form fields need to be filled out for processing on the
server, | let client-side scripts prequalify the data entered by the user.

4+ Serverless CGls: | use this term to describe processes that, were it not for
JavaScript, would be programmed as CGIs on the server, yielding slow perfor-
mance because of the interactivity required between the program and user.
This includes tasks such as small data collection lookup, modification of
images, and generation of HTML in other frames and windows based on user
input.

CD-7

CD-8

Part Il + JavaScript Tutorial

4+ Dynamic HTML interactivity: It’s one thing to use DHTML'’s capabilities to
precisely position elements on the page—you don’t need scripting for that.
But if you intend to make the content dance on the page, scripting makes that
happen.

4+ CGI prototyping: Sometimes you may want a CGI program to be at the root of
your application because it reduces the potential incompatibilities among
browser brands and versions. It may be easier to create a prototype of the CGI
in client-side JavaScript. Use this opportunity to polish the user interface
before implementing the application as a CGI.

4+ Offloading a busy server: If you have a highly trafficked Web site, it may be
beneficial to convert frequently used CGI processes to client-side JavaScript
scripts. Once a page is downloaded, the server is free to serve other visitors.
Not only does this lighten server load, but users also experience quicker
response to the application embedded in the page.

4+ Adding life to otherwise dead pages: HTML by itself is pretty “flat.” Adding a
blinking chunk of text doesn’t help much; animated GIF images more often
distract from, rather than contribute to, the user experience at your site. But
if you can dream up ways to add some interactive zip to your page, it may
engage the user and encourage a recommendation to friends or repeat visits.

4+ Creating “Web pages that think”: If you let your imagination soar, you may

develop new, intriguing ways to make your pages appear “smart.” For exam-
ple, in the application Intelligent “Updated” Flags (Chapter 54), you see how
(without a server CGI or database) an HTML page can “remember” when a vis-
itor last came to the page. Then any items that have been updated since the
last visit —regardless of the number of updates you've done to the page —are
flagged for that visitor. That’s the kind of subtle, thinking Web page that best
displays JavaScript’s powers.

The Document Object Model

Before you can truly start scripting, you should have a good feel for the kinds of
objects you will be scripting. A scriptable browser does a lot of the work of creating
software objects that generally represent the visible objects you see in an HTML
page in the browser window. Obvious objects include form controls (text boxes and
buttons) and (in recent browsers) images. However, there may be other objects
that aren’t so obvious by looking at a page, but which make perfect sense when you
consider the HTML tags used to generate a page’s content —frames of a frameset,
for example.

Chapter 4 + Browser and Document Objects

To help scripts control these objects —and to help authors see some method to
the madness of potentially dozens of objects on a page —the browser makers
define a document object model (DOM). A model is like a prototype or plan for the
organization of objects on a page.

Object models implemented in browsers have grown rapidly with each genera-
tion of browser. Moreover, Microsoft and Netscape have added their own touches
from time to time in a competitive features race. The lack of compatibility among
browser versions and brands can drive scripters to distraction, especially if (at the
outset) they learn the object model only of the latest version of only one brand —
unaware of limits in earlier browsers or those from other makers.

All is not lost, however. This tutorial focuses on the document object model that
you can find in every scriptable browser. Figure 4-6 shows a map of the lowest com-
mon denominator object model, which is safe to use on all browsers. At this stage
of the learning process, it is not important to memorize the model but rather to get
a general feel for what’s going on.

window

frame | self t0p| parent

[]
| history | |document| | location |
I
[[]
| link | | form | | anchor |
[TT [TT [T
text | | radio | | button | | select |
textarea checkbox reset option
| | | | | | | |

|password|| submit |

Figure 4-6: Lowest common denominator document object
model for all scriptable browsers

One misconception you must avoid at the outset is that the model shown in
Figure 4-6 is the model for every document that loads into the browser. On the
contrary —it represents an idealized version of a document that includes one of
every possible type of object that the browser knows. In a moment, I will show you
how the document object model stored in the browser at any given instant reflects
the HTML in the document. But for now, I want to impress an important aspect of
the structure of the idealized model: its hierarchy.

CD-9

CD-10 Partil + JavaScript Tutorial

Object model features that are proprietary to one browser version and/or brand are per-
fectly usable provided you know that your audience uses that brand or version exclusively
(for example, in a corporate environment where a browser version might be mandated for
all employees). If you develop in this kind of controlled environment, then be assured that
browser-specific features are covered in the reference portions of this book.

An industry standards effort (by the W3C) has begun specifying a common set of object
model features and syntax that provide more flexibility than the original implementations.
The biggest improvement is that every HTML element becomes an object that scripts can
manipulate (a feature also found in IE4’s object model). This DOM, built upon the original
object model you learn in this tutorial, is implemented in varying degrees of completion in
IE5+ and NN6+ (the latter offering a much more complete W3C DOM implementation).
The scripter’s dream is that one day W3C DOM-compatible browsers will be the majority of
the installed base, and creating cross-browser, highly dynamic pages will be easier than
today. In the meantime, you have lots of fundamentals to learn —knowledge that you'll use
for many years to come.

Containment hierarchy

Notice in Figure 4-6 that objects are grouped together in various levels desig-
nated by the density of the gray background. Objects are organized in a hierarchy,
not unlike the hierarchy of a company’s organization chart of job positions. At the
top is the president. Reporting to the president are several vice presidents. One of
the vice presidents manages a sales force that is divided into geographical regions.
Each region has a manager who reports to the vice president of sales; each region
then has several salespeople. If the president wants to communicate to a salesper-
son who handles a big account, the protocol dictates that the president should
route the message through the hierarchy —to the vice president of sales; to the
sales manager; to the salesperson. The hierarchy clearly defines each unit’s role
and relationship to the other units.

This hierarchical structure applies to the organization of objects in a document.
Allow me to highlight the key objects in Figure 4-6 and explain their relationships to
others.

4+ Window object: At the top of the hierarchy is the window. This object repre-
sents the content area of the browser window where HTML documents
appear. In a multiple-frame environment, each frame is also a window (but
don’t concern yourself with this just yet). Because all document action takes
place inside the window, it is the outermost element of the object hierarchy.
Its physical borders contain the document.

4 Document object: Each HTML document that gets loaded into a window
becomes a document object. Its position in the object hierarchy is an impor-
tant one, as you can see in Figure 4-6. The document object contains most of
the other kinds of objects in the model. This makes perfect sense when you
think about it: The document contains the content that you are likely to
script.

Chapter 4 4 Browser and Document Objects CD-11

4 Form object: Users don’t see the beginning and ending of forms on a page, only
their elements. But a form is a distinct grouping of content inside an HTML
document. Everything that is inside the <FORM>. . .</FORM> tag set is part of
the form object. A document might have more than one pair of <FORM> tags if
dictated by the page design. If so, the map of the objects for that particular
document has two form objects instead of the one that appears in Figure 4-6.

4+ Form control elements: Just as your HTML defines form elements within the
confines of the <FORM>. . .</FORM> tag pair, so does a form object contain all
the elements defined for that object. Each one of those form elements — text
fields, buttons, radio buttons, checkboxes, and the like —is a separate object.
Unlike the one-of-everything model shown in Figure 4-6, the precise model for
any document depends on the HTML tags in the document.

When a Document Loads

Programming languages, such as JavaScript, are convenient intermediaries
between your mental image of how a program works and the true inner workings of
the computer. Inside the machine, every word of a program code listing influences
the storage and movement of bits (the legendary 1s and 0s of the computer’s
binary universe) from one RAM storage slot to another. Languages and object mod-
els are inside the computer (or, in the case of JavaScript, inside the browser’s area
of the computer) to make it easier for programmers to visualize how a program
works and what its results will be. The relationship reminds me a lot of knowing
how to drive an automobile from point A to point B without knowing exactly how an
internal combustion engine, steering linkages, and all that other internal “stuff”
works. By controlling high-level objects such as the ignition key, gearshift, gas
pedal, brake, and steering wheel, | can get the results | need.

Of course, programming is not exactly like driving a car with an automatic trans-
mission. Even scripting requires the equivalent of opening the hood and perhaps
knowing how to check the transmission fluid or change the oil. Therefore, now it’s
time to open the hood and watch what happens to the document object model as a
page loads into the browser.

A simple document

Figure 4-7 shows the HTML and corresponding object model for a very simple
document. When this page loads, the browser maintains in its memory a map of the
objects generated by the HTML tags in the document. The window object is always
there for every document. Every window object also contains an object called the
Tocation object (it stores information about the URL of the document being
loaded). I'll skip that object for now, but acknowledge its presence (as a dimmed
box in the diagram) because it is part of the model in the browser memory. Finally,
because a document has been loaded, the browser generates a document object in
its current map.

CD-12

Part Il 4+ JavaScript Tutorial

"Note

<HTML>
<HEAD><TITLE> Window Location
Simple Doc
</TITLE></HEAD>
<BODY>
<H1>Howdy</H1> Document
</BODY>
</HTML>

Figure 4-7: A simple document and object map

In IE4+ and the W3C DOM, every HTML element (such as the H1 element of

~~ Figure 4-7) becomes an object contained by the document. But this tutorial

observes the original model, which turns only a handful (albeit an important
handful) of HTML elements into scriptable objects.

Add a form

Now, I modify the HTML file to include a blank <FORM> tag set and reload the
document. Figure 4-8 shows what happens to both the HTML (changes in boldface)
and the object map as constructed by the browser. Even though no content
appears in the form, the <FORM> tags are enough to tell the browser to create that
form object. Also note that the form object is contained by the document in the
hierarchy of objects in the current map. This mirrors the structure of the idealized
map shown in Figure 4-6.

<HTML>
<HEAD><TITLE> Window Location
Simple Doc
</TITLE></HEAD>
<BODY>
<H1>Howdy</H1> Document
<FORM>
</FORM>
</BODY>
</HTML> Form

Figure 4-8: Adding a form

Add a text input element

I modify and reload the HTML file again, this time including an <INPUT> tag that
defines the text field form element shown in Figure 4-9. As mentioned earlier, the
containment structure of the HTML (the <INPUT> tag goes inside a <FORM> tag set)
is reflected in the object map for the revised document. Therefore, the window con-
tains a document; the document contains a form; and the form contains a text input
element.

Chapter 4 4 Browser and Document Objects CD-13

<HTML>
<HEAD><TITLE> Window Location
Simple Doc
</TITLE></HEAD>
<BODY>
<H1>Howdy</H1> Document
<FORM>

<INPUT TYPE="text">
</FORM>
</BODY> Form
</HTML>

Text

Figure 4-9: Adding a text input element to the form

Add a button element

The last modification [make to the file is to add a button input element to the
same form as the one that holds the text input element (see Figure 4-10). Notice
that the HTML for the button is contained by the same <FORM> tag set as the text
field. As a result, the object map hierarchy shows both the text field and button
contained by the same form object. If the map were a corporate organization chart,
the employees represented by the Text and Button boxes would be at the same
level reporting to the same boss.

<HTML>
<HEAD><TITLE> Window Location
Simple Doc
</TITLE></HEAD>
<BODY>
<H1>Howdy</H1> Document
<FORM>

<INPUT TYPE="text">

<INPUT TYPE="button">

</FORM> Form

</BODY>

</HTML> |
Text Button

Figure 4-10: Adding a button element to the same form

CD-14 partil + JavaScript Tutorial

Now that you see how objects are created in memory in response to HTML tags,
the next step is to figure out how scripts can communicate with these objects. After
all, scripting is mostly about controlling these objects.

Object References

After a document is loaded into the browser, all of its objects are safely stored in
memory in the containment hierarchy structure specified by the browser’s docu-
ment object model. For a script to control one of those objects, there must be a way
to communicate with an object and find out something about it such as, “Hey, Mr.
Text Field, what did the user type?”

The JavaScript language uses the containment hierarchy structure to let scripts
get in touch with any object in a document. For a moment, pretend you are the
browser with a document loaded into your memory. You have this road map of
objects handy:. If a script needs you to locate one of those objects, it would be a big
help if the script showed you what route to follow in the map to reach that object.
That is precisely what an object reference in a script does for the browser.

Object naming

The biggest aid in creating script references to objects is assigning names to
every scriptable object in your HTML. Scriptable browsers, such as modern ver-
sions of Navigator and Internet Explorer, acknowledge an optional tag attribute
called NAME. This attribute enables you to assign a unique name to each object.
Here are some examples of NAME attributes added to typical tags:

<FORM NAME="dataEntry" METHOD=GET>
{INPUT TYPE="text" NAME="entry">

<FRAME SRC="info.html" NAME="main">
The only rules about object names (also called identifiers) are that they
4+ May not contain spaces
4+ Should not contain punctuation except for the underscore character
4 Must be inside quotes when assigned to the NAME attribute
4 Must not start with a numeric character

Think of assigning names the same as sticking nametags on everyone attending a
conference meeting. The name of the object, however, is only one part of the actual
reference that the browser needs to locate the object. For each object, the refer-
ence must include the steps along the object hierarchy from the top down to the
object —no matter how many levels of containment are involved. In other words,
the browser cannot pick out an object by name only. A reference includes the
names of each object along the path from the window to the object. In the
JavaScript language, each successive object name along the route is separated from
another by a period.

Chapter 4 + Browser and Document Objects

The HTML 4.0 specification introduces a new way to assign an identifier to HTML elements:
the ID attribute. The 1D attribute is helpful for some aspects of Cascading Style Sheets
(CSS) and Dynamic HTML. Even so, the NAME attribute is still required for common denom-
inator elements covered in this tutorial - FRAME, FORM, and INPUT elements, for example.
The newest browsers can access an element by name or ID, but authors typically use the 1D
attribute for HTML element objects not shown in Figure 4-6. You can read more about the
1D attribute (and id property) in Chapter 15 after you finish the tutorial.

To demonstrate what real references look like within the context of an object
model you've already seen, I retrace the same model steps shown earlier but this
time I show the reference to each object as the document acquires more objects.

A simple document

I start with the model whose only objects are the window (and its Tocation

object) and document from the simple HTML file. Figure 4-11 shows the object map
and references for the two main objects. Every document resides in a window, so to

reference the window object you start with window. Also fixed in this reference is
the document because there can be only one document per window (or frame).
Therefore, a reference to the document object is window.document.

Window Location

window

window.document Document

Figure 4-11: References to the window and document

Add a form

Modifying the document to include the empty <FORM> tag generates the form
object in the map. If [do the job right, the <FORM> tag also includes a NAME
attribute. The reference to the form object, as shown in Figure 4-12, starts with the

window, wends through the document, and reaches the form, which I call by name:
window.document.formName (the italics meaning that in a real script, I would sub-

stitute the form’s name for formName).

CD-15

CD-16 Partll + JavaScript Tutorial

window Window Location
window.document Document
window.document.formName Form

Figure 4-12: Reference to the form object

Add a text input element

As the hierarchy gets deeper, the object reference gets longer. In Figure 4-13, |
add a text input object to the form. The reference to this deeply nested object still
starts at the window level and works its way down to the name [assigned to the
object in its <INPUT> tag: window.document.formName.textName.

window Window Location
window.document Document
window.document.formName Form
window.document.formName.textName Text

Figure 4-13: Reference to the text field object

Add a button element

When I add a button to the same form as the text object, the reference
stays the same length (see Figure 4-14). All that changes is the last part of
the reference where the button name goes in place of the text field name:
window.document.formName.buttonName.

Chapter 4 4 Browser and Document Objects CD-17

window Window Location
window.document Document
window.document.formName Form

I

I |
window.document.formName.textName Text Button
window.document.formName.buttonName

Figure 4-14: Reference to the button object

About the Dot Syntax

JavaScript uses the period to separate components of a hierarchical reference.
This convention is adopted from Java, which, in turn, based this formatting on the
C language. Every reference typically starts with the most global scope —the win-
dow for client-side JavaScript — and narrows focus with each “dot” (.) delimiter.

If you have not programmed before, don’t be put off by the dot syntax. You are
probably already using it, such as when you access Usenet newsgroups. The
methodology for organizing the thousands of newsgroups is to group them in a
hierarchy that makes it relatively easy to both find a newsgroup and visualize
where the newsgroup you’re currently reading is located in the scheme of things.

Newsgroup organization model

Let me briefly dissect a typical newsgroup address to help you understand dot
syntax: rec.sport.skating.inline. The first entry (at the left edge) defines the
basic group —recreation — among all the newsgroup categories. Other group cate-
gories, such as comp and alt, have their own sections and do not overlap with
what goes on in the rec section. Within the rec section are dozens of subsections,
one of which is sport. That name distinguishes all the sport-related groups from,
say, the automobile or music groups within recreational newsgroups.

Like most broad newsgroup categories, rec.sport has many subcategories,
with each one devoted to a particular sport. In this case, it is skating. Other sport
newsgroups include rec.sport.rugby and rec.sport.snowboarding. Even
within the rec.sport.skating category, a further subdivision exists to help
narrow the subject matter for participants. Therefore, a separate newsgroup just
for inline skaters exists, just as a group for roller-skating exists (rec.sport.
skating.roller). As a narrower definition is needed for a category, a new level is
formed by adding a dot and a word to differentiate that subgroup from the thou-
sands of newsgroups on the Net. When you ask your newsgroup software to view
messages in the rec.sport.skating.inline group, you're giving it a map to
follow in the newsgroup hierarchy to go directly to a single newsgroup.

CD-18 Partil + JavaScript Tutorial

Another benefit of this syntactical method is that names for subcategories can
be reused within other categories, if necessary. For example, with this naming
scheme, it is possible to have two similarly named subcategories in two separate
newsgroup classifications (such as rec.radio.scannersandalt.radio.
scanners). When you ask to visit one, the hierarchical address, starting with the
rec or alt classification, ensures you get to the desired place. Neither collection of
messages is automatically connected with the other (although subscribers fre-
quently cross-post to both newsgroups).

For complete newbies to the Net, this dot syntax can be intimidating. Because
the system was designed to run on UNIX servers (the UNIX operating system is
written in C), the application of a C-like syntax for newsgroup addressing is hardly
surprising.

What Defines an Object?

When an HTML tag defines an object in the source code, the browser creates a
slot for that object in memory as the page loads. But an object is far more complex
internally than, say, a mere number stored in memory. The purpose of an object is
to represent some “thing.” Because in JavaScript you deal with items that appear in
a browser window, an object may be an input text field, a button, or the whole
HTML document. Outside of the pared-down world of a JavaScript browser, an
object can also represent abstract entities, such as a calendar program’s appoint-
ment entry or a layer of graphical shapes in a drawing program.

Every object is unique in some way, even if two or more objects look identical to
you in the browser. Three very important facets of an object define what it is, what
it looks like, how it behaves, and how scripts control it. Those three facets are
properties, methods, and event handlers. They play such key roles in your future
JavaScript efforts that the Quick Reference in Appendix A summarizes the proper-
ties, methods, and event handlers for each object in the object models imple-
mented in various browser generations. You might want to take a quick peek at that
road map of the original object model if for no other reason than to gain an appreci-
ation for the size of the scripting vocabulary that this tutorial covers.

Properties

Any physical object you hold in your hand has a collection of characteristics
that defines it. A coin, for example, has shape, diameter, thickness, color, weight,
embossed images on each side, and any number of other attributes that distinguish
it from, say, a feather. Each of those features is called a property. Each property has
a value of some kind attached to it (even if the value is empty or null). For example,
the shape property of a coin might be “circle”—in this case, a text value. In con-
trast, the denomination property is most likely a numeric value.

You may not have known it, but if you've written HTML for use in a scriptable
browser, you have set object properties without writing one iota of JavaScript. Tag
attributes are the most common way to set an HTML object’s initial properties. The
presence of JavaScript often adds optional attributes whose initial values you can
set when the document loads. For example, the following HTML tag defines a
button object that assigns two property values:

<INPUT TYPE="button" NAME="clicker" VALUE="Hit Me...">

Chapter 4 4 Browser and Document Objects CD-19

In JavaScript parlance, then, the name property holds the word “clicker,” while
the value property is the text that appears on the button label, “Hit Me. . ..” In
truth, a button has more properties than just these, but you don’t have to set every
property for every object. Most properties have default values that are automati-
cally assigned if nothing special is set in the HTML or later from a script.

The contents of some properties can change while a document is loaded and the
user interacts with the page. Consider the following text input tag:

<INPUT TYPE="text" NAME="entry" VALUE="User Name?">

The name property of this object is the word “entry.” When the page loads, the
text of the VALUE attribute setting is placed in the text field — the automatic behav-
ior of an HTML text field when the VALUE attribute is specified. But if a user enters
some other text into the text field, the value property changes —not in the HTML,
but in the memory copy of the object model that the browser maintains. Therefore,
if a script queries the text field about the content of the value property, the
browser yields the current setting of the property — which isn’t the one specified
by the HTML if a user changes the text.

To gain access to an object’s property, you use the same kind of dot syntax,
hierarchical addressing scheme you saw earlier for objects. A property is contained
by its object, so the reference to it consists of the reference to the object plus one
more extension naming the property. Therefore, for the button and text object tags
just shown, references to various properties are

document.formName.clicker.name
document.formName.clicker.value
document.formName.entry.value

You may wonder what happened to the window part of the reference. It turns out
that there can be only one document contained in a window, so references to
objects inside the document can omit the window portion and start the reference
with document. You cannot omit the document object, however, from the reference.
In [E4+, you can reference an element object by simply referring to the element’s 1D
attribute if one is assigned. Even so, I strongly recommend spelling out references
so that your code is easier to read and understand long after you’ve written it.
Notice, too, that the button and text fields both have a property named value.
These properties represent very different attributes for each object. For the button,
the property determines the button label; for the text field, the property reflects the
current text in the field. You now see how the (sometimes lengthy) hierarchical
referencing scheme helps the browser locate exactly the object and property your
script needs. No two items in a document can have identical references even
though parts of these references may have the same component names.

Methods

If a property is like a descriptive adjective for an object, then a method is a verb.
A method is all about action related to the object. A method either does something
to the object or with the object that affects other parts of a script or document.
They are commands of a sort, but whose behaviors are tied to a particular object.

An object can have any number of methods associated with it (including none at
all). To set a method into motion (usually called invoking a method), a JavaScript
statement must include a reference to it —via its object with a pair of parentheses
after the method name —as in the following examples:

CD-20 Partil + JavaScript Tutorial

document.orderForm.submit()
document.orderForm.entry.select()

The first is a scripted way of clicking a Submit button to send a form (named
orderForm) to a server. The second selects the text inside a text field named entry
(which is contained by a form named orderForm).

Sometimes a method requires that you send additional information with it so
that it can do its job. Each chunk of information passed with the method is called a
parameter or argument (you can use the terms interchangeably). You saw examples
of passing a parameter in your first script in Chapter 3. Two script statements
invoked the write() method of the document object:

document.write("This browser is version " + navigator.appVersion)
document.write(" of " + navigator.appName + ".")

As the page loaded into the browser, each document.write() method sent
whatever text was inside the parentheses to the current document. In both cases,
the content being sent as a parameter consisted of straight text (inside quotes) and
the values of two object properties: the appVersion and appName properties of the
navigator object. (The navigator object does not appear in the object hierarchy
diagram of Figure 4-6 because in early browsers this object exists outside of the
document object model.)

Some methods require more than one parameter. If so, the multiple parameters
are separated by commas. For example, Version 4 and later browsers support a
window object method that moves the window to a particular coordinate point on
the screen. A coordinate point is defined by two numbers that indicate the number
of pixels from the left and top edges of the screen where the top-left corner of the
window should be. To move the browser window to a spot 50 pixels from the left
and 100 pixels from the top, the method is

window.moveTo(50,100)

As you learn more about the details of JavaScript and the document objects you
can script, pay close attention to the range of methods defined for each object.
They reveal a lot about what an object is capable of doing under script control.

Event handlers

One last characteristic of a JavaScript object is the event handler. Events are
actions that take place in a document, usually as the result of user activity.
Common examples of user actions that trigger events include clicking a button or
typing a character into a text field. Some events, such as the act of loading a docu-
ment into the browser window or experiencing a network error while an image
loads, are not so obvious.

Almost every JavaScript object in a document receives events of one kind or
another — summarized for your convenience in the Quick Reference of Appendix A.
What determines whether the object does anything in response to the event is an
extra attribute you enter into the object’s HTML definition. The attribute consists of
the event name, an equal sign (just like any HTML attribute), followed by instruc-
tions about what to do when the particular event fires. Listing 4-1 shows a very
simple document that displays a single button with one event handler defined for it.

Chapter 4 4 Browser and Document Objects CD-21

Listing 4-1: A Simple Button with an Event Handler

<HTML>
<BODY>
<FORM>
CINPUT TYPE="button" VALUE="Click Me" onClick="window.alert ('Ouch!")">
</FORM>
</BODY>
</HTMLY>

The form definition contains what, for the most part, looks like a standard input
item. But notice the last attribute, onCl1ick="window.alert('Ouch!"')". Button
objects, as you see in their complete descriptions in Chapter 24, react to mouse
clicks. When a user clicks the button, the browser sends a click event to the button.
In this button’s definition, the attribute says that whenever the button receives that
message, it should invoke one of the window object’s methods, alert(). The
alert () method displays a simple alert dialog box whose content is whatever text
is passed as a parameter to the method. Like most arguments to HTML attributes,
the attribute setting to the right of the equal sign goes inside quotes. If additional
quotes are necessary, as in the case of the text to be passed along with the event
handler, those inner quotes can be single quotes. In actuality, JavaScript doesn’t
distinguish between single or double quotes but does require that each set be of
the same type. Therefore, you can write the attribute this way:

onClick="alert("Ouch!")"

Exercises

1. Which of the following applications are well suited to client-side JavaScript?
Why or why not?

a. Music jukebox

b. Web-site visit counter

c. Chat room

d. Graphical Fahrenheit-to-Celsius temperature calculator
e. All of the above

f. None of the above

CD-22

Part Il + JavaScript Tutorial

2. General Motors has separate divisions for its automobile brands: Chevrolet,

Pontiac, Buick, and Cadillac. Each brand has several models of automobile.
Following this hierarchy model, write the dot-syntax equivalent reference to
the following three vehicle models:

a. Chevrolet Malibu
b. Pontiac Firebird

c. Pontiac GrandAm

. Which of the following object names are valid in JavaScript? For each one that

is invalid, explain why.
a. lastName
b. company_name
c. IstLineAddress
d. zip code
e. today's_date

4. An HTML document contains tags for one link and one form. The form con-

tains tags for three text boxes, one checkbox, a Submit button, and a Reset
button. Using the object hierarchy diagram from Figure 4-6 for reference, draw
a diagram of the object model that the browser would create in its memory
for these objects. Give names to the link, form, text fields, and checkbox, and
write the references to each of those objects.

5. Write the HTML tag for a button input element named “Hi,” whose visible label

reads “Howdy” and whose onC11ck event handler displays an alert dialog box
that says “Hello to you, too!”

+ 0+

Scripts and
HTML
Documents

In this chapter’s tutorial, you begin to see how scripts are
embedded within HTML documents and what comprises a
script statement. You also see how script statements can run
when the document loads or in response to user action.

Finally, you find out where script error information is hiding.

Where Scripts Go in Documents

Chapter 4 did not thoroughly cover what scripts look like
or how you add them to an HTML document. That’s where
this lesson picks up the story.

The <SCRIPT> tag

To assist the browser in recognizing lines of code in an
HTML document as belonging to a script, you surround lines
of script code with a <SCRIPT>...</SCRIPT> tag set. This is
common usage in HTML where start and end tags encapsulate
content controlled by that tag, whether the tag set is for a
form or a paragraph.

Depending on the browser, the <SCRIPT> tag has a variety
of attributes you can set that govern the script. One attribute
shared by scriptable browsers is the LANGUAGE attribute. This
attribute is essential because each browser brand and version
accepts a different set of scripting languages. One setting that
all scriptable browsers accept is the JavaScript language, as in

<SCRIPT LANGUAGE="JavaScript">

Other possibilities include later versions of JavaScript
(version numbers are part of the language name), Microsoft’s
JScript variant, and the separate VBScript language. You don’t
need to specify any of these other languages unless your
script intends to take specific advantage of a particular
language version to the exclusion of all others. Until you learn

CHAPTER

PR SR SRS
In This Chapter
Where to place
scripts in HTML

documents

What a JavaScript
statement is

What makes a script
run

Viewing script errors

¢+ o+ o+

CD-24 partil + JavaScript Tutorial

the differences among the language versions, you can safely specify plain
JavaScript on all scriptable browsers.

Be sure to include the ending tag for the script. Lines of JavaScript code go
between the two tags:

<{SCRIPT LANGUAGE="JavaScript">
one or more lines of JavaScript code here
</SCRIPT>

If you forget the closing script tag, the script may not run properly and the HTML
elsewhere in the page may look strange.

Although you don’t work with it in this tutorial, another attribute works with
more recent browsers to blend the contents of an external script file into the
current document. An SRC attribute (similar to the SRC attribute of an tag)
points to the file containing the script code. Such files must end with a .js exten-
sion. The tag set looks like the following:

<SCRIPT LANGUAGE="JavaScript" SRC="myscript.js"></SCRIPT>

All script lines are in the external file, so no script lines are included between the
start and end script tags in the document.

Tag positions

Where do these tags go within a document? The answer is, anywhere they're
needed in the document. Sometimes it makes sense to include the tags nested
within the <HEAD>. . .</HEAD> tag set; other times it is essential that you drop the
script into a very specific location in the <BODY>. . .</BODY> section.

In the following four listings, | demonstrate — with the help of a skeletal HTML
document —some of the possibilities of <SCRIPT> tag placement. Later in this les-
son, you see why scripts may need to go in different places within a page depending
on the scripting requirements.

Listing 5-1 shows the outline of what may be the most common position of a
<SCRIPT> tag set in a document: in the <HEAD> tag section. Typically, the Head is a
place for tags that influence noncontent settings for the page —so-called HTML
“directive” elements, such as <META> tags and the document title. It turns out that
this is also a convenient place to plant scripts that are called on in response to user
action.

The HTML 4.0 specification does not endorse the popular LANGUAGE attribute for script tags.
Instead, it suggests the TYPE attribute, which requires a value in the form of a MIME
(Multipurpose Internet Mail Extensions) type descriptor:

TYPE="text/Jjavascript"

Only browsers with W3C DOM capabilities (such as IE5+ and NN6+) support the TYPE
attribute, but the LANGUAGE attribute continues to be supported and should be for some
time to come. All examples in this book use the compatible LANGUAGE attribute.

Chapter 5 4 Scripts and HTML Documents (CD-25

Listing 5-1: Scripts in the Head

<HTML>

<HEAD>

<TITLE>A Document</TITLE>

<SCRIPT LANGUAGE="JavaScript">
//script statement(s) here

</SCRIPT>

</HEAD>

<BODY>

</BODY>
</HTML>

On the other hand, if you need a script to run as the page loads so that the script
generates content in the page, the script goes in the <BODY> portion of the docu-
ment, as shown in Listing 5-2. If you check the code listing for your first script in
Chapter 3, you see that the script tags are in the Body because the script needs to
fetch information about the browser and write the results to the page as the page
loads.

Listing 5-2: A Script in the Body

<HTML>

<HEAD>

<TITLE>A Document</TITLE>

</HEAD>

<BODY>

<SCRIPT LANGUAGE="JavaScript">
//script statement(s) here

</SCRIPT>

</BODY>

</HTML>

It’s also good to know that you can place an unlimited number of <SCRIPT> tag
sets in a document. For example, Listing 5-3 shows a script in both the Head and
Body portions of a document. Perhaps this document needs the Body script to cre-
ate some dynamic content as the page loads, but the document also contains a but-
ton that needs a script to run later. That script is stored in the Head portion.

CD-26 Partll + JavaScript Tutorial

Listing 5-3: Scripts in the Head and Body

<HTML>

<HEAD>

<TITLE>A Document</TITLE>

<SCRIPT LANGUAGE="JavaScript">
//script statement(s) here

</SCRIPT>

</HEAD>

<BODY>

<SCRIPT LANGUAGE="JavaScript">
//script statement(s) here

</SCRIPT>

</BODY>

</HTML>

You also are not limited to one <SCRIPT> tag set in either the Head or Body. You
can include as many <SCRIPT> tag sets in a document as are needed to complete
your application. In Listing 5-4, for example, two <SCRIPT> tag sets are located in
the Body portion, with some other HTML between them.

Listing 5-4: Two Scripts in the Body

<HTML>

<HEAD>

<TITLE>A Document</TITLE>

</HEAD>

<BODY>

<SCRIPT LANGUAGE="JavaScript">
//script statement(s) here

</SCRIPT>

<MORE HTML>

<SCRIPT LANGUAGE="JavaScript">
//script statement(s) here

</SCRIPT>

</BODY>

</HTML>

Handling older browsers

Only browsers that include JavaScript in them know to interpret the lines of
code between the <SCRIPT>...</SCRIPT> tag pair as script statements and not
HTML text for display in the browser. This means that a pre-JavaScript browser not
only ignores the tags, but it also treats the JavaScript code as page content. As you

Chapter 5 4+ Scripts and HTML Documents (CD-27

saw at the end of Chapter 3 in an illustration of your first script running on an old
browser, the results can be disastrous to a page.

You can reduce the risk of old browsers displaying the script lines by playing a
trick. The trick is to enclose the script lines between HTML comment symbols, as
shown in Listing 5-5. Most nonscriptable browsers completely ignore the content
between the <!-- and --> comment tags, whereas scriptable browsers ignore
those comment symbols when they appear inside a <SCRIPT> tag set.

Listing 5-5: Hiding Scripts from Most Old Browsers

<SCRIPT LANGUAGE="JavaScript">

<I--

//script statement(s) here
/1 -->
</SCRIPT>

The odd construction right before the ending script tag needs a brief explana-
tion. The two forward slashes are a JavaScript comment symbol. This symbol is
necessary because JavaScript otherwise tries to interpret the components of the
ending HTML symbol (-->). Therefore, the forward slashes tell JavaScript to skip
the line entirely; a nonscriptable browser simply treats those slash characters as
part of the entire HTML comment to be ignored.

Despite the fact that this technique is often called hiding scripts, it does not
disguise the scripts entirely. All client-side JavaScript scripts are part of the HTML
document and download to the browser just like all other HTML. Furthermore, you
can view them as part of the document’s source code. Do not be fooled into think-
ing that you can hide your scripts entirely from prying eyes.

JavaScript Statements

Virtually every line of code that sits between a <SCRIPT>...</SCRIPT> tag pair
is a JavaScript statement. To be compatible with habits of experienced program-
mers, JavaScript accepts a semicolon at the end of every statement. Fortunately for
newcomers, this semicolon is optional. The carriage return at the end of a state-
ment suffices for JavaScript to know the statement has ended.

A statement must be in the script for a purpose. Therefore, every statement does
“something” relevant to the script. The kinds of things that statements do are

4 Define or initialize a variable

4 Assign a value to a property or variable

4+ Change the value of a property or variable
4+ Invoke an object’s method

4 Invoke a function routine

4 Make a decision

If you don’t yet know what all of these mean, don’t worry — you will by the end
of this tutorial. The point | want to stress is that each statement contributes to the
scripts you write. The only statement that doesn’t perform any explicit action is the

CD-28 Partll + JavaScript Tutorial

comment. A pair of forward slashes (no space between them) is the most common
way to include a comment in a script. You add comments to a script for your bene-
fit. They usually explain in plain language what a statement or group of statements
does. The purpose of including comments is to remind you six months from now
how your script works.

When Script Statements Execute

Now that you know where scripts go in a document, it’s time to look at when
they run. Depending on what you need a script to do, you have four choices for
determining when a script runs:

4 While a document loads

4+ Immediately after a document loads

4 In response to user action

4 When called upon by other script statements

The determining factor is how the script statements are positioned in a document.

While a document loads —immediate execution

Your first script in Chapter 3 (reproduced in Listing 5-6) runs while the docu-
ment loads into the browser. For this application, it is essential that a script
inspects some properties of the navigator object and includes those property
values in the content being rendered for the page as it loads. It makes sense, there-
fore, to include the <SCRIPT> tags and statements in the Body portion of the docu-
ment. | call the kind of statements that run as the page loads immediate statements.

Listing 5-6: HTML Page with Immediate Script Statements

<HTML>
<HEAD>
KTITLE>My First Script</TITLE>
</HEAD>

<BODY>

<{H1>Let's Script...</H1>

<HR>

<SCRIPT LANGUAGE="JavaScript">

{I-- hide from old browsers

document.write("This browser is version " + navigator.appVersion)
document.write(" of " + navigator.appName + ".")
// end script hiding -->

</SCRIPT>

</BODY>

</HTMLD

Deferred scripts

The other three ways that script statements run are grouped together as what
I called deferred scripts. To demonstrate these deferred script situations, I must

Chapter 5 4 Scripts and HTML Documents

introduce you briefly to a concept covered in more depth in Chapter 7: the func-
tion. A function defines a block of script statements summoned to run some time
after those statements load into the browser. Functions are clearly visible inside a
<SCRIPT> tag because each function definition begins with the word function fol-
lowed by the function name (and parentheses). Once a function is loaded into the
browser (commonly in the Head portion so it loads early), it stands ready to run
whenever called upon.

One of the times a function is called upon to run is immediately after a page
loads. The Window object has an event handler called onlLoad. Unlike most event
handlers, which are triggered in response to user action (for example, clicking a
button), the onlLoad event handler fires the instant that all of the page’s compo-
nents (including images, Java applets, and embedded multimedia) are loaded into
the browser. The onLoad event handler goes in the <BODY> tag, as shown in Listing
5-7. Recall from Chapter 4 (Listing 4-1) that an event handler can run a script state-
ment directly. But if the event handler must run several script statements, it is usu-
ally more convenient to put those statements in a function definition and then have
the event handler invoke that function. That’s what happens in Listing 5-7: When
the page completes loading, the onlLoad event handler triggers the done () function.
That function (simplified for this example) displays an alert dialog box.

Listing 5-7: Running a Script from the onLoad Event Handler

<HTML>
<HEAD>
KTITLE>An onload script</TITLE>
<SCRIPT LANGUAGE="JavaScript">
<l--
function done() {
alert("The page has finished loading.")
}
/] -=>
</SCRIPT>
</HEAD>
<BODY onLoad="done()">
Here is some body text.
</B0ODY>
</HTML>

Don’t worry about the curly braces or other oddities in Listing 5-7 that cause you
concern at this point. Focus instead on the structure of the document and the flow.
The entire page loads without running any script statements, although the page
loads the done () function in memory so that it is ready to run at a moment’s
notice. After the document loads, the browser fires the onLoad event handler,
which causes the done () function to run. Then the user sees the alert dialog box.

Getting a script to execute in response to a user action is very similar to the
preceding example for running a deferred script right after the document loads.
Commonly, a script function is defined in the Head portion, and an event handler in,
say, a form element calls upon that function to run. Listing 5-8 includes a script that
runs when a user clicks a button.

CD-29

CD-30 Partll + JavaScript Tutorial

Listing 5-8: Running a Script from User Action

<HTML>

<HEAD>

KTITLE>An onCTlick script</TITLE>

{SCRIPT LANGUAGE="JavaScript">

<l--

function alertUser() {
alert("Ouch!™)

}

/] -=>

</SCRIPT>

</HEAD>

<BODY>

Here is some body text.

<FORM>
CINPUT TYPE="text" NAME="entry">
CINPUT TYPE="button" NAME="oneButton" VALUE="Press Me!"

onClick="alertUser()">

</FORM>

</BODY>

</HTMLD

Not every object must have an event handler defined for it in the HTML, as
shown in Listing 5-8 — only the ones for which scripting is needed. No script state-
ments execute in Listing 5-8 until the user clicks the button. The alertUser()
function is defined as the page loads, and it waits to run as long as the page remains
loaded in the browser. If it is never called upon to run, there’s no harm done.

The last scenario for when script statements run also involves functions. In this
case, a function is called upon to run by another script statement. Before you see
how that works, it helps to read through the next lesson (Chapter 6). Therefore, 1
will hold off on this example until later in the tutorial.

Viewing Script Errors

In the early days of JavaScript in browsers, script errors displayed themselves in
very obvious dialog boxes. These boxes were certainly helpful for scripters who
wanted to debug their scripts. However, if a bug got through to a page served up to
a non-technical user, the error alert dialog boxes were not only disruptive, but also
scary. To prevent such dialog boxes from disturbing unsuspecting users, the
browser makers tried to diminish the visual impact of errors in the browser win-
dow. Unfortunately for scripters, it is often easy to overlook the fact that your
script contains an error because the error is not so obvious. Recent versions of IE
and NN have different ways of letting scripters see the errors.

In IE5+, you can set its preferences so that scripts do not generate error dialog
boxes (got to Tools = Internet Options => Advanced => Browsing and find the checkbox
entry that says “Display a notification about every script error”). Even with error

Chapter 5 4 Scripts and HTML Documents

dialog boxes turned off, error indications are displayed subtly at the left edge of the
browser window’s status bar. An alert icon and message (“Error on page.”) appear in
the status bar. If you double-click the icon, the error dialog box appears (see Figure
5-1). Be sure to expand the dialog box by clicking the Show Details button. Unless you
turn on script error dialog boxes and keep them coming, you have to train yourself to
monitor the status bar when a page loads and after each script runs.

2l Internet Explorer

of functioning properly. In the future, you can display this message by

Problems with this 'eb page might prevent it from being displayed properly
& double-clicking the warning icon displaped in the status bar.

r Always display this message when a page contains erors.

| Hide Detais <<k
by

Line: 23

Char: 2

Erar: ‘fred iz undefined
Code: 0

URL: file://C:Mevalustor html

Brevious | il |

Figure 5-1: The expanded IE error dialog box

For NN 4.07 and later, the status bar is also your first indication of a script error.
A message appears in the status bar that instructs you to go to the location
Jjavascript: to see the error details. Viewing the details of the error requires dif-
ferent steps, depending on the Navigator version. For NN 4.07 and all subsequent
4.x versions, choose File> Open and enter

javascript:

For NN6, choose Tasks &> Tools &> JavaScript Console. The JavaScript console
window (a separate window from the Java console) opens to reveal the error mes-
sage details (see Figure 5-2). You can keep this window open all the time if you like.
Unless you clear the window, subsequent error messages are appended to the
bottom of the window.

Understanding error messages and doing something about them is a very large
subject, reserved for advanced discussion in Chapter 45. During this tutorial, how-
ever, you can use the error messages to see if you have perhaps mistyped a script
from a listing in the book.

CD-31

CD-32

Part Il 4+ JavaScript Tutorial

[JavaScript Console =]

File Edit Tasks Help

TE| Frings Clear
Error: fred is not defined

Source File: file://C /e valuator himl
Line: 31 Colurnn: 0

Figure 5-2: The NN6 JavaScript Console window

Scripting versus Programming

You may get the impression that scripting is easier than programming. “Scripting”
simply sounds easier or more friendly than “programming.” In many respects, this is
true. One of my favorite analogies is the difference between a hobbyist who builds
model airplanes from scratch and a hobbyist who builds model airplanes from com-
mercial kits. The “from scratch” hobbyist carefully cuts and shapes each piece of
wood and metal according to very detailed plans before the model starts to take
shape. The commercial kit builder starts with many prefabricated parts and assem-
bles them into the finished product. When both builders are finished, you may not
be able to tell which airplane was built from scratch and which one came out of a
box of components. In the end, both builders used many of the same techniques to
complete the assembly, and each can take pride in the result.

As you've seen with the document object model, the browser gives scripters
many prefabricated components with which to work. Without the browser, you'd
have to be a pretty good programmer to develop from scratch your own application
that served up content and offered user interaction. In the end, both authors have
working applications that look equally professional.

Beyond the document object model, however, “real programming” nibbles its
way into the scripting world. That’s because scripts (and programs) work with

Chapter 5 4 Scripts and HTML Documents (CD-33

more than just objects. When I said earlier in this lesson that each statement of a
JavaScript script does something, that “something” involves data of some kind.
Data is the information associated with objects or other pieces of information that a
script pushes around from place to place with each statement.

Data takes many forms. In JavaScript, the common incarnations of data are num-
bers; text (called strings); objects (both from the object model and others you can
create with scripts); and true and false (called Boolean values).

Each programming or scripting language determines numerous structures and
limits for each kind of data. Fortunately for newcomers to JavaScript, the universe
of knowledge necessary for working with data is smaller than in a language such as
Java. At the same time, what you learn about data in JavaScript is immediately
applicable to future learning you may undertake in any other programming lan-
guage —don’t believe for an instant that your efforts in learning scripting will be
wasted.

Because deep down scripting is programming, you need to have a basic knowl-
edge of fundamental programming concepts to consider yourself a good JavaScript
scripter. In the next two lessons, [set aside most discussion about the document
object model and focus on the programming principles that will serve you well in
JavaScript and future programming endeavors.

Exercises

1. Write the complete script tag set for a script whose lone statement is
document.write("Hello, world.")

2. Build an HTML document and include the answer to the previous question
such that the page executes the script as it loads. Open the document in your
browser.

3. Add a comment to the script in the previous answer that explains what the
script does.

4. Create an HTML document that displays an alert dialog box immediately after
the page loads and displays a different alert dialog box when the user clicks a
form button.

5. Carefully study the document in Listing 5-9. Without entering and loading the
document, predict

a. What the page looks like
b. How users interact with the page
c. What the script does

Then type the listing into a text editor as shown (observe all capitalization
and punctuation). Do not type a carriage return after the “=" sign in the
upperMe function statement; let the line word-wrap as it does in the follow-
ing listing. It’s okay to use a carriage return between attribute name/value
pairs, as shown in the first <INPUT> tag. Save the document as an HTML file,
and load the file into your browser to see how well you did.

CD-34 Partll + JavaScript Tutorial

Listing 5-9: How Does This Page Work?

<HTML>

<HEAD>

KTITLE>Text Object Value</TITLE>

<{SCRIPT LANGUAGE="JavaScript">

{I--

function upperMe() {
document.converter.output.value =

document.converter.input.value.toUpperCase()

}

/1 -=>

</SCRIPTS

</HEAD>

<BODY>
Enter Towercase letters for conversion to uppercase:

<FORM NAME="converter">
<INPUT TYPE="text" NAME="input" VALUE="sample"
onChange="upperMe()">

<INPUT TYPE="text" NAME="output" VALUE="">
</FORM>
</BODY>
</HTMLD

Programming
Fundamentals,
Part |

The tutorial breaks away from HTML and documents for a
while as you begin to learn programming fundamentals
that apply to practically every scripting and programming lan-
guage you will encounter. Here, you start learning about vari-
ables, expressions, data types, and operators —things that
might sound scary if you haven’t programmed before. Don’t
worry. With a little practice, you will become quite comfort-
able with these terms and concepts.

What Language Is This?

The language you're studying is called JavaScript. But the
language has some other names that you may have heard.
JScript is Microsoft’s name for the language. By leaving out
the “ava,” the company doesn’t have to license the “Java”
name from its trademark owner: Sun Microsystems.

A standards body called ECMA (pronounced ECK-ma) now
governs the specifications for the language (no matter what
you call it). The document that provides all of the details
about the language is known as ECMA-262 (it’s the 262nd stan-
dard published by ECMA). Both JavaScript and JScript are
ECMA-262 compatible. Some earlier browser versions exhibit
very slight deviations from ECMA-262 (which came later than
the earliest browsers). The most serious discrepancies are
noted in the core language reference in Part IV of this book.

Working with Information

With rare exception, every JavaScript statement you write
does something with a hunk of information — dafa. Data may
be text information displayed on the screen by a JavaScript
statement or the on/off setting of a radio button in a form.
Each single piece of information in programming is also called

CHAPTER

+ 0+ o+
In This Chapter

What variables are
and how to use them

Why you must learn
how to evaluate
expressions

How to convert data
from one type to

another

How to use basic
operators

¢+ 4+ o+

CD-36 Partll + JavaScript Tutorial

a value. Outside of programming, the term value usually connotes a number of
some kind; in the programming world, however, the term is not as restrictive. A
string of letters is a value. A number is a value. The setting of a check box (whether
it is checked or not) is a value.

In JavaScript, a value can be one of several types. Table 6-1 lists JavaScript’s
formal data types, with examples of the values you will see displayed from time

to time.
Table 6-1 JavaScript Value (Data) Types
Type Example Description
String "Howdy" A series of characters inside quote marks
Number 4.5 Any number not inside quote marks
Boolean true A logical true or false
Null null Completely devoid of any value
Object A software “thing” that is defined by its properties and
methods (arrays are also objects)
Function A function definition

A language that contains these few data types simplifies programming tasks,
especially those involving what other languages consider to be incompatible types
of numbers (integers versus real or floating-point values). In some definitions of
syntax and parts of objects later in this book, I make specific reference to the type
of value accepted in placeholders. When a string is required, any text inside a set of
quotes suffices.

You will encounter situations, however, in which the value type may get in the
way of a smooth script step. For example, if a user enters a number into a form’s
text input field, the browser stores that number as a string value type. If the script
is to perform some arithmetic on that number, you must convert the string to a
number before you can apply the value to any math operations. You see examples
of this later in this lesson.

Variables

Cooking up a dish according to a recipe in the kitchen has one advantage over
cooking up some data in a program. In the kitchen, you follow recipe steps and
work with real things: carrots, milk, or a salmon fillet. A computer, on the other
hand, follows a list of instructions to work with data. Even if the data represents
something that looks real, such as the text entered into a form’s input field, once
the value gets into the program, you can no longer reach out and touch it.

In truth, the data that a program works with is merely a collection of bits (on
and off states) in your computer’s memory. More specifically, data in a JavaScript-
enhanced Web page occupies parts of the computer’s memory set aside for exclu-
sive use by the browser software. In the olden days, programmers had to know the
numeric address in memory (RAM) where a value was stored to retrieve a copy of it

Chapter 6 4+ Programming Fundamentals, Part1 (CD-37

for, say, some addition. Although the innards of a program have that level of
complexity, programming languages such as JavaScript shield you from it.

The most convenient way to work with data in a script is to first assign the data
to a variable. It’s usually easier to think of a variable as a basket that holds informa-
tion. How long the variable holds the information depends on a number of factors.
But the instant a Web page clears the window (or frame), any variables it knows
about are immediately discarded.

Creating a variable

You have a couple of ways to create a variable in JavaScript, but one covers you
properly in all cases. Use the var keyword, followed by the name you want to give
that variable. Therefore, to declare a new variable called myAge, the JavaScript
statement is

var myAge

That statement lets the browser know that you can use that variable later to
hold information or to modify any of the data in that variable.

To assign a value to a variable, use one of the assignment operators. The most
common one by far is the equal sign. If | want to assign a value to the myAge vari-
able at the same time I declare it (a combined process known as initializing the
variable), I use that operator in the same statement as the var keyword:

var myAge = 45

On the other hand, if I declare a variable in one statement and later want to
assign a value to it, the sequence of statements is

var myAge
myAge = 45

Use the var keyword only for declaration or initialization — once for the life of
any variable name in a document.

A JavaScript variable can hold any value type. Unlike many other languages, you
don’t have to tell JavaScript during variable declaration what type of value the vari-
able will hold. In fact, the value type of a variable can change during the execution
of a program. (This flexibility drives experienced programmers crazy because
they’re accustomed to assigning both a data type and a value to a variable.)

Variable names

Choose the names you assign to variables with care. You'll often find scripts that
use vague variable names, such as single letters. Other than a few specific times
where using letters is a common practice (for example, using i as a counting vari-
able in repeat loops in Chapter 7), [recommend using names that truly describe a
variable’s contents. This practice can help you follow the state of your data through
a long series of statements or jumps, especially for complex scripts.

A number of restrictions help instill good practice in assigning names. First, you
cannot use any reserved keyword as a variable name. That includes all keywords
currently used by the language and all others held in reserve for future versions of
JavaScript. The designers of JavaScript, however, cannot foresee every keyword
that the language may need in the future. By using the kind of single words that cur-
rently appear in the list of reserved keywords (see Appendix B), you always run a
risk of a future conflict.

CD-38 Partll + JavaScript Tutorial

To complicate matters, a variable name cannot contain space characters.
Therefore, one-word variable names are fine. Should your description really benefit
from more than one word, you can use one of two conventions to join multiple
words as one. One convention is to place an underscore character between the
words; the other is to start the combination word with a lowercase letter and capi-
talize the first letter of each subsequent word within the name —I refer to this as
the interCap format. Both of the following examples are valid variable names:

my_age
myAge

My preference is for the second version. I find it easier to type as [write
JavaScript code and easier to read later. In fact, because of the potential conflict
with future keywords, using multiword combinations for variable names is a good
idea. Multiword combinations are less likely to appear in the reserved word list.

Variable names have a couple of other important restrictions. Avoid all punctua-
tion symbols except for the underscore character. Also, the first character of a vari-
able name cannot be a numeral. If these restrictions sound familiar, it’s because
they’re identical to those for HTML element identifiers described in Chapter 5.

Expressions and Evaluation

Another concept closely related to the value and variable is expression evalua-
tion — perhaps the most important concept of learning how to program a computer.

We use expressions in our everyday language. Remember the theme song of The
Beverly Hillbillies?

Then one day he was shootin’ at some food
And up through the ground came a-bubblin’ crude
Oil that is. Black gold. Texas tea.

At the end of the song, you find four quite different references (“crude,” “oil,”
“black gold,” and “Texas tea”). They all mean oil. They’re all expressions for oil. Say
any one of them and other people know what you mean. In our minds, we evaluate
those expressions to mean one thing: oil.

In programming, a variable always evaluates to its contents, or value. For exam-
ple, after assigning a value to a variable, such as

var myAge = 45

anytime the variable is used in a statement, its value (45) is automatically
applied to whatever operation that statement calls. Therefore, if you're 15 years my
junior, I can assign a value to a variable representing your age based on the evalu-
ated value of myAge:

var yourAge = myAge - 15

Chapter 6 4+ Programming Fundamentals, Part1 (CD-39

The variable, yourAge, evaluates to 30 the next time the script uses it. If the
myAge value changes later in the script, the change has no link to the yourAge vari-
able because myAge evaluated to 45 when it was used to assign a value to yourAge.

Expressions in script1l.htm

You probably didn’t recognize it at the time, but you saw how expression
evaluation came in handy in your first script of Chapter 3. Recall the second
document.write() statement:

document.write(" of " + navigator.appName + ".")

The document.write() method (remember, JavaScript uses the term method to
mean command) requires a parameter in parentheses: the text string to be dis-
played on the Web page. The parameter here consists of one expression that joins
three distinct strings:

"oof "
navigator.appName

The plus symbol is one of JavaScript’s ways of joining strings. Before JavaScript
can display this line, it must perform some quick evaluations. The first evaluation is
the value of the navigator.appName property. This property evaluates to a string
of the name of your browser. With that expression safely evaluated to a string,
JavaScript can finish the job of joining the three strings in the final evaluation. That
evaluated string expression is what ultimately appears on the Web page.

Expressions and variables

As one more demonstration of the flexibility that expression evaluation offers, this
section shows you a slightly different route to the document.write() statement.
Rather than join those strings as the direct parameter to the document.write()
method, I can gather the strings in a variable and then apply the variable to the
document.write() method. Here’s how that method looks, as I simultaneously
declare a new variable and assign it a value:

var textToWrite = " of " + navigator.appName +
document.write(textToWrite)

This method works because the variable, textToWrite, evaluates to the com-
bined string. The document .write() method accepts that string value and does its
display job. As you read a script or try to work through a bug, pay special attention
to how each expression (variable, statement, object property) evaluates. [guaran-
tee that as you learn JavaScript (or any language), you will end up scratching your
head from time to time because you haven’t stopped to examine how expressions
evaluate when a particular kind of value is required in a script.

CD-40 Partil + JavaScript Tutorial

You can begin experimenting with the way JavaScript evaluates expressions with the help
of The Evaluator Jr. (seen in the following figure), an HTML page you can find on the com-
panion CD-ROM. (I introduce the Senior version in Chapter 13.) Enter any JavaScript expres-
sion into the top text box, and either press Enter/Return or click the Evaluate button.

A The Evaluator Jr. - Microsoft Internet Explorer
J File Edit View Favorites Tools Help ‘
S A - | al a m @ | B 5 o [®
Back Forward Stop Refiesh Home Search Favori... History Mail Print Edit
H
The Evaluator Jr.
Enter an expression to evaluate:
I Evaluate
Results:
15 =
=
Enter a reference to an object:
| List Properties
|
[&] Done | |Emy Computer 4

The Evaluator Jr. has 26 variables (lowercase a through z) predefined for you. Therefore,
you can assign values to variables, test comparison operators, and even do math here.
Using the age variable examples from earlier in this chapter, type each of the following
statements into the upper text box and observe how each expression evaluates in the
Results field. Be sure to observe case-sensitivity in your entries.

= 45

0 T O Y @
! I
(o o3}
|
—
o1

To start over, click the Refresh/Reload button.

Data Type Conversions

[mentioned earlier that the type of data in an expression can trip up some script
operations if the expected components of the operation are not of the right type.
JavaScript tries its best to perform internal conversions to head off such problems,
but JavaScript cannot read your mind. If your intentions differ from the way
JavaScript treats the values, you won’t get the results you expect.

Chapter 6 4 Programming Fundamentals, Part1 (CD-41

A case in point is adding numbers that may be in the form of text strings. In a
simple arithmetic statement that adds two numbers together, you get the expected
result:

3+3 // result = 6

But if one of those numbers is a string, JavaScript leans toward converting the
other value to a string— thus turning the plus sign’s action from arithmetic addi-
tion to joining strings. Therefore, in the statement

3+ "3" // result = "33"

the “string-ness” of the second value prevails over the entire operation. The first
value is automatically converted to a string, and the result joins the two strings. Try
this yourself in The Evaluator Jr.

If I take this progression one step further, look what happens when another num-
ber is added to the statement:

3+3+ "3" // result = "63"

This might seem totally illogical, but there is logic behind this result. The expres-
sion is evaluated from left to right. The first plus operation works on two numbers,
yielding a value of 6. But as the 6 is about to be added to the “3,” JavaScript lets the
“string-ness” of the “3” rule. The 6 is converted to a string, and two string values are
joined to yield “63.”

Most of your concern about data types will focus on performing math operations
like the ones here. However, some object methods also require one or more param-
eters of particular data types. While JavaScript provides numerous ways to convert
data from one type to another, it is appropriate at this stage of the tutorial to intro-
duce you to the two most common data conversions: string to number and number
to string.

Converting strings to numbers

As you saw in the last section, if a numeric value is stored as a string—as it is
when entered into a form text field —your scripts will have difficulty applying that
value to a math operation. The JavaScript language provides two built-in functions
to convert string representations of numbers to true numbers: parselnt() and
parseFloat().

There is a difference between integers and floating-point numbers in JavaScript.
Integers are always whole numbers, with no decimal point or numbers to the right
of a decimal. Floating-point numbers, on the other hand, can have fractional values
to the right of the decimal. By and large, JavaScript math operations don’t differen-
tiate between integers and floating-point numbers: A number is a number. The only
time you need to be cognizant of the difference is when a method parameter
requires an integer because it can’t handle fractional values. For example, parame-
ters to the scrol1() method of a window require integer values of the number of
pixels vertically and horizontally you want to scroll the window. That’s because you
can’t scroll a window a fraction of a pixel on the screen.

To use either of these conversion functions, insert the string value you wish to
convert as a parameter to the function. For example, look at the results of two dif-
ferent string values when passed through the parselnt () function:

parselnt("42") // result = 42
parselnt("42.33") /] result = 42

CD-42

Part Il + JavaScript Tutorial

Even though the second expression passes the string version of a floating-point
number to the function, the value returned by the function is an integer. No round-
ing of the value occurs here (although other math functions can help with that if
necessary). The decimal and everything to its right are simply stripped off.

The parseFloat() function returns an integer if it can; otherwise, it returns a
floating-point number as follows:

parseFloat("42") /] result = 42
parsefFloat("42.33") /] result = 42.33

Because these two conversion functions evaluate to their results, you simply
insert the entire function wherever you need a string value converted to a number.
Therefore, modifying an earlier example in which one of three values was a string,
the complete expression can evaluate to the desired result:

3+ 3 + parselInt("3") // result =9

Converting numbers to strings

You'll have less need for converting a number to its string equivalent than the
other way around. As you saw in the previous section, JavaScript gravitates toward
strings when faced with an expression containing mixed data types. Even so, it is
good practice to perform data type conversions explicitly in your code to prevent
any potential ambiguity. The simplest way to convert a number to a string is to take
advantage of JavaScript’s string tendencies in addition operations. By adding an
empty string to a number, you convert the number to its string equivalent:

("" + 2500) // result = "2500"
("" + 2500).1ength // result = 4

In the second example, you can see the power of expression evaluation at work.
The parentheses force the conversion of the number to a string. A string is a
JavaScript object that has properties associated with it. One of those properties is
the Tength property, which evaluates to the number of characters in the string.
Therefore, the length of the string “2500” is 4. Note that the length value is a num-
ber, not a string.

Operators

You will use lots of operators in expressions. Earlier, you used the equal sign (=)
as an assignment operator to assign a value to a variable. In the preceding exam-
ples with strings, you used the plus symbol (+) to join two strings. An operator gen-
erally performs some kind of calculation (operation) or comparison with two values
(the value on each side of an operator is called an operand) to reach a third value.
In this lesson, I briefly describe two categories of operators —arithmetic and com-
parison. Chapter 40 covers many more operators, but once you understand the
basics here, the others are easier to grasp.

Chapter 6 4 Programming Fundamentals, Part |

Arithmetic operators

It may seem odd to talk about text strings in the context of “arithmetic” opera-
tors, but you have already seen the special case of the plus (+) operator when one
or more of the operands is a string. The plus operator instructs JavaScript to con-
catenate (pronounced kon-KAT-en-eight), or join, two strings together precisely
where you place the operator. The string concatenation operator doesn’t know
about words and spaces, so the programmer must make sure that any two strings
to be joined have the proper word spacing as part of the strings —even if that
means adding a space:

firstName = "John"
lastName = "Doe"
fullName = firstName + " " + TastName

JavaScript uses the same plus operator for arithmetic addition. When both
operands are numbers, JavaScript knows to treat the expression as an arithmetic
addition rather than a string concatenation. The standard math operators for addi-
tion, subtraction, multiplication, and division (+, -, *, /) are built into JavaScript.

Comparison operators

Another category of operator helps you compare values in scripts —whether
two values are the same, for example. These kinds of comparisons return a value of
the Boolean type— true or false. Table 6-2 lists the comparison operators. The
operator that tests whether two items are equal consists of a pair of equal signs to
distinguish it from the single equal sign assignment operator.

Table 6-2 JavaScript Comparison Operators

Symbol Description

== Equals

= Does not equal

> Is greater than

>= Is greater than or equal to
< Is less than

<= Is less than or equal to

Where comparison operators come into greatest play is in the construction of
scripts that make decisions as they run. A cook does this in the kitchen all the time:
If the sauce is too watery, add a bit of flour. You see comparison operators in action
in the next chapter.

CD-43

CD-44 partil + JavaScript Tutorial

Exercises

1. Which of the following are valid variable declarations or initializations?
Explain why each one is or is not valid. If an item is invalid, how do you fix it
so that it is?

a.my_name = "Cindy"

b.var how many = 25

c.var zipCode = document.forml.zip.value

d.var laddress = document.nameForm.addressl.value

2. For each of the statements in the following sequence, write down how the
someVal expression evaluates after the statement executes in JavaScript.

var someVal = 2

someVal = someVal + 2
someVal = someVal * 10
someVal someVal + "20"
someVal "Robert"

3. Name the two JavaScript functions that convert strings to numbers. How do
you give the function a string value to convert to a number?

4. Type and load the HTML page and script shown in Listing 6-1. Enter a three-
digit number into the top two fields and click the Add button. Examine the
code and explain what is wrong with the script. How do you fix the script so
the proper sum is displayed in the output field?

Listing 6-1: What's Wrong with This Page?

<HTML>

<HEAD>

<TITLE>Sum Maker</TITLE>

{SCRIPT LANGUAGE="JavaScript">

<h--

function addIt() {
var valuel = document.adder.inputA.value
var value2 = document.adder.inputB.value
document.adder.output.value = valuel + value?

}

/] -=>

</SCRIPT>

</HEAD>

Chapter 6 4 Programming Fundamentals, Part |

<BODY>

<FORM NAME="adder">

<INPUT TYPE="text" NAME="inputA" VALUE="0" SIZE=4>

CINPUT TYPE="text" NAME="inputB" VALUE="0" SIZE=4>
<INPUT TYPE="button" VALUE="Add" onClick="addIt()">

<P> <IP>

<INPUT TYPE="text" NAME="output" SIZE=6>

</FORM>

</B0ODY>

</HTML>

5. What does the term concatenate mean in the context of JavaScript
programming?

+ o+ 0+

CD-45

Programming
Fundamentals,
Part 11

Your tour of programming fundamentals continues in this
chapter with subjects that have more intriguing possi-
bilities. For example, I show you how programs make deci-
sions and why a program must sometimes repeat statements
over and over. Before you're finished here, you will learn how
to use one of the most powerful information holders in the
JavaScript language: the array.

Decisions and Loops

Every waking hour of every day you make decisions of
some kind — most of the time you probably don’t even realize
it. Don’t think so? Well, look at the number of decisions you
make at the grocery store, from the moment you enter the
store to the moment you clear the checkout aisle.

No sooner do you enter the store than you are faced with a
decision. Based on the number and size of items you intend to
buy, do you pick up a hand-carried basket or attempt to extri-
cate a shopping cart from the metallic conga line near the
front of the store? That key decision may have impact later
when you see a special offer on an item that is too heavy to
put into the hand basket.

Next, you head for the food aisles. Before entering an aisle,
you compare the range of goods stocked in that aisle against
items on your shopping list. If an item you need is likely to be
found in this aisle, you turn into the aisle and start looking for
the item; otherwise, you skip the aisle and move to the head
of the next aisle.

Later, you reach the produce section in search of a juicy
tomato. Standing in front of the bin of tomatoes, you begin
inspecting them one by one — picking one up, feeling its firm-
ness, checking the color, looking for blemishes or signs of
pests. You discard one, pick up another, and continue this
process until one matches the criteria you set in your mind

CHAPTER

+ o+ 0+
In This Chapter

How control
structures make
decisions

How to define
functions

Where to initialize
variables efficiently

What those darned
curly braces are all
about

The basics of data
arrays

+ + 0+

CD-48 Partll + JavaScript Tutorial

for an acceptable morsel. Your last stop in the store is the checkout aisle. “Paper or
plastic?” the clerk asks. One more decision to make. What you choose impacts how
you get the groceries from the car to the kitchen as well as your recycling habits.

In your trip to the store, you go through the same kinds of decisions and repeti-
tions that your JavaScript programs also encounter. If you understand these frame-
works in real life, you can now look into the JavaScript equivalents and the syntax
required to make them work.

Control Structures

In the vernacular of programming, the kinds of statements that make decisions
and loop around to repeat themselves are called control structures. A control struc-
ture directs the execution flow through a sequence of script statements based on
simple decisions and other factors.

An important part of a control structure is the condition. Just as you may travel
different routes to work depending on certain conditions (for example, nice
weather, nighttime, attending a soccer game), so, too, does a program sometimes
have to branch to an execution route if a certain condition exists. Each condition is
an expression that evaluates to true or false—one of those Boolean data types
mentioned in Chapter 6. The kinds of expressions commonly used for conditions
are expressions that include a comparison operator. You do the same in real life: If
it is true that the outdoor temperature is less than freezing, then you put on a coat
before going outside. In programming, however, the comparisons are strictly com-
parisons of number or string values.

JavaScript provides several kinds of control structures for different programming
situations. Three of the most common control structures you'll use are if construc-
tions, if...else constructions, and for loops.

Chapter 39 covers in great detail other common control structures you should
know, some of which were introduced only in Navigator 4 and Internet Explorer 4.
For this tutorial, however, you need to learn about the three common ones just
mentioned.

if constructions

The simplest program decision is to follow a special branch or path of the pro-
gram if a certain condition is true. Formal syntax for this construction follows.
Items in italics get replaced in a real script with expressions and statements that fit
the situation.

if (condition) {
statement[s] if true

}

Don’t worry about the curly braces yet. Instead, get a feel for the basic structure.
The keyword, i f, is a must. In the parentheses goes an expression that evaluates to
a Boolean value. This is the condition being tested as the program runs past this
point. If the condition evaluates to true, then one or more statements inside the
curly braces execute before continuing on with the next statement after the closing
brace. If the condition evaluates to false, then the statements inside the curly
brace are ignored and processing continues with the next statement after the clos-
ing brace.

Chapter 7 + Programming Fundamentals, Partl CD-49

The following example assumes that a variable, myAge, has had its value set
earlier in the script (exactly how is not important for this example). The condition
expression compares the value myAge against a numeric value of 18.

if (myAge < 18) {
alert("Sorry, you cannot vote.")

}

The data type of the value inside myAge must be a number so that the proper
comparison (via the < comparison operator) does the right thing. For all instances
of myAge less than 18, the nested statement inside the curly braces runs and
displays the alert to the user. After the user closes the alert dialog box, the script
continues with whatever statement follows the entire i f construction.

if . .. else constructions

Not all program decisions are as simple as the one shown for the if construc-
tion. Rather than specifying one detour for a given condition, you might want the
program to follow either of two branches depending on that condition. It is a fine,
but important, distinction. In the plain i f construction, no special processing is
performed when the condition evaluates to false. But if processing must follow
one of two special paths, you need the if...else construction. The formal syntax
definition for an if. . .else construction is as follows:

if (condition) {
statement[s] 1f true
} else {
statement[s] if false
}

Everything you know about the condition for an if construction applies here.
The only difference is the e1se keyword, which provides an alternate path for exe-
cution to follow if the condition evaluates to false.

As an example, the following if...else construction determines how many
days are in February for a given year. To simplify the demo, the condition simply
tests whether the year divides equally by 4. (True testing for this value includes
special treatment of end-of-century dates, but I'm ignoring that for now.) The %
operator symbol is called the modulus operator (covered in more detail in Chapter
40). The result of an operation with this operator yields the remainder of division of
the two values. If the remainder is zero, then the first value divides evenly by the
second.

var febDays
var theYear = 1993
if (theYear % 4 == 0) {

febDays = 29
} else {
febDays = 28

}

The important point to see from this example is that by the end of the
if...else construction, the febDays variable is set to either 28 or 29. No other
value is possible. For years evenly divisible by 4, the first nested statement runs.
For all other cases, the second statement runs. Processing then picks up with the
next statement after the if...else construction.

CD-50 Partll + JavaScript Tutorial

About Repeat Loops

Repeat loops in real life generally mean the repetition of a series of steps until
some condition is met, thus enabling you to break out of that loop. Such was the
case earlier in this chapter when you looked through a bushel of tomatoes for the
one that came closest to your ideal tomato. The same can be said for driving
around the block in a crowded neighborhood until a parking space opens up.

A repeat loop lets a script cycle through a sequence of statements until some
condition is met. For example, a JavaScript data validation routine might inspect
every character that you enter into a form text field to make sure that each one is a
number. Or if you have a collection of data stored in a list, the loop can check
whether an entered value is in that list. Once that condition is met, the script can
then break out of the loop and continue with the next statement after the loop
construction.

The most common repeat loop construction used in JavaScript is called the for
loop. It gets its name from the keyword that begins the construction. A for loop is a
powerful device because you can set it up to keep track of the number of times the
loop repeats itself. The formal syntax of the for loop is as follows:

for ([initial expression]; [condition]; [update expression]) {
statement[s] inside Toop
}

The square brackets mean that the item is optional. However, until you get to
know the for loop better, | recommend designing your loops to utilize all three
items inside the parentheses. The initial expression portion usually sets the starting
value of a counter. The condition —the same kind of condition you saw for if con-
structions — defines the condition that forces the loop to stop going around and
around. Finally, the update expression is a statement that executes each time all of
the statements nested inside the construction complete running.

A common implementation initializes a counting variable, i, increments the
value of i by one each time through the loop, and repeats the loop until the value of
i exceeds some maximum value, as in the following:

for (var i = startlValue; i <= maxValue; i++) {
statement[s] inside Toop
1

Placeholders startValue and maxValue represent any numeric values, includ-
ing explicit numbers or variables holding numbers. In the update expression is an
operator you have not seen yet. The ++ operator adds 1 to the value of i each time
the update expression runs at the end of the loop. If startValue is 1, the value of i
is 1 the first time through the loop, 2 the second time through, and so on.
Therefore, if maxVaTlue is 10, the loop repeats itself 10 times (in other words, as
long as 1 is less than or equal to 10). Generally speaking, the statements inside the
loop use the value of the counting variable in their execution. Later in this lesson, I
show how the variable can play a key role in the statements inside a loop. At the
same time, you see how to break out of a loop prematurely and why you may need
to do this in a script.

Chapter 7 4 Programming Fundamentals, Partl CD-51

Functions

In Chapter 5, you saw a preview of the JavaScript function. A function is a defini-
tion of a set of deferred actions. Functions are invoked by event handlers or by
statements elsewhere in the script. Whenever possible, good functions are
designed for reuse in other documents. They can become building blocks you use
over and over again.

If you have programmed before, you can see parallels between JavaScript func-
tions and other languages’ subroutines. But unlike some languages that distinguish
between procedures (which carry out actions) and functions (which carry out
actions and return values), only one classification of routine exists for JavaScript. A
function is capable of returning a value to the statement that invoked it, but this is
not a requirement. However, when a function does return a value, the calling state-
ment treats the function call like any expression — plugging in the returned value
right where the function call is made. [will show some examples in a moment.

Formal syntax for a function is as follows:

function functionName ([parameterl]...[,parameterN]) {
statement[s]
}

Names you assign to functions have the same restrictions as names you assign
HTML elements and variables. You should devise a name that succinctly describes
what the function does. I tend to use multiword names with the interCap (internally
capitalized) format that start with a verb because functions are action items, even if
they do nothing more than get or set a value.

Another practice to keep in mind as you start to create functions is to keep the
focus of each function as narrow as possible. It is possible to generate functions
that are literally hundreds of lines long. Such functions are usually difficult to main-
tain and debug. Chances are that you can divide the long function into smaller,
more tightly focused segments.

Function parameters

In Chapter 5, you saw how an event handler invokes a function by calling the
function by name. Any call to a function, including one that comes from another
JavaScript statement, works the same way: a set of parentheses follows the function
name.

You also can define functions so they receive parameter values from the calling
statement. Listing 7-1 shows a simple document that has a button whose onC11ick
event handler calls a function while passing text data to the function. The text
string in the event handler call is in a nested string— a set of single quotes inside
the double quotes required for the entire event handler attribute.

CD-52

Part Il 4+ JavaScript Tutorial

Listing 7-1: Calling a Function from an Event Handler

<HTML>
<HEAD>
<{SCRIPT LANGUAGE="JavaScript">
function showMsg(msg) {
alert("The button sent: " + msq)
}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
<INPUT TYPE="button" VALUE="Click Me"
onClick="showMsg ('The button has been clicked!"')">
</FORM>
</B0ODY>
<IHTMLY

Parameters (also known as arguments) provide a mechanism for “handing off” a
value from one statement to another by way of a function call. If no parameters
occur in the function definition, both the function definition and call to the function
have only empty sets of parentheses (as shown in Chapter 5, Listing 5-8).

When a function receives parameters, it assigns the incoming values to the
variable names specified in the function definition’s parentheses. Consider the
following script segment:

function sayHiToFirst(a, b, c) {
alert("Say hello, " + a)

}

sayHiToFirst("Gracie", "George", "Harry")

sayHiToFirst("Larry", "Moe", "Curly")

After the function is defined in the script, the next statement calls that very func-
tion, passing three strings as parameters. The function definition automatically
assigns the strings to variables a, b, and c. Therefore, before the alert () state-
ment inside the function ever runs, a evaluates to “Gracie,” b evaluates to “George,”
and c evaluates to “Harry.” In the aTlert () statement, only the a value is used and
the alert reads

Say hello, Gracie

When the user closes the first alert, the next call to the function occurs. This
time through, different values are passed to the function and assigned to a, b, and
c. The alert dialog box reads

Say hello, Larry

Unlike other variables that you define in your script, function parameters do not
use the var keyword to initialize them. They are automatically initialized whenever
the function is called.

Chapter 7 + Programming Fundamentals, Part II

Variable scope

Speaking of variables, it’s time to distinguish between variables that are defined
outside and those defined inside of functions. Variables defined outside of functions
are called global variables; those defined inside functions are called local variables.

A global variable has a slightly different connotation in JavaScript than it has in
most other languages. For a JavaScript script, the “globe” of a global variable is the
current document loaded in a browser window or frame. Therefore, when you ini-
tialize a variable as a global variable, it means that all script statements in the page
(including those inside functions) have direct access to that variable value.
Statements can retrieve and modify global variables from anywhere in the page. In
programming terminology, this kind of variable is said to have global scope because
everything on the page can “see” it.

It is important to remember that the instant a page unloads itself, all global vari-
ables defined in that page are erased from memory. If you need a value to persist
from one page to another, you must use other techniques to store that value (for
example, as a global variable in a framesetting document, as described in Chapter
16; or in a cookie, as described in Chapter 18). While the var keyword is usually
optional for initializing global variables, I strongly recommend you use it for all
variable initializations to guard against future changes to the JavaScript language.

In contrast to the global variable, a local variable is defined inside a function.
You already saw how parameter variables are defined inside functions (without var
keyword initializations). But you can also define other variables with the var key-
word (absolutely required for local variables). The scope of a local variable is only
within the statements of the function. No other functions or statements outside of
functions have access to a local variable.

Local scope allows for the reuse of variable names within a document. For most
variables, I strongly discourage this practice because it leads to confusion and bugs
that are difficult to track down. At the same time, it is convenient to reuse certain
kinds of variable names, such as for loop counters. These are safe because they
are always reinitialized with a starting value whenever a for loop starts. You can-
not, however, nest a for loop inside another without specifying a different loop
counting variable.

To demonstrate the structure and behavior of global and local variables —and
show you why you shouldn’t reuse most variable names inside a document —
Listing 7-2 defines two global and two local variables. I intentionally use bad form
by initializing a local variable that has the same name as a global variable.

Listing 7-2: Global and Local Variable Scope Demonstration

<HTML>
<HEAD>
<SCRIPT LANGUAGE="JavaScript">
var aBoy = "Charlie Brown" // global
var hisDog = "Snoopy" // global
function demo() {
// using improper design to demonstrate a point
var hisDog = "Gromit" // Tocal version of hisDog
var output = hisDog + " does not belong to " + aBoy + ".
"
document.write(output)

Continued

CD-53

CD-54 partil + JavaScript Tutorial

Listing 7-2 (continued)

</SCRIPT>

</HEAD>

<BODY>

{SCRIPT LANGUAGE="JavaScript">

demo() // runs as document loads
document.write(hisDog + " belongs to " + aBoy + ".")
</SCRIPT>

</BODY>

<IHTMLY

When the page loads, the script in the Head portion initializes the two global
variables (aBoy and hisDog) and defines the demo () function in memory. In the
Body, another script begins by invoking the function. Inside the function, a local
variable is initialized with the same name as one of the global variables—hisDog.
In JavaScript, such a local initialization overrides the global variable for all state-
ments inside the function. (But note that if the var keyword is left off of the local
initialization, the statement reassigns the value of the global version to “Gromit.”)

Another local variable, output, is merely a repository for accumulating the text
that is to be written to the screen. The accumulation begins by evaluating the local
version of the hisDog variable. Then it concatenates some hard-wired text (note
the extra spaces at the edges of the string segment). Next comes the evaluated
value of the aBoy global variable — any global not overridden by a local is available
for use inside the function. The expression is accumulating HTML to be written to
the page, so it ends with a period and a
 tag. The final statement of the func-
tion writes the content to the page.

After the function completes its task, the next statement in the Body script
writes another string to the page. Because this script statement is executing in
global space (that is, not inside any function), it accesses only global variables —
including those defined in another <SCRIPT> tag set in the document. By the time
the complete page finishes loading, it contains the following text lines:

Gromit does not belong to Charlie Brown.
Snoopy belongs to Charlie Brown.

About Curly Braces

Despite the fact that you probably rarely — if ever — use curly braces ({ })in
your writing, there is no mystery to their usage in JavaScript (and many other lan-
guages). Curly braces enclose blocks of statements that belong together. While they
do assist humans who are reading scripts in knowing what’s going on, curly braces
also help the browser to know which statements belong together. You always must
use curly braces in matched pairs.

You use curly braces most commonly in function definitions and control struc-
tures. In the function definition in Listing 7-2, curly braces enclose four statements
that make up the function definition (including the comment line). The closing
brace lets the browser know that whatever statement comes next is a statement
outside of the function definition.

Chapter 7 + Programming Fundamentals, Part CD-55

Physical placement of curly braces is not critical (nor is the indentation style
you see in the code I provide). The following function definitions are treated identi-
cally by scriptable browsers:

function sayHiToFirst(a, b, c) {
alert("Say hello, " + a)
}

function sayHiToFirst(a, b, ¢)
{

alert("Say hello, " + a)
}

function sayHiToFirst(a, b, c) f{alert("Say hello, " + a)}

Throughout this book, I use the style shown in the first example because I find
that it makes lengthy and complex scripts easier to read — especially scripts that
have many levels of nested control structures.

Arrays

The JavaScript array is one of the most useful data constructions you have
available to you. You can visualize the structure of a basic array as if it were a sin-
gle-column spreadsheet. Each row of the column holds a distinct piece of data, and
each row is numbered. Numbers assigned to rows are in strict numerical sequence,
starting with zero as the first row (programmers always start counting with zero).
This row number is called an index. To access an item in an array, you need to know
the name of the array and the index for the row. Because index values start with
zero, the total number of items of the array (as determined by the array’s Tength
property) is always one more than the highest index value of the array. More
advanced array concepts enable you to create the equivalent of an array with
multiple columns (described in Chapter 37). For this tutorial, I stay with the single-
column basic array.

Data elements inside JavaScript arrays can be any data type, including objects.
And, unlike a lot of other programming languages, different rows of the same
JavaScript array can contain different data types.

Creating an array

An array is stored in a variable, so when you create an array you assign the new
array object to the variable. (Yes, arrays are JavaScript objects, but they belong to
the core JavaScript language rather than the document object model.) A special
keyword — new — preceding a call to the JavaScript function that generates arrays
creates space in memory for the array. An optional parameter to the Array () func-
tion enables you to specify at the time of creation how many elements (rows) of
data eventually will occupy the array. JavaScript is very forgiving about this
because you can change the size of an array at any time. Therefore, if you omit a
parameter when generating a new array, your script incurs no penalty.

To demonstrate the array creation process, I create an array that holds the
names of the 50 states plus the District of Columbia (a total of 51). The first task is
to create that array and assign it to a variable of any name that helps me remember
what this collection of data is about:

CD-56 Partll + JavaScript Tutorial

var USStates = new Array(51)

At this point, the USStates array is sitting in memory like a 51-row table with no
data in it. To fill the rows, I must assign data to each row. Addressing each row of an
array requires a special way of indicating the index value of the row: square brack-
ets after the name of the array. The first row of the USStates array is addressed as

USStates[0]

To assign the string name of the first state of the alphabet to that row, I use a
simple assignment operator:

USStates[0] = "Alabama"
To fill in the rest of the rows, I include a statement for each row:

USStates[1] = "Alaska"
USStates([2] "Arizona"
USStates[3] = "Arkansas"

USStates[50] = "Wyoming"

Therefore, if you want to include a table of information in a document from
which a script can look up information without accessing the server, you include
the data in the document in the form of an array creation sequence. When the state-
ments run as the document loads, by the time the document finishes loading into
the browser, the data collection array is built and ready to go. Despite what appears
to be the potential for a lot of statements in a document for such a data collection,
the amount of data that must download for typical array collections is small enough
not to severely impact page loading— even for dial-up users at 28.8 Kbps.

Accessing array data

The array index is the key to accessing an array element. The name of the array
and an index in square brackets evaluates to the content of that array location. For
example, after the USStates array is built, a script can display an alert with
Alaska’s name in it with the following statement:

alert("The largest state is " + USStates[1] + ".")

Just as you can retrieve data from an indexed array element, so can you change
the element by reassigning a new value to any indexed element in the array.

Although I don’t dwell on it in this tutorial, you can also use string names as
index values instead of numbers. In essence, this enables you to create an array
that has named labels for each row of the array — a definite convenience for certain
circumstances. But whichever way you use to assign data to an array element, the
first time dictates the way you must access that element thereafter in the page’s
scripts.

Parallel arrays

Now I show you why the numeric index methodology works well in JavaScript.
To help with the demonstration, | generate another array that is parallel with the
USStates array. This new array is also 51 elements long, and it contains the year in

Chapter 7 4 Programming Fundamentals, Part CD-57

which the state in the corresponding row of USStates entered the Union. That
array construction looks like the following:
var statekEntered = new Array(51)

statekEntered [0] = 1819
stateEntered [1] = 1959
statekEntered [2] = 1912
statekEntered [3] = 1836

stateEntered [50] = 1890

In the browser’s memory, then, are two tables that you can visualize as looking
like the model in Figure 7-1. I can build more arrays that are parallel to these for
items such as the postal abbreviation and capital city. The important point is that
the zeroth element in each of these tables applies to Alabama, the first state in the
USStates array.

USStates stateEntered
‘Alabama” [0] 1819

"Alaska” [1] 1959

"Arizona" [2] 1912
"Arkansas” [3] 1836
"Wyoming" [50] 1890

Figure 7-1: Visualization of two related parallel tables

If a Web page included these tables and a way for a user to look up the entry
date for a given state, the page would need a way to look through all of the
USStates entries to find the index value of the one that matches the user’s entry.
Then, that index value could be applied to the stateEntered array to find the
matching year.

For this demo, the page includes a text entry field in which the user types the
name of the state to look up. In a real application, this methodology is fraught with
peril unless the script performs some error checking in case the user makes a mis-
take. But for now, I assume that the user always types a valid state name. (Don’t
ever make this assumption in your Web site’s pages.) An event handler from either
the text field or a clickable button calls a function that looks up the state name,

CD-58 Partil + JavaScript Tutorial

fetches the corresponding entry year, and displays an alert message with the infor-
mation. The function is as follows.

function getStateDate()

{
var selectedState = document.entryForm.entry.value

for (var i = 0; i < USStates.length; i++) {
if (USStates[i] == selectedState) {
break

}
}
alert("That state entered the Union in " + stateEntered[i] + ".")

In the first statement of the function, I grab the value of the text box and assign
the value to a variable, selectedState. This is mostly for convenience because |
can use the shorter variable name later in the script. In fact, the usage of that value
is inside a for loop, so the script is marginally more efficient because the browser
doesn’t have to evaluate that long reference to the text field each time through the
loop.

The key to this function is in the for loop. Here is where [combine the natural
behavior of incrementing a loop counter with the index values assigned to the two
arrays. Specifications for the loop indicate that the counter variable, i, is initialized
with a value of zero. The loop is directed to continue as long as the value of i is less
than the length of the USStates array. Remember that the length of an array is
always one more than the index value of the last item. Therefore, the last time the
loop runs is when i is 50, which is both less than the length of 51 and equal to the
index value of the last element. Each time after the loop runs, the counter incre-
ments by one.

Nested inside the for loop is an i f construction. The condition it tests is the
value of an element of the array against the value typed in by the user. Each time
through the loop, the condition tests a different row of the array starting with row
zero. In other words, this if construction can be performed dozens of times before
a match is found, but each time the value of i is one larger than the previous try.

The equality comparison operator (==) is very strict when it comes to compar-
ing string values. Such comparisons respect the case of each letter. In our example,
the user must type the state name exactly as it is stored in the USStates array for
the match to be found. In Chapter 10, you learn about some helper methods that
eliminate case and sensitivity in string comparisons.

When a match is found, the statement nested inside the i f construction runs.
The break statement is designed to help control structures bail out if the program
needs it. For this application, it is imperative that the for loop stop running when a
match for the state name is found. When the for loop breaks, the value of the i
counter is fixed at the row of the USStates array containing the entered state. |
need that index value to find the corresponding entry in the other array. Even
though the counting variable, 1, is initialized in the for loop, it is still “alive” and in
the scope of the function for all statements after the initialization. That’s why I can
use it to extract the value of the row of the stateEntered array in the final state-
ment that displays the results in an alert message.

This application of a for loop and array indexes is a common one in JavaScript.
Study the code carefully and be sure you understand how it works. This way of
cycling through arrays plays a role not only in the kinds of arrays you create in
your code, but also with the arrays that browsers generate for the document object
model.

Chapter 7 4 Programming Fundamentals, Partl CD-59

Document objects in arrays

If you look at the document object portions of the Quick Reference in Appendix
A, you can see that the properties of some objects are listed with square brackets
after them. These are, indeed, the same kind of square brackets you just saw for
array indexes. That’s because when a document loads, the browser creates arrays
of like objects in the document. For example, if your page includes two <FORM> tag
sets, then two forms appear in the document. The browser maintains an array of
form objects for that document. References to those forms are

document.forms[0]
document.forms[1]

Index values for document objects are assigned according to the loading order of
the objects. In the case of form objects, the order is dictated by the order of the
<FORM> tags in the document. This indexed array syntax is another way to refer-
ence forms in an object reference. You can still use a form’s name if you prefer —
and I heartily recommend using object names wherever possible because even if
you change the physical order of the objects in your HTML, references that use
names still work without modification. But if your page contains only one form, you
can use the reference types interchangeably, as in the following examples of equiva-
lent references to a text field’s value property in a form:

document.entryForm.entry.value
document.forms[0].entry.value

In examples throughout this book, you can see that I often use the array type of
reference to simple forms in simple documents. But in my production pages, |
almost always use named references.

Exercises

1. With your newly acquired knowledge of functions, event handlers, and control
structures, use the script fragments from this chapter to complete the page
that has the lookup table for all of the states and the years they entered into
the Union. If you do not have a reference book for the dates, then use different
year numbers starting with 1800 for each entry. In the page, create a text
entry field for the state and a button that triggers the lookup in the arrays.

2. Examine the following function definition. Can you spot any problems with the
definition? If so, how can you fix the problems?

function format(ohmage) {

var result
if ohmage >= le6 {
ohmage = ohmage / 1leb
result = ohmage + " Mohms"
} else {

if (ohmage >= 1e3)
ohmage = ohmage / le2
result ohmage + " Kohms"
else
result = ohmage + " ohms"

}
alert(result)

CD-60 Partll + JavaScript Tutorial

3. Devise your own syntax for the scenario of looking for a ripe tomato at the
grocery store, and write a for loop using that object and property syntax.

4. Modify Listing 7-2 so it does not reuse the hisDog variable inside the function.

5. Given the following table of data about several planets of our solar system,
create a Web page that enables users to enter a planet name and, at the click
of a button, have the distance and diameter appear either in an alert box or
(as extra credit) in separate fields of the page.

Planet Distance from the Sun Diameter

Mercury 36 million miles 3,100 miles
Venus 67 million miles 7,700 miles
Earth 93 million miles 7,920 miles
Mars 141 million miles 4,200 miles

+ o+ 0+

CHAPTER

Window and
Document L
Objects .

What the window

object does
How to access key
N ow that you have exposure to programming fundamen- window object
tals, it is easier to demonstrate how to script objects in properties and
documents. Starting with this lesson, the tutorial turns back methods
to the document object model, diving more deeply into each
of the objects you will place in many of your documents. How to trigger script

actions after a

Document Objects document loads

As a refresher, study the lowest common denominator The purposes of the
document object hierarchy in Figure 8-1. This chapter focuses Tocation and
on objects at or near the top of the hierarchy: window, history objects
location, history, and document. The goal is not only to
equip you with the basics so you can script simple tasks, but How the document
also to prepare you for in-depth examinations of each object object is created
and its properties, methods, and event handlers in Part III of
this book. I introduce only the basic properties, methods, and How to access key
event handlers for objects in this tutorial —you can find far document object
more in Part Ill. Examples in that part of the book assume you properties and
know the programming fundamentals covered in previous methods
chapters.

+ v+

CD-62

Part Il 4+ JavaScript Tutorial

window

frame | self t0p| parent

| history | |document| | location |
|
| | |
| link | | form | | anchor |
[TT [T [1
text | | radio | | button | | select |
| textarea | |checkbox| | reset | | option |

|password|| submit |

Figure 8-1: The lowest common denominator document
object model for all scriptable browsers

The Window Object

At the very top of the document object hierarchy is the window object. This
object gains that exalted spot in the object food chain because it is the master con-
tainer for all content you view in the Web browser. As long as a browser window is
open—even if no document is loaded in the window —the window object is
defined in the current model in memory.

In addition to the content part of the window where documents go, a window’s
sphere of influence includes the dimensions of the window and all of the “stuff” that
surrounds the content area. The area where scrollbars, toolbars, the status bar, and
(non-Macintosh) menu bar live is known as a window’s chrome. Not every browser
has full scripted control over the chrome of the main browser window, but you can
easily script the creation of additional windows sized the way you want and have
only the chrome elements you wish to display in that subwindow.

Although the discussion about frames comes in Chapter 11, I can safely say now
that each frame is also considered a window object. If you think about it, that makes
sense because each frame can hold a different document. When a script runs in one
of those documents, it regards the frame that holds the document as the window
object in its view of the object hierarchy.

As you learn in this chapter, the window object is a convenient place for the docu-
ment object model to attach methods that display modal dialog boxes and adjust
the text that displays in the status bar at the bottom of the browser window. A
window object method enables you to create a separate window that appears on the
screen. When you look at all of the properties, methods, and event handlers defined

Chapter 8 ¢ Window and Document Objects

for the window object (see Chapter 16), it should be clear why they are attached to
window objects —visualize their scope and the scope of a browser window.

Accessing window properties and methods

You can word script references to properties and methods of the window object
in several ways, depending more on whim and style than on specific syntactical
requirements. The most logical and common way to compose such references
includes the window object in the reference:

window.propertyName
window.methodName([parameters])

A window object also has a synonym when the script doing the referencing
points to the window that houses the document. The synonym is self. Reference
syntax then becomes

self.propertyName
self.methodName([parameters])

You can use these initial reference object names interchangeably, but I tend to
reserve the use of self for more complex scripts that involve multiple frames and
windows. The self moniker more clearly denotes the current window holding the
script’s document. It makes the script more readable — by me and by others.

Back in Chapter 4, I indicated that because the window object is always “there”
when a script runs, you could omit it from references to any objects inside that win-
dow. Therefore, the following syntax models assume properties and methods of the
current window:

propertyName
methodName([parameters])

In fact, as you will see in a few moments, some methods may be more under-
standable if you omit the window object reference. The methods run just fine either
way.

Creating a window

A script does not create the main browser window. A user does that by virtue of
launching the browser or by opening a URL or file from the browser’s menus (if the
window is not already open). But a script can generate any number of subwindows
once the main window is open (and that window contains a document whose script
needs to open subwindows).

The method that generates a new window is window.open (). This method con-
tains up to three parameters that define window characteristics, such as the URL of
the document to load, its name for TARGET attribute reference purposes in HTML
tags, and physical appearance (size and chrome contingent). I don’t go into the
details of the parameters here (they’re covered in great depth in Chapter 16), but I
do want to expose you to an important concept involved with the window.open()
method.

CD-63

CD-64 Partll + JavaScript Tutorial

Consider the following statement that opens a new window to a specific size and
with an HTML document from the same server directory that holds the current

page:
var subWindow = window.open("define.html","def","HEIGHT=200,WIDTH=300")

The important thing to note about this statement is that it is an assignment
statement. Something gets assigned to that variable subWindow. What is it? It turns
out that when the window.open() method runs, it not only opens up that new
window according to specifications set as parameters, but it also evaluates to a ref-
erence to that new window. In programming parlance, the method is said to return a
value —in this case, a genuine object reference. The value returned by the method
is assigned to the variable.

Your script can now use that variable as a valid reference to the second window.
If you need to access one of its properties or methods, you must use that reference
as part of the complete reference. For example, to close the subwindow from a
script in the main window, use this reference to the c1ose () method for that
subwindow:

subWindow.close()

If you issue window.close(), self.close(), orjust close() in the main win-
dow’s script, the method closes the main window and not the subwindow. To
address another window, then, you must include a reference to that window as part
of the complete reference. This has an impact on your code because you probably
want the variable holding the reference to the subwindow to be valid as long as the
main document is loaded into the browser. For that to happen, the variable has to
be initialized as a global variable, rather than inside a function (although you can
set its value inside a function). That way, one function can open the window while
another function closes it.

Listing 8-1 is a page that has a button for opening a blank, new window and clos-
ing that window from the main window. To view this demonstration, shrink your
main browser window to less than full screen. Then when the new window is gener-
ated, reposition the windows so you can see the smaller, new window when the
main window is in front. (If you “lose” a window behind another, use the browser’s
Window menu to choose the hidden window.) The key point of Listing 8-1 is that the
newWindow variable is defined as a global variable so that both the
makeNewWindow() and closeNewWindow() functions have access to it. When a
variable is declared with no value assignment, its value is nul1. Anul1 value is
interpreted to be the same as false in a condition, while the presence of any non-
zero value is the same as true in a condition. Therefore, in the cToseNewWindow()
function, the condition tests whether the window has been created before issuing
the subwindow’s c1ose () method. Then, to clean up, the function sets the
newWindow variable to nul1 so that another click of the Close button doesn’t try to
close a nonexistent window.

Chapter 8 + Window and Document Objects (CD-65

Listing 8-1: References to Window Objects

<HTML>
<HEAD>
<TITLE>Window Opener and Closer</TITLE>
{SCRIPT LANGUAGE="JavaScript">
var newWindow
function makeNewWindow() {
newWindow = window.open("","","HEIGHT=300,WIDTH=300")
}
function closeNewWindow() ({
if (newWindow) {
newWindow.close()
newWindow = null
1
}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
<INPUT TYPE="button" VALUE="Create New Window" onClick="makeNewWindow()">
<INPUT TYPE="button" VALUE="Close New Window" onClick="closeNewWindow()">
</FORM>
</B0ODY>
</HTML>

Window Properties and Methods

The one property and three methods for the window object described in this sec-
tion have an immediate impact on user interaction. They work with all scriptable
browsers. You can find extensive code examples in Part IIl for each property and
method. You can also experiment with the one-statement script examples by enter-
ing them in the top text box of The Evaluator Jr. (from Chapter 6).

window.status property

The status bar at the bottom of the browser window normally displays the URL
of a link when you roll the mouse pointer atop it. Other messages also appear in
that space during document loading, Java applet initialization, and the like.
However, you can use JavaScript to display your own messages in the status bar at
times that may be beneficial to your users. For example, rather than display the
URL of a link, you can display a friendlier, plain-language description of the page at
the other end of the link (or a combination of both to accommodate both newbies
and geeks).

CD-66 Partil + JavaScript Tutorial

You can assign the window.status property some other text at any time. To
change the status bar text of a link as the cursor hovers atop the link, you trigger
the action with an onMouseQOver event handler of a link object. A peculiarity of the
onMouseOver event handler for setting the status bar is that an additional statement —
return true—must be part of the event handler. This is very rare in JavaScript,
but it is required here for your script to successfully override the
status bar.

Due to the simplicity of setting the window.status property, it is most common
for the script statements to run as inline scripts in the event handler definition.
This is handy for short scripts because you don’t have to specify a separate func-
tion or add <SCRIPT> tags to your page. You simply add the script statements to

the <A> tag:

<A HREF="http://home.netscape.com" onMouseOver=

"window.status="'Visit the Netscape Home page (home.netscape.com)'; return true">
Netscape

Look closely at the script statements assigned to the onMouseOver event han-
dler. The two statements are

window.status="Visit the Netscape Home page (home.netscape.com)'
return true

When you run these as inline scripts, you must separate the two statements with
a semicolon. (The space after the semicolon is optional, but often improves read-
ability.) Equally important, the entire set of statements is surrounded by double
quotes ("..."). To nest the string being assigned to the window.status property
inside the double-quoted script, you surround the string with single quotes
("..."). You get a big payoff for a little bit of script when you set the status bar.
The downside is that scripting this property is how those awful status bar scrolling
banners are created. Yech!

window.alert() method

I have already used the alert () method many times so far in this tutorial. This
window method generates a dialog box that displays whatever text you pass as a
parameter (see Figure 8-2). A single OK button (whose label you cannot change)
enables the user to dismiss the alert.

The appearance of this and two other JavaScript dialog boxes (described next)
has changed since the first scriptable browsers. In older browser versions (as
shown in Figure 8-2), the browser inserted words clearly indicating that the dialog
box was a “JavaScript Alert.” Different browsers display different title bars whose
content cannot be altered by script. You can change only the other message content.

All three dialog box methods are good cases for using a window object’s methods
without the reference to the window. Even though the alert () method is techni-
cally a window object method, no special relationship exists between the dialog box
and the window that generates it. In production scripts, I usually use the shortcut
reference:

alert("This is a JavaScript alert dialog.")

Chapter 8 ¢ Window and Document Objects

[Jawa5 cript Application] <]

& You are running the Metscape brawser.

Figure 8-2: A JavaScript alert dialog box (old style)

window.confirm() method

The second style of dialog box presents two buttons (Cancel and OK in most
versions on most platforms) and is called a confirm dialog box (see Figure 8-3).
More importantly, this is one of those methods that returns a value: true if the user
clicks OK, false if the user clicks Cancel. You can use this dialog box and its
returned value as a way to have a user make a decision about how a script
progresses.

Microsoft Internet Explorer

@ Are you sure you want to empty the table?

Cancel |

Figure 8-3: A JavaScript confirm
dialog box (IE5/Win32 style)

Because the method always returns a Boolean value, you can use the evaluated
value of the entire method as a condition statement inan if or if...else con-
struction. For example, in the following code fragment, the user is asked about
starting the application over. Doing so causes the default page of the site to load
into the browser.

if (confirm("Are you sure you want to start over?")) {
location.href = "index.html"
}

window.prompt() method

The final dialog box of the window object, the prompt dialog box (see Figure 8-4),
displays a message that you set and provides a text field for the user to enter a
response. Two buttons, Cancel and OK, enable the user to dismiss the dialog box
with two opposite expectations: canceling the entire operation or accepting the
input typed into the dialog box.

CD-67

CD-68 Partil + JavaScript Tutorial

Explorer User Prompt [x]
JavaSeript Prampt:
Fill in table for haw mary factors?

Cancel |

[

Figure 8-4: A JavaScript prompt dialog box
(IE5/Win32 style)

The window.prompt () method has two parameters. The first is the message
that acts as a prompt to the user. You can suggest a default answer in the text field
by including a string as the second parameter. If you don’t want any default answer
to appear, then include an empty string (two double quotes without any space
between them).

This method returns one value when the user clicks either button. A click of the
Cancel button returns a value of nu11, regardless of what the user types into the
field. A click of the OK button returns a string value of the typed entry. Your scripts
can use this information in conditions for if and if. . .else constructions. A value
of null is treated as false in a condition. It turns out that an empty string is also
treated as false. Therefore, a condition can easily test for the presence of real
characters typed into the field to simplify a condition test, as shown in the follow-
ing fragment:

var answer = prompt("What is your name?","")
if (answer) {

alert("Hello, " + answer + "1")
}

The only time the alert () method is called is when the user enters something
into the prompt dialog box and clicks the OK button.

onLoad event handler

The window object reacts to several system and user events, but the one you will
probably use most often is the event that fires as soon as everything in a page fin-
ishes loading. This event waits for images, Java applets, and data files for plug-ins
to download fully to the browser. It can be dangerous to script access to elements
of a document object while the page loads because if the object has not loaded yet
(perhaps due to a slow network connection or server), a script error results. The
advantage of using the onlLoad event to invoke functions is that you are assured
that all document objects are in the browser’s document object model. All window
event handlers are placed inside the <BODY> tag. Even though you will come to
associate the <BODY> tag’s attributes with the document object’s properties, it is
the window object’s event handlers that go inside the tag.

The Location Object

Sometimes an object in the hierarchy represents something that doesn’t seem to
have the kind of physical presence that a window or a button does. That’s the case
with the Tocation object. This object represents the URL loaded into the window.

Chapter 8 + Window and Document Objects (CD-69

This differs from the document object (discussed later in this lesson) because the
document is the real content; the location is simply the URL.

Unless you are truly Web-savvy, you may not realize a URL consists of many
components that define the address and method of data transfer for a file. Pieces of
a URL include the protocol (such as http:) and the hostname (such as www.
giantco.com). You can access all of these items as properties of the Tocation
object. For the most part, though, your scripts will be interested in only one
property: the href property, which defines the complete URL.

Setting the 1ocation.href property is the primary way your scripts navigate to
other pages:

location.href = "http://www.dannyg.com"

You can generally navigate to a page in your own Web site by specifying a rela-
tive URL (that is, relative to the currently loaded page) rather than the complete
URL with protocol and host information. For pages outside of the domain of the
current page, you need to specify the complete URL.

If the page to be loaded is in another window or frame, the window reference
must be part of the statement. For example, if your script opens a new window and
assigns its reference to a variable named newWindow, the statement that loads a
page into the subwindow is

newWindow.location.href = "http://www.dannyg.com"

The History Object

Another object that doesn’t have a physical presence on the page is the history
object. Each window maintains a list of recent pages that the browser has visited.
While the history object’s list contains the URLs of recently visited pages, those
URLs are not generally accessible by script due to privacy and security limits
imposed by browsers. But methods of the history object allow for navigating
backward and forward through the history relative to the currently loaded page.
You can find details in Chapter 17.

The Document Object

The document object holds the real content of the page. Properties and methods
of the document object generally affect the look and content of the document that
occupies the window. Only more recent browsers (IE4+ and NN6+) allow script
access to the text contents of a page once the document has loaded. However, as
you saw in your first script of Chapter 3, the document.write() method lets a
script dynamically create content as the page loads. A great many of the document
object’s properties are established by attributes of the <BODY> tag. Many other
properties are arrays of other objects in the document.

Accessing a document object’s properties and methods is straightforward, as
shown in the following syntax examples:

[window. Jdocument.propertyName
[window. Jdocument.methodName([parameters])

CD-70 Partl + JavaScript Tutorial

The window reference is optional when the script is accessing the document
object that contains the script. If you want a preview of the document object prop-
erties of the browser you're using, enter document into the bottom text box of The
Evaluator Jr. and press Enter/Return. The object’s properties and current values
appear in the Results box.

document.forms[] property

One of the object types contained by a document is the FORM element object.
Because conceivably there can be more than one form in a document, forms are
stored as arrays in the document . forms[] property. As you recall from the discus-
sion of arrays in Chapter 7, an index number inside the square brackets points to
one of the elements in the array. To find out how many FORM objects are in the
current document, use

document.forms.length
To access the first form in a document, for example, the reference is
document.forms[0]

In general, however, | recommend that you access a form by way of a name you
assign to the form in its NAME attribute, as in

document.formName

Either methodology reaches the same object. When a script needs to reference
elements inside a form, the complete address to that object must include document
and form references.

document.title property

Not every property of a document object is set in a <BODY> tag attribute. If you
assign a title to the page in the <TITLE> tag set within the Head portion, that title
text is reflected by the document.title property. A document’s title is mostly a
cosmetic setting that gives a plain-language name of the page appearing in the
browser’s title bar, as well as the user’s history listing and bookmark of your page.

document.write() method

The document.write() method operates in both immediate scripts to create
content in a page as it loads and in deferred scripts that create new content in the
same or different window. The method requires one string parameter, which is the
HTML content to write to the window or frame. Such string parameters can be
variables or any other expressions that evaluate to a string. Very often, the written
content includes HTML tags.

Bear in mind that after a page loads, the browser’s output stream is automatically
closed. After that, any document.write() method issued to the current page
opens a new stream that immediately erases the current page (along with any vari-
ables or other values in the original document). Therefore, if you wish to replace
the current page with script-generated HTML, you need to accumulate that HTML
in a variable and perform the writing with just one document.write() method.
You don’t have to explicitly clear a document and open a new data stream; one
document.write() call does it all.

One last piece of housekeeping advice about the document.write() method
involves its companion method, document.close(). Your script must close the

Chapter 8 ¢ Window and Document Objects

output stream when it finishes writing its content to the window (either the same
window or another). After the last document.write() method in a deferred script,
be sure to include a document.close() method. Failure to do this may cause
images and forms not to appear. Also, any document.write() method invoked
later will only append to the page, rather than clear the existing content to write
anew. To demonstrate the document.write() method, I show two versions of the
same application. One writes to the same document that contains the script; the
other writes to a separate window. Type in each document in a new text editor
document, save it with an . htm] file name extension, and open it in your browser.

Listing 8-2 creates a button that assembles new HTML content for a document,
including HTML tags for a new document title and color attribute for the <BODY>
tag. An operator in the listing that may be unfamiliar to you is +=. It appends a
string on its right side to whatever string is stored in the variable on its left side.
This operator is a convenient way to accumulate a long string across several
separate statements. With the content gathered in the newContent variable, one
document.write() statement blasts the entire new content to the same document,
obliterating all vestiges of the content of Listing 8-2. The document.close() state-
ment, however, is required to close the output stream properly. When you load this
document and click the button, notice that the document title in the browser’s title
bar changes accordingly. As you click back to the original and try the button again,
notice that the dynamically written second page loads much faster than even a
reload of the original document.

Listing 8-2: Using document.write() on the Current Window

<HTMLY

<HEAD>

<TITLE>Writing to Same Doc</TITLE>

<SCRIPT LANGUAGE="JavaScript">

function reWrite() {
// assemble content for new window
var newContent = "<HTML><HEAD><TITLE>A New Doc</TITLE></HEAD>"
newContent += "<BODY BGCOLOR="aqua'><H1>This document is brand new.</H1>"
newContent += "Click the Back button to see original document."
newContent += "</BODY></HTML>"
// write HTML to new window document
document.write(newContent)
document.close() // close layout stream

}

</SCRIPT>

</HEAD>

<BODY>

<FORM>

<INPUT TYPE="button" VALUE="Replace Content" onClick="reWrite()">

</FORM>

</BODY>

</HTML>

In Listing 8-3, the situation is a bit more complex because the script generates a
subwindow to which is written an entirely script-generated document. To keep the
reference to the new window alive across both functions, the newWindow variable is
declared as a global variable. As soon as the page loads, the onlLoad event handler

CD-71

CD-72

Part Il 4+ JavaScript Tutorial

invokes the makeNewWindow() function. This function generates a blank subwin-
dow. I added a property to the third parameter of the window.open () method that
instructs the status bar of the subwindow to appear.

A button in the page invokes the subWrite() method. The first task it performs
is to check the c1osed property of the subwindow. This property (which exists
only in newer browser versions) returns true if the referenced window is closed. If
that’s the case (if the user manually closed the window), the function invokes the
makeNewWindow() function again to reopen that window.

With the window open, new content is assembled as a string variable. As with
Listing 8-2, the content is written in one blast (although that isn’t necessary for a
separate window), followed by a cTose () method. But notice an important differ-
ence: both the write() and close() methods explicitly specify the subwindow.

Listing 8-3: Using document.write() on Another Window

<HTML>
<HEAD>
KTITLE>Writing to Subwindow</TITLE>
<SCRIPT LANGUAGE="JavaScript">
var newlWindow
function makeNewWindow() {
newWindow = window.open("","","status,height=200,width=300")
1

function subWrite() {
// make new window if someone has closed it
if (newWindow.closed) {
makeNewWindow()
}
// bring subwindow to front
newWindow. focus()
// assemble content for new window
var newContent = "<HTML><HEAD><TITLE>A New Doc</TITLE></HEAD>"
newContent += "<BODY BGCOLOR='coral'><H1>This document is brand new.</H1>"
newContent += "</BODY></HTML>"
// write HTML to new window document
newWindow.document.write(newContent)
newWindow.document.close() // close Tayout stream
}
</SCRIPT>
</HEAD>
<BODY onLoad="makeNewWindow()">
<FORM>
<INPUT TYPE="button" VALUE="Write to Subwindow" onClick="subWrite()">
</FORM>
</BODY>
</HTML>

Chapter 8 + Window and Document Objects (CD-73

The Link Object

Belonging to the document object in the hierarchy is the link object. A link object
is the object model equivalent of an <A> tag when the tag includes an HREF attribute.
A document can have any number of links, so references to links (if necessary) are
usually made via the array index method:

document.links[n].propertyName

More commonly, though, links are not scripted. However, there is an important
JavaScript component to these objects. When you want to click a link to execute a
script rather than navigate directly to another URL, you can redirect the HREF
attribute to call a script function. The technique involves a pseudo-URL called the
javascript: URL. If you place the name of a function after the javascript: URL,
then a scriptable browser runs that function. So as not to mess with the minds of
users, the function should probably perform some navigation in the end. However,
the script can do other things as well, such as simultaneously changing the content
of two frames within a frameset.

The syntax for this construction in a link is as follows:

...

The void keyword prevents the link from trying to display any value that the
function may return. Remember this javascript: URL technique for all tags that
include HREF and SRC attributes: If an attribute accepts a URL, it can accept this
javascript: URL as well. This can come in handy as a way to script actions for
client-side image maps that don’t necessarily navigate anywhere, but which cause
something to happen on the page just the same.

The next logical step past the document level in the object hierarchy is the form.
That’s where you will spend the next lesson.

Exercises

1. Which of the following references are valid and which are not? Explain what is
wrong with the invalid references.

a.window.document.form[0]

b. self.entryForm.entryField.value
c. document.forms[2].name

d. entryForm.entryField.value

e. newWindow.document.write("Howdy")

2. Write the JavaScript statement that displays a message in the status bar wel-
coming visitors to your Web page.

CD-74 Partil + JavaScript Tutorial

3. Write the JavaScript statement that displays the same message to the docu-
ment as an <H1>-level headline on the page.

4. Create a page that prompts the user for his or her name as the page loads
(via a dialog box) and then welcomes the user by name in the body of the
page.

5. Create a page with any content you like, but one that automatically displays
a dialog box after the page loads to show the user the URL of the current
page.

+ o+

CHAPTER

Forms and Form
Elements

Most interactivity between a Web page and the user
takes place inside a form. That’s where a lot of the
interactive HTML stuff lives for every browser: text fields,
buttons, checkboxes, option lists, and so on. As you can tell
from the (by now) familiar basic object hierarchy diagram
(refer back to Figure 8-1), a form is always contained by a
document. Even so, the document object must be part of the
reference to the form and its elements.

The FORM Object

A FORM object can be referenced either by its position in
the array of forms contained by a document or by name
(if you assign an identifier to the NAME attribute inside the
<FORM> tag). If only one form appears in the document, it is
still a member of an array (a one-element array) and is
referenced as follows:

document.forms[0]

Notice that the array reference uses the plural version of
the word, followed by a set of square brackets containing the
index number of the element (zero is always first). But if you
assign a name to the form, simply plug the form’s name into
the reference:

document. formName

Form as object and container

In the simplified, compatible object model of this tutorial, a
form has a relatively small set of properties, methods, and
event handlers. Almost all of the properties are the same as
the attributes for forms. All scriptable versions of Navigator,
and most versions of Internet Explorer, allow scripts to change
these properties under script control, which gives your scripts
potentially significant power to direct the behavior of a form
submission in response to user selections on the page.

+ 0+ o+
In This Chapter

What the FORM

object represents

How to access key
FORM object
properties and
methods

How text, button, and
SELECT objects work

How to submit forms
from a script

How to pass
information from form

elements to functions

+ ¢+

CD-76 Partll + JavaScript Tutorial

A form is contained by a document, and the form in turn contains any number of
elements (sometimes called form controls). All of those interactive elements that
enable users to enter information or make selections belong to the form object.
This relationship mirrors the HTML tag organization in which items such as
<INPUT> tags are nested between the <FORM> and </FORM> tag “bookends.”

Accessing form properties

Forms are created entirely from standard HTML tags in the page. You can set
attributes for NAME, TARGET, ACTION, METHOD, and ENCTYPE. Each of these is a prop-
erty of a FORM object, accessed by all lowercase versions of those words, as in

document.forms[0].action
document.formName.action

To change any of these properties, simply assign new values to them:

document.forms[0].action = "http://www.giantco.com/cgi/login.pl"

form.elements[] property

In addition to keeping track of each type of element inside a form, the browser
also maintains a list of all control elements within a form. This list is another array,
with items listed according to the order in which their HTML tags appear in the
source code. It is generally more efficient to create references to elements directly,
using their names. However, sometimes a script needs to look through all of the ele-
ments in a form. This is especially true if the content of a form changes with each
loading of the page because the number of text fields changes based on the user’s
browser type. (For example, a script on the page uses document.write() to add
an extra text box for information required only from Windows users.)

The following code fragment shows the form.elements[] property at work in a
for repeat loop that looks at every element in a form to set the contents of text
fields to an empty string. The script cannot simply barge through the form and set
every element’s content to an empty string because some elements may be but-
tons, which don’t have a value property that you can set to an empty string.

var form = window.document.forms[0]
for (var i = 0; i < form.elements.length; i++) {
if (form.elements[i].type == "text") {
form.elements[i].value = ""
}

In the first statement, I create a variable — form—that holds a reference to the
first form of the document. I do this so that when I make many references to form
elements later in the script, the typical length of each reference is much shorter
(and marginally faster). I can use the form variable as a shortcut to building refer-
ences to items more deeply nested in the form.

Next, [start looping through the items in the elements array for the form. Each
form element has a type property, which reveals what kind of form element it is:

Chapter 9 + Forms and Form Elements CD-77

text, button, radio, checkbox, and so on. I'm interested in finding elements whose
type is text. For each of those, [set the value property to an empty string.

[return to forms later in this chapter to show you how to submit a form without
a Submit button and how client-side form validation works.

Form Controls as Objects

Three kinds of HTML elements nested inside a <FORM> tag become scriptable
objects in all browser document object models. Most of the objects owe their exis-
tence to the <INPUT> tag in the page’s source code. Only the value assigned to the
TYPE attribute of an <INPUT> tag determines whether the element is a text box,
password entry field, hidden field, button, checkbox, or radio button. The other
two kinds of form controls, TEXTAREA and SELECT, have their own tags.

While form controls have several properties in common, some properties are
unique to a particular control type or related types. For example, only a SELECT
object offers a property that reveals which item in its list is currently selected. But
checkbox and radio buttons both have a property that indicates whether the con-
trol is currently set to “on.” Similarly, all text-oriented controls operate the same
way for reading and modifying their content.

Having a good grasp of the scriptable features of form control objects is impor-
tant to your success with JavaScript. In the next sections, you meet the most
important form control objects and see how scripts interact with them.

Text-related objects

Each of the four text-related HTML form elements — text, password, hidden, and
TEXTAREA —is an element in the document object hierarchy. All but the hidden
object display themselves in the page, enabling users to enter information. These
objects also display text information that changes in the course of using a page
(although Dynamic HTML in IE4+ and NN6+ also allows the scripted change of body
text in a document).

To make these objects scriptable in a page, you do nothing special to their
normal HTML tags — with the possible exception of assigning a NAME attribute. I
strongly recommend assigning unique names to every form control element if your
scripts will be getting or setting properties or invoking their methods. Besides, if
the form is actually submitted to a server program, the NAME attributes must be
assigned in order for the server to process the element’s data.

For the visible objects in this category, event handlers are triggered from many
user actions, such as giving a field focus (getting the text insertion pointer in the
field) and changing text (entering new text and leaving the field). Most of your text
field actions are triggered by the change of text (the onChange event handler). In IE
and NN version 4 browsers and later, event handlers fire in response to individual
keystrokes as well.

Without a doubt, the single most used property of a text-related element is the
value property. This property represents the current contents of the text element.
A script can retrieve and set its content at any time. Content of the value property

CD-78 Partll + JavaScript Tutorial

Many scripters look to JavaScript to solve what are perceived as shortcomings or behavioral
anomalies with text-related objects in forms. | want to single these out early in your script-
ing experience so that they do not confuse you later.

First, only the most recent browsers let scripts reliably alter the font, font size, font style, and
text alignment of a text object’s content. You can access changes through the element’s
style-related properties (Chapter 30).

Second, most browser forms practice a behavior that was recommended long ago as an
informal standard by Web pioneers. When a form contains only one text INPUT object, a
press of the Enter/Return key while the text object has focus automatically submits the form.
For two or more fields in browsers other than IE5/Mac, you need another way to submit the
form (for example, a Submit button). This one-field submission scheme works well in many
cases, such as the search page of most Web search sites. But if you are experimenting with
simple forms containing only one field, you can submit the form with a press of the
Enter/Return key. Submitting a form that has no other action or target specified means the
page performs an unconditional reload —wiping out any information entered into the form.
You can, however, cancel the submission through an onSubmit event handler in the form, as
shown later in this chapter. Also, starting with version 4 browsers, you can script the press of
the Enter/Return key in any text field to submit a form (see Chapter 29).

is always a string. This may require conversion to numbers (see Chapter 6) if text
fields are used to enter values for some math operations.

To demonstrate how a text field’s value property can be read and written,
Listing 9-1 provides a complete HTML page with a single-entry field. Its onChange
event handler invokes the upperMe () function, which converts the text to upper-
case. In the upperMe () function, the first statement assigns the text object refer-
ence to a more convenient variable: field. A lot goes on in the second statement of
the function. The right side of the assignment statement performs a couple of key
tasks. The reference to the value property of the object (field.value) evaluates
to whatever content is in the text field at that instant. That string is then handed
over to one of JavaScript’s string functions, toUpperCase (), which converts the
value to uppercase. The evaluated result of the right side statement is then
assigned to the second variable: upperCaseVersion. Nothing has changed yet in
the text box. That comes in the third statement where the value property of the
text box is assigned whatever the upperCaseVersion variable holds. The need for
the second statement is more for learning purposes, so you can see the process
more slowly. In practice, you can combine the actions of steps two and three into
one power-packed statement:

field.value = field.value.toUpperCase()

Listing 9-1: Getting and Setting a Text Object’s value Property

<HTML>
<HEAD>
KTITLE>Text Object value Property</TITLE>

Chapter 9 + Forms and Form Elements CD-79

{SCRIPT LANGUAGE="JavaScript">
function upperMe() {
var field = document.forms[0].converter
var upperCaseVersion = field.value.toUpperCase()
field.value = upperCaseVersion
}
</SCRIPT>
</HEAD>
<BODY>
<FORM onSubmit="return false">
<INPUT TYPE="text" NAME="converter" VALUE="sample" onChange="upperMe()">
</FORM>
</BODY>
<THTML

Later in this chapter, [show you how to reduce even further the need for explicit
references in functions such as upperMe() in Listing 9-1. In the meantime, notice for
a moment the onSubmit event handler in the <FORM> tag. | delve more deeply into
this event handler later in this chapter, but [want to point out the construction that
prevents a single-field form from being submitted when you press the Enter key.

The Button Object

[have used the button INPUT element in many examples up to this point in the
tutorial. The button is one of the simplest objects to script. In the simplified object
model of this tutorial, the button object has only a few properties that are rarely
accessed or modified in day-to-day scripts. Like the text object, the visual aspects
of the button are governed not by HTML or scripts, but by the operating system
and browser that the page visitor uses. By far, the most useful event handler of the
button object is the onC11ck event handler. It fires whenever the user clicks the
button. Simple enough. No magic here.

The Checkbox Object

A checkbox is also a simple element of the FORM object, but some of the proper-
ties may not be intuitive entirely. Unlike the value property of a plain button object
(the text of the button label), the value property of a checkbox is any other text
you want associated with the object. This text does not appear on the page in any
fashion, but the property (initially set via the VALUE tag attribute) might be impor-
tant to a script that wants to know more about the purpose of the checkbox within
the form.

The key property of a checkbox object is whether or not the box is checked. The
checked property is a Boolean value: true if the box is checked, false if not.
When you see that a property is a Boolean value, it’s a clue that the value might be
usableinan if or if...else condition expression. In Listing 9-2, the value of the
checked property determines which alert box the user sees.

CD-80 Partll + JavaScript Tutorial

Listing 9-2: The Checkbox Object’s checked Property

<HTML>
<HEAD>
<TITLE>Checkbox Inspector</TITLE>
{SCRIPT LANGUAGE="JavaScript">
function inspectBox() {
if (document.forms[0].checkThis.checked) {
alert("The box is checked.")
} else {
alert("The box is not checked at the moment.")
1
}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
CINPUT TYPE="checkbox" NAME="checkThis">Check here

<INPUT TYPE="button" VALUE="Inspect Box" onClick="inspectBox()">
</FORM>
</BODY>
</HTMLD

Checkboxes are generally used as preferences setters, rather than as action
inducers. While a checkbox object has an onC11ick event handler, a click of a check-
box should never do anything drastic, such as navigate to another page.

The Radio Object

Setting up a group of radio objects for scripting requires a bit more work. To let
the browser manage the highlighting and unhighlighting of a related group of but-
tons, you must assign the same name to each of the buttons in the group. You can
have multiple groups within a form, but each member of the same group must have
the same name.

Assigning the same name to a form element forces the browser to manage the
elements differently than if they each had a unique name. Instead, the browser
maintains an array list of objects with the same name. The name assigned to the
group becomes the name of the array. Some properties apply to the group as a
whole; other properties apply to individual buttons within the group and must be
addressed via array index references. For example, you can find out how many
buttons are in a group by reading the 1ength property of the group:

document.forms[0].groupName.length

If you want to find out if a particular button is currently highlighted — via the
same checked property used for the checkbox— you must access the button ele-
ment individually:

document.forms[0].groupName[0].checked

Chapter 9 + Forms and Form Elements CD-81

Listing 9-3 demonstrates several aspects of the radio button object, including
how to look through a group of buttons to find out which one is checked and how
to use the VALUE attribute and corresponding property for meaningful work.

The page includes three radio buttons and a plain button. Each radio button’s
VALUE attribute contains the full name of one of the Three Stooges. When the user
clicks the button, the onC11ck event handler invokes the ful1Name () function. In
that function, the first statement creates a shortcut reference to the form. Next, a
for repeat loop looks through all of the buttons in the stooges radio button group.
An if construction looks at the checked property of each button. When a button is
highlighted, the break statement bails out of the for loop, leaving the value of the
i loop counter at the number where the loop broke ranks. The alert dialog box then
uses a reference to the value property of the ith button so that the full name can be
displayed in the alert.

Listing 9-3: Scripting a Group of Radio Objects

<HTMLY
<HEAD>
<TITLE>Extracting Highlighted Radio Button</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function fullName() {
var form = document.forms[0]
for (var i = 0; i < form.stooges.length; i++) {
if (form.stooges[i].checked) {
break
}
}

alert("You chose

+ form.stooges[i].value + ".")
}

</SCRIPT>

</HEAD>

<BODY>

<FORM>

<{B>Select your favorite Stooge:

<INPUT TYPE="radio" NAME="stooges" VALUE="Moe Howard" CHECKED>Moe
CINPUT TYPE="radio" NAME="stooges" VALUE="Larry Fine" >Larry
<INPUT TYPE="radio" NAME="stooges" VALUE="Curly Howard" >Curly

<INPUT TYPE="button" NAME="Viewer" VALUE="View Full Name..."
onClick="fullName()">

</FORM>

</BODY>

</HTML>

As you learn about form elements in later chapters of this book, the browser’s
tendency to create arrays out of identically named objects of the same type (except
for Internet Explorer 3) can be a benefit to scripts that work with, say, columns of
fields in an HTML order form.

CD-82

Part Il + JavaScript Tutorial

The SELECT Object

The most complex form element to script is the SELECT element object. As you
can see from the lowest common denominator object hierarchy diagram (Figures
4-6 or 8-1), the SELECT object is really a compound object: an object that contains
an array of OPTION objects. Moreover, you can establish this object in HTML to
display itself as either a pop-up list or a scrolling list —the latter configurable to
accept multiple selections by users. For the sake of simplicity at this stage, this
lesson focuses on deployment as a pop-up list that allows only single selections.

Some properties belong to the entire SELECT object; others belong to individual
options inside the SELECT object. If your goal is to determine which item the user
selects, you must use properties of both the SELECT and OPTION objects.

The most important property of the SELECT object itself is the selectedIndex
property, accessed as follows:

document.form[0].selectName.selectedIndex

This value is the index number of the currently selected item. As with most index
counting schemes in JavaScript, the first item (the one at the top of the list) has an
index of zero. The selectedIndex value is critical for enabling you to access prop-
erties of the selected option. Two important properties of an option item are text
and value, accessed as follows:

document.forms[0].selectName.options[n].text
document.forms[0].selectName.options[n].value

The text property is the string that appears onscreen in the SELECT object. It is
unusual for this information to be exposed as a FORM object property because in
the HTML that generates a SELECT object, the text is defined outside of the
<OPTION> tag. But inside the <OPTION> tag, you can set a VALUE attribute, which,
like the radio buttons shown earlier, enables you to associate some hidden string
information with each visible entry in the list.

To read the value or text property of a selected option most efficiently, you can
use the SELECT object’s selectedIndex property as an index value to the option.
References for this kind of operation get pretty long, so take the time to understand
what’s happening here. In the following function, the first statement creates a short-
cut reference to the SELECT object. The selectedIndex property of the SELECT
object is then substituted for the index value of the options array of that same
object:

function inspect() {
var list = document.forms[0].choices
var chosenltemText = Tist.options[list.selectedIndex].text

To bring a SELECT object to life, use the onChange event handler. As soon as a
user makes a new selection in the list, this event handler runs the script associated
with that event handler (except for Windows versions of Navigator 2, whose
onChange event handler doesn’t work for SELECT objects). Listing 9-4 shows a com-
mon application for a SELECT object. Its text entries describe places to go in and
out of a Web site, while the VALUE attributes hold the URLs for those locations.

'Note

Chapter 9 + Forms and Form Elements

When a user makes a selection in the list, the onChange event handler triggers a
script that extracts the value property of the selected option and assigns that
value to the Tocation object to effect the navigation. Under JavaScript control, this
kind of navigation doesn’t need a separate Go button on the page.

Listing 9-4: Navigating with a SELECT Object

<HTML>
<HEAD>
<TITLE>Select Navigation</TITLE>
{SCRIPT LANGUAGE="JavaScript">
function goThere() ({
var 1ist = document.forms[0].urllist
location = list.options[list.selectedIndex].value
}
</SCRIPT>
</HEAD>

<BODY>

<FORM>

Choose a place to go:

<SELECT NAME="urlList" onChange="goThere()">
<OPTION SELECTED VALUE="index.html">Home Page
<OPTION VALUE="store.html">Shop Our Store
<OPTION VALUE="policies.htm1">Shipping Policies
<OPTION VALUE="http://www.yahoo.com">Search the Web

</SELECT>

</FORM>

</BODY>

</HTML>

Internet Explorer and NN6 expose the value property of the selected option item

~— as the value property of the SELECT object. While this is certainly a logical and

convenient shortcut, for compatibility reasons you should use the long way shown
in Listing 9-4.

There is much more to the SELECT object, including the ability to change the
contents of a list in newer browsers. Chapter 26 covers the object in depth.

Passing Form Data and Elements to Functions

In all of the examples so far in this lesson, when an event handler invokes a func-
tion that works with form elements, the form or form element is explicitly refer-
enced in the function. But valuable shortcuts do exist for transferring information
about the form or form control directly to the function without dealing with those
typically long references that start with the window or document object level.

JavaScript features a keyword — this —that always refers to whatever object
contains the script in which the keyword is used. Thus, in an onChange event

CD-83

CD-84 Partil + JavaScript Tutorial

handler for a text field, you can pass a reference to the text object to the function
by inserting the this keyword as a parameter to the function:

<INPUT TYPE="text" NAME="entry" onChange="upperMe(this)">

At the receiving end, the function defines a parameter variable that turns that
reference into a variable that the rest of the function can use:

function upperMe(field) {
statement[s]
}

The name you assign to the function’s parameter variable is purely arbitrary, but
it is helpful to give it a name that expresses what the reference is. Importantly, this
reference is a “live” connection back to the object. Therefore, statements in the
script can get and set property values of the object at will.

For other functions, you may wish to receive a reference to the entire form,
rather than just the object calling the function. This is certainly true if the function
needs to access other elements of the same form. To pass the entire form, you
reference the form property of the INPUT object, still using the this keyword:
CINPUT TYPE="button" VALUE="Click Here" onClick="inspect(this.form)">

The function definition should then have a parameter variable ready to be
assigned to the form object reference. Again, you decide the name of the variable. I
tend to use the variable name form as a way to remind me exactly what kind of
object is referenced.

function inspect(form) {
statement[s]

}

Listing 9-5 demonstrates passing both an individual form element and the entire
form in the performance of two separate acts. This page makes believe it is con-
nected to a database of Beatles songs. When you click the Process Data button, it
passes the form object, which the processData() function uses to access the
group of radio buttons inside a for loop. Additional references using the passed
form object extract the value properties of the selected radio button and the text
field.

The text field has its own event handler, which passes just the text field to the
verifySong() function. Notice how short the reference is to reach the value
property of the song field inside the function.

Listing 9-5: Passing a Form Object and Form
Element to Functions

<HTML>

<HEAD>

<TITLE>Beatle Picker</TITLE>

<{SCRIPT LANGUAGE="JavaScript">

function processData(form) {

for (var i = 0; i < form.Beatles.length; i++) {
if (form.Beatles[i].checked) {
break

}

Chapter 9 + Forms and Form Elements (CD-85

// assign values to variables for convenience

var beatle = form.Beatles[i].value

var song = form.song.value

alert("Checking whether " + song + " features " + beatle + "...")
}

function verifySong(entry) {
var song = entry.value
alert("Checking whether " + song + " is a Beatles tune...")
}
</SCRIPT>
</HEAD>

<BODY>

<FORM onSubmit="return false">
Choose your favorite Beatle:
<INPUT TYPE="radio" NAME="Beat
<INPUT TYPE="radio" NAME="Beat
<INPUT TYPE="radio" NAME="Beat
<INPUT TYPE="radio" NAME="Beat

es" VALUE="John Lennon" CHECKED>John
es" VALUE="Paul McCartney">Paul

es" VALUE="George Harrison">George
es" VALUE="Ringo Starr">Ringo<P>

Enter the name of your favorite Beatles song:

<INPUT TYPE="text" NAME="song" VALUE = "ETeanor Rigby"
onChange="verifySong(this)"><P>

<INPUT TYPE="button" NAME="process" VALUE="Process Request..."
onClick="processData(this.form)">

</FORM>

</BODY>

</HTML>

Get to know the usage of the this keyword in passing form and form element
objects to functions. The technique not only saves you typing in your code, but it
also ensures accuracy in references to those objects.

Submitting and Prevalidating Forms

If you have worked with Web pages and forms before, you are familiar with how
simple it is to add a Submit-style button that sends the form to your server.
However, design goals for your page may rule out the use of ugly system-generated
buttons. If you'd rather display a pretty image, the link tag surrounding that image
should use the javascript: URL technique to invoke a script that submits the
form (the image type of INPUT element is not recognized prior to IE4 and NN6).

The scripted equivalent of submitting a form is the FORM object’s submit ()
method. All you need in the statement is a reference to the form and this method:

document.forms[0].submit()

One limitation might inhibit your plans to secretly have a script send you an
e-mail message from every visitor who comes to your Web site. If the form’s ACTION
attribute is set toamailTo: URL, JavaScript does not pass along the submit()
method to the form. See Chapter 23 for cautions about using the mailTo: URL as a
form’s action.

CD-86 Partll + JavaScript Tutorial

Before a form is submitted, you may wish to perform some last-second validation
of data in the form or in other scripting (for example, changing the form’s action
property based on user choices). You can do this in a function invoked by the
form’s onSubmit event handler. Specific validation routines are beyond the scope
of this tutorial (but are explained in substantial detail in Chapter 43), but [want to
show you how the onSubmit event handler works.

In all but the first generation of scriptable browsers from Microsoft (IE3) and
Netscape (NN2), you can let the results of a validation function cancel a submission
if the validation shows some incorrect data or empty fields. To control submission,
the onSubmit event handler must evaluate to return true (to allow submission to
continue) or returnfalse (to cancel submission). This is a bit tricky at first
because it involves more than just having the function called by the event handler
return true or false. The return keyword must be part of the final evaluation

Listing 9-6 shows a page with a simple validation routine that ensures all fields
have something in them before allowing submission to continue. (The form has no
ACTION attribute, so this sample form doesn’t get sent to the server.) Notice how
the onSubmit event handler (which passes a reference to the FORM object as a
parameter —in this case the this keyword points to the FORM object because its
tag holds the event handler) includes the return keyword before the function
name. When the function returns its true or fal se value, the event handler
evaluates to the requisite return true or return false.

Listing 9-6: Last-Minute Checking Before Form Submission

<HTML>
<HEAD>
<TITLE>Validator</TITLE>
{SCRIPT LANGUAGE="JavaScript">
function checkForm(form) {
for (var i = 0; i < form.elements.length; i++) {
if (form.elements[i].value == "") {
alert("Fill out ALL fields.")
return false
}
}
return true
}
</SCRIPT>
</HEAD>

<BODY>

<FORM onSubmit="return checkForm(this)">

Please enter all requested information:

First Name:<INPUT TYPE="text" NAME="firstName">

Last Name:<INPUT TYPE="text" NAME="TastName">

Rank:<INPUT TYPE="text" NAME="rank">

Serial Number:<INPUT TYPE="text" NAME="serialNumber">

<INPUT TYPE="submit">
</FORM>
</BODY>
</HTMLY>

Chapter 9 + Forms and Form Elements

One quirky bit of behavior involving the submit () method and onSubmit event
handler needs explanation. While you might think (and logically so, in my opinion)
that the submit () method would be the exact scripted equivalent of a click of a
real Submit button, it’s not. In Navigator, the submit () method does not cause the
form’s onSubmit event handler to fire at all. If you want to perform validation on a
form submitted via the submit () method, invoke the validation in the script func-
tion that ultimately calls the submit () method.

So much for the basics of forms and form elements. In the next chapter, you step
away from HTML for a moment to look at more advanced JavaScript core language
items: strings, math, and dates.

Exercises

1. Rework Listings 9-1, 9-2, 9-3, and 9-4 so that the script functions all receive the
most efficient form or form element references from the invoking event
handler.

2. Modify Listing 9-6 so that instead of the Submit button making the submis-
sion, the submission is performed from a hyperlink. Be sure to include the
form validation in the process.

3. In the following HTML tag, what kind of information do you think is being
passed with the event handler? Write a function that displays in an alert
dialog box the information being passed.

<INPUT TYPE="text"NAME="phone" onChange="format(this.value)">

4. A document contains two forms named specifications and accessories.
Inthe accessories form is a field named accl. Write two different state-
ments that set the contents of that field to Leather Carrying Case.

5. Create a page that includes a SELECT object to change the background color
of the current page. The property that you need to set is document.bgColor,
and the three values you should offer as options are red, yellow, and green.
In the SELECT object, the colors should display as Stop, Caution, and Go.
Note: If you use a Macintosh or UNIX version of Navigator, you must employ
version 4 or later for this exercise.

+ o+ 0+

CHAPTER

Strings, Math,
and Dates

¢+ 4+ o+

In This Chapter

How to modify strings
with common string

For most of the lessons in the tutorial so far, the objects at
methods

the center of attention belong to the document object
model. But as indicated in Chapter 2, a clear dividing line
exists between the document object model and the JavaScript When and how fo
language. The language has some of its own objects that are
independent of the document object model. These objects are
defined such that if a vendor wished to implement JavaScript
as the programming language for an entirely different kind of
product, the language would still use these core facilities for
handling text, advanced math (beyond simple arithmetic),
and dates. You can find formal specifications of these objects + + + +
in the ECMA-262 recommendation.

use the Math object

How to use the Date
object

Core Language Objects

It is often difficult for newcomers to programming — or
even experienced programmers who have not worked in
object-oriented worlds before —to think about objects,
especially when attributed to “things” that don’t seem to have
a physical presence. For example, it doesn’t require lengthy
study to grasp the notion that a button on a page is an object.
It has several physical properties that make perfect sense. But
what about a string of characters? As you learn in this chap-
ter, in an object-based environment such as JavaScript, every-
thing that moves is treated as an object —each piece of data
from a Boolean value to a date. Each such object probably has
one or more properties that help define the content; such an
object may also have methods associated with it to define
what the object can do or what you can do to the object.

I call all objects that are not part of the document object
model core language objects. You can see the full complement
of them in the Quick Reference in Appendix A. In this chapter,
[focus on the String, Math, and Date objects.

CD-90 Partil + JavaScript Tutorial

String Objects

You have already used String objects many times in earlier lessons. A string is
any text inside a quote pair. A quote pair consists of either double quotes or single
quotes. This allows one string to nest inside another, as often happens in event han-
dlers. In the following example, the alert () method requires a quoted string as a
parameter, but the entire method call also must be inside quotes.

onClick="alert('Hello, all")"

JavaScript imposes no practical limit on the number of characters that a string
can hold. However, most older browsers have a limit of 255 characters in length for
a script statement. This limit is sometimes exceeded when a script includes a
lengthy string that is to become scripted content in a page. You need to divide such
lines into smaller chunks using techniques described in a moment.

You have two ways to assign a string value to a variable. The simplest is a basic
assignment statement:

var myString = "Howdy"

This works perfectly well except in some exceedingly rare instances. Beginning
with Navigator 3 and Internet Explorer 4, you can also create a string object using
the more formal syntax that involves the new keyword and a constructor function
(that is, it “constructs” a new object):

var myString = new String("Howdy")

Whichever way you use to initialize a variable with a string, the variable receiv-
ing the assignment can respond to all String object methods.

Joining strings

Bringing two strings together as a single string is called concatenating strings, a
term you learned in Chapter 6. String concatenation requires one of two JavaScript
operators. Even in your first script in Chapter 3, you saw how the addition operator
(+) linked multiple strings together to produce the text dynamically written to the
loading Web page:

document.write(" of " + navigator.appName + ".")

As valuable as that operator is, another operator can be even more scripter
friendly. This operator is helpful when you are assembling large strings in a single
variable. The strings may be so long or cumbersome that you need to divide the
building process into multiple statements. The pieces may be combinations of
string literals (strings inside quotes) or variable values. The clumsy way to do it
(perfectly doable in JavaScript) is to use the addition operator to append more text
to the existing chunk:

var msg = "Four score"
msg = msg + " and seven"
msg = msg + " years ago,"

But another operator, called the add-by-value operator, offers a handy shortcut.
The symbol for the operator is a plus and equal sign together (+=). This operator
means “append the stuff on the right of me to the end of the stuff on the left of me.”
Therefore, the preceding sequence is shortened as follows:

Chapter 10 4 Strings, Math, and Dates (CD-91

var msg = "Four score"
msg += " and seven"
msg += " years ago,"

You can also combine the operators if the need arises:

var msg = "Four score"
msg += " and seven" + " years ago"

[use the add-by-value operator a lot when accumulating HTML text to be written
to the current document or another window.

String methods

Of all the core JavaScript objects, the String object has the most diverse collec-
tion of methods associated with it. Many methods are designed to help scripts
extract segments of a string. Another group, rarely used in my experience, wraps a
string with one of several style-oriented tags (a scripted equivalent of tags for font
size, style, and the like).

To use a string method, the string being acted upon becomes part of the refer-
ence followed by the method name. All methods return a value of some kind. Most
of the time, the returned value is a converted version of the string object referred
to in the method call —but the original string is still intact. To capture the modified
version, you need to assign the results of the method to a variable:

var result = string.methodName()

The following sections introduce you to several important string methods avail-
able to all browser brands and versions.

Changing string case
Two methods convert a string to all uppercase or lowercase letters:

var result = string.toUpperCase()
var result = string.tolLowerCase()

Not surprisingly, you must observe the case of each letter of the method names
if you want them to work. These methods come in handy when your scripts need to
compare strings that may not have the same case (for example, a string in a lookup
table compared with a string typed by a user). Because the methods don’t change
the original strings attached to the expressions, you can simply compare the evalu-
ated results of the methods:

var foundMatch = false

if (stringA.toUpperCase() == stringB.toUpperCase()) {
foundMatch = true

}

String searches

You can use the string.index0f () method to determine if one string is con-
tained by another. Even within JavaScript’s own object data, this can be useful
information. For example, another property of the navigator object in Chapter 3
(navigator.userAgent) reveals a lot about the browser that loads the page. A
script can investigate the value of that property for the existence of, say, “Win” to
determine that the user has a Windows operating system. That short string might

CD-92

Part Il + JavaScript Tutorial

be buried somewhere inside a long string, and all the script needs to know is
whether the short string is present in the longer one — wherever it might be.

The string.index0f () method returns a number indicating the index value
(zero based) of the character in the larger string where the smaller string begins.
The key point about this method is that if no match occurs, the returned value is
- 1. To find out whether the smaller string is inside, all you need to test is whether
the returned value is something other than -1.

Two strings are involved with this method: the shorter one and the longer one.
The longer string is the one that appears in the reference to the left of the method
name; the shorter string is inserted as a parameter to the index0f () method. To
demonstrate the method in action, the following fragment looks to see if the user is
running Windows:

var isWindows = false
if (navigator.userAgent.indexOf("Win") != -1) {
isWindows = true

}

The operator in the i f construction’s condition (!=) is the inequality operator.
You can read it as meaning “is not equal to.”

Extracting copies of characters and substrings

To extract a single character at a known position within a string, use the
charAt () method. The parameter of the method is an index number (zero based)
of the character to extract. When I say extract, I don’t mean delete, but rather grab a
snapshot of the character. The original string is not modified in any way.

For example, consider a script in a main window that is capable of inspecting a
variable, stringA, in another window that displays map images of different corpo-
rate buildings. When the window has a map of Building C in it, the stringA variable
contains “Building C.” The building letter is always at the tenth character position
of the string (or number 9 in a zero-based counting world), so the script can exam-
ine that one character to identify the map currently in that other window:

var stringA = "Building C"
var bldgletter = stringA.charAt(9)
// result: bldgletter = "C"

Another method—string.substring()—enables you to extract a contiguous
sequence of characters, provided you know the starting and ending positions of the
substring of which you want to grab a copy. Importantly, the character at the end-
ing position value is not part of the extraction: All applicable characters, up to but
not including that character, are part of the extraction. The string from which the
extraction is made appears to the left of the method name in the reference. Two
parameters specify the starting and ending index values (zero based) for the start
and end positions:

var stringA = "banana daiquiri"
var excerpt = stringA.substring(2,6)
// result: excerpt = "nana"

String manipulation in JavaScript is fairly cumbersome compared to some other
scripting languages. Higher-level notions of words, sentences, or paragraphs are
completely absent. Therefore, sometimes it takes a bit of scripting with string
methods to accomplish what seems like a simple goal. And yet you can put your

Chapter 10 4 Strings, Math, and Dates (C[D-93

knowledge of expression evaluation to the test as you assemble expressions that
utilize heavily nested constructions. For example, the following fragment needs to
create a new string that consists of everything from the larger string except the first
word. Assuming the first word of other strings can be of any length, the second
statement utilizes the string.index0f () method to look for the first space char-
acter and adds 1 to that value to serve as the starting index value for an outer
string.substring() method. For the second parameter, the 1ength property of
the string provides a basis for the ending character’s index value (one more than
the actual character needed).

var stringA = "The United States of America"
var excerpt = stringA.substring(stringA.index0f(" ") + 1, stringA.length)
// result: excerpt = "United States of America"

Creating statements like this one is not something you are likely to enjoy over
and over again, so in Chapter 34 [show you how to create your own library of
string functions you can reuse in all of your scripts that need their string-handling
facilities. More powerful string matching facilities are built into NN4+ and IE4+ by
way of regular expressions (see Chapters 34 and 38).

The Math Object

JavaScript provides ample facilities for math — far more than most scripters who
don’t have a background in computer science and math will use in a lifetime. But
every genuine programming language needs these powers to accommodate clever
programmers who can make windows fly in circles on the screen.

The Math object contains all of these powers. This object is unlike most of the
other objects in JavaScript in that you don’t generate copies of the object to use.
Instead your scripts summon a single Math object’s properties and methods. (One
Math object actually occurs per window or frame, but this has no impact whatso-
ever on your scripts.) Programmers call this kind of fixed object a static object. That
Math object (with an uppercase M) is part of the reference to the property or
method. Properties of the Math object are constant values, such as pi and the
square root of two:

var piValue = Math.PI
var rootOfTwo = Math.SQRT2

Math object methods cover a wide range of trigonometric functions and other
math functions that work on numeric values already defined in your script. For
example, you can find which of two numbers is the larger:

var larger = Math.max(valuel, value?)
Or you can raise one number to a power of ten:
var result = Math.pow(valuel, 10)

More common, perhaps, is the method that rounds a value to the nearest integer
value:

var result = Math.round(valuel)

Another common request of the Math object is a random number. Although the
feature was broken on Windows and Macintosh versions of Navigator 2, it works
in all other versions and brands since. The Math.random() method returns a

CD-94 partl + JavaScript Tutorial

floating-point number between 0 and 1. If you design a script to act like a card
game, you need random integers between 1 and 52; for dice, the range is 1 to 6 per
die. To generate a random integer between zero and any top value, use the follow-
ing formula:

Math.floor(Math.random() * (n + 1))

where n is the top number. (Math.floor () returns the integer part of any
floating-point number.) To generate random numbers between one and any higher
number, use this formula:

Math.floor(Math.random() * n) + 1

where n equals the top number of the range. For the dice game, the formula for
each die is

newDieValue = Math.floor(Math.random() * 6) + 1

To see this, enter the right-hand part of the preceding statement in the top text
box of The Evaluator Jr. and repeatedly press the Evaluate button.

One bit of help JavaScript doesn’t offer except in IE5.5 and NN6 is a way to spec-
ify a number-formatting scheme. Floating-point math can display more than a dozen
numbers to the right of the decimal. Moreover, results can be influenced by each
operating system’s platform-specific floating-point errors, especially in earlier ver-
sions of scriptable browsers. For browsers prior to IE5.5 and NN6 you must perform
any number formatting — for dollars and cents, for example —through your own
scripts. Chapter 35 provides an example.

The Date Object

Working with dates beyond simple tasks can be difficult business in JavaScript. A
lot of the difficulty comes with the fact that dates and times are calculated inter-
nally according to Greenwich Mean Time (GMT)— provided the visitor’s own inter-
nal PC clock and control panel are set accurately. As a result of this complexity,
better left for Chapter 36, this section of the tutorial touches on only the basics of
the JavaScript Date object.

A scriptable browser contains one global Date object (in truth, one Date object
per window) that is always present, ready to be called upon at any moment. The
Date object is another one of those static objects. When you wish to work with a
date, such as displaying today’s date, you need to invoke the Date object construc-
tor to obtain an instance of a Date object tied to a specific time and date. For exam-
ple, when you invoke the constructor without any parameters, as in

var today = new Date()

the Date object takes a snapshot of the PC’s internal clock and returns a date
object for that instant. Notice the distinction between the static Date object and a
date object instance, which contains an actual date value. The variable, today, con-
tains not a ticking clock, but a value that you can examine, tear apart, and reassem-
ble as needed for your script.

Internally, the value of a date object instance is the time, in milliseconds, from
zero o’clock on January 1, 1970, in the Greenwich Mean Time zone —the world
standard reference point for all time conversions. That’s how a date object contains
both date and time information.

Chapter 10 4 Strings, Math, and Dates (C[D-95

You can also grab a snapshot of the Date object for a particular date and time in
the past or future by specifying that information as parameters to the Date object
constructor function:

var someDate

var someDate =

var someDate

var someDate =

var someDate

new Date("Month dd, yyyy hh:mm:ss")

new Date("Month dd, yyyy")

new Date(yy,mm,dd,hh,mm,ss)

new Date(yy,mm,dd)

new Date(GMT milliseconds from 1/1/1970)

If you attempt to view the contents of a raw date object, JavaScript converts the
value to the local time zone string as indicated by your PC’s control panel setting.
To see this in action, use The Evaluator Jr.’s top text box to enter the following:

new Date()

Your PC’s clock supplies the current date and time as the clock calculates them
(even though JavaScript still stores the date object’s millisecond count in the GMT
zone). You can, however, extract components of the date object via a series of
methods that you apply to a date object instance. Table 10-1 shows an abbreviated
listing of these properties and information about their values.

Table 10-1 Some Date Object Methods

Method Value Range Description
dateObj.getTime() 0-... Milliseconds since 1/1/70 00:00:00 GMT
dateObj.getYear() 70-... Specified year minus 1900; four-digit year
for 2000+
dateObj.getFullYear() 1970-... Four-digit year (Y2K-compliant); version
4+ browsers
dateObj.getMonth() 0-11 Month within the year (January = 0)
dateObj.getDate() 1-31 Date within the month
dateObj.getDay() 0-6 Day of week (Sunday = 0)
dateObj.getHours() 0-23 Hour of the day in 24-hour time
dateObj.getMinutes() 0-59 Minute of the specified hour
dateObj.getSeconds() 0-59 Second within the specified minute
dateObj.setTime(val) 0-... Milliseconds since 1/1/70 00:00:00 GMT
dateObj.setYear(val) 70-... Specified year minus 1900; four-digit year
for 2000+
dateObj.setMonth(val) 0-11 Month within the year (January = 0)
dateObj.setDate(val) 1-31 Date within the month
dateObj.setDay(val) 0-6 Day of week (Sunday = 0)
dateObj.setHours(val) 0-23 Hour of the day in 24-hour time
date0Obj.setMinutes(val) 0-59 Minute of the specified hour

dateObj.setSeconds(val) 0-59 Second within the specified minute

CD-96 Partll + JavaScript Tutorial

Caution Be careful about values whose ranges start with zero, especially the months. The
getMonth() and setMonth() method values are zero based, so the numbers
are one less than the month numbers you are accustomed to working with (for
example, January is 0, December is 11).

You may notice one difference about the methods that set values of a date
object. Rather than returning some new value, these methods actually modify the
value of the date object referenced in the call to the method.

Date Calculations

Performing calculations with dates requires working with the millisecond values
of the date objects. This is the surest way to add, subtract, or compare date values.
To demonstrate a few date object machinations, Listing 10-1 displays the current
date and time as the page loads. Another script calculates the date and time seven
days from the current date and time value.

Listing 10-1: Date Object Calculations

<HTML>

<HEAD>

<TITLE>Date Calculation</TITLE>

{SCRIPT LANGUAGE="JavaScript">

function nextWeek() {
var todayInMS = today.getTime()
var nextWeekInMS = todayInMS + (60 * 60 * 24 * 7 * 1000)
return new Date(nextWeekInMS)

}

</SCRIPT>

</HEAD>

<BODY>

Today is:

{SCRIPT LANGUAGE="JavaScript">
var today = new Date()
document.write(today)
</SCRIPT>

Next week will be:

{SCRIPT LANGUAGE="JavaScript">
document.write(nextWeek())
</SCRIPT>

</B0ODY>

</HTML>

In the Body portion, the first script runs as the page loads, setting a global vari-
able (today) to the current date and time. The string equivalent is written to the
page. In the second Body script, the document.write() method invokes the
nextWeek () function to get a value to display. That function utilizes the today

Chapter 10 4 Strings, Math, and Dates (CD-97

global variable, copying its millisecond value to a new variable: today InMS. To get
a date seven days from now, the next statement adds the number of milliseconds in
seven days (60 seconds times 60 minutes times 24 hours times seven days times
1000 milliseconds) to today’s millisecond value. The script now needs a new date
object calculated from the total milliseconds. This requires invoking the Date
object constructor with the milliseconds as a parameter. The returned value is a
date object, which is automatically converted to a string version for writing to the
page. Letting JavaScript create the new date with the accumulated number of mil-
liseconds is more accurate than trying to add 7 to the value returned by the date
object’s getDate () method. JavaScript automatically takes care of figuring out how
many days there are in a month as well as in leap years.

Many other quirks and complicated behavior await you if you script dates in
your page. As later chapters demonstrate, however, the results may be worth the
effort.

Exercises

1. Create a Web page that has one form field for entry of the user’s e-mail
address and a Submit button. Include a pre-submission validation routine that
verifies that the text field has the @ symbol found in all e-mail addresses
before you allow submission of the form.

2. Given the string "Netscape Navigator," fill in the blanks of the
myString.substring() method parameters here that yield the results
shown to the right of each method call:

var myString = "Netscape Navigator"
myString.substring(___,) // result = "Net"
myString.substring(___,_) // result = "gator"
myString.substring(.) // result = "cape Nav"

3. Fill in the rest of the function in the listing that follows so that it looks through
every character of the entry field and counts how many times the letter “e”
appears in the field. (Hint: All that is missing is a for repeat loop.)

<HTML>
<HEAD>
<TITLE>Wheel o' Fortuna</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function countE(form) ({
var count = 0
var inputString = form.mainstring.value.toUpperCase()
missing code
alert("The string has " + count + " instances of the letter e.")

}
</SCRIPT>
</HEAD>

<BODY>
<FORM>

CD-98 Partll + JavaScript Tutorial

Enter any string: <INPUT TYPE="text" NAME="mainstring"
SIZE=30>

<INPUT TYPE="button" VALUE="Count the Es"
onClick="countE(this.form)">

</FORM>

</BODY>

</HTML>

4. Create a page that has two fields and one button. The button should trigger a
function that generates two random numbers between 1 and 6, placing each
number in one of the fields. (Think of using this page as a substitute for rolling
a pair of dice in a board game.)

5. Create a page that displays the number of days between today and next
Christmas.

+ 0+ 0+

CHAPTER

Scripting Frames
and Multiple L
Windows -

Relationships among
frames in the browser

window
OHe of the cool aspects of JavaScript on the client is that How to access
it allows user actions in one frame or window to influ- objects and values in
ence what happens in other frames and windows. In this other frames
section of the tutorial, you extend your existing knowledge
of object references to the realm of multiple frames and How to control
windows. navigation of multiple
frames
L]
nu
Frames: Parents and Children Commi i
You probably noticed that at the top of the simplified bgtween separate
document object hierarchy diagram (refer to Figure 8-1) the windows
window object has some other object references associated
with it. In Chapter 8, you learned that self is synonymous +* 4+

with window when the reference applies to the same window
that contains the script’s document. In this lesson, you learn
the roles of the other three object references — frame, top,
and parent.

Loading an ordinary HTML document into the browser cre-
ates a model in the browser that starts out with one window
object and the document it contains. (The document likely
contains other elements, but I'm not concerned with that stuff
yet.) The top rungs of the hierarchy model are as simple as
can be, as shown in Figure 11-1. This is where references begin
with window or self (or with document because the current
window is assumed).

CD-100 Partil + JavaScript Tutorial

Figure 11-1: Single-frame window
and document hierarchy

Window

Document

The instant a framesetting document loads into a browser, the browser starts
building a slightly different hierarchy model. The precise structure of that model
depends entirely on the structure of the frameset defined in that framesetting
document. Consider the following skeletal frameset definition:

<HTML>
<FRAMESET COLS="50%,50%">
<FRAME NAME="TleftFrame" SRC="somedocl.html">
<FRAME NAME="rightFrame" SRC="somedoc2.html">
</FRAMESET>
</HTML>

This HTML splits the browser window into two frames side by side, with a
different document loaded into each frame. The model is concerned only with
structure —it doesn’t care about the relative sizes of the frames or whether they’re
set up in columns or rows.

Framesets establish relationships among the frames in the collection. Borrowing
terminology from the object-oriented programming world, the framesetting docu-
ment loads into a parent window. Each of the frames defined in that parent window
document is a child frame. Figure 11-2 shows the hierarchical model of a two-frame
environment. This illustration reveals a lot of subtleties about the relationships
among framesets and their frames.

<FRAMESET>
Top,
Parent
<FRAME> <FRAME>
Child Child
Frame Frame
Document Document

Figure 11-2: Two-frame window and
document hierarchy

Chapter 11 4 Scripting Frames and Multiple Windows CD-101

It is often difficult at first to visualize the frameset as a window object in the hier-
archy. After all, with the exception of the URL showing in the Location/Address
field, you don’t see anything about the frameset in the browser. But that window
object exists in the object model. Notice, too, that in the diagram the framesetting
parent window has no document object showing. This may also seem odd because
the window obviously requires an HTML file containing the specifications for the
frameset. In truth, the parent window has a document object associated with it, but
it is omitted from the diagram to better portray the relationships among parent and
child windows. A frameset parent’s document cannot contain most of the typical
HTML objects such as forms and controls, so references to the parent’s document
are rarely, if ever, used.

If you add a script to the framesetting document that needs to access a property
or method of that window object, references are like any single-frame situation.
Think about the point of view of a script located in that window. Its immediate
universe is the very same window.

Things get more interesting when you start looking at the child frames. Each of
these frames contains a document object whose content you see in the browser
window. And the structure is such that each document is entirely independent of
the other. It is as if each document lived in its own browser window. Indeed, that’s
why each child frame is also a window type of object. A frame has the same kinds of
properties and methods of the window object that occupies the entire browser.

From the point of view of either child window in Figure 11-2, its immediate
container is the parent window. When a parent window is at the very top of the
hierarchical model loaded in the browser, that window is also referred to as the
top object.

References among Family Members

Given the frame structure of Figure 11-2, it’s time to look at how a script in any
one of those windows can access objects, functions, or variables in the others. An
important point to remember about this facility is that if a script has access to an
object, function, or global variable in its own window, that same item can be
reached by a script from another frame in the hierarchy (provided both documents
come from the same Web server).

A script reference may need to take one of three possible routes in the two-
generation hierarchy described so far: parent to child; child to parent; or child to
child.

Each of the paths between these windows requires a different reference style.

Parent-to-child references

Probably the least common direction taken by references is when a script in the
parent document needs to access some element of one of its frames. The parent
contains two or more frames, which means the parent maintains an array of the
child frame objects. You can address a frame by array syntax or by the name you
assign to it with the NAME attribute inside the <FRAME> tag. In the following exam-
ples of reference syntax, | substitute a placeholder named 0bjFuncVarName for
whatever object, function, or global variable you intend to access in the distant
window or frame. Remember that each visible frame contains a document object,

CD-102 Partil + JavaScript Tutorial

which is generally the container of elements you script — be sure references to the
element include document. With that in mind, a reference from a parent to one of its
child frames follows either of these models:

[window.]frames[nl.0bjFuncVarName
[window. 1frameName.0bjFuncVarName

Index values for frames are based on the order in which their <FRAME> tags
appear in the framesetting document. You will make your life easier, however, if you
assign recognizable names to each frame and use the frame’s name in the reference.
Note that some problems existed in early scriptable browsers when references to
other frames started with window. I recommend omitting window from all such
references.

Child-to-parent references

It is not uncommon to place scripts in the parent (in the Head portion) that
multiple child frames or multiple documents in a frame use as a kind of script
library. By loading in the frameset, these scripts load only once while the frameset
is visible. If other documents load into the frames over time, they can take advan-
tage of the parent’s scripts without having to load their own copies into the
browser.

From the child’s point of view, the next level up the hierarchy is called the
parent. Therefore, a reference from a child frame to items at the parent level is
simply

parent.0bjFuncVarName

If the item accessed in the parent is a function that returns a value, the returned
value transcends the parent/child borders down to the child without hesitation.

When the parent window is also at the very top of the object hierarchy currently
loaded into the browser, you can optionally refer to it as the top window, as in

top.0bjFuncVarName

Using the top reference can be hazardous if for some reason your Web page gets
displayed in some other Web site’s frameset. What is your top window is not the
master frameset’s top window. Therefore, | recommend using the parent reference
whenever possible (unless you want to blow away an unwanted framer of your
Web site).

Child-to-child references

The browser needs a bit more assistance when it comes to getting one child win-
dow to communicate with one of its siblings. One of the properties of any window
or frame is its parent (whose value is nul11 for a single window). A reference must
use the parent property to work its way out of the current frame to a point that
both child frames have in common —the parent in this case. Once the reference is
at the parent level, the rest of the reference can carry on as if starting at the parent.
Thus, from one child to one of its siblings, you can use either of the following refer-
ence formats:

parent.frames[n].0bjFuncVarName
parent.frameName.0bjFuncVarName

Chapter 11 4 Scripting Frames and Multiple Windows CD-103

A reference from the other sibling back to the first looks the same, but the
frames[] array index or frameName part of the reference differs. Of course, much
more complex frame hierarchies exist in HTML. Even so, the document object
model and referencing scheme provide a solution for the most deeply nested and
gnarled frame arrangement you can think of —following the same precepts you just
learned.

Frame Scripting Tips

One of the first mistakes that frame scripting newcomers make is writing immedi-
ate script statements that call upon other frames while the pages load. The prob-
lem here is that you cannot rely on the document loading sequence to follow the
frameset source code order. All you know for sure is that the parent document
begins loading first. Regardless of the order of <FRAME> tags, child frames can begin
loading at any time. Moreover, a frame’s loading time depends on other elements in
the document, such as images or Java applets.

Fortunately, you can use a certain technique to initiate a script once all of the
documents in the frameset are completely loaded. Just as the onlLoad event handler
for a document fires when that document is fully loaded, a parent’s onLoad event
handler fires after the onlLoad event handler in its child frames is fired. Therefore,
you can specify an onlLoad event handler in the <FRAMESET> tag. That handler might
invoke a function in the framesetting document that then has the freedom to tap the
objects, functions, or variables of all frames throughout the object hierarchy.

Controlling Multiple Frames —
Navigation Bars

If you are enamored of frames as a way to help organize a complex Web page,
you may find yourself wanting to control the navigation of one or more frames from
a static navigation panel. Here, I demonstrate scripting concepts for such control
using an application called Decision Helper (which you can find in Chapter 54 on
the CD-ROM). The application consists of three frames (see Figure 11-3). The top-
left frame is one image that has four graphical buttons in it. The goal is to turn that
image into a client-side image map and script it so the pages change in the right-
hand and bottom frames. In the upper-right frame, the script loads an entirely dif-
ferent document along the sequence of five different documents that go in there. In
the bottom frame, the script navigates to one of five anchors to display the segment
of instructions that applies to the document loaded in the upper-right frame.

Listing 11-1 shows a slightly modified version of the actual file for the Decision
Helper application’s navigation frame. The listing contains a couple of new objects
and concepts not yet covered in this tutorial. But as you will see, they are exten-
sions to what you already know about JavaScript and objects. To help simplify the
discussion here, I remove the scripting and HTML for the top and bottom button of
the area map. In addition, I cover only the two navigation arrows.

CD-104 rPartil + JavaScript Tutorial

De 0 elpe S0 Brne Dre =1 ES
J File Edit View Favorites Tools Help ‘
J] at @A @ & | B =
Back Forward Stop Refiesh Home Search Favori... History Mail Print Edit RealG...
The Decision Helper
Step 3 of 5: List the factors that will influence your decision, and assign a weight {from 1 to 100) to
signify the importance of each factor in your decision.
Factor 1--[Cost [B0 = Weight 1
Factor 2--=|Size 40 = Weight 2
Factor 3——>|PEMPEr |EU <--Weight 3
Factor 4--=[Wartanty [P0 < Weight 4 =l

Factors and Weights

members of the opposite sex).

21

Factors are the kinds of items you mmght find in a product feature checldist. But they can alse be subjective ems, such as the

prestige you might attach to the neighborhoods in which houses you're considerating are located. Whatever you enter here, the
iterns should be factors that you can measure either by some hard measure (e g, the size of a computer’ model's hard disk) or
by subjective measure (e.g., what the buzz is around campus about a potential college course's prospects are for meeting

Weights are a measure of how inportant a particular factor 13 to you. For instance, when buying a car, interior space may be
very important to you (rating, say, a 900, but fuel economy is firther down the list of considerations (rating perhaps a 30). Each
value you enter here 15 ndependent of the others: consider each factor mdrwdually, and assign a weight value between 1 and =l

| | [EMyComputer |

Figure 11-3: The Decision Helper screen

Listing 11-1: A Graphical Navigation Bar

<HTML>
<HEAD>
KTITLE>Navigation Bar</TITLE>
{SCRIPT LANGUAGE="JavaScript">
<l-- start
function goNext() {
var currOffset = parselnt(parent.currTitle)
if (currOffset < 5) {
currOffset +=1

parent.entryForms.location.href = "dh" + currOffset + ".htm"
parent.instructions.location.hash = "help" + currOffset
} else {

alert("This is the last form.")

}
function goPrev() {
var currOffset = parselnt(parent.currTitle)
if (currOffset > 1) {
currOffset -=1

parent.entryfForms.location.href = "dh" + currOffset + ".htm"
parent.instructions.location.hash = "help" + currOffset

} else {
alert("This is the first form.")

Chapter 11 4 Scripting Frames and Multiple Windows CD-105

// end -->

</SCRIPT>

</HEAD>

<BODY bgColor="white">

<MAP NAME="navigation">

<AREA SHAPE="RECT" COORDS="25,80,66,116" HREF="javascript:goNext()">
{AREA SHAPE="RECT" COORDS="24,125,67,161" HREF="javascript:goPrev()">
</MAP>

</BODY>

<THTML

Look first at the HTML section for the Body portion. Almost everything there is
standard stuff for defining client-side image maps. The coordinates define rectan-
gles around each of the arrows in the larger image. The HREF attributes for the two
areas point to JavaScript functions defined in the Head portion of the document.

In the frameset that defines the Decision Helper application, names are assigned
to each frame. The upper-right frame is called entryForms; the bottom frame is
called instructions.

Knowing that navigation from page to page in the upper-right frame requires
knowledge of which page is currently loaded there, I build some other scripting into
both the parent document and each of the documents that loads into that frame. A
global variable called currTitle is defined in the parent document. Its value is an
integer indicating which page of the sequence (1 through 5) is currently loaded. An
onLoad event handler in each of the five documents (named dhl.htm, dh2.htm,
dh3.htm, dh4.htm, and dh5.htm) assigns its page number to that parent global vari-
able. This arrangement allows all frames in the frameset to share that value easily.

When a user clicks the right-facing arrow to move to the next page, the
goNext () function is called. The first statement gets the currTit1e value from
the parent window and assigns it to a local variable: currOffset. Anif...else
construction tests whether the current page number is less than five. If so, the
add-by-value operator adds one to the local variable so I can use that value in the
next two statements.

In those next two statements, I adjust the content of the two right frames. Using
the parent reference to gain access to both frames, [set the Tocation.href prop-
erty of the top-right frame to the name of the file next in line (by concatenating the
number with the surrounding parts of the filename). The second statement sets the
location.hash property (which controls the anchor being navigated to) to the
corresponding anchor in the instructions frame (anchor names helpl, help2,
help3, help4, and helpb).

A click of the left-facing arrow reverses the process, subtracting 1 from the cur-
rent page number (using the subtract-by-value operator) and changing the same
frames accordingly.

The example shown in Listing 11-1 is one of many ways to script a navigation
frame in JavaScript. Whatever methodology you use, much interaction occurs
among the frames in the frameset.

CD-106 Partii + JavaScript Tutorial

More about Window References

In Chapter 8, you saw how to create a new window and communicate with it by
way of the window object reference returned from the window.open() method. In
this section, [show you how one of those subwindows can communicate with
objects, functions, and variables in the window or frame that creates the subwindow.

In scriptable browsers (except for Navigator 2), every window has a property
called opener. This property contains a reference to the window or frame that held
the script whose window.open() statement generated the subwindow. For the
main browser window and frames therein, this value is nul1. Because the opener
property is a valid window reference, you can use it to begin the reference to items
in the original window — just like a script in a child frame uses parent to access
items in the parent document. The parent-child terminology doesn’t apply to sub-
windows, however.

Listings 11-2 and 11-3 contain documents that work together in separate win-
dows. Listing 11-2 displays a button that opens a smaller window and loads Listing
11-3 into it. The main window document also contains a text field that gets filled in
when you enter text into a corresponding field in the subwindow.

In the main window document, the newWindow () function generates the new
window. Because no other statements in the document require the reference to the
new window just opened, the statement does not assign its returned value to any
variable. This is an acceptable practice in JavaScript if you don’t need the returned
value of a function or method.

Listing 11-2: A Main Window Document

<HTML>
<HEAD>
<TITLE>Main Document</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function newWindow() {
window.open("subwind.htm","sub", "HEIGHT=200,WIDTH=200")
}
</SCRIPT>
</HEAD>

<BODY>

<FORM>

<INPUT TYPE="button" VALUE="New Window" onClick="newWindow()">

Text incoming from subwindow:

<INPUT TYPE="Text" NAME="entry">

</FORM>

</BODY>

</HTML>

All of the action in the subwindow document comes in the onChange event han-
dler of the text field. It assigns the subwindow field’s own value to the value of the
field in the opener window’s document. Remember that the contents of each

Chapter 11 4 Scripting Frames and Multiple Windows CD-107

window and frame belong to a document. So even after your reference targets a
specific window or frame, the reference must continue helping the browser find the
ultimate destination, which is generally some element of the document.

Listing 11-3: A Subwindow Document

<HTML>

<HEAD>

<TITLE>A SubDocument</TITLE>

</HEAD>

<BODY>

<FORM onSubmit="return false">

Enter text to be copied to the main window:
<INPUT TYPE="text"
onChange="opener.document.forms[0].entry.value = this.value">
</FORM>

</BODY>

</HTML>

Just one more lesson to go before I let you explore all the details elsewhere in
the book. I use the final tutorial chapter to show you some fun things you can do
with your Web pages, such as changing images when the user rolls the mouse atop
a picture.

Exercises

Before answering the first three questions, study the structure of the following
frameset for a Web site that lists college courses:

{FRAMESET ROWS="85%,15%">
<FRAMESET COLS="20%,80%">
<FRAME NAME="mechanics" SRC="historylOIM.html">
{FRAME NAME="description" SRC="historyl01D.html1">
</FRAMESET>
<FRAMESET COLS="100%">
<FRAME NAME="navigation" SRC="navigator.html">
</FRAMESET>
</FRAMESET>
</HTMLD
1. Whenever a document loads into the description frame, it has an onlLoad
event handler that stores a course identifier in the framesetting document’s
global variable called currCourse. Write the onlLoad event handler that sets
this value to "historyl01".

2. Draw a block diagram that describes the hierarchy of the windows and frames
represented in the frameset definition.

3. Write the JavaScript statements located in the navigation frame that loads the
file "french201M.htm1" into the mechanics frame and the file "french201D.
htm1" into the description frame.

CD-108 Partil + JavaScript Tutorial

4. While a frameset is still loading, a JavaScript error message suddenly appears
saying that “window.document.navigation.form.selector is undefined.” What

do you think is happening in the application’s scripts, and how can you solve
the problem?

5. A script in a child frame of the main window uses window.open() to generate
a second window. How can a script in the second window access the location
object (URL) of the parent window in the main browser window?

Images and
Dynamic HTML

The previous eight lessons have been intensive, covering a
lot of ground for both programming concepts and
JavaScript. Now it’s time to apply those fundamentals to the
learning of more advanced techniques. I cover two areas here.
First, [show you how to implement the ever-popular mouse
rollover in which images swap when the user rolls the cursor
around the screen. Then I introduce you to concepts sur-
rounding scripted control of Dynamic HTML in the version 4
and later browsers.

The Image Object

One of the objects contained by the document is the image
object. Unfortunately, this object is not available in all script-
able browsers. The earliest browsers that you can use this
technique with are NN3 and IE4. Therefore, everything you
learn here about the image object doesn’t apply to NN2 (all
versions) or IE3 (for Windows). Even so, I show you how to
insert rollover code in pages so that it doesn’t cause errors in
earlier browsers.

Because a document can have more than one image, image
object references for a document are stored in the object
model as an array belonging to the document object. You can
therefore reference an image by array index or image name.
Moreover, the array index can be a string version of the
image’s name. Thus, all of the following are valid references to
an image object:

document.images[n]
document.images["imageName"]
document.imageName

Each of the tag’s attributes is accessible to
JavaScript as a property of the image object. No mouse-
related event handlers are affiliated with the image object
(until you get to IE4+ and NN6+). If you want to make an image
a clickable item in older browsers, surround it with a link

CHAPTER

+ 0+ o+
In This Chapter

How to precache
images

How fo swap images
for mouse rollovers

What you can do
with Dynamic HTML
and scripting

+ ¢+

CD-110 Partii + JavaScript Tutorial

(and set the image’s border to zero) or attach a client-side image map to it. The
combination of a link and image is how you make a clickable image button (the
image type of form input element is not a scriptable object until IE4+ and NN6+).

Interchangeable images

The advantage of having a scriptable image object is that a script can change
the image occupying the rectangular space already occupied by an image. In [E4+
and NN6+, the images can even change size, with surrounding content reflowing
accordingly.

The script behind this kind of image change is simple enough. All it entails is
assigning a new URL to the image object’s src property. The size of the image on
the page is governed by the HEIGHT and WIDTH attributes set in the tag as
the page loads. The most common image rollovers use the same size image for each
of the rollover states. In NN3 and NN4, the image can’t change size on the page,
which causes a differently sized replacement image to scale to fit the original
dimensions.

Precaching images

Images often take several extra seconds to download from a Web server. If you
design your page so an image changes in response to user action, you usually want
the same fast response that users are accustomed to in multimedia programs.
Making the user wait many seconds for an image to change can severely detract
from enjoyment of the page.

JavaScript comes to the rescue by enabling scripts to load images into the
browser’s memory cache without displaying the image, a technique called pre-
caching images. The tactic that works best is to preload the image into the
browser’s image cache when the page initially loads. Users are less impatient for
those few extra seconds as the main page loads than waiting for an image to down-
load in response to some mouse action.

Precaching an image requires constructing an image object in memory. An image
object created in memory differs in some respects from the document image object
that you create with the tag. Memory-only objects are created by script, and
you don’t see them on the page at all. But their presence in the document code
forces the browser to load the images as the page loads. The object model provides
an Image object constructor function to create the memory type of image object as
follows:

var myImage = new Image(width, height)

Parameters to the constructor function are the pixel width and height of the
image. These dimensions should match the tag’s WIDTH and HEIGHT
attributes. Once the image object exists in memory, you can then assign a filename
or URL to the src property of that image object:

myImage.src = "someArt.gif"

When the browser encounters a statement assigning a URL to an image object’s
src property, the browser goes out and loads that image into the image cache. All
the user sees is some extra loading information in the status bar, as if another

Chapter 12 4 Images and Dynamic HTML CD-11 1

image were in the page. By the time the entire page loads, all images generated in
this way are tucked away in the image cache. You can then assign your cached
image’s src property or the actual image URL to the src property of the document
image created with the tag:

document.images[0].src = mylmage.src

The change to the image in the document is instantaneous.

Listing 12-1 is a simple listing for a page that has one tag and a select list
that enables you to replace the image in the document with any of four precached
images (including the original image specified for the tag). If you type this listing —
as [strongly recommend — you can obtain copies of the four image files from the
companion CD-ROM in the Chapter 12 directory of listings (you must still type the
HTML and code, however).

Listing 12-1: Precaching Images

<HTML>

<HEAD>

KTITLE>Image Object</TITLE>
<SCRIPT LANGUAGE="JavaScriptl.1">
// pre-cache four images
imagel = new Image(120,90)
imagel.src = "deskl.gif"
image2 = new Image(120,90)
image2.src = "desk2.gif"
image3 = new Image(120,90)
image3.src = "desk3.gif"
image4 = new Image(120,90)
imaged.src = "desk4.gif"

// Toad an image chosen from select list

function loadCached(1ist) {
var img = list.options[list.selectedIndex].value
document.thumbnail.src = eval(img + ".src")

1

</SCRIPT>

</HEAD>

<BODY >

<H2>Image Object</H2>

<FORM>

<SELECT NAME="cached" onChange="ToadCached(this)">
<OPTION VALUE="imagel">Bands

<OPTION VALUE="1image2">Clips

<OPTION VALUE="image3">Lamp

<OPTION VALUE="imaged4">Erasers

</SELECT>

</FORM>

</BODY>

</HTMLD

CD-1 12 Partii + JavaScript Tutorial

As the page loads, it executes several statements immediately. These statements
create four new memory image objects and assign filenames to the objects’ src
properties. These images are loaded into the image cache as the page loads. Down
in the Body portion of the document, an tag stakes its turf on the page and
loads one of the images as a starting image.

A SELECT element lists user-friendly names for the pictures while housing the
names of image objects already precached in memory. When the user makes a
selection from the list, the ToadCached () function extracts the selected item’s
value —which is a string version of the image object name. To convert a string
name to a reference to the object of that same name, use the eval () function (part
of the core JavaScript language). You need the src property of that object, so the
eval () function is applied to a string version of the reference to an image object’s
src property. The src property of the chosen image object is assigned to the src
property of the visible image object on the page, and the precached image appears
instantaneously.

Creating image rollovers

A favorite technique to add some pseudo-excitement to a page is to swap button
images as the user rolls the cursor atop them. The degree of change to the image is
largely a matter of taste. The effect can be subtle — a slight highlight or glow
around the edge of the original image — or drastic — a radical change of color.
Whatever your approach, the scripting is the same.

When several of these graphical buttons occur in a group, I tend to organize the
memory image objects as arrays and create naming and numbering schemes that
facilitate working with the arrays. Listing 12-2 shows such an arrangement for four
buttons that control a jukebox. The code in the listing is confined to the image-
swapping portion of the application. This is the most complex and lengthiest listing
of the tutorial, so it requires a bit of explanation as it goes along.

Listing 12-2: Image Rollovers

<HTML>

<HEAD>

<TITLE>Jukebox/Image Rollovers</TITLE>
{SCRIPT LANGUAGE="JavaScript">

Only browsers capable of handling image objects should execute statements that
precache images. Therefore, the entire sequence is nested inside an if construc-
tion that tests for the presence of the document.images array. In older browsers,
the condition evaluates to “undefined,” which an i f condition treats as false.

if (document.images) f{

Image precaching starts by building two arrays of image objects. One array
stores information about the images depicting the graphical button’s “off” position;
the other is for images depicting their “on” position. These arrays use strings
(instead of integers) as index values. The string names correspond to the names
given to the visible image objects whose tags come later in the source code. The
code is clearer to read (for example, you know that the offImgArray["play"]

Chapter 12 4 Images and Dynamic HTML CD-113

entry has to do with the Play button image). Also, as you see later in this listing,
rollover images don’t conflict with other visible images on the page (a possibility if
you rely exclusively on numeric index values when referring to the visible images
for the swapping).

After creating the array and assigning new blank image objects to the first four
elements of the array, | go through the array again, this time assigning file path-
names to the src property of each object stored in the array. These lines of code
execute as the page loads, so the images load into the image cache along the way.

// precache all 'off' button images

var offImgArray = new Array()
offImgArray["play"] = new Image(75,33)
offImgArray["stop"] = new Image(75,33)
offImgArray["pause"] = new Image(75,33)
offImgArray["rewind"] = new Image(86,33)

// off image array -- set 'off' image path for each button
offImgArray["play"]l.src = "images/playoff.jpg"
offImgArray["stop"].src = "images/stopoff.jpg"

of fImgArray["pause"].src = "images/pauseoff.jpg"
offImgArray["rewind"J.src = "images/rewindoff.jpg"

// precache all 'on' button images

var onImgArray = new Array()
onImgArray["play"] = new Image(75,33)
onImgArray["stop"] = new Image(75,33)
onlmgArray["pause"] = new Image(75,33)
onImgArray["rewind"] = new Image(86,33)

// on image array -- set 'on' image path for each button
onlmgArray["play"].src = "images/playon.jpg"
onImgArray["stop"J].src = "images/stopon.jpg"
onlmgArray["pause"].src = "images/pauseon.jpg"
onlmgArray["rewind"].src = "images/rewindon.jpg"

As you can see in the following HTML, when the user rolls the mouse atop any of
the visible document image objects, the onMouseOver event handler (from the link
object surrounding the image in the document) invokes the imageOn () function,
passing the name of the particular image. The imageOn () function uses that name
to synchronize the document.images array entry (the visible image) with the entry
of the in-memory array of “on” images from the onImgArray array. The src prop-
erty of the array entry is assigned to the corresponding document image src
property.

// functions that swap images & status bar
function imageOn(imgName) {
if (document.images) {

document.images[imgName].src = onImgArray[imgName].src
}

The same goes for the onMouseOut event handler, which needs to turn the image
off by invoking the imageOff () function with the same index value.

CD-114 Partii + 1avaScript Tutorial

function imageOff(imgName) {
if (document.images) {
document.images[imgName].src = offImgArray[imgName].src

}

Both the onMouseOver and onMouseOut event handlers set the status bar to
prevent the ugly javascript: URL from appearing there as the user rolls the
mouse atop the image. The onMouseQut event handler sets the status bar message
to an empty string.

function setMsg(msg) {
window.status = msg
return true

For this demonstration, I disable the functions that control the jukebox. But I
leave the empty function definitions here so they catch the calls made by the clicks
of the links associated with the images.

// controller functions (disabled)
function playIt() {

}

function stopIt() {

}

function pauselt(){

}

function rewindIt() {
}

</SCRIPT>

</HEAD>

<BODY>

<CENTER>

<FORM>

Jukebox Controls

I surround each image in the document with a link because the link object has
the event handlers needed to respond to the mouse rolling over the area for com-
patibility back to NN3. Each link’s onMouseQOver event handler calls the imageOn()
function, passing the name of the image object to be swapped. Because both the
onMouseOver and onMouseQut event handlers require a return true statement to
work, [combine the second function call (to setMsg()) with the return true
requirement. The setMsg() function always returns true and is combined with the
return keyword before the call to the setMsg () function. It’s just a trick to reduce
the amount of code in these event handlers.

' Note If you are typing this listing to try it out, be sure to keep each entire <A> tag and its
~— attributes in one unbroken line; or insert a carriage return before any event han-
dler name.

Chapter 12 4 Images and Dynamic HTML CD-115

<A HREF="javascript:playIt()"
onMouseOver="imageOn('play"'); return setMsg('Play the selected tune')"
onMouseQut="image0ff('play'); return setMsg('')">

<A HREF="javascript:stopIt()"
onMouseQver="imageOn('stop'); return setMsg('Stop the playing tune')"
onMouseQut="imageOff('stop'); return setMsg('')">

<A
<A HREF="javascript:pauselt()"
onMouseOver="imageOn('pause'); return setMsg('Pause the playing tune')"
onMouseQut="imageOff('pause'); return setMsg('"')">

<A
<A HREF="javascript:rewindIt()"
onMouseOver="1imageOn('rewind"'); return setMsg('Rewind tune')"
onMouseQut="imageOff('rewind'); return setMsg('')">

</FORM>
</CENTER>
</BODY>
<IHTML>

You can see the results of this lengthy script in Figure 12-1. As the user rolls the
mouse atop one of the images, it changes from a light to dark color by swapping the
entire image. You can access the image files on the CD-ROM, and I encourage you to
enter this lengthy listing and see the magic for yourself.

}?%:‘Jukehoullmage Rollovers - Metscape
File Edit Wiew Go Communicator Help

Back Fomward Reload Home Seach Guide Frint Secuwity Siop

T D

Jukebox Controls

o [5or | R R

’?| \ Pauze the playing tune

Figure 12-1: Typical mouse rollover image swapping

More Dynamism in HTML

The image object swapping technique is but a preview of what the newest devel-
opments in Dynamic HTML are all about. In [E4+ and NN6+, you can script changes
to HTML element styles and content. Content can literally “dance” on the page.

CD-1 16 Partii + JavaScript Tutorial

Due to different approaches to document object models that Microsoft and
Netscape have taken over the years, it is only with adoption of the W3C DOM in the
IE5 and NN6 browsers that a lot of the same DHTML script code can run inter-
changeably on both IE and NN. (But even then, IE5 and IE5.5 do not support the
W3C DOM as fully as NN6 does.) If your audience uses IE exclusively, you also have
the option of using Microsoft’s proprietary object model for compatibility back to
IE4 (although with occasional compatibility problems accruing to the Macintosh
version of [E4).

In Chapter 14, I provide some suggestions on how to approach the diversity of
object models when developing content. Until W3C DOM-compatible browsers
represent the majority of browsers accessing your pages, you may have to weigh a
delicate balance between the gain to your Web site’s prestige with very cool DHTML
features and the pain in making those features work on a range of incompatible
browsers. But even if you sit on the DHTML sidelines for a while, there is plenty to
do with fully compatible scripting techniques demonstrated throughout this tutorial.

And so ends the final lesson of the JavaScript Bible, Fourth Edition tutorial. If you
have gone through every lesson and tried your hand at the exercises, you are now
ready to dive into the rest of the book to learn the fine details and many more fea-
tures of both the document object model and the JavaScript language. You can
work sequentially through the chapters of Parts IIl and IV, but before too long, you
should also take a peek at Chapter 45 to learn some debugging techniques that help
the learning process.

Exercises

1. Explain the difference between a document image object and the memory
type of image object.

2. Write the JavaScript statements needed to precache an image named
jane. jpg that later will be used to replace the document image defined by
the following HTML:

3. With the help of the code you wrote for Question 2, write the JavaScript state-
ment that replaces the document image with the memory image.

4. Backward-compatible document image objects do not have event handlers for
mouse events. How do you trigger scripts needed to swap images for mouse
rollovers?

+ 0+ 0+

Document
Objects
Reference

11

+ 0+ s+
Chapter 13

JavaScript Essentials

Chapter 14
Document Object Model
Essentials

Chapter 15

Generic HTML Element
Obijects

Chapter 16

Window and Frame Objects
Chapter 17

Location and History Objects
Chapter 18

The Document and Body
Obijects

Chapter 19

Body Text Objects
Chapter 20

HTML Directive Objects

Chapter 21
Link and Anchor Obijects

Chapter 22
Image, Area, and Map
Objects

Chapter 23
The Form and Related Objects

Chapter 24

Button Objects

Chapter 25
Text-Related Form Objects
Chapter 26

Select, Option, and
FileUpload Obijects
Chapter 27

Table and List Objects
Chapter 28

The Navigator and Other
Environment Objects

Chapter 29
Event Objects

Chapter 30
Style Sheet and Style Objects

Chapter 31
Positioned Obijects

Chapter 32
Embedded Obijects

Chapter 33
XML Obijects

¢+ + o+

JavaScript
Essentials

Whenever JavaScript is discussed in the context of the
Web browser environment, it is sometimes difficult to
distinguish between JavaScript the scripting language and the
objects that you use the language to control. Even so, it’s
important to separate the language from the object model just
enough to help you make important design decisions when
considering JavaScript-enhanced pages. You may come to
appreciate the separation in the future if you use JavaScript for
other object models, such as server-side programming. All the
basics of the language are identical. Only the objects differ.

This chapter elaborates on many of the fundamental sub-
jects about the core JavaScript language raised throughout
the tutorial (Part II), particularly as they relate to deploying
scripts in a world in which visitors to your pages may use a
wide variety of browsers. Along the way, you receive addi-
tional insights into the language itself. You can find details
about the JavaScript core language syntax in Part IV.

JavaScript Versions

The JavaScript language has its own numbering system,
which is completely independent of the version numbers
assigned to browsers. The language’s creator, Netscape, by
and large controls the numbering system.

The first version, logically enough, was JavaScript 1.0. This
was the version implemented in Navigator 2 and the first
release of Internet Explorer 3. As the language evolved with
succeeding browser versions, the JavaScript version number
incremented in small steps. Internet Explorer 5, for example,
uses JavaScript 1.3, whereas Navigator 6 uses JavaScript 1.5.

Each successive generation employs additional language fea-
tures. For example, in JavaScript 1.0, arrays were not developed
fully, causing scripted arrays to not track the number of items
in the array. JavaScript 1.1 filled that hole by providing a con-
structor function for generating arrays and an inherent Tength

CHAPTER

+ 0+ o+
In This Chapter

How to separate the
language from the
document object
model

Where scripts go in
your documents

JavaScript language
versions

Language highlights
for experienced
programmers

I S

38

Part Il 4 Document Objects Reference

property for any generated array. Later in this chapter, you see how to direct a
browser to use a specific version of JavaScript for script execution if that makes
sense to your application.

In practice, however, the JavaScript version implemented in a browser is not
always a good predictor of core language features available for that browser. For
example, while JavaScript 1.2 (as implemented by Netscape in NN4) includes broad
support for regular expressions, not all of those features appear in Microsoft’s
JavaScript 1.2 implementation in I[E4. By the same token, Microsoft implemented
try-catch error handling in its version of JavaScript 1.3 in IE5, but Netscape didn’t
include that feature until its NN6 implementation of JavaScript 1.5. Therefore, the
language version number is far less important than the browser version in deter-
mining which language features to use.

Core Language Standard — ECMAScript

Although Netscape first developed the JavaScript language, Microsoft incorpo-
rated the language in Internet Explorer 3. Because Microsoft did not want to license
the “Java” name from its trademark owner (Sun Microsystems), the language
became known in the IE environment as JScript. Except for some very esoteric
exceptions and the pace of newly introduced features, the two languages are essen-
tially identical. The levels of compatibility between browser brands for a compara-
ble generation are remarkably high for the core language (unlike the vast disparities
in object model implementations discussed in Chapter 14).

As mentioned in Chapter 2, standards efforts have been under way to create
industry-wide recommendations for browser makers to follow (to make developers’
lives easier). The core language was among the first components to achieve stan-
dard status. Through the European standards body called ECMA, a formal standard
for the language has been agreed to and published. The first specification for the
language, dubbed ECMAScript by the standards group, was roughly the same as
JavaScript 1.1 in Netscape Navigator 3. The standard defines how various data
types are treated, how operators work, what a particular data-specific syntax looks
like, and other language characteristics. A newer version (called version 3) adds
many enhancements to the core language (version 2 was version 1 with errata
fixed). You can view the current version of the ECMA-262 specification at http://
www.ecma.ch. If you are a student of programming languages, you will find the doc-
ument fascinating; if you simply want to script your pages, you will probably find
the minutia mind-boggling.

Both Netscape and Microsoft have pledged to make their browsers compliant
with the ECMA standard. The vast majority of the ECMAScript standard has
appeared in Navigator since version 3 and Internet Explorer since version 4. And, as
new features are added to the ECMA standard, they tend to find their way into
newer browsers as well.

Embedding Scripts in HTML Documents

Scriptable browsers offer several ways to include scripts or scripted elements in
your HTML documents. Not all approaches are available in all versions of every
browser, but you have sufficient flexibility starting with Navigator 3 and some ver-
sions of Internet Explorer 3.

'Note

Chapter 13 4 JavaScript Essentials

<SCRIPT> tags

The simplest and most compatible way to include script statements in an HTML
document is inside a <SCRIPT>. . .</SCRIPT> tag set that specifies the scripting
language via the LANGUAGE attribute. You can have any number of such tag sets in
your document. For example, you can define some functions in the Head section to
be called by event handlers in HTML tags within the Body section. Another tag set
can reside within the Body to write part of the content of the page as the page
loads. Place only script statements and comments between the start and end tags
of the tag set. Do not place any HTML tags inside unless they are part of a string
parameter to a document.write() statement that creates content for the page.

Every opening <SCRIPT> tag should specify the LANGUAGE attribute. Because the
<SCRIPT> tag is a generic tag indicating that the contained statements are to be
interpreted as executable script and not renderable HTML, the tag is designed to
accommodate any scripting language the browser knows.

Specifying the language version

All scriptable browsers (from Navigator 2 onward and Internet Explorer 3
onward) recognize the LANGUAGE="JavaScript" attribute setting. However, more
recent browsers typically acknowledge additional versions of JavaScript or, in the
case of Internet Explorer, other languages such as VBScript. For example, the
JavaScript interpreter built into Navigator 3 knows the JavaScript 1.1 version of the
language; Navigator 4 and Internet Explorer 4 include the JavaScript 1.2 version. For
versions beyond the original JavaScript, you specify the language version by
appending the version number after the language name without any spaces, as in

{SCRIPT LANGUAGE="JavaScriptl.1">...</SCRIPT>

<SCRIPT LANGUAGE="JavaScriptl.2">...</SCRIPT>

How you use these later-version attributes depends on the content of the scripts
and your intended audience. For example, while Navigator 6 is JavaScript 1.5-com-
patible, it works with all previous versions of the JavaScript LANGUAGE attribute as
well. Features of the language that are new in JavaScript 1.5 are executed if the
LANGUAGE attribute is set to only "JavaScript". On rare occasions (detailed
where necessary in Part IV), the behavior of the language changes in a browser if
you specify a later language version (usually to force the script to adhere to the
ECMA specification when it varies from earlier implementations).

Writing scripts for a variety of browser versions requires a bit of care, especially
when the scripts may contain language features available only in newer browsers.
As demonstrated in an extensive discussion about browser detection later in this
chapter, there may be a need to include multiple versions of a script function, each
in its own <SCRIPT> tag with a different LANGUAGE attribute value.

The HTML 4.0 specification defines the <SCRIPT> tag, but does not endorse the

~— LANGUAGE attribute. In its place, HTML 4 recommends the TYPE attribute as a way

of specifying a MIME type for the tag's content. Only IE5+ and NN6+ browsers rec-
ognize this attribute. Assign the attribute as TYPE="text/javascript" (IE5+
also accepts text/ecmascript). JavaScript versions, however, are not taken into
account with this methodology. To be both backward compatible and forward
looking, you can specify both the LANGUAGE and TYPE attributes in your
<{SCRIPT> tags because older browsers ignore the TYPE attribute.

39

40

Part Il 4 Document Objects Reference

<SCRIPT FOR> tags

Internet Explorer 4 (and later) offers a variation on the <SCRIPT> tag that binds
a <SCRIPT> tag’s statements to a specific object and event generated by that
object. In addition to the language specification, the tag’s attributes must include
FOR and EVENT attributes (not part of the HTML 4.0 specification). The value
assigned to the FOR attribute is a reference to the desired object. Most often, this is
simply the identifier assigned to the object’s ID attribute (IE4+ enables you to refer-
ence an object by either document.all.objectID orjust objectID). The EVENT
attribute is the event handler name that you wish the script to respond to. For
example, if you design a script to perform some action upon a mouseDown event in a
paragraph whose ID is myParagraph, the script statements are enclosed in the fol-
lowing tag set:

<SCRIPT FOR="myParagraph" EVENT="onmousedown" LANGUAGE="JavaScript"
TYPE="text/javascript">

</SCRIPT>

Statements inside the tag set execute only upon the firing of the event. No func-
tion definitions are required.

This way of binding an object’s event to a script means that there is no event
handler defined in the element’s tag. Therefore, it guarantees that only IE4 or later
can carry out the script when the event occurs. But the tag and attributes contain a
lot of source code overhead for each object’s script, so this is not a technique that
you should use for script statements that need to be called by multiple objects.

Also be aware that you cannot use this tag variation if non-IE or pre-IE4 browsers
load the page. In such browsers, script statements execute as the page loads, which
certainly causes script errors.

JavaScript versus JScript and VBScript

As previously explained, Internet Explorer’s version of JavaScript is called
JScript. As a result, Internet Explorer’s default script language is JScript. While
Internet Explorer acknowledges the LANGUAGE="JavaScript" attribute, Netscape
Navigator ignores the LANGUAGE="JScript" attribute. Therefore, if you write
scripts that must work in all scriptable browsers, you can specify one language
("JavaScript") and count on all browsers interpreting the code correctly (assum-
ing you take into account other browser compatibility issues).

An entirely different issue is Internet Explorer’s other scripting language,
VBScript. This language, a derivative of Visual Basic, works only in Win32 versions
of IE. You can mix scripts from both languages in the same document, but their tag
sets must be separate with the LANGUAGE attributes clearly specifying the language
for each <SCRIPT> tag.

Hiding script statements from older browsers

As more versions of scriptable browsers spread among the user community, the
installed base of older, nonscriptable browsers diminishes. However, public Web
sites can still attract a variety of browsers that date back to the World Wide Web
Stone Age (before A.D.1996). But even new devices, such as palm-sized computers,
typically employ compact browsers that don’t have built-in JavaScript interpreters.

Chapter 13 4 JavaScript Essentials

Nonscriptable browsers do not know about the <SCRIPT> tag. Normally,
browsers ignore tags they don’t understand. That’s fine when a tag is just one line
of HTML, but a <SCRIPT> tag sets off any number of script statement lines in a doc-
ument. Old browsers don’t know to expect a closing </SCRIPT> tag. Therefore,
their natural inclination is to render any lines they encounter after the opening
<SCRIPT> tag. Unfortunately, this places script statements squarely in the docu-
ment — surely to confuse anyone who sees such gibberish on the page.

You can, however, exercise a technique that tricks most older browsers into
ignoring the script statements: surround the script statements —inside the
<{SCRIPT> tag set —with HTML comment markers. An HTML comment begins with
the sequence <! - - and ends with -->. Therefore, you should embed these com-
ment sequences in your scripts according to the following format:

{SCRIPT LANGUAGE="JavaScript">
==

script statements here

/-=>

</SCRIPT>

JavaScript interpreters also know to ignore a line that begins with the HTML
beginning comment sequence, but the interpreter needs a little help with the end-
ing sequence. The close of the HTML comment starts with a JavaScript comment
sequence (/ /). This tells JavaScript to ignore the line; but a nonscriptable browser
sees the ending HTML symbols and begins rendering the page with the next HTML
tag or other text in the document. An older browser doesn’t know what the
</SCRIPT> tag is, so the tag is ignored and rendering begins after that.

Even with this subterfuge, not all browsers handle HTML comment tags grace-
fully. Some older America Online browsers display the script statements no matter
what you do. Fortunately, these browsers are disappearing.

If you design your pages for public access, include these HTML comment lines in
all your <SCRIPT> tag sets. Make sure they go inside the tags, not outside. Also
note that most of the script examples in this book do not include these comments
for the sake of saving space in the listings.

Hiding scripts entirely?

It may be misleading to say that this HTML comment technique “hides” scripts
from older browsers. In truth, the comments hide the scripts from being rendered
by the browsers. The tags and script statements, however, are still downloaded to
the browser and appear in the source code when viewed by the user.

A common wish among authors is to truly hide scripts from visitors to a page.
Client-side JavaScript must be downloaded with the page and is, therefore, visible
in the source view of pages. There are, of course, some tricks you can implement
that may disguise client-side scripts from prying eyes. The most easily imple-
mented technique is to let the downloaded page contain no visible elements, only
scripts that assemble the page that the visitor sees. Source code for such a page is
simply the HTML for the page. But that page is not interactive because no scripting
is attached unless it is written as part of the page — defeating the goal of hiding
scripts. Any scripted solution for disguising scripts is immediately defeatable by
the user turning off scripting temporarily before downloading the page. All of your
code is ready for source view.

41

42

Part Il 4 Document Objects Reference

If you are worried about other scripters “stealing” your scripts, your best protec-
tion is to include a copyright notification in your page’s source code. Not only are
your scripts visible to the world, but so, too, are a thief’s scripts. This way you can
easily see when someone lifts your scripts verbatim.

Script libraries (.js files)

If you do a lot of scripting or script a lot of pages for a complex Web application,
you will certainly develop some functions and techniques that you can use for sev-
eral pages. Rather than duplicate the code in all of those pages (and go through the
nightmare of making changes to all copies for new features or bug fixes), you can
create reusable script library files and link them to your pages.

Such an external script file contains nothing but JavaScript code—no <SCRIPT>
tags, no HTML. The script file you create must be a text-only file, but its filename
must end with the two-character extension . js. To instruct the browser to load the
external file at a particular point in your regular HTML file, you add an SRC attribute
to the <SCRIPT> tag as follows:

<{SCRIPT LANGUAGE="JavaScript" SRC="hotscript.js"></SCRIPT>

This kind of tag should go at the top of the document so it loads before any other
in-document <SCRIPT> tags load. If you load more than one external library, include
a series of these tag sets at the top of the document.

For complex pages and pages that link multiple external .js files, Navigator 3 and

-~ 4 sometimes do not execute immediate statements in the . js file as it loads. If
you encounter this problem, surround the statements in a function, and invoke the
function from a script statement in the main document.

Take notice of two features about this external script tag construction. First, the
<SCRIPT> . . . </SCRIPT> tag pair is required, even though nothing appears
between them. You can mix <SCRIPT> tag sets that specify external libraries with
in-document scripts in the same document. Second, avoid putting other script
statements between the start and end tags when the start tag contains an SRC
attribute.

How you reference the source file in the SRC attribute depends on its physical
location and your HTML coding style. In the preceding example, the . js file is
assumed to reside in the same directory as the HTML file containing the tag. But if
you want to refer to an absolute URL, the protocol for the file is http:// (just like
with an HTML file):

<SCRIPT LANGUAGE="JavaScript" SRC="http://www.cool.com/hotscript.js">
</SCRIPT>

A very important prerequisite for using script libraries with your documents is
that your Web server software must know how to map files with the . js extension
to a MIME type of application/x-javascript. If you plan to deploy JavaScript in
this manner, be sure to test a sample on your Web server beforehand and arrange
for any necessary server adjustments.

Tip

Chapter 13 4 JavaScript Essentials 43

When a user views the source of a page that links in an external script library,
code from the . js file does not appear in the window even though the browser
treats the loaded script as part of the current document. However, the name or URL
of the . js file is plainly visible (displayed exactly as it appears in your source
code). Anyone can then turn off JavaScript in the browser and open that file (using
the http:// protocol) to view the . js file’s source code. In other words, an exter-
nal JavaScript source file is no more hidden from view than JavaScript embedded
directly in an HTML file.

NN3 exhibits a bug if you specify an external . js library file in a tag that specifies
.. JavaScript 1.2 as the language. Unfortunately, NN3 ignores the language version
4 and loads the external file no matter what language you specify in that tag.
Therefore, if you don't want those scripts to run in NN3, surround the scripts in the
external file in a version-checking i f clause:

if (parselnt(navigator.appVersion) > 3) {
statements to run here

}
Library compatibility issues

On the Netscape Navigator side, the external library capability was introduced
with NN3. Therefore, the SRC attribute is ignored in NN2, and none of the external
scripts become part of the document.

The situation is more clouded on the Internet Explorer side. When IE3 shipped
for Windows, the external script library feature was not available. By most
accounts, IE version 3.02 included support for external libraries, but I heard reports
that this was not the case. I know that the version 3.02 installed on my Windows 95
computers loads external libraries from . js files. It may be a wise tactic to specify
a complete URL for the . js file because this is known to assist IE3 in locating the
script library file associated with an HTML file.

Navigator 3&4 JavaScript entities

A feature valid only for Navigator 3 and 4 is the JavaScript entity. The idea
behind this technique is to provide a way for the browser to use script expressions
to fill in the value for any HTML tag attribute. Entities are strings that allow special
characters or symbols to be embedded in HTML. They begin with an ampersand
symbol (&) and end with a semicolon (;). For example, the © ; entity is ren-
dered in browsers as a copyright symbol (©).

To assign a JavaScript expression to an entity, the entity still begins and ends like
all entities, but curly braces surround the expression. For example, consider a doc-
ument containing a function that returns the current day of the week:

function today() {
var days = new Array("Sunday","Monday","Tuesday","Wednesday","Thursday",
"Friday","Saturday")
var today = new Date()
return days[today.getDay()]

44

Part Il 4 Document Objects Reference

You can assign this function to a JavaScript entity such that the label of a button
is created with the returned value of the function:

<INPUT TYPE="button" VALUE="&{today()};" onClick="handleToday()">

You can use expressions to fulfill only attribute assignments, not other parts
related to a tag, such as the text for a document title or link. Those items can be
generated dynamically via document.write() statements as the document loads.

The dynamic content capabilities of NN6 (and [E4+) provide ample substitutes
for JavaScript entities. At load time, a script can modify any element’s attribute
after the HTML creates the element, including those that impact its size or layout.
The only difference is that with the dynamic version, the user sees both the
“before” and “after” versions while the page loads.

Browser Version Detection

Without question, the biggest challenge facing many client-side scripters is how
to program an application that accommodates a wide variety of browser versions
and brands, each one of which can bring its own quirks and bugs. Happy is the
intranet developer who knows for a fact that the company has standardized its
computers with a particular brand and version of browser. But that is a rarity, espe-
cially in light of the concept of the extranet— private corporate networks and appli-
cations that open up for access to the company’s suppliers and customers.

Having dealt with this problem since the original scripted browser (NN2) had to
work alongside a hoard of nonscriptable browsers, I have identified several paths
that an application developer can follow. Unless you decide to be autocratic about
browser requirements for using your site, you must make compromises in desired
functionality or provide multiple paths in your Web site for two or more classes of
browsers. In this section, I give you several ideas about how to approach develop-
ment in an increasingly fragmented browser world.

Is JavaScript on?

Very often, the first decision an application must make is whether the client
accessing the site is JavaScript-enabled. Non-JavaScript-enabled browsers fall into
two categories: a) JavaScript-capable browsers that have JavaScript turned off in
the preferences; and b) browsers that have no built-in JavaScript interpreter.

Using the <NOSCRIPT> tag

Except for some of the earliest releases of NN2, all JavaScript-capable browsers
have a preferences setting to turn off JavaScript (and a separate one for Java). You
should know that even though JavaScript is turned on by default in most browsers,
many institutional deployments turn it off when the browser is installed on client
machines. The reasons behind this MIS deployment decision vary from scares
about Java security violations incorrectly associated with JavaScript, valid
JavaScript security concerns on some browser versions, and the fact that some fire-
walls try to filter JavaScript lines from incoming HTML streams.

All JavaScript-capable browsers include a set of <NOSCRIPT>. . .</NOSCRIPT>
tags to balance the <SCRIPT>. . .</SCRIPT> tag set. If one of these browsers has
JavaScript turned off, the <SCRIPT> tag is ignored but the <NOSCRIPT> tag is
observed. As with the <NOFRAMES> tag, you can use the body of a <NOSCRIPT> tag

Chapter 13 4 JavaScript Essentials

set to display HTML that lets users know JavaScript is turned off, and therefore the
full benefit of the page isn’t available unless they turn on JavaScript. Listing 13-1
shows a skeletal HTML page that uses these tags.

Listing 13-1: Employing the <NOSCRIPT> Tag

<HTML>
<HEAD>
<TITLE>Some Document</TITLE>
{SCRIPT LANGUAGE="JavaScript">
/] script statements
</SCRIPT>
<NOSCRIPT>
Your browser has JavaScript turned off.

You will experience a more enjoyable time at this Web site if you turn
JavaScript on.
<HR>
</NOSCRIPT>
</HEAD>
<BODY>
<H2>The body of your document.</H2>
</BODY>
</HTML>

You can display any standard HTML within the <NOSCRIPT> tag set. An icon
image is a colorful way to draw the user’s attention to the special advice at the top
of the page. If your document is designed to create content dynamically in one or
more places in the document, you may have to include a <NOSCRIPT> tag set after
more than one <SCRIPT> tag set to let users know what they’re missing. Do not
include the HTML comment tags that you use in hiding JavaScript statements from
older browsers. Their presence inside the <NOSCRIPT> tags prevents the HTML
from rendering.

Other nonscriptable browsers

At this juncture, I must point out that newcomers to scripting frequently want to
know what script to write to detect whether JavaScript is turned on. Because
scripters are so ready to write a script to work around all situations, it takes some
thought to realize that a non-JavaScript browser cannot execute such a script: If no
JavaScript interpreter exists in the browser (or it is turned off), the script is
ignored. [suppose that the existence of a JavaScript-accessible method for Java
detection—the navigator.javaEnabled() method — promises a parallel method
for JavaScript. But logic fails to deliver on that unspoken promise.

Another desire is to have JavaScript substitute document content when the
browser is JavaScript-enabled. Only in [E4+ and NN6+ can a script replace regular
HTML with scripted content. If you develop content that must be backward compat-
ible with older browsers, remember that all HTML in a document appears in the
browser window, while scripted content can be additive only.

You can use this additive scripting to create unusual effects when displaying dif-
ferent links and (with a caveat) body text for scriptable and nonscriptable
browsers. Listing 13-2 shows a short document that uses HTML comment symbols

45

46

Part Il 4 Document Objects Reference

to trick nonscriptable browsers into displaying a link to Netscape’s Web site and
two lines of text. A scriptable browser takes advantage of a behavior that allows
only the nearest <A> tag to be associated with a closing tag. Therefore, the
Netscape link isn’t rendered at all, but the link to my Web site is. For the body text,
the script assigns the same text color to a segment of HTML body text as the docu-
ment’s background. While the colored text is camouflaged in a scriptable browser
(and some other text written to the document), the “hidden” text remains invisible
in the document. HTML fans frown upon this kind of element spoofing, which will
likely run afoul of HTML validators. However, it can be fun to play with.

Listing 13-2: Rendering Different Content for Scriptable and
Nonscriptable Browsers

<HTMLY

<BODY BGCOLOR="{#FFFFFF">

<SCRIPT LANGUAGE="JavaScript">

<l--

document.writeln("")
//-->

</SCRIPT>

Where?

<HR>

{SCRIPT LANGUAGE="JavaScript">

-

document.write("Howdy from the script!")
/1-->

</SCRIPT>

If you can read this, JavaScript is not available.
{SCRIPT LANGUAGE="JavaScript">

-

document.write("")

/1-->

</SCRIPT>

Here's some stuff afterward.

</BODY>

</HTML>

Scripting for different browsers

The number of solutions for accommodating different client browsers is large
because the specific compatibility need might be as simple as letting a link navigate
to a scripted page for script-enabled browsers, as involved as setting up distinct
areas of your application for different browser classes, or any degree in between.
The first step in planning for compatibility is determining what your goals are for
various visitor classes.

Chapter 13 4 JavaScript Essentials

Establishing goals

Once you map out your application, you must then look at the implementation
details to see which browser is required for the most advanced aspect of the appli-
cation. For example, if the design calls for image swapping on mouse rollovers, that
feature requires NN3+ and [E4+. In implementing Dynamic HTML features, you have
potentially three different ways to implement tricks (such as movable elements or
changeable content) because the document object models require different script-
ing (and sometimes HTML) for NN4, [E4+, and the W3C DOM implemented in NN6
and IE5+.

In an ideal scenario, you have an appreciation for the kinds of browsers that
your visitors use. For example, if you want to implement some DHTML features, but
NN4 usage is only a small and decreasing percentage of hits, then you can probably
get by with designing for the IE4+ and NN6 document object models. Or you may
wish to forget the past and design your DHTML exclusively for W3C DOM-compati-
ble browsers. If your Web hosting service maintains a log of visitor activity to your
site, you can study the browsers listed among the hits to see which browsers your
visitors use.

After you determine the lowest common denominator for the optimum experi-
ence, you then must decide how gracefully you want to degrade the application for
visitors whose browsers do not meet the common denominator. For example, if you
plan a page or site that requires a W3C DOM-compatible browser for all the bells
and whistles, you can provide an escape path with content in a simple format that
every browser from Lynx to [E4 and NN4 can view. Or perhaps you can provide for
users of older scriptable browsers a third offering with limited scriptability that
works on all scriptable browsers.

Creating an application or site that has multiple paths for viewing the same con-
tent may sound good at the outset, but don’t forget that maintenance chores lie
ahead as the site evolves. Will you have the time, budget, and inclination to keep all
paths up to date? Despite whatever good intentions a designer of a new Web site
may have, in my experience the likelihood that a site will be maintained properly
diminishes rapidly with the complexity of the maintenance task.

Implementing a branching index page

If you decide to offer two or more paths into your application or content, one
place you can start visitors down their individual paths is at the default page for
your site. Numerous techniques are available that can redirect visitors to the appro-
priate perceived starting point of the site.

One design to avoid is placing the decision about the navigation path in the
hands of the visitor. Offering buttons or links that describe the browser require-
ments may work for users who are HTML and browser geeks, but average con-
sumers surfing the Web these days likely don’t have a clue about what level of HTML
their browsers support or whether they are JavaScript-enabled. It is incumbent upon
the index page designer to automate the navigation task as much as possible.

A branching index page has almost no content. It is not the “home page” per se of
the site, rather a gateway to the entire Web site. Its job is to redirect users to what
appears to be the home page for the site. Listing 13-3 shows what such a branching
index page looks like.

47

48

Part Il 4 Document Objects Reference

Listing 13-3: A Branching Index Page

<HTML>

<HEAD>
KTITLE>GiantCo On The Web</TITLE>
<SCRIPT LANGUAGE="JavaScript">

-

window.location.href = "homel.html"
[1-->
</SCRIPT>

<META HTTP-EQUIV="REFRESH"
CONTENT="0; URL=http://www.giantco.com/home2.html">
</HEAD>

<BODY>
<CENTER>
<IMG SRC="images/giantcolLogo.gif" HEIGHT=60 WIDTH=120
BORDER=0 ALT="Go To GiantCo Home Page">
</CENTER>
</BODY>
</HTMLD

Notice that the only visible content is an image surrounded by a standard link.
The <BODY> tag contains no background color or art. A single script statement is
located in the Head. A <META> tag is also in the Head to automate navigation for
some users. To see how a variety of browsers respond to this page, here are what
three different classes of browser do with Listing 13-3:

A JavaScript-enabled browser. Although the entire page may load momentarily
(at most, flashing the company logo for a brief moment), the browser executes the
script statement that loads homel.htm1 into the window. In the meantime, the
image is preloaded into the browser’s memory cache. This image should be reused
in homel.html so the download time isn’t wasted on a one-time image. If your
pages require a specific browser brand or minimum version number, this is the
place to filter out browsers that don’t meet the criteria (which may include the
installation of a particular plug-in). Use the properties of the navigator object
(Chapter 28) to write a browser sniffer script that allows only those browsers meet-
ing your design minimum to navigate to the scripted home page. All other browsers
fall through to the next execution possibility.

A modern browser with JavaScript turned off or missing. Several modern
browsers recognize the special format of the <META> tag as one that loads a URL
into the current window after a stated number of seconds. In Listing 13-3, that inter-
val is zero seconds. The <META> tag is executed only if the browser ignores the
<SCRIPT> tag. Therefore, any scriptable browser that has JavaScript turned off or
any browser that knows <META> tags but no scripting follows the refresh command
for the <META> tag. If you utilize this tag, be very careful to observe the tricky
formatting of the CONTENT attribute value. A semicolon and the subattribute URL
follow the number of seconds. A complete URL for your nonscriptable home page
version is required for this subattribute. Importantly, the entire CONTENT attribute
value is inside one set of quotes.

Chapter 13 4 JavaScript Essentials 49

Older graphical browsers, PDA browsers, and Lynx. The last category includes
graphical browsers some call “brain-dead,” as well as intentionally stripped down
browsers. Lynx is designed to work in a text-only VT-100 terminal screen; personal
digital assistants (PDAs) such as the Palm handheld computer have browsers opti-
mized for usage through slow modems and viewing on small screens. If such
browsers do not understand the <META> tag for refreshing content, they land at this
page with no further automatic processing. But by creating an image that acts as a
link, the user will likely click (or tap) on it to continue. The link then leads to the
nonscriptable home page. Also note that the ALT attribute for the image is supplied.
This takes care of Lynx and PDA browsers (with image loading off) because these
browsers show the ALT attribute text in lieu of the image. Users click or tap on the
text to navigate to the URL referenced in the link tag.

[have a good reason to keep the background of the branching index page plain.
For those whose browsers automatically lead them to a content-filled home page,
the browser window flashes from a set background color to the browser’s default
background color before the new home page and its background color appear. By
keeping the initial content to only the company logo, less screen flashing and obvi-
ous navigation are visible to the user.

One link — alternate destinations

Another filtering technique is available directly from links. With the exceptions
of NN2 and IE3, a link can navigate to one destination via a link’s onC11ck event
handler and to another via the HREF attribute if the browser is not scriptable.

The trick is to include an extra return false statement in the onC11ick event
handler. This statement cancels the link action of the HREF attribute. For example, if
a nonscriptable browser should go to one version of a page at the click of a link and
the scriptable browser should go to another, the link tag is as follows:

<A HREF="nondSCatalog.html" onClick="Tocation.href="JSCatalog.html';return
false">Product Catalog

Only nonscriptable browsers, NN2, and IE3 go to the nondSCatalog.html page;
all others go to the JSCatalog.html page.

Multiple-level scripts

Each new JavaScript level brings more functionality to the language. You can use
the LANGUAGE attribute of the <SCRIPT> tag to provide road maps for the execution
of functions according to the power available in the browser. For example, consider
a button whose event handler invokes a function. You can write that function in
such a way that users of each JavaScript version get special treatment with regard
to unique features of that version. To make sure all scriptable browsers handle the
event handler gracefully, you can create multiple versions of the function, each
wrapped inside its own <SCRIPT> tag and specifying a particular language version.

Listing 13-4 shows the outline of a page that presents different versions of the
same event handler. For this technique to work properly, you must lay out the
<SCRIPT> tags in ascending order of JavaScript version. In other words, the last
function that the browser knows how to read (according to the LANGUAGE version)
is the one that gets executed. In Listing 13-4, for instance, NN3 (whose JavaScript
version is 1.1) gets only as far as the middle version and executes only that one.

50 Part Ill 4+ Document Objects Reference

Listing 13-4: Multiple Script Versions

<HTML>
<HEAD>
{SCRIPT LANGUAGE="JavaScript">
<l--
function dolt() {
// statements for JavaScript 1.0 browsers
}
[1-->
</SCRIPT>

{SCRIPT LANGUAGE="JavaScriptl.1">
==
function dolt() {
/] statements for JavaScript 1.1 browsers
}
//-->
</SCRIPT>

{SCRIPT LANGUAGE="JavaScriptl.2">
<h--
function dolt() {
/] statements for JavaScript 1.2 browsers
}
/]-->
</SCRIPT>
</HEAD>
<BODY>
<FORM>
<INPUT TYPE=button VALUE="Click Me" onClick="doIt()">
</FORM>
</BODY>
</HTML>

If you use this technique, you must define an event handler for the lowest com-
mon version to catch the oldest browsers. For example, failure to include a version
for JavaScript 1.0 in Listing 13-4 results in a script error for users of NN2 and IE3.

If you don’t want an older browser to execute a function (because the browser
doesn’t support the functionality required for the action), include a dummy function
(a function definition with no nested script statements) in the lower-version
<SCRIPT> tag to catch the event handlers of less-capable browsers.

Scripting event handlers as object properties

Along the same lines of Listing 13-4, you can define event handlers for objects
within separate language versions. This works for NN3+ and IE4+ because in those
browsers you can assign event handlers as properties of an object instead of by
way of tag attribute event handlers. For example, in Listing 13-5, a button is
assigned an event handler within the context of a JavaScript 1.1-level script. NN2
and IE3 users don’t have their button’s event handler set because the HTML tag

Chapter 13 4 JavaScript Essentials

doesn’t have an event handler. Even though the doIt () function is not restricted to
any JavaScript version, it is invoked only in browsers capable of JavaScript version
1.1 or later.

Listing 13-5: Event Handler Assignments

<KHTML>
<HEAD>
{SCRIPT LANGUAGE="JavaScript">
h--
function dolt() {
/] statements
}
/[1-->
</SCRIPT>
</HEAD>
<BODY>
<FORM>
{INPUT TYPE=button NAME=janeButton VALUE="Click Me">
{SCRIPT LANGUAGE="JavaScriptl.1">
<I--
document.forms[0].janeButton.onclick=dolt
/[1-->
</SCRIPT>
</FORM>
</BODY>
<IHTMLY

Object detection

The final methodology for implementing browser version branching is known as
object detection. The principle is simple: If an object type exists in the browser’s
object model, then it is safe to execute script statements that work with that object.

Perhaps the best example of object detection is the way scripts can swap images
on a page in newer browsers without tripping up on older browsers that don’t
implement images as objects. In a typical image swap, onMouseQOver and
onMouseOut event handlers (assigned to a link surrounding an image, to be back-
ward compatible) invoke functions that change the src property of the desired
image. Each of those functions is invoked for all scriptable browsers, but you want
them to run their statements only when images can be treated as objects.

Object models that implement images always include an array of image objects
belonging to the document object. The document.images array always exists, even
with a length of zero when no images are on the page. Therefore, if you wrap the
image swapping statements inside an i f construction that lets browsers pass only if
the document.images array exists, older browsers simply skip over the statements:

function imageSwap(imgName, url) {
if (document.images) {
document.images[imgName].src = ur]

}

51

52

Part Il 4 Document Objects Reference

Object detection works best when you know for sure how all browsers imple-
ment the object. In the case of document . images, the implementation across
browsers is identical, so it is a very safe branching condition. That’s not always the
case, and you should use this feature cautiously. For example, IE4 introduced a
document object array called document.al1, which is used very frequently in
building references to HTML element objects. NN4, however, did not implement
that array, but instead had a document-level array object called Tayers, which was
not implemented in I[E4. Unfortunately, many scripters used the existence of these
array objects as determinants for browser version. They set global variables signi-
fying a minimum version of [E4 and NN4 based on the existence of these array
objects. This is most dangerous because there is no way of knowing if a future ver-
sion of a browser may adopt the object of the other browser brand. What happens,
for instance, if the W3C DOM in a future version should adopt the document.all
array? If a future version of Navigator implements that array, the browser sniffing
code from the old page will treat Navigator as if it were Internet Explorer, and
scripts will likely break left and right.

This is why I recommend object detection not for browser version sniffing but
for object availability branching, as shown previously for images. Moreover, it is
safest to implement object detection only when all major browser brands (and the
W3C DOM recommendation) have adopted the object so that behavior is pre-
dictable wherever your page loads in the future.

Techniques for object detection include testing for the availability of an object’s
method. A reference to an object’s method returns a value, so such a reference can
be used in a conditional statement. For example, the following code fragment
demonstrates how a function can receive an argument containing the string ID of an
element and convert the string to a valid object reference for three different docu-
ment object models:

function myFunc(elemID) {
var obj
if (document.all) {
obj = document.all(elemID)
} else if (document.getElementById) {
obj = document.getElementById(elemID)
} else if (document.layers) {
obj = document.layers[elemID]
}
if (obj) {
/1 statements that work on the object

}

It no longer matters which browser brand, operating system, and version sup-
ports a particular way of changing an element ID to an object reference. Whichever
of the three document object properties or method is supported by the browser (or
the first one, if the browser supports more than one), that is the property or
method used to accomplish the conversion. If the browser supports none of them,
then no further statements execute.

If your script wants to check for the existence of an object’s property or method,
you may also have to check for the existence of the object beforehand if that object
is not part of all browers’ object models. An attempt to reference a property of a
non-existent object in a conditional expression generates a script error. To avoid

Chapter 13 4 JavaScript Essentials

the error, you can cascade the conditional tests with the help of the && operator.
The following fragment tests for the existence of both the document.body object
and the document.body.style property:

if (document.body && document.body.style) {
// statements that work on the body's style property
}

If the test for document . body fails, JavaScript bypasses the second test.

One potential “gotcha” to using conditional expressions to test for the existence
of an object’s property is that even if the property exists but its value is zero or an
empty string, the conditional test reports that the property does not exist. To
workaround this potential problem, the conditional expression can examine the
data type of the value to ensure that the property genuinely exists. A non-existent
property for an object reports a data type of undefined. Use the typeof operator
(Chapter 40) to test for a valid property:

if (document.body && typeof document.body.scroll != "undefined") {
// statements that work on the body's scroll property
}

Object detection is the wave of the future, and I wholeheartedly recommend
designing your scripts to take advantage of it in lieu of branching on particular
browser name strings and version numbers. Scriptable features are gradually find-
ing their way into browsers embedded in a wide range of non-traditional computing
devices. These browsers may not go by the same names and numbering systems
that we know today, yet such browsers may be able to interpret your scripts. By
testing for browser functionality, your scripts will likely require less maintenance in
the future. You can see more object detection at work in Chapters 47 and 56.

Designing for Compatibility

Each new major release of a browser brings compatibility problems for page
authors. It’s not so much that old scripts break in the new versions (well-written
scripts rarely break in new versions with the rare exception of the jump from NN4 to
NN6). No, the problems center on the new features that attract designers when the
designers forget to accommodate visitors who have not advanced to the latest and
greatest browser version yet or who don’t share your browser brand preference.

Adding to these problems are numerous bugs, particularly in first-generation
browsers from both Netscape and Microsoft. Worse still, some of these bugs affect
only one operating system platform among the many supported by the browser.
Even if you have access to all the browsers for testing, the process of finding the
errors, tracking down the bugs, and implementing workarounds that won’t break
later browsers can be quite frustrating— even when you’ve scripted pages from the
earliest days and have a long memory for ancient bug reports.

Catering only to the lowest common denominator can more than double your
development time due to the expanded testing matrix necessary to ensure a good
working page in all operating systems and on all versions. Decide how important
the scripted functionality you employ in a page is for every user. If you want some
functionality that works only in a later browser, then you may have to be a bit auto-
cratic in defining the minimum browser for scripted access to your page — any
lesser browser gets shunted to a simpler presentation of your site’s data.

55

54

Part Il 4 Document Objects Reference

Another possibility is to make a portion of the site accessible to most, if not all,
browsers, and restrict the scripting to only the occasional enhancement that non-
scriptable browser users won’t miss. Once the application reaches a certain point
in the navigation flow, then the user needs a more capable browser to get to the
really good stuff. This kind of design is a carefully planned strategy that lets the site
welcome all users up to a point, but then enables the application to shine for users
of, say, W3C DOM-compatible browsers.

The ideal page is one that displays useful content on any browser, but whose
scripting enhances the experience of the page visitor — perhaps by offering more
efficient site navigation or interactivity with the page’s content. That is certainly a
worthy goal to aspire to. But even if you can achieve this ideal on only some pages,
you will reduce the need for defining entirely separate, difficult-to-maintain paths
for browsers of varying capabilities.

Dealing with beta browsers

If you have crafted a skillfully scripted Web page or site, you may be concerned
when a prerelease (or beta) version of a browser available to the public causes
script errors or other compatibility problems to appear on your page. Do yourself a
favor —don’t overreact to bugs and errors that occur in prerelease browser ver-
sions. If your code is well written, it should work with any new generation of
browser. If the code doesn’t work correctly, consider the browser to be buggy.
Report the bug (preferably with a simplified test case script sample) to the browser
maker.

The exception to the “it’s a beta bug” rule arose in the transition from NN4 to
NNG6. As you learn in Chapter 14, a conscious effort to eliminate a proprietary NN4
feature (the <LAYER> tag and corresponding scriptable object) caused many NN4
scripts to break on NN6 betas (and final release). Had scripters gone to report the
problem to the new browsers’ developer (Mozilla), they would have learned of the
policy change, and planned for the new implementation. It is extremely rare for a
browser to eliminate a popular feature so quickly, but it can happen.

It is often difficult to prevent yourself from getting caught up in browser makers’
enthusiasm for a new release. But remember that a prerelease version is not a ship-
ping version. Users who visit your page with prerelease browsers should know that
there may be bugs in the browser. That your code does not work with a prerelease
version is not a sin, nor is it worth losing sleep over. Just be sure to connect with
the browser’s maker either to find out if the problem will continue in the final
release or to report the bug so the problem doesn’t make it into the release version.

The Evaluator Sr.

In Chapter 6, you were introduced to a slimmed-down version of The Evaluator
Jr., which provides an interactive workbench to experiment with expression evalua-
tion and object inspection. At this point, you should meet The Evaluator Sr., a tool
you will use in many succeeding chapters to help you learn both core JavaScript
and DOM terminology.

Chapter 13 4 JavaScript Essentials

As described more fully in the discussion of the navigator object in Chapter 28, your
scripts can easily determine which browser is the one running the script. However, the
properties that reveal the version don't always tell the whole story about Internet Explorer.
For one thing, the Windows and Macintosh versions of the same major browser version
(3.0x) implement slightly different object models. The Mac version includes the ever-popu-
lar image object for mouse rollover image swapping; the Windows version does not, and
any attempt to use such code in the Windows version results in script errors.

Next, the first release of Internet Explorer 3 for the Macintosh was not scriptable at all —the
JavaScript interpreter was left out. Macintosh version 3.01 was the first scriptable Mac ver-
sion. Even among minor generation releases of Internet Explorer 3 for Windows, Microsoft
implemented some new features here and there.

Probably the most troublesome problem is that an improved JavaScript interpreter (in the
JScript.d11 file) underwent substantial improvements between version 1 and version 2
for Windows. Many copies of browser version 3.02 for Windows shipped with version 1 of
the .d11. Some users updated their browsers if they knew to download the new .d11 from
Microsoft. Unfortunately, the interpreter version is not reflected in any navigator object
property. A nasty Catch-22 in this regard is that version 2 of the interpreter includes a new
property that enables you to examine the interpreter version, but testing for that property in
a browser that has version 1 of the interpreter installed results in an error message.

Due to the insecurity of knowing exactly what will and won’t work in a browser that identi-
fies itself as Internet Explorer 3.0x, you might decide to redirect all users of Internet Explorer
3 to pages in your application that include no scripting. But before you think I'm bashing
Internet Explorer 3, you should also consider doing the same redirection for Navigator 2
users due to the number of platform-specific bugs that littered that first round of JavaScript.
Object model and core language implementations in NN3+ and IE4+ are much more sta-
ble and reliable platforms on which to build scriptable applications (and you get genuine
array objects!). If you have an opportunity to study the access logs of your Web site, analyze
the proportion of different browser versions over several days before deciding where you
set your lowest common denominator for scripted access.

Even with IE5, browser detection remains a challenge. As you can see in detail in Chapter
28, the navigator.appVersion property for IE5 for Windows reports version 4 (the same
as IE4). You can still “sniff” for version 5 (you can find the designation MSIE 5 in the
navigator.userAgent property), but the process is not as straightforward as it could be —
especially if you need to look for any version greater than or equal to 5. The best advice is
to be vigilant when new browsers come on the scene or adopt object detection techniques
in your scripts.

55

56

Part Il 4 Document Objects Reference

Figure 13-1 shows the top part of the page. Two important features differentiate
this full version from the Jr. version in Chapter 6.

‘3 evaluator.html - Microsoft Internet Explorer

inle Edit View Favorites Tools Help

<« =+ 29 B @ & & @ | B a8 = .

J Back Forward Stop Refresh Home Search Favorites History | Mail Print Edit

|»

r The Evaluator

Enter an expression to evaluate { [Use MIT Code Base Security):

IdDcurnent.gBtE\ementElyId("myP").inﬂerHTML Evaluate |

Fesults:

Mow is the time for <EM id=myEM»all good men to come to the aid of their d
country.

= | |
Enter a reference to an object
| List Properties |
Mow is the titne for alf good men to come to the aid of their country
This is a table caption. Thus
i5a
positioned
Quantity Description ‘ FPrice element
2] Done lili Local intranet

Figure 13-1: The Evaluator Sr.

First, you can try some Netscape secure features if you have Code Base
Principles turned on for your browser (Chapter 46) and you check the Use Code
Base Security checkbox (NN4+ only). Second, the page has several HTML elements
preinstalled, which you can use to explore DOM properties and methods. As with
the smaller version, a set of 26 one-letter global variables (a through z) are initial-
ized and ready for you to assign values for extended evaluation sequences.

You should copy the file evaluator.html from the companion CD-ROM to a
local hard disk and set a bookmark for it in all of your test browsers. Feel free to
add your own elements to the bottom of the page to explore other objects. |
describe a version of The Evaluator for embedding in your projects as a debugging
tool in Chapter 45.

Compatibility ratings in reference chapters

With the proliferation of scriptable browser versions since Navigator 2, it is
important to know up front whether a particular language or object model object,
property, method, or event handler is supported in the lowest common denomina-
tor for which you are designing. Therefore, beginning with Chapter 15 of this refer-
ence part of the book, I include frequent compatibility charts, such as the following
example:

Chapter 13 4 JavaScript Essentials

NN2 NN3 NN4 NNé6 IE3/) 1E3/)2 IE4 IE5 |IE5.5

Compatibility v v v v) v v v v

The first four columns represent Navigator versions 2, 3, 4, and 6, respectively
(there was no release numbered 5). For Internet Explorer, two columns appear for
version 3. One, marked IE3/J1, represents the combination of Internet Explorer 3
and JScript.dll version 1; IE3/J2 represents Internet Explorer 3 and JScript.dll
version 2. Internet Explorer 4 and later come with their own JScript.dll versions, so
there is no sub-version listed. A checkmark means the feature is compatible with
the designated browser. You will also occasionally see one or more of the check-
marks surrounded in parentheses. This means some bug or partial implementation
for that browser is explained in the body text. Look to the feature’s text if there are
version issues related to operating system, especially for items that are new with
[E4 or later, where many features operate only in Windows.

I also recommend that you print the JavaScript and Browser Objects Quick
Reference file shown in Appendix A. The file is on the companion CD-ROM in
Adobe Acrobat format. This quick reference clearly shows each object’s properties,
methods, and event handlers, along with keys to the browser version in which each
language item is supported. You should find the printout to be valuable as a day-to-
day resource.

Language Essentials for Experienced
Programmers

In this section, experienced programmers can read the highlights about the core
JavaScript language in terms that may not make complete sense to those with lim-
ited or no scripting experience. This section is especially for you if you found the
tutorial of Part Il rudimentary. Here, then, is the quick tour of the essential issues
surrounding the core JavaScript language.

JavaScript is a scripting language. The language is intended for use in an exist-
ing host environment (for example, a Web browser) that exposes objects whose
properties and behaviors are controllable via statements written in the language.
Scripts execute within the context of the host environment. The host environment
controls what, if any, external environmental objects may be addressed by language
statements running in the host environment. For security and privacy reasons, Web
browsers generally afford little or no direct access via JavaScript to browser prefer-
ences, the operating system, or other programs beyond the scope of the browser.
The exception to this rule is that modern browsers allow deeper client access (with
the user’s permission) through trust mechanisms such as signed scripts (Netscape)
or trusted ActiveX controls (Microsoft).

JavaScript is object-based. Although JavaScript exhibits many syntactic paral-
lels with the Java language, JavaScript is not as pervasively object-oriented as Java.
The core language includes several built-in static objects from which working
objects are generated. Objects are created via a call to a constructor function for

58 Part Ill 4+ Document Objects Reference

any of the built-in objects plus the new operator. For example, the following expres-
sion generates a String object and returns a reference to that object:

new String("Hello")

Table 13-1 lists the built-in objects with which scripters come in contact.

Table 13-1 JavaScript Built-in Objects

Array! Boolean Date Error?
EvalError? Function? Math Number!
Object!? RangeError? ReferenceError? RegExp3
String! SyntaxError? Typekrror? URIError?

1Although defined in ECMA Level 1, was first available in NN3 and IE3/J2
2Defined in ECMA Level 3; implemented in NN6
3Defined in ECMA Level 3; implemented fully in NN4, partially in IE4

JavaScript is loosely typed. Variables, arrays, and function return values are not
defined to be of any particular data type. In fact, an initialized variable can hold
different data type values in subsequent script statements (obviously not good
practice, but possible nonetheless). Similarly, an array may contain values of
multiple types. The range of built-in data types is intentionally limited:

Boolean (true or false)

Null

Number (double-precision 64-bit format IEEE 734 value)
Object (encompassing the Array object)

String

Undefined

The host environment defines global scope. Web browsers traditionally define a
browser window or frame to be the global context for script statements. When a
document unloads, all global variables defined by that document are destroyed.

JavaScript variables have either global or local scope. A global variable in a
Web browser is typically initialized in var statements that execute as the document
loads. All statements in that document can read or write that global variable. A
local variable is initialized inside a function (also with the var operator). Only
statements inside that function may access that local variable.

Scripts sometimes access JavaScript static object properties and methods.
Some static objects encourage direct access to their properties or methods. For

Chapter 13 4 JavaScript Essentials

example, all properties of the Math object act as constant values (for example,
Math.PI).

You can add properties or methods to working objects at will. To add a prop-
erty to an object, simply assign a value of any type to it. For example, to add an
author property to a string object named myText, use:

myText.author = "Jane"

Assign a function reference to an object property to give that object a new
method:

// function definition
function doSpecial(argl) {
/] statements
}
// assign function reference to method name
myObj.handleSpecial = doSpecial

// invoke method
myObj.handleSpecial(argValue)

Inside the function definition, the this keyword refers to the object that owns
the method.

JavaScript objects employ prototype-based inheritance. All object constructors
create working objects whose properties and methods inherit the properties and
methods defined for the prototype of that object. Starting with NN3 and IE3/J2,
scripts can add and delete custom properties and/or methods associated with the
static object’s prototype so that new working objects inherit the current state of
the prototype. Scripts can freely override prototype property values or assign dif-
ferent functions to prototype methods in a working object if desired without affect-
ing the static object prototype. But if inherited properties or methods are not
modified in the current working object, any changes to the static object’s prototype
are reflected in the working object. (The mechanism is that a reference to an
object’s property works its way up the prototype inheritance chain to find a match
to the property name.)

JavaScript includes a large set of operators. You can find most operators that
you are accustomed to working with in other languages.

JavaScript provides typical control structures. All versions of JavaScript offer
if,if-else, for,and while constructions. JavaScript 1.3 (NN4+ and IE4+) also
add do-while and switch constructions. Iteration constructions provide break
and continue statements to modify control structure execution.

JavaScript functions may or may not return a value. There is only one kind of
JavaScript function. A value is returned only if the function includes a return key-
word followed by the value to be returned. Return values can be of any data type.

JavaScript functions cannot be overloaded. A JavaScript function accepts zero
or more arguments, regardless of the number of parameter variables defined for the
function. All arguments are automatically assigned to the arguments array, which is
a property of a function object. Parameter variable data types are not predefined.

59

60

Part Il 4 Document Objects Reference

Values are passed “by reference” and “by value.” An object passed to a
function is actually a reference to that object, offering full read/write access to
properties and methods of that object. But other types of values (including object
properties) are passed by value, with no reference chain to the original object.
Thus, the following nonsense fragment empties the text box when the onChange
event fires:

function emptyMe(argl) {
argl.value = ""
}

<INPUT TYPE="text" VALUE="Howdy" onChange="emptyMe(this)">
But in the following version, nothing happens to the text box:

function emptyMe(argl) {
argl = "
}

<INPUT TYPE="text" VALUE="Howdy" onChange="emptyMe(this.value)">

The local variable (argl) simply changes from "Howdy" to an empty string.

Error trapping techniques depend on JavaScript version. There is no error
trapping in NN2 or IE3. Error trapping in NN3, NN4, and IE4 is event-driven in the
Web browser object model. JavaScript, as implemented in IE5 and NN6, supports
try-catch and throw statements, as well as built-in error objects that are not
dependent on the host environment.

Memory management is not under script control. The host environment man-
ages memory allocation, including garbage collection. Different browsers may han-
dle memory in different ways.

White space (other than a line terminator) is insignificant. Space and tab char-
acters may separate lexical units (for example, keywords, identifiers, and so on).

A line terminator is usually treated as a statement delimiter. Except in very
rare constructions, JavaScript parsers automatically insert the semicolon state-
ment delimiter whenever they encounter one or more line terminators (for exam-
ple, carriage returns or line feeds). A semicolon delimiter is required between two
statements on the same physical line of source code. Moreover, string literals may
not have carriage returns in their source code (but an escaped newline character
(\n) may be a part of the string).

Onward to Object Models

The core language is only a small part of what you work with while scripting Web
pages. The bulk of your job entails understanding the ins and outs of document
object models as implemented in several generations of browsers. That’s where the
next chapter picks up the “essentials” story.

+ o+ 4

Document
Object Model
Essentials

Without question, the biggest challenge facing client-
side Web scripters is the sometimes-baffling array of
document object models that have competed for our atten-
tion throughout the short history of scriptable browsers.
Netscape got the ball rolling in Navigator 2 with the first
object model. By the time the version 4 browsers came
around, the original object model had gained not only some
useful cross-browser features, but also a host of features that
were unique to only Navigator or Internet Explorer. The object
models were diverging, causing no end of headaches for page
authors whose scripts had to run on as many browsers as
possible. A ray of hope emerged from the standards process
of the World Wide Web Consortium (W3C) in the form of a
document object model (DOM) recommendation. The new
DOM brings forward much of the original object model, plus
new ways of addressing every object in a document. The goal
of this chapter is to put each of the object models into per-
spective and help you select the model(s) you intend to
support in your Web applications. But before we get to those
specifics, let’s examine the role of the object model in design-
ing scripted applications.

The Object Model Hierarchy

In the tutorial chapters of Part I, you were introduced to
the fundamental ideas behind a document object hierarchy in
scriptable browsers. In other object-oriented environments,
object hierarchy plays a much greater role than it does in
JavaScript-able browsers. (In JavaScript, you don’t have to
worry about related terms, such as classes, inheritance, and
instances.) Even so, you cannot ignore the hierarchy concept
because much of your code relies on your ability to write ref-
erences to objects that depend on their positions within the
hierarchy.

CHAPTER

+ 0+ o+
In This Chapter

Object models versus
browser versions

Proprietary model
extensions

Structure of the W3C
DOM

Mixing object models
in a single document

¢+ ¢+ o+

62

Part Il 4 Document Objects Reference

Calling these objects “JavaScript objects” is not entirely correct. These are really
browser document objects: you just happen to use the JavaScript language to bring
them to life. Some scripters of Microsoft Internet Explorer use the VBScript lan-
guage to script the very same document objects. Technically speaking, JavaScript
objects apply to data types and other core language objects separate from the doc-
ument. The more you can keep document and core language objects separate in
your head, the more quickly you can deal with browser brand compatibility issues.

Hierarchy as road map

For the programmer, the primary role of the document object hierarchy is to pro-
vide scripts with a way to reference a particular object among all the objects that a
browser window can contain. The hierarchy acts as a road map the script can use
to know precisely which object to address.

Consider, for a moment, a scene in which you and your friend Tony are in a high
school classroom. It’s getting hot and stuffy as the afternoon sun pours in through
the wall of windows on the west side of the room. You say to Tony, “Would you
please open a window?” and motion your head toward a particular window in the
room. In programming terms, you've issued a command to an object (whether or
not Tony appreciates the comparison). This human interaction has many advan-
tages over anything you can do in programming. First, by making eye contact with
Tony before you speak, he knows that he is the intended recipient of the command.
Second, your body language passes along some parameters with that command,
pointing ever so subtly to a particular window on a particular wall.

If, instead, you are in the principal’s office using the public address system, and
you broadcast the same command, “Would you please open a window?,” no one
knows what you mean. Issuing a command without directing it to an object is a
waste of time because every object thinks, “That can’t be meant for me.” To accom-
plish the same goal as your one-on-one command, the broadcast command has to
be something like, “Would Tony Jeffries in Room 312 please open the middle win-
dow on the west wall?”

Let’s convert this last command to JavaScript dot syntax form (see Chapter 4).
Recall from the tutorial that a reference to an object starts with the most global
point of view and narrows to the most specific point of view. From the point of view
of the principal’s office, the location hierarchy of the target object is

room312.Jeffries.Tony

You can also say that Tony’s knowledge about how to open a window is one of
Tony’s methods. The complete reference to Tony and his method then becomes

room312.Jdeffries.Tony.openWindow()

Your job isn’t complete yet. The method requires a parameter detailing which
window to open. In this case, the window you want is the middle window of the
west wall of Room 312. Or, from the hierarchical point of view of the principal’s
office, it becomes

room312.westWall.middleWindow

This object road map is the parameter for Tony’s openWindow() method.
Therefore, the entire command that comes over the PA system is

room312.Jdeffries.Tony.openWindow(room312.westWall.middleWindow)

Chapter 14 + Document Object Model Essentials

If, instead of barking out orders while sitting in the principal’s office, you attempt
the same task via radio from an orbiting space shuttle to all the inhabitants on
Earth, imagine how laborious your object hierarchy is. The complete reference to
Tony’s openWindow () method and the window that you want opened has to be
mighty long to distinguish the desired objects from the billions of objects within
the space shuttle’s view.

The point is that the smaller the scope of the object-oriented world you’re pro-
gramming, the more you can assume about the location of objects. For client-side
JavaScript, the scope is no wider than the browser itself. In other words, every
object that a JavaScript script can work with resides within the browser applica-
tion. With few exceptions, a script does not access anything about your computer
hardware, operating system, other applications, desktop, or any other stuff beyond
the browser program.

The browser document object road map

Figure 14-1 shows the lowest common denominator document object hierarchy
that is implemented in all scriptable browsers. Notice that the window object is the
topmost object in the entire scheme. Everything you script in JavaScript is in the
browser’s window.

window

frame | self top| parent

| history | |document| | location |
]
[[1
| link | | form | | anchor |
[TT [T1 [T

text | | radio | | button | | select |

textarea checkbox reset option
| | | | | | |

|password|| submit |

Figure 14-1: The lowest common denominator browser document object hierarchy

Pay attention to the shading of the concentric rectangles. Every object in the
same shaded area is at the same level relative to the window object. When a line
from an object extends to the next darker shaded rectangle, that object contains all
the objects in darker areas. There exists, at most, one of these lines between levels.
The window object contains the document object; the document object contains a
form object; a form object contains many different kinds of form elements.

65

64

Part Il 4 Document Objects Reference

Study Figure 14-1 to establish a mental model for the basic scriptable elements of
a Web page. Models of more recent browsers have more objects in their hierar-
chies, but the fundamental organization remains. After you script these objects
several times, the object hierarchy will become second nature to you— even if you
don’t necessarily remember every detail (property, method, and event handler) of
every object. At least you know where to look for information.

How Document Objects Are Born

Most of the objects that a browser creates for you are established when an
HTML document loads into the browser. The same kind of HTML code you use to
create links, anchors, and input elements tells a JavaScript-enhanced browser to
create those objects in memory. The objects are there whether or not your scripts
call them into action.

The only visible differences to the HTML code for defining those objects are the
one or more optional attributes specifically dedicated to JavaScript. By and large,
these attributes specify the event you want the user interface element to react to
and what JavaScript should do when the user takes that action. By relying on the
document’s HTML code to perform the object generation, you can spend more time
figuring out how to do things with those objects or have them do things for you.

Bear in mind that objects are created in their load order. And if you create a mul-
tiframe environment, a script in one frame cannot communicate with another
frame’s objects until both frames load. This trips up a lot of scripters who create
multiframe and multiwindow sites (more in Chapter 16).

Object Properties

A property generally defines a particular current setting of an object. The setting
may reflect a visible attribute of an object, such as the state of a checkbox (checked
or not); it may also contain information that is not so obvious, such as the action
and method of a submitted form.

Document objects have most of their initial properties assigned by the attribute
settings of the HTML tags that generate the objects. Thus, a property may be a
word (for example, a name) or a number (for example, a size). A property can also
be an array, such as an array of images contained by a document. If the HTML does
not include all attributes, the browser usually fills in a default value for both the
attribute and the corresponding JavaScript property.

When used in script statements, property names are case-sensitive. Therefore, if
you see a property name listed as bgColor, you must use it in a script statement
with that exact combination of lowercase and uppercase letters. But when you set
an initial value of a property by way of an HTML attribute, the attribute name (like
all of HTML) is not case-sensitive. Thus, <BODY BGCOLOR="white"> and <body
bgcolor="white"> both set the same bgColor property value.

Each property determines its own read/write status. Some properties are read-
only, whereas you can change others on the fly by assigning a new value to them.
For example, to put some new text into a text box object, you assign a string to the
object’s value property:

document.forms[0].phone.value = "555-1212"

Chapter 14 4+ Document Object Model Essentials 65

Although the basic object model hierarchy appears to have a class/subclass relationship,
many of the traditional aspects of a true, object-oriented environment don't apply to the
model. The original JavaScript document object hierarchy is a containment hierarchy, not
an inheritance hierarchy. No object inherits properties or methods of an object higher up
the chain. Nor is there any automatic message passing from object to object in any direc-
tion. Therefore, you cannot invoke a window’s method by sending a message to it via the
document or a form object. All object references must be explicit.

Predefined document objects are generated only when the HTML code containing their
definitions loads into the browser. You cannot modify many properties, methods, and event
handlers in early object models once you load the document into the browser. In Chapter
41, you learn how to create your own objects, but those objects do not present new visual
elements on the page that go beyond what HTML, Java applets, and plug-ins can portray.

Inheritance does play a role, as you will see later in this chapter, in the object model
defined by the W3C. The new hierarchy is of a more general nature to accommodate
requirements of XML as well as HTML. But the containment hierarchy for HTML objects, as
described in this section, is still valid in W3C DOM-compatible browsers.

Once an object contained by the document exists (that is, its HTML is loaded
into the document), you can also add one or more custom properties to that object.
This can be helpful if you wish to associate some additional data with an object for
later retrieval. To add such a property, simply specify it in the same statement that
assigns a value to it:

document.forms[0].phone.delimiter =

Any property you set survives as long as the document remains loaded in the
window and scripts do not overwrite the object. Be aware, however, that reloading
the page usually destroys custom properties.

Object Methods

An object’s method is a command that a script can give to that object. Some meth-
ods return values, but that is not a prerequisite for a method. Also, not every object
has methods defined for it. In a majority of cases, invoking a method from a script
causes some action to take place. The resulting action may be obvious (such as resiz-
ing a window) or something more subtle (such as sorting an array in memory).

All methods have parentheses after them, and they always appear at the end of an
object’s reference. When a method accepts or requires parameters, the parameter
values go inside the parentheses (with multiple parameters separated by commas).

While an object has its methods predefined by the object model, you can also
assign one or more additional methods to an object that already exists (that is,
after its HTML is loaded into the document). To do this, a script in the document
(or in another window or frame accessible by the document) must define a
JavaScript function and then assign that function to a new property name of the
object. In the following example written to take advantage of Version 4 or later

66

Part Il 4 Document Objects Reference

browser features, the ful1Screen() function invokes one window object method
and adjusts two window object properties. By assigning the function reference to
the new window.maximize property, I define a maximize() method for the window
object. Thus, a button’s event handler can call that method directly.

// define the function
function fullScreen() {
this.moveTo(0,0)
this.outerWidth = screen.availWidth
this.outerHeight = screen.availHeight
}
// assign the function to a custom property
window.maximize = fullScreen

<!-- invoke the custom method -->
<INPUT TYPE="button" VALUE="Maximize Window" onClick="window.maximize()">

Object Event Handlers

An event handler specifies how an object reacts to an event that is triggered by a
user action (for example, a button click) or a browser action (for example, the com-
pletion of a document load). Going back to the earliest JavaScript-enabled browser,
event handlers were defined inside HTML tags as extra attributes. They included
the name of the attribute, followed by an equal sign (working as an assignment
operator) and a string containing the script statement(s) or function(s) to execute
when the event occurs (see Chapter 5). Event handlers also have other forms. In
NN3+ and IE4+, event handlers have corresponding methods for their objects and
every event handler is a property of its object.

Event handlers as methods

Consider a button object whose sole event handler is onC11ck. This means when-
ever the button receives a click event, the button triggers the JavaScript expression
or function call assigned to that event handler in the button’s HTML definition:

<INPUT TYPE="button" NAME="clicker" VALUE="Click Me" onClick="doIt()">

Normally, that click event is the result of a user physically clicking the button in
the page. In NN3+ and IE4+, you can also trigger the event handler with a script by
calling the event handler as if it were a method of the object:

document.formName.clicker.onclick()

Notice that when summoning an event handler as a method, the method name is
all lowercase regardless of the case used in the event handler attribute within the
original HTML tag. This lowercase reference is a requirement.

Invoking an event handler this way is different from using a method to simulate
the physical action denoted by the event. For example, imagine a page containing
three simple text fields. One of those fields has an onFocus event handler defined
for it. Physically tabbing to or clicking in that field brings focus to the field and
thereby triggers its onFocus event handler. If the field does not have focus, a button
can invoke that field’s onFocus event handler by referencing it as a method:

document.formName.fieldName.onfocus()

Chapter 14 4+ Document Object Model Essentials 67/

This scripted action does not bring physical focus to the field. The field’s own
focus () method, however, does that under script control.

A byproduct of an event handler’s capability to act like a method is that you can
define the action of an event handler by defining a function with the event handler’s
name. For example, instead of specifying an onlLoad event handler in a document’s
<BODY> tag, you can define a function like this:

function onload() {
statements
}

This capability is particularly helpful if you want event handler actions confined to
a script running in NN3, IE4, or later. Your scripts don’t require special traps for
Navigator 2 or Internet Explorer 3.

Event handlers as properties

Although event handlers are commonly defined in an object’s HTML tag, you also
have the power in NN3+ and IE4+ to assign or change an event handler just like you
assign or change the property of an object. The value of an event handler property
looks like a function definition. For example, given this HTML definition:

<INPUT TYPE="text" NAME="entry" onFocus="dolIt()">
the value of the object’s onfocus (all lowercase) property is

function onfocus() {
doIt()
}

You can, however, assign an entirely different function to an event handler by
assigning a function reference to the property. Such references don’t include the
parentheses that are part of the function’s definition. (You see this again much later
in Chapter 41 when you assign functions to object properties.)

Using the same text field definition you just looked at, you can assign a different
function to the event handler because based on user input elsewhere in the docu-
ment you want the field to behave differently when it receives the focus. If you
define a function like this

function doSomethingElse() {
statements
}

you can then assign the function to the field with this assignment statement:
document.formName.entry.onfocus = doSomethingElse

Because the new function reference is written in JavaScript, you must observe
case for the function name. Although NN4 accepts interCap versions of the event
handler names, you are best served across all browsers by sticking with all lower-
case event handler names as properties.

Caution Be aware, however, that as with several settable object properties that don't mani-
fest themselves visually, any change you make to an event handler property disap-
pears with a document reload. Therefore, | advise you not to make such changes
except as part of a script that also invokes the event handler like a method: Any gap
in time leaves room for users to reload the page accidentally or intentionally.

68 Part Ill 4+ Document Objects Reference

Because every event handler operates as both property and method, I don'’t list
these properties and methods as part of each object’s definition in the next chap-
ters. You can be assured this feature works for every JavaScript object that has an
event handler starting with Navigator 3 and Internet Explorer 4.

Object Model Smorgasbord

A survey of the entire evolution of scriptable browsers from NN2 and IE3 through
IE5.5 and NN6 reveals six (yes, six!) distinct document object model families. Even if
your job entails developing content for just one current browser version, you may
be surprised that family members from more than one document object model
inhabit your authoring space.

Studying the evolution of the object model is extremely valuable for newcomers
to scripting. It is too easy to learn the latest object model gadgets in your current
browser, only to discover that your heroic scripting efforts are lost on earlier
browsers accessing your pages. Therefore, take a look at the six major object model
types and how they came into being. Table 14-1 lists the object model families (in
chronological order of their release) and the browser versions that support them.
Later in this chapter are some guidelines you can follow to help you choose the
object model(s) that best suit your users’ “appetites.”

Table 14-1 Object Model Families

Model Browser Support

Basic Object Model NN2, NN3, IE3/J1, IE3/J2, NN4, IE4, IE5, NN6, IE5.5

Basic Plus Images NN3, IE3.01 (Mac only), NN4, IE4, IE5, NN6, IE5.5

NN4 Extensions NN4

IE4 Extensions IE4, IE5, IE5.5 (some features in all versions require Win32 OS)
IE5 Extension IE5, IE5.5 (some features in all versions require Win32 OS)
W3C DOM (I and I1) IE5 (partial), IE5.5 (partial), NN6 (most)

Basic Object Model

The first scriptable browser, Netscape Navigator 2, implemented a very basic
document object model. Figure 14-1 provides a visual guide to the objects that were
exposed to scripting. The hierarchical structure starts with the window and drills
inward toward the document, forms, and form elements. A document is a largely
immutable page on the screen. Only elements that are by nature interactive — links
and form elements such as text fields, buttons, and so on —are treated as objects
with properties, methods, and event handlers.

The heavy emphasis on form elements opened up numerous possibilities that
were radical ideas at the time. Because a script could inspect the values of form ele-
ments, forms could be pre-validated on the client. If the page included a script that
performed some calculations, data entry and calculated results were displayed via
editable text fields.

Chapter 14 + Document Object Model Essentials

Additional objects that exist outside of the document —window, history, and
location objects — provide scriptable access to simple yet practical properties of
the browser that loads the page. The most global view of the environment is the
navigator object, which includes properties about the browser brand and version.

When Internet Explorer 3 arrived on the scene, the short life of Navigator 2 was
nearing its end. Even though NN3 was already widely available in prerelease form,
IE3 implemented the basic object model from NN2 (plus one window object prop-
erty from NN3). Therefore, despite the browser version number discrepancy, NN2
and IE3 are essentially the same with respect to their document object models. For
a brief moment in Internet Time, there was nearly complete harmony between
Microsoft and Netscape document object models — albeit at a very simple level.

Basic Object Model Plus Images

A very short time after IE3 was released, Netscape released Navigator 3 with an
object model that built upon the original version. A handful of existing objects —
especially the window object — gained new properties, methods, and/or event han-
dlers. Scripts could also communicate with Java applets as objects. But the biggest
new object on the scene was the Image object and the array of image objects
exposed to the document object.

Most of the properties for an NN3 image object gave read-only access to values
typically assigned to attributes in the tag. But you could modify one prop-
erty —the src property — after the page loaded. Scripts could swap out images
within the fixed image rectangle. Although these new image objects didn’t have
mouse-related event handlers, nesting an image inside a link (which had
onMouseOver and new onMouseOut event handlers) let scripts implement “image
rollovers” to liven up a page.

As more new scripters investigated the possibilities of adding JavaScript to their
pages, frustration ensued when the image swapping they implemented for NN3
failed to work in IE3. Although you could easily script around the lack of an image
object to prevent script errors in IE3 (see Chapter 12), the lack of this “cool” page
feature disappointed many. Had they also taken into account the installed base of
NN2 in the world, they would have been disappointed there, too. To confuse mat-
ters even more, the Macintosh version of IE 3.01 (the second release of the IE3/Mac
browser) implemented scriptable image objects.

Despite these rumblings of compatibility problems to come, the object model
implemented in Navigator 3 eventually became the baseline reference for future docu-
ment object models. With few exceptions, code written for this object model runs on
all browsers from NN3 and IE4 through the latest versions of both brands. Exceptions
primarily involve Java applet object support in non-Windows versions of IE4+.

Navigator 4-Only Extensions

The next browser released to the world was Netscape Navigator 4. Numerous
additions to the existing objects put more power into the hands of scripters. You
could move and resize browser windows within the context of script-detectable
screen object properties (for example, how big the user’s monitor screen was).
Two concepts that represented new thinking about the object model were an
enhanced event model and the layer object.

70

Part Il 4 Document Objects Reference

Event Capture Model

Navigator 4 added many new events to the repertoire. Keyboard events and
more mouse events (onMouseDown and onMouseUp) allowed scripts to react to
more user actions on form elements and links. All of these events worked as they
did in previous object models in which event handlers were typically assigned as
attributes to an element’s tag (although you could also assign event handlers as
properties in script statements). To facilitate some of the Dynamic HTML potential
in the rest of the Navigator 4 object model, the event model was substantially
enhanced.

At the root of the system is the idea that when a user performs some physical
action on an event-aware object (for example, clicking a form button), the event
reaches that button from top down through the document object hierarchy. If you
have multiple objects that share the same event handler, it may be more convenient
to capture that event in just one place—the window or document object level —
rather than assigning the same event handler to all the elements. The default
behavior of Navigator 4 allowed the event to reach the target object, just as it
had in earlier browsers. But you could also turn on event capture in the window,
document, or layer object. Once captured, the event could be handled at the upper
level, preprocessed before being passed onto its original target, or redirected to
another object altogether.

To engage event capture in NN4, scripts must invoke the captureEvents()
method of the window, document, or layer object and pass as parameters constant
values that denote the specific events to be captured (constants of the Event
object). If you no longer need to capture an event, you can turn off event capture
via the releaseEvents() method.

Whether or not you capture events, the Navigator 4 event model produces an
event object (lowercase “e” to distinguish from the static Event object) for each
event. That object contains properties that reveal more information about the spe-
cific event, such as the keyboard character pressed for a keyboard event or the
position of a click event on the page. Any event handler can inspect event object
properties to learn more about the event and process the event accordingly.

Layers

Perhaps the most radical addition to the NN4 object model was a new object that
reflected an entirely new HTML element, the LAYER element. A layer is a container
that is capable of holding its own HTML document, yet it exists in a plane in front of
the main document. You can move, size, and hide a layer under script control. This
new element allowed, for the first time, overlapping elements in an HTML page.

To accommodate the layer object in the document object hierarchy, Netscape
defined a nesting hierarchy such that a layer was contained by a document. As the
result, the document object acquired a property (document.layers) that was an
array of layer objects in the document. This array exposed only the first level of
layer(s) in the current document object. References to a layer in the main docu-
ment started with any one of the following:

document.layerName
document.layers[n]
document.layers[TayerName]

Chapter 14 4+ Document Object Model Essentials 71

Each layer had its own document object because each layer could load an exter-
nal HTML document if desired. Thus, if a script needed access to, say, a form ele-
ment inside a layer, the reference would begin:

document.TayerName.document.forms[0]....
If a layer contained yet another layer, the reference grew even longer:
document.outerlLayerName.document.innerLayerName.document.forms[0]...

As a positionable element, a layer object had numerous properties and methods
that allowed scripts to move, hide, show, and change its stacking order.

Unfortunately for Netscape, the W3C did not agree to make the <LAYER> tag a
part of the HTML 4.0 specification. As such, it is an orphan element that exists only
in Navigator 4 (not implemented in NN6 or later). The same goes for the scripting of
the layer object and its nested references. Navigator 4 does, however, implement a
little bit of the HTML 4.0 and CSS specifications for positionable elements because
you can assign CSS style sheets (with the position and related attributes) to DIV
and SPAN elements in NN4. Navigator treats positioned DIV or SPAN elements as
near equivalents of layer objects for scripting purposes. This means, however, that
even if you can get the HTML to work the same across browsers (not always guar-
anteed due to occasionally different rendering characteristics of positioned DIV ele-
ments in NN4 and IE4), the scripting for NN4 must adhere to the layer syntax, which
differs from the IE4 CSS syntax.

Internet Explorer 4+ Extensions

Microsoft broke important new ground with the release of IE4, which came sev-
eral months after the release of NN4. The main improvements were in the exposure
of all HTML elements, scripted support of CSS, and a new event model. Some other
additions were available only on Windows 32-bit operating system platforms.

HTML element objects

The biggest change to the object model world was that every HTML element
became a scriptable object, while still supporting the original object model.
Microsoft invented the document.all array (also called a collection). This array
contains references to every element in the document, regardless of element nest-
ing. If you assign an identifier (name) to the 1D attribute of an element, you can ref-
erence the element by the following syntax:

document.all.elementID

In most cases, you can also drop the document.all. part of the reference and
begin with only the element ID.

Every element object has an entirely new set of properties and methods that
give scripters a level of control over document content unlike anything seen before.
Table 14-2 shows the properties and methods that all HTML element objects have
in common in IE4 (properties followed by brackets are arrays).

72 Part Ill 4+ Document Objects Reference

Table 14-2 1E4 HTML Element Features in Common

Properties Methods

alll] click()

children[] contains()

className getAttribute()
document insertAdjacentHTML()
filters[] insertAdjacentText()
id removeAttribute()
innerHTML scrollIntoView()
innerText setAttribute()

isTextEdit
lang

language
offsetHeight
offsetleft
offsetParent
offsetTop
offsetWidth
outerHTML
outerText
parentElement
parentTextEdit
sourcelndex
style

tagName

title

You can find details for all of the items from Table 15-1 in Chapter 15. But several
groups of properties deserve special mention here.

Four properties (innerHTML, innerText, outerHTML, and outerText) provide
read/write access to the actual content within the body of a document. This means
that you no longer must use text boxes to display calculated output from scripts.
You can modify content inside paragraphs, table cells, or anywhere on the fly. The
browser’s rendering engine immediately reflows a document when the dimensions
of an element’s content change. That feature puts the “Dynamic” in “Dynamic
HTML.” To those of us who scripted the static pages of earlier browsers, this fea-
ture —now taken for granted — was nothing short of a revelation.

Chapter 14 + Document Object Model Essentials

The series of “offset” properties are related to the position of an element on the
page. These properties are distinct from the kind of positioning performed by CSS.
Therefore, you can get the dimensions and location of any element on the page,
making it easier to move positionable content atop elements that are part of the
document and may appear in various locations due to the browser window’s cur-
rent size.

Finally, the sty1e property is the gateway to CSS specifications defined for the
element. Importantly, the script can modify the numerous properties of the style
object. Therefore, you can modify font specifications, colors, borders, and the posi-
tioning properties after the page loads. The dynamic reflow of the page takes care
of any layout changes that the alteration requires (for example, adjusting to a big-
ger font size).

Element containment hierarchy

While [E4 still recognizes the element hierarchy of the original object model
(Figure 14-1), the document object model for I[E4 does not extend this kind of hierar-
chy fully into other elements. If it did, it would mean that TD elements inside a table
might have to be addressed via its next outer TR or TABLE element (just as a form
control element must be addressed via its containing FORM element). See in Figure
14-2 how all HTML elements are grouped together under the document object. The
document.all array flattens the containment hierarchy as far as referencing object
goes. A reference to the most deeply nested TD element is still document.all.
celTID. The highlighted pathway from the window object is the predominant refer-
ence path used when working with the [E4 document object hierarchy.

window

frame | self top| parent

|navigator| |screen | | history | |document| | location | |event |

[TT I I I I]
| link | |sterSheets| |applets | |f0rm| | images| |p|ugins | |embeds| | all |

[elements]

[TT [T [T
| text | | radio | | button | |select|

| textarea | |checkbox| | reset | |option|

| password| |submit |

Figure 14-2: The IE4 document object hierarchy

Element containment in [E4, however, is important for other reasons. Because an
element can inherit some style sheet attributes from an element that contains it,
you should devise a document’s HTML by embedding every piece of content inside
a container. Paragraph elements are text containers (with start and end tags), not
tall line breaks between text chunks. I[E4 introduces the notion of a parent-child

75

74

Part Il 4 Document Objects Reference

relationship between a container and elements nested within it. Also, the position
of an element may be calculated relative to the position of its next outermost posi-
tioning context.

The bottom line here is that element containment doesn’t have anything to do
with object references (like the original object model). It has everything to do with
the context of an element relative to the rest of the page’s content.

Cascading Style Sheets

By arriving a bit later to market with its version 4 browser than Netscape,
Microsoft benefited from having the CSS Level 1 specification more fully developed
before the browser’s release. Therefore, the implementation is far more complete
than that of NN4 (but it is not 100% compatible with the standard).

I should point out that the scriptability of style sheet properties is a bit at odds
with the first-generation CSS specification, which seemed to ignore the potential of
scripting styles with JavaScript. Many CSS attribute names are hyphenated words
(for example, text-align, z-index). But hyphens are not allowed in identifier
names in JavaScript. This necessitated conversion of the multiword CSS attribute
names to interCap JavaScript property names. Therefore, text-align becomes
textAlign and z-index becomes zIndex. You can access all of these properties
through an element’s style property:

document.all.elementID.style.stylePropertyName

One byproduct of the scriptability of style sheets in [E4 and later is what some
might call the phantom page syndrome. This occurs when the layout of a page is
handled after the primary HTML for the page has downloaded to the browser. As
the page loads, not all content may be visible, or it may be in a visual jumble. An
onlLoad event handler in the page then triggers scripts to set styles and/or content
for the page. Elements jump around to get to their final resting places. This may be
disconcerting to some users who at first see a link to click; but by the time the cur-
sor reaches the click location, the page has reflowed, thereby moving the link to
somewhere else on the page.

Event bubbling

Just as Netscape invented an event model for NN4, so, too, did Microsoft invent
one for IE4. Unfortunately for cross-browser scripters, the two event models are
quite different. Instead of events trickling down the hierarchy to the target element,
an IE event starts at the target element and, unless instructed otherwise, “bubbles
up” through the element containment hierarchy to eventually reach the window
object. At any object along the way, an event handler can perform additional pro-
cessing on that event if desired. Therefore, if you want a single event handler to
process all click events for the page, assign the event handler to the body or win-
dow object so the events reach those objects (provided the event bubbling isn’t
cancelled by some other object along the containment hierarchy).

IE also has an event object (a property of the window object) that contains
details about the event, such as the keyboard key pressed for a keyboard event and
the location of a mouse event. Names for these properties are entirely different
from the event object properties of NN4.

Chapter 14 4+ Document Object Model Essentials 75

Despite what seems like incompatible, if not completely opposite, event models
in NN4 and [E4, you can make a single set of scripts handle events in both browsers
(see Chapters 29 and 56 for examples). In fact, the two event models are made to
work together in the W3C DOM Level 2 specification, described later in this chapter.

Event binding of scripts

IE4 introduced an additional way of binding events to objects via a <SCRIPT> tag
that has two additional, non-W3C attributes: FOR and EVENT (see a syntax example
in Chapter 13). The value assigned to the FOR attribute is the ID of an element
object for which the script is intended; the value of the EVENT attribute is the name
of the event handler (for example, onc11ick) by which the script statements within
the tag are to be triggered.

Inside the tags are straight script statements, but when the browser sees the
special attributes, execution is deferred until the event fires for the designated
object. The instant the event fires for the object, the script statements inside the
tag execute. This special form of script tag takes the place of a function definition
assigned to the event handler by other means. This technique appears to have been
a “dry run” for what eventually became DHTML behaviors in IE5/Windows (see the
following section).

You can use this binding method only if you run the page inside IE4+. All other
browsers, including IE3, ignore the special attributes and treat the statements
inside the tags as statements to execute as the page loads.

Win32 features

For Internet Explorer users with 32-bit Windows operating systems, IE4 includes
some extra features in the object model that can enhance presentations. Filters are
style sheet additives that offer a variety of visual effects on body text. For example,
you can add a drop shadow or a glowing effect to text by simply applying filter
styles to the text. Although filters follow the CSS syntax, they are not a part of the
W3C specification.

Two special filters provide animation for transitions between hidden and visible
content. For example, you can create the equivalent of a slide presentation by plac-
ing the content of each slide in a positioned DIV element. As you hide one DIV and
show the other (under script control), the transition filter can perform a transition
such as a wipe or an expanding circle —very much like the transitions you specify
in PowerPoint or other presentation programs.

Internet Explorer 5+ Extensions

With the release of IE5, Microsoft built more onto the proprietary object model it
launched in IE4. Although the range of objects remained pretty much the same, the
number of properties, methods, and event handlers for the objects increased dra-
matically. Some of those additions were added to meet some of the specifications of
the W3C DOM (discussed in the next section), occasionally causing a bit of incom-
patibility with IE4. But Microsoft also pushed ahead with efforts for Windows users
only that may not necessarily become industry standards: DHTML behaviors and
HTML applications.

76

Part Il 4 Document Objects Reference

A DHTML behavior is a chunk of script — saved as an external file—that defines
some action (usually a change of one or more style properties) that you can apply
to any kind of element. The goal is to create a reusable component that you can
load into any document whose elements require that behavior. The behavior file is
known as an HTML component, and the file has an . htc extension. Components are
XML documents whose XML tags specify events and event-handling routines for
whatever element is assigned that behavior. Script statements in . htc documents
are written inside <SCRIPT> tag sets just as in regular, scriptable HTML documents.
As an example of a DHTML behavior, you can define a behavior that turns an ele-
ment’s text to red whenever the cursor rolls atop it and reverts to black when the
cursor rolls out. When you assign the behavior to an element in the document (via
CSS-like rule syntax), the element picks up that behavior and responds to the user
accordingly. You can apply that same behavior to any element(s) you like in the
document. (Microsoft has submitted behaviors to the W3C for possible inclusion
into CSS Level 3.) You can see an example of a DHTML behavior in Chapter 15’s
description of the addBehavior() method and read an extended discussion in
Chapter 47.

HTML applications (HTAs in Microsoft parlance) are HTML files that include an
XML element known as the HTA: APPLICATION element. You can download an HTA
to IE5 from the server as if it were a Web page (although its file extension is .hta
rather than .htmor .htm1). A user can also install an HTA on a client machine so it
behaves very much like an application with a Desktop icon and significant control
over the look of the window. HTAs are granted greater security privileges on the
client so that this “application” can behave more like a regular program. In fact, you
can elect to turn off the system menu bar and use DHTML techniques to build your
own menu bar for the application. Implementation details of HTAs are beyond the
scope of this book, but you should be aware of their existence. More information is
available at http://msdn.microsoft.com.

The W3C DOM

Conflicting browser object models from Netscape and Microsoft made life diffi-
cult for developers. Scripters craved a standard that would serve as a common
denominator much like HTML and CSS standards did for content and styles. The
W3C took up the challenge of creating a document object model standard, the W3C
DOM.

The charter of the W3C DOM working group was to create a document object
model that could be applied to both HTML and XML documents. Because an XML
document can have tags of virtually any name (as defined by the Document Type
Definition), it has no intrinsic structure or fixed vocabulary of elements like an
HTML document does. As a result, the DOM specification had to accommodate the
known structure of HTML (as defined in the HTML 4.0 specification) as well as the
unknown structure of an XML document.

To make this work effectively, the working group divided the DOM specification
into two sections. The first, called the Core DOM, defines specifications for the basic
document structure that both HTML and XML documents share. This includes
notions of a document containing elements that have tag names and attributes; an
element is capable of containing zero or more other elements. The second part of
the DOM specification addresses the elements and other characteristics that apply

Chapter 14 + Document Object Model Essentials

only to HTML. The HTML portion “inherits” all the features of the Core DOM, while
providing a measure of backward compatibility to object models already imple-
mented in legacy browsers and providing a framework for new features.

It is important for veteran scripters to recognize that the W3C DOM does not
specify all features from existing browser object models. Many features of the
Internet Explorer 4 (and later) object model are not part of the W3C DOM specifica-
tion. This means that if you are comfortable in the IE environment and wish to shift
your focus to writing for the W3C DOM spec, you have to change some practices as
highlighted in this chapter. Navigator 4 page authors lose the <LAYER> tag (which is
not part of HTML 4.0 and likely will never see the light of day in a standard) as well
as the layer object. In many respects, especially with regard to Dynamic HTML
applications, the W3C DOM is an entirely new DOM with new concepts that you
must grasp before you can successfully script in the environment.

By the same token, you should be aware that whereas NN6 goes to great lengths
to implement all of DOM Level 1 and most of Level 2, Microsoft (for whatever rea-
son) features only a partial implementation of the W3C DOM through IE5.5. This is
true even though Microsoft participated in the W3C DOM working group and had
more than ample time to put more of the W3C DOM into IE version 5.5.

DOM levels

Like most W3C specifications, one version is rarely enough. The job of the DOM
working group was too large to be swallowed whole in one sitting. Therefore, the
DOM is a continually evolving specification. The timeline of specification releases
rarely coincides with browser releases. Therefore, it is very common for any given
browser release to include only some of the most recent W3C version.

The first formal specification, DOM Level 1, was released well after NN4 and IE4
shipped. The HTML portion of Level 1 includes DOM Level 0. This is essentially the
object model as implemented in Navigator 3 (and for the most part in Internet
Explorer 3 plug image objects). Perhaps the most significant omission from Level 1 is
an event model (it ignores even the simple event model implemented in NN2 and IE3).

DOM Level 2 builds on the work of Level 1. In addition to several enhancements
of both the Core and HTML portions of Level 1, Level 2 adds significant new sec-
tions on the event model, ways of inspecting a document’s hierarchy, XML names-
paces, text ranges, style sheets, and style properties.

What stays the same

By adopting DOM Level 0 as the starting point of the HTML portion of the DOM,
the W3C provided a way for a lot of existing script code to work even in a W3C
DOM-compatible browser. Every object you see in the original object model starting
with the document object (Figure 14-1) plus the image object are in DOM Level 0.
Almost all of the same object properties and methods are also available.

More importantly, when you consider the changes to referencing other elements
in the W3C DOM (discussed in the next section), we’re lucky that the old ways of
referencing object such as forms, form elements, and images still work. Had the
working group been planning from a clean slate, it is unlikely that the document
object would have been given properties consisting of arrays of forms, links, and
images.

77

78

Part Il 4 Document Objects Reference

The only potential problems you could encounter with your existing code have
to do with a handful of properties that used to belong to the document object. In
the new DOM, four style-related properties of the document object (alinkColor,
bgColor, TinkColor,and vlinkColor) become properties of the body object (ref-
erenced as document.body). In addition, the three link color properties pick up
new names in the process (alLink, 1ink, vLink). It appears, however, that for now,
IE5.x and NN6 maintain backward compatibility with the older document object
color properties.

Also, note that the DOM specification concerns itself only with the document
and its content. Objects such as window, navigator, and screen are not part of
the DOM specification through Level 2. Scripters are still at the mercy of browser
makers for compatibility in these areas, but the window object likely will be added
to the W3C DOM in the future.

What isn’t available

As mentioned earlier, the W3C DOM is not simply a restatement of existing
browser specifications. Many convenience features of the IE and NN object models
do not appear in the W3C DOM. If you develop Dynamic HTML content in IE4+ or
NN4, you have to learn how to get along without some of these conveniences.

Navigator 4’s experiment with the <LAYER> tag was not successful in the W3C
process. As a result, both the tag and the scripting conventions surrounding it do
not exist in the W3C DOM. To some scripters’ relief, the document . TayerName ref-
erencing scenario (even more complex with nested layers) disappears from the
object model entirely. A positioned element is treated as just another element that
has some special style sheet attributes that enable you to move it anywhere on the
page, stack it amid other positioned elements, and hide it from view.

Among popular IE4+ features missing from the W3C DOM are the document.all
collection of HTML elements and four element properties that facilitate dynamic
content: innerHTML, innerText, outerHTML, and outerText. A new W3C way pro-
vides for acquiring an array of all elements in a document, but generating HTML
content to replace existing content or be inserted in a document requires a tedious
sequence of statements (see the section “New DOM concepts” later in this chapter).
Netscape, however, has implemented the innerHTML property for HTML element
objects in NN6. If you have a lot of legacy IE4 code that uses the other missing prop-
erties that you want to use for NN6, see the section “Simulating IE4 Syntax in NN6”
later in this chapter.

“New"” HTML practices

Exploitation of Dynamic HTML possibilities in both IE4+ and the W3C DOM relies
on some HTML practices that may be new to long-time HTML authors. At the core
of these practices (espoused by the HTML 4.0 specification) is making sure that all
content is within an HTML container of some kind. Therefore, instead of using the
<{P> tag as a separator between blocks of running text, surround each paragraph of
the running text with a <P>...</P> tag set. If you don’t do it, the browser treats
each <P> tag as the beginning of a paragraph and ends the paragraph element just
before the next <P> tag or other block-level element.

Chapter 14 + Document Object Model Essentials

While recent browsers continue to accept the omission of certain end tags (for
TD, TR, and LI elements, for instance), it is best to get in the habit of supplying
these end tags. If for no other reason, they help you visualize where an element’s
sphere of influence truly begins and ends.

Any element that you intend to script—whether to change its content or its
style—should have an identifier assigned to the element’s 1D attribute. Form con-
trol elements still require NAME attributes if you submit the form content to a
server. But you can freely assign a different identifier to a control’s 1D attribute.
Scripts can use either the 1D or the document.formReference.elementName ref-
erence to reach a control object. Identifiers are essentially the same as the values
you assign to the NAME attributes of form and form input elements. Following the
same rules for the NAME attribute value, an 1D identifier must be a single word (no
white space), it cannot begin with a numeral (to avoid conflicts in JavaScript), and
it should avoid punctuation symbols except for the underscore. While an element
can be accessed by numeric index within the context of some surrounding element
(such as the BODY), this is a risky practice when content is under construction.
Unique identifiers make it much easier for scripts to reference objects and are not
affected by changes in content order.

New DOM concepts

With the W3C DOM come several concepts that may be entirely new to you
unless you have worked extensively with the terminology of tree hierarchies.
Concepts that have the most impact on your scripting are new ways of referencing
elements and nodes.

Element referencing

Script references to objects in the DOM Level 0 are observed in the W3C DOM for
backward compatibility. Therefore, a form input element whose NAME attribute is
assigned the value userName is addressed just like it always is:

document.forms[0].userName
or
document.formName.userName

But because all elements of a document are exposed to the document object, you
can use the new document object method to access any element whose ID is
assigned. The method is document.getElementById(), and the sole parameter is
a string version of the identifier of the object whose reference you wish to get. To
help put this in context with what you may have used with the IE4 object model,
consider the following HTML paragraph tag:

<P ID="myParagraph">...</P>
In IE4+, you can reference this element with
var elem = document.all.myParagraph

IE4+ also enables you to omit the document.all. portion of the reference —
although for the sake of script readability (especially by others who want to study
the script), | recommend that you use the document.all. prefix.

79

80

Part Il 4 Document Objects Reference

Although the document.all collection is not implemented in the W3C DOM, use
the new document object method (available in IE5+ and NN6+) that enables you to
access any element by its ID:

var elem = document.getElementById("myParagraph")

Unfortunately for scripters, this method is difficult to type (it is case-sensitive —
watch out for that ending lowercase “d”). But the W3C DOM includes another
document object method that enables you to simulate the document.all conve-
nience collection. See the section, “Simulating [E4 Syntax in NN6” later in this chapter.

A hierarchy of nodes

The issue surrounding containers (described earlier) comes into play for the
underlying architecture of the W3C DOM. Every element or freestanding chunk of
text in an HTML (or XML) document is an object that is contained by its next outer-
most container. Let’s look at a simple HTML document to see how this system
works. Listing 14-1 is formatted to show the containment hierarchy of elements and
string chunks.

Listing 14-1: A Simple HTML Document

<HTML>
<HEAD>
KTITLE>
A Simple Page
</TITLE>
</HEAD>
<BODY>
<P ID="paragraphl">
This is the
<EM 1D="emphasisl">
one and only
<TEMD
paragraph on the page.
</P>
</BODY>
</HTML>

What you don’t see in the listing is a representation of the document object. The
document object exists automatically when this page loads into a browser.
Importantly, the document object encompasses everything you see in Listing 14-1.
Therefore, the document object has a single nested element: the HTML element.
The HTML element, in turn, has two nested elements: HEAD and BODY. The HEAD
element contains the TITLE element, while the TITLE element contains a chunk of
text. Down in the BODY element, the P element contains three pieces: a string
chunk, the EM element, and another string chunk.

Chapter 14 4+ Document Object Model Essentials 81

According to W3C DOM terminology, each container, standalone element (such
as a BR element), or text chunk is known as a node — a fundamental building block
of the W3C DOM. Nodes have parent-child relationships when one container holds
another. As in real life, parent-child relationships extend only between adjacent
generations, so a node can have zero or more children. However, the number of
third-generation nodes further nested within the family tree does not influence the
number of children associated with a parent. Therefore, in Listing 14-1, the HTML
node has two child nodes, HEAD and BODY, which are siblings that share the same
parent. The BODY element has one child (P) even though that child contains three
children (two text nodes and an EM element node).

If you draw a hierarchical tree diagram of the document in Listing 14-1, it should
look like the illustration in Figure 14-3.

document
+--<HTML>
+--<HEAD>
| +--<TITLE>
| +--"A Simple Page"
+--<BODY>
+--<P ID="paragraph1">
+--"This is the "
+--<EM ID="emphasis1">
| +--"one and only"
+--" paragraph on the page."

Figure 14-3: Tree diagram of nodes for the document in Listing 14-1

'Note If the document's source code contains a Document Type Definition (DTD) above
~— the <HTML> tag, the browser treats that DTD node as a sibling of the HTML ele-
ment node. In that case, the root document node contains two child nodes.

The W3C DOM (through Level 2) defines 12 different types of nodes, seven of
which have direct application in HTML documents. These seven types of nodes
appear in Table 14-3 (the rest apply to XML). Of the 12 types, the three most com-
mon are the document, element, and text fragment types. The latter two are imple-
mented in both IE5+ and NN6 (all are implemented in NN6).

82 Part Ill 4+ Document Objects Reference

Table 14-3 W3C DOM HTML-Related Node Types

Type Number nodeName nodeValue Description IE5+ NN6
Element 1 tag name null Any HTML or Yes Yes
XML tagged
element
Attribute 2 attribute attribute A name-value
name value attribute pair No Yes
in an element
Text 3 JFtext text content A text fragment Yes Yes
contained by
an element
Comment 8 ffcomment comment HTML No Yes
text comment
Document 9 ffdocument null Root document No Yes
object
DocumentType 10 DOCTYPE null DTD No Yes
specification
Fragment 11 ffdocument- null Series of one No Yes
fragment or more nodes

outside of the

document

Applying the node types of Table 14-3 to the node diagram in Figure 14-3, you can
see that the simple page consists of one document node, six element nodes, and

four text nodes.

Node properties

A node has many properties, most of which are references to other nodes related
to the current node. Table 144 lists all properties shared by all node types in DOM

Level 2.

Table 14-4 Node Object Properties (W3C DOM Level 2)

Property Value Description IE5/Win IE5/Mac NN6

nodeName String Varies with node Yes Yes Yes
type (see Table 14-3)

nodeValue String Varies with node Yes Yes Yes
type (see Table 14-3)

nodeType Integer Constant representing Some Yes Yes

each type

' Note

Chapter 14 + Document Object Model Essentials

Property Value Description IE5/Win IE5/Mac NN6

parentNode Object Reference to next Yes Yes Yes
outermost container

childNodes Array All child nodes in Yes Yes Yes
source order

firstChild Object Reference to first Yes Yes Yes
child node

TastChild Object Reference to last Yes Yes Yes
child node

previous- Object Reference to sibling node Yes Yes Yes

Sibling up in source order

nextSibling Object Reference to sibling node Yes Yes Yes
next in source order

attributes NodeMap Array of attribute nodes No Yes Yes

ownerDocument Object Containing document No Yes Yes
object

namespacelURI String URI to namespace No No Yes
definition (element and
attribute nodes only)

prefix String Namespace prefix No No Yes
(element and attribute
nodes only)

lTocalName String Applicable to namespace- No No Yes

affected nodes

You can find all of the properties shown in Table 14-4 that also show themselves
to be implemented in IE5 or NN6 in Chapter 15’s listing of properties that all
HTML element objects have in common. That's because an HTML element, as a

type of node, inherits all of the properties of the prototypical node.

To help you see the meanings of the key node properties, Table 14-5 shows the
property values of several nodes in the simple page shown in Listing 14-1. For each
node column, find the node in Figure 14-3 and then follow the list of property values
for that node, comparing the values against the actual node structure in Figure 14-3.

85

84 Part Ill + Document Objects Reference

Table 14-5 Properties of Selected Nodes for

a Simple HTML Document
Properties Nodes
document HTML P "one and only"
nodeType 9 1 1 3
nodeName j#idocument HTML P fftext
nodeValue null null null "one and only"
parentNode null document BODY EM
previousSibling null null null null
nextSibling null null null null
childNodes HTML HEAD "This is the " (none)
BODY EM

" paragraph on

the page."
firstChild HTML HEAD "This is the " null
lastChild HTML BODY " paragraph on null

the page."

The nodeType property is an integer that is helpful in scripts that iterate
through an unknown collection of nodes. Most content in an HTML document is of
type 1 (HTML element) or 3 (text fragment), with the outermost container, the doc-
ument, of type 9. A node’s nodeName property is either the name of the node’s tag
(for an HTML element) or a constant value (preceded by a # [hash mark] as shown
in Table 14-3). And, what may surprise some, the nodeValue property is nul 1
except for the text fragment node type, in which case the value is the actual string
of text of the node. In other words, for HTML elements, the W3C DOM does not
expose a container’s HTML as a string.

It is doubtful that you will use all of the relationship-oriented properties of a
node, primarily because there is some overlap in how you can reach a particular
node from any other. The parentNode property is important because it is a refer-
ence to the current node’s immediate container. While the firstChild and
lastChild properties point directly to the first and last children inside a container,
most scripts generally use the childNodes property with array notation inside a
for loop to iterate through child nodes. If there are no child nodes, then the
childNodes array has a length of zero.

Chapter 14 4+ Document Object Model Essentials 85

If you are familiar with concepts of object-oriented (O0) programming, you will appreciate
the OO tendencies in the way the W3C defines the DOM. The Node object includes sets of
properties (Table 14-4) and methods (Table 14-6) that are inherited by every object based
on the Node. Most of the objects that inherit the Node’s behavior have their own properties
and/or methods that define their specific behaviors. The following figure shows (in W3C
DOM terminology) the inheritance tree from the Node root object. Most items are defined
in the Core DOM, while items shown in boldface are from the HTML DOM portion.

Node

+--Document

| +--HTMLDocument
+--CharacterData

| +-Text

| | +--CDATASection
| +--Comment

+--Attr

+--Element

| +--HTMLElement

| +-- (Each specific HTML element)
+--DocumentType
+--DocumentFragment
+--Notation

+--Entity

+--Entity Reference
+--Processinglnstruction

W3C DOM Node object inheritance tree

You can see from the preceding figure that individual HTML elements inherit properties and
methods from the generic HTML element, which inherits from the Core ETement object,
which, in turn, inherits from the basic Node.

It isn't important to know the Node object inheritance to script the DOM. But it does help
explain the ECMA Script Language Binding appendix of the W3C DOM recommendation, as
well as explain how a simple element object winds up with so many properties and meth-
ods associated with it.

The IE5/Windows incomplete implementation of the W3C DOM does not treat the
Note document object as a node in the true sense. It has no nodeType property
~— defined for it, nor does the document node appear as the parent node of the
HTML node of a page. Even so, the document object remains the root of all refer-

ences in a page'’s scripts.

86 Part Ill 4+ Document Objects Reference

Node methods

Actions that modify the HTML content of a node in the W3C DOM world primar-
ily involve the methods defined for the prototype Node. Table 14-6 shows the meth-
ods and their support in the W3C DOM-capable browsers.

Table 14-6 Node Object Methods (W3C DOM Level 2)

Method Description IE5 NN6

appendChild(newChild) Adds child node to end Yes Yes
of current node

cloneNode(deep) Grabs a copy of the Yes Yes
current node (optionally)
with children

hasChildNodes() Determines whether Yes Yes

current node has
children (Boolean)

insertBefore(new, ref) Inserts new child in front Yes Yes
of another child

removeChild(old) Deletes one child Yes Yes

replaceChild(new, old) Replaces an old child Yes Yes
with a new one

supports(feature, version) Determines whether the No Yes
node supports a particular
feature

The important methods for modifying content are appendChild(),
insertBefore(), removeChild(),and replaceChild(). Notice, however, that all
of these methods assume that the point of view for the action is from the parent of
the nodes being affected by the methods. For example, to delete an element (using
removeChild()), you don’t invoke that method on the element being removed, but
rather on its parent element. This leaves open the possibility for creating a library
of utility functions that obviate having to know too much about the precise contain-
ment hierarchy of an element. A simple function that lets a script appear to delete
an element actually does so from its parent:

function removeElement(elemID) ({
var elem = document.getElementById(elemID)
elem.parentNode.removeChild(elem)

If this seems like a long way to go to accomplish the same result as setting the
outerHTML property of an IE4+ object to empty, you are right. While some of this
convolution makes sense for XML, unfortunately the W3C working group doesn’t
seem to have HTML scripters’ best interests in mind. All is not lost, however, as you
see later in this chapter.

Chapter 14 4+ Document Object Model Essentials 87

Generating new node content

The final point about the node structure of the W3C DOM focuses on the simi-
larly gnarled way scripters must go about generating content they want to add or
replace on a page. For text-only changes (for example, the text inside a table cell),
there is both an easy and hard way to perform the task. For HTML changes, there is
only the hard way (plus a couple of handy workarounds discussed later). Let’s look
at the hard way first and then pick up the easy way for text changes.

To generate a new node in the DOM, you look to the variety of methods that are
defined for the Core DOM’s document object (and are therefore inherited by the
HTML document object). A node creation method is defined for nearly every node
type in the DOM. The two important ones for HTML documents are
createElement() and createTextNode(). The first generates an element with
whatever tag name (string) you pass as a parameter; the second generates a text
node with whatever text you pass.

When you first create a new element, it exists only in the browser’s memory and
not as part of the document containment hierarchy. Moreover, the result of the
createElement () method is a reference to an empty element except for the name
of the tag. For example, to create a new P element, use

var newElem = document.createtElement("P")

The new element has no ID, attributes, or any content. To assign some attributes
to that element, you can use the setAttribute() method (a method of every ele-
ment object) or assign a value to the object’s corresponding property. For example,
to assign an identifier to the new element, use either

newElem.setAttribute("id", "newP")
or
newElem.id = "newP"

Both ways are perfectly legal. Even though the element has an ID at this point, it
is not yet part of the document so you cannot retrieve it via the document.
getElementById() method.

To add some content to the paragraph, you next generate a text node as a sepa-
rate object:

var newText = document.createTextNode("This is the second paragraph.")

Again, this node is just sitting around in memory waiting for you to apply it as a
child of some other node. To make this text the content of the new paragraph, you
can append the node as a child of the paragraph element that is still in memory:

newElem.appendChild(newText)

If you were able to inspect the HTML that represents the new paragraph element,
it would look like the following:

<P ID="newP">This is the second paragraph.</P>

The new paragraph element is ready for insertion into a document. Using the
document shown in Listing 14-1, you can append it as a child of the BODY element:

document.body.appendChild(newElem)

88

Part Il 4 Document Objects Reference

At last, the new element is part of the document containment hierarchy. You can
now reference it just like any other element in the document.

Replacing node content

The addition of the paragraph shown in the last section requires a change to a
portion of the text in the original paragraph (the first paragraph is no longer the
“one and only” paragraph on the page). As mentioned earlier, you can perform text
changes either via the repTaceChild() method or by assigning new text to a text
node’s nodeValue property. Let’s see how each approach works to change the text
of the first paragraph’s EM element from “one and only” to “first.”

To use replaceChild(), a script must first generate a valid text node with the
new text:

var newText = document.createTextNode("first ")

Because strings are dumb (in other words, they don’t know about words and
spaces), the new text node includes a space to accommodate the existing space lay-
out of the original text. The next step is to use the replaceChild() method. But
recall that the point of view for this method is the parent of the child being
replaced. The child here is the text node inside the EM element, so you must invoke
the replaceChild() method on the EM element. Also, the replaceChild()
method requires two parameters: the first is the new node; the second is a refer-
ence to the node to be replaced. Because the script statements get pretty long with
the getElementById() method, an intermediate step grabs a reference to the text
node inside the EM element:

var 01dChild = document.getElementById("emphasisl").childNodes[0]

Now the script is ready to invoke the replaceChild() method on the EM ele-
ment, swapping the old text node with the new:

document.getETementById("emphasisl").replaceChild(newText, oldChild)

If you want to capture the old node before it disappears entirely, be aware that
the replaceChild() method returns a reference to the replaced node (which is
only in memory at this point, and not part of the document node hierarchy). You
can assign the method statement to a variable and use that old node somewhere
else, if needed.

This may seem like a long way to go; it is, especially if the HTML you are generat-
ing is complex. Fortunately, you can take a simpler approach for replacing text
nodes. All it requires is a reference to the text node being replaced. You can assign
that node’s nodeValue property its new string value:

document.getETementById("emphasisl").childNodes[0].nodeValue = "first "

When an element’s content is entirely text (for example, a table cell that already
has a text node in it), this is the most streamlined way to swap text on the fly using
W3C DOM syntax. This doesn’t work for the creation of the second paragraph text
earlier in this chapter because the text node did not exist yet. The
createTextNode () method had to explicitly create it.

Also remember that a text node does not have any inherent style associated with
it. The style of the containing HTML element governs the style of the text. If you
want to change not only the text node’s text but also how it looks, you have to mod-
ify the sty1e property of the text node’s parent element. Browsers that perform
these kinds of content swaps and style changes automatically reflow the page to
accommodate changes in the size of the content.

Chapter 14 + Document Object Model Essentials

To summarize, Listing 14-2 is a live version of the modifications made to the orig-
inal document shown in Listing 14-1. The new version includes a button and script
that makes the changes described throughout this discussion of nodes. Reload the
page to start over.

Listing 14-2: Adding/Replacing DOM Content

<HTML>
<HEAD>
KTITLE>A Simple Page</TITLE>
{SCRIPT LANGUAGE="JavaScript">
function modify() {
var newElem = document.createElement("P")
newElem.id = "newP"
var newText = document.createTextNode("This is the second paragraph.")
newElem.appendChild(newText)
document.body.appendChild(newElem)
document.getElementById("emphasisl”).childNodes[0].nodeValue = "first "
}
</SCRIPT>
</HEAD>
<BODY>
<BUTTON onCTlick="modify()">Add/Replace Text</BUTTON>
<P ID="paragraphl">This is the <EM ID="emphasisl">one and only paragraph on
the page.</P>
</BODY>
<THTML

Chapter 15 details node properties and methods that are inherited by all HTML
elements. Most are implemented in both IE5 and NN6. Also look to the reference
material for the document object in Chapter 18 for other valuable W3C DOM
methods.

Although not part of the W3C DOM, the innerHTML property (originally devised
by Microsoft for IE4) is available in NN6 for the sake of convenience. To speed the
conversion of legacy IE4 dynamic content code that uses other popular IE conve-
niences to run in NN6, see the section “Simulating IE4 Syntax in NN6” later in this
chapter.

Static W3C DOM HTML objects

The NN6 DOM (but unfortunately not IE5.x) adheres to the core JavaScript
notion of prototype inheritance with respect to the object model. When a page
loads into NN6, the browser creates HTML objects based on the prototypes of each
object defined by the W3C DOM. For example, if you use The Evaluator (Chapter
13) to see what kind of object the myP paragraph object is (enter document.
getElementById("myP") into the top text box and click the Evaluate button), it
reports that the object is based on the HTMLParagraphElement object of the DOM.
Every “instance” of a P element object in the page inherits its default properties
and methods from HTMLParagraphElement (which, in turn, inherits from
HTMLETement, ETement, and Node objects — all detailed in the JavaScript binding
appendix of the W3C DOM specification).

89

90

Part Il 4 Document Objects Reference

'Note

You can use scripting to add properties to the prototypes of some of these static
objects. To do so, you must use new features added to NN6. Two new methods —
__defineGetter__() and __defineSetter__()—enable you to assign functions
to a custom property of an object.

These methods are Netscape-specific. To prevent their possible collision with

~ standardized implementations of these features in future implementations of

ECMAScript, the underscore characters on either side of the method name are
pairs of underscore characters.

The functions execute whenever the property is read (the function assigned via
the _defineGetter__() method) or modified (the function assigned via the
__defineSetter__() method). The common way to define these functions is in
the form of an anonymous function (Chapter 41). The formats for the two state-
ments that assign these behaviors to an object prototype are as follows:

object.prototype.__defineGetter__("propName", function([paramll,...[,paramN]1])
{

/] statements

return returnlValue
1)
object.prototype.__defineSetter_ ("propName", function([paramI(,...[,paramN]]11)
{

/] statements

return returnValue
P

The example in Listing 14-3 demonstrates how to add a read-only property to
every HTML element object in the current document. The property, called
childNodeDetail, returns an object; the object has two properties, one for the
number of element child nodes and one for the number of text child nodes. Note
that the script is wrapped inside a script tag that specifies JavaScript 1.5. Also note
that the this keyword in the function definition is a reference to the object for
which the property is calculated. And because the function runs each time a script
statement reads the property, any scripted changes to the content after the page
loads are reflected in the returned property value.

Listing 14-3: Adding a Read-Only Prototype Property to All
HTML Element Objects

{SCRIPT LANGUAGE="JavaScriptl.5">
if (HTMLETement) {
HTMLETement.prototype.__defineGetter__("childNodeDetail", function() {
var result = {elementNodes:0, textNodes:0}
for (var i = 0; i < this.childNodes.length; i++) {
switch (this.childNodes[i].nodeType) {
case 1:
result.elementNodes++
break
case 3:
result.textNodes++
break

Chapter 14 4+ Document Object Model Essentials O]

}
}
return result
1)
}
</SCRIPT>

To access the property, use it like any other property of the object. For example:
var BodyNodeDetail = document.body.childNodeDetail

The returned value in this example is an object, so you use regular JavaScript
syntax to access one of the property values:

var BodyElemNodesCount = document.body.childNodeDetail.elementNodes

Bidirectional event model

Despite the seemingly conflicting event models of NN4 (trickle down) and IE4
(bubble up), the W3C DOM event model (defined in Level 2) manages to employ
both models. This gives the scripter the choice of where along an event’s propaga-
tion path the event gets processed. To prevent conflicts with existing event model
terminology, the W3C model invents many new terms for properties and methods
for events. Some coding probably requires W3C DOM-specific handling in a page
aimed at multiple object models.

The W3C event model also introduces a new concept called the event listener. An
event listener is essentially a mechanism that instructs an object to respond to a
particular kind of event — very much like the way the event handler attributes of
HTML tags respond to events. But the DOM recommendation points out that it
prefers use of a more script-oriented way of assigning event listeners: the
addEventlListener() method available for every node in the document hierarchy.
Through this method, you advise the browser whether to force an event to bubble
up the hierarchy (the default behavior that is also in effect if you use the HTML
attribute type of event handler) or to be captured at a higher level.

Functions invoked by the event listener receive a single parameter consisting of
the event object whose properties contain contextual details about the event
(details such as the position of a mouse click, character code of a keyboard key, or
a reference to the target object). For example, if a form includes a button whose job
is to invoke a calculation function, the W3C DOM prefers the following way of
assigning the event handler:

document.getETementById("calcButton").addEventListener("click", doCalc, false)

The addEventlListener() method takes three parameters. The first parameter
is a string of the event to listen for; the second is a reference to the function to be
invoked when that event fires; and the third parameter is a Boolean value. When
you set this Boolean value to true, it turns on event capture whenever this event is
directed to this target. The function then takes its cue from the event object passed
as the parameter:

function doCalc(evt) {
// get shortcut reference to input button's form
var form = evt.target.form

92

Part Il 4 Document Objects Reference

var results = 0
// other statements to do the calculation //
form.result.value = results

To modify an event listener, you use the removeEventlListener () method to get
rid of the old listener and then employ addEventListener() with different param-
eters to assign the new one.

Preventing an event from performing its default action is also a different proce-
dure in the W3C event model than in IE. In IE4 (as well as NN3 and NN4), you can
cancel the default action by allowing the event handler to evaluate to return
false. While this still works in IE5, Microsoft includes another property of the
window.event object, called returnValue. Setting that property to false any-
where in the function invoked by the event handler also kills the event before it
does its normal job. But the W3C event model uses a method of the event object,
preventDefault(), to keep the event from its normal task. You can invoke this
method anywhere in the function that executes when the event fires.

Unfortunately, IE5.x does not implement the W3C DOM event syntax, so using the
event listener terminology requires code branching for a cross-browser page. But
part of the burden is lifted because the HTML 4.0 way of binding events to elements
by way of attributes as well as assignment of events as object properties continues
to be supported in I[E5.x and NN6. NN6 treats “old fashioned” event handler syntax
the same as adding an event listener.

Mixing Object Models

The more browsers that your audience uses, the more likely you will want to
make your pages work on as many browsers as possible. You've seen in this chap-
ter that scripts written for older browsers, such as Navigator 2 and Internet
Explorer 3, tend to work in even the latest browsers without modification. But aim-
ing at that compatibility target doesn’t let you take advantage of more advanced
features, in particular Dynamic HTML. You must balance the effort required to sup-
port as many as four classifications of browsers (non-DHTML, NN4, IE4/5, and W3C
DOM common denominator in I[E5 and NN6) against the requirements of your audi-
ence. Moreover, those requirements can easily change over time. For example, the
share of the audience using non-DHTML and NN4 browsers will diminish over time,
while the installed base of browsers capable of using the Microsoft IE DOM (for
[E4+) and the W3C DOM (IE5+ and NN6+) will increase. If the percentage of visitors
using NN4 is not significant at this point, you may well decide to not worry about
implementing DHTML features for that browser and lump NN4 together with the
rest of the non-DHTML browsers.

For any given application or Web site, it is important to develop a strategy to
apply to the deployment of scripted features. But be aware that one strategy simply
cannot fit all situations. The primary considerations are the breadth of browser
versions reaching your site (many for public sites; perhaps only one for a tightly
controlled intranet) and the amount of DHTML you intend to implement.

In the rest of this section, you see three scenarios and strategies employed to
meet the developer’s requirements. Although they are labeled as three different lev-
els of aggressiveness, it is likely that you can apply individual techniques from each
of the levels in establishing a strategy of your own.

Chapter 14 4+ Document Object Model Essentials 03

The conservative approach

In the first scenario, the content requires a modest level of data entry interaction
with a user via a form as well as image rollovers. Supported browsers encompass
the entire range of nonscriptable and scriptable browsers, with one version of each
page to serve all visitors.

If the form gathers information from the user for submission to a server CGI that
stores the data in a database or performs a search based on user-supplied criteria,
the obvious mode of entry is through traditional form elements. Scriptable
browsers can perform pre-submission validations to hasten the correction of any
improperly formatted fields. Event handlers attached to the text fields (onChange
event handlers) and an onSubmi t event handler for the form itself can do the vali-
dation on the client. Nonscriptable browsers ignore the event handlers, and the
form is submitted as usual, relying on server-side validation of input data (and the
slow back-and-forth processing that this entails when there is an error or missing
field data).

For image rollovers, links surround the image elements. The onMouseQOver and
onMouseOut event handlers for the links trigger functions that swap images. By
wrapping the statements in the event handler functions in if constructions that
test for the presence of the document.images array, first-generation scriptable
browsers that don’t implement images as objects perform no action:

function imageOn(imgName) {
if (document.images) {
document.images[imgName].src = onImages[imgName].src
}

The same goes for script statements in the Head that precache the swappable
images as the page loads:

if (document.images) {
var onlmages = new Array()
onlmages["home"] = new Image(50,30)
onlmages["home"J].src = "images/homeOn.gif"

This scenario can also provide added content on the page for scriptable browser
users by embedding scripts within the body that use document.write() to gener-
ate content as the page loads. For example, the page can begin with a time-sensitive
greeting (“Good Morning,” “Good Afternoon,” and so on), while nonscriptable
browser users see a standard greeting inside the <NOSCRIPT> tag pair.

Middle ground

The second scenario includes pages that employ style sheets. The goal again is
to support all browser users with the same HTML pages, but also provide users of
modern browsers with an enhanced experience. Where supported by the browser,
styles of objects change in response to user action (for example, links highlight
with a special font color and background during rollover). One of the design ele-
ments on the page is a form within a table. As users enter values into some text
boxes, calculated results appear at the bottom of the table, preferably as regular
content within a table cell (otherwise in another text box).

94

Part Il 4 Document Objects Reference

This scenario requires browser version branching in several places to allow for
variations in browser treatment of the features and to avoid problems with older
scriptable browsers and nonscriptable browsers alike. You can (and should) per-
form some (if not all) of the branching via object detection, as you will see in a
moment. Table 14-7 highlights the major feature requirements for this scenario and
describes the browser support for each.

Table 14-7 Features and Support for a Typical
“Middle Ground” Scenario

Feature Support and Approach

Dynamic Styles IE4+ and NN6+ through the sty1e property of any HTML element
object

Form Calculations Unless requiring Y2K date compliance or regular expression parsing

of input, should work with all scriptable browsers without any
branching required

Dynamic Content IE4+ and NN6+ support Dynamic HTML content within a cell, but
MS and W3C object models require different ways of changing a
table cell’s content. (Or you can use the nonstandard, but
convenient, innerHTML property of the cell.) For older scriptable
browsers, the cell should contain a text box to display the results; for
nonscriptable browsers, the cell should contain a button that
submits the form to a server CGl to process the calculation and
return a new page with the results.

Dynamic styles

For dynamic styles, both the IE4+ and W3C object models provide access to style
sheet settings via the sty1e property of any HTML element. This simplifies matters
because you can wrap modifications to sty1e properties inside if clauses that
check for the existence of the sty1le property for the specified object:

function hilite(elem) {
if (elem.style) {
elem.style.fontWeight = "bold"
}

If the event handler that triggers the change can be localized to the affected ele-
ment (for example, an onMouseOver event handler for a SPAN element surrounding
some text), then the event doesn’t fire in browsers that don’t also support the
style property. (By good fortune, browsers that implement the style property
also expose all elements to the object model.) To compensate for the differences in
object references between the [E4+ and W3C models, you can pass the object as a
parameter to event handler functions:

Chapter 14 + Document Object Model Essentials

<{SPAN onMouseQver="hilite(this)" onMouseQut="revert(this)"
onClick="go("'...")>...

This technique obviates the need to use browser version detection because the
functions invoked by the event handlers do not have to build DOM-specific refer-
ences to the objects to adjust the style.

Branching variables

If, for now, you continue to be more comfortable with browser version detection
than object detection, you can apply version detection for this “middle ground”
scenario by establishing branches for the [E4+ and W3C object models. Global vari-
ables that act as flags elsewhere in your page’s scripts are still the primary mecha-
nism. For this scenario, you can initialize two global variables as follows:

function getIEVersion() {
var ua = navigator.userAgent
var ITEoffset = ua.indexQOf("MSIE ")
return parsefloat(ua.substring(IEoffset+5, ua.index0f(";", Ieoffset)))
}
var isIE4 = ((navigator.appName.index0f("Microsoft") == 0 &&
parselnt(getIEVersion()) >= 4))
var isW3C = (document.documentElement) ? true : false

Notice how the getIEVersion() function digs out the precise IE version from
deep within the navigator.userAgent property. Both global variables are Boolean
values. While each variable conveys valuable information on its own, the combina-
tion of the two reveals even more about the browser environment if necessary.
Figure 14-4 shows the truth table for using the AND (&&) operator in a conditional
clause with both values. For example, if you need a branch that works only in IE4,
the if clauseis

if (isIE4 && !isW3C) {...}

is|E4 isW3C islE4 && isW3C
true true IE5+

true false IE4 Only
false true NN6+
false false Older browser

Figure 14-4: Truth table for two browser version
variables with the AND operator

The overlap between MS and the W3C object models in IE5 means that you need
to determine for each branch which model to use when the script is running. This
governs the order of nested i f conditions when they arise. If you trap for the W3C
version first, IE5 runs the branch containing the W3C DOM syntax.

95

96

Part Il 4 Document Objects Reference

Dynamic content

Once you have the branching variables in place, your scripts can use them for
executing functions invoked by event handlers as well as for scripts that run while
the page loads. The importance of the second type comes when you want a page to
display one kind of HTML for one class of browsers and other HTML for other
classes (or all of the rest). The design for the current scenario calls for a table cell
to display the results of a form’s calculation in HTML where capable. In lesser
scriptable browsers, the results should appear in a text box in the table.
Nonscriptable browsers should display a button to submit the form.

In the Body of the page, a script should take over and use document.write()
for the TD element that is to show the results. Buggy behavior in early versions of
Navigator require that at least the entire TD element be written dynamically,
instead of just the cell’s content. (In fact, I usually recommend writing the entire
table dynamically if a lot of users have older Navigators.) The structure of such a
form and table is as follows:

<FORM NAME="calculator" ACTION="http://xxx/cgi-bin/calculate.pl"
onSubmit="return false">
<TABLE>
<TR>
KTD>...</TD>
{SCRIPT LANGUAGE="JavaScript">
if (isIE4 || isW3C) {
document.write("<TD ID="result'>0</TD>")
} else {
document.write("<TD>"
document.write("<INPUT TYPE='text' NAME='result' SIZE='10' VALUE='0'>")
document.write("</TD>")
}
</SCRIPT>
<NOSCRIPT>
<TD>Click 'Submit' for Results</TD>
</NOSCRIPT>
/TR
</TABLE>
<NOSCRIPT>
<INPUT TYPE="submit">
</NOSCRIPT>
</FORM>

The preceding code assumes that other table cells contain text boxes whose
onChange event handlers trigger a calculation script. That calculation script must
also branch for the two classes of scriptable browser so that results are displayed
to fit the browser’s object model:

function calculate(form) {
var results

/] statements here that perform math and stuff answer into 'results'
variable //

Chapter 14 + Document Object Model Essentials

if (isIE4) {
document.all.result.innerText = results
} else if (isW3C) {
document.getETementById("result").childNodes[0].nodeValue = results
} else {
document.calculator.result.value = results

}

Adding dynamic content for NN4 requires a little more planning. The technique
usually involves nesting an absolute-positioned DIV inside a relative-positioned
SPAN. Scripts can then use document.write() to create new content for the
deeply nested DIV element. Pulling this off successfully entails pretty complex refer-
ences through multiple layers and their documents, as described in Chapter 31. But
no matter what lengths you go to in an effort to employ dynamic content in NN4,
the new content does not automatically resize the table or cell to accommodate
larger or smaller chunks of text. Without automatic reflow of the page, as is found in
IE4+ and NN6+, writing to an NN4 positioned layer does not force other page con-
tent to move.

A radical approach

By “radical,” I mean that the page content is designed to employ extensive
DHTML features, including positioned (if not flying) elements on the page. Perhaps
some clicking and dragging of elements can add some fun to the page while you're
at it.

Employing these kinds of features requires some extensive forethought about
your audience and the browsers they use. While some aspects of DHTML, such as
CSS, degrade gracefully in older browsers (the content is still presented, although
not in optimum font display perhaps), positioned elements do not degrade well at
all. The problem is that older browsers ignore the CSS attributes that control posi-
tioning, stacking order, and visibility. Therefore, when the page loads in a pre-ver-
sion 4 browser, all content is rendered in source code order. Elements that are
supposed to be positioned, hidden, or overlapped are drawn on the page in “old
fashioned” rendering.

To use element positioning for the greatest effect, your Web site should preexam-
ine the browser at some earlier page in the navigation sequence to reach the
DHTML-equipped page. Only browsers capable of your fancy features should be
allowed to pass onto the “cool” pages. All other browsers get diverted to another
page or pathway through your application so they can at least get the information
they came for, if not in the most lavish presentation. Techniques detailed in Chapter
13 demonstrate how to make a branching index page.

By filtering out non-DHTML-capable browsers, some of your job is easier —but not
all. On the plus side, you can ignore a lot of weirdness that accrues to scripting bugs
in earlier browsers. But you must still decide which of the three element positioning
models to follow: [E4+, NN4, or W3C. Chances are that you will want to support at
least two of the three unless you are in the luxurious position of designing for a single
browser platform (or have taken a stand that you will support only one DOM).

97

98

Part Il 4 Document Objects Reference

"Note

Of the three models, NN4’s DOM is the trickiest one to deal with at the HTML
level. While it may be possible that your content design will look the same using
positioned DIV and SPAN elements in all DHTML-capable browsers, often the
appearance in NN4 is unacceptable. At that point, you will probably have to use
scripts in your Body to dynamically generate HTML, specifying the <LAYER> tag
for NN4 and positioned <DIV> elements for the rest.

Although 1E4 and IE5.x can use the same basic Microsoft object model, not all

~~ DHTML code renders the same on both generations of browsers. Microsoft made

some changes here and there to the way some style attributes are rendered so
that IE5.x comes into better compliance with the CSS recommendation.

Using script libraries

As long as you plan to use scripts to dynamically generate HTML for the page,
you might consider creating separate, external . js libraries for each of the object
models you want to support for the page. Scripts in each library contain code for
both the HTML accumulation (for use with document.write() in the main page)
and for processing user interaction. Assuming that only DHTML-capable browsers
reach the page, branching is required only at the beginning of the document where
an object model-specific library is loaded:

var isIE4 = ((navigator.appName.indexOf("Microsoft") == 0 &&
parselnt(navigator.appVersion) == 4))
var isW3C = (document.documentElement) ? true : false
if (isW3C) {
// give priority to W3C model for IE5.x
document.write("<SCRIPT LANGUAGE="JavaScript' SRC='page3_W3C.js'><" +
"\/SCRIPT>")
} else if (islE4) {
document.write("<SCRIPT LANGUAGE="JavaScript' SRC='page3_IE4.js'><" +

"\/SCRIPT>")
} else {
document.write("<SCRIPT LANGUAGE='JavaScript' SRC='page3_generic.js'><" +
"\/SCRIPT>")

Each of the statements that writes the <SCRIPT> tag includes a workaround that
is required on some browsers (NN4 especially) to facilitate using
document.write() to write script tags to the page.

Once these libraries are specified for the page, script statements anywhere later
in the page can invoke functions defined in each library to generate a particular
element or set of elements in the object model HTML optimized for the current
browser. Of course, it’s not necessary to have one library devoted to each object
model. You might find it more convenient for authoring and maintenance to keep
all the code in one library that has numerous internal branchings for browser ver-
sions. Branches in a library can use the version sniffing global variables defined in
the main HTML page’s scripts. Better still, a library can be entirely self-contained
by using object detection. You can see an example of such a DHTML library in
Chapter 48.

Chapter 14 + Document Object Model Essentials

Handling events

Thanks to the W3C DOM’s event model implementing a similar event bubbling
scheme as [E4+, you can apply that event propagation model to [E4+ and W3C DOM
browsers. There are differences in the details, however. IE’s approach does not pass
the event object as a parameter to a function invoked by an event handler. Instead,
the IE event object is a property of the window object. Therefore, your functions
have to look for the passed parameter and substitute the window.event object in
its place for IE:

function calculate(evt) {
evt = (evt) ? evt : window.event
// more statements to handle the event //

Additional branching is necessary to inspect many details of the event. For
example, IE calls the object receiving the event the srcElement, while the W3C
DOM calls it the target. Canceling the default behavior of the event (for example,
preventing a form’s submission if it fails client-side validation) is also different for
the models (although the “old-fashioned” way of letting HTML-type event handlers
evaluate to return false still works). You can find more event object details in
Chapter 29.

Simulating IE4+ Syntax in NN6

With so much IE4+ DHTML-related JavaScript code already in use, scripters are
certainly eager to leverage as much of their old code as possible in W3C DOM
browsers such as NN6. While NN6 helps a bit by implementing the IE innerHTML
property for HTML elements, this section shows you how a simple . js library can
provide NN6 with a few more common convenience properties of the IE4+ object
model. By linking this library into your pages, you can give NN6 the valuable HTML
element properties shown in Table 14-8.

Table 14-8 IE4+ HTML Element Property Simulation for NN6

Property Read Write Replaces in W3C DOM
all yes no getElementsByTagName("*")
innerText yes yes nodeValue property for text nodes; creating a

text fragment node and inserting it into existing
node structure

outerHTML no yes (No equivalent)

Scripts that make these simulations possible use the prototype inheritance
behavior of static objects described earlier in this chapter. Because they require

99

100 Partill + Document Objects Reference

NN6-specific features in that browser’s implementation of JavaScript 1.5, link the
. Js library with the following tag:

<SCRIPT LANGUAGE="JavaScriptl.5" TYPE="text/javascript"
SRC="IE4Simulator.js"></SCRIPT>

All scripts that follow belong in the . js library. They’re divided into two groups
to allow for detailed discussion.

The all property simulator

Nearly every HTML element can be a container of other elements (with the
exception of a handful of leaf nodes, such as
). The a11 property in IE returns a
collection of references to all element objects nested inside the current object, no
matter how deeply nested the containment hierarchy is. That’s why the docu-
ment.all reference is such a convenient way to access any element in the entire
document that has an ID attribute.

As illustrated earlier in the sidebar figure, the Node static object is the object
from which all elements are derived. That object’s prototype is enhanced here
because you have to make sure that all nodes, especially the document node, can
acquire the al1 property. Listing 14-4a shows the segment of the library that
defines the al1 property for the Node object prototype.

Listing 14-4a: Simulator for the all Property

if (!document.all) {
Node.prototype.__defineGetter__("all", function() {
if (document.getElementsByTagName("*").length) {
switch (this.nodeType) {
case 9:
return document.getElementsByTagName("*")
break
case 1:
return this.getElementsByTagName("*")
break
}
1
return ""
b
Node.prototype.__defineSetter_ ("all", function() {})

This portion of the library exhibits a rare instance in which using object detec-
tion for document.all does the right thing now and in the future. The prototype
should not execute if the browser loading the page already has a document.all
property.

The anonymous function first establishes a branch in the code only for the
object model if it supports the wildcard parameter for the
document.getElementsByTagName () method. The function then performs slightly
different extractions depending on whether the node is the document (type 9) or an
element (type 1). If the a11 property should be queried for any other kind of node,
the returned value is an empty string. Each time the al1 property is accessed, the
anonymous function executes to pick up all elements nested inside the current

Chapter 14 + Document Object Model Essentials

node. Therefore, the collection returned by the a1 property is always up to date,
even if the node structure of the current object changes after the document loads.

While this simulator code provides NN6 scripts with [E4-like syntax for referenc-
ing elements, the collection returned by the native document.al1 in IE and calcu-
lated document.all in NN6 may not always have an identical length —the
collections are derived slightly differently. The important thing to know, however, is
that by employing this prototype modifier in NN6, you have the ability to reference
elements by their IDs in the form document.all.elementID.

The content properties simulators

The remaining code of this library lets NN6 use the same innerText and
outerHTML properties as [E4 for modifying all element objects. Listing 14-4b con-
tains the NN6 JavaScript code that prepares the browser to set an element object’s
outerHTML property, as well as get and set the innerText properties. The code
again uses anonymous functions assigned to getter and setter behaviors of proto-
type properties. Because the properties here apply only to HTML elements, the static
object whose prototype is being modified is HTMLE Tement. All specific HTML element
objects inherit properties and methods from the HTMLETement object. All four proto-
type adjustment blocks are nested inside a condition that makes sure the static
HTMLETement object is exposed in the browser’s object model (which it is in NN6+).

All functions in Listing 14-4b use the W3C DOM Range object (Chapter 19). Two
of them use a Netscape-proprietary method of the Range object as a shortcut to
converting a string into a node hierarchy.

Listing 14-4b: Simulator for the innerText and outerHTML
Properties

if (HTMLElement) {

HTMLETement.prototype. defineSetter_ ("innerText", function (txt) f{
var rng = document.createRange()
rng.selectNodeContents(this)
rng.deleteContents()
var newText = document.createTextNode(txt)
this.appendChild(newText)
return txt

)

HTMLETement.prototype.__defineGetter__ ("innerText", function () {
var rng = document.createRange()
rng.selectNode(this)
return rng.toString()

1)

HTMLETement.prototype.__defineSetter__ ("outerHTML", function (html) {
var rng = document.createRange()
rng.selectNode(this)
var newHTML = rng.createContextualFragment(html)
this.parentNode.replaceChild(newHTML,this)
return html

)

HTMLETement.prototype.__defineGetter__ ("outerHTML", function() {return "'})

101

102

Part Il 4 Document Objects Reference

The getter function for the innerText property creates a range whose bound-
aries encompass the current object. Because a range includes only the text part of a
document, the adjustment of the range boundaries to the current node encom-
passes all text, including text nodes of nested elements. Returning the string ver-
sion of the range provides a copy of all text inside the current element.

For the setter action, the anonymous function defines one parameter variable,
which is the text to replace the text inside an element. With the help, again, of the
Range object, the range is cinched up to encompass the contents of the current
node. Those contents are deleted, and new text node is created out of the value
assigned to the property (in other words, passed as a parameter to the anonymous
function). With the current object no longer containing any nodes after the dele-
tion, the appendChi1d() method inserts the new text node as a child to the current
object.

Setting the outerHTML property starts out the same as setting the innerText,
but the new content — which arrives as a string assigned to the parameter
variable —is converted into a fully formed set of nested nodes via the
createContextualFragment () method. This method is invoked on any range
object, but it does not affect the range to which it is attached. The value returned
from the method is what’s important, containing a node whose content is already
set up as genuine DOM nodes. That’s why the returned value can be passed to the
replaceChild() method to replace the new content as HTML rather than plain
text. But because the outerHTML property applies to the entire current element, it
must use the roundabout way of replacing itself as a child of its parent. This pre-
vents the accidental modification of any siblings in the process.

Where to Go from Here

These past two chapters provided an overview of the core language and object
model issues that anyone designing pages that use JavaScript must confront. The
goal here is to stimulate your own thinking about how to embrace or discard levels
of compatibility with your pages as you balance your desire to generate “cool”
pages and serve your audience. From here on, the difficult choices are up to you.

To help you choose the objects, properties, methods, and event handlers that
best suit your requirements, the rest of the chapters in Part IIl and all of Part IV pro-
vide in-depth references to the document object model and core JavaScript lan-
guage features. Observe the compatibility ratings for each language term very
carefully to help you determine which features best suit your audience’s browsers.
Most example listings are complete HTML pages that you can load in various
browsers to see how they work. Many others invite you to explore how things work
via The Evaluator (Chapter 13). Play around with the files, making modifications to
build your own applications or expanding your working knowledge of JavaScript in
the browser environment.

Chapter 14 + Document Object Model Essentials

The language and object models have grown in the handful of years they have
been in existence. The amount of language vocabulary has increased astronomi-
cally. It takes time to drink it all in and feel comfortable that you are aware of the
powers available to you. Don’t worry about memorizing the vocabulary. It’s more
important to acquaint yourself with the features, and then come back later when
you need the implementation details.

Be patient. Be persistent. The reward will come.

¢+ o+ 0+

103

Generic HTML
Element Objects

The object model specifications implemented in Internet
Explorer 4+ and Netscape Navigator 6 both feature a
large set of scriptable objects that represent what we often
call “generic” HTML elements. Generic elements can be
divided into two groups. One group, such as the B and STRIKE
elements, define font styles to be applied to enclosed
sequences of text. The need for these elements (and the
objects that represent them) is receding as more browsers
accommodate style sheets. The second group of elements
assigns context to content within their start and end tags.
Examples of contextual elements include H1, BLOCKQUOTE,
and the ubiquitous P element. While browsers sometimes
have consistent visual ways of rendering contextual elements
by default (for example, the large, bold font of an <H1> tag),
the specific rendering is not the intended purpose of the tags.
No formal standard dictates that text within an EM element
must be italicized: the style simply has become the custom
since the very early days of browsers.

All of these generic elements share a large number of
scriptable properties, methods, and event handlers. The shar-
ing extends not only among generic elements, but also among
virtually every renderable element — even if it has additional,
element-specific properties, methods, and/or event handlers
that I cover in depth in other chapters of this reference.
Rather than repeat the details of these shared properties,
methods, and event handlers for each object throughout this
reference, [describe them in detail only in this chapter
(unless there is a special behavior, bug, or trick associated
with the item in some object described elsewhere). In suc-
ceeding reference chapters, each object description includes
a list of the object’s properties, methods, and event handlers,
but I do not list shared items over and over (making it hard to
find items that are unique to a particular element). Instead,
you see a pointer back to this chapter for the items in com-
mon with generic HTML element objects. A dark tab at the
bottom of this chapter’s pages should make it easy to find this
chapter in a hurry.

CHAPTIER

+ 0+ 0+
In This Chapter

Working with HTML
element objects

Common properties
and methods

Event handlers of all
element objects

¢+ 4+ 0+

106 Partill + Document Objects Reference

Generic Objects

Table 15-1 lists all of the objects that I treat in this reference as “generic” objects.
All of these objects share the properties, methods, and event handlers described in
succeeding sections and have no special items that require additional coverage
elsewhere in this book.

Table 15-1 Generic HTML Element Objects

Formatting Objects Contextual Objects
B ACRONYM
BIG ADDRESS
CENTER CITE
| CODE
NOBR DFN
RT DEL
RUBY DIV
S EM
SMALL INS
STRIKE KBD
SuUB LISTING
SUP P
T PLAINTEXT
U PRE
WBR SAMP
SPAN
STRONG
VAR
XMP
Properties Methods Event Handlers
accessKey addBehavior() onActivate
all addEventlListener() onBeforeCopy
attributes appendChild() onBeforeCut

Chapter 15 4 Generic HTML Element Objects

Properties

Methods

Event Handlers

behaviorUrns
canHaveChildren
canHaveHTML
childNodes
children
className
clientHeight
clientleft
clientTop
clientWidth
contentEditable
currentStyle
dataF1d
dataFormatAs
dataSrc

dir

disabled
document
filters
firstChild
height
hideFocus

id

innerHTML
innerText
isContentEditable
isDisabled
isMultiline
isTextEdit

lang

applyElement()
attachEvent()

blur()
clearAttributes()
click()

cloneNode()
componentFromPoint ()
contains()
detachEvent()
dispatchEvent()
fireEvent()

focus()
getAdjacentText()
getAttribute()
getAttributeNode()
getBoundingClientRect ()
getClientRects()
getElementsByTagName()
getExpression()
hasChildNodes()
insertAdjacentElement()
insertAdjacentHTML()
insertAdjacentText()
insertBefore()

item()
mergeAttributes()
normalize()
releaseCapture()
removeAttribute()

removeAttributeNode()

onBeforeDeactivate
onBeforeEditFocus
onBeforePaste
onBlur

onClick
onContextMenu
onControlSelect
onCopy

onCut
onbDb1CTick
onDeactivate
onDrag
onDragEnd
onDragEnter
onDragleave
onDragOver
onDragStart
onDrop
onFilterChange
onfFocus

onHelp
onKeyDown
onKeyPress
onKeyUp
onLoseCapture
onMouseDown
onMouseEnter
onMouseleave
onMouseMove

onMouseOut

Continued

107

108

Part Il 4 Document Objects Reference

Table 15-1 (continued)

Properties Methods Event Handlers
language removeBehavior() onMouseOver
lastChild removeChild() onMouseUp

length removeEventListener() onPaste

localName removeExpression() onPropertyChange
namespaceURI removeNode() onReadyStateChange
nextSibling replaceAdjacentText() onResize

nodeName
nodeType
nodeValue
offsetHeight
offsetleft
offsetParent
offsetTop
offsetWidth
outerHTML
outerText
ownerDocument
parentElement
parentNode
parentTextEdit

prefix

previousSibling

readyState
recordNumber
runtimeStyle
scopeName
scrollHeight
scrollleft
scrollTop
scrollWidth

replaceChild()
replaceNode()
scrollIntoView()
setActive()
setAttribute()
setAttributeNode()
setCapture()
setExpression()
supports()
swapNode ()
tags()

urns()

onResizeknd
onResizeStart

onSelectStart

Chapter 15 4 Generic HTML Element Objects] (09

Properties Methods Event Handlers

sourcelndex
style
tabIndex
tagName
tagUrn
title

uniquelD

Syntax

To access element properties or methods, use this:

(TE4+) [document.all.JlobjectID.property | method([parameters])
(IE5+/NN6) document.getElementById(objectID).property | method([parameters])

About these objects

All objects listed in Table 15-1 are DOM representations of HTML elements that
influence either the font style or the context of some HTML content. The large set
of properties, methods, and event handlers associated with these objects also
applies to virtually every other DOM object that represents an HTML element.
Discussions about object details in this chapter apply to dozens of other objects
described in succeeding chapters of this reference section.

Properties
accessKey
Value: One-Character String Read/Write
NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v/ v v

For many elements, you can specify a keyboard character (letter, numeral, or
punctuation symbol) that, when typed as an Alt+key combination (on the Win32 OS
platform) or Ctrl+key combination (on the MacOS), brings focus to that element. An
element that has focus is the one that is set to respond to keyboard activity. If the
newly focused element is out of view in the document’s current scroll position,
the document is scrolled to bring that focused element into view (also see the
scrollIntoView() method). The character you specify can be an uppercase or
lowercase value, but these values are not case-sensitive. If you assign the same

110

Part Il 4 Document Objects Reference

letter to more than one element, the user can cycle through all elements associated
with that accessKey value.

For IE4, not all elements can receive focus in a meaningful way. For that browser
version, you should limit this property to elements that can actually receive focus,
such as form elements and links. One way to see what elements on a page can
receive focus is to repeatedly press the Tab key while the document is visible. In
the Windows platforms, either a dotted line around the element or a text insertion
pointer flashing inside a text entry element indicates the focus. Not all operating
system platforms provide focus to the same set of elements. IE4 for the Macintosh,
for example, does not give focus to button elements. For IE5.5, however, any ele-
ment can receive focus —even if no visible outline explicitly indicates this state.

Internet Explorer gives some added powers to the accessKey property in some
cases. For example, if you assign an accessKey value to a LABEL element object,
the focus is handed to the form element associated with that label. Also, when ele-
ments such as buttons have focus, pressing the spacebar acts the same as clicking
the element with a mouse.

Exercise some judgement in selecting characters for accessKey values. If you
assign a letter that is normally used to access one of the Windows version
browser’s built-in menus (for example, Alt+F for the File menu), that accessKey
setting overrides the browser’s normal behavior. To users who rely on keyboard
access to menus, your control over that key combination can be disconcerting.

Onthe ™ Example (with Listing 15-1) on the CD-ROM
b

,/.

Related Item: srcollIntoView() method.

all

Value: Array of nested element objects. Read-Only

NN2 NN3 NN4 NNé6 IE3/J1 1E3/)2 IE4 IE5 [IE5.5

Compatibility v v v

The a1l property is a collection (array) of every HTML element and (in IE5+)
XML tag within the scope of the current object. Iltems in this array appear in source-
code order, and the array is oblivious to element containment among the items. For
HTML element containers, the source-code order is dependent on the position of
the start tag for the element — end tags are not counted. But for XML tags, end tags
appear as separate entries in the array.

Every document.all collection contains objects for the HTML, HEAD, TITLE,
and BODY element objects even if the actual HTML source code omits the tags. The
object model creates these objects for every document that is loaded into a win-
dow or frame. While the document.al1 reference may be the most common usage,

Chapter 15 4 Generic HTML Element Objects]]]

the al1 property is available for any container element. For example, document.
forms[0].al1 exposes all elements defined within the first form of a page.

You can access any element that has an identifier assigned to its 1D attribute by
that identifier in string form (as well as by index integer). Rather than use the per-
formance-costly eval () function to convert a string to an object reference, use the
string value of the name as an array index value:

var paragraph = document.all["myP"]

Internet Explorer enables you to use either square brackets or parentheses for
single collection index values. Thus, the following two examples evaluate identically:

var paragraph = document.all["myP"]
var paragraph = document.all("myP")

In the rare case that more than one element within the al1 collection has the
same ID, the syntax for the string index value returns a collection of just those iden-
tically named elements. But you can use a second argument (in parentheses) to sig-
nify the integer of the initial collection and thus single out a specific instance of that
named element:

var secondRadio = document.all("group0",1)

As a more readable alternative, you can use the item() method (described later
in this chapter) to access the same kinds of items within a collection:

var secondRadio = document.all.item("group0",1)

Also see the tags () method (later in this chapter) as a way to extract a set of
elements from an a11 collection that matches a specific tag name.

You can simulate the behavior of IE’s a11 property in NN6. See Chapter 14 for the
code you need to add to make that happen.

On the Example on the CD-ROM

CDdﬁﬂw \

Related Items: item(), tags() methods.

attributes
Value: Array of attribute object references. Read-Only
NN2 NN3 NN4 NNé6 IE3/)J1 1E3/)2 IE4 IE5 IE5.5
Compatibility v v v

The attributes property consists of an array of attributes specified for an ele-
ment. In IE5, the attributes array contains an entry for every possible property
that the browser has defined for its elements — even if the attribute is not set
explicitly in the HTML tag. Also, any attributes that you add later via script facilities

112

Part Il 4 Document Objects Reference

such as the setAttribute() method are not reflected in the attributes array. In
other words, the IE5 attributes array is fixed, using default values for all proper-
ties except those that you explicitly set as attributes in the HTML tag.

NN6’s attributes property returns an array that is a named node map (in W3C
DOM terminology). NN6 does not implement all W3C DOM Level 2 methods for a
named node map, but you can use the getNamedItem(attrName) and
item(index) methods on the array returned from the attributes property to
access individual attribute objects via W3C DOM syntax.

IE5 and NN6 have different ideas about what an attribute object should be. Table
15-2 shows the variety of properties of an attribute object as defined by the two
object models. The larger set of properties in NN6 reveals its dependence on the
W3C DOM node inheritance model discussed in Chapter 14.

Table 15-2 Attribute Object Properties

Property IE5.x NN6 Description

attributes No Yes Array of nested attribute objects (null)

childNodes No Yes Child node array

firstChild No Yes First child node

TastChild No Yes Last child node

localName No Yes Name within current namespace

name No Yes Attribute name

nameSpaceURI No Yes XML namespace URI

nextSibling No Yes Next sibling node

nodeName Yes Yes Attribute name

nodeType No Yes Node type (2)

nodeValue Yes Yes Value assigned to attribute

ownerDocument No Yes document object reference

ownerElement No Yes Element node reference

parentNode No Yes Parent node reference

prefix No Yes XML namespace prefix

previousSibling No Yes Previous sibling node

specified Yes Yes Whether attribute is explicitly specified
(Boolean)

value No Yes Value assigned to attribute

The most helpful property of an attribute object is the Boolean specified prop-
erty. In [E, this lets you know whether the attribute is explicitly specified in the

Chapter 15 4 Generic HTML Element Objects
element’s tag. Because NN6 returns only explicitly specified attributes in the
attributes array, the value in NN6 is always true.

Onthe . Example on the CD-ROM

CD@A \
.‘\ ;

Related Items: mergeAttributes(), removeAttribute(), setAttribute()
methods.

behaviorUrns
Value: Array of behavior URN strings Read-Only

NN2 NN3 NN4 NNé6 IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v v

The behaviorUrns property is designed to provide a list of addresses, in the
form of URNs (Uniform Resource Names), of all behaviors assigned to the current
object. If there are no behaviors, the array has a length of zero. In practice, how-
ever, IE5 always returns an array of empty strings. Perhaps the potential exposure
of URNs by script was deemed to be a privacy risk.

On the Example on the CD-ROM

CD@VI \
A "W

Related Item: urns () method.

canHaveChildren
Value: Boolean Read-Only

NN2 NN3 NN4 NNé6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v v/

Useful in some dynamic content situations, the canHaveChildren property
(not implemented in IE5/Mac) reveals whether a particular element is capable of
containing a child (nested) element. Most elements that have start and end tags
(particularly the generic elements covered in this chapter) can contain nested

elements. In modern object models, a nested element is referred to as a child of its
parent container.

113

114

Part Il 4 Document Objects Reference

Onthe d Example (with Listing 15-2) on the CD-ROM
CD-@ﬁ\n \

Related Items: childNodes, firstChild, lastChild, parentElement,
parentNode properties; appendChild(), hasChildNodes(), removeChild()

methods.
canHaveHTML
Value: Boolean Read-Only
NN2 NN3 NN4 NNé6 IE3/J1 1E3/)2 IE4 I1E5 IE5.5
Compatibility v

While most HTML elements are containers of HTML content, not all are. The
canHaveHTML property lets scripts find out whether a particular object can accept
HTML content, such as for insertion or replacement by object methods. The value
for a P element, for example, is true. The value for a BR element is false.

Onthe ™ Example on the CD-ROM
b

CD-,
\ W,
Related Items: appendChild(), insertAdjacentHTML(), insertBefore()
methods.
childNodes
Value: Array of node objects. Read-Only
NN2 NN3 NN4 NNé6 IE3/J1 1E3/)2 IE4 IE5 IE5.5
Compatibility v v o/

The childNodes property consists of an array of node objects contained by
the current object. Note that child nodes consist of both element objects and text
nodes. Therefore, depending on the content of the current object, the number of
childNodes and children collections may differ.

Caution

On the |

CD@A \

Chapter 15 4 Generic HTML Element Objects

If you use the childNodes array in a for loop that iterates through a sequence of
HTML (or XML) elements, watch out for the possibility that the browser treats
source code whitespace (blank lines between elements and even simple carriage
returns between elements) as text nodes. This potential problem affects IE5/Mac
and NN6 (although later versions may repair the problem). If present, these extra
text nodes occur primarily surrounding block elements.

Most looping activity through the childNodes array aims to examine, count, or
modify element nodes within the collection. If that is your script's goal, then test
each node returned by the childNodes array, and verify that the nodeType
property is 1 (element) before processing that node. Otherwise, skip over the
node. The skeletal structure of such a loop follows:

for (var i = 0; 1 < myElem.childNodes.length; i++) {
if (myElem.childNodes[i].nodeType == 1) {
Statements to work on element node i
}
}

The presence of these “phantom” text nodes also impacts the nodes referenced by
the firstChild and lastChild properties, described later in this chapter.

Example (with Listing 15-3) on the CD-ROM

Related Items: nodeName, nodeType, nodeValue, parentNode properties;
cloneNode(), hasChildNodes(), removeNode(), replaceNode(),
swapNode () methods.

children

Value: Array of element objects.

NN2 NN3 NN4 NNé6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5

Read-Only

Compatibility v v/ v/

The children property consists of an array of element objects contained by the

current object. Unlike the childNodes property, children does not take into

account text nodes but rather focuses strictly on the HTML (and XML) element con-

tainment hierarchy from the point of view of the current object. Children exposed
to the current object are immediate children only. If you want to get all element
objects nested within the current object (regardless of how deeply nested they
are), use the a1l collection instead.

115

116

Part Il 4 Document Objects Reference

gg the . Example (with Listing 15-4) on the CD-ROM
o h

Related Items: canHaveChildren, firstChild, TastChild, parentElement
properties; appendChild(), removeChild(), replaceChild() methods.

className
Value: String Read/Write
NN2 NN3 NN4 NNé6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5
Compatibility v/ v v/ v/

A class name is an identifier that is assigned to the CLASS attribute of an element.
To associate a CSS rule with several elements in a document, assign the same iden-
tifier to the CLASS attributes of those elements, and use that identifier (preceded by
a period) as the CSS rule’s selector. An element’s c1assName property enables the
application of different CSS rules to that element under script control.

On the | Example (with Listing 15-5) on the CD-ROM

CD@VI \
\

Related Items: rule, stylesheet objects (Chapter 30); id property.

clientHeight
clientWidth

Value: Integer Read-Only

NN2 NN3 NN4 NNé6 IE3/J1 1IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

These two properties by and large reveal the pixel height and width of the con-
tent with an element whose style sheet rule includes height and width settings. In
theory, these measures do not take into account any margins, borders, or padding
that you add to an element by way of style sheets. In practice, however, different
combinations of borders, margins, and padding influence these values in unex-
pected ways. One of the more reliable applications of the cl1ientHeight property
enables you to discover, for example, where the text of an overflowing element
ends.

CD-

2%

Chapter 15 4 Generic HTML Element Objects

For the document.body object, the clientHeight and clientWidth properties
return the inside height and width of the window or frame (plus or minus a couple of
pixels). These take the place of desirable, but nonexistent, window properties in IE.

Internet Explorer 5 expands the number of objects that employ these properties
to include virtually all objects that represent HTML elements. For IE4, these proper-
ties apply only to the following objects: BODY, BUTTON, CAPTION, DIV, EMBED,
FIELDSET, LEGEND, MARQUEE, TABLE, TD, TEXTAREA, TH, and TR.

Onthe B Example (with Listing 15-6) on the CD-ROM
4

./.

Related Items: offsetHeight, offsetWidth properties.

clientlLeft
clientTop

Value: Integer Read-Only

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

The purpose and names of the clientlLeft and clientTop properties are confus-
ing at best. Unlike the clientHeight and c1ientWidth properties, which apply to the
content of an element, the clientlLeft and c1ientTop properties return essentially no
more information than the thickness of a border around an element — provided the ele-
ment is positioned. If you do not specify a border or do not position the element, the
values are zero (although the document.body object can show a couple of pixels in
each direction without explicit settings). If you are trying to read the left and top coor-
dinate positions of an element, the offsetlLeft and offsetTop properties are more
valuable in I[E/Windows; as shown in Listing 15-6, however, the c1ientTop property
returns a suitable value in [E/Mac. Virtually all elements have the clientlLeft and
clientTop properties in IE5+; in [E4, the properties apply only to the BODY, BUTTON,
CAPTION, EMBED, FIELDSET, LEGEND, MARQUEE, and TEXTAREA objects.

Related Items: offsetleft, offsetTop properties.

contentEditable

Value: Boolean Read/Write

NN2 NN3 NN4 NNé6 IE3/J1 1IE3/)2 IE4 IE5 IE5.5

Compatibility v

117

118

Part Il 4 Document Objects Reference

IE5.5 introduces the concept of editable HTML content on a page. Element
tags can include a CONTENTEDITABLE attribute, whose value is echoed via the
contentEditable property of the element. The default value for this property is
inherit, which means that the property inherits whatever setting this property
has in the hierarchy of HTML containers outward to the body. If you set the
contentEditable property to true, then that element and all nested elements set
to inherit the value become editable; conversely, a setting of false turns off the
option to edit the content.

Onthe Example (with Listing 15-7) on the CD-ROM

CD@A \
.‘\ y

Related Item: isContentEditable property.

currentStyle

Value: style object Read-Only

NN2 NN3 NN4 NN6 |IE3/)1 1IE3/)2 IE4 IE5 IE5.5

Compatibility v v

Every element has style attributes applied to it, even if those attributes are the
browser’s default settings. Because an element’s sty1e object reflects only those
properties whose corresponding attributes are explicitly set via CSS statements,
you cannot use the style property of an element object to view default style set-
tings applied to an element. That’s where the currentStyle property comes in.

This property returns a read-only sty1e object that contains values for every
possible sty1e property applicable to the element. If a sty1e property is explicitly
set via CSS statement or script adjustment, the current reading for that property is
also available here. Thus, a script can inquire about any property to determine if it
should change to meet some scripted design goal. For example, if you surround
some text with an tag, the browser by default turns that text into an italic font
style. This setting is not reflected in the element’s style object (fontStyle prop-
erty) because the italic setting was not set via CSS; in contrast, the element
object’s currentStyle.fontStyle property reveals the true, current fontStyle
property of the element as italic.

To change a sty1e property setting, access it via the element’s sty1e object.

On the Example on the CD-ROM

CD@II \

Related Items: runtimeStyle, style objects (Chapter 30).

Chapter 15 4 Generic HTML Element Objects |19

dataFld
dataFormatAs
dataSrc

Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/) IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

The dataF1d, dataFormatAs, and dataSrc properties (along with more element-
specific properties such as dataPageSize and recordNumber) are part of the
Internet Explorer data-binding facilities based on ActiveX controls. The Win32 ver-
sions of I[E4 and later have several ActiveX objects built into the browsers that facili-
tate the direct communication between a Web page and a data source. Data sources
include text files, XML data, HTML data, and external databases. Data binding is a
very large topic, much of which extends more to discussions about Microsoft Data
Source Objects (DSOs), ODBC, and JDBC — subjects well beyond the scope of this
book. But data binding is a powerful tool and can be of use even if you are not a
database guru. Therefore, this discussion of the three primary properties —
dataFld, dataFormatAs, and dataSrc—briefly covers data binding through
Microsoft’s Tabular Data Control DSO. This allows any page to access, sort, display,
and filter (but not update) data downloaded into a Web page from an external text
file (commonly comma- or tab-delimited data).

You can load data from an external text file into a document with the help of
the Tabular Data Control (TDC). You retrieve the data by specifying the TDC object
within an <OBJECT> tag set and specifying additional parameters such as the URL of
the text file and field delimiter characters. The OBJECT element can go anywhere
within the BODY of your document. (I tend to put it at the bottom of the code so
that all normal page rendering happens before the control loads.) Retrieving the
data simply brings it into the browser and does not, on its own, render the data on
the page.

If you haven’t worked with embedded objects in IE, the CLASSID attribute value
might seem a bit strange. The most perplexing part to some is the long value of
numeric data signifying the Globally Unique Identifier (GUID) for the object. You
must enter this value exactly as shown in the following example for the proper
ActiveX TDC to run. The HTML syntax for this object is as follows:

<OBJECT ID="objName" CLASSID="c1sid:333C7BC4-460F-11D0-BC04-0080C7055A83">
<PARAM NAME="DataURL" VALUE="URL">
[additional optional parameters]

</0BJECT>

Table 15-3 lists the parameters available for the TDC. Only the DataURL param-
eter is required; others —such as FieldDelim, UseHeader, RowDelim, and
EscapeChar —may be helpful depending on the nature of the data source.

120 Partill + Document Objects Reference

CD-

2%

Table 15-3 Tabular Data Control Parameters

Parameter Description

CharSet Character set of the data source file. Defaultis Tatinl.

DataURL URL of data source file (relative or absolute).

EscapeChar Character used to “escape” delimiter characters that are part of the

data. Default is empty. A common value is "\ ".

FieldDelim Delimiter character between fields within a record. Default is comma
(,). For a Tab character, use a value of 	.

Language ISO language code of source data. Default is en-us.
TextQualifier Optional character surrounding a field’s data. Default is empty.
RowDelim Delimiter character between records. Default is newline (NL).
UseHeader Set to true if the first row of data in the file contains field names.

Defaultis false.

The value you assign to the OBJECT element’s 1D attribute is the identifier that
your scripts use to communicate with the data after the page and data completely
load. You can therefore have as many uniquely named TDCs loaded in your page as
there are data source files you want to access at once.

The initial binding of the data to HTML elements usually comes when you assign
values to the DATASRC and DATAFLD attributes of the elements. The DATASRC
attribute points to the DSO identifier (matching the 1D attribute of the OBJECT ele-
ment, preceded with a hash symbol), while the DATAFLD attribute points to the
name of the field whose data should be extracted. When you use data binding with
an interactive element such as a table, multiple records are displayed in consecu-
tive rows of the table (more about this in a moment).

Adjust the dataSrc and dataF1d properties if you want the same HTML element
(other than a table) to change the data that it displays. These properties apply to a
subset of HTML elements that can be associated with external data: A, APPLET,
BODY, BUTTON, DIV, FRAME, IFRAME, IMG, INPUT (most types), LABEL, MARQUEE,
OBJECT, PARAM, SELECT, SPAN, and TEXTAREA objects.

In some cases, your data source may store chunks of HTML-formatted text for
rendering inside an element. Unless directed otherwise, the browser renders a data
source field as plain text —even if the content contains HTML formatting tags. But
if you want the HTML to be observed during rendering, you can set the
dataFormatAs property (or, more likely, the DATAFORMATAS attribute of the tag) to
HTML. The default value is text.

Onthe ™ Example (with Listings 15-8 and 15-9) on the CD-ROM
b

./.

Chapter 15 4 Generic HTML Element Objects

Related Items: recordNumber, TABLE.dataPageSize properties.

dir
Value: "1tr" | "rt1" Read/Write
NN2 NN3 NN4 NNé |IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v

The dir property (based on the DIR attribute of virtually every text-oriented
HTML element) controls whether an element’s text is rendered left-to-right (the
default) or right-to-left. Depending on the default language and character set of the
IE5 browser running a page, selecting a value other than the default may require the
user to install Microsoft’s Uniscribe add-in component. By and large, this property
(and HTML attribute) is necessary only when you need to override the default
directionality of a language’s character set as defined by the Unicode standard.

On the Example on the CD-ROM

CD@VI 1
A

Related Item: 1ang property.

disabled
Value: Boolean Read/Write
NN2 NN3 NN4 NNé6 IE3/) IE3/)2 IE4 IE5 IE5.5
Compatibility) v v v

While some elements have a disabled property in IE4, IE5, and NNG6, this prop-
erty is associated with every HTML element in IE5.5. Disabling an HTML element
(like form elements) usually gives the element a “dimmed” look, indicating that it is
not active. A disabled element does not receive any events. It also cannot receive
focus, either manually or by script (although disabled text fields in [E4/Mac errantly
manage to receive focus). But a user can still select and copy a disabled body text
element.

/Note If you disable a form control element, the element’s data is not submitted to the
~ server with the rest of the form elements. If you need to keep a form control
“locked down,” but still submit it to the server, use the FORM element’s onSubmit

event handler to enable the form control right before the form is submitted.

121

122 Partill + Document Objects Reference

Onthe d Example on the CD-ROM
CD-@ﬁ\n \

Related Item: isDisabled property.

document
Value: document object Read-Only
NN2 NN3 NN4 NN6é6 IE3/)J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v

In the context of HTML element objects as exposed in IE4+, the document prop-
erty is a reference to the document that contains the object. While it is unlikely that
you will need to use this property, document may come in handy for complex scripts
and script libraries that handle objects in a generic fashion and do not know the
reference path to the document containing a particular object. You might need a ref-
erence to the document to inspect it for related objects. The W3C version of this
property (implemented in [E5/Mac but not in IE5.5/Windows) is ownerDocument.

83 thed Example on the CD-ROM
- h

A\,

Related Item: ownerDocument property.

filters
Value: Array Read-Only
NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v

Filters are IE-specific style sheet add-ons that offer a greater variety of font ren-
dering (such as drop shadows) and transitions between hidden and visible ele-
ments. Each filter specification is a fi1ter object. The filters property contains
an array of filter objects defined for the current element. You can apply filters to
the following set of elements: BODY, BUTTON, IMG, INPUT, LI, MARQUEE, OL,
TABLE, TD, TEXTAREA, TH, UL, and positioned DIV and SPAN elements. See Chapter
30 for details about style sheet filters.

Related Item: filter object.

Chapter 15 4 Generic HTML Element Objects

firstChild
TastChild

Value: Node object reference Read-Only

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

W3C DOM-based document object models are built around an architecture
known as a node map. Each object defined by HTML is a node in the map. A node
has relationships with other nodes in the document —relationships described in
family terms of parents, siblings, and children.

A child node is an element that is contained by another element. The container is
the parent of such a child. Just as an HTML element can contain any number of child
elements, so can a parent object have zero or more children. A list of those children
(returned as an array) can be read from an object by way of its chiTdNodes
property:
var nodeArray = document.getElementById("elementID").childNodes

While you can use this array (and its 1ength property) to get a reference to the
first or last child node, the firstChild and TastChild properties offer shortcuts
to those positions. These are helpful when you wish to insert a new child before or
after all of the others and you need a reference point for the IE
insertAdjacentElement () method or other method that adds elements to the
document’s node list.

Caution See the discussion of the childNodes property earlier in this chapter about the
presence of “phantom” nodes in some browser versions. The problem may influ-
ence your use of the firstChild and TastChild properties.

On the Example (with Listing 15-10) on the CD-ROM

CD@VI \
W,

Related Items: nextSibling, parentElement, parentNode, previousSibling
properties; appendChild(), hasChildNodes (), removeChild(), removeNode(),
replaceChild(), replaceNode() methods.

123

124

Part Il 4 Document Objects Reference

height
width
Value: Integer or Percentage String Read/Write and Read-Only
NN2 NN3 NN4 NNé6 |IE3/J1 IE3/J2 IE4 IE5 IE5.5
Compatibility v v v v v

The height and width properties described here are not the identically named
properties that belong to an element’s style. Rather, these properties reflect the
values normally assigned to HEIGHT and WIDTH attributes of elements such as IMG,
APPLET, and TABLE, and so on. As such, these properties are accessed directly
from the object (for example, document.all.myTable.width in IE4+) rather than
through the sty1e object (for example, document.all.myDIV.style.width).
Only elements for which the HTML 4.x standard provides HEIGHT and WIDTH
attributes have the corresponding properties.

Values for these properties are either integer pixel values (numbers or strings)
or percentage values (strings only). If you need to perform some math on an exist-
ing percentage value, use the parselInt () function to extract the numeric value for
use with math calculations. If an element’s HEIGHT and WIDTH attributes are set as
percentage values, you can use the clientHeight and clientWidth properties in
[E4+ to get the rendered pixel dimensions.

Property values are read/write for the image object in most recent browser ver-
sions because you can resize an image object in IE4+ and NN6 after the page loads.
Properties are read/write for some other objects (such as the TABLE object) — but
not necessarily all others that support these properties.

Support for these properties in NN4 is limited to the IMAGE object. In that
browser, both properties are read-only.

In general, you cannot set the value of these properties to something less than is
required to render the element. This is particularly true of a table. If you attempt to
set the height value to less than the amount of pixels required to display the table
as defined by its style settings, your changes have no effect (even though the prop-
erty value retains its artificially low value). For other objects, however, you can set
the size to anything you like and the browser scales the content accordingly
(images, for example). If you want to see only a segment of an element (in other
words, to crop the element), use a style sheet to set the element’s clipping region.

On the Example on the CD-ROM

CD@VI \
W,

Related Items: cl1ientHeight, clientWidth properties; style.height,
style.width properties.

Chapter 15 4 Generic HTML Element Objects |25

hideFocus
Value: Boolean Read/Write
NN2 NN3 NN4 NNé6 IE3/) IE3/)2 IE4 IE5 IE5.5
Compatibility v

In [E for Windows, button types of form controls and links display a dotted rect-
angle around some part of the element whenever that element has focus. If you set
the TABINDEX attribute or tabIndex property of any other kinds of elements in
IE5+, they, too, display that dotted line when given focus. You can still let an ele-
ment receive focus, but hide that dotted line, by setting the hideFocus property of
the element object to true (default value is false).

Hiding focus does not disable the element. In fact, if the element about to receive
focus is scrolled out of view, the page scrolls to bring the element into view. Form
controls that respond to keyboard action (for example, pressing the spacebar to
check or uncheck a checkbox control) also continue to work as normal. For some
designers, the focus rectangle harms the design goals of the page. The hideFocus
property gives them more control over the appearance while maintaining consis-
tency of operation with other pages. There is no corresponding HTML attribute for
a tag, so you can use an onlLoad event handler in the page to set the hideFocus
property of desired objects after the page loads.

On the Example on the CD-ROM

CD-@VI \
A "W

Related Items: tabIndex property; srcollIntoView() method.
id

Value: String (See text)

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v/ v/ v/

The id property returns the identifier assigned to an element’s 1D attribute in
the HTML code. A script cannot modify the ID of an existing element nor assign an
ID to an element that lacks one. But if a script creates a new element object, an
identifier may be assigned to it by way of the id property.

126 Partill + Document Objects Reference

Onthe d Example on the CD-ROM
cnzﬁﬁw \

Related Item: c1assName property.

innerHTML
innerText
Value: String Read/Write
NN2 NN3 NN4 NNé6 IE3/J1 IE3/J2 IE4 IE5 IE5.5
Compatibility) v/ v/ v/

One way that Internet Explorer exposes the contents of an element is through
the innerHTML and innerText properties. (Navigator 6 offers only the innerHTML
property.) All content defined by these “inner” properties consists of document
data that is contained by an element’s start and end tags, but not including the tags
themselves (see outerText and outerHTML properties). Setting these inner proper-
ties is a common way to modify a portion of a page’s content after the page loads.

The innerHTML property contains not only the text content for an element as
seen on the page, but also every bit of HTML tagging that is associated with that
content. (If there are no tags in the content, the text is rendered as is.) For example,
consider the following bit of HTML source code:

<P ID="paragraphl">"How are you?" he asked.</P>

The value of the paragraph object’s innerHTML property (document.all.
paragraphl.innerHTML) is:

"How are you?" he asked.

The browser interprets any HTML tags that you include in a string you assign to
an element’s innerHTML property as tags. This also means that you can introduce
entirely new nested elements (or child nodes in the modern terminology) by assign-
ing a slew of HTML content to an element’s innerHTML property. The document’s
object model adjusts itself to the newly inserted content.

In contrast, the innerText property knows only about the text content of an
element container. In the example you just saw, the value of the paragraph’s
innerText property (document.all.paragraphl.innerText) is:

"How are you?" he asked.

It’s important to remember that if you assign a string to the innerText property
of an element and that string contains HTML tags, the tags and their angle brackets
appear in the rendered page and are not interpreted as live tags.

Do not modify the innerHTML property to adjust the HTML for FRAMESET, HTML,
HEAD, TITLE, or table-related objects. You should modify table constructions
through the various table-related methods that create or delete rows, columns, and

Chapter 15 4 Generic HTML Element Objects |27/

cells (see Chapter 27). It is safe, however, to modify the contents of a cell by setting
its innerHTML or innerText properties.

When the HTML you insert includes a <SCRIPT> tag, be sure to include the
DEFER attribute to the opening tag. This even goes for scripts that contain function
definitions, which you might consider to be deferred automatically.

If your audience includes Internet Explorer 4 for the Macintosh, know that sev-
eral elements do not support these properties. Be sure to test your page thoroughly
on this platform combination. Also, if you want to have the convenience of the
innerText property in Navigator 6, see Chapter 14 for instructions on how to add
that property to all elements. Alternatively, you can use the NN6-compatible
innerHTML property to assign new text content to an element, even though the
content contains no HTML tags.

On the | \ Example (with Listing 15-11) on the CD-ROM

°°@“

Related Items: outerHTML, outerText properties; replaceNode () method.

isContentEditable
Value: Boolean Read-Only

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

The isContentEditable property returns a Boolean value indicating whether a
particular element object is set to be editable (see the preceding discussion of the
contentEditable property). This property is helpful because if a parent element’s
contentEditable property is set to true, a nested element’s contentEditable
property likely is set to its default value inherit. But because its parent is
editable, the isContentEditable property of the nested element returns true.

On the \ Example on the CD-ROM

cD; @\n

Related Item: contentEditable property.

isDisabled
Value: Boolean Read-Only

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

128

Part Il 4 Document Objects Reference

The isDisabled property returns a Boolean value that indicates whether a par-
ticular element object is set to be disabled (see the preceding discussion of the
disabTled property). This property is helpful; if a parent element’s disabled prop-
erty is set to true, then a nested element’s disabled property likely is set to its
default value of false. But because its parent is disabled, the isDisabled property
of the nested element returns true. In other words, the isDisabled property
returns the actual disabled status of an element regardless of its disab1ed property.

On the | \ Example on the CD-ROM

.,\CD @m

Related Item: disabled property.

isMultilLine

Value: Boolean Read-Only

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

The isMultiline property returns a Boolean value that reveals whether the ele-
ment object is capable of occupying or displaying more than one line of text.
Importantly, this value does not reveal whether the element actually occupies mul-
tiple lines; rather, it indicates the potential of doing so. For example, a text INPUT
element cannot wrap to multiple lines, so its isMultiline propertyis false.
However, a BUTTON element can display multiple lines of text for its label, so it
reports true for the isMultiline property.

On the | \ Example on the CD-ROM

°°@“

1sTextEd1t
Value: Boolean Read-Only
NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v

The isTextEdit property reveals whether an object can have an IE/Windows
TextRange object created with its content. (See the TextRange object in Chapter
19.) You can create TextRange objects only from a limited selection of objects in
IE4+ for Windows: BODY, BUTTON, certain form elements (text, password, hidden,

Chapter 15 4 Generic HTML Element Objects |29

button, reset, and submit types), and TEXTAREA. This property always returns
false in IE5/Mac.
Onthe . Example on the CD-ROM

CD-@?\A \
.‘\ ;

Related Items: createRange () method; TextRange object (Chapter 19).

lang
Value: ISO language code string Read/Write
NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v

The Tang property governs the written language system used to render an
element’s text content when overriding the default browser’s language system.
The default value for this property is an empty string unless the corresponding
LANG attribute is assigned a value in the element’s tag. Modifying the property
value by script control does not appear to have any effect in the current browser
implementations.

On the Example on the CD-ROM

CD@VI \
A W

language
Value: String Read/Write

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

IE4+’s architecture allows for multiple scripting engines to work with the
browser. Two engines are included with the basic Windows version browser: JScript
(compatible with JavaScript) and Visual Basic Scripting Edition (VBScript). The
default scripting engine is JScript. But if you wish to use VBScript or some other
scripting language in statements that are embedded within event handler attributes
of a tag, you can specifically direct the browser to apply the desired scripting
engine to those script statements by way of the LANGUAGE attribute of the tag. The
language property provides scripted access to that property. Unless you intend to
modify the event handler HTML code and replace it with a statement in VBScript

130

Part Il 4 Document Objects Reference

(or any other non-JScript-compatible language installed with your browser), you do
not need to modify this property (or read it, for that matter).

Valid values include JScript, javascript, vbscript, and vbs. Third-party
scripting engines have their own identifier for use with this value. Because the
LANGUAGE attribute is also used in the <SCRIPT> tag, Internet Explorer 5 observes
LANGUAGE="XML" as well.

On the Example on the CD-ROM

CD@VI \
A W

Related Item: SCRIPT element object.

lastChild

(See firstchild)

length
Value: Integer Read-Only and Read/Write
NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4A IE5 IE5.5
Compatibility v v v v v v v v

The Tength property returns the number of items in an array or collection of
objects. Its most common application is as a boundary condition in a for loop.
While arrays and collections commonly use integer values as index values (always
starting with zero), the 1ength value is the actual number of items in the group.
Therefore, to iterate through all items of the group, the condition expression should
include a less-than (<) symbol rather than a less-than-or-equal (<=) symbol, as in
the following:

for (var i = 0; i < someArray.length; i++) {...}

For decrementing through an array (in other words, starting from the last item in
the array and working toward the first), the initial expression must initialize the
counting variable as the length minus one:

for (var i = someArray.length - 1; i >=0; i--) {...}

For most arrays and collections, the Tength property is read-only and governed
solely by the number of items in the group. But in more recent versions of the
browsers, you can assign values to some object arrays (areas, options, and the
SELECT obiject) to create placeholders for data assignments. See discussions of the
AREA, SELECT, and OPTION element objects for details. A plain JavaScript array can
also have its Tength property value modified by script to either trim items from the
end of the array or reserve space for additional assignments. See Chapter 37 for
more about the Array object.

Chapter 15 4 Generic HTML Element Objects]3]
Onthe & Example on the CD-ROM
cn-@ﬁw \
W

Related Items: AREA, SELECT, OPTION, and Array objects.

localName
namespaceURI
prefix
Value: String Read-Only
NN2 NN3 NN4 NNé6 |IE3/) IE3/)2 IE4 IE5 IE5.5
Compatibility v

The three properties, 1ocalName, namespaceURI, and prefix, apply to any
node in an XML document that associates a Namespace URI with an XML tag.
Although NN6 exposes all three properties for all element (and node) objects, the
properties do not return the desired values. Future versions of NN6 should remedy
the situation. In the meantime, this description provides a preview of what values
these three properties will represent.

Consider the following XML content:

<{x xmlns:bk="http://bigbooks.org/schema'>
<bk:title>To Kill a Mockingbird</bk:title>
</ x>

The element whose tag is <bk:title> is associated with the Namespace URI
defined for the block, and the element’s namespaceURI property would return the
string http://bigbooks.org/schema. The tag name consists of a prefix (before
the colon) and the local name (after the colon). In the above example, the prefix
property for the element defined by the <bk:title> tag would be bk, while the
localName property would return title. The TocalName property of any node
returns the same value as its nodeName property value, such as #text for a text
node.

For more information about XML Namespaces, visit http://www.w3.0rg/TR/
REC-xm1-names.

Related Items: scopeName, tagUrn properties.

132

Part Il 4 Document Objects Reference

nextSibling
previousSibling

Value: Object reference Read-Only

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

A sibling element is one that is at the same nested level as another element. For
example, the following P element has two child nodes (the EM and SPAN elements).
Those two child nodes are siblings of each other.

<{P>MegaCorp is the source of the hottest
gizmos.</P>

Sibling order is determined solely by the source code order of the elements.
Therefore, in the previous example, the EM element has no previousSibling
property. Meanwhile, the SPAN element has no nextSib11ing property (meaning
that these properties return nul1). These properties provide another way to iterate
through all elements at the same level.

On the Example on the CD-ROM

CD-@VI \
A "W

Related Items: firstChild, TastChild, childNodes properties;
hasChildNodes (), insertAdjacentElement () methods.

nodeName
Value: String Read-Only
NN2 NN3 NN4 NNé6 IE3/J1 IE3/J2 IE4 IE5 IE5.5
Compatibility v v v

For HTML and XML elements, the name of a node is the same as the tag name.
The nodeName property is provided for the sake of consistency with the node archi-
tecture specified by the formal W3C DOM standard. The value, just like the tagName
property, is an all-uppercase string of the tag name (even if the HTML source code
is written with lowercase tags).

Some nodes, such as the text content of an element, do not have a tag. The
nodeName property for such a node is a special value: #text. Another kind of node
is an attribute of an element. For an attribute, the nodeName is the name of the
attribute. See Chapter 14 for more about Node object properties.

Chapter 15 4 Generic HTML Element Objects]33

gg the Example on the CD-ROM
Related Item: tagName property.
nodeType
Value: Integer Read-Only
NN2 NN3 NN4 NNé6 |IE3/J1 IE3/J)2 IE4A IE5 IE5.5
Compatibility v v v

The W3C DOM specification identifies a series of constant values that denote cat-
egories of nodes. Not all of these values are implemented in the W3C DOM-capable
browsers, although NN6 includes more than the two supplied by IE5. Table 15-4 lists
the nodeType values implemented in recent browsers.

Table 15-4 nodeType Property Values

Value Description IE5/5.5 Navé & IE5/Mac
1 Element node v v
2 Attribute node v
3 Text (fftext) node v v
8 Comment node v
9 Document node v

The nodeType value is automatically assigned to an element, whether the ele-
ment exists in the document’s HTML source code or it is generated on the fly via a
script. For example, if you create a new element through any of the ways available
by script (for example, by assigning a string encased in HTML tags to the innerHTML
property or by explicitly invoking the document.createkElement () method), the
new element assumes a nodeType of 1.

NNG6 goes one step further in supporting the W3C DOM specification by imple-
menting a set of Node object property constants for each of the nodeType values.
Table 15-5 lists the entire set as defined in the DOM Level 2 specification (not all of
which are implemented in NN6). Substituting these constants for nodeType integers
can improve readability of a script. For example, instead of

if (myElem.nodeType == 1) {...}
it is much easier to see what’s going on with
if (myElem.nodeType == Node.ELEMENT_NODE) {...}

134

Part Il 4 Document Objects Reference

Table 15-5 W3C DOM nodeType Constants

Reference nodeType Value

Node.ELEMENT_NODE

Node .ATTRIBUTE_NODE
Node.TEXT_NODE
Node.CDATA_SECTION_NODE
Node.ENTITY_REFERENCE_NODE
Node.ENTITY_NODE
Node.PROCESSING_INSTRUCTION_NODE
Node.COMMENT_NODE
Node.DOCUMENT_NODE 9
Node.DOCUMENT_TYPE_NODE 10
Node.DOCUMENT_FRAGMENT_NODE 11
Node .NOTATION_NODE 12

o N oYy oW N

Onthe""\ Example on the CD-ROM

Related Item: nodeName property.

nodeValue
Value: Number, string, or null Read/Write

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Of the node types implemented in the W3C DOM-capable browsers, only the text
and attribute types have readable values. An element’s node value returns a nu11
value.

For a text node, the nodeValue property consists of the actual text for that node.
Such a node cannot contain any further nested elements, so the nodeValue property
offers another way of reading and modifying what Internet Explorer implements as an
element’s innerText property.

For an attribute node, the nodeValue property consists of the value assigned to
that attribute. According to the W3C DOM standard, attribute values should be

Chapter 15 4 Generic HTML Element Objects | 35

reflected as strings. IE5/Windows, however, returns values of type Number when the
value is all numeric characters. Even if you assign a string version of a number to
such a nodeValue property, it is converted to a Number type internally. NN6 and
IE5/Mac return nodeValue values as strings in all cases (and convert numeric
assignments to strings).

On the Example on the CD-ROM

CD@VI \
A "W

Related Items: attributes, innerText, nodeType properties.

offsetHeight
offsetWidth

Value: Integer Read-Only

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v

It is nearly impossible to reconcile the actual behavior of these properties with
the descriptions provided by Microsoft for Internet Explorer. The genuine complex-
ity comes when an element has one or more of the following style features
attached: borders, margins, and padding. The property values, especially
offsetWidth, are heavily influenced by the height and width attributes assigned
to an element’s style sheet rule. The permutations of elements and their styles plus
the vastly roving range of resulting values make it difficult to recommend the
offsetHeight and offsetWidth properties unless you manage to find the magic
combination that works for your page layout. Differences abound in these proper-
ties’ treatment across operating system versions of IE.

One advantage that of fsetHeight and offsetWidth have over clientHeight
and clientWidth is that the offset properties have values even when you do not
set dimensions for the element in the HTML tag attributes. That’s because these
values are set in relation to the element’s parent element — most often the BODY
element.

Be aware that for a normal element whose height and width are not specified,
the of fsetHeight is determined by the actual height of the content after all text
flows. But the of fsetWidth always extends the full width (plus or minus borders,
margins, and padding) of the containing element. Therefore, the offsetWidth
property does not reveal the rendered width of text content that is narrower than
the full parent element width. (Through IE5, no property reveals this information.)
To find out the actual width of text within a full-width, block-level element, wrap the
text within an inline element (such as a SPAN) and inspect the offsetWidth prop-
erty of the SPAN.

Although the of fsetHeight and offsetWidth properties are not part of the
W3C DOM specification, Netscape has implemented these properties in NN6

136

Part Il 4 Document Objects Reference

because they are convenient for some scriptable Dynamic HTML tasks. Through
these two properties, a script can read the height and width of any block-level or
inline element. As with IE, the NN6 of fsetWidth of a text-oriented block-level ele-
ment is the width of the element’s container. For example, a P element consisting of
only a few words may report an offsetWidth of many hundreds of pixels because
the paragraph’s block extends the full width of the BODY element that represents
the containing parent of the P element.

On the Example on the CD-ROM

CD@VI \
A W

Related Items: clientHeight, clientWidth properties.

offsetLeft
offsetTop
Value: Integer Read-Only
NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4A IE5 IE5.5
Compatibility v v/ v v

The offsetlLeft and offsetTop properties can suffer from the same version
vagaries that afflict of fsetHeight and offsetWidth properties when borders,
margins, and padding are associated with an element. However, the offsetlLeft
and of fsetTop properties are valuable in providing pixel coordinates of an element
within the positioning context of the parent element —even when the elements are
not positioned explicitly.

'Note ~ The offsetleft and offsetTop properties for positioned elements in

- IE/Macintosh do not return the same values as the style.left and style.top
properties of the same element. See Listing 31-17 for an example of how to cor-
rect these discrepancies without having to hard-wire the precise pixel differences
in your code.

The element used as a coordinate context for these properties is whatever ele-
ment the of fsetParent property returns. This means that to determine the pre-
cise position of any element, you may have to add some code that iterates through
the of fsetParent hierarchy until that property returns nul 1.

Although the offsetlLeft and of fsetTop properties are not part of the W3C
DOM specification, Netscape has implemented these properties in NN6 because they
are convenient for some scriptable Dynamic HTML tasks. Through these two proper-
ties, a script can read the pixel coordinates of any block-level or inline element.
Measurements are made relative to the BODY element, but this may change in the
future. See the discussion later in this chapter about the of fsetParent property.

Chapter 15 4 Generic HTML Element Objects |37/

gg the Example on the CD-ROM

Related Items: clientleft, clientTop, offsetParent properties.

offsetParent

Value: Object reference Read-Only

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v

The of fsetParent property returns a reference to the object that acts as a posi-
tioning context for the current element. Values for the offsetlLeft and offsetTop
properties are measured relative to the top-left corner of the offsetParent object.

The returned object is usually, but not always, the next outermost block-level
container. For most document elements, the of fsetParent object is the docu-
ment.body object (with exceptions for some elements in some browsers).

Table cells, for example, have different of fsetParent elements in different

browsers:
Browser TD offsetParent
IE4/Windows TR
IE5+/Windows TABLE
IE/Mac TABLE
NN6 BODY

Positioned elements also have different results among browsers. In IE, a first-
level positioned element’s offsetParent element is the BODY; the offsetParent
of a nested positioned element (for example, one absolute-positioned DIV inside
another) is the next outer container (in other words, the positioning context of the
inner element).

The situation for NN6, however, is not as straightforward as it could be. The
of fsetParent for any unpositioned element on the page is the BODY element. But
the of fsetParent property for a positioned element (or any element nested inside
a positioned element) returns nul 1. Even so, the offsetlLeft and of fsetTop
properties of a positioned element (and its contents) treat the BODY element as the
positioning context. This approach complicates the calculation of the position of an
element inside a positioned element relative to its container. Future versions of NN6
will likely bring the behavior of the of fsetParent property in line with the IE
behavior. See Chapter 31 for more details on browser-specific treatment of position-
able elements.

138

Part Il 4 Document Objects Reference

Onthe d Example (with Listing 15-12) on the CD-ROM
cnzﬁﬂw \

Related Items: offsetleft, offsetTop, offsetHeight, offsetWidth properties.

outerHTML
outerText
Value: String Read/Write
NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v/ v/ v/

One way that Internet Explorer exposes an entire element to scripting is by way
of the outerHTML and outerText properties. The primary distinction between
these two properties is that outerHTML includes the element’s start and end tags
whereas outerText includes only rendered text that belongs to the element
(including text from any nested elements).

The outerHTML property contains not only the text content for an element as
seen on the page, but also every bit of HTML tagging associated with that content.
For example, consider the following bit of HTML source code:

<P ID="paragraphl">"How are you?" he asked.</P>

The value of the P object’s outerHTML property (document.all.paragraphl.
outerHTML) is exactly the same as that of the source code.

The browser interprets any HTML tags in a string that you assign to an element’s
outerHTML property. This means that you can delete (set the property to an empty
string) or replace an entire tag with this property. The document’s object model
adjusts itself to whatever adjustments you make to the HTML in this manner.

In contrast, the outerText property knows only about the text content of an ele-
ment container. In the preceding example, the value of the paragraph’s outerText
property (document.all.paragraphl.innerText) is:

"How are you?" he asked.

If this looks familiar, it’s because in most cases the innerText and outerText
properties of an existing element return the exact same strings.

If your audience includes Internet Explorer 4 for the Macintosh, be aware that
several elements do not support these properties. In addition, IE5/Mac is downright
buggy when you try to assign new content to either property. Be sure to test your
page thoroughly on these platform combinations. Also see Chapter 14 for some
code to add to a page that simulates the outerHTML property for writing in NN6.

gg the . Example (with Listing 15-13) on the CD-ROM
o h

Chapter 15 4 Generic HTML Element Objects

Related Items: innerHTML, innerText properties; replaceNode() method.

ownerDocument

Value: document object reference Read-Only

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

The ownerDocument property belongs to any element or node in the W3C and
NN6 DOM. The property’s value is a reference to the document node that ultimately
contains the element or node. If a script encounters a reference to an element or
node (perhaps it has been passed as a parameter to a function), the object’s
ownerDocument property provides a way to build references to other objects in the
same document or to access properties and methods of the document objects. IE’s
version of this property is simply document.

On the Example on the CD-ROM

CD@VI 1
A

Related Item: document object.

parentElement

Value: Element object reference or null Read-Only

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

The parentElement property returns a reference to the next outermost HTML
element from the current element. This parent-child relationship of elements is
often, but not always, the same as a parent—child node relationship (see
parentNode property later in this chapter). The difference is that the
parentElement property deals only with HTML elements as reflected as document
objects, whereas a node is not necessarily an HTML element (for example, an
attribute or text chunk).

There is also a distinction between parentElement and offsetParent proper-
ties. The latter returns an element that may be many generations removed from a
given element but is the immediate parent with regard to positioning context. For
example, a TD element’s parentElement property is most likely its enclosing TR
element, but (in IE5 at least) a TD element’s of fsetParent property is its TABLE
element.

A script can “walk” the element hierarchy outward from an element with the help
of the parentElement property. The top of the parent chain is the HTML element.
Its parentElement property returns null.

139

140 Partill + Document Objects Reference

Onthe d Example on the CD-ROM
CD-@ﬁ\n \

Related Items: of fsetParent, parentNode properties.

parentNode
Value: Node object reference or nul 1l Read-Only
NN2 NN3 NN4 NNé6 |IE3/J1 IE3/J)2 IE4A IE5 IE5.5
Compatibility v v v

The parentNode property returns a reference to the next outermost node that is
reflected as an object belonging to the document. For a standard element object,
the parentNode property is the same as IE’s parentElement because both objects
happen to have a direct parent—child node relationship as well as a parent-child
element relationship.

Other kinds of content, however, can be nodes. This includes text fragments
within an element. A text fragment’s parentNode property is the next outermost
node or element that encompasses that fragment. A text node object in IE does not
have a parentElement property.

gg the » Example on the CD-ROM
- b

Related Items: childNodes, nodeName, nodeType, nodeValue, parentElement

properties.
parentTextEdit
Value: Element object reference or nul 1 Read-Only
NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v/ v/ v/

Only a handful of objects in IE’s object model are capable of creating text ranges
(see the TextRange object in Chapter 19). To find an object’s next outermost con-
tainer capable of generating a text range, use the parentTextEdit property. If an
element is in the hierarchy, that element’s object reference is returned. Otherwise
(for example, document.body.parentTextEdit), the value is nul1l. IE5/Mac
through version 5 does not implement text ranges or associated properties and
methods.

Chapter 15 4 Generic HTML Element Objects
gg the Example (with Listing 15-14) on the CD-ROM
Related Items: isTextEdit property; TextRange object (Chapter 19).

previousSibling
(See nextSibling)

readyState
Value: String (integer for OBJECT object) Read-Only
NN2 NN3 NN4 NNé6 IE3/J1 IE3/J2 IE4 IE5 IE5.5
Compatibility v v v

A script can query an element to find out if it has loaded all ancillary data (for
example, external image files or other media files) before other statements act on
that object or its data. The readyState property lets you know the loading status
of an element.

Table 15-6 lists the possible values and their meanings.

Table 15-6 readyState Property Values

HTML Value OBJECT Value Description

complete 4 Element and data fully loaded

interactive 3 Data may not be loaded fully, but user can interact
with element

Toaded 2 Data is loaded, but object may be starting up

Toading 1 Data is loading

uninitialized 0 Object has not started loading data yet

For most HTML elements, this property always returns complete. Most of the
other states are used by elements such as IMG, EMBED, and OBJECT, which load
external data and even start other processes (such as ActiveX controls) to work.

In [E4, the readyState property was limited to the following objects: document,
EMBED, IMG, LINK, OBJECT, SCRIPT, and STYLE. For IE5+, this property is available
to essentially every element.

One word of caution: Do not expect the readyState property to reveal if an
object exists yet in the document (for example, uninitialized). If the object does
not exist, it cannot have a readyState property —the result is a script error for an

141

1472 Partill + Document Objects Reference

undefined object. If you want to run a script only after every element and its data
are fully loaded, trigger the function by way of the onLoad event handler for the
BODY element or the onReadyStateChange event handler for the object (and
check that the readyState property is complete).

Onthe » Example on the CD-ROM

CD- \
AW,
Related Items: onReadyStateChange event handler.
recordNumber
Value: Integer or nu11 Read-Only

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/ v/ v

Virtually every object has a recordNumber property, but it applies only to ele-
ments used in Internet Explorer (for Windows) data binding to represent repeated
data. For example, if you display 30 records from an external data store in a table,
the TR element in the table is represented only once in the HTML. However, the
browser repeats the table row (and its component cells) to accommodate all 30
rows of data. If you click a row, you can use the recordNumber property of the TR
object to see which record was clicked. A common application of this facility is in
data binding situations that allow for updating records. For example, script a table
so that clicking on an uneditable row of data displays that record’s data in editable
text boxes elsewhere on the page. If an object is not bound to a data source, or it is
a non-repeating object bound to a data source, the recordNumber property is null.

o8 the Example (with Listing 15-15) on the CD-ROM
5 \

Q.
Related Items: dataF1d, dataSrc properties; TABLE, TR objects (Chapter 27).

runtimeStyle
Value: style object Read-Only

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

You can determine the browser default settings for style sheet attributes with
the help of the runtimeSty1e property. The style object that this property

Chapter 15 4 Generic HTML Element Objects |43

returns contains all style attributes and the default settings at the time the page
loads. This property does not reflect values assigned to elements by style sheets in
the document or by scripts. The default values returned by this property differ
from the values returned by the currentSty1e property. The latter includes data
about values that are not assigned explicitly by style sheets, yet are influenced by
the default behavior of the browser’s rendering engine. In contrast, the
runtimeStyTe property shows unassigned style values as empty or zero.

To change a style property setting, access it via the element’s sty1e object.

Onthe . Example on the CD-ROM

CD@A \
.‘\ ;

Related Items: currentStyle property; style object (Chapter 30).

scopeName
Value: String Read-Only
NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v

The scopeName property is associated primarily with XML that is embedded
within a document. When you include XML, you can specify one or more XML
Namespaces that define the “owner” of a custom tag name, thus aiming toward pre-
venting conflicts of identical custom tags from different sources in a document.
(See Chapter 33 for more about XML objects.)

The XML Namespace is assigned (in IE5+) as an attribute of the <HTML> tag that
surrounds the entire document:

<HTML XMLNS:Fred="http://www.someURL.com"'>

After that, the Namespace value precedes all custom tags linked to that
Namespace:

{Fred:FIRST_Name ID="fredFirstName"/>

To find out the Namespace “owner” of an element, you can read the scopeName
property of that element. For the preceding example, the scopeName returns Fred.
For regular HTML elements, the returned value is always HTML. The scopeName
property is available only in Win32 and UNIX flavors of IE5. The comparable prop-
erty in the W3C DOM is TocalName.

Onthe d Example on the CD-ROM

CD@A \
.‘\ ;

Related Item: tagUrn property.

144

Part Il 4 Document Objects Reference

scrollHeight
scrol1Width

Value: Integer Read-Only

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

The scrollHeight and scrol1Width properties contain the pixel measures of
an object, regardless of how much of the object is visible on the page. Therefore, if
the browser window displays a vertical scrollbar, and the body extends below the
bottom of the viewable space in the window, the scrolTHeight takes into account
the entire height of the body as if you were to scroll downward and see the entire
element. For most elements that don’t have their own scrollbars, the
scrollHeight and scrol1Width properties have the same values as the
clientHeight and cTientWidth properties.

A few compatibility cautions are necessary, however. While these properties are
available for virtually every element in IE5+, they are available for only the BODY,
BUTTON, CAPTION, DIV, FIELDSET, LEGEND, MARQUEE, and TEXTAREA objects in
IE4 for Windows. Moreover, IE for the Macintosh yields the viewable height and
width of the BODY element, rather than its true scrolling height and width. The
values are accurate, however, for other content elements.

On the Example on the CD-ROM

CD@VI \
A "W

Related Items: c1ientHeight , cTientWidth properties; window.scrol1()

method.
scrollLeft
scrollTop
Value: Integer Read-Only
NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v

If an element is scrollable (in other words, it has its own scrollbars), you can find
out how far the element is scrolled in the horizontal and vertical direction via the
scrollleft and scrol1Top properties. These values are pixels. For non-scrollable
elements, these values are always zero — even if they are contained by elements
that are scrollable. For example, if you scroll a browser window (or frame in a

Chapter 15 4 Generic HTML Element Objects |45

multiframe environment) vertically, the scrol1Top property of the body object is
whatever the pixel distance is between the top of the object (now out of view) and
the first visible row of pixels of the element. But the scrol1Top value of a table that
is in the document remains at zero.

These properties are available only to the BODY, BUTTON, CAPTION, DIV, FIELD-
SET, LEGEND, MARQUEE, SPAN, and TEXTAREA objects in IE4. For IE5+, the proper-
ties are available to virtually every element.

NN treats scrolling of a BODY element from the point of view of the window. If
you want to find out the scrolled offset of the current page in NN4+, use window.
scrollX and window.scrollY.

On the \ Example on the CD-ROM

CD@VI

Related Items: c1ientleft, clientTop properties; window.scrol1() method.

sourcelndex
Value: Integer Read-Only

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/ v/ v

The sourcelndex property returns the numeric index (zero-based) of the object
within the document.all collection. This property is useful if a script needs to
access an adjacent object on a page. For example, the following function receives
an object reference as a parameter and returns a reference to the object that is next
in the source code object order:

function getNextObject(obj)
return document.all[(obj.sourcelndex + 1)]
1

Or if you know only the ID of an object and want to retrieve a reference to the
next object in source code order, you can use the following version:

function getNextObject(objName) {
var index = document.all[objName].sourcelndex
return document.all[(index + 1)]

On the | \ Example on the CD-ROM

CD@VI

Related Item: item() method.

146

Part Il 4 Document Objects Reference

style
Value: style object reference Read/Write
NN2 NN3 NN4 NNé6 IE3/) IE3/)2 IE4 IE5 IE5.5
Compatibility v/ v/ v v

The style property is the gateway to an element’s style sheet settings. The
property’s value is a sty1e object whose properties enable you to read and write
the style sheet settings for the element. While scripts do not usually manipulate the
style object as a whole, it is quite common in a Dynamic HTML page for scripts to
get or set multiple properties of the sty1e object to effect animation, visibility, and
all appearance parameters of the element.

Changing properties of the sty1e object may affect the layout of the page. For
example, setting the font size of an element to a larger value forces the paragraph
to reflow to accommodate the enlarged text. This page reflow is available in IE4+
and NN6. Because NN4 cannot reflow content, severe limitations are placed on
changing content after the page loads.

You can find significant differences in the breadth of properties of the style
object in IE compared with NN. See Chapter 30 for more details on the style
object.

gg the Example on the CD-ROM
- b

,/.

Related Items: currentStyle, runtimeStyle properties; style object (Chapter 30).

tabIndex
Value: Integer Read/Write
NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IEA IE5 IE5.5
Compatibility v/ v/ v v

The tabIndex property controls where in the tabbing sequence the current
object receives focus. This property obviously applies only to elements that can
receive focus. IE5+ permits giving focus to more elements than IE4 or NN6; but for
all browsers compatible with this property, the primary elements for which you
may want to control focus (namely form input elements) are covered. IE4/Mac does
not give focus to elements other than those that accept text input.

The default value of the tabIndex property is 0 (although it is -1 in NN6). A value
of 0 (or -1 in NN6) means that elements receive focus in the normal tabbing order
on the page, following source code order from the first focusable element. In general,

Chapter 15 4 Generic HTML Element Objects |47/

the browsers treat form elements as focusable elements by default. Nonform ele-
ments usually don’t receive focus unless you specifically set their tabIndex proper-
ties (or TABINDEX tag attributes). If you set the tabIndex property of one form
element to 1, then that element is first in the tabbing order. Meanwhile, the rest fall
into source code tabbing order on successive presses of the Tab key. If you set two
elements to, say, 1, then the tabbing proceeds in source code order for those two
elements and then onto the rest of the elements in source code order starting with
the top of the page.

In Internet Explorer, you can remove an element from tabbing order entirely by
setting its tabIndex property to - 1. Users can still click those elements to make
changes to form element settings, but tabbing bypasses the element.

on the » Example (with Listing 15-16) on the CD-ROM

AW,

Related Items: b1ur (), focus () methods.

tagName
Value: String Read-Only
NN2 NN3 NN4 NN6 IE3/J1 1IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v

The tagName property returns a string of the HTML or (in IE5+ and NN6) XML tag
name belonging to the object. All tagName values are returned in all uppercase
characters, even if the source code is written in all lowercase or a mixture. This
consistency makes it easier to perform string comparisons. For example, you can
create a generic function that contains a switch statement to execute actions for
some tags and not others. The skeleton of such a function looks like the following:

function processObj(objRef) {
switch (objRef.tagName) {
case "TR":
[statements to deal with table row object]
break
case "TD":
[statements to deal with table cell object]
break
case "COLGROUP":
[statements to deal with column group object]
break
default:
[statements to deal with all other object types]

148

Part Il 4 Document Objects Reference

Onthe d Example on the CD-ROM
CD-@ﬁ\n \

Related Items: nodeName property; getElementsByTagName () method.

tagUrn
Value: String Read-Only
NN2 NN3 NN4 NNé6 |IE3/J1 IE3/J)2 IE4A IE5 IE5.5
Compatibility v v

The tagUrn property is associated primarily with XML that is embedded within
a document. When you include XML, you can specify one or more XML Namespaces
that define the “owner” of a custom tag name —thus preventing conflicts of identi-
cal custom tags from different sources in a document. (See Chapter 33 for more
about XML objects.) A Namespace definition can include a Uniform Resource Name
(URN) that lets a page link to a destination on the network that further defines such
Namespace aspects as a behavior associated with a custom XML element.

The XML Namespace is assigned (in IE5+) as an attribute of the <HTML> tag that
surrounds the entire document.

<HTML XMLNS:Fred="http://www.giantco.com/xml1ib/">

After that, the namespace value precedes all custom tags linked to that
Namespace:

<Fred:FIRST_Name ID="fredFirstName"/>

To find out the URN of the namespace “owner” of an element, you can read the
tagUrn property of that element. For the preceding example, the tagURN property
returns www.giantco.com/xml11ib. For regular HTML elements, the returned value
is always nu11. The corresponding property in the W3C DOM and NN6 is
namespaceURI.

On the 1 Example on the CD-ROM

CD-@VI \
A "W

Related Item: scopeName property.

title
Value: String Read/Write

Chapter 15 4 Generic HTML Element Objects] 49

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v

The W3C standard states that you should use the title property (and TITLE
attribute) in an “advisory” role. The main browsers interpret that role as text
assigned to tooltips that pop up momentarily while the cursor rests atop an ele-
ment. The advantage of having this property available for writing is that your
scripts can modify an element’s tooltip text in response to other user interaction on
the page.

A tooltip can provide brief help about the behavior of icons or links on the page.
It can also convey a summary of key facts from the destination of a link, thus
enabling a visitor to see vital information without having to navigate to the other
page. For example, Microsoft’s Web authoring documentation online (http://
msdn.microsoft.com) uses the tooltips in listings of scriptable properties to dis-
play a list of elements for which the property is available. While this information
also appears on the destination of the link for each property, you can see at a
glance, for instance, which instance of the two listings for the same property name
apply to the object in which you're interested. The browser governs tooltip font
and color characteristics, which are not changeable via scripting.

As with setting the status bar, I don’t recommend using tooltips for conveying
mission-critical information to the user. Not all users are patient enough to let the
pointer pause for the tooltip to appear. On the other hand, a user may be more
likely to notice a tooltip once it appears rather than a status bar message (even
though the latter appears instantaneously).

gg the » Example (with Listing 15-17) on the CD-ROM
= Y

\\\ .'/..

Related Item: window.status property.

uniquelD
Value: String Read-Only
NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4A IE5 IE5.5
Compatibility v v

You can let the IE5+/Windows browser generate an identifier (id property) for a
dynamically generated element on the page with the aid of the uniquelID property.
You should use this feature with care because the ID it generates at any given time
may differ from the ID generated the next time the element is created in the page.
Therefore, you should use the uniquelD property when your scripts require an
unknown element to have an id property but the algorithms are not expecting any
specific identifier.

150

Part Il 4 Document Objects Reference

To guarantee that an element gets only one ID assigned to it while the object
exists in memory, assign the value via the uniquelD property of that same object —
not some other object. Once you retrieve the uniqueID property of an object, the
property’s value stays the same no matter how often you access the property again.
In general, you assign the value returned by the uniquelD property to the object’s
id property for other kinds of processing. (For example, the parameter of a
getElementById() method requires the value assigned to the id property of an
object.)

Onthe . Example (with Listing 15-18) on the CD-ROM

CD@A \
.‘\ ;

Related Items: id property; getElementById() method.

Methods

addBehavior("URL")

Returns: Integer ID.

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

The addBehavior() method imports an external Internet Explorer behavior and
attaches it to the current object, thereby extending the properties and/or methods
of that object. See Chapter 48 for details on IE behaviors (new in IE5 for Windows).

The sole parameter of the addBehavior () method is a URL pointer to the
behavior component’s code. This component may be in an external file (with an
.htc extension), in which case the parameter can be a relative or absolute URL. [E
also includes a library of built-in (default) behaviors, whose URLs are in the follow-
ing format:

fdefault#behaviorName

Here, behaviorName is one of the default behaviors (see Chapter 48). If the
behavior is imported into the document via the 0BJECT tag, the addBehavior()
method parameter is the ID of that element in the following format:

#objectID

When you add a behavior, the loading of the external code occurs asyn-
chronously. This means that even though the method returns a value instantly, the
behavior is not necessarily ready to work. Only when the behavior is fully loaded
can it respond to events or allow access to its properties and methods. Behaviors
loaded from external files observe domain security rules. The behavior component
and the HTML page that loads it must come from the same server and domain; they
also must load via the same protocol (for example, http://, https://, and
file:// are mutually exclusive, mismatched protocols).

Chapter 15 4+ Generic HTML Element Objects |51

Onthe B Example (with Listings 15-19a and 15-19b) on the CD-ROM
CD@A \

Related Items: readyState property; removeBehavior() method; behaviors
(Chapter 48).
addEventListener("eventType",
listenerFunc, useCapture)
removeEventListener("eventType",
listenerFunc, useCapture)

Returns: Nothing.

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/

The W3C DOM'’s event mechanism accommodates both event bubbling and trick-
ling (see Chapter 29). While the new mechanism supports the long-standing notion
of binding an event to an element by way of HTML attributes (for example, the old
onC1lick event handler), it encourages binding events by registering an event lis-
tener with an element. (In browsers that support the W3C event model, other ways
of binding events — such as event handler attributes — are internally converted to
registered events.)

To tell the DOM that an element should “listen” for a particular kind of event, use
the addEventListener() method on the element object. The method requires
three parameters. The first is a string version of the event type for which the ele-
ment should listen. Event type strings do not include the well-used “on” prefix of
event handlers. Instead, the names consist only of the event and are usually in all
lowercase (except for some special system-wide events preceded by DOM). Table
15-7 shows all the events recognized by the W3C DOM specification (although NN6
may not implement them all).

Table 15-7 W3C DOM Event Listener Types

abort error
blur focus
change load
click mousedown
DOMActivate mousemove

Continued

152 Partill + Document Objects Reference

Table 15-7 (continued)

DOMAttrModified mouseout
DOMCharacterDataModified mouseover
DOMFocusIn mouseup
DOMFocusOut reset
DOMNodelInserted resize
DOMNodeInsertedIntoDocument scroll
DOMNodeRemoved select
DOMNodeRemovedFromDocument submit
DOMSubtreeModified unload

Note that the event types specified in the DOM Level 2 are more limited than the
wide range of events defined in I[E4+. Also, the W3C temporarily tabled the issue of
keyboard events until DOM Level 3. Fortunately, Netscape implements keyboard
events in a fashion that likely will appear as part of the W3C DOM.

The second parameter of the addEventlListener () method is a reference to
the JavaScript function to be invoked. This is the same form used to assign a func-
tion to an event property of an object (for example, objReference.onclick =
someFunction), and it should not be a quoted string. This approach also means
that you cannot specify parameters in the function call. Therefore, functions that
need to reference forms or form control elements must build their own references
(with the help of the event object’s property that says which object is the event’s
target).

By default, the W3C DOM event model has events bubble upward through the
element container hierarchy starting with the target object of the event (for exam-
ple, the button being clicked). However, if you specify true for the third parameter
of the addEventListener() method, event capture is enabled for this particular
event type whenever the current object is the event target. This means that any
other event type targeted at the current object bubbles upward unless it, too, has
an event listener associated with the object and the third parameter is set to true.

Caution NN6 does not always set event capture for an element, even when you specify
true as the third parameter of addEventlListener(). For the most part, you
can make do with event bubbling by adding an event listener to a container higher
up the element hierarchy. Because event capture is a part of the W3C DOM event
model, this feature will likely be implemented in a future version of NN.

Using the addEventlListener () method requires that the object to which it is
attached already exist. Therefore, you most likely will use the method inside an
initialization function triggered by the onLoad event handler for the page. (The
document object can use addEventListener() for the load event immediately
because the document object exists early in the loading process.)

CD-

\

Chapter 15 4 Generic HTML Element Objects

A script can also eliminate an event listener that was previously added by script.
The removeEventListener() method takes the same parameters as
addEventListener(), which means that you can turn off one listener without dis-
turbing others. In fact, because you can add two listeners for the same event and
listener function (one set to capture and one not — a rare occurrence, indeed), the
three parameters of the removeEventListener() enable you to specify precisely
which listener to remove from an object.

Unlike the event capture mechanism of NN4, the W3C DOM event model does not
have a “global” capture mechanism for an event type regardless of target. And with
respect to IE5, the addEventListener () method is closely analogous to the IES
attachEvent () method. Also, event capture in IE5 is enabled via the
setCapture() method. Both the W3C and IE5 event models use their separate syn-
taxes to bind objects to event handling functions, so the actual functions may be
capable of serving both models with browser version branching required only for
event binding. See Chapter 29 for more about event handling with these two event
models.

Onthe » Example (with Listing 15-20) on the CD-ROM
b

./.

Related Items: attachEvent (), detachEvent(), dispatchEvent(),
fireEvent(), removekventListener() methods.

appendChild(nodeObject)

Returns: Node object reference.

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Using the W3C DOM parent, node, and child terminology, you can create cross-
browser code (for [E5+ and NN6) that modifies HTML content on the page. The
appendChild() method inserts an element or text node (defined by other code
that comes before it) as the new, last child of the current element.

Aside from the more obvious application of adding a new child element to the
end of a sequence of child nodes, the appendChi1d() method is also practical for
building element objects and their content before appending, replacing, or inserting
the element into an existing document. The document.createtlement () method
generates a reference to an element of whatever tag name you assign as that
method’s parameter. But this does nothing to populate the element’s attributes or
its content. While IE4+ offers nonstandard innerText and innerHTML shortcut
properties to assign content to an element (and NN6 provides innerHTML), the
DOM standard recommends adding child nodes to the new element (for more
details, see Chapter 14). For example, if you wish to create a B element and its
content, you first create the element and then append a text node, as in the follow-
ing sequence:

153

154

Part Il 4 Document Objects Reference

var newB = document.createElement("B")
newB.appendChild(document.createTextNode("Important!"))

At this point, you can append or insert the newB element. It appears with its
content ready to go.

The appendChild() method returns a reference to the appended node object.
This reference differs from the object that is passed as the method’s parameter
because the returned value represents the object as part of the document rather
than as a freestanding object in memory.

On the | Example (with Listing 15-21) on the CD-ROM

CD-

&

./.

Related Items: removeChild(), replaceChild() methods; nodes and children
(Chapter 14).

applyElement(elementObjectl, typel)

Returns: Nothing.

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

The applyElement () method (not implemented in IE5/Mac) enables you to
insert a new element as the parent or child of the current object. An important
feature of this method is that the new object is wrapped around the current object
(if the new element is to become the parent) or the current object’s content (if the
new element is to become a child). When the new element becomes a child, all pre-
vious children are nested further by one generation to become immediate children
of the new element. You can imagine how the resulting action of this method affects
the containment hierarchy of the current element, so you must be careful in how
you use the applyETement () method.

One parameter, a reference to the object to be applied, is required. This object
may be generated from constructions such as document.createElement () or
from one of the child or node methods that returns an object. The second parame-
ter is optional, and it must be one of the following values:

Parameter Value Description
outside New element becomes the parent of the current object
inside New element becomes the immediate child of the current object

If you omit the second parameter, the default value (outside) is assumed.

Chapter 15 4 Generic HTML Element Objects

gg the Example (with Listing 15-22) on the CD-ROM
o h

Related Items: insertBefore(), appendChild(), insertAdjacentElement()
methods.

attachEvent("eventName", functionRef)
detachEvent("eventName", functionRef)

Returns: Boolean.

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

The attachEvent () method is used primarily within code that specifies IE
behaviors (see Chapter 48). But you can also use it in regular scripting as yet
another way to bind an event handler to an object. The following example charac-
terizes the more typical approach to assigning an event handler:

myObject.onmousedown = setHilite
The version with attachEvent () is as follows:
myObject.attachEvent("onmousedown", setHilite)

Both parameters are required. The first parameter is a string version (case-
insensitive) of the event name. The second is a reference to the function to be
invoked when the event fires for this object. A function reference is an unquoted,
case-sensitive identifier for the function without any parentheses (which also
means that you cannot pass parameters in this function call).

There is a subtle benefit to using attachEvent () over the event property bind-
ing approach. When you use attachEvent (), the method returns a Boolean value
of true if the event binding succeeds. IE triggers a script error if the function refer-
ence fails, so don’t rely on a returned value of false to catch these kinds of errors.
Also, there is no validation that the object recognizes the event name.

If you have used attachEvent () to bind an event handler to an object’s event,
you can disconnect that binding with the detachEvent () method. The parameters
are the same as for attachtvent (). The detachEvent () method cannot unbind
events whose associations are established via tag attributes or event property
settings.

The W3C DOM event model provides functionality similar to these IE-only meth-
ods: addEventlListener() and removeEventListener().

83 thed Example on the CD-ROM
- h

A\,

155

156

Part Il 4 Document Objects Reference

Related Items: addEventlListener(), detachEvent(), dispatchEvent(),
fireEvent(), removeEventlListener() methods; Event binding (Chapter 14).

blur()
focus ()
Returns: Nothing.

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v VA v

The b1ur () method removes focus from an element, while the focus () method
gives focus to an element. Even though the b1ur () and focus () methods have
been around since the earliest scriptable browsers, not every focusable object has
enjoyed these methods since the beginning. Browsers prior to IE4 and NN6 limited
these methods primarily to the window object and form control elements.

Windows

For window objects, the b1ur () method (NN3+, [E4+) pushes the referenced win-
dow to the back of all other open windows. If other browser suite windows (such as
e-mail or news reader windows) are open, the window receiving the b1ur () method
is placed behind these windows as well.

Caution The window.blur() method does not adjust the stacking order of the current

window in NN6. But a script in a window can invoke the focus() method of
another window to bring that other window to the front (provided a scriptable
linkage, such as the window. opener property, exists between the two windows).

The minute you create another window for a user in your Web site environment,
you must pay attention to window layer management. With browser windows so
easily activated by the slightest mouse click, a user can lose a smaller window
behind a larger one in a snap. Most inexperienced users don’t think to check the
Windows taskbar or browser menu bar (if the browser is so equipped) to see if a
smaller window is still open and then activate it. If that subwindow is important to
your site design, then you should present a button or other device in each window
that enables users to safely switch among windows. The window. focus () method
brings the referenced window to the front of all the windows.

Rather than supply a separate button on your page to bring a hidden window
forward, you should build your window-opening functions in such a way that if the
window is already open, the function automatically brings that window forward
(as shown in Listing 15-23). This removes the burden of window management from
your visitors.

The key to success with this method is making sure that your references to the
desired windows are correct. Therefore, be prepared to use the window.opener
property to refer to the main window if a subwindow needs to bring the main
window back into focus.

Chapter 15 4 Generic HTML Element Objects

Form elements

The bTur() and focus () methods apply primarily to text-oriented form con-
trols: text input, SELECT, and TEXTAREA elements.

Just as a camera lens blurs when it goes out of focus, a text object “blurs” when
it loses focus — when someone clicks or tabs out of the field. Under script control,
blur() deselects whatever may be selected in the field, and the text insertion
pointer leaves the field. The pointer does not proceed to the next field in tabbing
order, as it does if you perform a blur by tabbing out of the field manually.

For a text object, having focus means that the text insertion pointer is flashing in
that text object’s field. Giving a field focus is like opening it up for human editing.

Setting the focus of a text field or TEXTAREA does not, by itself, enable you to
place the cursor at any specified location in the field. The cursor usually appears at
the beginning of the text. To prepare a field for entry to remove the existing text,
use both the focus() and select () methods in series. Be aware, however, that the
focus () method does not work reliably in Navigator 3 for UNIX clients: While the
select () method selects the text in the designated field, focus is not handed to
the field.

One other caveat about using focus () and select () together to preselect the
content of a text field for immediate editing: Many versions of Internet Explorer fail
to achieve the desired results due to an internal timing problem. You can work
around this problem (and remain compatible with Navigator) by initiating the
focus and selection actions through a setTimeout () method. See Chapter 43 on
data validation for an example.

A common design requirement is to position the insertion pointer at the end of a
text field or TEXTAREA so that a user can begin appending text to existing content
immediately. This is possible in [E4+ with the help of the TextRange object. The fol-
lowing script fragment moves the text insertion pointer to the end of a TEXTAREA
element whose ID is myTextarea:

var range = document.all.myTextarea.createTextRange()
range.move("textedit")
range.select()

You should be very careful in combining blur () or focus () methods with
onBlur and onFocus event handlers — especially if the event handlers display alert
boxes. Many combinations of these events and methods can cause an infinite loop
in which it is impossible to dismiss the alert dialog box completely. On the other
hand, there is a useful combination for older browsers that don’t offer a disabled
property for text boxes. The following text field event handler can prevent users
from entering text in a text field:

onfFocus = "this.blur()"

Some operating systems and browsers enable you to give focus to elements such
as buttons (including radio and checkbox buttons) and hypertext links (encom-
passing both A and AREA elements). Typically, once such an element has focus, you
can accomplish the equivalent of a mouse click on the element by pressing the
spacebar on the keyboard. This is helpful for accessibility to those who have diffi-
culty using a mouse.

157

158

Part Il 4 Document Objects Reference

An unfortunate side effect of button focus in Win32 environments is that the
focus highlight (a dotted rectangle) remains around the button after a user clicks it
and until another object gets focus. You can eliminate this artifact for browsers and
objects that implement the onMouseUp event handler by including the following
event handler in your buttons:

onMouseUp = "this.blur()"

IE5.5 recognizes the often undesirable effect of that dotted rectangle and lets
scripts set the hideFocus property of an element to true to keep that rectangle
hidden while still giving the element focus. It is a tradeoff for the user, however,
because there is no visual feedback about which element has focus.

Other elements

For other kinds of elements that support the focus () method, you can bring an
element into view in lieu of the scrol1IntoView() method. Link (A) and AREA ele-
ments in Windows versions of IE display the dotted rectangle around them after a
user brings focus to them. To eliminate that artifact, use the same

onMouselUp = "this.blur()"

event handler as (or IE5.5 hideFocus property) just described for form controls.
Microsoft increased the breadth of objects that support the bl1ur () and focus()
methods in IE5.

83 the B Example (with Listing 15-23) on the CD-ROM
o Y

,/.

Related Items: window.open(), document.formObject.textObject.select()
methods.

clearAttributes()

Returns: Nothing.

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/ v

The clearAttributes() method removes all attributes from an element except
the NAME and ID values. Thus, styles and event handlers are removed, as are cus-
tom attributes assigned in either the HTML source code or later by script. You
should know that the clearAttributes () method does not alter the length of the
element’s attributes collection because the collection always contains all possi-
ble attributes for an element. (See the attributes property for elements earlier in
this chapter.)

This method is handy if you wish to construct an entirely new set of attributes
for an element and prefer to start out with a blank slate. Be aware, however, that

Chapter 15 4 Generic HTML Element Objects |59

unless your scripts immediately assign new attributes to the element, the
appearance of the element reverts to its completely unadorned form until you
assign new attributes. This means that even positioned elements find their way
back to their source code order until you assign a new positioning style. If you sim-
ply want to change the value of one or more attributes of an element, it is faster to
use the setAttribute() method or adjust the corresponding property.

To accomplish a result in NN6 that simulates that of IE5’s clearAttributes(),
you must iterate through all attributes of an element and remove those attributes
(viathe removeAttribute () method) whose names are other than 1D and NAME.

On the Example on the CD-ROM

CD@II \

Related Items: attributes property; getAttribute(), setAttribute(),
removeAttribute(), mergeAttributes(), and setAttributeNode() methods.

click()

Returns: Nothing.

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility VR v v v v VA v

The c1ick() method lets a script perform nearly the same action as clicking an
element. While this method was available in one form or another since the begin-
ning of scripting, it was available only on INPUT elements that act as buttons (input
type button, reset, submit, radio, and checkbox). Most element objects received the
method in IE4 and NN6.

The behavior of the c11ick() method has also changed over time. Prior to NN4
and [E4, the c11ick() method invoked on a button did not trigger the onC11ick
event handler for the object. This has significant impact if you expect the onC11ick
event handler of a button to function even if a script performs the “click.” For ear-
lier browser versions, you have to invoke the event handler statements directly.
Also, just because a script is “clicking” a button, not all buttons in all platforms
change their appearance in response. For example, NN4 on the Mac does not
change the state of a checkbox when clicked remotely. (Win32 versions of version 4
browsers do change state.)

If you want to script the action of “clicking” a button, you can safely invoke the
resulting event handler function directly. And if the element is a radio button or
checkbox, handle the change of state directly (for example, set the checked prop-
erty of a checkbox) rather than expect the browser to take care of it for you.

Onthe d Example on the CD-ROM

CD@A \
.‘\ ;

160

Part Il 4 Document Objects Reference

Related Item: onC11ick event handler.

cloneNode(deepBoolean)

Returns: Node object reference.

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

The cloneNode () method makes an exact copy of the current node object. This
copy does not have a parent node or other relationship with any element once the
copy exists (of course, the original node remains in place). The clone also does not
become part of the document’s object model unless you explicitly insert or append
the node somewhere on the page. The copy includes all element attributes, includ-
ing the ID attribute. Because the value returned by the cloneNode () method is a
genuine Node object, you can operate on it with any Node object methods while it is
still in the non-document object state.

The Boolean parameter of the cl1oneNode () method controls whether the copy
of the node includes all child nodes (true) or just the node itself (false). For
example, if you clone a paragraph element by itself, the clone consists only of the
raw element (equivalent of the tag pair, including attributes in the start tag) and
none of its content. But including child nodes makes sure that all content within
that paragraph element is part of the copy. This parameter is optional in IE5
(defaulting to false), but it is required in NN6 and the W3C DOM.

On the Example on the CD-ROM

CD@VI \

Related Items: Node object (Chapter 14); appendChild(), removeChild(),
removeNode(), replaceChild(), and replaceNode() methods.

componentFromPoint(x,y)

Returns: String.

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/ v

The componentFromPoint () method assists in some event-related tasks. You
can use it for a kind of collision detection (in other words, to determine whether an
event occurs inside or outside of a particular element). If the element has scroll-
bars, the method can provide additional information about the event such as
precisely which component of the scrollbar the user activates. The method is not
implemented in IE5/Mac.

Chapter 15 4 Generic HTML Element Objects

A key aspect of this method is that you invoke it on any element that you want to
use as the point of reference. For example, if you want to find out if a mouseup event
occurs in an element whose ID is myTab1e, invoke the method as follows:

var result = document.all.myTable.componentFromPoint(event.clientX,
event.clienty)

Parameters passed to the method are x and y coordinates. These coordinates do
not have to come from an event, but the most likely scenario links this method with
an event of some kind. Mouse events (other than c11ck) work best.

The value returned by the method is a string that provides details about where
the coordinate point is with respect to the current element. If the coordinate point is
inside the element’s rectangle, the returned value is an empty string. Conversely, if
the point is completely outside of the element, the returned value is the string "out -
side". For scrollbar pieces, the list of possible returned values is quite lengthy (as
shown in Table 15-8). Microsoft defines additional values representing pieces of ele-
ment resizing handles when the browser is set to what the company calls DHTML
authoring mode in Windows. This mode involves a special ActiveX control that is
outside the scope of this book. Table 15-8 lists these extra values just the same.

Table 15-8 Returned Values for componentFromPoint()

Returned String Element Component at Coordinate Point

scrollbarDown Scrollbar down arrow
scrollbarHThumb

scrollbarLeft

Scrollbar thumb on horizontal bar

Scrollbar left arrow

scrollbarPageDown
scrollbarPageleft
scrollbarPageRight
scrollbarPagelUp
scrollbarRight
scrollbarUp
scrollbarVThumb
handleBottom
handleBottomLeft
handleBottomRight
handleleft
handleRight
handleTop
handleToplLeft
handleTopRight

Scrollbar page-down region
Scrollbar page-left region
Scrollbar page-right region
Scrollbar page-up region
Scrollbar right arrow
Scrollbar up arrow

Scrollbar thumb on vertical bar
Resize handle at bottom
Resize handle at bottom left
Resize handle at bottom right
Resize handle at left

Resize handle at right

Resize handle at top

Resize handle at top left
Resize handle at top right

161

162 Partill + Document Objects Reference

You do not have to use this method for most collision or event detection, how-
ever. The event object’s srcETement property returns a reference to whatever
object receives the event.

83 the Example (with Listing 15-24) on the CD-ROM
o Y

L

Related Item: event object.

contains(elementObjectReference)

Returns: Boolean.

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/ v v

The contains () method reports whether the current object contains another
known object within its HTML containment hierarchy. Note that this is not geo-
graphical collision detection of overlapping elements, but rather the determination
of whether one element is nested somewhere within another.

The scope of the contains () method extends as deeply within the current
object’s hierarchy as is necessary to locate the object. In essence, the contains()
method examines all of the elements that are part of an element’s al1 array.
Therefore, you can use this method as a shortcut replacement for a for loop that
examines each nested element of a container for the existence of a specific element.

The parameter to the contains () method is a reference to an object. If you have
only the element’s ID as a string to go by, you can use the document.all.item()
method to generate a valid reference to the nested element. If the parameter is a
reference to an element that has the same ID as another within the scope of the
method, a script error results because a reference to such an element returns an
array of elements rather than a valid object reference.

'Note An element always contains itself.

Onthe . Example on the CD-ROM

CD@A \
.‘\ ;

Related Items: item(), document.getElementById() methods.

Chapter 15 4+ Generic HTML Element Objects |63

detachEvent ()

See attachEvent ().

dispatchEvent(eventObject)

Returns: Boolean.

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

The dispatchEvent () method allows a script to fire an event aimed at any
object capable of supporting that event. This is the W3C event model way of gener-
alizing mechanisms that earlier browsers sometimes mimic with object methods
such as click() and focus().

The process of generating one of these events is similar to the way a script gen-
erates a new node and inserts that node somewhere in the document object model.
For events, however, the object that is created is an Event object, which is gener-
ated via the document.createEvent () method. An event generated in this manner
is simply a specification about an event. Use properties of an event object to supply
specifics about the event, such as its coordinates or mouse button. Then dispatch
the event to a target object by invoking that target object’s dispatchEvent()
method and passing the newly created Event object as the sole parameter.

Interpreting the meaning of the Boolean value that the dispatchEvent () method
returns is not straightforward. The browser follows the dispatched event through
whatever event propagation is in effect for that object and event type (either bub-
bling or capture). If any of the event listener functions that are triggered by this
dispatched event invoke the preventDefault () method, the dispatchEvent()
method returns false to indicate that the event did not trigger the native action of
the object; otherwise, the method returns true. Notice that this returned value indi-
cates nothing about propagation type or how many event listeners run as a result of
dispatching this event.

Caution While the dispatchEvent () method is implemented in NN6, the browser does
not yet provide a way to generate new events from scratch. And if you attempt to
redirect an existing event to another object via the dispatchEvent () method,
the browser is prone to crashing.

On the Example (with Listing 15-25) on the CD-ROM

CD@VI \
A "W

Related Item: fireEvent () method.

164 Partill + Document Objects Reference

fireEvent("eventType"[, eventObjectRef])

Returns: Boolean.

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

While some objects have methods that emulate physical events (for example,
the c1ick() and focus () methods), IE5.5 generalizes the mechanism by letting a
script direct any valid event to any object. The fireEvent () method is the vehicle.

One required parameter is the event type, formatted as a string. IE event types
are coded just like the property names for event handlers (for example, onc1ick,
onmouseover, and so on).

A second, optional parameter is a reference to an existing event object. This
object can be an event that some user or system action triggers (meaning that the
fireEvent () method is in a function invoked by an event handler). The existing
event can also be an object created by the [E5.5 document.createEventObject()
method. In either case, the purpose of providing an existing event object is to set
the properties of the event object that the fireEvent () method creates. The
event type is defined by the method’s first parameter, but if you have other proper-
ties to set (for example, coordinates or a keyboard key code), then those properties
are picked up from the existing object. Here is an example of a sequence that cre-
ates a new mousedown event, stuffs some values into its properties, and then fires
the event at an element on the page:

var newkEvent = document.createEventObject()
newEvent.clientX = 100

newEvent.clientY = 30

newEvent.cancelBubble = false

newEvent.button = 1
document.all.myElement.fireEvent("onmousedown", newEvent)

Events generated by the fireEvent () method are just like regular IE window.
event objects, and they have several important event object properties that the
browser presets. Importantly, cancelBubble is set to false and returnValue is
set to true —just like a regular user- or system-induced event. This means that if
you want to prevent event bubbling and/or prevent the default action of the event’s
source element, then the event handler functions must set these event object prop-
erties just like normal event handling in IE.

The fireEvent () method returns a Boolean value that the returnValue
property of the event determines. If the returnValue property is set to false
during event handling, then the fireEvent () method returns false. Under normal
processing, the method returns true.

Although the W3C DOM Level 2 event model includes the dispatchEvent ()
method to accommodate script-generated events (and Event object methods to
create event objects), Microsoft has so far elected to ignore the standard recom-
mendation. While there is some similarity between the basic operations of

Chapter 15 4 Generic HTML Element Objects |65

fireEvent() and dispatchEvent(), the two methods diverge significantly in
advanced applications (for example, the way events can propagate and the W3C
notion of an Event object).

83 the » Example (with Listing 15-26) on the CD-ROM

Related Item: dispatchEvent () method.

focus ()
See blur().

getAdjacentText("position")

Returns: String.

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

The getAdjacentText () method enables you to extract plain text components
of an element object (in other words, without any HTML tag information). This
method is not implemented in IE5/Mac. The sole parameter is one of four case-
insensitive string constant values that indicate from where, in relation to the
current object, the text should be extracted. The values are:

Parameter Value Description

beforeBegin Text immediately in front of the element’s tag, back to the
preceding tag

afterBegin Text that begins inside the element tag, up to the next tag
(whether it be a nested element or the element'’s end tag)

beforekEnd Text immediately in front of the element’s end tag, back to the
preceding tag (whether it be a nested element or the
element’s start tag)

afterkEnd Text immediately following the element'’s end tag, forward
until the next tag

If the current object has no nested elements, then the afterBegin and
beforeknd versions both return the same as the object’s innerText property.
When the current object is encased immediately within another element (for exam-
ple, a TD element inside a TR element), there is no text before the element’s begin-
ning or after the element’s end so these values are returned as empty strings.

166 Partill + Document Objects Reference

The strings returned from this method are roughly equivalent to values of text
fragment nodes in the W3C DOM, but IE5 treats these data pieces only as string
data types rather than as text node types. Cross-browser DOM equivalents for the
four versions are:

document.getElementById("objName").previousSibling.nodeValue
document.getElementById("objName").firstChild.nodeValue
document.getETementById("objName").lastChild.nodeValue
document.getElementById("objName").nextSibling.nodeValue

On the Example on the CD-ROM

CD@VI \
A "W

Related Items: childNodes, data, firstChild, TastChild, nextSibling,
nodeValue, and previousSibling properties.

getAttribute("attributeName"[,
caseSensitivity])

Returns: See text.

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/ v/ v/ v

The getAttribute() method returns the value assigned to a specific attribute
of the current object. You can use this method as an alternative to retrieving prop-
erties of an object, particularly when your script presents you with the attribute
name as a string (in contrast to a fully formed reference to an object and its
property). Thus, the following example statements yield the same data:

var mult = document.all.mySelect.multiple
var mult = document.all.mySelect.getAttribute("multiple")

Returned value types from getAttribute() are either strings (including
attribute values assigned as unquoted numeric values) or Booleans (for example,
the multiple property of a SELECT element object).

'Note The W3C DOM Level 2 standard recommends getAttribute() and
~ setAttribute() for reading and writing element object attribute values, rather
than reading and writing those values by way of their corresponding properties.
While using these methods is certainly advisable for XML elements, the same DOM
standard sends conflicting signals by defining all kinds of properties for HTML ele-
ment objects. Browsers, of course, will support access via properties well into the

future, so don't feel obligated to change your ways.

Chapter 15 4 Generic HTML Element Objects |67/

All browsers that support the getAttribute() method require one parameter,
which is a string of the attribute name. By default, this parameter is not case-sensi-
tive. Note that this has impact on custom attributes that you might assign to HTML
or XML elements in your documents. Attribute names are automatically converted
to lowercase when they are turned into properties of the object. Therefore, you
must avoid reusing attribute names, even if you use different case letters in the
source code assignments.

IE includes an optional extension to the method in the form of a second parame-
ter that enables you to be more specific about the case-sensitivity of the first
parameter. The default value of the second parameter is false, which means that
the first parameter is not case-sensitive. A value of true makes the first parameter
case-sensitive. This matters only if you use setAttribute() to add a parameter to
an existing object and in the IE version of that method insists on case-sensitivity.
The default behavior of setAttribute() respects the case of the attribute name.
See also the discussion of the setAttribute() method later in this chapter with
regard to setAttribute()’s influence over the IE attributes property.

On the Example on the CD-ROM

CD-@VI \
A "W

Related Items: attributes property; document.createAttribute(),
setAttribute() methods.

getAttributeNode("attributeName")

Returns: Attribute node object.

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

In the W3C DOM, an attribute is an object that inherits all the properties of a
Node object (see Chapter 14). As its name implies, an attribute object represents a
name-value pair of an attribute that is explicitly defined inside an element’s tag.
The ability to treat attributes as node objects is far more important when working
with XML than HTML, but it is helpful to understand attribute nodes within the con-
text of the W3C DOM object-oriented view of a document. Importantly, attribute
nodes specifically are not recognized as nodes of a document hierarchy. Therefore,
an attribute node is not a child node of the element that defines the attribute.

But the “nodeness” of attributes comes into play when comparing the contents
of an object’s attributes property in the IE and W3C DOM worlds. In IE5+, the
attributes property returns an array of all attributes for an element (whether or
not the attributes are explicitly included in the tag). But the W3C attributes prop-
erty builds on the DOM’s formal structure by returning an object known (internally)
as a named node map. Like an array, the named node map has a 1ength property
(facilitating for loop interation through the map), plus several methods that allow

168

Part Il 4 Document Objects Reference

for inserting, removing, reading, or writing attribute name-value pairs within the
node map. To a script, the value of the attributes property can behave the same
in both IE5 and the W3C DOM provided that scripts don’t have to dig too deeply
into the nature of each object model’s idea of what an attribute object is.

In IE5, an attribute object is a relatively simple object consisting of nodeName,
nodeValue, and specified properties. In the W3C DOM, an attribute object is
something more substantial, primarily because it inherits all the properties of the
Node object. Table 5-9 compares the properties of an attribute object in NN6 and IE5.

Table 15-9 Attribute Object Properties in NN6 and IE5

NN6 IE5

attributes
childNodes
firstChild
TastChild
name

nextSibling

nodeName nodeName
nodeType

nodeValue nodeValue
ownerDocument

parentNode

previousSibling
specified specified

value

Admittedly, the three properties implemented in IE5 are the most important, but
the shortcut approach negates the object-oriented system of the W3C DOM.

All of this is a long way to explain the W3C DOM getAttributeNode () method,
which returns a W3C DOM attribute object. The sole parameter of the method is a
case-insensitive string version of the attribute’s name. You can then use any of the
properties shown in Table 15-9 to get or set attribute values. Of course, HTML
attributes are generally exposed as properties of HTML elements, so it is usually
easier to read or write the object’s properties directly.

\ Example on the CD-ROM

Chapter 15 4 Generic HTML Element Objects

Related Items: attributes property; getAttribute(),
removeAttributeNode(), setAttributeNode() methods.

getBoundingClientRect()

Returns: TextRectangle object.

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

IE5+ assigns to every content-holding element a rectangle that describes the
space that the element occupies on the page. This rectangle is called a bounding
rectangle, and it is expressed in the IE5/Windows object model as a TextRectangle
object (even when the content is an image or some other kind of object). A
TextRectangle object has four properties (top, 1eft, bottom, and right) that are
the pixel coordinates that define the rectangle. The getBoundingClientRect()
method returns a TextRectangle object that describes the bounding rectangle of
the current object. You can access an individual measure of an object’s bounding
rectangle, as in the following example:

var parTop = document.all.myP.getBoundingClientRect().top

For elements that consist of text, such as paragraphs, the dimensions of individual
TextRectangles for each line of text in the element influence the dimensions of the
bounding rectangle. For example, if a paragraph contains two lines, and the second
line extends only halfway across the width of the first line, the width of the second
line’s TextRectangle object is only as wide as the actual text in the second line. But
because the first line extends close to the right margin, the width of the encompass-
ing bounding rectangle is governed by that wider, first line TextRectangle.
Therefore, an element’s bounding rectangle is as wide as its widest line and as tall as
the sum of the height of all TextRectang]le objects in the paragraph.

Another method, getClientRects (), enables you to obtain a collection of line-
by-line TextRectangle objects for an element. Neither method is implemented in
IE5/Mac.

o8 the Example (with Listing 15-27) on the CD-ROM
5 \

\
Related Items: getClientRects() method; TextRectangle object (Chapter 19).

getClientRects()

Returns: Array of TextRectangle objects.

169

170

Part Il 4 Document Objects Reference

CD-

%

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

The getClientRects () method returns an array of all TextRectangle objects
that fall within the current object the moment the method is invoked. Each
TextRectangle object has its own top, 1eft, bottom, and right coordinate prop-
erties. You can then, for example, loop through all objects in this array to calculate
the pixel width of each line. If you want to find out the aggregate height and/or max-
imum width of the entire collection, you can use the getBoundingClientRect()
method as a shortcut. This method is not implemented in IE5/Mac.

Onthe ™ Example on the CD-ROM
4

./.

Related Items: getBoundingClientRect () method; TextRectangle object
(Chapter 19).

getElementsByTagName(" tagName")

Returns: Array of element objects.

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

The getElementsByTagName () method returns an array of all elements of the
current object whose tags match the tag name supplied as the sole parameter to the
method. The tag name parameter must be in the form of a string and is case-insensi-
tive. The group of elements returned in the array includes only those elements that
are within the containment scope of the current object. Therefore, if you have two
table objects in a document and you invoke the getETementsByTagName("td")
method on one of them, the list of returned table cell elements is confined to those
cells within the current table object. The current element is not included in the
returned array.

The W3C DOM (but not implemented in IE5.x/Windows) accepts a wildcard char-
acter ("*") as a parameter to the getETementsByTagName () method. The resulting
array of elements is similar to what [E4+ returns via the document.al1 collection.
See Chapter 14 for ideas on simulating document.al1 in NN6 using this technique.

Internet Explorer provides additional alternate syntax for this method: the
tags () method of the a1l collection. This alternate syntax also works in IE4 (see
the al1 property earlier in this chapter).

Chapter 15 4 Generic HTML Element Objects
Onthe d Example on the CD-ROM
cnw\n \

Related Items: getElementById(), tags() methods.

getExpression("attributeName")

Returns: String.

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

The getExpression() method (not implemented in IE5/Mac) returns the text of
the expression that was assigned to an element’s attribute via the setExpression()
method. The returned value is not the value of the expression, but rather the expres-
sion itself. If you want to find out the current value of the expression (assuming that
the variables used are within the scope of your script), you can use the eval () func-
tion on the call to getExpression(). This action converts the string to a JavaScript
expression and returns the evaluated result.

One parameter, a string version of the attribute name, is required.

On the Example on the CD-ROM

CD@A \

Related Items: document.recalc(), removeExpression(), setExpression()
methods.

hasChildNodes()

Returns: Boolean.

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/ v v

The hasChiTldNodes () method returns true if the current object has child
nodes nested within; it returns false otherwise. A child node is not necessarily the
same as a child element, so the following two expressions return true when the
current object has at least one child node:

document.getElementById("myObject").hasChildNodes()
document.getETementById("myObject").childNodes.length > 0

171

172 Partill + Document Objects Reference

You cannot use the second expression interchangeably with the following state-
ment (which uses the IE-only children property):

document.getETementById("myObject").children.length > 0

You generally use the hasChiTdNodes () method in a conditional expression to
make sure such nodes exist before performing operations on them:

if (document.getElementById("myObject").hasChildNodes() {
statements that apply to child nodes

Onthe""\ Example on the CD-ROM

Related Items: childNodes property; appendChild(), removeChild(),
replaceChild() methods.

insertAdjacentElement(" Jocation",
elementObject)

Returns: Object.

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/ v

The insertAdjacentElement () method (not implemented in IE5/Mac) inserts
an element object (coming from a variety of sources) in a specific position relative
to the current object. Both parameters are required. The first must be one of four
possible case-insensitive locations for the insertion, shown in the following table:

Location Description

beforeBegin Before the current element’s start tag

afterBegin After the start tag, but before any nested content
beforeknd Before the end tag, but after all other nested content
afterknd After the end tag

These locations are relative to the current object. The element type of the cur-
rent object (a block-level or inline element) has great bearing on how the inserted
element is rendered. For example, suppose you create a B element (using docu-
ment.createElement()) and assign some inner text to it. You then use
insertAdjacentElement () in an effort to insert this B element before some text
in a P element. Because a P element is a block-level element, the location

Chapter 15 4 Generic HTML Element Objects |73

beforeBegin places the new B element before the start tag of the P element. This
means, however, that the bold text appears in a text line above the start of the P
element because a <P> tag begins a new block at the left margin of its container
(unless instructed otherwise by style sheets). The resulting HTML looks like the
following:

<{B>The new element.<P>The original paragraph element.</P>

To make the new B element a part of the P element — but in front of the existing
P element’s content—use the afterBegin location. The resulting HTML looks like
the following:

<{P>The new element.The original paragraph element.</P>

To complete the demonstration of the four location types, the following is the
result of the beforeEnd location:

<P>The original paragraph element. The new element.</P>
and this is the result of the afterEnd location:
<P>The original paragraph element.</P>The new element.

The object to be inserted is a reference to an element object. The object refer-
ence can come from any expression that evaluates to an element object or, more
likely, from the result of the document.createElement () method. Bear in mind
that the object generated by document.createElement() initially has no content,
and all attribute values are set to default values. Moreover, the object is passed to
insertAdjacentElement () by reference, which means that there is only one
instance of that object. If you attempt to insert that object in two places with two
statements, the object is moved from the first location to the second. If you need to
copy an existing object so that the original is not moved or otherwise disturbed by
this method, use the cl1oneNode () method to specify the true parameter to cap-
ture all nested content of the node.

Do not use this method to insert new table elements into a table. Instead, use the
many table-specific insertion methods that better treat rows, columns, and cells of
a table (see Chapter 27). And if you wish to insert an element that surrounds the
current element or wraps all of the content of the current element, use the
applyETement () method.

83 the Example on the CD-ROM
- b

Related Items: document.createElement (), applyETement () methods.

insertAdjacentHTML(" Tocation", "HTMLtext")
insertAdjacentText(" Tocation", "text")
Returns: Nothing.

174

Part Il 4 Document Objects Reference

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

These two methods insert HTML or straight text at a location relative to the
current element. They are intended for use after a page loads, rather than inserting
content while the page loads (in which case you can use document.write() wher-
ever you need evaluated content to appear on the page).

The first parameter must be one of four possible case-insensitive locations for
the insertion, shown in the following table:

Location Description

beforeBegin Before the current element’s start tag

afterBegin After the start tag, but before any nested content
beforeEnd Before the end tag, but after all other nested content
afterknd After the end tag

These locations yield the same results as described in the
insertAdjacentElement () function discussed earlier.

Whether you use insertAdjacentHTML() or insertAdjacentText () depends
on the nature of your content and what you want the browser to do with it. If the
content contains HTML tags that you want the browser to interpret and render as if
it were part of the page source code, then use the insertAdjacentHTML() method.
All tags become objects in the document’s object model. But if you want only to
display some text (including HTML tags in their “raw” form), use
insertAdjacentText (). The rendering engine does not interpret any tags
included in the string passed as the second parameter. Instead, these tags are dis-
played as characters on the page. This distinction is identical to the one between
the innerHTML and innerText properties.

The difference between insertAdjacentHTML() and
insertAdjacentElement () is the nature of the content that you insert. The for-
mer enables you to accumulate the HTML as a string, while the latter requires the
creation of an element object. Also, the two methods in this section work with [E4+
(including Mac versions), whereas insertAdjacentElement () requires the newer
object model of IE5 and later.

If the HTML you pass as the second parameter of insertAdjacentHTML()
contains <SCRIPT> tags, you must set the DEFER attribute in the opening tag. This
prevents script statements from executing as you insert them.

For inserting new elements into an existing table, use the variety of table object
methods for managing rows, columns, and cells (see Chapter 27).

Chapter 15 4 Generic HTML Element Objects | 7/5

Onthe d Example on the CD-ROM
CD-@ﬁ\n \

Related Items: innerText, innerHTML, outerText, outerHTML properties;
insertAdjacentElement (), replaceAdjacentText () methods.

insertBefore(newChildNodeObjectl,
referenceChildNode])

Returns: Node object.

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

The insertBefore() method is the W3C DOM syntax for inserting a new child
node into an existing element. Node references for both parameters must be valid
Node objects (including those that document.createElement () generates).

The behavior of this method might seem counter-intuitive at times. If you include
the second parameter (a reference to an existing child node of the current ele-
ment), the new child node is inserted before that existing one. But if you omit the
second parameter (or its value is nul1), the new child node is inserted as the last
child of the current element —in which case, the method acts the same as the
appendChild() method. The true power of this method is summoned when you
specify that second parameter; from the point of view of a parent element, you can
drop a new child into any spot among its existing children.

Bear in mind that the insertBefore() method works from a parent element.
Internet Explorer provides additional methods, such as
insertAdjacentElement(), to operate from the perspective of what will become a
child element.

On the | Example (with Listing 15-28) on the CD-ROM

CD@VI h

Related Items: appendChild(), replaceChild(), removeChild(),
insertAdjacentElement () methods.

item(index | "index" [, subIndex])
Returns: Object.

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v

176

Part Il 4 Document Objects Reference

The item() method works with most objects that are themselves collections of
other objects. In the W3C DOM framework, these kinds of objects are known as
named node lists (for objects such as nodes and attributes) or HTML collections
(for objects such as elements of a form). While the W3C DOM defines the item()
method, it does so with a single numeric parameter that is the index value of the
desired object within the collection. NN6 implements this version. If you know the
index number of the item, you can use JavaScript array syntax instead. The follow-
ing two statements return the same object reference:

document.getETementById("myTable").childNodes.item(2)
document.getETlementById("myTable").childNodes[2]

And for [E’s a11 object, the index value for a given element is the same as the
element’s sourcelndex property.

IE4+ extends the possibilities by also allowing a string of the ID of an object within
the collection. (Integer values are required for the attributes, rules, and
TextRectangle objects, however.) Additionally, if the collection has more than one
object with the same ID (never a good idea except when necessary), a second
numeric parameter enables you to select which identically named group you want
(using zero-based index values within that subgroup). This obviously does not apply
to collections, such as attributes and rules, which have no ID associated with them.

The method returns a reference to the object specified by the parameters.

On the 1 Example on the CD-ROM

CD-@VI \
A "W

CD-

%

Related Items: All object element properties that return collections (arrays) of
other objects.

mergeAttributes("sourcelObject")

Returns: Nothing.

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

The mergeAttributes() method (not implemented in [E5/Mac) is a convenient
way to propagate attributes in newly created elements without painstakingly adding
attributes one at a time. Once you have an object whose attributes can function as a
prototype for other elements, those attributes (except for the 1D attribute) can be
applied to a newly created element instantaneously.

Onthe d Example (with Listing 15-29) on the CD-ROM

i

,/.

Chapter 15 4 Generic HTML Element Objects |7/7/

Related Items: clearAttributes(), cloneNode(), removeAttributes()
methods.

normalize()
Returns: Nothing.

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/

In the course of appending, inserting, removing, and replacing child nodes of an
element, it is conceivable that two text nodes can end up adjacent to each other.
While this typically has no effect on the rendering of the content, some XML-centric
applications that rely heavily on the document node hierarchy to interpret content
properly may not like having two text nodes sitting next to each other. The “proper”
form of a node hierarchy is for a single text node to be bounded by other node
types. The normalize() method sweeps through the child nodes of the current
node object and combines adjacent text nodes into a single text node. The effect
obviously impacts the number of child nodes of an element, but it also cleanses the
nested node hierarchy.

On the Example on the CD-ROM

CD@VI \
A "W

Related Items: document.createTextNode(), appendChild(), insertBefore(),
removeChild(), replaceChild() methods.

releaseCapture()
setCapture(containerBoolean)

Returns: Nothing.

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

You can instruct a single object on an IE5+/Windows page to capture all mouse
events (onmousedown, onmouseup, onmousemove, onmouseout, onmouseover,
onclick, and ondb1c11ck) via the [E-specific setCapture () method. This type of
event capture is somewhat similar to event capture mechanisms of NN4 and NN6
(which are quite different in and of themselves). However, the syntax is entirely
different, as is the overall approach to the code that handles events (see Chapter 29
on the Event object).

178

Part Il 4 Document Objects Reference

A primary scenario for I[E mouse event capture is when some content appears on
the page that you wish to leave as the center of user focus —items such as pull-
down menus, context menus, or simulated modal window areas. When such items
appear on the screen, you want the effect of blocking all mouse events except those
that apply to the menu or currently visible pseudowindow. When the region disap-
pears, mouse events can be released so that individual elements (such as buttons
and links elsewhere on the page) respond to mouse events.

Event capture does not block the events. Instead, the events are redirected to
the object set to capture all mouse events. Events bubble up from that point unless
explicitly cancelled (see Chapter 29). For example, consider a document that has a
<BODY> tag containing an onC11ick event handler that governs the entire document
at all times. If you turn on event capture for a DIV somewhere in the document, the
click event first goes to the DIV. That DIV might have an onC11ick event handler that
looks to process click events when they occur in some of its child elements. If the
event handler for the DIV does not also cancel the bubbling of that click event, the
BODY element’s onC11ck event handler eventually receives and processes the
event, even though the DIV initially captured the event.

Deciding which object should capture events is an important design issue to
confront. With event capture engaged, all mouse events (no matter where they
occur) get funneled to the object set to capture the events. Therefore, if you design
an application whose entire interface consists of clicking and dragging positionable
elements, you can set one of those elements (or even the document object) to
perform the capturing. For pop-up regions, however, it is generally more logical
and convenient for your coding to assign the capture mechanism to the primary
container of the pop-up content (usually a positioned DIV).

The setCapture() method has one optional Boolean parameter. The parameter
controls whether mouse events on child elements within the capturing object are
under control of the event capture mechanism. The default value (true) means that
all mouse events targeted at elements within the current object go to the current
object rather than to the original target — the most likely way you will use
setCapture() for things such as pop-up and context menus. But if you specify
false as the parameter, then mouse events occurring in child elements of the cap-
turing container receive their events directly. From there, regular event bubbling
upward from the target ensues (see Chapter 29).

You may encounter odd behavior when the region you set up to capture mouse
events contains form elements such as text input fields and SELECT lists. Because
these elements require mouse events to gain focus for interaction, the event cap-
ture mechanism inhibits access to these items. To work around this behavior, you
can examine the click event’s srcE1ement property to see if the click was on one of
these elements and script the focus of that element (or instruct the user to press
the Tab key until the element gets focus manually).

Once an object is set to capture events, your other code must define which
events actually do something; and decide whether events should bubble up beyond
the capturing element. You need to worry about bubbling only if your design
includes mouse event handlers in elements higher up the element containment
hierarchy. You may not wish for those event handlers to fire while event capture is
on; in this case, you need to cancel the bubbling of those events in the capturing
object.

Chapter 15 4 Generic HTML Element Objects | 7/9

If your application design requires that the pop-up area be hidden and event han-
dling be returned to normal (such as after the user makes a pop-up menu selec-
tion), use the releaseCapture() method in conjunction with hiding the container.
Because event capture can be engaged for only one element at a time, you can
release capture by invoking the releaseCapture() method from the container or
from the document object.

Event capture is automatically disengaged when the user performs any of the
following actions:

4+ Gives focus to any other window

4+ Displays any system modal dialog window (for example, alert window)
4 Scrolls the page

4+ Opens a browser context menu (by right-clicking)

4 Tabs to give focus to the Address field in the browser window

Therefore, you may want to set the document object’s onLoseCapture event
handler to hide any container that your script displays in concert with event
capture.

Also be aware that even though mouse events may be captured to prevent
mouse access to the rest of the page, keyboard events are not captured. Thus,
using the event capture mechanism to simulate modal windows is not foolproof: a
user can tab to any form element or link in the page and press the spacebar or
Enter key to activate that element.

Event capture, as defined in the W3C DOM, operates differently from IE event
capture. In the W3C DOM, you can instruct the browser to substitute event capture
of any kind of event for the normal event bubbling behavior. For example, you can
attach an event listener to the BODY element in such a way that it sees all click
events aimed at elements contained by the BODY element before the events reach
their target elements. (See Chapters 14 and 29 for more on the W3C DOM event
model and how to integrate it into cross-browser applications.)

On the | Example (with Listing 15-30) on the CD-ROM

CD@VI \
\

Related Items: addEventlListener(), dispatchEvent(), fireEvent(),

removeEventlistener() methods; onTosecapture event; Event object

(Chapter 29).
removeAttribute("attributeName"[,
caseSensitivity])

Returns: Boolean (IE); Nothing (NN).

180

Part Il 4 Document Objects Reference

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v

If you create an attribute with the setAttribute() method, you can eliminate
that attribute from the element object via the removeAttribute() method. The
required parameter is the name of the attribute. I[E4+ permits you to set and remove
attributes such that the attribute names are case-sensitive. The default behavior of
removeAttribute() inIE (the second parameter is a Boolean value) is false.
Therefore, if you supply a value of true for the case-sensitivity parameter in
setAttribute(), you should set the parameter to true in removeAttribute() to
ensure a proper balance between created and removed attributes.

The NN6 (and W3C) version of the removeAttribute() method has a single
parameter (a case-insensitive attribute name) and returns no value. The returned
value in IE is true if the removal succeeds and false if it doesn’t succeed (or the
attribute is one that you set in some other manner).

On the Example on the CD-ROM

CD@VI \
A "W

Related Items: attributes property; document.createAttribute(),
getAttribute(), and setAttribute() methods.

removeAttributeNode(attributeNode)
setAttributeNode(attributeNode)

Returns: Attribute object.

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/

As discussed in the coverage of the getAttributeNode () method earlier in this
chapter, the W3C DOM treats a name-value attribute pair as an attribute object. An
attribute object is a distinct node within a named node map — a collection of
attribute objects belonging to an element. Understanding named node maps and
attribute objects is more useful in an XML environment where attributes cannot
only contain valuable data, but are not exposed to the document object model as
properties you can access via script. Instead of accessing an object’s properties,
you work with the actual attributes.

If you want to insert an attribute in the formal W3C methodology, you can use
document.createAttribute() to generate a new attribute object. Subsequent
script statements assign values to the nodeName and nodeValue properties to give
the attribute its traditional name-value pair. You can then insert that new attribute

Chapter 15 4 Generic HTML Element Objects] 8]

object into the attribute list of an object via the setAttributeNode () method. The
sole parameter is an attribute object, and the return value is a reference to the
newly inserted attribute object.

To remove an attribute node from an element using this syntax, employ the
removeAttributeNode () method. Again, the sole parameter is an attribute object.
If your script knows only the attribute’s name, you can use getAttributeNode()
to obtain a valid reference to the attribute object. The removeAttributeNode()
method returns a reference to the removed attribute object. That object remains in
the browser’s memory, but it is not part of the document hierarchy. By capturing
this removed attribute object in a variable, you have the flexibility to modify and
assign it to another object elsewhere in the document.

Caution A bug in NN6 prevents the setAttributeNode() method from returning a ref-
erence to an attribute when the attribute being set is not specified in the ele-
ment's tag. The new attribute succeeds in becoming part of the element, but your
script does not automatically receive a reference to it. This behavior may disrupt a
design plan to create an attribute node via document.createAttribute(),
insert the new attribute temporarily via setAttributeNode(), and use
the reference returned by setAttributeNode() as the parameter to
removeAttributeNode() later.

In practice, you may rarely, if ever, need to address attributes as nodes. Other
methods —notably getAttribute(), removeAttribute(), and
setAttribute()—do the job when your scripts have only the name (as a string)
of an attribute belonging to an element.

On the Example on the CD-ROM

CD@VI \
A W

Related Items: attributes property; document.createAttribute(),
getAttribute(), getAttributeNode(), setAttribute() methods.

removeBehavior(ID)

Returns: Boolean.

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

The removeBehavior() method detaches a behavior from an object. It assumes
that the behavior was added to the object via the addBehavior() method. The
return value of the addBehavior() method is a unique identifier for that particular
behavior. This identifier is the required parameter for the removeBehavior()
method. Thus, you can add two behaviors to an object and remove just one of them
if so desired. If the removal succeeds, the removeBehavior() method returns
true; otherwise, it returns false.

182 Partill + Document Objects Reference
Onthe & Example on the CD-ROM
cn-@ﬁ\n \
W
Related Item: addBehavior () method.

removeChild(nodeObject)

Returns: Node object reference.

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

The removeChild() method erases a child element from the current element.
Content associated with the child element is no longer visible on the page, and the
object is no longer part of the document object hierarchy.

As destructive as that sounds, the specifications for the deleted object are not
lost to the ether necessarily. The removeChild() method returns a reference to the
removed node. By assigning this value to a variable, you can hold onto that object
specification for insertion later in the session. You are free to use this value as a
parameter to such methods as appendChild(), repTaceChild(), swapNode(),
and insertBefore().

Remember that removeChild() is invoked from the point of view of a parent
element. If you simply want to remove an element, you can do so more directly
(in IE5+) with the removeNode () method.

g[r; the d Example on the CD-ROM
o h

Related Items: appendChild(), replaceChild(), removeNode() methods.

removeEventListener()

See addEventListener().

removeExpression("propertyName")

Returns: Boolean.

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

If you assign an expression to an object property (including an object’s style
object) via the setExpression() method, you can remove it under script control

Chapter 15 4 Generic HTML Element Objects |83

with the removeExpression() method. The sole parameter is the name of the
property in string form. Property names are case-sensitive.

The method returns true if the removal succeeds; otherwise, false is returned.
Be aware that removing an expression does not alter the value that is currently
assigned to the property. In other words, you can use setExpression() to seta
property’s value and then remove the expression so that no further changes are
made when the document recalculates expressions. If this is your goal, however,
you are probably better served by simply setting the property directly via scripting.

Onthe . Example on the CD-ROM

CD@A \
.‘\ ;

Related Items: document.recalc(), getExpression(), setExpression()
methods.

removeNode(removeChildrenFlag)

Returns: Node object reference.

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

You can use the removeNode () method to delete the current node from an
element hierarchy in IE5+. The sole parameter is a Boolean value that directs the
method to remove only itself (without its child nodes) or the node and all of its
children (value of true). Exercise care with this method when you use a default
parameter value of false: If the node has child nodes (for example, you attempt to
remove a TABLE but not its child nodes), IE5 can crash on you. However, you can
safely remove the node and all of its children.

The method returns a reference to the node object removed. This removed object
is no longer accessible to the document object model. But the returned value con-
tains all properties of the object as it existed before you removed it (including prop-
erties such as outerHTML and explicitly set style sheet rules). Thus, you can use this
value as a parameter to insert the node elsewhere in the document.

While the W3C and Navigator 6 DOM do not have a removeNode () method, the
cross-browser method whose behavior most closely resembles removeNode() is
the removeChild() method. The scope of the removeChi1d() method is one level
up the object hierarchy from the object you use for the removeNode () method.

On the Example on the CD-ROM

CD@VI \
A "W

Related Items: Node object; appendChild(), cloneChild(), removeChild(),
replaceChild(), replaceNode() methods.

184 Partill + Document Objects Reference

CD-

A

replaceAdjacentText(" location™, "text")

Returns: String.

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

The replaceAdjacentText () method (not implemented in IE5/Mac) enables
you to replace one chunk of document text with another in a specific position
relative to the current object. Be aware that this method works only for plain text
and not HTML tags. The returned value is the string of the text that you replace.

Both parameters are required. The first must be one of four possible case-
insensitive locations for the insertion, shown in the following table:

Location Description

beforeBegin Before the current element’s start tag

afterBegin After the start tag, but before any nested content
beforeEnd Before the end tag, but after all other nested content
afterkEnd After the end tag

This method is best used with inline (rather than block) elements when specify-
ing the beforeBegin and afterEnd parameters. For example, if you attempt to use
replaceAdjacentText () with beforeBegin on the second of two consecutive
paragraph elements, the replacement text is inserted into the end of the first
paragraph. You can think of the replaceAdjacentText () method in terms of text
fragment nodes (even though IE5 does not fully support this W3C DOM feature).
The method replaces the text fragment node (given any one of the four position
parameters) with new text. Replacing the text of a simple element with either the
afterBeginor beforeknd locations is the same as assigning that text to the
object’s innerText property.

On the Example on the CD-ROM

,/.

Related Items: innerText, outerText properties; getAdjacentText (),
insertAdjacentHTML(), insertAdjacentText () methods.

replaceChild(newNodeObject, oldNodeObject)

Returns: Node object reference.

Chapter 15 4 Generic HTML Element Objects |85

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

The replaceChild() method enables you to swap an existing child node object
for a new node object. Parameters for the replaceChild() method are node
object references, and they must be in the order of the new object followed by the
object you want to replace. The old object must be an immediate child node of the
parent used to invoke the method, and the new object must also be a “legal” child
element within the document containment hierarchy.

The method returns a reference to the child object that you replaced with the
new object. This reference can be used as a parameter to any of the node-oriented
insertion or replacement methods.

Remember that replaceChild() is invoked from the point of view of a parent
element. If you simply want to change an element, you can do so more directly with
the swapNode () method (or, in IE5, the replaceNode () method).

On the Example on the CD-ROM

CD@VI \
A "W

Related Items: appendChild(), removeChild(), replaceNode(), swapNode()
methods.

replaceNode(newNodeObject)

Returns: Node object reference.

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

The replaceNode () method (not implemented in IE5/Mac) is related to the
replaceChild() method, but you invoke this method on the actual node you want
to replace (instead of the object’s parent). The sole parameter is a reference to a
valid node object, which you can generate via the document.createkElement()
method or copy from an existing node. The value returned from the method is a
reference to the object that you replace. Thus, you can preserve a copy of the
replaced node by storing the results in a variable for use later.

If the node you replace contains other nodes, the replaceNode () method
removes all contained nodes of the original from the document. Therefore, if you
want to change a wrapper node but want to maintain the original children, your
script must capture the children and put them back into the new node as shown in
the following example.

186 Partill + Document Objects Reference

Onthe . Example (with Listing 15-31) on the CD-ROM
CD-@ﬁ\n \

Related Items: removeChild(), removeNode(), replaceChild(), swapNode()
methods.

scrollIntoView(topAlignFlag)

Returns: Nothing.

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/ v/ v

The scrollIntoView() method scrolls the page (vertically and/or horizontally
as needed) such that the current object is visible within the window or frame that
contains it. A single parameter, a Boolean value, controls the location of the ele-
ment within the viewable space. A value of true (the default) causes the element to
be displayed so that its top is aligned with the top of the window or frame (pro-
vided the document beneath it is long enough to allow this amount of scrolling).
But a value of false causes the bottom of the element to align with the bottom of
the viewable area. In most cases, you want the former so that the beginning of a
page section is at the top of the viewable area. But if you don’t want a user to see
content below a certain element when you jump to the new view, then use the
false parameter.

For form elements, you must use the typical form element reference (document.
formName.elementName.scrollIntoView()) unless you also specify an ID
attribute for the element (document.all.elementID.scrollIntoView()).

On the Example on the CD-ROM

CD@VI \
.‘\\)

Related Items: window.scrol1(), window.scrol1By(),window.scrol1To()
methods.

setActive()

Returns: Nothing.

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

The setActive() method lets a script designate an element object as the active
element. However, unlike the focus () method, the window does not scroll the

Chapter 15 4 Generic HTML Element Objects |87/

active element into view. Any onFocus event handler defined for the element fires
when setActive() is invoked, without the browser giving the element focus.

Onthe . Example on the CD-ROM

CD-@?\A \
.‘\ ;

Related Item: focus () method.

setAttribute("attributeName", valuel,
caseSensitivity]l)
Returns: Nothing.

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/ v/ v/ v

The setAttribute() method assigns a new value to an existing attribute of the
current object or inserts an entirely new attribute name-value pair among the
attributes of the current object. This method represents an alternative syntax to
setting a property of the object directly.

Note The W3C DOM Level 2 standard recommends getAttribute() and
~— setAttribute() for reading and writing element object attribute values, rather
than reading and writing those values by way of their corresponding properties.
While using these methods is certainly advisable for XML elements, the same DOM
standard sends conflicting signals by defining all kinds of properties for HTML ele-
ment objects. Browsers, of course, will support access via properties well into the

future, so don't feel obligated to change your ways.

The first two parameters of setAttribute() are required. The first is the name
of the attribute. The default behavior of this method respects the case of the
attribute name. Therefore, if you use setAttribute() to adjust the value of an
existing attribute in default mode, the first parameter must match the case of the
attribute as known by the object model for the current document. Remember that
all names of all attributes assigned as inline source code attributes are automati-
cally converted to lowercase letters.

A value you assign to the attribute is the second parameter. For cross-browser
compatibility, the value should be either a string or Boolean data type.

IE provides an optional third parameter to control the case-sensitivity issue for
the attribute name. The default value (true) has a different impact on your object
depending on whether you use setAttribute() to assign a new attribute or
reassign an existing one. In the former case, the third parameter as true means
that the attribute name assigned to the object observes the case of the first param-
eter. In the latter case, the third parameter as true means that the attribute isn’t

188

Part Il 4 Document Objects Reference

CD-

A

reassigned unless the first parameter matches the case of the attribute currently
associated with the object. Instead, a new attribute with a different case sequence
is created.

Attempting to manage the case-sensitivity of newly created attributes is fraught
with peril, especially if you try to reuse names but with different case sequences. |
strongly recommend using default case-sensitivity controls for setAttribute()
and getAttribute().

[E4+ imposes some limitations on the action resulting from the setAttribute()
method. Any attribute you add via setAttribute() does not become part of the
attributes collection associated with the element. While you can extract the
value of such a newly added attribute via getAttribute(), you cannot access the
new attribute from the attributes collection. Thus, after creating a new attribute
as follows:

document.all.myTable.setAttribute("currYear", (new Date()).getFullYear())
you can access that attribute value through either of the following two statements:

var tableYear = document.all.myTable.getAttribute("curryear")
var tableYear = document.all.myTable.currYear

However, you cannot access the attribute value with the following statement:
var tableYear = document.all.myTable.attributes["currYear"]

See also the W3C DOM facilities for treating attributes as node objects in the dis-
cussions of the getAttributeNode() and removeAttributeNode () methods ear-
lier in this chapter.

Onthe ™ Example on the CD-ROM

i

./.

Related Items: attributes property; document.createAttribute(),
getAttribute(), getAttributeNode(), removeAttribute(),
removeAttributeNode(), setAttributeNode() methods.

setAttributeNode()

See removeAttributeNode().

setCapture(containerBoolean)

See releaseCapture().

setExpression("propertyName",

"expression"," language")

Returns: Nothing.

Chapter 15 4 Generic HTML Element Objects

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

Use the setExpression() method (not implemented in IE5/Mac) to assign the
result of an executable expression to the value of an element object property. This
method can assign values to both HTML element objects and style objects that
belong to them.

The setExpression() method is a scripted way of assigning expressions to
attributes. But you can also assign expressions directly to style sheet definitions in
the HTML tag of an element using the expression() syntax, as in the following
example:

<P STYLE="width:expression(document.body.style.width * 0.75)">

The setExpression() method requires three parameters. The first parameter is
the name of the property (in string form) to which you assign the expression.
Property names are case-sensitive. The second parameter is a string form of the
expression to be evaluated to supply a value for the property. Expressions can refer
to global variables or properties of other objects in the same document (provided
the property is anything other than an array). An expression may also contain math
operators.

Pay close attention to the data type of the evaluated value of the expression. The
value must be a valid data type for the property. For example, the URL of the body
background image must be a string. But for numeric values, you can generally use
number and string types interchangeably because the values are converted to the
proper type for the property. Even for expressions that evaluate to numbers,
encase the expression inside quotes. It may not be necessary in all cases, but if you
get into the habit of using quotes, you’ll have fewer problems for strings or complex
expressions that require them.

You are not limited to using JavaScript as the language for the expression
because you also specify the scripting language of the expression in the third
parameter. Acceptable parameter values for the language are

JScript
VBScript
JavaScript

For all intents and purposes, JScript and JavaScript are the same. Both languages
are ECMA-262 compatible.

One reason to use setExpression() for dynamic properties is to let the prop-
erty always respond to the current conditions on the page. For example, if you set a
property that is dependent on the current width of the body, then you want a recal-
culation that is applied to the property if the user resizes the window. The browser
automatically responds to many events and updates any dynamic properties. In
essence, the browser recalculates the expressions and applies the new values to
the property. Keyboard events, in particular, trigger this kind of automatic recalcu-
lation for you. But if your scripts perform actions on their own (in other words, not

189

190

Part Il 4 Document Objects Reference

triggered by events), then your scripts need to force the recalculation of the expres-
sions. The document.recalc() method takes care of this, but you must invoke it
to force the recalculation of dynamic properties in these cases.

83 the » Example (with Figure 15-1 and Listing 15-32) on the CD-ROM
- h

Related Items: document.recalc(), removeExpression(), setExpression()
methods.

swapNode(otherNodeObject)

Returns: Node object reference.

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/ v

The swapNode () method (not implemented in IE5/Mac) exchanges the positions
of two nodes within an element hierarchy. Contents of both nodes are preserved in
their entirety during the exchange. The single parameter must be a valid node
object (perhaps created with document.createElement () or copied from an exist-
ing node). A return value is a reference to the object whose swapNode () method
was invoked.

Onthe d Example on the CD-ROM

CD@A \
.‘\ ;

Related Items: removeChild(), removeNode(), replaceChild(), replaceNode()
methods.

tags(" tagName")

Returns: Array of element objects.

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/ v v

The tags () method does not belong to every element, but it is a method of
every collection of objects (such as al1l, forms, and elements). The method is

Chapter 15 4 Generic HTML Element Objects

best thought of as a kind of filter for the elements that belong to the current collec-
tion. For example, to get an array of all P elements inside a document, use this
expression:

document.all.tags("P")

You must pass a parameter string consisting of the tag name you wish to extract
from the collection. The tag name is case-insensitive.

The return value is an array of references to the objects within the current
collection whose tags match the parameter. If there are no matches, the returned
array has a length of zero. If you need cross-browser compatibility, use the
getElementsByTagName () method described earlier in this chapter.

On the | \ Example on the CD-ROM

CD@VI

Related Item: getETementsByTagName () method.

urns("behaviorURN")

"Note

Returns: Array of element objects.

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

The urns () method does not belong to every element, but it is a method of
every collection of objects. You must pass a parameter string consisting of the URN
(Uniform Resource Name) of a behavior resource (most typically . htc for IE5)
assigned to one or more elements of the collection. The parameter does not include
the extension of the filename. If there is no matching behavior URN for the specified
parameter, the urns () method returns an array of zero length. This method is
related to the behaviorUrns property, which contains an array of behavior URNs
assigned to a single element object.

Neither the behaviorUrns property nor the urns () method appear to be work-

~~ ing as described by Microsoft. Perhaps the potential exposure of URNs by script

was deemed a privacy risk. As proven thus far with IE5 for Win32, the urns()
method always returns an array of zero length.

On the \ Example on the CD-ROM

cD; @m

Related Item: behaviorUrns property.

191

192

Part Il 4 Document Objects Reference

Event handlers

onActivate
onBeforeDeactivate
onDeactivate

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

The onActivate and onDeactivate event handlers are new with IE5.5. But in
some circumstances, they are very similar to the onFocus and onBlur event han-
dlers, respectively. If an element receives focus, the onActivate event fires for that
element just before the onFocus event fires; conversely, just prior to the element
losing focus, events fire in the sequence: onBeforeDeactivate, onDeactivate,
onBlur. Only elements that, by their nature, can accept focus (for example, links
and form input controls) or that have a TABINDEX attribute set can become the
active element (and therefore fire these events).

IE5.5 maintains the original onFocus and onB1ur event handlers. But because
the behaviors are so close to those of the onActivate and onDeactivate events, |
don’t recommend mixing the old and new event handler names in your coding
style. If you script exclusively for [E5.5+, then you can use the new terminology
throughout.

On the Example on the CD-ROM

CD@VI \
A "W

Related Items: onB1ur, onFocus event handlers.

onBeforeCopy

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

The onBeforeCopy event handler (not implemented in IE5/Mac) fires before the
actual copy action takes place whenever the user initiates a content copy action via
the Edit menu (including the Ctrl+C keyboard shortcut) or the right-click context
menu. If the user accesses the Copy command via the Edit or context menu, the
onBeforeCopy event fires before either menu displays. In practice, the event may
fire twice even though you expect it only once. Just because the onBeforeCopy
event fires, it does not guarantee that a user will complete the copy operation (for
example, the context menu may close before the user makes a selection).

Unlike paste-related events, the onBeforeCopy event handler does not work with
form input elements. Just about any other HTML element is fair game, however.

Chapter 15 4 Generic HTML Element Objects |93

gg the Example (with Listing 15-33) on the CD-ROM
o h

Related Items: onBeforeCut, onCopy event handlers.

onBeforeCut

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

The onBeforeCut event handler fires before the actual cut action takes place
whenever the user initiates a content cut via the Edit menu (including the Ctrl+X
keyboard shortcut) or the right-click context menu. If the user accesses the Cut
command via the Edit or context menu, the onBeforeCut event fires before either
menu displays. In practice, the event may fire twice even though you expect it only
once. Just because the onBeforeCut event fires, it does not guarantee that a user
will complete the cut operation (for example, the context menu may close before
the user makes a selection). If you add the onBeforeCut event handler to an HTML
element, the context menu usually disables the Cut menu item. But assigning a
JavaScript call to this event handler brings the Cut menu item to life.

On the Example on the CD-ROM

CD@VI \
.‘\\)

Related Items: onBeforeCopy, onCut event handlers.

onBeforeDeactivate

See: onActivate event handler.

onBeforeEditFocus

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

The onBeforekEditFocus event handler (not implemented in IE5/Mac) is trig-
gered whenever you edit an element on a page in an environment such as
Microsoft’s DHTML Editing ActiveX control or with the editable page content fea-
ture of IE5.5. This discussion focuses on the latter scenario because it is entirely
within the scope of client-side JavaScript. The onBeforeEditFocus event fires just
before the element receives its focus. (There may be no onscreen feedback that
editing is turned on unless you script it yourself.) The event fires each time a user
clicks the element, even if the element just received edit focus elsewhere in the
same element.

194 Partill + Document Objects Reference

Onthe d Example on the CD-ROM
CD-@ﬁ\n \

Related Items: document.designMode, contentEditable, isContentEditable

properties.
onBeforePaste
NN2 NN3 NN4 NNe6 1IE3/J1 1E3/)2 1E4 1E5 1E5.5
Compatibility v v

Like onBeforeCopy and onBeforeCut, the onBeforePaste event (not imple-
mented in IE5/Mac) occurs just prior to the display of either the context or menu
bar Edit menu when the current object is selected (or has a selection within it). The
primary value of this event comes when you use scripts to control the copy and
paste process of a complex object. Such an object may have multiple kinds of data
associated with it, but your script captures only one of the data types. Or, you may
want to put some related data about the copied item (for example, the id property
of the element) into the clipboard. By using the onBeforePaste event handler to
set the event.returnValue property to false, you guarantee that the pasted item
is enabled in the context or Edit menu (provided the clipboard is holding some
content). A handler invoked by onPaste should then apply the specific data subset
from the clipboard to the currently selected item.

On the Example on the CD-ROM

CD@VI \
\

Related Items: onCopy, onCut, onPaste event handlers.

onBlur

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v VN v

The onBTur event fires when an element that has focus is about to lose focus
because some other element is about to receive focus. For example, a text input
element fires the onB1ur event when a user tabs from that element to the next one
inside a form. The onB1lur event of the first element fires before the onFocus event
of the next element.

The availability of the onB1ur event has expanded with succeeding generations
of script-capable browsers. In the earlier versions, blur and focus were largely con-
fined to text-oriented input elements (including the SELECT element). These are
safe to use with all scriptable browser versions. The window object received the

CD-

2%

Chapter 15 4 Generic HTML Element Objects

onBlur event handler starting with NN3 and IE4. IE4 also extended the event han-
dler to more form elements, predominantly on the Windows operating system
because that OS has a user interface clue (the dotted rectangle) when items such as
buttons and links receive focus (so that you may act upon them by pressing the
keyboard’s spacebar). For IE5, the onB1ur event handler is available to virtually
every HTML element. For most of those elements, however, blur and focus are not
possible unless you assign a value to the TABINDEX attribute of the element’s tag.
For example, if you assign TABINDEX=1 inside a <P> tag, the user can bring focus to
that paragraph (highlighted with the dotted rectangle in Windows) by clicking the
paragraph or pressing the Tab key until that item receives focus in sequence.

If you plan to use the onB1ur event handler on window or text-oriented input
elements, be aware that there might be some unexpected and undesirable conse-
quences of scripting for the event. For example, in IE, a window object that has
focus loses focus (and triggers the onB1ur event) if the user brings focus to any
element on the page (or even clicks a blank area on the page). Similarly, the interac-
tion between onBlur, onFocus, and the alert () dialog box can be problematic
with text input elements. This is why [generally recommend using the onChange
event handler to trigger form validation routines. If you should employ both the
onBlur and onChange event handler for the same element, the onChange event
fires before onB1ur. For more details about using this event handler for data valida-
tion, see Chapter 43.

IE5.5 adds the onDeactivate event handler, which fires immediately before the
onBlur event handler. Both the onBlur and onDeactivate events can be blocked
if the onBeforeDeactivate event handler function sets event.returnValue to
false.

Onthe \ Example (with Listing 15-34) on the CD-ROM
4

./.

Related Items: b1ur (), focus() methods; onDeactivate, onBeforeDeactivate,
onFocus, onActivate event handlers.

onClick

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v v v v

The onC11ick event fires when a user presses down (with the primary mouse
button) and releases the button with the pointer atop the element (both the down
and up strokes must be within the rectangle of the same element). The event also
fires with non-mouse click equivalents in operating systems such as Windows 95
and later. For example, you can use the keyboard to give focus to a clickable object
and then press the spacebar or Enter key to perform the same action as clicking the
element. In IE, if the element object supports the c1ick() method, the onC11ck
event fires with the invocation of that method (notice that this does not apply to
Navigator).

195

196

Part Il 4 Document Objects Reference

The availability of the onC11ck event has expanded with succeeding generations
of script-capable browsers. In the earlier versions, the event was limited primarily
to button style input elements (including checkbox and radio input elements) and
links (A elements with HREF attributes assigned to them). You can safely use this
event handler for elements that date back to the earliest scriptable browsers. In
Navigator 4, the AREA element gained the onC11ck event (and window, document,
and Tayer objects could capture onC11ick events, as described in Chapter 29). In
IE4+, virtually every element that you can see on a page can have an onC1ick event
handler defined for it and thereby respond to user clicks.

Beginning with version 4 browsers, scripters could access more mouse-related
events. It is important to know the sequence of these incremental events as a user
clicks or double-clicks an element. The other related events are onMouseDown,
onMouseUp, and onDoubTeCTlick. The onMouseDown event fires when the user
makes contact with the mouse switch on the downstroke of a click action. Next
comes the onMouselUp event (when the contact breaks). Only then does the
onC1ick event fire— provided that the onMouseDown and onMouseUp events have
fired in the same object. See the discussions on the onMouseDown and onMouselUp
events later in this chapter for examples of their usage.

Interaction with the onDb1C11ck event is simple: the onC11ick event fires first
(after the first click), followed by the onDb1C11 ck event (after the second click).
See the discussion of the onDb1C11 ck event handler later in this chapter for more
about the interaction of these two event handlers.

When used with objects that have intrinsic actions when users click them
(namely links and areas), the onC11ck event handler can perform all of the action —
including navigating to the destination normally assigned to the HREF attribute of
the element. For example, to be compatible with all scriptable browsers, you can
make an image clickable if you surround its tag with an <A> link tag. This lets the
onC1ick event of that tag substitute for the missing onC11ck event handler of ear-
lier tags. If you assign an onC11ck event handler without special protection,
the event handler will execute and the intrinsic action of the element will be carried
out. Therefore, you need to block the intrinsic action. To accomplish this, the event
handler must evaluate to the statement return false. You can do this in two ways.
The first is to append a return false statement to the script statement assigned to
the event handler:

<IMG...>

As an alternative, you can let the function invoked by the event handler supply
the false part of the return false statement, as shown in the following
sequence:

function yourFunction() {
[statements that do something here]
return false

}

<IMG...>

Either methdology is acceptable. A third option is to not use the onC11ick event
handler at all, but assign a javascript: pseudo-URL to the HREF attribute (see the
link object in Chapter 21).

CD-

%

Chapter 15 4 Generic HTML Element Objects

The event model in IE5+ provides one more way to prevent the intrinsic action of
an object from firing when a user clicks it. If the onC11ck event handler function
sets the returnValue property of the event object to false, the intrinsic action is
cancelled. Simply include the following statement in the function invoked by the
event handler:

event.returnValue = false

The event model of the W3C DOM has a different approach to cancelling the
default action. In the event handler function for an event, invoke the event0bj.
cancelDefault() method.

A common mistake made by scripting beginners is to use a submit type input
button as a button intended to perform some script action rather than submitting a
form. The typical scenario is an INPUT element of type submit assigned an
onC1lick event handler to perform some local action. The submit input button has
an intrinsic behavior, just like links and areas. While you can block the intrinsic
behavior, as just described, you should use an INPUT element of type button.

If you are experiencing difficulty with an implementation of the onC11ick event
handler (such as trying to find out which mouse button was used for the click), it
may be that the operating system or default browser behavior is getting in the way
of your scripting. But you can usually get what you need via the onMouseDown
event handler. (The onMouseUp event may not fire when you use the secondary
mouse button to click an object.) Use the onC11ick event handler whenever
possible to capture user clicks because this event behaves most like users are
accustomed to in their daily computing work. But fall back on onMouseDown in an
emergency.

Onthe . Example (with Listing 15-35) on the CD-ROM
i\

./.

Related Items: c11ick() method; onContextMenu, onDb1CT1ick, onMouseDown,
onMouseUp event handlers.

onContextMenu

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

The onContextMenu event (not implemented in IE5/Mac) fires when the user
clicks an object with the secondary (usually the right-hand) mouse button. The
only click-related events that fire with the secondary button are onMouseDown and
onContextMenu.

To block the intrinsic application menu display of the onContextMenu event, use
any of the three event cancellation methodologies available in I[E5+ (as just
described in the onC11ick event handler description: two variations of evaluating
the event handler to return false; assigning false tothe event.returnValue

197

198

Part Il 4 Document Objects Reference

property). It is not uncommon to wish to block the context menu from appearing so
that users are somewhat inhibited from downloading copies of images or viewing
the source code of a frame. Be aware, however, that if a user turns Active Scripting
off in [E5+, the event handler cannot prevent the context menu from appearing.

Another possibility for this event is to trigger the display of a custom context
menu constructed with other DHTML facilities. In this case, you must also disable
the intrinsic context menu so that both menus do not display at the same time.

On the Example on the CD-ROM

CD@VI \
A\ Y

Related Items: releaseCapture(), setCapture() methods.

onControlSelect

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

The onControlSelect event should fire just before a user makes a selection on
what Microsoft calls a control selection. Microsoft is less than clear in explaining
what a control selection is, but it appears to have something to do with a user edit
mode. [have not been able to have this event fire naturally in IE5.5. If | receive fur-
ther details, they will appear at the JavaScript Bible Support Center
(http://www.dannyg.com).

Related Items: onResizeEnd, onResizeStart event handlers.

onCopy
onCut
NN2 NN3 NN4 NNé6 IE3/) 1IE3/)2 IE4 IE5 IE5.5
Compatibility v v

The onCopy and onCut events (not implemented in IE5/Mac) fire immediately
after the user or script initiates a copy or cut edit action on the current object.
Each event is preceded by its associated “before” event, which fires before any Edit
or context menu appears (or before the copy or cut action, if initiated by keyboard
shortcut).

Use these event handlers to provide edit functionality to elements that don’t nor-
mally allow copying or cutting. In such circumstances, you need to enable the Copy
or Cut menu items in the context or Edit menu by setting the event.returnvValue
for the onBeforeCopy or onBeforeCut event handlers to false. Then your onCopy
or onCut event handlers must manually stuff a value into the clipboard by way of
the setData() method of the c1ipboardData object. If you use the setData()

Chapter 15 4 Generic HTML Element Objects] 99

method in your onCopy or onCut event handler, you must also set the event.
returnValue property to false in the handler function to avoid the default copy
or cut action from wiping out your clipboard contents.

Because you are in charge of what data is stored in the clipboard, you are not
limited to a direct copy of the data. For example, you might wish to store the value
of the src property of an image object so that the user can paste it elsewhere on
the page.

In the case of the onCut event handler, your script is also responsible for cutting
the element or selected content from the page. To eliminate all of the content of an
element, you can set the element’s innerHTML or innerText property to an empty
string. For a selection, use the selection.createRange() method to generate a
TextRange object whose contents you can manipulate through the TextRange
object’s methods.

g[r; the Example (with Listing 15-36) on the CD-ROM
= 4

Related Items: onBeforeCopy, onBeforeCut, onBeforePaste, and onPaste event
handlers.

onDb1Click

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v

The onDb1C11ck event fires after the second click of a double-click sequence.
The timing between clicks depends on the client’s mouse control panel settings.
The onC1ick event also fires, but only after the first of the two clicks.

NN4 implements the onDb1C 11 ck event handler only for link objects (but not at
all on the Macintosh version of NN4). [E4 introduced the event to virtually every
HTML element.

In general, it is rarely a good design to have an element perform one task when
the mouse is single-clicked and a different task if double-clicked. With the event
sequence employed in modern browsers, this isn’t practical anyway (the onC1ick
event always fires, even when the user double-clicks). But it is not uncommon to
have the mouse down action perform some helper action. You see this in most icon-
based file systems: if you click a file icon, it is highlighted at mouse down to select
the item; you can double-click the item to launch it. In either case, one event’s
action does not impede the other nor confuse the user.

On the Example on the CD-ROM

CD@VI \

Related Items: onC1ick, onMouseDown, onMouseUp event handlers.

200

Part Il 4 Document Objects Reference

onDrag

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

The onDrag event fires after the onDragStart event and continues firing
repeatedly while the user drags a selection or object on the screen. Unlike the
onMouseMove event, which fires only as the cursor moves on the screen, the
onDrag event continues to fire even when the cursor is stationary. In the IE5+
environment, users can drag objects to other browser windows or other applica-
tions. The event fires while the dragging extends beyond the browser window.

Because the event fires regardless of what is underneath the dragged object, you
can use it in a game or training environment in which the user has only a fixed
amount of time to complete a dragging operation (for example, matching similar
pairs of objects). If future versions of the browser accommodate downloadable
cursors, the onDrag event could cycle the cursor through a series of cursor
versions to resemble an animated cursor.

Understanding the sequence of drag-related events during a user drag operation
can be helpful if your scripts need to micromanage the actions (usually not neces-
sary for basic drag-and-drop operations). Consider the drag-and-drop operation
shown in Figure 15-2.

blank1l A1 Table B1B2 B3
Dragging E vent Handle 050 emet Explore _[5][x
J File Edit “iew Favorites Tools Help |
J%.»,@ﬁ|@§i|§§v§@,®JLm
Back Fammar! Stop Refresh Home Search Fawoftes Hisjory ail Frirt Edit RealGuide
=

Dragging Event Hand|ers

Your goal 15 to drag one noun and one adjective fifom the following table into the blanks of the sentence. Select a word from

the table and drag it to the desired blank. |When you release the moyse, the ord will appear in the blanl. You have two

seconds to complete each blank.

Nouns | Adjectives
—|: _ round -
doll \ored
\
ball \Rretty
B ——
\
Pat said, "Oh my, the \ igso_ I"
“H
Reset |
=

@] Done l_l_ =) Local intranet

Astan| | Bye- [z o] £ | & | Hu | @N | Eoi| Evi.| @i Sic B3 el Q@ 1oy

Figure 15-2: A typical drag-and-drop operation

Chapter 15 4 Generic HTML Element Objects

201

It helps to imagine that the cells of the table with draggable content are named
like spreadsheet cells: “truck” is cell Al; “round” is B1; “doll” is A2; and so on.
During the drag operation, many objects are the targets of a variety of drag-related
events. Table 15-10 lists the event sequence and the event targets.

Table 15-10 Events and Their Targets During a Typical
Drag-and-Drop Operation

Event Target Discussion

onDragStart cell A1 The very first event that fires during a drag-and-drop operation.

onDrag cell A1 Fires continually on this target throughout the entire
operation. Other events get interspersed, however.

onDragEnter cell A1 Even though the cursor hasn’t moved from cell A1 yet, the
onDragEnter event fires upon first movement within the
source element.

onDragOver cell A1 Fires continually on whatever element the cursor rests on at
that instant. If the user simply holds the mouse button down
and does not move the cursor during a drag, the onDrag
and onDragOver events fire continually, alternating
between the two.

(repetition) cell A1 onDrag and onDragOver events fire alternately while the
cursor remains atop cell Al.

onDragknter TABLE The TABLE element, represented by the border and/or cell
padding, receives the onDragEnter event when the cursor
touches its space.

onDragleave cell A1 Notice that the onDraglLeave event fires after the
onDragEnter event fires on another element.

onDrag cell A1 still firing away.

onDragOver TABLE The source element for this event shifts to the TABLE
because that's what the cursor is “over” at this instant. If the
cursor doesn’t move from this spot, the onDrag (cell A1)
and onDragOver (TABLE) events continue to fire in turn.

onDragknter cell B1 The drag is progressing from the TABLE border space to cell B1.

onDraglLeave TABLE

onDrag cell A1 The onDrag event continues to fire on the cell A1 object.

onDragOver cell B1 The cursor is atop cell B1 now, so the onDragQOver event

fires for that object. Fires multiple times (depending on the
speed of the computer and the user's drag action),
alternating with the previous onDrag event.

Continued

202 Partlll + Document Objects Reference

CD-

L

A

Table 15-10 (continued)

Event Target Discussion

[More of the same as the cursor progresses from cell B1 through the TABLE border again to
cell B2, the TABLE again, cell B3, and the outermost edge of the TABLE.]

onDragEnter BODY Dragging is free of the TABLE and is floating free on the bare
BODY element.

onDragleave TABLE Yes, you just left the TABLE.

onDrag cell A1 Still alive and receiving this event.

onDragOver BODY That's where the cursor is now. Fires multiple times

(depending on the speed of the computer and the user’s
drag action), alternating with the previous onDrag event.

onDragEnter blank1 The cursor reaches the SPAN element whose ID is b1ank1,
where the empty underline is.

onDragleave BODY Just left the BODY for the blank.

onDrag cell A1 Still kicking.

onDragOver blank1 That's where the cursor is now. Fires multiple times

(depending on the speed of the computer and the user's
drag action), alternating with the previous onDrag event.

onDrop blank1 The SPAN element gets the notification of a recent drop.

onDragEnd cell A1 The original source element gets the final word that dragging
is complete. This event fires even if the drag does not
succeed because the drag does not end on a drop target.

In practice, some of the events shown in Table 15-10 may not fire. Much has to
do with how many event handlers you trap that need to execute scripts along the
way. The other major factor is the physical speed at which the user performs the
drag-and-drop operation (which interacts with the CPU processing speed). The
kinds of events that are most likely to be skipped are the onDragEnter and
onDragleave events, and perhaps some onDragOver events if the user flies over
an object before its onDragOver event has a chance to fire.

Despite this uncertainty about drag-related event reliability, you can count on
several important ones to fire all the time. The onDragStart, onDrop (if over a
drop target), and onDragEnd events — as well some interstitial onDrag events —
will definitely fire in the course of dragging on the screen. All but onDrop direct
their events to the source element, while onDrop fires on the target.

Onthe . Example (with Listing 15-37) on the CD-ROM
b

,/.

Chapter 15 4 Generic HTML Element Objects (3

Related Items: event.dataTransfer object; onDragEnd, onDragEnter,
onDraglLeave, onDragOver, onDragStart, onDrop event handlers.

onDragEnter
onDraglLeave
NN2 NN3 NN4 NN6é6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v/ v

These events (not implemented in IE5/Mac) fire during a drag operation. When
the cursor enters the rectangular space of an element on the page, the onDragEnter
event fires on that element. Inmediately thereafter, the onDragleave event fires on
the element from which the cursor came. While this may seem to occur out of
sequence from the physical action, the events always fire in this order. Depending on
the speed of the client computer’s CPU and the speed of the user’s dragging action,
one or the other of these events may not fire —especially if the physical action out-
strips the computer’s capability to fire the events in time. See the discussion of the
onDrag event handler earlier in this chapter for more details on the sequence of
drag-related events.

o the Example (with Listing 15-38) on the CD-ROM
= 4!

A,

Related Items: onDrag, onDragknd, onDragOver, onDragStart, onDrop event

handlers.
onDragOver
NN2 NN3 NN4 NNé6 |IE3/J1 IE3/J2 IE4 IE5 IE5.5
Compatibility v v

The onDragOver event (not implemented in IE5/Mac) fires continually while a
dragged cursor is atop an element. In the course of dragging from one point on the
page to another, the onDrag0Over event target changes with the element beneath
the cursor. If no other drag-related events are firing (the mouse button is still down
in the drag operation, but the cursor is not moving), the onDrag and onDragOver
events fire continually, alternating between the two.

You should have the onDragOver event handler of a drop target element set the
event.returnValue property to false. See the discussion of the onDrag event
handler earlier in this chapter for more details on the sequence of drag-related
events.

204 Partill + Document Objects Reference
Onthe » Example on the CD-ROM
cn-@ﬁw \
W,

Related Items: event.dataTransfer object; onDrag, onDragEnd, onDragEnter,
onDragleave, onDragStart, onDrop event handlers.

onDragStart

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

The onDragStart event handler is the first event to fire in the long sequence of
events that occur in a typical drag-and-drop operation by the user. This event han-
dler is associated with the element that is the source element of the drag operation.
Typically, the onDragStart event handler sets the dataTransfer.effectAllowed
property in IE5 for Windows, packages the data being passed along with the drag
(viathe dataTransfer.setData() method), and overrides default behavior by
setting the event.returnValue property to false. See the discussion of the
onDrag event handler earlier in this chapter for more details on the sequence of
drag-related events.

On the Example on the CD-ROM

CD@VI \
\

Related Items: event.dataTransfer object; onDrag, onDragEnd, onDragEnter,
onDraglLeave, onDragOver, onDrop event handlers.

onDrop

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

The onDrop event (not implemented in IE5/Mac) fires on the drop target element
as soon as the user releases the mouse button at the end of a drag-and-drop opera-
tion. Microsoft recommends that you denote a drop target by applying the
onDragkEnter, onDragOver, and onDrop event handlers to the target element. In
each of those event handlers, you should set the dataTransfer.dropEffect to
the transfer effect you wish to portray in the drag-and-drop operation (signified by
a different cursor for each type). These settings should match the dataTransfer.
effectAllowed property that is usually set in the onDragStart event handler.
Each of the three drop-related handlers should also override the default event
behavior by setting the event.returnValue property to false. See the discussion
of the onDrag event handler earlier in this chapter for more details on the sequence
of drag-related events.

Chapter 15 4 Generic HTML Element Objects (5

Onthe d Example on the CD-ROM
CD-@ﬁ\n \

Related Items: event.dataTransfer object; onDrag, onDragEnd, onDragEnter,
onDragleave, onDragOver, onDragStart event handlers.

onFilterChange

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

The onFilterChange event (not implemented in [E5/Mac) fires whenever an
object’s visual filter switches to a new state or a transition completes (a transition
may be extended over time). Only objects that accommodate filters and transitions
in IE (primarily block elements and form controls) receive the event.

A common usage of the onFilterChange event is to trigger the next transition
within a sequence of transition activities. This may include an infinite loop transi-
tion, for which the object receiving the event toggles between two transition states.
If you don’t want to get into a loop of that kind, place the different sets of content
into their own positionable elements and use the onFilterChange event handler in
one to trigger the transition in the other.

On the . Example (with Listing 15-39) on the CD-ROM
- \

\
Related Item: filter object.

onFocus

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility VR v v v v VN v

The onFocus event fires when an element receives focus, usually following some
other object losing focus. (The element losing focus receives the onB1ur event
before the current object receives the onFocus event.) For example, a text input
element fires the onFocus event when a user tabs to that element while navigating
through a form via the keyboard. Clicking an element also gives that element focus,
as does making the browser the frontmost application on the client desktop.

The availability of the onFocus event has expanded with succeeding generations
of script-capable browsers. In earlier versions, blur and focus were largely confined
to text-oriented input elements (including the SELECT element). The window object
received the onFocus event handler starting with NN3 and IE4. IE4 also extended

206

Part Il 4 Document Objects Reference

the event handler to more form elements, predominantly on the Windows operating
system because that OS has a user interface clue (the dotted rectangle) when items
such as buttons and links receive focus (so that users may act upon them by press-
ing the keyboard’s spacebar). For IE5, the onFocus event handler is available to vir-
tually every HTML element. For most of those elements, however, you cannot use
blur and focus unless you assign a value to the TABINDEX attribute of the element’s
tag. For example, if you assign TABINDEX=1 inside a <P> tag, the user can bring
focus to that paragraph (highlighted with the dotted rectangle in Windows) by
clicking the paragraph or pressing the Tab key until that item receives focus in
sequence.

If you plan to use the onFocus event handler on window or text-oriented input
elements, be aware that there might be some unexpected and undesirable conse-
quences of scripting for the event. For example, in IE5 (but not IE4), some object
almost always has focus. In most cases, the window has focus but loses it when the
user clicks an element wired to receive focus. Clicking anywhere on an unwired
element brings focus back to the window object. Similarly, the interaction between
onBlur, onFocus, and the alert dialog box can be problematic with text input
elements.

IE5.5 adds the onActivate event handler, which fires immediately before the
onFocus event handler. You can use one or the other, but there is little need to
include both event handlers for the same object unless you temporarily wish to
block an item from receiving focus. To prevent an object from receiving focus in
IE5.5, include an event.returnValue=false statement in the onActivate event
handler for the same object. In older browsers, you can usually get away with
assigning onFocus="this.blur()" as an event handler for elements such as form
controls. However, this is not a foolproof way to prevent a user from changing a
control’s setting. Unfortunately, there are few reliable alternatives.

On the Example on the CD-ROM

CD@II \

Related Items: onActivate, onBlur, onDeactivate event handlers.

onHelp

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

The onHelp event handler fires in Windows whenever an element of the docu-
ment has focus and the user presses the F1 function key on a Windows PC. As of
IE5/Mac, the event fires only on the window (in other words, event handler speci-
fied in the <BODY> tag) and does so via the dedicated Help key on a Mac keyboard.
Browser Help menu choices do not activate this event. To prevent the browser’s
Help window from appearing, the event handler must evaluate to return false
(for IE4+) or set the event.returnValue property to false (IE5+). Because the

Chapter 15 4 Generic HTML Element Objects 207/

event handler can be associated with individual elements of a document in the
Windows version, you can create a context-sensitive help system. However, if the
focus is in the Address field of the browser window, you cannot intercept the event.
Instead, the browser’s Help window appears.

gg the Example (with Listing 15-40) on the CD-ROM

L

\ W

Related Items: window.showHelp (), window.showModalDialog() methods.

onKeyDown
onKeyPress
onKeyUp
NN2 NN3 NN4 NNé6 IE3/) IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v v

When someone presses and releases a keyboard key, a sequence of three events
fires in quick succession. The onKeyDown event fires when the key makes its first
contact. This is followed immediately by the onKeyPress event. When contact is
broken by the key release, the onKeyUp event fires. If you hold a character key
down until it begins auto-repeating, the onKeyDown and onKeyPress events fire
with each repetition of the character.

The sequence of events can be crucial in some keyboard event handling.
Consider the scenario that wants the focus of a series of text fields to advance
automatically after the user enters a fixed number of characters (for example, date,
month, and two-digit year). By the time the onKeyUp event fires, the character
associated with the key press action is already added to the field and you can
accurately determine the length of text in the field, as shown in this simple
example:

<HTML>
<HEAD>
<SCRIPT Language="JavaScript">
function jumpNext(fromFld, toFld) {
if (fromFld.value.length == 2) {
document.forms[0].elements[toF1d].focus()
document.forms[0].elements[toFld].select()
}
}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
Month: <INPUT Name="month" Type="text" Size="3" VALUE=""
onKeyUp="jumpNext(this, day)" maxlLength="2">

208

Part Il 4 Document Objects Reference

Day: <INPUT Name="day" Type="text" Size="3" VALUE=""
onKeyUp ="jumpNext(this, year)" maxLength="2">
Year: <INPUT Name="year" Type="text" Size="3" VALUE=""

onKeyUp ="jumpNext(this, month)" maxlLength="2">
</FORM>
</BODY>
</HTMLD

These three events do not fire for all keys of the typical PC keyboard on all
browser versions that support keyboard events. The only keys that you can rely on
supporting the events in all browsers shown in the preceding compatibility chart
are the alphanumeric keys represented by ASCII values. This includes keys such as
the spacebar and Enter (Return on the Mac), but it excludes all function keys, arrow
keys, and other navigation keys. Modifier keys, such as Shift, Ctrl (PC), Alt (PC),
Command (Mac), and Option (Mac), generate some events on their own (depending
on browser and version). However, functions invoked by other key events can
always inspect the pressed states of these modifier keys.

Scripting keyboard events almost always entails examining which key is pressed
so that some processing or validation can be performed on that key press. This is
where the situation gets very complex if you are writing for cross-browser imple-
mentation. In some cases, even writing just for Internet Explorer gets tricky
because non-alphanumeric keys generate only the onKeyDown and onKeyUp events.

In fact, to fully comprehend keyboard events, you need to make a distinction
between key codes and character codes. Every PC keyboard key has a key code asso-
ciated with it. This key code is always the same regardless of what other keys you
press at the same time. Only the alphanumeric keys (letters, numbers, spacebar,
and so on), however, generate character codes. The code represents the typed
character produced by that key. The value might change if you press a modifier key.
For example, if you type the “A” key by itself, it generates a lowercase “a” character
(character code 97); if you also hold down the Shift key, that same key produces an
uppercase “A” character (character code 65). The key code for that key (65 for
Western language keyboards) remains the same no matter what.

That brings us, then, to where these different codes are made available to
scripts. In all cases, the code information is conveyed as one or two properties of
the browser’s event object. IE’s event object has only one such property —
keyCode. It contains key codes for onKeyDown and onKeyUp events, but character
codes for onKeyPress events. The NN6 event object, on the other hand, contains
two separate properties: charCode and keyCode. You can find more details and
examples about these event object properties in Chapter 29.

The bottom-line script consideration is to use either onKeyDown or onKeyUp event
handlers when you want to look for non-alphanumeric key events (for example, func-
tion keys, arrow and page navigation keys, and so on). To process characters as they
appear in text boxes, use the onKeyPress event handler. You can experiment with
these events and codes in Listing 15-41 as well as in examples from Chapter 29.

Common keyboard event tasks

IE4+ (but not NN) enables you to modify the character that a user who is editing
a text box enters. The onKeyPress event handler can modify the event . keyCode
property and allow the event to continue (in other words, don’t evaluate to return
false or set the event.returnValue property to false). The following IE

Chapter 15 4 Generic HTML Element Objects (09

function (invoked by an onKeyPress event handler) makes sure text entered into a
text field is all uppercase, even if you type it as lowercase:

function assureUpper() {
if (event.charCode >= 97 && event.charCode <= 122) {
event.charCode = event.charCode - 32

}

Doing this might confuse (or frustrate) users, so think carefully before imple-
menting such a plan.

To prevent a keyboard key press from becoming a typed character in a text field,
the onKeyPress event handler prevents the default action of the event. For exam-
ple, the following (NN4+, I[E4+) HTML page shows how to inspect a text field’s entry
for numbers only:

<HTML>
<HEAD>
<TITLE>Keyboard Capture</TITLE>
{SCRIPT LANGUAGE="JavaScript">
function checkIt(evt) {
var charCode = (evt.which) ? evt.which : event.keyCode
if (charCode > 31 && (charCode < 48 || charCode > 57)) f{
alert("Please make sure entries are numbers only.")
return false
}
return true
}
</SCRIPT>
</HEAD>

<BODY>

<FORM>

Enter any positive integer: <INPUT TYPE="text" NAME="numeric"
onKeyPress="return checkIt(event)">

</FORM>

</BODY>

</HTMLD

Whenever a user enters a non-number, the user receives a warning and the char-
acter is not appended to the text box’s text.

Keyboard events also enable you to script the submission of a form when a user
presses the Enter (Return on the Mac) key within a text box. The ASCII value of the
Enter/Return key is 13. Therefore, you can examine each key press in a text box and
submit the form whenever value 13 arrives, as shown in the following function,
which works in IE4+ and NN4+:

function checkForEnter(evt) {
evt = (evt) ? evt : event
var charCode = (evt.which) ? evt.which : evt.keyCode
if (charCode == 13) {
document.forms[0].submit()
return false
}
return true

210 Partill + Document Objects Reference

By assigning the checkForEnter () function to each field’s onKeyPress event
handler, you suddenly add some extra power to a typical HTML form.

You can intercept Ctrl+keyboard combinations (letters only) in HTML pages
most effectively in Internet Explorer, but only if the browser itself does not use the
combination. In other words, you cannot redirect Ctrl+key combinations that the
browser uses for its own control. The onKeyPress keyCode value for Ctrl+combina-
tions ranges from 1 through 26 for letters A through Z (except for those used by the
browser, in which case no keyboard event fires).

Onthe Example (with Listing 15-41) on the CD-ROM

CD@A \
.‘\ ;

Related Item: String.fromCharCode() method.

onLoseCapture

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

The onLoseCapture event handler fires whenever an object that has event
capture turned on no longer has that capture. Event capture is automatically
disengaged when the user performs any of the following actions:

4+ Gives focus to any other window

4+ Displays any system modal dialog box (for example, alert window)

4 Scrolls the page

4+ Opens a browser context menu (right-clicking)

4 Tabs to give focus to the Address field in the browser window

A function associated with the onlLoseCapture event handler should perform

any cleanup of the environment due to an object no longer capturing mouse events.

g[r; the’ Example on the CD-ROM
= \

AW,

Related Items: releaseCapture(), setCapture() methods.

Chapter 15 4+ Generic HTML Element Objects]]

onMouseDown
onMouselUp
NN2 NN3 NN4 NNé6 IE3/N IE3/)2 IE4 IE5 1E5.5
Compatibility v/ v v/ v/ v/

The onMouseDown event handler fires when the user presses any button of a
mouse. The onMouseUp event handler fires when the user releases the mouse but-
ton, provided the object receiving the event also received an onMouseDown event.
When a user performs a typical click of the mouse button atop an object, mouse
events occur in the following sequence: onMouseDown, onMouseUp, onC11ick. But if
the user presses the mouse atop an object and then slides the cursor away from the
object, only the onMouseDown event fires. In NN4, these two mouse events were
limited to button, radio button, checkbox, 1ink, and area objects.

These events enable authors and designers to add more application-like behav-
ior to images that act as action or icon buttons. If you notice the way most buttons
work, the appearance of the button changes while you press the mouse button and
reverts to its original style when you release the mouse button (or you drag the
cursor out of the button). These events enable you to emulate that behavior.

The event object created with every mouse button action has a property that
reveals which mouse button the user pressed. NN4’s event model calls that prop-
erty the which property. IE4+ and NN6 call it the button property (but with differ-
ent values for the buttons). It is most reliable to test for the mouse button number
on either the onMouseDown or onMouselUp event, rather than on onC11ick. The
onC1lick event object does not always contain the button information.

gg the » Example (with Listing 15-42) on the CD-ROM
. Y

Related Item: onC11ick event handler.

onMouseEnter
onMouselLeave

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/

Two event handlers that are new with IE5.5 are onMouseEnter and
onMouseleave. Both event handlers operate just like the onMouseOver and
onMouseOut event handlers, respectively. Microsoft simply offers an alternate ter-
minology. The old and new events continue to fire in IE5.5. The old ones fire just
before the new ones for each act of moving the cursor atop, and exiting from atop,
the object. If you are scripting exclusively for IE5.5+, then you should use the new
terminology; otherwise, stay with the older versions.

212 Partill + Document Objects Reference

Onthe d Example on the CD-ROM
CD-@ﬁ\n \

Related Items: onMouseQOver, onMouseQut event handlers.

onMouseMove

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility) v v v v

The onMouseMove event handler fires whenever the cursor is atop the current
object and the mouse is moved, even by a single pixel. You do not have to press the
mouse button for the event to fire, although the event is most commonly used in
element dragging — especially in NN, where no onDrag event handler is available.

Even though the granularity of this event can be at the pixel level, you should
not use the number of event firings as a measurement device. Depending on the
speed of cursor motion and the performance of the client computer, the event may
not fire at every pixel location.

In NN4, you cannot assign the onMouseMove event handler to any object by way
of tag attributes. But you can use the NN4 event capturing mechanism to instruct
(via scripting) a window, document, or Tayer object to capture mouseMove events.
This allows for NN4 scripts to produce positioned element (layer) dragging. In IE4+
and NN6+, however, you can assign the onMouseMove event handler to any element
(although you can drag only with positioned elements). When designing a page that
encourages users to drag multiple items on a page, it is most common to assign the
onMouseMove event handler to the document object and let all such events bubble
up to the document for processing.

gg the . Example (with Listing 15-43) on the CD-ROM
= b

AW,

Related Items: onDrag, onMouseDown, onMouseUp event handlers.

onMouseQut
onMouseQver
NN2 NN3 NN4 NNe6 IE3/11 1E3/)2 1E4 1E5 1E5.5
Compatibility v v v v v v/ v v v

The onMouseQver event fires for an object whenever the cursor rolls into the
rectangular space of the object on the screen (one event per entry into the
object —except for a bug in NN4/Windows, which causes the onMouseOver event

Chapter 15 4 Generic HTML Element Objects 13

to fire with mouse movement). The onMouseOut event handler fires when you move
the cursor outside the object’s rectangle. These events most commonly display
explanatory text about an object in the window’s status bar and effect image swap-
ping (so-called mouse rollovers). Use the onMouseOver event handler to change the
state to a highlighted version; use the onMouse(Qut event handler to restore the
image or status bar to its normal setting.

While these two events have been in object models of scriptable browsers since
the beginning, they were not available to most objects in earlier browsers. The
onMouseQver event was available only to the link object until the version 4
browsers. Even then, NN4 still restricted this event to link, area, and layer objects.
The onMouseOut event handler first surfaced for link and area objects in Navigator
3. IE4+ and NN6+ provide support for these events on every element that occupies
space on the screen. [E5.5 includes an additional pair of event handlers —
onMouseEnter and onMouseleave —that duplicate the onMouseOver and
onMouseOut events but with different terminology. The old event handlers fire just
before the new versions.

'Note The onMouseQut event handler commonly fails to fire if the event is associated
~ with an element that is near a frame or window edge and the user moves the
cursor quickly outside of the current frame.

On the Example (with Listing 15-44) on the CD-ROM

CD@VI 1
A

Related Items: onMouseEnter, onMouselLeave, onMouseMove event handlers.

onPaste

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

The onPaste event (not implemented in IE5/Mac) fires immediately after the
user or script initiates a paste edit action on the current object. The event is pre-
ceded by the onBeforePaste event, which fires prior to any edit or context menu
that appears (or before the paste action if initiated by keyboard shortcut).

Use this event handler to provide edit functionality to elements that don’t
normally allow pasting. In such circumstances, you need to enable the Paste menu
item in the context or Edit menu by setting the event.returnValue for the
onBeforePaste event handler to false. Then your onPaste event handler must
manually retrieve data from the clipboard (by way of the getData () method of the
clipboardData object) and handle the insertion into the current object.

Because you are in charge of what data is stored in the clipboard, you are not
limited to a direct copy of the data. For example, you might wish to store the value
of the src property of an image object so that you can paste it elsewhere on the

page.

214

Part Il 4 Document Objects Reference

Onthe d Example (with Listing 15-45) on the CD-ROM

CD-

%

i

,/.

Related Items: onCopy, onCut, onBeforePaste event handlers.

onPropertyChange

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

The onPropertyChange event fires in Windows versions of IE5+ whenever a
script modifies an object’s property. This includes changes to the properties of an
object’s style. Changing properties by way of the setAttribute() method also
triggers this event.

A script can inspect the nature of the property change because the
event.propertyName property contains the name (as a string) of the property that
was just changed. In the case of a change to an object’s sty1e object, the event.
propertyName value begins with "style." asin style.backgroundcolor.

You can use this event handler to localize any object-specific post-processing of
changes to an object’s properties. Rather than include the post-processing state-
ments inside the function that makes the changes, you can make that function
generalized (perhaps to modify properties of multiple objects).

Onthe d Example (with Listing 15-46) on the CD-ROM

CD-

%

i

,/.

Related Items: style property; setAttribute() method.

onReadyStateChange

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

The onReadyStateChange event handler fires whenever the ready state of an
object changes. See details about these states in the discussion of the readyState
property earlier in this chapter (and notice the limits for I[E4). The change of state
does not guarantee that an object is, in fact, ready for script statements to access
its properties. Always check the readyState property of the object in any script
that the onReadyStateChange event handler invokes.

This event fires for objects that are capable of loading data: APPLET, document,
FRAME, FRAMESET, IFRAME, IMG, LINK, OBJECT, SCRIPT, and XML objects. The
event doesn'’t fire for other types of objects unless a Microsoft DHTML behavior is
associated with the object. The onReadyStateChange event does not bubble, nor
can you cancel it.

Chapter 15 4 Generic HTML Element Objects 215

gg the Example on the CD-ROM

Related Item: readyState property.
onResize

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v

The onResize event handler fires whenever an object is resized in response to a
variety of user or scripted actions. In NN4+, the onResize event handler is avail-
able only for the window object; IE4 includes this event handler for the APPLET,
AREA, BUTTON, DIV, FIELDSET, FRAMESET, IMG, MARQUEE, SELECT, TABLE, TD,
TH, and window objects. Virtually every content-containing element in IE5+ has this
event handler, provided the object has dimensional style attributes (for example,
height, width, or position) assigned to it.

Window resizing presents potentially serious problems in NN4, especially when
the page contains positioned elements. Unlike [E4+ and NN6, the NN4 rendering
engine typically fails to redraw a resized page properly. A reload of the page usually
fixes the problems. You can use the onResize event handler in NN4 to repair the
damage:

window.onresize = restorePage

function restorePage() {
history.go(0)

}

But there is one additional complication in NN4 for Windows when the content of
a window or frame requires scrollbars. The application of the scrollbars forces
another resize event. In concert with the preceding code, the page gets in an infinite
loop of reloading the page. To guard against this, your script must compare the
innerWidth and innerHeight of the window before and after the resize event:

var Nav4 = ((navigator.appName == "Netscape")&&
(parselnt(navigator.appVersion) == 4))
window.onresize = restorePage

if (Navd) {

var startWidth = window.innerWidth
var startHeight = window.innerHeight
}
function restorePage() {
if (Navd) {
if (startWidth != window.innerWidth]|
startHeight != window.innerHeight) f{
history.go(0)
1

216 Partill + Document Objects Reference
In [E4+ and NN6, the onResize event does not bubble. Resizing the browser
window or frame does not cause the window’s onLoad event handler to fire.
Onthe . Example on the CD-ROM

CD-@?\A \
.‘\ y

Related Item: window.resize() method.

onResizeEnd
onResizeStart

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

The onResizeEnd and onResizeStart event handlers fire only on a resizable
object in Windows edit mode. As mentioned in the discussion of the
onControlSelect event handler, an authoritative description or example is not
available yet.

Related Item: onControlSelect event handler.

onSelectStart

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

The onSelectStart event handler fires when a user begins to select content on
the page. Selected content can be inline text, images, or text within an editable text
field. If the user selects more than one object, the event fires in the first object
affected by the selection.

Onthe Example (with Listing 15-47) on the CD-ROM

CD-@?\A \
.‘\ y

Related Item: onSelect event handler for a variety of objects

¢+ o+ 0+

CHAPT,LER

Window and
Frame Objects

¢+ 4+ o+

In This Chapter

Scripting
communication
among multiple
frames

A quick look at the basic document object model diagram
in Chapter 14 (Figure 14-1) reveals that the window
object is the outermost, most global container of all docu-
ment-related objects that you script with JavaScript. All HTML
and JavaScript activity takes place inside a window. That win-
dow may be a standard Windows, Mac, or Xwindows applica-
tion-style window, complete with scrollbars, toolbars, and
other “chrome;” you can also generate windows that have
only some of a typical window’s chrome. A frame is also a
window, even though a frame doesn’t have many accou-
trements beyond scrollbars. The window object is where
everything begins in JavaScript references to object. [E4+ and
NNG6 treat the frameset as a special kind of window object, so
that it is also covered in this chapter.

Of all the objects associated with browser scripting, the
window and window-related objects have by far the most
object-specific terminology associated with them. This
necessitates a rather long chapter to keep the discussion in
one place. Use the running footers as a navigational aid + + + +
through this substantial collection of information.

Creating and
managing new
windows

Controlling the size,
position, and
appearance of the
browser window

Details of Window,
FRAME, FRAMESET,
and IFRAME obijects

Window Terminology

The window object is often a source of confusion when you
first learn about the document object model. A number of syn-
onyms for window objects muck up the works: top, self,
parent, and frame. Aggravating the situation is that these
terms are also properties of a window object. Under some con-
ditions, a window is its own parent, but if you define a frame-
set with two frames, you have only one parent among a total
of three window objects. It doesn’t take long before the whole
subject can make your head hurt.

If you do not use frames in your Web applications, all of
these headaches never appear. But if frames are part of your
design plan, you should get to know how frames affect the
object model.

218

Part Il 4 Document Objects Reference

Frames

The application of frames has become a religious issue among Web designers:
some swear by them, while others swear at them. I believe there can be compelling
reasons to use frames at times. For example, if you have a document that requires
considerable scrolling to get through, you may want to maintain a static set of
navigation controls visible at all times. By placing those controls — be they links or
image maps —in a separate frame, you have made the controls available for
immediate access, regardless of the scrolled condition of the main document.

Creating frames

The task of defining frames in a document remains the same whether or not
you’re using JavaScript. The simplest framesetting document consists of tags that
are devoted to setting up the frameset, as follows:

<HTML>

<HEAD>

KTITLE>My Frameset</TITLE>

</HEAD>

{FRAMESET>
<FRAME NAME="Framel" SRC="documentl.html">
<FRAME NAME="Frame2" SRC="document2.html">

</FRAMESET>

</HTML>

The preceding HTML document, which the user never sees, defines the frameset
for the entire browser window. Each frame must have a URL reference (specified by
the SRC attribute) for a document to load into that frame. For scripting purposes,
assigning a name to each frame with the NAME attribute greatly simplifies scripting
frame content.

The frame object model

Perhaps the key to successful frame scripting is understanding that the object
model in the browser’s memory at any given instant is determined by the HTML
tags in the currently loaded documents. All canned object model graphics, such as
Figure 16-1 in this book, do not reflect the precise object model for your document
or document set.

Window

Document

Figure 16-1: The simplest
window-document relationship

Chapter 16 4+ Window and Frame Objects

For a single, frameless document, the object model starts with just one window
object, which contains one document, as shown in Figure 16-1. In this simple struc-
ture, the window object is the starting point for all references to any loaded object.
Because the window is always there — it must be there for a document to load
into— a reference to any object in the document can omit a reference to the
current window.

In a simple two-framed frameset model (Figure 16-2), the browser treats the con-
tainer of the initial, framesetting document as the parent window. The only visible
evidence that the document exists is that the framesetting document’s title appears
in the browser window title bar.

<FRAMESET>
Top
Parent
<FRAME> <FRAME>
Top Top
Parent Parent
Document Document

Figure 16-2: The parent and frames are
part of the object model.

Each <FRAME> tag inside the <FRAMESET> tag set creates another window object
into which a document is loaded. Each of those frames, then, has a document
object associated with it. From the point of view of a given document, it has a single
window container, just as in the model shown in Figure 16-1. And although the
parent object is not visible to the user, it remains in the object model in memory.
The presence of the parent often makes it a convenient repository for variable data
that need to be shared by multiple child frames or must persist between loading of
different documents inside a child frame.

In even more complex arrangements, as shown in Figure 16-3, a child frame itself
may load a framesetting document. In this situation, the differentiation between the
parent and top objects starts to come into focus. The top window is the only one
in common with all frames in Figure 16-3. As you see in a moment, when frames
need to communicate with other frames (and their documents), you must fashion
references to the distant object via the window object that they all have in common.

219

220 Partlll + Document Objects Reference

<FRAMESET>
Top
Parent
<FRAME>
<FRAME> <FRAMESET>
Child Child Frame
Frame Parent
<FRAME> <FRAME>
Child Child
Document Frame Frame
I I
Document Document

Figure 16-3: Three generations of window objects

Referencing frames

The purpose of an object reference is to help JavaScript locate the desired object
in the object model currently held in memory. A reference is a road map for the
browser to follow, so that it can track down, say, the value of a particular text field
in a particular document. Therefore, when you construct a reference, think about
where the script appears in the object model and how the reference can help the
browser determine where it should go to find the distant object. In a two-generation
scenario, such as the one shown in Figure 16-2, three intergenerational references
are possible:

4 Parent-to-child
4 Child-to-parent
4 Child-to-child

Assuming that you need to access an object, function, or variable in the relative’s
frame, the following are the corresponding reference structures:

4 frameName.objFuncVarName
4 parent.objFuncVarName
4 parent.frameName.objFuncVarName

The rule is this: Whenever a reference must point to another frame, begin the ref-
erence with the window object that the two destinations have in common. To
demonstrate that rule on the complex model in Figure 16-3, if the left-hand child
frame’s document needs to reference the document at the bottom right of the map,
the reference structure is

top.frameName.frameName.document. ...

Follow the map from the top window object down through two frames to the final
document. JavaScript has to take this route, so your reference must help it along.

Chapter 16 + Window and Frame Objects 272]

Top versus parent

After seeing the previous object maps and reference examples, you may be
wondering, Why not use top as the leading object in all trans-frame references?
From an object model point of view, you’ll have no problem doing that: A parent in
a two-generation scenario is also the top window. What you can’t count on, how-
ever, is your framesetting document always being the top window object in some-
one’s browser. Take the instance where a Web site loads other Web sites into one of
its frames. At that instant, the top window object belongs to someone else. If you
always specify top in references intended just for your parent window, your refer-
ences won’t work and will probably lead to script errors for the user. My advice,
then, is to use parent in references whenever you mean one generation above the
current document.

Preventing framing

You can use your knowledge of top and parent references to prevent your
pages from being displayed inside another Web site’s frameset. Your top-level
document must check whether it is loaded into its own top or parent window. When
a document is in its own top window, a reference to the top property of the current
window is equal to a reference to the current window (the window synonym self
seems most grammatically fitting here). If the two values are not equal, you can
script your document to reload itself as a top-level document. When it is critical
that your document be a top-level document, include the script in Listing 16-1 in the
head portion of your document:

Listing 16-1: Prevention from Getting “Framed”

{SCRIPT LANGUAGE="JavaScript">

if (top != self) {
top.location = Tocation

}

</SCRIPT>

Your document may appear momentarily inside the other site’s frameset, but
then the slate is wiped clean, and your top-level document rules the browser
window.

Ensuring framing

When you design a Web application around a frameset, you may want to make
sure that a page always loads the complete frameset. Consider the possibility that a
visitor adds only one of your frames to a bookmarks list. On the next visit, only the
bookmarked page appears in the browser, without your frameset, which may con-
tain valuable navigation aids to the site.

A script can make sure that a page always loads into its frameset by comparing
the URLs of the top and self windows. If the URLs are the same, it means that the
page needs to load the frameset. Listing 16-2 shows the simplest version of this

222

Part Il 4 Document Objects Reference

technique, which loads a fixed frameset. The listing includes a workaround for an
NN4-specific behavior that prevents printing a frame. (NN4 for Windows and Unix
reloads a page into a separate hidden window for printing and runs any immediate
scripts in the process). For a more complete implementation that passes a parame-
ter to the frameset so that it opens a specific page in one of the frames, see the
location.search property in Chapter 17.

Listing 16-2: Forcing a Frameset to Load

<SCRIPT LANGUAGE="JavaScript">
var isNav4 = (navigator.appName == "Netscape" &&
parselnt(navigator.appVersion) == 4)
if (top.location.href == window.location.href) {
if (isNav4) {
if (window.innerWidth != 0) {
top.location.href = "myFrameset.html"
}
} else {
top.location.href = " myFrameset.html"
}
}
</SCRIPT>

Switching from frames to frameless

Some sites load themselves in a frameset by default and offer users the option of
getting rid of the frames. Only [E4+ and NN6+ let you modify a frameset’s cols or
rows properties on the fly to simulate adding or removing frames from the current
view (see the FRAMESET element object later in this chapter). In other browsers,
you cannot dynamically change the makeup of a frameset after it has loaded, but
you can load the content page of the frameset into the main window. Simply include
a button or link whose action loads that document into the top window object:

top.location.href = "mainBody.html"

A switch back to the frame version entails nothing more complicated than load-
ing the framesetting document.

Inheritance versus containment

Scripters who have experience in object-oriented programming environments
probably expect frames to inherit properties, methods, functions, and variables
defined in a parent object. That’s not the case with scriptable browsers. You can,
however, still access those parent items when you make a call to the item with a
complete reference to the parent. For example, if you want to define a deferred
function in the framesetting parent document that all frames can share, the scripts
in the frames refer to that function with this reference:
parent.myFunc()

You can pass arguments to such functions and expect returned values.

Chapter 16 4+ Window and Frame Objects

Some bugs in Navigator 2 cause problems when accessing variables in a parent window
from one of its children. If a document in one of the child frames unloads, a parent variable
value that depends on that frame may get scrambled or disappear. Using a temporary doc -
ument.cookie for global variable values may be a better solution. For Navigator 3, you
should declare parent variables that are updated from child frames as first-class string
objects (with the new String() constructor) as described in Chapter 34.

Frame synchronization

A pesky problem for some scripters’ plans is that including immediate scripts in
the framesetting document is dangerous — if not crash-prone in Navigator 2. Such
scripts tend to rely on the presence of documents in the frames being created by
this framesetting document. But if the frames have not yet been created and their
documents have not yet loaded, the immediate scripts will likely crash and burn.

One way to guard against this problem is to trigger all such scripts from the
frameset’s onLoad event handler. In theory, this handler won’t trigger until all
documents have successfully loaded into the child frames defined by the frameset.
Unfortunately, I[E4+ for Windows has a nasty bug that fires the onlLoad event han-
dler in the frameset even if the loading has been interrupted by the browser’s Stop

button or pressing the Esc key. At the same time, be careful with onlLoad event han-

dlers in the documents going into a frameset’s frames. If one of those scripts relies
on the presence of a document in another frame (one of its brothers or sisters),
you're doomed to eventual failure. Anything coming from a slow network or server
to a slow modem can get in the way of other documents loading into frames in the
ideal order.

One way to work around these problems is to create a Boolean variable in the
parent document to act as a flag for the successful loading of subsidiary frames.
When a document loads into a frame, its onLoad event handler can set that flag to
true to indicate that the document has loaded. Any script that relies on a page
being loaded should use an if construction to test the value of that flag before
proceeding.

Despite the horrible IE4+/Windows bug described above, it is best to construct
the code so that the parent’s onLoad event handler triggers all the scripts that you
want to run after loading. Depending on other frames is a tricky business, but the
farther the installed base of Web browsers gets from Navigator 2, the less the asso-
ciated risk. For example, beginning with Navigator 3, if a user resizes a window, the
document does not reload itself, as it used to in Navigator 2. Even so, you still

should test your pages thoroughly for any residual effects that may accrue if some-

one resizes a window or clicks Reload.

Blank frames

Often, you may find it desirable to create a frame in a frameset but not put any
document in it until the user has interacted with various controls or other user
interface elements in other frames. Navigator and recent IE versions have a some-
what empty document in one of its internal URLs (about : bTank). But with

223

224

Part Il 4 Document Objects Reference

Navigator 2 and 3 on the Macintosh, an Easter egg—style message appears in that
window when it displays. This URL is also not guaranteed to be available on all
browsers. If you need a blank frame, let your framesetting document write a generic
HTML document to the frame directly from the SRC attribute for the frame, as
shown in the skeletal code in Listing 16-3. Loading an “empty” HTML document
requires no additional transactions.

Listing 16-3: Creating a Blank Frame

<HTML>
<HEAD>
{SCRIPT LANGUAGE="JavaScript">
<l--
function blank() {
return "<HTML></HTML>"
}
/1-->
</SCRIPT>
</HEAD>
<FRAMESET>
<FRAME NAME="Framel" SRC="someURL.htm1">
<FRAME NAME="Frame2" SRC="javascript:parent.blank()">
</FRAMESET>
</HTML>

Viewing frame source code

Studying other scripters’ work is a major learning tool for JavaScript (or any pro-
gramming language). With most scriptable browsers you can easily view the source
code for any frame, including those frames whose content is generated entirely or
in part by JavaScript. Click the desired frame to activate it (a subtle border may
appear just inside the frame on some browser versions, but don’t be alarmed if the
border doesn’t appear). Then select Frame Source (or equivalent) from the View
menu (or right-click submenu). You can also print or save a selected frame.

Frames versus FRAME element objects

With the expansion of object models that expose every HTML element to script-
ing (IE4+, NN6), a terminology conflict comes into play. Everything that you have
read about frames thus far in the chapter refers to the original object model, where
a frame is just another kind of window, with a slightly different referencing
approach. That still holds true, even in the latest browsers.

But when the object model also exposes HTML elements, then the notion of the
FRAME element object is somewhat distinct from the frame object of the original
model. The FRAME element object represents an object whose properties are
dominated by the attributes you set inside the <FRAME> tag. This provides access
to settings, such as the frame border and scrollability —the kinds of properties that
are not exposed to the original frame object.

Chapter 16 4+ Window and Frame Objects

References to the frame and FRAME element objects are also different. You've
seen plenty of examples of how to reference an old-fashioned frame earlier in this
chapter. But access to a FRAME element object is either via the element’s 1D
attribute or through the child node relationship of the enclosing FRAMESET ele-
ment (you cannot use the parentNode property to back your way out of the cur-
rent document to the FRAME element that encloses the document). The way [
prefer is to assign an 1D attribute to <FRAME> tags and access the FRAME element
object by way of the document object that lives in the parent (or top) of the frame-
set hierarchy. Therefore, to access the frameBorder property of a FRAME element

object from a script living in any frame of a frameset, the syntax is

parent.document.all.framellID.frameBorder

or, for IE5+ and NN6+

parent.document.getElementById("framelID").frameBorder

There is no access to the document contained by a frame when the reference
goes through the FRAME element object.

Window Object

Properties Methods Event Handlers
appCore alert() onAborttt
clientInformation attachEvent ()t onAfterPrint
clipboardData back() onBeforePrint
closed blur()t onBeforeUnload
Components capturekvents() onBlurt
controllers clearInterval() onChangett
crypto clearTimeout() onClicktt
defaultStatus close() onClosett
dialogArguments confirm() onDragDrop
dialogHeight createPopup() onkError
dialoglLeft detachEvent()t onFocust
dialogTop disablefExternalCapture() onHelp
dialogWidth enableExternalCapture() onKeyDowntt
directories execScript() onKeyPresstt
document find() onKeyUptt
event firekEvent()t onload
external focus()f onMouseDowntt

Continued

225

Part Il 4 Document Objects Reference

Properties Methods Event Handlers
frameETement forward() onMouseMovett
frames GetAttention() onMouseQuttt
history handleEvent () onMouseOvertt
innerHeight home () onMouseUptt
innerWidth moveBy () onMove

Tength moveTo() onResettt
lToading navigate() onResize
location open() onScroll
locationbar print() onSelecttt
menubar prompt () onSubmittt
name releaseEvents() onUnload
navigator resizeBy()

offscreenBuffering
opener
outerHeight
outerWidth
pageX0ffset
pageYOffset
parent
personalbar
pkcs1l
prompter
returnValue
screen
screenleft
screenTop
screenX
screenY
scrollbars
scrollX
scrolly
self

resizeTo()
routeEvent()
scroll()
scrol1By()
scroll1To()
setActive()t
setCursor()
setInterval()
setTimeout()

showHelp()

showModalDialog()

showModelessDialog()

sizeToContent()

stop()

Chapter 16 + Window and Frame Objects 227/

Properties Methods Event Handlers

sidebar
status
statusbar
toolbar
top

window

tSee Chapter 15.
t1To handle captured or bubbled events of other objects in IE4+ and NN6

Syntax

Creating a window:
var windowObject = window.open([parameters])
Accessing window properties or methods:

window.property | method([parameters])

self.property | method([parameters])

windowObject .property | method([parameters])

About this object

The window object has the unique position of being at the top of the object
hierarchy, encompassing even the almighty document object. This exalted position
gives the window object a number of properties and behaviors unlike those of any
other object.

Chief among its unique characteristics is that because everything takes place in
a window, you can usually omit the window object from object references. You've
seen this behavior in previous chapters when I invoked document methods, such
as document.write(). The complete reference is window.document.write(). But
because the activity was taking place in the window that held the document run-
ning the script, that window was assumed to be part of the reference. For single-
frame windows, this concept is simple enough to grasp.

As previously stated, among the list of properties for the window object is one
called self. This property is synonymous with the window object itself (which is
why it shows up in hierarchy diagrams as an object). Having a property of an object
that is the same name as the object may sound confusing, but this situation is not
that uncommon in object-oriented environments. I discuss the reasons why you
may want to use the self property as the window’s object reference in the self
property description that follows.

As indicated earlier in the syntax definition, you don’t always have to specifically
create a window object in JavaScript code. After you start your browser, it usually

228

Part Il 4 Document Objects Reference

opens a window. That window is a valid window object, even if the window is blank.
Therefore, after a user loads your page into the browser, the window object part of
that document is automatically created for your script to access as it pleases.

One conceptual trap to avoid is believing that a window object’s event handler or
custom property assignments outlive the document whose scripts make the assign-
ments. Except for some obvious physical properties of a window, each new docu-
ment that loads into the window starts with a clean slate of window properties and
event handlers.

Your script’s control over an existing (already open) window’s user interface
elements varies widely with the browser and browser version for which your appli-
cation is intended. Before the version 4 browsers, the only change you can make to
an open window is to the status line at the bottom of the browser window. With
IE4+ and NN4+, however, you can control such properties as the size, location, and
(with signed scripts in Navigator) the presence of “chrome” elements (toolbars and
scrollbars, for example) on the fly. Many of these properties can be changed
beyond specific safe limits only if you cryptographically sign the scripts (see
Chapter 46) and/or the user grants permission for your scripts to make those
modifications.

Window properties are far more flexible on all browsers when your scripts gener-
ate a new window (with the window.open() method): You can influence the size,
toolbar, or other view options of a window. Recent browser versions provide even
more options for new windows, including the position of the window and whether
the window should even display a title bar. Again, if an option can conceivably be
used to deceive a user (for example, silently hiding one window that monitors
activity in another window), signed scripts and/or user permission are necessary.

The window object is also the level at which a script asks the browser to display
any of three styles of dialog boxes (a plain alert dialog box, an OK/Cancel confirma-
tion dialog box, or a prompt for user text entry). Although dialog boxes are
extremely helpful for cobbling together debugging tools for your own use (Chapter
45), they can be very disruptive to visitors who navigate through Web sites.
Because most JavaScript dialog boxes are modal (that is, you cannot do anything
else in the browser — or anything at all on a Macintosh — until you dismiss the
dialog box), use them sparingly, if at all. Remember that some users may create
macros on their computers to visit sites unattended. Should such an automated
access of your site encounter a modal dialog box, it is trapped on your page until a
human intervenes.

All dialog boxes generated by JavaScript identify themselves as being generated
by JavaScript (less egregiously so in version 4 browsers and later). This is primarily
a security feature to prevent deceitful scripts from creating system- or application-
style dialog boxes that convince visitors to enter private information. It should also
discourage dialog box usage in Web page design. And that’s good, because dialog
boxes tend to annoy users.

With the exception of the [E-specific modal and modeless dialog boxes (see the
window.showModalDialog() and window.showModeless () methods), JavaScript
dialog boxes are not particularly flexible in letting you fill them with text or graphic
elements beyond the basics. In fact, you can’t even change the text of the dialog box
buttons or add a button. With DHTML-capable browsers, you can use positioned DIV
or [FRAME elements to simulate dialog box behavior in a cross-browser way.

Chapter 16 + Window and Frame Objects 29O

Properties
appCore
Components
controllers
prompter
sidebar
Values: See Text Read-Only

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Navigator 6 provides scriptable access to numerous services that are part of the
xpconnect package (“xp” stands for “cross-platform™). These services allow scripts
to work with COM objects and the mozilla.org XUL (XML-based User Interface
Language) facilities —lengthy subjects that extend well beyond the scope of this
book. You can begin to explore this subject within the context of Navigator 6 and
scriptingat http://www.mozilla.org/scriptable/.

clientInformation
Value: navigator object Read-only

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

In an effort to provide scriptable access to browser-level properties while avoid-
ing reference to the Navigator browser brand, Microsoft provides the
clientInformation property. Its value is identical to that of the navigator
object —an object name that is also available in IE. Use the navigator object for
cross-browser applications. (See Chapter 28.)

Related Items: navigator object.

clipboardData

Value: Object Read/Write

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 1E5.5

Compatibility v/ v

230

Part Il 4 Document Objects Reference

Use the c1ipboardData object (not implemented in IE5/Mac) to transfer data
for such actions as cutting, copying, and pasting under script control. The object
contains data of one or more data types associated with a transfer operation. Use
this property only when editing processes via the Edit menu (or keyboard equiva-
lents) or context menu controlled by script —typically in concert with edit-related
event handlers.

Working with the cTipboardData object requires knowing about its three meth-
ods shown in Table 16-1. Familiarity with the edit-related event handlers (“before”
and “after” versions of cut, copy, and paste) is also helpful (see Chapter 15).

Table 16-1 window.clipboardData Object Methods

Method Returns Description

clearData([format]) Nothing Removes data from the clipboard. If no
format parameter is supplied, all data is
cleared. Data formats can be one or more of
the following strings: Text, URL, File,
HTML, Image.

getData(format) String Retrieves data of the specified format from
the clipboard. The format is one of the
following strings: Text, URL, File, HTML,
Image. The clipboard is not emptied when
you get the data, so that the data can be
retrieved in several sequential operations.

setData(format, data) Boolean Stores string data in the clipboard. The
format is one of the following strings: Text,
URL, File, HTML, Image. For non-text data
formats, the data must be a string that
specifies the path or URL to the content.
Returns true if the transfer to the clipboard
is successful.

You cannot use the c1ipboardData object to transfer data between pages that
originate from different domains or arrive via different protocols (http versus
https).

Onthe""\ Example on the CD-ROM

Related Items: event.dataTransfer property; onBeforeCopy, onBeforeCut,
onBeforePaste, onCopy, onCut, onPaste event handlers.

Chapter 16 + Window and Frame Objects 3]

closed
Value: Boolean Read-Only
NN2 NN3 NN4 NNé6 |IE3/)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v/ v v

When you create a subwindow with the window.open () method, you may need
to access object properties from that subwindow, such as setting the value of a text
field. Access to the subwindow is via the window object reference that is returned
by the window.open() method, as in the following code fragment:

var newWind = window.open("someURL.htm1","subWind")

newWind.document.entryForm.ZIP.value = "00000"

In this example, the newWind variable is not linked “live” to the window, but is
only a reference to that window. If the user should close the window, the newWind
variable still contains the reference to the now missing window. Thus, any script
reference to an object in that missing window will likely cause a script error. What
you need to know before accessing items in a subwindow is whether the window is
still open.

The closed property returns true if the window object has been closed either
by script or by the user. Any time you have a script statement that can be triggered
after the user has an opportunity to close the window, test for the c1osed property
before executing that statement.

As a workaround for Navigator 2, any property of a closed window reference
returns a nul1 value. Thus, you can test whether, say, the parent property of the
new window is nul1: If so, the window has already closed. Internet Explorer 3, on
the other hand, triggers a scripting error if you attempt to access a property of a
closed window —you have no error-free way to detect whether a window is open or
closed in Internet Explorer 3.

Onth"“\ Example (with Listing 16-4) on the CD-ROM

Related Items: window.open(), window.close() methods.

Components

See appCore.

controllers

See appCore.

237 Partlll + Document Objects Reference

crypto
pkcsll
Values: Object References Read-Only
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v

The crypto and pkcs11 properties return references to browser objects that are
relevant to internal public-key cryptography mechanisms. These subjects are
beyond the scope of this book, but you can read more about Netscape’s efforts on
this front at http://www.mozilla.org/projects/security/.

defaultStatus
Value: String Read/Write

NN2 NN3 NN4 NNé6 IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v v v v

After a document is loaded into a window or frame, the statusbar’s message field
can display a string that is visible any time the mouse pointer is not atop an object
that takes precedence over the statusbar (such as a link object or an image map).
The window.defaultStatus property is normally an empty string, but you can set
this property at any time. Any setting of this property will be temporarily overrid-
den when a user moves the mouse pointer atop a link object (see window.status
property for information about customizing this temporary statusbar message).

Probably the most common time to set the window.defaultStatus property is
when a document loads into a window. You can do this as an immediate script
statement that executes from the Head or Body portion of the document or as part
of a document’s onLoad event handler.

Tip The defaultStatus property does not work well in Navigator 2 or Internet
~, Explorer 3, and experiences problems in Navigator 3, especially on the Macintosh
"4 (where the property doesn’t change even after loading a different document into
the window). Many users simply don't notice the statusbar change during Web
surfing, so don't put mission-critical information in the statusbar.

On the

(4}

CD-
&

\ Example (with Listing 16-5) on the CD-ROM

Related Items: window.status property.

Chapter 16 + Window and Frame Objects 033

dialogArguments
Value: Varies Read-only

NN2 NN3 NN4 NNé |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v/ v v

The dialogArguments property is available only in a window that is generated
by the IE-specific showModalDialog() or showModelessDialog() methods. Those
methods allow a parameter to be passed to the dialog box window, and the
dialogArguments property lets scripts inside the dialog box window’s scripts to
access that parameter value. The value can be in the form of a string, number, or
JavaScript array (convenient for passing multiple values).

Onthe""\ Example on the CD-ROM

Related Items: window.showModalDialog(), window.showModelessDialog()

methods.
dialogHeight
dialogWidth
Value: String Read/Write
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v

Scripts in a document located inside an [E-specific modal or modeless dialog
box (generated by showModalDialog() or showModelessDialog()) can read or
modify the height and width of the dialog box window via the dialogHeight and
dialogWidth properties. Scripts can access these properties from the main
window only for modeless dialog boxes, which remain visible while the user can
control the main window contents.

Values for these properties are strings and include the unit of measure, the

pixel (px).

Onthe-“\\ Example on the CD-ROM

cn
.

Related Items: window.dialogleft, window.dialogTop properties.

y

234

Part Il 4 Document Objects Reference

dialoglLeft
dialogTop
Value: String Read/Write
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v

Scripts in a document located inside an IE-specific modal or modeless dialog box
(generated by showModalDialog() or showModelessDialog()) can read or mod-
ify the left and top coordinates of the dialog box window via the dialoglLeft and
dialogTop properties. Scripts can access these properties from the main window
only for modeless dialog boxes, which remain visible while the user can control the
main window contents.

Values for these properties are strings and include the unit of measure, the pixel
(px). If you attempt to change these values so that any part of the dialog box win-
dow would be outside the video monitor, the browser overrides the settings to keep
the entire window visible.

gg the Example on the CD-ROM

A\

Related Items: window.dialogHeight, window.dialogTopWidth properties.

directories
locationbar
menubar
personalbar
scrollbars

statusbar
toolbar
Value: Object Read/Write (with signed scripts)
NN2 NN3 NN4 NN6 |IE3/)J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v

Beyond the rectangle of the content region of a window (where your documents
appear), the Netscape browser window displays an amalgam of bars and other fea-
tures known collectively as chrome. All browsers can elect to remove these chrome

Chapter 16 4+ Window and Frame Objects

items when creating a new window (as part of the third parameter of the
window.open() method), but until signed scripts were available in Navigator 4,
these items could not be turned on and off in the main browser window or any
existing window.

Navigator 4 promotes these elements to first-class objects contained by the
window object. Navigator 6 adds one more feature, called the directories bar—a
frame-like device that can be opened or hidden from the left edge of the browser
window. At the same time, however, NN6 no longer permits hiding and showing the
browser window’s scrollbars. Figure 16-4 points out where each of the six bars
appears in a fully chromed Navigator 4 window. The only element that is not part of
this scheme is the window’s title bar. You can create a new window without a title
bar (with a signed script), but you cannot hide and show the title bar on an existing
window.

Menubar

Toolbar Locationbar Personalbar Statusbar Scrollbar

Il of Rights - Netscape

File Edit| View Go Comjmunicator Help

7 ~| - = &
3 F A D . £ & E
{ Back Foward Relopd Home Seach Gude Print Secuwity | Siop

i " Bookmarks J anamn-|me 7#/E17 IS Bible Brd/ CO-ROM/Chapl d¢hdfright htm
what's Mew? What's Coal?

ARTICLEI

Congress shall make no law respecting an establishment of religioh, or prohibiting the free exercise
thereof; or abridging the freedom of speech, or of the press; or the right of the people peaceably to | =
assemble, and to petition the government for a redress of grievanges

ARTICLE 11

A well regulated militia, being necessary to the security of a free sfate, the right of the people to keep
and bear arms, shall not be infringed.

ARTICLE III

Mo soldier shall, in time of peace, be quartered in any house, without the consent of the owner, nor in =
[| Document: Done T e e

Figure 16-4: Window chrome items

Chrome objects have but one property: visible. Reading this Boolean value
(possible without signed scripts) lets you inspect the visitor’s browser window for
the elements currently engaged. There is no intermediate setting or property for
the expanded/collapsed state of the toolbar, locationbar, and personalbar in NN4.

Changing the visibility of these items on the fly alters the relationship between
the inner and outer dimensions of the browser window. If you must carefully size a
window to display content, you should adjust the chrome elements before sizing
the window. Before you start changing chrome visibility before the eyes of your
page visitors, weigh the decision carefully. Experienced users have fine-tuned the
look of their browser windows to just the way they like them. If you mess with that

235

236

Part Il 4 Document Objects Reference

look, you may anger your visitors. Fortunately, changes you make to a chrome ele-

ment’s visibility are not stored to the user’s preferences. However, the changes you
make survive an unloading of the page. If you change the settings, be sure you first
save the initial settings and restore them with an onUnload event handler.

Tip The Macintosh menu bar is not part of the browser's window chrome. Therefore,
_ its visibility cannot be adjusted from a script.
s
On the Example (with Listing 16-6) on the CD-ROM

CD-

./

Related Items: window.open() method.

document
Value: Object Read-only
NN2 NN3 NN4 NN6é6 |IE3/)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v v v v v v

I list the document property here primarily for completeness. Each window
object contains a single document object (although in Navigator 4, a window may
also contain layers, each of which has a document object, as described in Chapter
31). The value of the document property is the document object, which is not a
displayable value. Instead, you use the document property as you build references
to properties and methods of the document and to other objects contained by the
document, such as a form and its elements. To load a different document into a win-
dow, use the Tocation object (see Chapter 17). The document object is described
in detail in Chapter 18.

Related Items: document object.

event
Value: Object Read/Write
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v

Only IE4+ treats the event object as a property of the window object. Navigator
4+ and the W3C DOM pass an instance of the Event object as an argument to event
handler functions. The connection with the window object in IE is relatively incon-
sequential, because all action involving the event object occurs in event handler
functions. The only difference is that the object can be treated as a more global

object when one event handler functio

Chapter 16 4+ Window and Frame Objects

n invokes another. Instead of having to pass

the event object parameter to the next function, IE functions can access the event
object directly (with or without the window. prefix in the reference).
For complete details about the event object in all browsers, see Chapter 29.

Related Items: event object.

external
Value: Object Read-only
NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v

The external property (not implemented in IE5/Mac) is useful only when the
browser window is a component in another application. The property provides a
gateway between the current browser window and the application that acts as a
host to the browser window component.

With IE4+ acting as a component to the host operating system, the external
property can be used to access several methods that influence behaviors outside of
the browser. Perhaps the three most useful methods to regular Web page scripters

are AddDesktopComponent (), AddFav

orite(),and NavigateAndFind (). The first

two methods display the same kind of alert dialog box that users get after making
these choices from the browser or desktop menus, so that you won’t be able to
sneak your Web site onto desktops or Favorites listings without the visitor’s
approval. Table 16-2 describes the parameters for these three methods.

Table 16-2 Popular window.external Object Methods

Method

Description

AddDesktopComponent ("URL",
"type"[, left, top,
width, heightl)

AddFavorite("URL"[, "title"])

NavigateAndFind("URL",
"findString", "target")

Adds a Web site or image to the Active Desktop
(if turned on in the user's copy of Windows). The
type parameter value is either website or
image. Dimensional parameters (optional) are all
integer values.

Adds the specified URL to the user’s Favorites list.
The optional title string parameter is how the URL
should be listed in the menu (if missing, the URL

appears in the list).

Navigates to the URL in the first parameter and
opens the page in the target frame (an empty
string opens in the current frame). The
findString is text to be searched for on that
page and highlighted when the page loads.

237

238 Partlll + Document Objects Reference

To learn more about the external object and how to extend the MS object
model, visit http://msdn.microsoft.com.workshop/browser/overview/
Overview.asp#fExtending_the_Dynami.

Ontheu‘\ Example on the CD-ROM

frameETlement
Values: FRAME or IFRAME Object Reference Read-Only

NN2 NN3 NN4 NNé6 IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v

If the current window exists as a result of a <FRAMED> or <IFRAME> tag, the win-
dow’s frameElement property returns a reference to the hosting element. As is
made clear in the discussion later in this chapter about the FRAME element object,
a reference to a FRAME or IFRAME element object provides access to the properties
that echo the attributes of the HTML element object. For a window that is not part
of a frameset, the frameElement property returns null.

The convenience of this property becomes apparent when a single document is
loaded into multiple framesets. A script in the document can still refer to the con-
taining FRAME element, even when the ID of the element changes from one frame-
set to another. The FRAMESET element is also accessible via the parentElement
property of the frameElement property:

var frameSetObj = self.frameElement.parentElement
A reference to the FRAMESET element opens possibilities of adjusting frame sizes.

Related Items: FRAME, IFRAME objects.

frames
Value: Array Read-only
NN2 NN3 NN4 NNé6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5
Compatibility v v v v v v v v v

In a multiframe window, the top or parent window contains any number of
separate frames, each of which acts as a full-fledged window object. The frames
property (note the plural use of the word as a property name) plays a role when a
statement must reference an object located in a different frame. For example, if a

Chapter 16 4+ Window and Frame Objects

button in one frame is scripted to load a document in another frame, the button’s
event handler must be able to tell JavaScript precisely where to display the new
HTML document. The frames property assists in that task.

To use the frames property to communicate from one frame to another, it
should be part of a reference that begins with the parent or top property. This lets
JavaScript make the proper journey through the hierarchy of all currently loaded
objects to reach the desired object. To find out how many frames are currently
active in a window, use this expression:

parent.frames.length

This expression returns a number indicating how many frames the parent win-
dow defines. This value does not, however, count further nested frames, should a
third generation of frame be defined in the environment. In other words, no single
property exists that you can use to determine the total number of frames in the
browser window if multiple generations of frames are present.

The browser stores information about all visible frames in a numbered (indexed)
array, with the first frame (that is, the topmost <FRAME> tag defined in the frameset-
ting document) as number 0:

parent.frames[0]

Therefore, if the window shows three frames (whose indexes are frames[0],
frames[11], and frames[2], respectively), the reference for retrieving the title
property of the document in the second frame is

parent.frames[1].document.title

This reference is a road map that starts at the parent window and extends to the
second frame’s document and its tit1e property. Other than the number of frames
defined in a parent window and each frame’s name (top.frames[i].name), no
other values from the frame definitions are directly available from the frame object
via scripting until you get to [E4 and NN6 (see the FRAME element object later in
this chapter). In these browsers, individual FRAME element objects have several
properties that reveal <FRAME> tag attributes.

Using index values for frame references is not always the safest tactic, however,
because your frameset design may change over time, in which case the index val-
ues will also change. Instead, you should take advantage of the NAME attribute of the
<FRAME> tag, and assign a unique, descriptive name to each frame. A value you
assign to the NAME attribute is also the name that you use for TARGET attributes of
links to force a linked page to load in a frame other than the one containing the link.
You can use a frame’s name as an alternative to the indexed reference. For example,
in Listing 16-7, two frames are assigned distinctive names. To access the title of a
document in the JustAKid2 frame, the complete object reference is

parent.JustAKid2.document.title

with the frame name (case-sensitive) substituting for the frames[1] array refer-
ence. Or, in keeping with JavaScript flexibility, you can use the object name in the
array index position:

parent.frames["JustAKid2"].document.title

239

240

Part Il 4 Document Objects Reference

The supreme advantage to using frame names in references is that no matter
how the frameset structure may change over time, a reference to a named frame
will always find that frame, although its index value (that is, position in the frame-
set) may change.

gg the Example (with Figure 16-5 and Listings 16-7 and 16-8) on the CD-ROM

AW,

Related Items: frame, frameset objects; window.parent, window. top properties.

history
Value: Object Read-only
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v v v v v v

See the discussion of the history object in Chapter 17.

innerHeight

innerWidth
outerHeight
outerWidth
Value: Integer Read/Write
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v

Navigator 4+ lets scripts adjust the height and width of any window, including
the main browser window by setting properties (NN4+ and [E4+ have methods that
also resize the browser window). This adjustment can be helpful when your page
shows itself best with the browser window sized to a particular height and width.
Rather than relying on the user to size the browser window for optimum viewing of
your page, you can dictate the size of the window (although the user can always
manually resize the main window). And because you can examine the operating
system of the visitor via the navigator object (see Chapter 28), you can size a
window to adjust for the differences in font and form element rendering on different
platforms.

Netscape provides two different points of reference for measuring the height and
width of a window: inner and outer. Both are measured in pixels. The inner mea-
surements are that of the active document area of a window (sometimes known as a

Chapter 16 + Window and Frame Objects 24]

window’s content region). If the optimum display of your document depends on the
document display area being a certain number of pixels high and/or wide, the
innerHeight and innerWidth properties are the ones to set.

In contrast, the outer measurements are of the outside boundary of the entire
window, including whatever chrome is showing in the window: scrollbars, status-
bar, and so on. Setting the outerHeight and outerWidth is generally done in con-
cert with a reading of screen object properties (Chapter 28). Perhaps the most
common usage of the outer properties is to set the browser window to fill the
available screen area of the visitor’s monitor.

A more efficient way of modifying both outer dimensions of a window is with the
window.resizeTo() method, which is also available in I[E4+. The method takes
pixel width and height (as integer values) as parameters, thus accomplishing a
window resizing in one statement. Be aware that resizing a window does not adjust
the location of a window. Therefore, just because you set the outer dimensions of a
window to the available space returned by the screen object doesn’t mean that the
window will suddenly fill the available space on the monitor. Application of the
window.moveTo() method is necessary to ensure the top-left corner of the window
is at screen coordinates 0,0.

Despite the freedom that these properties afford the page author, Netscape has
built in a minimum size limitation for scripts that are not cryptographically signed.
You cannot set these properties such that the outer height and width of the
window is smaller than 100 pixels on a side. This limitation is to prevent an
unsigned script from setting up a small or nearly invisible window that monitors
activity in other windows. With signed scripts, however, windows can be made
smaller than 100 x 100 pixels with the user’s permission. IE4+ maintains a smaller
minimum size to prevent resizing a window to zero size.

Onthe-“\\ Example (with Listing 16-9) on the CD-ROM

Related Items: window.resizeTo(), window.moveTo() methods; screen object;
navigator object.

loading
Value: Boolean Read-only
NN2 NN3 NN4 NN6 IE3/J1 IE3/)2 IE4 IE5 1E5.5
Compatibility v

This NN4-specific property allows you to query whether the window is still load-
ing content. The property returns true if the page is still loading and false if the
page has completed loading all of its content.

242

Part Il 4 Document Objects Reference

location
Value: Object Read/Write
NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v v v v v v

See the discussion of the 1ocation object in Chapter 17.

locationbar

See directories.

name
Value: String Read/Write
NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v v v v v v

All window objects can have names assigned to them. Names are particularly
useful for working with frames, because a good naming scheme for a multiframe
environment can help you determine precisely which frame you’re working with in
references coming from other frames.

The main browser window, however, has no name attached to it by default. Its
value is an empty string. There aren’t many reasons to assign a name to the win-
dow, because JavaScript and HTML provide plenty of other ways to refer to the
window object (the top property, the _top constant for TARGET attributes, and the
opener property from subwindows).

If you want to attach a name to the main window, you can do so by setting the
window.name property at any time. But be aware that because this is one window
property whose life extends beyond the loading and unloading of any given docu-
ment, chances are that your scripts would use the reference in only one document
or frameset. Unless you restore the default empty string, your programmed window
name will be present for any other document that loads later. My suggestion in this
regard is to assign a name in a window’s or frameset’s onlLoad event handler, and
then reset it to empty in a corresponding onUnToad event handler:

<BODY onlLoad="self.name = 'Main"" onUnload="self.name = ''">

You can see an example of this application in Listing 16-16, where setting a par-
ent window name is helpful for learning the relationships among parent and child
windows.

Related Items: top property; window.open(), window.sizeToContent ()methods.

Chapter 16 + Window and Frame Objects 043

navigator
Value: Object Read-only

NN2 NN3 NN4 NNé |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v v/ v v

Although the navigator object appears as a property of the window object only
in the most recent browsers, the navigator object has been around since the very
beginning (see Chapter 28). In previous browsers, the navigator object was refer-
enced as a standalone object. And because you can omit any reference to the
window object for a window object’s properties, you can use the same window-less
reference syntax for compatibility across all scriptable browsers (at least for the
navigator object properties that exist across all browsers). That’s the way |
recommend referring to the navigator object.

Onthe"'“\ Example on the CD-ROM

Related Items: navigator object.

offscreenBuffering
Value: Boolean or String Read/Write

NN2 NN3 NN4 NNé |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v/ v v

Internet Explorer 4+ (for Win32 platforms) by default initially renders a page in a
buffer (a chunk of memory) before it is blasted to the video screen. You can control
this behavior explicitly by modifying the window.offscreenBuffering property.

The default value of the property is the string auto. You can also assign Boolean
true or false to the property to override IE’s normal automatic handling of this
behavior.

gg the Example on the CD-ROM

\.
onerror
Value: Function Read/Writ

244

Part Il 4 Document Objects Reference

'Note

NN2 NN3 NN4 NNé6 IE3/)1 1E3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v

The onerror property is an exception to the rule of this book to not describe
event handlers as properties within object reference sections. The reason is that
the onError event brings along some special properties that are useful to control
by setting the event handler property in scripts.

Recent browsers (IE5+ and NN4+) are designed to prevent script errors from being
intrusive if a user encounters a script error while loading or interacting with a page.
Even so, even the subtle hints about problems (messages or icons in the statusbar)
can be confusing for users who have no idea what JavaScript is. JavaScript lets you
turn off the display of script error windows or messages as someone executes a
script on your page. The question is: When should you turn off these messages?

Script errors generally mean that something is wrong with your script. The error
may be the result of a coding mistake or, conceivably, a bug in JavaScript (perhaps
on a platform version of the browser that you haven’t been able to test). If such
errors occur, often the script won’t continue to do what you intended. Hiding the
script error from yourself during development would be foolhardy, because you’d
never know whether unseen errors are lurking in your code. It can be equally dan-
gerous to turn off error dialog boxes for users who may believe that the page is
operating normally, when, in fact, it’s not. Some data values may not be calculated
or displayed correctly.

That said, I can see some limited instances of when you may want to keep such
dialog box windows from appearing. For example, if you know for a fact that a plat-
form-specific bug trips the error message without harming the execution of the
script, you may want to prevent that error alert dialog box from appearing in the
files posted to your Web site. You should do this only after extensive testing to
ensure that the script ultimately behaves correctly, even with the bug or error.

IE fires the onError event handler only for runtime errors. This means that if you

~ have a syntactical error in your script that trips the browser as the page loads, the

onError event doesn't fire, and you cannot trap that error message. Moreover, if
the user has the IE script debugger installed, any code you use to prevent browser
error messages from appearing will not work.

When the browser starts, the window.onerror property is <undefined>. In this
state, all errors are reported via the normal JavaScript error window or message. To
turn off error alerts, set the window.onerror property to invoke a function that
does absolutely nothing:

function doNothing() {return true}
window.onerror = doNothing

To restore the error messages, reload the page.

You can, however, also assign a custom function to the window.onerror prop-
erty. This function then handles errors in a more friendly way under your script
control. Whenever error messages are turned on (the default behavior), a script

L

Note

Chapter 16 + Window and Frame Objects 245

error (or Java applet or class exception) invokes the function assigned to the
onerror property, passing three parameters:

4+ Error message
4 URL of document causing the error
4 Line number of the error

You can essentially trap for all errors and handle them with your own interface
(or no user notification at all). The last statement of this function must be return
true if you do not want the JavaScript script error message to appear.

NN6 does not pass error-related parameters to a function invoked by onError. This

~~ may be an attempt to lure scripters to the more modern try-catch error trapping

mechanism (see Chapter 39). But it means that NN6 cannot take complete advan-
tage of older error reporting code, including that shown in Listing 16-10.

If you are using LiveConnect to communicate with a Java applet or (in NN3+) to
call up Java class methods directly from your scripts, you can use the same scheme
to handle any exception that Java may throw. A Java exception is not necessarily a
mistake kind of error: Some methods assume that the Java code will trap for excep-
tions to handle special cases (for example, reacting to a user’s denial of access
when prompted by a signed script dialog box). See Chapter 44 for an example of
trapping for a specific Java exception. Also, see Chapter 39 for JavaScript exception
handling introduced for W3C DOM-compatible browsers.

On the Example (with Figure 16-6 and Listing 16-10) on the CD-ROM

CD-

S

,/.

Related Items: 1ocation.reload() method; JavaScript exception handling
(Chapter 39); debugging scripts (Chapter 45).

opener
Value: Window object reference Read/Write
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v/ v v

Many scripters make the mistake of thinking that a new browser window created
with the window.open () method has a child-parent relationship similar to the one
that frames have with their parents. That’s not the case at all. New browser win-
dows, once created, have a very slim link to the window from whence they came:
via the opener property. The purpose of the opener property is to provide scripts
in the new window with valid references back to the original window. For example,
the original window may contain some variable values or general-purpose functions
that a new window at this Web site wants to use. The original window may also

246

Part Il 4 Document Objects Reference

have form elements whose settings are either of value to the new window or get set
by user interaction in the new window.

Because the value of the opener property is a reference to a genuine window
object, you can begin references with the property name. Or, you may use the more
complete window.opener or self.opener reference. But the reference must then
include some object or property of that original window, such as a window method
or a reference to something contained by that window’s document.

Although this property was new for Navigator 3 (and was one of the rare
Navigator 3 features to be included in Internet Explorer 3), you can make your
scripts backward compatible to Navigator 2. For every new window you create,
make sure it has an opener property as follows:

var newWind = window.open()

if (newWind.opener == null) {
newWind.opener = self

}

For Navigator 2, this step adds the opener property to the window object refer-
ence. Then, no matter which version of JavaScript-enabled Navigator the user has,
the opener property in the new window’s scripts points to the desired original
window.

If a subwindow opens yet another subwindow, the chain is still valid, albeit one
step longer. The third window can reach the main window with a reference that
begins:

opener.opener. ...

It’s a good idea for the third window to store in a global variable the value of
opener.opener while the page loads. Thus, if the user closes the second window,
the variable can be used to start a reference to the main window.

When a script that generates a new window is within a frame, the opener prop-
erty of the subwindow points to that frame. Therefore, if the subwindow needs to
communicate with the main window’s parent or another frame in the main window,
you have to very carefully build a reference to that distant object. For example, if
the subwindow needs to get the checked property of a checkbox in a sister frame
of the one that created the subwindow, the reference is

opener.parent.sisterFrameName.document.formName.checkboxName.checked

It is a long way to go, indeed, but building such a reference is always a case of
mapping out the path from where the script is to where the destination is, step-by-
step.

On the Example (with Figure 16-7 and Listings 16-11 and 16-12) on the CD-ROM

,/'

Related Items: window.open(), window.focus () methods.

Chapter 16 + Window and Frame Objects 247/

outerHeight
outerWidth

See innerHeight and innerWidth, earlier.

pageXOffset
pageYOffset

CD-

%%

Value: Integer Read-only

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 1E5.5

Compatibility v/ v

The top-left corner of the content (inner) region of the browser window is an
important geographical point for scrolling documents. When a document is scrolled
all the way to the top and flush left in the window (or when a document is small
enough to fill the browser window without displaying scrollbars), the document’s
location is said to be 0,0, meaning zero pixels from the top and zero pixels from the
left. If you were to scroll the document, some other coordinate point of the docu-
ment would be under that top-left corner. That measure is called the page offset,
and the pageX0ffset and pageY0Offset properties let you read the pixel value of
the document at the inner window’s top-left corner: pageX0ffset is the horizontal
offset, and pageYOffset is the vertical offset.

The value of these measures becomes clear if you design navigation buttons in
your pages to carefully control paging of content being displayed in the window. For
example, you might have a two-frame page in which one of the frames features navi-
gation controls, while the other displays the primary content. The navigation con-
trols take the place of scrollbars, which, for aesthetic reasons, are turned off in the
display frame. Scripts connected to the simulated scrolling buttons can determine
the pageY0ffset value of the document, and then use the window.scrol1To()
method to position the document precisely to the next logical division in the docu-
ment for viewing.

IE4+ has corresponding values as body object properties: body.scrolllLeft and
body.scrol1Top (see Chapter 18).

On the Example (with Listing 16-13) on the CD-ROM

&

Related Items: window.innerHeight, window.innerWidth, body.scrolllLeft,
body.scrol1Top properties; window.scrol1By (), window.scrol1To() methods.

248

Part Il 4 Document Objects Reference

parent
Value: Window object reference Read-only
NN2 NN3 NN4 NNé6 |IE3/)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v v v v v v

The parent property (and the top property that follows later in this section)
comes into play primarily when a document is to be displayed as part of a multi-
frame window. The HTML documents that users see in the frames of a multiframe
browser window are distinct from the document that specifies the frameset for the
entire window. That document, though still in the browser’s memory (and appear-
ing as the URL in the location field of the browser), is not otherwise visible to the
user (except in the Source View).

If scripts in your visible documents need to reference objects or properties of
the frameset window, you can reference those frameset window items with the
parent property (do not, however, expand the reference by preceding it with the
window object, as inwindow.parent.propertyName, as this causes problems in
early browsers). In a way, the parent property seems to violate the object hierar-
chy because, from a single frame’s document, the property points to a level seem-
ingly higher in precedence. If you didn’t specify the parent property or instead
specified the self property from one of these framed documents, the object refer-
ence is to the frame only, rather than to the outermost framesetting window object.

A nontraditional but perfectly legal way to use the parent object is as a means
of storing temporary variables. Thus, you could set up a holding area for individual
variable values or even an array of data. These values can then be shared among all
documents loaded into the frames, including when documents change inside the
frames. You have to be careful, however, when storing data in the parent on the fly
(that is in response to user action in the frames). Variables can revert to their
default values (that is, the values set by the parent’s own script) if the user resizes
the window in early browsers.

A child window can also call a function defined in the parent window. The refer-
ence for such a function is

parent.functionName([parameters])

At first glance, it may seem as though the parent and top properties point to
the same framesetting window object. In an environment consisting of one frameset
window and its immediate children, that’s true. But if one of the child windows was,
itself, another framesetting window, then you wind up with three generations of
windows. From the point of view of the “youngest” child (for example, a window
defined by the second frameset), the parent property points to its immediate par-
ent, whereas the top property points to the first framesetting window in this chain.

On the other hand, a new window created via the window.open() method has
no parent—child relationship to the original window. The new window’s top and
parent point to that new window. You can read more about these relationships in
the “Frames” section earlier in this chapter.

Chapter 16 + Window and Frame Objects 49O

gg the Example (with Figure 16-8 and Listings 16-14 and 16-15) on the CD-ROM

Related Items: window. frames, window.self, window.top properties.

personalbar

See directories.

returnValue
Value: Any data type Read/Write

NN2 NN3 NN4 NNé |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v/ v v

Scripts use the returnValue property in a document that loads into the IE-spe-
cific modal dialog box. A modal dialog box is generated via the showModalDialog()
method, which returns whatever data has been assigned to the returnValue prop-
erty of the dialog box window before it closes. This is possible because script pro-
cessing in the main window freezes while the modal dialog box is visible. As the
dialog box closes, a value can be returned to the main window’s script right where
the modal dialog box was invoked, and the main window’s script resumes executing
statements.

gg the Example on the CD-ROM

Related Items: showModalDialog() method.

screen
Value: screen Object Read-only
NN2 NN3 NN4 NN6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility 4 v v v

Although the screen object appears as a property of the window object only in
the most recent browsers, the screen object is also available in NN4 (see Chapter
28), but as a standalone object. Because you can omit any reference to the window
object for a window object’s properties, the same window-less reference syntax can
be used for compatibility across all browsers that support the screen object.
That’s the way [recommend referring to the screen object.

250 Partlll + Document Objects Reference

Example

See Chapter 28 for examples of using the screen object to determine the video
monitor characteristics of the computer running the browser.

Related Items: screen object.

screenlLeft
screenTop
Value: Integer Read-only
NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v

IE5+ (but not IE5/Mac) provides the screenlLeft and screenTop properties of
the window object to let you read the pixel position (relative to the top-left 0,0 coor-
dinate of the video monitor) of what Microsoft calls the client area of the browser
window. The client area excludes most window chrome, such as the title bar,
address bar, and the window sizing bar. Therefore, when the IE5 browser window is
maximized (meaning that no sizing bars are exposed), the screenleft property of
the window is 0, while the screenTop property varies depending on the combina-
tion of toolbars the user has elected to display. For non-maximized windows, if the
window has been positioned so that the top and/or left part of the client area are
out of view, their property values will be negative integers.

These two properties are read-only. You can position the browser window via the
window.moveTo() and window.moveBy () methods, but these methods position
the top-left corner of the entire browser window, not the client area. IE browsers,
through version 5.5, do not provide properties for the position of the entire
browser window.

gg the Example on the CD-ROM

\
Related Items: window.moveTo(), window.moveBy () methods.

screenX
screenY

Value: Integer Read/Write

NN2 NN3 NN4 NNé6 IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v

Chapter 16 + Window and Frame Objects 5]

NN6 provides the screenX and screenY properties to read the position of the
outer boundary of the browser window relative to the top-left coordinates (0,0) of
the video monitor. The browser window includes the four-pixel wide window sizing
bars that surround Win32 windows. Therefore, when the NN6/Win32 browser win-
dow is maximized, the values for both screenX and screenY are -4. Netscape does
not provide the equivalent measures of the browser window client area as found in
the screenlLeft and screenTop properties of IE5. You can, however, find out if var-
ious toolbars are visible in the browser window (see window.directories).

Both properties can be changed by script to alter the location of the window, but
the window.moveTo() and window.moveBy () methods are more convenient,
because only one statement is needed to handle both coordinates.

Onthe'"“\ Example on the CD-ROM

Related Items: window.moveTo(), window.moveBy () methods.

scrollbars

See directories.

scrollX
scrollyY
Value: Integer Read-Only
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 1E5.5
Compatibility v

The NN6 scrol1X and scrol1Y properties let you determine the horizontal and
vertical scrolling of a window. Scrolling is possible only if the window displays
scrollbars along the desired axis. Values are pixel integers.

While the IE DOM does not provide similar properties for the window, the same
information can be derived from the body.scrolllLeft and body.scrol1Top
properties.

Onthe"'“\ Example on the CD-ROM

Related Items: body.scrollleft, body.scroll1Top properties.

252

Part Il 4 Document Objects Reference

self

Value: Window object reference Read-only

NN2 NN3 NN4 NNé |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v R

Just as the window object reference is optional, so too is the self property when
the object reference points to the same window as the one containing the reference.
In what may seem to be an unusual construction, the self property represents the
same object as the window. For instance, to obtain the title of the document in a
single-frame window, you can use any of the following three constructions:

window.document.title
self.document.title
document.title

Although self is a property of a window, you should not combine the references
within a single-frame window script (for example, don’t begin a reference with
window.self, which has been known to cause numerous scripting problems).
Specifying the self property, though optional for single-frame windows, can help
make an object reference crystal clear to someone reading your code (and to you,
for that matter). Multiple-frame windows are where you need to pay particular
attention to this property.

JavaScript is pretty smart about references to a statement’s own window.
Therefore, you can generally omit the self part of a reference to a same-window
document element. But when you intend to display a document in a multiframe
window, complete references (including the self prefix) to an object make it much
easier on anyone who reads or debugs your code to track who is doing what to
whom. You are free to retrieve the self property of any window. The value that
comes back is a window object reference.

On the Example (with Listing 16-16) on the CD-ROM

,/'

Related Items: window. frames, window.parent, window. top properties.

sidebar

See appCore.

status

Value: String Read/Write

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v A A

Chapter 16 + Window and Frame Objects 0573

At the bottom of the browser window is a statusbar. Part of that bar includes an
area that normally discloses the document loading progress or the URL of a link
that the mouse is pointing to at any given instant. You can control the temporary
content of that field by assigning a text string to the window object’s status prop-
erty (Figure 16-9). You should adjust the status property only in response to
events that have a temporary effect, such as a link or image map area object’s
onMouseQver event handler. When the status property is set in this situation, it
overrides any other setting in the statusbar. If the user then moves the mouse
pointer away from the object that changes the statusbar, the bar returns to its
default setting (which may be empty on some pages).

3 window. status Property - Microsoft Internet Explorer
J Fle Edit \iew Favoites Toole Help |
= = @) a @ 3 s
Back Farward Stop Refresh Home Search Favoites Historp
Homne
Ne%ca}ge
|@ Wigit Netscape Home page. [home.netscape. com| '_’_ 25 Local intranet 4

Figure 16-9: The statusbar can be set to display a custom
message when the pointer rolls over a link.

Use this window property as a friendlier alternative to displaying the URL of a
link as a user rolls the mouse around the page. For example, if you'd rather use the
statusbar to explain the nature of the destination of a link, put that text into the
statusbar in response to the onMouseOver event handler. But be aware that experi-
enced Web surfers like to see URLs down there. Therefore, consider creating a
hybrid message for the statusbar that includes both a friendly description followed
by the URL in parentheses. In multiframe environments, you can set the window.
status property without having to worry about referencing the individual frame.

Onth-h\ Example (with Listings 16-17, 16-18, and 16-19) on the CD-ROM

Related Items: window.defaultStatus property; onMouseOver, onMouseOut
event handlers; 1ink object.

statusbar
toolbar

See Tocationbar.

254

Part Il 4 Document Objects Reference

top

Value: Window object refererence Read-only
NN2 NN3 NN4 NNé6 |IE3/)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v v v v v v

The window object’s top property refers to the topmost window in the docu-
ment object hierarchy. For a single-frame window, the reference is to the same
object as the window itself (including the se1f and parent properties), so do not
include window as part of the reference. In a multiframe window, the top window is
the one that defines the first frameset (in case of nested framesets). Users don’t
ever really see the top window in a multiframe environment, but the browser stores
it as an object in its memory. The reason is that the top window has the road map
to the other frames (if one frame should need to reference an object in a different
frame), and its children frames can call upon it. Such a reference looks like

top.functionName([parameters])

For more about the distinction between the top and parent properties, see the
in-depth discussion about scripting frames at the beginning of this chapter. See also
the example of the parent property for listings that demonstrate the values of the
top property.

Related Items: window. frames, window.self, window.parent properties.

window
Value: Window object Read-only
NN2 NN3 NN4 NN6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v v v v v v

Listing the window property as a