
1
Introduction to

the Internet and World
Wide Web

Objectives
• To become familiar with the World Wide Web

Consortium.
• To become familiar with the history of the Internet

and World Wide Web.
• To become familiar with the history of the Standard

Generalized Markup Language (SGML).
• To become familiar with the history of the Extensible

Markup Language (XML).
Our life is frittered away by detail … Simplify, simplify.
Henry Thoreau

The chief merit of language is clearness.
Galen

He had a wonderful talent for packing thought close, and
rendering it portable.
Thomas Babington Macaulay

2 Introduction to the Internet and World Wide Web Chapter 1

1.1 Introduction
Welcome to the world of XML! We have worked hard to create what we hope will be an
informative, entertaining and challenging learning experience for you. As you read this
book, you may want to refer to our Web site

www.deitel.com

for updates and additional information on each subject.
The technologies you will learn in this book are intended for experienced professionals

building substantial systems. Perhaps most important, the book uses working programs and
shows the outputs produced when those programs are run on a computer. We present all
programming concepts in the context of complete working programs. We call this the live-
code™ approach. These examples are available from three locations—they are on the CD-
ROM inside the back cover of this book, they may be downloaded from our Web site
www.deitel.com and they are available on our interactive CD-ROM product, the XML
Multimedia Cyber Classroom. The Cyber Classroom’s features and ordering information
appear in the last few pages of this book. The Cyber Classroom also contains answers to
approximately half the exercises in this book, including short answers and small programs.
If you purchased our boxed product The Complete XML Training Course, you already have
the Cyber Classroom.

1.2 World Wide Web Consortium (W3C)
In October 1994, Tim Berners-Lee founded an organization—called the World Wide Web
Consortium (W3C)—devoted to developing non-proprietary, interoperable technologies
for the World Wide Web. One of the W3C’s primary goals is to make the Web universally
accessible—regardless of disabilities, language, culture, etc.

The W3C is also a standardization organization. Web technologies standardized by the
W3C are called Recommendations. Current W3C Recommendations include HyperText
Markup Language (HTML), Cascading Style Sheets (CSS) and the Extensible Markup

Outline

1.1 Introduction
1.2 World Wide Web Consortium (W3C)
1.3 History of the Internet
1.4 History of the World Wide Web
1.5 Future of Computing
1.6 History of SGML
1.7 XML and XML How to Program
1.8 A Tour of the Book
1.9 W3C XML Resources
1.10 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

Chapter 1 Introduction to the Internet and World Wide Web 3

Language (XML). Recommendations are not actual software products, but documents that
specify the role, syntax, rules, etc. of a technology. Before becoming a W3C Recommen-
dation, a document primarily passes through three major phases: Working Draft—which,
as its name implies, specifies an evolving draft, Candidate Recommendation—a stable ver-
sion of the document that industry may begin implementing and Proposed Recommenda-
tion—a Candidate Recommendation that is considered mature (i.e., has been implemented
and tested over a period of time) and is ready to be considered for W3C Recommendation
status. For detailed information about the W3C Recommendation track, see “6.2 The W3C
Recommendation track” at

www.w3.org/Consortium/Process/Process-19991111/
process.html#RecsCR

The W3C is comprised of three hosts—the Massachusetts Institute of Technology
(MIT), INRIA (Institut National de Recherche en Informatique et Automatique) and Keio
University of Japan—and over 400 members, including Deitel & Associates, Inc. Members
provide the primary financing for the W3C and help provide the strategic direction of the
Consortium. To learn more about the W3C visit www.w3.org.

1.3 History of the Internet
In the late 1960s, one of the authors (HMD) was a graduate student at MIT. His research at
MIT’s Project Mac (now the Laboratory for Computer Science—the home of the World
Wide Web Consortium) was funded by ARPA—the Advanced Research Projects Agency
of the Department of Defense. ARPA sponsored a conference at which several dozen
ARPA-funded graduate students were brought together at the University of Illinois at Ur-
bana-Champaign to meet and share ideas. During this conference, ARPA rolled out the
blueprints for networking the main computer systems of about a dozen ARPA-funded uni-
versities and research institutions. They were to be connected with communications lines
operating at a then-stunning 56 Kbps (i.e., 56,000 bits per second), at a time when most
people (of the few who could be) were connecting over telephone lines to computers at a
rate of 110 bits per second. HMD vividly recalls the excitement at that conference. Re-
searchers at Harvard talked about communication with the Univac 1108 “supercomputer”
across the country at the University of Utah to handle calculations related to their computer
graphics research. Many other intriguing possibilities were raised. Academic research was
about to take a giant leap forward. Shortly after this conference, ARPA proceeded to im-
plement what quickly became called the ARPAnet, the grandparent of today’s Internet.

Things worked out differently than originally planned. Although the ARPAnet did
enable researchers to share each others’ computers, its chief benefit proved to be the capa-
bility of quick and easy communication via what came to be known as electronic mail (e-
mail). This is true even today on the Internet, with e-mail facilitating communications of
all kinds among millions of people worldwide.

One of ARPA’s primary goals for the network was to allow multiple users to send and
receive information at the same time over the same communications paths (such as phone
lines). The network operated with a technique called packet switching in which digital data
was sent in small packages called packets. The packets contained data, address information,
error-control information and sequencing information. The address information was used
to route the packets of data to their destination, and the sequencing information was used

4 Introduction to the Internet and World Wide Web Chapter 1

to help reassemble the packets (which—because of complex routing mechanisms—could
actually arrive out of order) into their original order for presentation to the recipient. This
packet-switching technique greatly reduced transmission costs from those of dedicated
communications lines.

The network was designed to operate without centralized control. This meant that if a
portion of the network should fail, the remaining working portions would still be able to
route packets from senders to receivers over alternate paths.

The protocols for communicating over the ARPAnet became known as TCP—the
Transmission Control Protocol. TCP ensured that messages were properly routed from
sender to receiver and that those messages arrived intact.

In parallel with the early evolution of the Internet, organizations worldwide were
implementing their own networks for both intra-organization (i.e., within the organization)
and inter-organization (i.e., between organizations) communication. A huge variety of net-
working hardware and software appeared. One challenge was to get these to intercommu-
nicate. ARPA accomplished this with the development of IP—the Internet Protocol), truly
creating a “network of networks,” the current architecture of the Internet. The combined set
of protocols is now commonly called TCP/IP.

Initially, use of the Internet was limited to universities and research institutions; then
the military became a big user. Eventually, the government decided to allow access to the
Internet for commercial purposes. Initially there was resentment among the research and
military communities—it was felt that response times would become poor as “the net”
became saturated with so many users.

In fact, the exact opposite has occurred. Businesses rapidly realized that, by making
effective use of the Internet, they could tune their operations and offer new and better ser-
vices to their clients. So, they started spending vast amounts of money to develop and
enhance the Internet. This generated fierce competition among the communications carriers
and hardware and software suppliers to meet this demand. The result is that bandwidth (i.e.,
the information carrying capacity of communications lines) on the Internet has increased
tremendously and costs have plummeted. It is widely believed that the Internet has played
a significant role in the economic prosperity that the United States and many other indus-
trialized nations have enjoyed over the last decade and are likely to continue enjoying for
many years.

1.4 History of the World Wide Web
The World Wide Web allows computer users to locate and view multimedia-based docu-
ments (i.e., documents with text, graphics, animations, audios and/or videos) on almost any
subject. Even though the Internet was developed more than three decades ago, the introduc-
tion of the World Wide Web was a relatively recent event. In 1989, Tim Berners-Lee of
CERN (the European Laboratory for Particle Physics) began to develop a technology for
sharing information by using hyperlinked text documents. He based his new language on
the well-established Standard Generalized Markup Language (SGML)—a standard for
business data interchange that we discuss in Section 1.6—and called it the HyperText
Markup Language (HTML). He also wrote communication protocols to form the backbone
of his new hypertext information system, which he termed the World Wide Web.

The Internet and the World Wide Web will surely be listed among the most important
and profound creations of humankind. In the past, most computer applications ran on

Chapter 1 Introduction to the Internet and World Wide Web 5

“stand-alone” computers, i.e., computers that were not connected to one another. Today’s
applications can be written to communicate among the world’s hundreds of millions of
computers. The Internet mixes computing and communications technologies. It makes our
work easier. It makes information instantly and conveniently accessible worldwide. It
makes it possible for individuals and small businesses to get worldwide exposure. It is
changing the nature of the way business is done. People can search for the best prices on
virtually any product or service. Special-interest communities can stay in touch with one
another. Researchers can be made instantly aware of the latest breakthroughs worldwide.

1.5 Future of Computing
Most people are familiar with the exciting things computers do. It is software (i.e., the in-
structions that command the computer to perform actions and make decisions) that controls
computers (often referred to as hardware). Computer use is increasing in almost every field
of endeavor. In an era of steadily rising costs, computing costs have been decreasing dra-
matically because of the rapid developments in both hardware and software technology.
Computers that might have filled large rooms and cost millions of dollars just two decades
ago can now be inscribed on the surfaces of silicon chips smaller than a fingernail, costing
perhaps a few dollars each. Ironically, silicon is one of the most abundant materials on
earth—it is an ingredient in common sand. Silicon chip technology has made computing so
economical that hundreds of millions of general-purpose computers are in use worldwide,
helping people in business, industry, government and in their personal lives. That number
could easily double in a few years.

Advances in hardware and software have led to the explosion of the Internet and World
Wide Web. Propelling the wave of innovation is a constant demand for new and improved
technology. People want to transmit pictures and they want those pictures to be in color.
They want to transmit voices, sounds and audio clips. They want to transmit full-motion
color video. And at some point, they will insist on three-dimensional, moving-image trans-
mission. Our current flat, two-dimensional televisions will eventually be replaced with
three-dimensional versions that turn our living rooms into “theaters-in-the-round” or sports
stadiums. Our business offices will enable video conferencing among colleagues half a
world apart as if they were sitting around one conference table. Consumers who want to
buy products from electronic storefronts will be able to see perfect 3D images of them
beforehand. The possibilities are intriguing and the Internet is sure to play a key role in
making many of these possibilities become reality.

There have been predictions that the Internet will eventually replace the telephone
system. Why stop there? It could also replace radio and television as we know them today.
It’s not hard to imagine the Internet and the World Wide Web replacing newspapers with
completely electronic news media. Many newspapers and magazines already offer Web-
based versions, some fee based and some free. Over 95 percent of printed material is cur-
rently not online, but in the future it may be. The e-book, an electronic text that is encryp-
tion-protected by the publisher, is on the rise and could well supplant the paper book. With
a chemistry e-book, students could watch animations of chemical reactions, and a history
e-book could be updated to include current events. Increased bandwidth is making it pos-
sible to stream audio and video over the Web. Companies and even individuals already run
their own Web-based radio and television stations. Just a few decades ago, there were only
a few television stations. Today, standard cable boxes accommodate about 100 stations. In

6 Introduction to the Internet and World Wide Web Chapter 1

a few more years, we will have access to thousands of stations broadcasting over the Web
worldwide. This textbook you are reading may someday appear in a museum alongside
radios, TVs and newspapers in an “early media of ancient civilization” exhibit.

The Internet has enabled people worldwide to communicate easily with one another.
Online communities have been, are being and will be formed to bring together people of
similar backgrounds, lifestyles, professions and interests. These communities provide
resources for their members as well as forums in which their members can meet and chat.
Professionals such as lawyers, doctors and scientists have online communities that offer a
wealth of readily accessible information and an ideal environment for exchanging ideas.
The number of online communities is proliferating and will continue to do so.

People with disabilities form one of the largest online communities, as the Internet and
Web have enabled them to take advantage of computing and communication to perform
tasks of which they were not previously able. Things that were once difficult for people
with disabilities, such as buying goods at a store, will be made easy by e-commerce tech-
nologies. However, at the time of this writing, 95 to 99 percent of all Web sites are inac-
cessible to the visually, hearing or mobility impaired. In this regard, the World Wide Web
Consortium (W3C) is pursuing its Web Accessibility Initiative. Information about the Web
Accessibility Initiative is available at www.w3.org/WAI.

To enable people with disabilities to author their own Web sites, the WAI is instituting
the ATAG (Authoring Tools Accessibility Guidelines), which contains specifications for
software developers to follow. The goal of the WAI is to transform the Web into a medium
in which all people are able to access and use the technology and information available. In
the future, their aim will undoubtedly be achieved.

1.6 History of SGML
In the late 1960’s, Charles Goldfarb, Edward Mosher and Raymond Lorie of IBM tackled
the problem of building a powerful yet portable system for the interchange and manipula-
tion of legal documents. At the time, communication between computer systems at IBM
was hindered by a profusion of different file formats. The three researchers realized that
communication would be best facilitated by a system-independent common format which
was specific to legal documents. They decided to use a markup language at the center of
their system. Markup, which identifies structures in a document, was a mainstay of text pro-
cessing and thus compatible across many platforms. The IBM team’s prototype language
marked up structural elements that specified the abstract nature rather than the formatting
of the information they contained. The formatting information itself would be kept in sep-
arate files called style sheets, with which computers could format the elements and render
a finished document. This method of structuring data made it possible for computers to au-
tomatically process documents in many new ways. Documents could only be processed re-
liably, the IBM team realized, if they adhered to a standard, so that a system would be able
to recognize and reject invalid documents (i.e., documents with missing information, extra
information, etc.). The structure of each document type, therefore, was strictly defined in a
file called a document type definition (DTD). This separation of presentation and validation
provided great flexibility, because DTDs and style sheets could easily be modified without
directly affecting the marked up data.

By 1969, the team of researchers had developed a language with all of these capabili-
ties and called it the Generalized Markup Language (GML). In 1974, Goldfarb proved that

Chapter 1 Introduction to the Internet and World Wide Web 7

a parser (i.e., software capable of analyzing the structure and syntax of a document) could
validate a document without actually processing it. This opened the door to further devel-
opment, which culminated in the 1986 adoption of the Standard Generalized Markup Lan-
guage (SGML) as an international standard. It quickly became the business standard for
data storage and interchange throughout the world. Processing of SGML documents is
defined by the Document Style Semantics and Specification Language (DSSSL), another
international standard. Six years after SGML became an International Organization for
Standards (ISO) standard, it was followed by the Hypermedia/Time-based Structuring Lan-
guage (HyTime), which was designed for SGML representation of hypermedia and multi-
media and has powerful linking capabilities.

1.7 XML and XML How to Program
With the explosion of the Web, the limitations of HTML eventually became apparent. Its lack
of extensibility frustrated developers and its ambiguous definition allowed erroneous HTML
to proliferate. Platform-specific formatting commands were created as HTML extensions by
browser vendors attempting to gain market share. In response to this threat to the interopera-
bility and scalability of the Web, the W3C created a stylesheet technology for HTML, Cas-
cading Style Sheets (CSS), that could be used in place of the proprietary markup. The W3C
also added limited extensibility to HTML. These were, however, only stopgap solutions. The
need for a new, standardized, fully extensible, structurally strict language was apparent. As a
result, the Extensible Markup Language (XML) was born. XML combines the power and ex-
tensibility of its parent language, SGML, with the simplicity demanded by the Web commu-
nity. The W3C also began to develop XML-based standards for stylesheets and advanced
hyperlinking. Extensible Stylesheet Language (XSL) incorporates the elements of both CSS
and Document Style and Semantics Specification Language (DSSSL). The Extensible Link-
ing Language (XLink) combines ideas from HyTime and the Text Encoding Initiative (TEI),
which provides SGML guidelines for the academic community.

HTML documents are human-readable but are not optimized for computer manipula-
tion, whereas most forms of data storage are optimized for computer manipulation and not
for human viewing. XML is the first language that makes documents both human-readable
and computer-manipulable, a result of a tag set that is more powerful, flexible and exten-
sible than HTML’s. It is the language of the intelligent document, a step ahead of conven-
tional methods of document representation that rely on format rather than structure.

Data independence, the separation of content and its presentation, is the essential char-
acteristic of XML. Because an XML document describes data, it can conceivably be pro-
cessed by any application. The absence of formatting instructions makes it easy to parse.
This makes XML an ideal framework for data exchange. Recognizing this fact, software
developers across the world are integrating XML into their applications in order to gain
Web functionality and interoperability. For the same reason, XML is becoming the lan-
guage of choice to implement the middle tier of client/server interfaces. Its flexibility and
power make it perfect for middleware, which must be maximally interoperable in order to
be effective. Because XML’s semantic and structural information enables it to be manipu-
lated by any application, much of the processing that was once limited to servers will be
performed by clients. This will reduce server load and network traffic, resulting in a faster,
more efficient Web. However, XML is not limited to Web applications. It is increasingly
being used in databases, as the structured yet unformatted nature of an XML document

8 Introduction to the Internet and World Wide Web Chapter 1

enables it to be manipulated by database applications. In the future, as the Web continues
to expand, it seems likely that XML will become the universal language for representing
data. Then, all applications would be able to communicate provided they could understand
each others’ XML markup or vocabularies.

XML, though it has many advanced capabilities, is accessible to all levels of program-
mers because of its inherent simplicity. It is text-based, so anybody can create an XML doc-
ument with even the most primitive text processing tools. However, XML is not limited to
describing only textual data, but also can describe images, vector graphics, animation or
any other data type to which it is extended. It enables a nonprogrammer to do things that
would have previously required extensive knowledge of scripting languages or thousands
of dollars worth of custom software. Because XML is an open standard, there is a wide
selection of tools for implementing it, so a user can pick whatever fits their needs without
fear of being tied to a specific platform.

What XML did for marking up data, XSL and XLink will do for presenting and linking
it. Like XML, they will be accessible to nonprogrammers yet powerful enough to handle
industrial tasks. With XSL, the same XML document can be published in different formats
depending, for instance, on the user to whom it is served. XLink will provide the ability to
link between different types of resources. A link could be made, for instance, between the
tenth second of a song and the fourth second of a video. In addition, links will contain infor-
mation on the resources to which they are linking, or metadata. This will make it easier to
search for and find information on the Web.

The business community is rushing to get on the XML bandwagon. Faced with the
shortcomings of Electronic Document Interchange (EDI), the standard method of informa-
tion transfer in the business world, business is implementing XML to accomplish their goal
of Enterprise Application Integration (EAI) for interoperability both within and between
organizations. XML provides the perfect vehicle for moving EDI and other such technolo-
gies onto the Internet and into the hands of the smaller business that previously did not have
the resources to implement EDI.

XML’s metadata infrastructure provides a foundation for data interchange technolo-
gies to thrive. The Resource Definition Framework (RDF), developed by the W3C, adds to
XML’s metadata capabilities, defining entire categories of data. This makes it possible for
businesses to create a metadata layer that is uniform throughout an enterprise or even
between enterprises. Thus, an application can understand data without knowing where it
came from; it just has to absorb the self-describing XML document. XML/RDF gives the
different computer systems of different organizations and companies a common language
in which to talk. With XML/RDF, businesses have the capability to communicate with each
other as never before in terms of interoperability, simplicity and speed. All that is necessary
to open these doors is a standard metadata vocabulary. Many vocabularies are being devel-
oped and are already in use in major sectors such as the automotive and airline industries.
In the future, it is quite possible that most business transactions will be carried out using
the XML/RDF framework for information interchange.

RDF will also make it easier to find information on the Internet. No longer will a search
engine query produce a random list of predominantly useless links. Instead, a bot program
(autonomous software that acts on the user’s behalf) that searches the Internet will finally
be able to deal with intelligent data that it can make sense of, resulting in accuracy unimag-
inable to today’s Web surfers.

Chapter 1 Introduction to the Internet and World Wide Web 9

The Universal Description, Discovery and Integration (UDDI) Project, an initiative
backed by a coalition of leading technology companies such as Microsoft, IBM and Ariba,
is currently developing a framework for automated integration of all e-commerce transac-
tions and Web services. At its heart, this framework will have an XML-based language
used in a directory of businesses and their services.

The medical community is also adopting XML. HL7, the international medical infor-
matics standard, is being retooled to work with SGML and XML. This will enable disparate
medical computer systems to easily communicate and transfer information, meaning that a
doctor will have all of his patients’ information at his fingertips, or that the results of lab tests
will be sent back to hospitals in real time. In addition, the information will be readable to sys-
tems that follow other medical standards because it is in the common language of XML.

Chess enthusiasts around the world are tapping into the power of XML. CaXML, a
markup language for chess data, will allow sophisticated handling of chess data. It will be
used not only to display chess data, but also to make chess computer games and mark up
tournament or player information. Because of XML’s inherent simplicity, it will be pos-
sible to translate from CaXML to other formats that describe chess data.

Another application of XML is OnStar, Inc. OnStar is a service that delivers informa-
tion to drivers as they are on the road. To access the service, a driver simply has to push a
button on their dashboard to access an automated voice system. The driver asks a question,
which is translated by voice-recognition software into a tagged XML data request, which
is then matched to an existing user profile. Then, the request is processed and forwarded to
a partner Web service provider, which returns data marked up as XML that is converted to
a VoiceXML document. The computer system then reads the VoiceXML to the user,
answering the question. Without XML serving as a common language, this data exchange
would have been extremely difficult, if not impossible. With XML, OnStar also gained the
ability to present its content on other devices such as cellular phones and personal digital
assistants (PDAs), which speak the XML-based Wireless Markup Language (WML).

Although XML is rapidly making inroads in all fields of endeavor, it is by no means
displacing older technologies. Because XML data is easy for computers to read and convert
between formats, it can be used as middleware to integrate legacy systems with other appli-
cations and networks.

To make the possibilities of XML data interchange a reality, it will be necessary for
businesses, software developers and other major users of XML to work with and not against
each other. Otherwise, an assortment of different markup languages and even proprietary
extensions to XML will result. Though there are definitely tensions between competing
businesses and countries, it appears that the community of XML users is moving toward
global cooperation.

Already, there is a host of software tools that use XML to facilitate the development
of high level content and systems. Some are for Web authoring, such as Apache’s Cocoon
framework, which we will discuss in Chapter 16. Others integrate XML in order to create
more efficient, interoperable, Web-friendly applications.

The possible uses for XML are endless. Information can be transmitted in simple,
small files without XML, but with XML, the information is described precisely, so appli-
cations such as browsers can work with the information more intelligently. The beauty of
smart data—a combination of simplicity, extensibility, and power—will propel XML to a
place as the universal medium of communication on the Web and beyond.

10 Introduction to the Internet and World Wide Web Chapter 1

Because XML is the future of the Internet, we had to write a book that would give a
thorough grounding in the language and many of the related technologies on which future
innovation will be based. The book offers a solid one- or two-semester upper-level elective.
The book is also intended for professional programmers in corporate training programs or
doing self-study. We will publish fresh editions of this book promptly in response to rapidly
evolving Internet and Web technologies. [Note: Our publishing plans are updated regularly
at our Web site www.deitel.com. The contents and publication dates of our forth-
coming publications are always subject to change. If you need more specific information,
please email us at deitel@deitel.com.]

1.8 A Tour of the Book
In this section, we take a tour of the subjects you will study in XML How to Program. Many
of the chapters end with an Internet and World Wide Web Resources section that provides
a listing of resources through which you can enhance your knowledge of XML and its re-
lated topics. These Web resources are particularly valuable for such a dynamic technology
as XML. In addition, you may want to visit our Web site to stay informed of the latest in-
formation and corrections.

Chapter 1—Introduction to the Internet and the World Wide Web
In Chapter 1, we present some historical information about the Internet, the World Wide
Web and XML. In this Tour of the Book, we also present an overview of the concepts you
will learn in the remaining chapters.

Chapter 2—Introduction to HyperText Markup Language 4: Part I
In this chapter, we begin unlocking the power of the Web with HTML—the Hypertext
Markup Language. HTML is a markup language for describing the elements of an HTML
document (Web page) so that a browser, such as Microsoft’s Internet Explorer or
Netscape’s Communicator, can render (i.e., display) that page.

We introduce the basics of creating Web pages in HTML using our live-code™
approach. Every concept is presented in the context of a complete working HTML docu-
ment (or Web page) that is immediately followed by the screen output produced when that
HTML document is rendered. We write many simple Web pages. The next chapter intro-
duces more sophisticated HTML techniques, such as tables, which are particularly useful
for presenting and manipulating information from databases.

We introduce basic HTML tags and attributes. A key issue when using HTML is the
separation of the presentation of a document (i.e., how the document is rendered on the
screen by a browser) from the structure of that document. This chapter begins our in-depth
discussion of this issue. As the book proceeds, you will be able to create increasingly
appealing and powerful Web pages.

Some key topics covered in this chapter include: incorporating text and images in an
HTML document, linking to other HTML documents on the Web, incorporating special
characters (such as copyright and trademark symbols) into an HTML document and sepa-
rating parts of an HTML document with horizontal lines (called horizontal rules).

Chapter 3—Introduction to HyperText Markup Language 4: Part II
In this chapter, we discuss more substantial HTML elements and features. We demonstrate
how to present information in lists and tables. We discuss how to collect information from

Chapter 1 Introduction to the Internet and World Wide Web 11

people browsing a site. We explain how to use internal linking and image maps to make
Web pages easier to navigate. We also discuss how to use frames to make attractive Web
sites. By the end of this chapter, we will have covered most commonly used HTML tags
and features and will then be able to create more complex and visually appealing Web sites.

Chapter 4—Cascading Style Sheets (CSS)
In earlier versions of HTML, Web browsers controlled the appearance (i.e., the rendering)
of every Web page. For example, if a document author placed an h1 (i.e., a large heading)
element in a document, the browser rendered the element in its own manner. With the ad-
vent of Cascading Style Sheets, the document author can specify the way the browser ren-
ders the page.

Applying Cascading Style Sheets to Web pages can give major portions of a Web site
(or the entire Web site for that matter) a distinctive look and feel. Cascading Style Sheets
technology allows document authors to specify the style of their page elements (spacing,
margins, etc.) separately from the structure of their document (section headers, body text,
links, etc.). This separation of structure from content allows greater manageability and
makes changing the style of the document easier and faster.

Chapter 5—Creating Markup With XML
Having presented HTML and CSS, we now discuss the fundamentals of XML, setting the
stage for the remainder of the book. Unlike HTML, which formats information for display,
XML structures information. Therefore, it does not have a fixed set of tags as HTML does,
but instead enables the document author to create new ones. We discuss the properties of
the XML character set, which is Unicode—the standard aimed at expanding the boundaries
of character representation. A brief overview of parsers—programs that process XML doc-
uments and their data—is given, as are the requirements for a well-formed document (i.e.,
a document that is syntactically correct). Namespaces, which differentiate elements with
the same name, are introduced, and the chapter concludes with a case study for a day plan-
ner that we will enhance in subsequent chapters.

Chapter 6—Document Type Definition (DTD)
A Document Type Definition (DTD) is a structural definition for an XML document, spec-
ifying the type, order, number and attributes of the elements in an XML document as well
as other information. By defining the structure of an XML document, a DTD reduces the
validation and error-checking work of the application using the document. Well-formed
and valid documents (i.e., documents that conform to the DTD) are discussed. This chapter
shows how to specify different element and attribute types, values and defaults that de-
scribe the structure of the XML document. At the end of the chapter, we enhance the day-
planner case study introduced in Chapter 5 by writing a DTD for it.

Chapter 7—Schemas
Schemas are an emerging technology that serves a similar purpose to DTDs. Schemas have
several advantages over DTDs and may eventually replace DTDs entirely. Schemas use
XML syntax, which enables them to be manipulated by XML tools; thus, the creation of
elements and attributes in schema is similar to that in XML. In DTDs, all text data is just
text, but by using schema data types, text can be given more meaning.

Two major types of schema models exist, one created by Microsoft and the other by
the W3C. We examine each of them, but we concentrate on Microsoft Schema because

12 Introduction to the Internet and World Wide Web Chapter 1

W3C Schema is not as widely supported yet. To validate our documents against a Microsoft
schema, we use Microsoft’s XML Validator. We enhance the day-planner case-study appli-
cation introduced in Chapter 5 by writing a Microsoft schema for it.

Chapter 8—Document Object Model (DOM)
The W3C Document Object Model (DOM) is a Application Programming Interface (API)
for XML that is platform and language neutral. The DOM API provides a standard set of
interfaces (i.e., methods, objects, etc.) for manipulating an XML document’s contents. Dif-
ferent industry vendors (e.g., Sun Microsystems, Microsoft, IBM, etc.) provide implemen-
tations of the DOM in their parsers. Because XML documents are hierarchically structured,
they are represented in the DOM as a tree structure. Using DOM, scripts and programs can
dynamically modify the content, structure and formatting of documents.

This chapter examines several important DOM capabilities, including the ability to
retrieve data, insert data and replace data. It also demonstrates how to create and traverse
documents using the DOM.

Because portions of the DOM are still being developed, we demonstrate some
Microsoft extensions to the DOM. These extensions include the ability to load an XML doc-
ument from disk. We use Microsoft’s implementation of the DOM with JavaScript for our
first DOM example, and then use Java applications and Sun Microsystem’s implementation
of the DOM for the remaining examples. At the end of the chapter, we enhance the day-
planner case study to use the DOM. [Note: We provide a highly condensed introduction to
Java in Chapter 27 for those readers who want a short review or introduction to Java.]

Chapter 9—Simple API for XML (SAX)
Simple API for XML (SAX) is another XML API. Unlike DOM which builds a tree struc-
ture in memory, SAX calls specific methods when a start tag, end tag, attribute, etc. are en-
countered in a document. For this reason, SAX is often referred to as an event-based API.
SAX does not have all the features of DOM, but is complementary to DOM because it does
not have some of DOM’s shortcomings—such as memory requirements. Instead of storing
an entire document in memory, it receives small pieces of data with the event model, a more
efficient though sometimes less convenient approach.

We provide information on several SAX parsers and the setup of Sun Microsystem’s
Java-based JAXP parser, which we use for the chapter examples. We demonstrate the
important classes, interfaces and methods related to SAX. We enhance the day-planner
case-study application so that it uses SAX instead of DOM. This provides the reader with
a nice opportunity to compare SAX and DOM. Both SAX 1.0 and the recently released
SAX 2.0 are discussed. [Note: This is another Java-based chapter. Some readers may wish
to read Chapter 27 before studying this chapter.]

Chapter 10—Case Study: XmlMessenger Program
In this chapter, we implement an instant messaging program, written in Java, that marks up
client/server communication in XML. Instant messaging programs enable people to send
text messages to each other in real time.

This case study makes extensive use of Java 2’s networking capabilities for sending mes-
sages marked up as XML between clients. We use the DOM to manipulate the XML-based
messages. We use Sun Microsystem’s DOM extensions to read XML from and write XML
to streams. We overview and implement first the server then the client side of the program.

Chapter 1 Introduction to the Internet and World Wide Web 13

Chapter 11—XML Path Language (XPath)
XML provides a way of describing data in a rich, flexible and efficient way by marking up
data with descriptive tags. However, XML does not provide a way to locate specific pieces
of structured data in a given document. For example, an XML document containing data
about books published by Deitel & Associates, Inc., would need to be parsed then searched
through element by element to find a specific book. For large documents, this process could
be inefficient and error prone.

The XML Path Language (XPath) provides a syntax for locating specific parts (e.g.,
attribute values) of an XML document effectively and efficiently. XPath is not a structural
language like XML; rather, it is a string-based language of expressions used by other XML
technologies, such as Extensible Stylesheet Language Transformations (XSLT), which con-
verts (or transforms) XML documents to other formats (e.g., HTML), and the XML Pointer
Language (XPointer), which provides a means to “point” to information inside another
XML document.

This chapter introduces the basics of XPath. We cover the most common high-level
expression in XPath the location path—which specifies how to navigate the XPath tree.

Chapter 12—XSL: Extensible Stylesheet Language Transformations (XSLT)
XSL was designed to manipulate the rich and sophisticated data contained in an XML doc-
ument, and is considerably more powerful than CSS. XSL has two major functions: format-
ting XML documents and transforming them into other data formats such as HTML, Rich
Text Format (RTF), etc. In this chapter, we discuss the subset of XSL called XSLT. XSLT
uses XPath to match nodes for transforming an XML document into another text document.
We use the Java version of Apache’s Xalan XSLT processor in our examples.

An XSL stylesheet contains templates with which elements and attributes can be
matched. New elements and attributes can be created to facilitate a transformation. XSL
allows iteration through node sets and thus sorting, which we demonstrate. We use XSL’s
conditional operators if and choose. We demonstrate how to copy nodes, combine
stylesheets using import and store data in variables.

Chapter 13—XSL: Extensible Stylesheet Language Formatting Objects
This chapter covers the other half of XSL—formatting. We use Apache’s FOP Formatting
Object processor to render XSL formatting object’s into Adobe Portable Document Format
(PDF). Most of the formatting objects in XSL are based on CSS.

Throughout the chapter, important formatting object elements and attributes are dis-
cussed. We demonstrate how to create a formatting object, how to format text, how to
format lists and tables and how to render XSL documents that contain formatting objects.

Chapter 14—XLink, XPointer, XInclude and XBase
One of the major contributing factors to the Web’s popularity is hyperlinks, which provide
a simple, yet powerful, means of linking documents. In this chapter, we introduce several
emerging XML-related technologies that promise to go significantly beyond what is cur-
rently possible with HTML hyperlinks. We introduce the XML Linking Language (XLink)
for describing links between resources (e.g., documents), the XML Pointer Language
(XPointer) for “pointing” to a document’s contents, XML Inclusion (XInclude) for includ-
ing existing XML documents or portions of XML documents into another XML document
and XML Base (XBase) for specifying a “base” URL for relative URLs. We demonstrate

14 Introduction to the Internet and World Wide Web Chapter 1

XLink simple links (i.e., links similar to those written in HTML) and extended links (i.e.,
links that can be bi-directional and link to multiple resources). To demonstrate simple link-
ing, we use Netscape Communicator 6. To demonstrate extended linking, we use Fujitsu’s
XLink processor.

Chapter 15—Case Study: Message Forum with Active Server Pages
In this chapter we create an online message forum using Microsoft’s Active Server Pages
(ASP), the first of the three server-side software development paradigms the book presents.
We also use DOM, CSS, XSL, HTML and of course XML. Active Server Pages can be pro-
grammed in a variety of languages, but by far the most popular of these is Microsoft’s Vi-
sual Basic Scripting Edition (VBScript).

In a typical multitiered Web-based application, the top tier contains the code that inter-
acts directly with the user. This tier, called the client, is usually the browser (such as
Internet Explorer 5 or Netscape Communicator) rendering the Web page. The bottom tier
is the database containing the organization’s information. The middle tier, called the server,
contains the business logic. It receives client requests from the top tier, references the data
stored in the database in the bottom tier, and responds to the client by creating a new XML
page and sending the page to the client to be rendered by the browser.

ASP is Microsoft’s technology for implementing middle-tier business logic. In our
online message forum, Active Server Pages are used to send messages and create new
forums, and XML documents are used to store the forums. After we present all of the
Active Server Pages in the program, we discuss the XML documents created by the pro-
gram and their transformation with XSL and formatting with CSS. [Note: In Chapters 24
and 25 we provide introductions to VBScript and Active Server Pages, respectively.]

Chapter 16—Server-side Java Programming
In this chapter, we introduce three technologies that take advantage of XML to deliver Web
content. We first introduce the Apache Group’s Web publishing framework Cocoon. In our
first example, we use Cocoon’s XSL capabilities to dynamically deliver Web content to
different types of clients, including Web browsers, such as Netscape Communicator and In-
ternet Explorer, and wireless devices, such as digital cellular phones. In our second exam-
ple, we use Cocoon’s XML-based scripting technology—Extensible Server Pages (XSP)—
to perform a user survey.

Also included in this chapter is a case study in which we build a wireless online book-
store using Java servlets, XML, XSL and wireless markup language (WML)—which is part
of the wireless applications protocol (WAP) and is used to deliver Web content to cellular
phones and other wireless devices. The case study demonstrates how these technologies
can be used to build an integrated application in which presentation logic is separate from
application logic.

Java servlets represent a popular way of building the server side of Web-based appli-
cations. In Chapters 15 and 17, we explore other server-side paradigms such as Microsoft’s
Active Server Pages and Perl/CGI.

Servlets are written in full-scale Java (not JavaScript), which requires a substantial
book-length treatment to learn. We provide a highly condensed introduction to Java in
Chapter 27, which includes servlets.

Chapter 1 Introduction to the Internet and World Wide Web 15

Chapter 17—Perl and XML: A Web-based Message Forums Application
There are a variety of popular server-side technologies for developing Web-based applica-
tions. Historically, the most widely used (and the third such technology we cover in this
book) has been Perl/CGI.

Despite newer technologies from Microsoft and Sun—Active Server Pages (ASP) and
JavaServer Pages, respectively—Perl/CGI is well entrenched and growing rapidly. Chapter
17 presents a case study where Perl is used along with XML to implement an online mes-
sage forum. This message forum is a Perl implementation of the ASP message forum pre-
sented in Chapter 15.

Chapter 18—Accessibility
Currently, the World Wide Web presents a challenge to people with disabilities. Multime-
dia-rich Web sites often present difficulty to text readers and other programs designed to
help the vision impaired and the increasing amount of audio on the Web is inaccessible to
the deaf. The World Wide Web Consortium’s Web Accessibility Initiative (WAI) provides
guidelines on making the Web accessible to people with disabilities. This chapter provides
a description of these methods, such as use of the <headers> tag to make tables more
accessible to page readers, use of the alt attribute of the tag to describe images,
and proper use of HTML, CSS and XSL to ensure that a page can be viewed on any type
of display or reader.

VoiceXML, which is presently supported only on the Windows platform, can be used
to increase accessibility with speech synthesis and speech recognition. We examine a
VoiceXML home page and how it generates a speech dialog with the user. The chapter con-
clude with an extensive list of Web resources related to accessibility.

Chapter 19—XHTML and XForms
XHTML (Extensible HyperText Markup Language) is the W3C’s proposed successor to
HTML. It corrects many of the problems that HTML has in dealing with complex data by
making the markup conform to XML’s strict syntax rules. XHTML’s design is better
equipped than HTML’s to represent complex data on the Internet.

The majority of existing HTML code is not well formed because browsers do not
explicitly check the markup. Browsers can treat poorly written HTML documents differ-
ently, requiring browser vendors to write additional features to handle the problem. With
the emergence of the wireless Web and Web-enabled appliances, smaller devices such as
PDAs (personal digital assistants) have a limited amount of memory far below that of
today’s desktops and cannot provide the extra resources required to process poorly written
HTML. Documents intended for these devices must be well formed to guarantee uniform
processing.

XHTML is HTML marked up as XML. We discuss the three DTDs that XHTML doc-
uments must conform to—strict, transitional and frameset—and provide examples of each
type. Like many XML technologies, XHTML related technologies are still evolving.

We also introduce XForms, an XML technology that attempts to address the problems
of HTML forms by dividing the form into three distinct parts: data, logic and presentation.

Chapter 20—Custom Markup Languages (Part I)
This chapter and Chapter 21 present many of the most popular and promising XML-based
custom markup languages being developed.

16 Introduction to the Internet and World Wide Web Chapter 1

The extensibility of XML provides ample opportunity for any individual or commu-
nity to create a language that marks up data according to their specific needs. In this
chapter, we discuss XML-based markup languages (or vocabularies) for mathematics,
chemicals, wireless communication, multimedia/graphics and others.

Mathematical Markup Language (MathML) was created so mathematical information
could be exchanged in an application independent manner. Chemical Markup Language
(CML) is used by chemists for marking up molecules. Applications that process MathML
and CML use their data as they see fit. For example, a mathematical equation may be
graphed and a molecule might be rendered in three dimensions.

Wireless Markup Language (WML) is one of the most important markup languages
that has arisen from XML, as it is a foundation of the wireless Web, allowing people to surf
the Internet on cell phones and personal digital assistants (PDAs). In Chapter 16 we pre-
sented a substantial case study that used WML. Some readers may want to read the discus-
sion of the WML presented in this chapter before studying Chapter 16.

To facilitate processing and integration of multimedia, Synchronized Multimedia Inte-
gration Language (SMIL) was created. SMIL has the potential to become the standard
means of presenting multimedia content over the Web. Scalable Vector Graphics (SVG) is
a language for describing graphics in a more efficient, Web friendly way.

The Extensible 3D (X3D) Language is the result of the combined efforts of the World
Wide Web Consortium and the Web3D Consortium to extend the Virtual Reality Model-
ling Language (VRML) with XML. X3D is the next generation of VRML. We create an
example that marks up a rocket.

Chapter 21—Custom Markup Languages (Part II)
Chapter 21 continues our study of custom markup languages. The first half of the chapter
discusses markup languages related to e-business/e-commerce—one area of industry pro-
foundly affected by XML. The second half of the chapter discusses markup languages re-
lated to law, publishing and graphical user interfaces.

The first markup language we introduce is the Extensible Business Reporting Language
(XBRL), which marks up financial reports and data. Other e-business/e-commerce markup
languages discussed are the Bank Internet Payment System (BIPS)—which facilitates secure
electronic transactions over the Internet, Electronic Business XML (ebXML)—which is
designed to facilitate e-commerce between organizations, Visa XML Invoice Specification—
which exchanges VISA credit-card purchase information between businesses over the
Internet, and Commerce XML (cXML)—an XML-based framework for describing catalog
data and performing business-to-business (B2B) electronic transactions that use the data.

LegalXML is a markup language for marking up court documents. NewsML marks up
news content (e.g., text, audio, images, video, etc.). The chapter concludes with a discus-
sion of the XML Open eBook Publication Structure—a standard for describing publishable
electronic content and the Extensible User Interface Language (XUL)—which is designed
to mark up graphical user interfaces.

Because most of the markup languages introduced in this chapter are in the early stages
of development, we provide several Web resources for each markup language.

Chapter 22—XML Technologies and Applications
In this chapter, we discuss XML-based technologies and applications that represent the fu-
ture of the Web. Many of these technologies are emerging technologies that promise to

Chapter 1 Introduction to the Internet and World Wide Web 17

bring profound changes to the Web. However, many of these technologies have not as of
yet been implemented in industry. Each section provides a brief introduction to the tech-
nology and a list of resources that contains more information. When possible, we use our
live-code™ approach to illustrate a given technology.

Technologies discussed include: XML Query—a language for searching and retrieving
data from XML documents, the Resource Definition Format (RDF)—which enables docu-
ment authors to describe the data in an XML document, the Channel Definition Format
(CDF)—a Microsoft technology for providing dynamic content to subscribers, Rich Site
Summary (RSS)—a Netscape technology which provides dynamic content to channel sub-
scribers, the Platform for Privacy Preferences (P3P)—a specification for describing a Web
site’s privacy policy so that visitors can make informed choices about how their informa-
tion is being used on the Internet, the Blocks Extensible Exchange Protocol (BXXP)—an
emerging technology for transferring data over the Internet. This chapter also introduces
XML Topic Maps (XTM)—a technology for mapping information. For the XTM example,
we use a Python implementation that is freely available.

Chapter 23—Simple Object Access Protocol (SOAP) and Microsoft Biztalk™
In this chapter, we present two emerging XML-based technologies for distributed commu-
nication over a network. Both of them enable applications without a common platform or
communication protocol to exchange information.

The Simple Object Access Protocol (SOAP) is a new technology developed primarily
by Microsoft and DevelopMentor for distributing objects (marked up as XML) over the
Internet. SOAP provides a framework for expressing application semantics, encoding that
data and packaging it in modules. We cover the three parts of SOAP: the envelope, which
describes the content and intended recipient of a SOAP message; the SOAP encoding rules;
and the SOAP Remote Procedure Call (RPC) representation for commanding other com-
puters to perform a task.

Microsoft’s BizTalk technology, which supports SOAP, is a messaging framework for
business transactions designed to overcome barriers to Enterprise Application Integration
(EAI)—the networking of diverse software systems both within and between organizations.
BizTalk supports a standard set of schema (available at BizTalk.org) which can be
used for loosely coupled messaging between different applications and systems. We
examine the BizTalk Library of these schema, and demonstrate the applications of the Biz-
Talk Framework and the workings of Microsoft BizTalk Server 2000.

Chapter 24—Bonus Chapter: An Introduction to VBScript
This chapter provides an introduction to VBScript to support the Active Server Pages used
in Chapters 15 and 25. Many of our readers will be familiar with JavaScript, but not VB-
Script. When possible, we compare VBScript features to their equivalent JavaScript fea-
tures. Key topics covered include control structures, functions, arrays and data types.

Chapter 25—Bonus Chapter: Introduction to Active Server Pages
This chapter provides an introduction to Active Server Pages to support the ASP case study
introduced in Chapter 15. Before reading this chapter, readers are strongly encouraged to
read Chapter 24. Key topics covered include session tracking, cookies, ActiveX Data Ob-
jects (ADO), file processing and Structured Query Language (SQL).

18 Introduction to the Internet and World Wide Web Chapter 1

Chapter 26—Bonus Chapter: Introduction to Perl Programming
This chapter provides an introduction to Perl programming and the Common Gateway In-
terface (CGI) to support the case study introduced in Chapter 17. Key topics covered in-
clude data types, control structures, regular expressions, cookies, server-side includes and
database access.

Chapter 27—Introduction to Java 2 Programming
This chapter provides an introduction to Java programming to support the Java code used
in Chapters 8–10, 13, 16, 20 and 23. Key topics covered include data types, control struc-
tures, keywords, multithreading, database access using Java Database Connectivity (JD-
BC) and servlets.

Appendix A—HTML Special Characters
A table shows many commonly used HTML special characters, called character entity ref-
erences by the World Wide Web Consortium (W3C).

Appendix B—HTML Colors
An explanation of how to create any color using either color names or hexadecimal RGB
value is provided, along with a table that matches colors to values.

Appendix C—ASCII Character Set
This appendix contains a table of the 128 ASCII alphanumeric symbols.

Appendix D—Operator Precedence Chart
A series of tables show the precedence of the operators in JavaScript/JScript/ECMAScript,
VBScript, Perl and Java.

Appendix E—Number Systems
This appendix explains the binary, octal, decimal and hexadecimal number systems. It ex-
plains how to convert between bases and perform mathematical operations in each base.

Appendix F—Career Resources
This appendix provides a listing of URLs and other resources related to careers in XML and
its related technologies.

Appendix G—ActiveState Perl Installation [CD-ROM]
This appendix walks the reader through the installation of ActiveState’s implementation of
Perl for Windows (used in Chapter 17 and 26).

Appendix H—Setting Up an ODBC Data Source Name (DSN) [CD-ROM]
This appendix walks the user through the creation of a Windows DSN, which is used in
Chapters 15 and 25–27 that access databases.

Appendix I—Installing a Windows Web Server [CD-ROM]
This appendix walks the reader through the installation of Microsoft’s Personal Web Server
(PWS), which is used in Chapters 15, 25 and 26 to serve Web documents to client Web
browsers.

Chapter 1 Introduction to the Internet and World Wide Web 19

Well, there you have it! We have worked hard to create this book and its optional inter-
active multimedia Cyber Classroom version. The book is loaded with working, live-code™
examples, programming tips, self-review exercises and answers, challenging exercises that
help you master the material. The technologies we introduce will help you write Web-based
applications quickly and effectively. As you read the book, if something is not clear, or if
you find an error, please write to us at deitel@deitel.com. When contacting us, pro-
vide as much information as possible—including the name and edition of the book. We will
respond promptly, and we will post corrections and clarifications on our Web site

www.deitel.com

Prentice Hall maintains www.prenhall.com/deitel—a Web site dedicated to
our Prentice Hall textbooks, multimedia packages and Web-based training products. The
site contains “Companion Web Sites” for each of our books that include frequently asked
questions (FAQs), example downloads, errata, updates, additional self-test questions and
other resources.

You are about to start on a challenging and rewarding path. We hope you enjoy
learning with XML How to Program as much as we enjoyed writing it!

1.9 W3C XML Resources
The W3C homepage is a comprehensive description of the Web and where it is headed. The
World Wide Web Consortium is an international joint effort with the goal of overseeing the
development of the World Wide Web. The goals of the W3C are divided into categories:
User Interface Domain, Technology and Society Domain, Architecture Domain and Web
Accessibility Initiatives. For each Internet technology with which the W3C is involved, the
site provides a description of the technology and its benefits to Web designers, the history
of the technology and the future goals of the W3C in developing the technology.

The W3C Web site is the single best XML resource on the Internet, containing infor-
mation on all of the important XML technologies. Updated daily to reflect the latest devel-
opments in the XML world, it also has complete archives dating back to the inception of
XML. Every major XML technology has its own Web page which can be accessed from
the XML home page, www.w3.org/XML. Each of these pages has a large list of links to
various resources including the latest specifications, events, publications, developer discus-
sions, software, tutorials, recommended reading and research notes. A brief explanation of
XML can be found at www.w3.org/XML/1999/XML-in-10-points, and a
description of the W3C’s work on XML can be found at www.w3.org/XML/
Activity.html.

1.10 Internet and World Wide Web Resources
www.deitel.com
Please check this site for daily updates, corrections and additional resources for all Deitel & Associ-
ates, Inc. publications.

www.learnthenet.com/english/index.html
Learn the Net is a Web site containing a complete overview of the Internet, the World Wide Web and
the underlying technologies. The site contains information that can help people Internet and Web get
novices started.

20 Introduction to the Internet and World Wide Web Chapter 1

www.xml.com
This Web site contains information, resources, tutorials and links related to any aspect and application
of XML.

www.xml.org
This Web site is the industry portal for XML and contains many useful resources.

www.oasis-open.org/cover
This Web site is a portal to an extensive listing of articles and links concerning various XML technol-
ogies.

SUMMARY
[Note: Because this chapter is primarily a summary of the rest of the book, we have not provided a
summary section. In the remaining chapters we provide, where appropriate, a detailed summary of
the points covered in that chapter.]

TERMINOLOGY
Active Server Pages (ASP) Generalized Markup Language (GML)
Application Programming Interface (API) Hypertext Markup Language (HTML)
attribute HyTime
bandwidth Internet
BizTalk Internet Protocol (IP)
BizTalk Server 2000 invalid document
bottom tier Java
browser JavaScript
Cascading Style Sheets (CSS) live-code™ approach
Cascading Style Sheets (CSS) markup language
Channel Definition Format (CDF) metadata
Chemical Markup Language (CML) middle tier
Commerce XML (cXML) middleware
Document Object Model (DOM) multimedia
Document Style and Semantics Specification

Language (DSSSL)
Namespace
parser

Document Type Definition (DTD) Perl
e-book Platform for Privacy Preferences (P3P)
e-business presentation of a document
e-commerce Resource Definition Format (RDF)
Electronic Data Interchange (EDI) Rich Site Summary (RSS)
Enterprise Application Integration (EAI) Scalable Vector Graphics (SVG)
Enterprise Application Integration (EAI) semantics
Extensible 3D Language (X3D) separation of structure from content
Extensible HyperText Markup Language

(XHTML)
servlet
Simple API for XML (SAX)

Extensible Linking Language (XLink) Simple Object Access Protocol (SOAP)
Extensible Markup Language (XML) speech
Extensible Path Language (XPath) Standard Generalized Markup Language (SGML)
Extensible Server Pages (XSP) structured documents
Extensible Stylesheet Language (XSL) style sheets
Extensible Stylesheet Language

Transformations (XSLT)
Synchronized Multimedia Integration

Language (SMIL)
frame tags

Chapter 1 Introduction to the Internet and World Wide Web 21

SELF-REVIEW EXERCISES
1.1 Fill in the blanks in each of the following:

a) The acronym W3C stands for .
b) W3C standards are called .
c) The acronym XML stands for .
d) incorporates the elements of both CSS and DSSSL.
e) combines ideas from HyTime and the Text Encoding Initiative (TEI).
f) The acronym SGML stands for .

1.2 Fill in the blanks in each of the following sentences.
a) is the information carrying capacity of communications lines.
b) The W3C is pursuing its to help individuals with disabilities utilize the Web.
c) The is the grandparent of what is today called the Internet.
d) The information carrying capacity of a communications medium like the Internet is

called .
e) The acronym TCP/IP stands for .

1.3 Fill in the blanks in each of the following statements.
a) The allows computer users to locate and view multimedia-based documents

on almost any subject over the Internet.
b) of CERN developed the World Wide Web and several of the communica-

tions protocols that form the backbone of the Web.
c) The acronym SOAP stands for .
d) , developed by the W3C, adds to XML’s metadata capabilities, defining en-

tire categories of data.
e) The acronym SVG stands for .

ANSWERS TO SELF-REVIEW EXERCISES
1.1 a) World Wide Web Consortium. b) Recommendations. c) Extensible Markup Language. d)
Extensible Stylesheet Language (XSL). e) Extensible Linking Language (XLink). f) Standardized
General Markup Language.

1.2 a) bandwidth. b) Web Accessibility Initiative. c) ARPAnet. d) bandwidth. e) Transmission
Control Protocol/Internet Protocol.

1.3 a) World Wide Web. b) Tim Berners-Lee. c) Simple Object Access Protocol. d) Resource
Description Framework (RDF). e) Scalable Vector Graphics.

EXERCISES
1.4 State whether the following are true or false. If false, explain why.

a) In 1994, Bill Gates founded the W3C.

Text Encoding Initiative (TEI) W3C host
top tier W3C member
Transmission Control Protocol (TCP) W3C Proposed Recommendation
Unicode W3C Recommendation
Universal Description, Discovery and

Integration (UDDI) Project
W3C Working Draft
well-formed document

valid document Wireless Markup Language (WML)
VBScript World Wide Web Consortium (W3C)
W3C Candidate Recommendation XML Topic Maps (XTM)

22 Introduction to the Internet and World Wide Web Chapter 1

b) XML is a subset of HTML used to format data.
c) MathML is one of many markup languages created with XML.
d) HTML is a W3C Recommendation.
e) The W3C has three hosts.
f) XSL consists of transformations, formatting objects and SOAP.
g) XHTML is an acronym for Extended HyperText Markup Language.

1.5 State whether the following are true or false. If false, explain why.
a) HTML is an acronym for HyperText Markup Language.
b) SAX is an acronym for Simple API for XML.
c) HyTime is a markup language created with XML.
d) XHTML is the proposed successor to HTML.
e) Tim Berners-Lee and two other individuals created SGML.
f) Parsers are software programs that process XML documents.
g) Cascading Style Sheets technology allows you to specify the style of your page elements

(spacing, margins, etc.) separately from the structure of your document (section headers,
body text, links, etc.).

2
Introduction to

HyperText Markup
Language 4: Part I

Objectives
• To understand the key components of an HTML

document.
• To be able to use basic HTML elements to create

World Wide Web pages.
• To be able to add images to your Web pages.
• To understand how to create and use hyperlinks to

traverse Web pages.
• To be able to create lists of information.
To read between the lines was easier than to follow the text.
Henry James

Mere colour, unspoiled by meaning, and annulled with
definite form, can speak to the soul in a thousand different
ways.
Oscar Wide

High thoughts must have high language.
Aristophanes

I’ve gradually risen from lower-class background to lower-
class foreground.
Marvin Cohen

24 Introduction to HyperText Markup Language 4: Part I Chapter 2

2.1 Introduction
Welcome to the wonderful world of opportunities being created by the World Wide Web.
The Internet is now three decades old, but it was not until the World Wide Web became
popular in the 1990s that this current explosion of opportunities began. It seems that excit-
ing new developments occur almost daily—a pace of innovation unlike what we have seen
with any other technology. In this chapter, you will begin developing your own Web pages.
As the book proceeds, you will be able to create increasingly appealing and powerful Web
pages. In the last portion of the book you will learn how to create complete Web-based ap-
plications.

We begin unlocking the power of the Web in this chapter with HTML—the Hypertext
Markup Language. HTML is not a procedural programming language like C, Fortran,
Cobol or Pascal. Rather it is a markup language for identifying the elements of a page so
that a browser, such as Microsoft’s Internet Explorer or Netscape’s Communicator, can
render that page on your computer screen.

In this chapter we introduce the basics of creating Web pages in HTML. We write
many simple Web pages. In later chapters we introduce more sophisticated HTML tech-
niques, such as tables, which are particularly useful for structuring information from data-
bases. We will also introduce Cascading Style Sheets, which are used to make Web pages
more visually appealing.

We begin XML How to Program with these chapters on HTML in order to provide a
foundation for structuring data with markup. In this chapter we introduce basic HTML ele-
ments and attributes. A key issue when using HTML (and, as we will see, when using
XML) is the separation of the presentation of a document (i.e., how the document is ren-
dered on the screen by a browser) from the structure of that document. Over the next sev-
eral chapters, we discuss this issue in depth. In later chapters, we will show how XML
provides a richer vocabulary for building structured documents.

Outline

2.1 Introduction
2.2 Markup Languages
2.3 Editing HTML
2.4 Common Elements
2.5 Headers
2.6 Linking
2.7 Images
2.8 Special Characters and More Line Breaks
2.9 Unordered Lists
2.10 Nested and Ordered Lists
2.11 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises •
Exercises

Chapter 2 Introduction to HyperText Markup Language 4: Part I 25

2.2 Markup Languages
HTML is a markup language. It is used to format text and information. This “marking up”
of information is different from the intent of traditional programming languages, which is
to perform actions in a designated order. In the next several chapters, we discuss HTML
markup in detail.

In HTML, text is marked up with elements, delineated by tags that are keywords con-
tained in pairs of angle brackets. For example, the HTML element itself, which indicates
that we are writing a Web page to be rendered by a browser, begins with a start tag of
<html> and terminates with an end tag of </html>. These elements format your page in
a specified way. Over the course of the next two chapters, we introduce many of the com-
monly used tags and how to use them.

Good Programming Practice 2.1
HTML tags are not case sensitive. However, keeping all the letters in one case improves pro-
gram readability. Although the choice of case is up to you, we recommend that you write all
of your code in lowercase. Writing in lowercase ensures greater compatibility with future
markup languages that are designed to be written with only lowercase tags and elements. 2.1

Common Programming Error 2.1
Forgetting to include end tags for elements that require them is a syntax error and can gross-
ly affect the formatting and look of your page. Unlike conventional programming languages,
a syntax error in HTML does not usually cause page display in browsers to fail completely. 2.1

2.3 Editing HTML
In this chapter we show how to write HTML in its source-code form. We create HTML doc-
uments using a text editor and store them in files with either the.html or .htm file name
extension. A wide variety of text editors exist. We recommend that you initially use a text
editor called Notepad, which is built into Windows. Notepad can be found inside the Ac-
cessories panel of your Program list, inside the Start menu. You can also download a
free HTML source-code editor called HTML-Kit at www.chami.com/html-kit.
Unix users can use popular text editors like vi or emacs.

Good Programming Practice 2.2
Assign names to your files that describe their functionality. This practice can help you iden-
tify documents faster. It also helps people who want to link to your page, by giving them an
easier-to-remember name for the file. For example, if you are writing an HTML document
that will display your products, you might want to call it products.html. 2.2

As mentioned previously, errors in conventional programming languages like C, C++
and Java often prevent the program from running. Errors in HTML markup are usually not
fatal. The browser will make its best effort at rendering the page, but will probably not dis-
play the page as you intended.

The file name of your home page (the first of your HTML pages that a user sees when
browsing your Web site) should be index.html, because when a browser does not
request a specific file in a directory, the normal default Web server response is to return
index.html (this may be different for your server) if it exists in that directory. For
example, if you direct your browser to www.deitel.com, the server actually sends the
file www.deitel.com/index.html to your browser.

26 Introduction to HyperText Markup Language 4: Part I Chapter 2

2.4 Common Elements
Throughout these HTML chapters we will present both HTML source code and a sample
screen capture of the rendering of that HTML in Internet Explorer 5. Figure 2.1 shows an
HTML file that displays one line of text.

Lines 1 and 2

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">

are required in every HTML document and are used to specify the document type. The doc-
ument type specifies which version of HTML is used in the document and can be used with
a validation tool, such as the W3C’s validator.w3.org, to ensure an HTML docu-
ment conforms to the HTML recommendation. In these examples we create HTML version
4.01 documents. All of the examples in these chapters have been validated through the Web
site validator.w3.org.

The HTML document begins with the opening <html> tag (line 3) and ends with the
closing </html> tag (line 17).

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. 2.1: main.html -->
6 <!-- Our first Web page -->
7
8 <head>
9 <title>XML How to Program - Welcome</title>

10 </head>
11
12 <body>
13
14 <p>Welcome to Our Web Site!</p>
15
16 </body>
17 </html>

Fig. 2.1 Basic HTML file.

Chapter 2 Introduction to HyperText Markup Language 4: Part I 27

Good Programming Practice 2.3
Always include the <html>…</html> tags in the beginning and end of your HTML doc-
ument. 2.3

Good Programming Practice 2.4
Place comments throughout your code. Comments in HTML are placed inside the <!--…-
-> tags. Comments help other programmers understand the code, assist in debugging and
list other useful information that you do not want the browser to render. Comments also help
you understand your own code, especially if you have not looked at it for a while. 2.4

 We see our first comments (i.e., text that documents or describes the HTML markup)
on lines 5 and 6

<!-- Fig. 2.1: main.html -->
<!-- Our first Web page -->

Comments in HTML always begin with <!-- and end with -->. The browser ignores any
text and/or tags inside a comment. We place comments at the top of each HTML document
giving the figure number, the file name and a brief description of the purpose of the exam-
ple. In subsequent examples, we also include comments in the markup, especially when we
introduce new features.

Every HTML document contains a head element, which generally contains informa-
tion about the document, and a body element, which contains the page content. Informa-
tion in the head element is not generally rendered in the display window but may be made
available to the user through other means.

Lines 8–10

<head>
 <title>XML How to Program - Welcome</title>
</head>

show the head element section of our Web page. Including a title element is required
for every HTML document. To include a title in your Web page, enclose your chosen title
between the pair of tags <title>…</title> in the head element.

Good Programming Practice 2.5
Use a consistent title naming convention for all pages on your site. For example, if your site
is called “Al’s Web Site,” then the title of your links page might best be “Al’s Web Site -
Links,” etc. This practice presents a clearer picture to those browsing your site. 2.5

The title element names your Web page. The title usually appears on the colored
bar at the top of the browser window, and will also appear as the text identifying your page
if a user adds your page to their list of Favorites or Bookmarks. The title is also used
by search engines for cataloging purposes, so picking a meaningful title can help search
engines direct a more focused group of people to your site.

Line 12

<body>

opens the body element. The body of an HTML document is the area where you place the
content of your document. This includes text, images, links, forms, etc. We discuss many

28 Introduction to HyperText Markup Language 4: Part I Chapter 2

elements that can be inserted in the body element later in this chapter. Remember to in-
clude the end </body> tag before the closing </html> tag.

Various elements enable you to place text in your HTML document. We see the para-
graph element on line 14

<p>Welcome to Our Web Site!</p>

All text placed between the <p>…</p> tags forms one paragraph. Most Web browsers
render paragraphs as set apart from all other material on the page by a line of vertical space
both before and after the paragraph. The HTML in line 12 causes Internet Explorer to ren-
der the enclosed text as shown in Fig. 2.1.

Our code example ends on lines 16 and 17 with

</body>
</html>

These two tags close the body and HTML sections of the document, respectively. As dis-
cussed earlier, the last tag in any HTML document should be </html>, which tells the
browser that all HTML coding is complete. The closing </body> tag is placed before the
</html> tag because the body section of the document is entirely enclosed by the HTML
section. Therefore, the body section must be closed before the HTML section.

2.5 Headers
The six headers are used to delineate new sections and subsections of a page. Figure 2.2
shows how these elements (h1 through h6) are used. Note that the actual size of the text
of each header element is selected by the browser and can vary significantly between
browsers. In Chapter 4, we discuss how you can “take control” of specifying these text sizes
and other text attributes as well.

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. 2.2: header.html -->
6 <!-- HTML headers -->
7
8 <head>
9 <title>XML How to Program - Headers</title>

10 </head>
11
12 <body>
13
14 <h1>Level 1 Header</h1> <!-- Level 1 header -->
15 <h2>Level 2 header</h2> <!-- Level 2 header -->
16 <h3>Level 3 header</h3> <!-- Level 3 header -->
17 <h4>Level 4 header</h4> <!-- Level 4 header -->
18 <h5>Level 5 header</h5> <!-- Level 5 header -->
19 <h6>Level 6 header</h6> <!-- Level 6 header -->

Fig. 2.2 Header elements h1 through h6 (part 1 of 2).

Chapter 2 Introduction to HyperText Markup Language 4: Part I 29

Good Programming Practice 2.6
Adding comments to the right of short HTML lines is a clean-looking way to comment code. 2.6

Line 14

<h1>Level 1 Header</h1>

introduces the h1 header element, with its start tag <h1> and its end tag </h1>. Any text
to be displayed is placed between the two tags. All six header elements, h1 through h6,
follow the same pattern.

Look-and-Feel Observation 2.1
Putting a header at the top of every Web page helps those viewing your pages understand
what the purpose of each page is. 2.1

2.6 Linking
The most important capability of HTML is its ability to create hyperlinks to other docu-
ments, making possible a world-wide network of linked documents and information. In
HTML, both text and images can act as anchors to link to other pages on the Web. We in-
troduce anchors and links in Fig. 2.3.

20
21 </body>
22 </html>

Fig. 2.2 Header elements h1 through h6 (part 2 of 2).

30 Introduction to HyperText Markup Language 4: Part I Chapter 2

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. 2.3: links.html -->
6 <!-- Introduction to hyperlinks -->
7
8 <head>
9 <title>XML How to Program - Links</title>

10 </head>
11
12 <body>
13
14 <h1>Here are my favorite Internet Search Engines</h1>
15
16 <p>Click on the Search Engine address to go to that
17 page.</p>
18
19 <p>Yahoo</p>
20
21 <p>AltaVista</p>
22
23 <p>Ask Jeeves</p>
24
25 <p>WebCrawler</p>
26
27 </body>
28 </html>

Fig. 2.3 Linking to other Web pages.

Chapter 2 Introduction to HyperText Markup Language 4: Part I 31

The first link can be found on line 19

<p>Yahoo</p>

Links are inserted using the a (anchor) element. The anchor element is unlike the elements
we have seen thus far in that it requires certain attributes (i.e., markup that provides infor-
mation about the element) to specify the hyperlink. Attributes are placed inside an ele-
ment’s start tag and consist of a name and a value. The most important attribute for the a
element is the location to which you would like the anchoring object to be linked. This lo-
cation can be any resource on the Web, including pages, files and email addresses. To spec-
ify the address to link to, add the href attribute to the anchor element as follows: . In this case, the address we are linking to is http://www.yahoo.com.
The hyperlink (line 19) makes the text Yahoo a link to the address specified in href.

Anchors can use mailto URLs to provide links to email addresses. When someone
selects this type of anchored link, most browsers launch the default email program to ini-
tiate an email message to the linked address. This type of anchor is demonstrated in Fig. 2.4.

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. 2.4: contact.html -->
6 <!-- Adding email hyperlinks -->
7
8 <head>
9 <title>XML How to Program - Contact Page</title>

10 </head>
11
12 <body>
13
14 <p>My email address is
15 deitel@deitel.com. Click on the address and your browser
16 will open an email message and address it to me.</p>
17
18 </body>
19 </html>

Fig. 2.4 Linking to an email address.

32 Introduction to HyperText Markup Language 4: Part I Chapter 2

We see an email link on lines 14 and 15

<p>My email address is
deitel@deitel.com. Click on the address and your browser

The form of an email anchor is …. It is im-
portant that this whole attribute, including the mailto:, be placed in quotation marks.

2.7 Images
We have thus far dealt exclusively with text. We now show how to incorporate images into
Web pages (Fig. 2.5).

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. 2.5: picture.html -->
6 <!-- Adding images with HTML -->
7
8 <head>
9 <title>XML How to Program - Welcome</title>

10 </head>
11
12 <body>
13
14 <p><img src = "xmlhtp.jpg" height = "238" width = "183"
15 alt = "Demonstration of the alt attribute"></p>
16
17 </body>
18 </html>

Fig. 2.5 Placing images in HTML files.

Chapter 2 Introduction to HyperText Markup Language 4: Part I 33

The image in this code example is inserted in lines 14 and 15

<p><img src = "xmlhtp.jpg" height = "238" width = "183"
 alt = "Demonstration of the alt attribute"></p>

You specify the location of the image file in the img element. This is done by adding the
src = "location" attribute. You can also specify the height and width of an image,
measured in pixels. The term pixel stands for “picture element.” Each pixel represents one
dot of color on the screen. This image is 183 pixels wide and 238 pixels high.

Good Programming Practice 2.7
Always include the height and the width of an image inside the img tag. When the
browser loads the HTML file, it will know immediately how much screen space to give the
image and will therefore lay out the page properly, even before it downloads the image. 2.7

Common Programming Error 2.2
Entering new dimensions for an image that change its inherent width-to-height ratio distorts
the appearance of the image. For example, if your image is 200 pixels wide and 100 pixels high,
you should always make sure that any new dimensions have a 2:1 width-to-height ratio. 2.2

The alt attribute is required for every img element. In Fig. 2.5, the value of this
attribute is

alt = "Demonstration of the alt attribute"

Attribute alt is provided for browsers that have images turned off, or that cannot view im-
ages (e.g., text-based browsers). The value of the alt attribute will appear on-screen in
place of the image, giving the user an idea of what was in the image. The alt attribute is
especially important for making Web pages accessible to users with disabilities, as we will
see in Chapter 18, Accessibility.

Good Programming Practice 2.8
Include a description of the purpose of every image using the alt attribute in the img tag. 2.8

Now that we have discussed placing images on your Web page, we will show you how
to transform images into anchors to provide links to other sites on the Internet (Fig. 2.6).

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. 2.6: nav.html -->
6 <!-- Using images as link anchors -->
7
8 <head>
9 <title>XML How to Program - Navigation Bar</title>

10 </head>
11

Fig. 2.6 Using images as link anchors (part 1 of 2).

34 Introduction to HyperText Markup Language 4: Part I Chapter 2

12 <body>
13
14 <p>
15
16 <img src = "buttons/links.jpg" width = "65" height = "50"
17 alt = "Links Page">

18
19
20 <img src = "buttons/list.jpg" width = "65" height = "50"
21 alt = "List Example Page">

22
23
24 <img src = "buttons/contact.jpg" width = "65" height = "50"
25 alt = "Contact Page">

26
27
28 <img src = "buttons/header.jpg" width = "65" height = "50"
29 alt = "Header Page">

30
31
32 <img src = "buttons/table.jpg" width = "65" height = "50"
33 alt = "Table Page">

34
35
36 <img src = "buttons/form.jpg" width = "65" height = "50"
37 alt = "Feedback Form">

38 </p>
39
40 </body>
41 </html>

Fig. 2.6 Using images as link anchors (part 2 of 2).

Chapter 2 Introduction to HyperText Markup Language 4: Part I 35

We see an image hyperlink in lines 15–17

<img src = "buttons/links.jpg" width = "65" height = "50"
 alt = "Links Page">

Here we use the a element and the img element. The anchor works the same way as when
it surrounds text; the image becomes an active hyperlink to a location somewhere on the
Internet, indicated by the href attribute inside the <a> tag. Remember to close the anchor
element when you want the hyperlink to end.

If you direct your attention to the src attribute of the img element,

src = "buttons/links.jpg"

you will see that it is not in the same form as that of the image in the previous example.
This is because the image we are using here, about.jpg, resides in a subdirectory called
buttons, which is in the main directory for our site. We have done this so that we can
keep all our button graphics in the same place, making them easier to find and edit.

You can always refer to files in different directories simply by putting the directory
name in the correct format in the src attribute. If, for example, there was a directory inside
the buttons directory called images, and we wanted to put a graphic from that directory
onto our page, we would just have to make the source attribute reflect the location of the
image: src = "buttons/images/filename".

You can even insert an image from a different Web site into your site (after obtaining
permission from the site’s owner, of course). Just make the src attribute reflect the loca-
tion and name of the image file.

On line 17

alt = "Links Page">

we introduce the br element in line 17, which causes a line break to be rendered in most
browsers.

2.8 Special Characters and More Line Breaks
In HTML, the old QWERTY typewriter setup no longer suffices for all our textual needs.
HTML 4.01 has a provision for inserting special characters and symbols (Fig. 2.7).

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. 2.7: contact.html -->
6 <!-- Inserting special characters -->
7
8 <head>
9 <title>XML How to Program - Contact Page</title>

10 </head>
11

Fig. 2.7 Inserting special characters into HTML (part 1 of 2).

36 Introduction to HyperText Markup Language 4: Part I Chapter 2

There are some special characters inserted into the text of lines 22 and 23

<p>All information on this site is ©
Deitel & Associates, 1999.</p>

12 <body>
13
14 <!-- Special characters are entered using the form &code; -->
15 <p>My email address is
16 deitel@deitel.com. Click on the address and your browser
17 will automatically open an email message and address it to my
18 address.</p>
19
20 <hr> <!-- Inserts a horizontal rule -->
21
22 <p>All information on this site is ©
23 Deitel & Associates, 1999.</p>
24
25 <!-- Text can be struck out with a set of ... -->
26 <!-- tags, it can be set in subscript with _{...}, -->
27 <!-- and it can be set into superscript with <sup...</sup> -->
28 <p>You may copy up to 3.14 x 10² characters
29 worth of information from this site. Just make sure
30 you _{do not copy more information} than is allowable.
31 </p>
32
33 <p>No permission is needed if you only need to use
34 < ¼ of the information presented here.</p>
35
36 </body>
37 </html>

Fig. 2.7 Inserting special characters into HTML (part 2 of 2).

Chapter 2 Introduction to HyperText Markup Language 4: Part I 37

All special characters are inserted in their code form. The format of the code is always
&code;. An example of this is &, which inserts an ampersand. Codes are often abbre-
viated forms of the character (like amp for ampersand and copy for copyright) and can
also be in the form of hex codes. (For example, the hex code for an ampersand is 38, so
another method of inserting an ampersand is to use &.) Please refer to the chart in Ap-
pendix A for a listing of special characters and their respective codes.

In lines 28–31, we introduce three new styles.

<p>You may copy up to 3.14 x 10² characters
worth of information from this site. Just make sure
you _{do not copy more information} than is allow-
able.
</p>

You can indicate text that has been deleted from a document by including it in a del ele-
ment. This could be used as an easy way to communicate revisions of an online document.
Many browsers render the del element as strike-through text. To turn text into superscript
(i.e., raised vertically to the top of the line and made smaller) or to turn text into subscript
(the opposite of superscript, lowers text on a line and makes it smaller), use the sup and
sub elements, respectively.

Line 20

<hr> <!-- Inserts a horizontal rule -->

inserts a horizontal rule, indicated by the <hr> tag. A horizontal rule is rendered by most
browsers as a straight line going across the screen horizontally. The hr element also inserts
a line break directly below it.

2.9 Unordered Lists
Figure 2.8 demonstrates displaying text in an unordered list. Here we reuse the HTML file
from Fig. 2.3, adding an unordered list to enhance the structure of the page. The unordered
list element ul creates a list in which every line begins with a bullet mark in most Web
browsers.

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. 2.8: links.html -->
6 <!-- Unordered list containing hyperlinks -->
7
8 <head>
9 <title>XML How to Program - Links</title>

10 </head>
11
12 <body>
13
14 <h1>Here are my favorite Internet Search Engines</h1>

Fig. 2.8 Unordered lists in HTML (part 1 of 2).

38 Introduction to HyperText Markup Language 4: Part I Chapter 2

The first list item appears on line 21

Yahoo

Each entry in an unordered list is a li (list item) element. Most Web browsers render these
elements with a line break and a bullet mark at the beginning of the line.

2.10 Nested and Ordered Lists
Figure 2.9 demonstrates nested lists (i.e., one list inside another list). This feature is useful
for displaying information in outline form.

15
16
17 <p>Click on the Search Engine address to go to that
18 page.</p>
19
20
21 Yahoo
22
23 AltaVista
24
25 Ask Jeeves
26
27 WebCrawler
28
29
30 </body>
31 </html>

Fig. 2.8 Unordered lists in HTML (part 2 of 2).

Chapter 2 Introduction to HyperText Markup Language 4: Part I 39

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. 2.9: list.html -->
6 <!-- Advanced Lists: nested and ordered -->
7
8 <head>
9 <title>XML How to Program - Lists</title>

10 </head>
11
12 <body>
13
14 <h1>The Best Features of the Internet</h1>
15
16
17 You can meet new people from countries around
18 the world.
19 You have access to new media as it becomes public:
20
21 <!-- This starts a nested list, which uses a modified -->
22 <!-- bullet. The list ends when you close the tag -->
23
24 New games
25 New applications
26
27 <!-- Another nested list -->
28
29 For business
30 For pleasure
31 <!-- This ends the double nested list -->
32
33
34 Around the clock news
35 Search engines
36 Shopping
37 Programming
38
39
40 XML
41 Java
42 HTML
43 Scripts
44 New languages
45
46
47
48
49 <!-- This ends the first level nested list -->
50
51
52 Links

Fig. 2.9 Nested and ordered lists in HTML (part 1 of 2).

40 Introduction to HyperText Markup Language 4: Part I Chapter 2

53 Keeping in touch with old friends
54 It is the technology of the future!
55
56 <!-- This ends the primary unordered list -->
57
58 <h1>My 3 Favorite CEOs</h1>
59
60 <!-- Ordered lists are constructed in the same way as -->
61 <!-- unordered lists, except their starting tag is -->
62
63 Bill Gates
64 Steve Jobs
65 Michael Dell
66
67
68 </body>
69 </html>

Fig. 2.9 Nested and ordered lists in HTML (part 2 of 2).

Chapter 2 Introduction to HyperText Markup Language 4: Part I 41

Our first nested list begins on line 23, with its first element on 24

 New games

A nested list is created in the same way as the list in Fig. 2.8, except that the nested list is
itself contained in a list element. Most Web browsers render nested lists by indenting the
list one level and changing the bullet type for the list elements.

Good Programming Practice 2.9
Indenting each level of a nested list in your code makes the code easier to edit and debug. 2.9

In Fig. 2.9, lines 16–56 show a list with three levels of nesting. When nesting lists, be
sure to insert the closing tags in the appropriate places. Lines 62–66

 Bill Gates
 Steve Jobs
 Michael Dell

define an ordered list element with the tags …. Most browsers render ordered
lists with a sequence number for each list element instead of a bullet. By default, ordered
lists use decimal sequence numbers (1, 2, 3, …).

2.11 Internet and World Wide Web Resources
There are many resources available on the World Wide Web that go into more depth on the
topics we cover. Visit the following sites for additional information on this chapter’s topics.

www.w3.org
The World Wide Web Consortium (W3C), is the group that makes HTML recommendations. This Web
site holds a variety of information about HTML—both its history and its present status.

www.w3.org/TR/html401
The HTML 4.01 Specification contains all the nuances and fine points in HTML 4.01.

www.w3schools.com/html
The HTMl School. This site contains a complete guide to HTML, starting with an introduction to the
WWW and ending with advanced HTML features. This site also has a good reference for the features
of HTML.

www2.utep.edu/~kross/tutorial
This University of Texas at El Paso site contains another guide for simple HTML programming. The
site is helpful for beginners, because it focuses on teaching and gives specific examples.

www.astentech.com/tutorials/HTML.html
This site contains links and rates over 40 HTML tutorials located all over the Web.

www.w3scripts.com/html
This site, an offshoot of W3Schools, is a repository for code examples exhibiting all of the features of
HTML, from beginner to advanced.

42 Introduction to HyperText Markup Language 4: Part I Chapter 2

SUMMARY
• HTML is not a procedural programming language like C, Fortran, Cobol or Pascal. It is a markup

language that identifies the elements of a page so a browser can render that page on the screen.

• HTML is used to format text and information. This “marking up” of information is different from
the intent of traditional programming languages, which is to perform actions in a designated order.

• In HTML, text is marked up with elements, delineated by tags that are keywords contained in pairs
of angle brackets.

• HTML documents are created using text editors.

• All HTML documents stored in files require either the.htm or the.html file name extension.

• Making errors while coding in conventional programming languages like C, C++ and Java often
produces a fatal error, preventing the program from running. Errors in HTML code are usually not
fatal. The browser will make its best effort at rendering the page but will probably not display the
page as you intended. In our Common Programming Errors and Testing and Debugging Tips we
highlight common HTML errors and how to detect and correct them.

• For most Web servers, the filename of your home page should be index.html. When a browser
requests a directory, the default Web server response is to return index.html, if it exists in that
directory.

• The document type specifies which version of HTML is used in the document and can be used with
a validation tool, such as the W3C’s validator.w3.org, to ensure an HTML document con-
forms to the HTML specification.

• <html> tells the browser that everything contained between the opening <html> tag and the
closing </html> tag is HTML.

• Comments in HTML always begin with <!-- and end with --> and can span across several
source lines. The browser ignores any text and/or tags placed inside a comment.

• Every HTML file is separated into a header section and a body.

• Including a title is mandatory for every HTML document. Use the <title>…</title> tags to
do so. They are placed inside the header.

• <body> opens the body element. The body of an HTML document is the area where you place
all content you would like browsers to display.

• All text between the <p>…</p> tags forms one paragraph. Most browsers render paragraphs as
set apart from all other material on the page by a line of vertical space both before and after the
paragraph.

• Headers are a simple form of text formatting that typically increase text size based on the header’s
“level” (h1 through h6). They are often used to delineate new sections and subsections of a page.

• The purpose of HTML is to mark up text; the question of how it is presented is left to the browser
itself.

• People who have difficulty seeing can use special browsers that read the text on the screen aloud.
These browsers (which are text based and do not show images, colors or graphics) might read
strong and em with different inflections to convey the impact of the styled text to the user.

• You should close tags in the reverse order from that in which they were started to ensure proper
nesting.

• The most important capability of HTML is creating hyperlinks to documents on any server to form
a world-wide network of linked documents and information.

• Links are inserted using the a (anchor) element. To specify the address you would like to link to,
add the href attribute to the anchor element, with the address as the value of href.

Chapter 2 Introduction to HyperText Markup Language 4: Part I 43

• Anchors can link to email addresses. When someone clicks this type of anchored link, their default
email program initiates an email message to the linked address.

• The term pixel stands for “picture element”. Each pixel represents one dot of color on the screen.

• You specify the location of the image file with the src = "location" attribute in the tag.
You can specify the height and width of an image, measured in pixels.

• alt is provided for browsers that cannot view pictures or that have images turned off (text-based
browsers, for example). The value of the alt attribute will appear on-screen in place of the image,
giving the user an idea of what was in the image.

• You can refer to files in different directories by including the directory name in the correct format
in the src attribute. You can insert an image from a different Web site onto your site (after ob-
taining permission from the site’s owner). Just make the src attribute reflects the location and
name of the image file.

• The br element forces a line break. If the br element is placed inside a text area, the text begins
a new line at the place of the
 tag.

• HTML 4.01 has a provision for inserting special characters and symbols. All special characters are
inserted in the format of the code, always &code;. An example of this is &, which inserts an
ampersand. Codes are often abbreviated forms of the character (like amp for ampersand and copy
for copyright) and can also be in the form of hex codes. (For example, the hex code for an amper-
sand is 38, so another method of inserting an ampersand is to use &.)

• The del element marks text as deleted, which is rendered with a strike through by most browsers.
To turn text into superscript or subscript, use the sup and sub elements respectively.

• Most visual Web browsers place a bullet mark at the beginning of each element in an unordered
list. All entries in an unordered list must be enclosed within … tags, which open and
close the unordered list element.

• Each entry in an unordered list is contained in an li element. You then insert and format any text.

• Nested lists display information in outline form. A nested list is a list that is contained in an li
element. Most visual Web browsers indent nested lists one level and change the bullet type to re-
flect the nesting.

• An ordered list (…) is rendered by most browsers with a sequence number instead of
a bullet at the beginning of each list element. By default, ordered lists use decimal sequence num-
bers (1,2,3, …).

TERMINOLOGY
& content of an HTML element
.htm del element
.html em element (…)
<!--…--> (comment) emphasis
<body>…</body> h1 element (<h1>…</h1>)
<hr> element (horizontal rule) h2 element (<h2>…</h2>)
a element (anchor; <a>…) h3 element (<h3>…</h3>)
alt h4 element (<h4>…</h4>)
anchor h5 element (<h5>…</h5>)
attributes of an HTML tag h6 element (<h6>…</h6>)
clear = "all" in
 head element (<head>…</head>)
closing tag height
color horizontal rule
comments href attribute of <a> element

44 Introduction to HyperText Markup Language 4: Part I Chapter 2

SELF-REVIEW EXERCISES
2.1 State whether the following are true or false. If false, explain why.

a) The document type for an HTML document is optional.
b) The use of the em and strong elements is deprecated.
c) The name of your site’s home page should always be homepage.html.
d) It is a good programming practice to insert comments into your HTML document that ex-

plain what you are doing.
e) A hyperlink is inserted around text with the link element.

2.2 Fill in the blanks in each of the following:
a) The element is used to insert a horizontal rule.
b) Superscript is formatted with the element and subscript is formatted with the

 element.
c) The element is located within the <head>…</head> tags.
d) The least important header is the element and the most important text header

is .
e) The element is used to create an unordered list.

2.3 Identify each of the following as either an element or attribute:
a) html
b) width
c) href
d) br
e) h3
f) a
g) src

ANSWERS TO SELF-REVIEW EXERCISES
2.1 a) False. The document type is required for HTMl documents. b) False. The use of the i and
b elements is deprecated. Elements em and strong may be used instead. c) False. The name of your

HTML (HyperText Markup Language) RGB colors
HTML document size = in
html element (<html>…</html>) source-code form
HTML file special characters
HTML tags src attribute in img element
html-kit strong element (…)
hyperlink structure of a Web page
hypertext sub (subscript)
image sup (superscript)
img element tags in HTML
index.html text in body
line break element (
…</br>) text-based browser
link title element (<title>…</title>)
link attribute of body element… unordered list (…)
mailto: Web site
Markup Language width attribute
opening tag width by percentage
p element (paragraph; <p>…</p>) width by pixel
presentation of a Web Page World Wide Web

Chapter 2 Introduction to HyperText Markup Language 4: Part I 45

home page should always be index.html. d) True. e) False. A hyperlink is inserted around text
with the a (anchor) element.

2.2 a) hr. b) sup, sub. c) title. d) h6, h1. e) ul.

2.3 a) Tag. b) Attribute. c) Attribute. d) Tag. e) Tag. f) Tag. g) Attribute.

EXERCISES
2.4 Use HTML to mark up the first paragraph of this chapter. Use h1 for the section header, p
for text, strong for the first word of every sentence, and em for all capital letters.

2.5 Why is this code valid? (Hint: you can find the W3C specification for the p element at
www.w3.org/TR/html4)

<p>Here’s some text...
<hr>
<p>And some more text...</p>

2.6 Why is this code invalid? [Hint: you can find the W3C specification for the br element at the
same URL given in Exercise 2.5.]

<p>Here’s some text...
</br>
And some more text...</p>

2.7 We have an image named deitel.gif that is 200 pixels wide and 150 pixels high. Use the
width and height attributes of the img tag to a) increase image size by 100%; b) increase image
size by 50%; c) change the width-to-height ratio to 2:1, keeping the width attained in a).

2.8 Create a link to each of the following: a) index.html, located in the files directory; b)
index.html, located in the text subdirectory of the files directory; c) index.html, located
in the other directory in your parent directory [Hint: .. signifies parent directory.]; d) A link to the
President of the United States’ email address (president@whitehouse.gov); e) An FTP link
to the file named README in the pub directory of ftp.cdrom.com [Hint: remember to use ftp:/
/].

3
Introduction to

HyperText Markup
Language 4: Part II

Objectives
• To be able to create tables with rows and columns of

data.
• To be able to control the display and formatting of

tables.
• To be able to create and use forms.
• To be able to create and use image maps to aid

hyperlinking.
• To be able to make Web pages accessible to search

engines.
• To be able to use the frameset element to create

more interesting Web pages.
Yea, from the table of my memory
I’ll wipe away all trivial fond records.
William Shakespeare

Chapter 3 Introduction to HyperText Markup Language 4: Part II 47

3.1 Introduction
In the previous chapter, we discussed some basic HTML features. We built several com-
plete Web pages featuring text, hyperlinks, images and such formatting tools as horizontal
rules and line breaks.

In this chapter, we discuss more substantial HTML elements and features. We will see
how to present information in tables. We discuss how to use forms to collect information
from people browsing a site. We explain how to use internal linking and image maps to
make pages more navigable. We also discuss how to use frames to make navigating Web
sites easier.

By the end of this chapter, you will be familiar with most commonly used HTML tags
and features. You will then be able to create more complex Web sites. In the next chapter,
Cascading Style Sheets (CSS), we will show you how to make your Web sites more visu-
ally appealing.

3.2 Basic HTML Tables
HTML 4.0 tables are used to mark up tabular data, such as data stored in a database. The
table in Fig. 3.1 organizes data into rows and columns.

Outline

3.1 Introduction
3.2 Basic HTML Tables
3.3 Intermediate HTML Tables and Formatting
3.4 Basic HTML Forms
3.5 More Complex HTML Forms
3.6 Internal Linking
3.7 Creating and Using Image Maps
3.8 <meta> Tags
3.9 frameset Element
3.10 Nested framesets
3.11 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises •
Exercises

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. 3.1: table.html -->
6 <!-- Basic table design -->
7

Fig. 3.1 HTML table (part 1 of 2).

48 Introduction to HyperText Markup Language 4: Part II Chapter 3

8 <head>
9 <title>XML How to Program - Tables</title>

10 </head>
11
12 <body>
13
14 <h1>Table Example Page</h1>
15
16 <!-- The <table> tag opens a new table and lets you put in -->
17 <!-- design options and instructions -->
18 <table border = "1" width = "40%">
19
20 <!-- Use the <caption> tag to summarize the table's contents -->
21 <!-- (this helps the visually impaired) -->
22 <caption>Here is a small sample table.</caption>
23
24 <!-- The <thead> is the first (non-scrolling) horizontal -->
25 <!-- section. Use it to format the table header area. -->
26 <!-- <th> inserts a header cell and displays bold text -->
27 <thead>
28 <tr><th>This is the head.</th></tr>
29 </thead>
30
31 <!-- All of your important content goes in the <tbody>. -->
32 <!-- Use this tag to format the entire section -->
33 <!-- <td> inserts a data cell, with regular text -->
34 <tbody>
35 <tr><td>This is the body.</td></tr>
36 </tbody>
37
38 </table>
39
40 </body>
41 </html>

Fig. 3.1 HTML table (part 2 of 2).

Chapter 3 Introduction to HyperText Markup Language 4: Part II 49

All tags and text that apply to the table go inside the <table> element, which begins
on line 18

<table border = "1" width = "40%">

The border attribute lets you set the width of the table’s border in pixels. If you the bor-
der to be invisible, you can specify border = "0". In the table shown in Fig. 3.1, the value
of the border attribute is set to 1. The width attribute sets the width of the table as either
a number of pixels or a percentage of the screen width.

Line 22

<caption>Here is a small sample table.</caption>

inserts a caption element into the table. The text inside the caption element is inserted
directly above the table in most visual browsers. The caption text is also used to help text-
based browsers interpret the table data.

Tables can be split into distinct horizontal and vertical sections. The first of these sec-
tions, the head area, appears in lines 27–29

<thead>
 <tr><th>This is the head.</th></tr>
</thead>

Put all header information (for example, the titles of the table and column headers) inside
the thead element. The tr, or table row element, is used to create rows of table cells. All
of the cells in a row belong in the <tr> element for that row.

The smallest unit of the table is the data cell. There are two types of data cells, one
type—the th element—is located in the table header. The other type—the td element—is
located in the table body. The code example in Fig. 3.1 inserts a header cell using the th
element. Header cells, which are placed in the <thead> element, are suitable for column
headings.

The second grouping section, the tbody element, appears in lines 34–36

<tbody>
 <tr><td>This is the body.</td></tr>
</tbody>

Like thead, the tbody element is used for formatting and grouping purposes. Although
there is only one row and one cell (line 35) in the above example, most tables will use
tbody to group the majority of their content in multiple rows and multiple cells.

Look-and-Feel Observation 3.1
Use tables in your HTML pages to mark up tabular data. 3.1

Common Programming Error 3.1
Forgetting to close any of the elements inside the table element is an error and can distort
the table format. Be sure to check that every element is opened and closed in its proper place
to make sure that the table is structured as intended. 3.1

50 Introduction to HyperText Markup Language 4: Part II Chapter 3

3.3 Intermediate HTML Tables and Formatting
In the previous section and code example, we explored the structure of a basic table. In Fig.
3.2, we extend our table example with more structural elements and attributes.

The table begins on line 16. The colgroup element, used for grouping columns, is
shown on lines 22–25

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. 3.2: table.html -->
6 <!-- Intermediate table design -->
7
8 <head>
9 <title>XML How to Program - Tables</title>

10 </head>
11
12 <body>
13
14 <h1>Table Example Page</h1>
15
16 <table border = "1">
17 <caption>Here is a more complex sample table.</caption>
18
19 <!-- <colgroup> and <col> are used to format entire -->
20 <!-- columns at once. SPAN determines how many columns -->
21 <!-- the col tag effects. -->
22 <colgroup>
23 <col align = "right">
24 <col span = "4">
25 </colgroup>
26
27 <thead>
28
29 <!-- rowspans and colspans combine the indicated number -->
30 <!-- of cells vertically or horizontally -->
31 <tr>
32 <th rowspan = "2">
33 <img src = "camel.gif" width = "205" height = "167"
34 alt = "Picture of a camel">
35 </th>
36 <th colspan = "4" valign = "top">
37 <h1>Camelid comparison</h1>

38 <p>Approximate as of 8/99</p>
39 </th>
40 </tr>
41
42 <tr valign = "bottom">
43 <th># of Humps</th>
44 <th>Indigenous region</th>
45 <th>Spits?</th>

Fig. 3.2 Complex HTML table (part 1 of 2).

Chapter 3 Introduction to HyperText Markup Language 4: Part II 51

46 <th>Produces Wool?</th>
47 </tr>
48
49 </thead>
50
51 <tbody>
52
53 <tr>
54 <th>Camels (bactrian)</th>
55 <td>2</td>
56 <td>Africa/Asia</td>
57 <td rowspan = "2">Llama</td>
58 <td rowspan = "2">Llama</td>
59 </tr>
60
61 <tr>
62 <th>Llamas</th>
63 <td>1</td>
64 <td>Andes Mountains</td>
65 </tr>
66
67 </tbody>
68
69 </table>
70
71 </body>
72 </html>

Fig. 3.2 Complex HTML table (part 2 of 2).

52 Introduction to HyperText Markup Language 4: Part II Chapter 3

<colgroup>
 <col align = "right">
 <col span = "4">
</colgroup>

The colgroup element can be used to group and format columns. Each col element in
the <colgroup>…</colgroup> tags can format any number of columns (specified
with the span attribute). Any formatting to be applied to a column or group of columns
can be specified in both the colgroup and col tags. In this case, we align the text inside
the leftmost column to the right. Another useful attribute to use here is width, which spec-
ifies the width of the column.

Most visual Web browsers automatically format data cells to fit the data they contain.
However, it is possible to make some data cells larger than others. This effect is accom-
plished with the rowspan and colspan attributes, which can be placed inside any data
cell element. The value of the attribute specifies the number of rows or columns to be occu-
pied by the cell, respectively. For example, rowspan = "2" tells the browser that this data
cell will span the area of two vertically adjacent cells. These cells will be joined vertically
(and will thus span over two rows). An example of colspan appears in line 36

<th colspan = "4" valign = "top">

where the header cell is widened to span four cells.
We also see here an example of vertical alignment formatting. The valign attribute

accepts the following values: "top", "middle", "bottom" and "baseline". All
cells in a row whose valign attribute is set to "baseline" will have the first text line
occur on a common baseline. The default vertical alignment in all data and header cells is
valign = "middle".

The remaining code in Fig. 3.2 demonstrates other uses of the table attributes and
elements outlined above.

Common Programming Error 3.2
When using colspan and rowspan in table data cells, consider that the modified cells will
cover the areas of other cells. Compensate for this in your code by reducing the number of
cells in that row or column. If you do not, the formatting of your table will be distorted, and
you may inadvertently create more columns and/or rows than you originally intended. 3.2

3.4 Basic HTML Forms
HTML provides several mechanisms to collect information from people viewing your site;
one is the form (Fig. 3.3).

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. 3.3: form.html -->
6 <!-- Form Design Example 1 -->
7

Fig. 3.3 Simple form with hidden fields and a text box (part 1 of 2).

Chapter 3 Introduction to HyperText Markup Language 4: Part II 53

The form begins on line 21

8 <head>
9 <title>XML How to Program - Forms</title>

10 </head>
11
12 <body>
13
14 <h1>Feedback Form</h1>
15
16 <p>Please fill out this form to help us improve our site.</p>
17
18 <!-- This tag starts the form, gives the method of sending -->
19 <!-- information and the location of form scripts. -->
20 <!-- Hidden inputs give the server non-visual information -->
21 <form method = "post" action = "/cgi-bin/formmail">
22
23 <p>
24 <input type = "hidden" name = "recipient"
25 value = "deitel@deitel.com">
26 <input type = "hidden" name = "subject"
27 value = "Feedback Form">
28 <input type = "hidden" name = "redirect"
29 value = "main.html">
30 </p>
31
32 <!-- <input type = "text"> inserts a text box -->
33 <p><label>Name:
34 <input name = "name" type = "text" size = "25">
35 </label></p>
36
37 <p>
38 <!-- Input types "submit" and "reset" insert buttons -->
39 <!-- for submitting or clearing the form's contents -->
40 <input type = "submit" value = "Submit Your Entries">
41 <input type = "reset" value = "Clear Your Entries">
42 </p>
43
44 </form>
45
46 </body>
47 </html>

Fig. 3.3 Simple form with hidden fields and a text box (part 2 of 2).

54 Introduction to HyperText Markup Language 4: Part II Chapter 3

<form method = "post" action = "/cgi-bin/formmail">

with the form element. The method attribute indicates the way the information gathered
in the form will be sent to the Web server for processing. Use method = "post" in a form
that causes changes to server data, for example when updating a database. The form data
will be sent to the server as an environment variable, which scripts are able to access. The
other possible value, method = "get", should be used when your form does not cause
any changes in server-side data, for example when making a database request. The form
data from method = "get" is appended to the end of the URL (for example, /cgi-
bin/formmail?name=bob&order=5). Also be aware that method = "get" is lim-
ited to standard characters, and cannot submit any special characters.

A Web server is a machine that runs a software package such as Microsoft’s PWS (Per-
sonal Web Server), Microsoft’s IIS (Internet Information Server), Apache, etc. Web servers
handle browser requests. When a browser requests a page or file somewhere on a server,
the server processes the request and returns an answer to the browser. In this example, the
data from the form goes to a CGI (Common Gateway Interface) script, which is a means of
interfacing an HTML page with a script (i.e., a program) written in Perl, C, Tcl or other
languages. The script then handles the data fed to it by the server and typically returns some
information for the user. The action attribute in the form tag is the URL for this script;
in this case, it is a simple script that emails form data to an address. Most Internet Service
Providers (ISPs) will have a script like this on their site, so you can ask your system admin-
istrator how to set up your HTML to use the script correctly.

For this particular script, there are several pieces of information (not seen by the user)
needed in the form. Lines 24–29

<input type = "hidden" name = "recipient"
 value = "deitel@deitel.com">
<input type = "hidden" name = "subject"
 value = "Feedback Form">
<input type = "hidden" name = "redirect"
 value = "main.html">

specify this information using hidden input elements. The input element is common in
forms and always requires the type attribute. Two other attributes are name, which pro-
vides a unique identifier for the input element, and value, which indicates the value that
the input element sends to the server upon submission.

As shown above, hidden inputs always have the attribute type = "hidden". The
three hidden inputs shown are typical for this kind of CGI script: An email address to which
the data will be sent, the subject line of the email and a URL to which the user is redirected
after submitting the form.

Good Programming Practice 3.1
Place hidden input elements in the beginning of a form, right after the opening <form>
tag. This makes these elements easier to find and identify. 3.1

The usage of an input element is defined by the value of its type attribute. We intro-
duce another of these options in lines 33–35

<p><label>Name:

Chapter 3 Introduction to HyperText Markup Language 4: Part II 55

 <input name = "name" type = "text" size = "25">
</label></p>

The input type = "text" inserts a one-line text box into the form (line 34). A good use
of the textual input element is for names or other one-line pieces of information. The la-
bel element on lines 33–35 provide a description for the input element on line 34.

We also use the size attribute of the input element to specify the width of the text
input, measured in characters. You can also set a maximum number of characters that the
text input will accept using the maxlength attribute.

Good Programming Practice 3.2
When using input elements in forms, be sure to leave enough space with the maxlength
attribute for users to input the pertinent information. 3.2

Common Programming Error 3.3
Forgetting to include a label element for each form element is a design error. Without
these labels, users will have no way of knowing what the function of individual form elements
is. 3.3

There are two types of input elements in lines 40 and 41

<input type = "submit" value = "Submit Your Entries">
<input type = "reset" value = "Clear Your Entries">

that should be inserted into every form. The type = "submit" input element allows
the user to submit the data entered in the form to the server for processing. Most visual Web
browsers place a button in the form that submits the data when clicked. The value at-
tribute changes the text displayed on the button (the default value is "submit"). The input
element type = "reset" allows a user to reset all form elements to the default values.
This can help the user correct mistakes or simply start over. As with the submit input, the
value attribute of the reset input element affects the text of the button on the screen,
but does not affect its functionality.

Common Programming Error 3.4
Be sure to close your form code with the </form> tag. Neglecting to do so is an error and
can affect the functionality of other forms on the same page. 3.4

3.5 More Complex HTML Forms
We introduce additional form input options in Fig. 3.4.

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. 3.4: form.html -->
6 <!-- Form Design Example 2 -->
7

Fig. 3.4 Form including textareas, password boxes and checkboxes (part 1 of 3).

56 Introduction to HyperText Markup Language 4: Part II Chapter 3

8 <head>
9 <title>XML How to Program - Forms</title>

10 </head>
11
12 <body>
13
14 <h1>Feedback Form</h1>
15
16 <p>Please fill out this form to help us improve our site.</p>
17
18 <form method = "post" action = "/cgi-bin/formmail">
19
20 <p>
21 <input type = "hidden" name = "recipient"
22 value = "deitel@deitel.com">
23 <input type = "hidden" name = "subject"
24 value = "Feedback Form">
25 <input type = "hidden" name = "redirect"
26 value = "main.html">
27 </p>
28
29 <p><label>Name:
30 <input name = "name" type = "text" size = "25">
31 </label></p>
32
33 <!-- <textarea> creates a textbox of the size given -->
34 <p><label>Comments:
35 <textarea name = "comments" rows = "4" cols = "36">
36 </textarea>
37 </label></p>
38
39 <!-- <input type = "password"> inserts a textbox whose -->
40 <!-- readout will be in *** instead of regular characters -->
41 <p><label>Email Address:
42 <input name = "email" type = "password" size = "25">
43 </label></p>
44
45 <p>
46 Things you liked:

47
48 <label>Site design
49 <input name = "thingsliked" type = "checkbox"
50 value = "Design"></label>
51
52 <label>Links
53 <input name = "thingsliked" type = "checkbox"
54 value = "Links"></label>
55
56 <label>Ease of use
57 <input name = "thingsliked" type = "checkbox"
58 value = "Ease"></label>
59
60 <label>Images

Fig. 3.4 Form including textareas, password boxes and checkboxes (part 2 of 3).

Chapter 3 Introduction to HyperText Markup Language 4: Part II 57

Lines 35 and 36

<textarea name = "comments" rows = "4" cols = "36"></textarea>

introduces the textarea element. The textarea element inserts a text box into the
form. You specify the size of the box with the rows attribute, which sets the number of
rows that will appear in the textarea. With the cols attribute, you specify how wide
the textarea should be. This textarea is four rows of characters tall and 36 charac-

61 <input name = "thingsliked" type = "checkbox"
62 value = "Images"></label>
63
64 <label>Source code
65 <input name = "thingsliked" type = "checkbox"
66 value = "Code"></label>
67 </p>
68
69 <p>
70 <input type = "submit" value = "Submit Your Entries">
71 <input type = "reset" value = "Clear Your Entries">
72 </p>
73
74 </form>
75
76 </body>
77 </html>

Fig. 3.4 Form including textareas, password boxes and checkboxes (part 3 of 3).

58 Introduction to HyperText Markup Language 4: Part II Chapter 3

ters wide. Any default text that you want to place inside the textarea should be con-
tained in the textarea element.

The input type = "password" (line 42)

<input name = "email" type = "password" size = "25">

inserts a text box with the indicated size. The password input field provides a way for users
to enter information that the user would not want others to be able to read on the screen. In
visual browsers, the data the user types into a password input field is shown as asterisks.
However, the actual value the user enters is sent to the server. Non-visual browsers may
render this type of input field differently.

Lines 48–66 introduce another type of form element, the checkbox. Every input ele-
ment with type = "checkbox" creates a new checkbox item in the form. Checkboxes
can be used individually or in groups. Each checkbox in a group should have the same
name (in this case, name = "thingsliked"). This notifies the script handling the form
that all of the checkboxes are related to one another.

Common Programming Error 3.5
When your form has several checkboxes with the same name, you must make sure that they
have different values, or else the script will have no way of distinguishing between them. 3.5

Additional form elements are introduced in Fig. 3.5. In this form example, we intro-
duce two new types of input options. The first of these is the radio button, introduced (lines
71–89). Inserted into forms with the input attribute type = "radio", radio buttons are
similar in function and usage to checkboxes. Radio buttons are different in that only one
element in the group may be selected at any time. All of the name attributes of a group of
radio inputs must be the same and all of the value attributes different. Insert the attribute
checked to indicate which radio button you would like selected initially. The checked
attribute can also be applied to checkboxes.

Common Programming Error 3.6
When you are using a group of radio inputs in a form, forgetting to set the name values to
the same name will let the user select all the radio buttons at the same time: an undesired
result. 3.6

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. 3.5: form.html -->
6 <!-- Form Design Example 3 -->
7
8 <head>
9 <title>XML How to Program - Forms</title>

10 </head>
11
12 <body>
13

Fig. 3.5 Form including radio buttons and pulldown lists (part 1 of 4).

Chapter 3 Introduction to HyperText Markup Language 4: Part II 59

14 <h1>Feedback Form</h1>
15
16 <p>Please fill out this form to help us improve our site.</p>
17
18 <form method = "post" action = "/cgi-bin/formmail">
19
20 <p>
21 <input type = "hidden" name = "recipient"
22 value = "deitel@deitel.com">
23 <input type = "hidden" name = "subject"
24 value = "Feedback Form">
25 <input type = "hidden" name = "redirect"
26 value = "main.html">
27 </p>
28
29 <p><label>Name:
30 <input name = "name" type = "text" size = "25">
31 </label></p>
32
33 <p><label>Comments:
34 <textarea name = "comments" rows = "4" cols = "36"></textarea>
35 </label></p>
36
37 <p><label>Email Address:
38 <input name = "email" type = "password" size = "25">
39 </label></p>
40
41 <p>
42 Things you liked:

43
44 <label>Site design
45 <input name = "things" type = "checkbox" value = "Design">
46 </label>
47
48 <label>Links
49 <input name = "things" type = "checkbox" value = "Links">
50 </label>
51
52 <label>Ease of use
53 <input name = "things" type = "checkbox" value = "Ease">
54 </label>
55
56 <label>Images
57 <input name = "things" type = "checkbox" value = "Images">
58 </label>
59
60 <label>Source code
61 <input name = "things" type = "checkbox" value = "Code">
62 </label>
63 </p>
64
65 <!-- <input type = "radio"> creates a radio button. The -->
66 <!-- difference between radio buttons and checkboxes is -->

Fig. 3.5 Form including radio buttons and pulldown lists (part 2 of 4).

60 Introduction to HyperText Markup Language 4: Part II Chapter 3

67 <!-- that only one radio button in a group can be selected -->
68 <p>
69 How did you get to our site?:

70
71 <label>Search engine
72 <input name = "how get to site" type = "radio"
73 value = "search engine" checked></label>
74
75 <label>Links from another site
76 <input name = "how get to site" type = "radio"
77 value = "link"></label>
78
79 <label>Deitel.com Web site
80 <input name = "how get to site" type = "radio"
81 value = "deitel.com"></label>
82
83 <label>Reference in a book
84 <input name = "how get to site" type = "radio"
85 value = "book"></label>
86
87 <label>Other
88 <input name = "how get to site" type = "radio"
89 value = "other"></label>
90
91 </p>
92
93 <!-- The <select> tag presents a drop down menu with -->
94 <!-- choices indicated by the <option> tags -->
95 <p>
96 <label>Rate our site:
97
98 <select name = "rating">
99 <option selected>Amazing:-)</option>
100 <option>10</option>
101 <option>9</option>
102 <option>8</option>
103 <option>7</option>
104 <option>6</option>
105 <option>5</option>
106 <option>4</option>
107 <option>3</option>
108 <option>2</option>
109 <option>1</option>
110 <option>The Pits:-(</option>
111 </select>
112
113 </label>
114 </p>
115
116 <p>
117 <input type = "submit" value = "Submit Your Entries">
118 <input type = "reset" value = "Clear Your Entries">
119 </p>

Fig. 3.5 Form including radio buttons and pulldown lists (part 3 of 4).

Chapter 3 Introduction to HyperText Markup Language 4: Part II 61

The last type of form input that we introduce here is the select element (lines 98–
111). This will place a selectable list of items inside your form.

<select name = "rating">
 <option selected>Amazing:-)</option>
 <option>10</option>
 <option>9</option>
 <option>8</option>
 <option>7</option>
 <option>6</option>
 <option>5</option>
 <option>4</option>
 <option>3</option>
 <option>2</option>
 <option>1</option>
 <option>The Pits:-(</option>
</select>

120
121 </form>
122
123 </body>
124 </html>

Fig. 3.5 Form including radio buttons and pulldown lists (part 4 of 4).

62 Introduction to HyperText Markup Language 4: Part II Chapter 3

This type of form input is created using a select element. Inside the opening <select>
tag, be sure to include the name attribute.

To add an item to the list, add to the select element an option element containing
the text to be displayed. The selected attribute, like the checked attribute for radio but-
tons and checkboxes, applies a default selection to your list.

The preceding code will generate a pull-down list of options in most visual browsers,
as shown in Fig. 3.5. You can change the number of list options visible at one time using
the size attribute of the select element. Use this attribute if you prefer an expanded
version of the list to the one-line expandable list.

3.6 Internal Linking
In Chapter 2, we discussed how to link one Web page to another using text and image an-
chors. Figure 3.6 introduces internal linking, which lets you create named anchors for hy-
perlinks to particular parts of an HTML document.

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. 3.6: links.html -->
6 <!-- Internal Linking -->
7
8 <head>
9 <title>XML How to Program - List</title>

10 </head>
11
12 <body>
13
14 <!-- makes an internal hyperlink -->
15 <p></p>
16 <h1>The Best Features of the Internet</h1>
17
18 <!-- An internal link's address is "xx.html#linkname" -->
19 <p>Go to Favorite CEOs</p>
20
21
22 You can meet people from countries around the world.
23
24 You have access to new media as it becomes public:
25
26 New games
27 New applications
28
29 For Business
30 For Pleasure
31
32
33

Fig. 3.6 Using internal hyperlinks to make your pages more navigable (part 1 of 3).

Chapter 3 Introduction to HyperText Markup Language 4: Part II 63

34 Around the Clock news
35 Search Engines
36 Shopping
37 Programming
38
39 HTML
40 Java
41 Dynamic HTML
42 Scripts
43 New languages
44
45
46
47
48
49 Links
50 Keeping In touch with old friends
51 It is the technology of the future!
52
53
54
55 <p></p>
56 <h1>My 3 Favorite CEOs</h1>
57
58 <p>
59 Go to Favorite Features
60 </p>
61
62
63 Bill Gates
64 Steve Jobs
65 Michael Dell
66
67
68 </body>
69 </html>

Fig. 3.6 Using internal hyperlinks to make your pages more navigable (part 2 of 3).

64 Introduction to HyperText Markup Language 4: Part II Chapter 3

Line 15

<p></p>

shows a named anchor for an internal hyperlink. A named anchor is created using an a el-
ement with a name attribute. Line 15 creates an anchor named features. Because the
name of the page is list.html, the URL of this anchor in the Web page is list.ht-
ml#features. Line 59

Go to Favorite Features

shows a hyperlink with the anchor features as its target. Selecting this hyperlink in a
visual browser would scroll the browser window to the features anchor (line 15). Ex-
amples of this occur in Fig 3.6, which shows two different screen captures from the same
page, each at a different anchor. You can also link to an anchor in another page using the
URL of that location (using the format href = "page.html#name").

Look-and-Feel Observation 3.2
Internal hyperlinks are most useful in large HTML files with lots of information. You can link
to various points on the page to save the user from having to scroll down and find a specific
location. 3.2

3.7 Creating and Using Image Maps
We have seen that images can be used as links to other places on your site or elsewhere on
the Internet. We now discuss how to create image maps (Fig. 3.7), which allow you to des-
ignate certain sections of the image as hotspots and then use these hotspots as links.

All elements of an image map are contained inside the <map>…</map> tags. The
required attribute for the map element is name (line 17)

<map name = "picture">

Fig. 3.6 Using internal hyperlinks to make your pages more navigable (part 3 of 3).

Chapter 3 Introduction to HyperText Markup Language 4: Part II 65

As we will see, this attribute is needed for referencing purposes. A hotspot on the
image is designated with the area element. Every area element has the following
attributes: href sets the target for the link on that spot, shape and coords set the char-
acteristics of the area and alt functions just as it does in the img element.

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. 3.7: picture.html -->
6 <!-- Creating and Using Imape Maps -->
7
8 <head>
9 <title>XML How to Program - Image Map</title>

10 </head>
11
12 <body>
13
14 <p>
15 <!-- <map> opens and names an image map formatting area -->
16 <!-- and to be referenced later -->
17 <map name = "picture">
18
19 <!-- The "shape = rect" indicates a rectangular area, with -->
20 <!-- coordinates of the upper-left and lower-right corners -->
21 <area href = "form.html" shape = "rect"
22 coords = "3, 122, 73, 143" alt = "Go to the feedback form">
23 <area href = "contact.html" shape = "rect"
24 coords = "109, 123, 199, 142" alt = "Go to the contact page">
25 <area href = "main.html" shape = "rect"
26 coords = "1, 2, 72, 17" alt = "Go to the homepage">
27 <area href = "links.html" shape = "rect"
28 coords = "155, 0, 199, 18" alt = "Go to the links page">
29
30 <!-- The "shape = polygon" indicates an area of cusotmizable -->
31 <!-- shape, with the coordinates of every vertex listed -->
32 <area href = "mailto:deitel@deitel.com" shape = "poly"
33 coords = "28, 22, 24, 68, 46, 114, 84, 111, 99, 56, 86, 13"
34 alt = "Email the Deitels">
35
36 <!-- The "shape = circle" indicates a circular area with -->
37 <!-- center and radius listed -->
38 <area href = "mailto:deitel@deitel.com" shape = "circle"
39 coords = "146, 66, 42" alt = "Email the Deitels">
40 </map>
41
42 <!-- says that the indicated -->
43 <!-- image map will be used with this image -->
44 <img src = "deitel.gif" width = "200" height = "144"
45 alt = "Harvey and Paul Deitel" usemap = "#picture">
46 </p>
47

Fig. 3.7 Picture with links anchored to an image map (part 1 of 2).

66 Introduction to HyperText Markup Language 4: Part II Chapter 3

The markup on lines 21 and 22

<area href = "form.html" shape = "rect"
 coords = "3, 122, 73, 143" alt = "Go to the feedback form">

causes a rectangular hotspot to be drawn around the coordinates given in the coords el-
ement. A coordinate pair consists of two numbers, which are the locations of the point on
the x and y axes. The x axis extends horizontally from the upper-left corner and the y axis
vertically. Every point on an image has a unique x–y coordinate. In the case of a rectangular
hotspot, the required coordinates are those of the upper-left and lower-right corners of the
rectangle. In this case, the upper-left corner of the rectangle is located at 3 on the x axis and
122 on the y axis, annotated as (3, 122). The lower-right corner of the rectangle is at (73,
143).

Another map area is in lines 32–34

<area href = "mailto:deitel@deitel.com" shape = "poly"
 coords = "28, 22, 24, 68, 46, 114, 84, 111, 99, 56, 86, 13

alt = "Email the Deitels">

In this case, we use the value poly for the shape attribute. This creates a hotspot in the
shape of a polygon using the coordinates in the coords attribute. These coordinates rep-
resent each vertex, or corner, of the polygon. The browser will automatically connect these
points with lines to form the area of the hotspot.

shape = "circle" is the last shape attribute that is commonly used in image maps.
It creates a circular hotspot, and requires both the coordinates of the center of the circle and
the radius of the circle, in pixels.

To use the image map with an img element, you must insert the usemap = "#name"
attribute into the img element, where name is the value of the name attribute in the map
element. Lines 44 and 45

48 </body>
49 </html>

Fig. 3.7 Picture with links anchored to an image map (part 2 of 2).

Chapter 3 Introduction to HyperText Markup Language 4: Part II 67

<img src = "deitel.gif" width = "200" height= "144" alt =
"Harvey and Paul Deitel" usemap = "#picture">

show how the image map name = "picture" is applied to the img element.

3.8 <meta> Tags
People use search engines to find interesting Web sites. Search engines usually catalog sites
by following links from page to page and saving identification and classification informa-
tion for each page visited. The main HTML element that search engines use to catalog pag-
es is the meta tag (Fig. 3.8).

A meta tag contains two attributes that should always be used. The first of these,
name, identifies the type of meta tag you are including. The content attribute provides
information the search engine will catalog about your site.

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. 3.8: main.html -->
6 <!-- <meta> and <!doctype> tags -->
7
8 <head>
9 <!-- <meta> tags give search engines information they need -->

10 <!-- to catalog your site -->
11 <meta name = "keywords" content = "Webpage, design, HTML,
12 tutorial, personal, help, index, form, contact, feedback,
13 list, links, frame, deitel">
14
15 <meta name = "description" content = "This Web site will help
16 you learn the basics of HTML and Webpage design through the
17 use of interactive examples and instruction.">
18
19 <title>XML How to Program - Welcome</title>
20 </head>
21
22 <body>
23
24 <h1>Welcome to Our Web Site!</h1>
25
26 <p>We have designed this site to teach about the wonders of
27 HTML. We have been using HTML since version
28 2.0, and we enjoy the features that have been
29 added recently. It seems only a short time ago that we read
30 our first HTML book. Soon you will know about many of
31 the great new features of HTML 4.01.</p>
32
33 <p>Have Fun With the Site!</p>
34
35 </body>
36 </html>

Fig. 3.8 Using meta to provide keywords and a description.

68 Introduction to HyperText Markup Language 4: Part II Chapter 3

Lines 11–13 demonstrate the meta tag.

<meta name = "keywords" content = "Webpage, design, HTML,
 tutorial, personal, help, index, form, contact, feedback,
 list, links, frame, deitel">

The content of a meta tag with name = "keywords" provides search engines with a
list of words that describe key aspects of your site. These words are used to match with
searches—if someone searches for some of the terms in your keywords meta tag, they
have a better chance of being informed about your site in the search engine output. Thus,
including meta tags and their content information will draw more viewers to your site.

The description attribute value (lines 15–17)

<meta name = "description" content = "This Web site will help
you learn the basics of HTML and Webpage design through the
use of interactive examples and instruction.">

is quite similar to the keywords value. Instead of giving a list of words describing your
page, the contents of the keywords meta element should be a readable 3-to-4 line de-
scription of your site, written in sentence form. This description is also used by search en-
gines to catalog and display your site.

Software Engineering Observation 3.1
meta elements are not visible to users of the site and must be placed inside the header sec-
tion of your HTML document. 3.1

3.9 frameset Element
All of the Web pages we have designed so far have the ability to link to other pages but can
display only one page at a time. Figure 3.9 introduces frames, which can help you display
more than one HTML file at a time. Frames, when used properly, can make your site more
readable and usable for your users.

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"
2 "http://www.w3.org/TR/html4/frameset.dtd">
3 <html>
4
5 <!-- Fig. 3.9: index.html -->
6 <!-- HTML Frames I -->
7
8 <head>
9 <meta name = "keywords" content = "Webpage, design, HTML,

10 tutorial, personal, help, index, form, contact, feedback,
11 list, links, frame, deitel">
12
13 <meta name = "description" content = "This Web site will help
14 you learn the basics of HTML and Webpage design through the
15 use of interactive examples and instruction.">
16
17 <title>XML How to Program - Main</title>

Fig. 3.9 Web site using two frames—navigation and content (part 1 of 2).

Chapter 3 Introduction to HyperText Markup Language 4: Part II 69

On lines 1 and 2

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"
 "http://www.w3.org/TR/html4/frameset.dtd">

18 </head>
19
20 <!-- The <frameset> tag gives the dimensions of your frame -->
21 <frameset cols = "110,*">
22
23 <!-- The individual frame elements specify which pages -->
24 <!-- appear in the given frames -->
25 <frame name = "nav" src = "nav.html">
26 <frame name = "main" src = "main.html">
27
28 <noframes>
29 <p>This page uses frames, but your browser does not support
30 them.</p>
31
32 <p>Please, follow this link to browse our
33 site without frames.</p>
34 </noframes>
35
36 </frameset>
37 </html>

Fig. 3.9 Web site using two frames—navigation and content (part 2 of 2).

70 Introduction to HyperText Markup Language 4: Part II Chapter 3

we encounter a new document type. The document type specified here indicates that this
HTML document uses frames. You should use this document type whenever you use
frames in your HTML document.

The framed page begins with the opening frameset tag, on line 21

<frameset cols = "110,*">

This tag tells the browser that the page contains frames. The cols attribute of the opening
frameset tag gives the layout of the frameset. The value of cols (or rows, if you will
be writing a frameset with a horizontal layout) gives the width of each frame, either in pix-
els or as a percentage of the screen. In this case, the attribute cols = "110,*" tells the
browser that there are two frames. The first one extends 110 pixels from the left edge of the
screen, and the second frame fills the remainder of the screen (as indicated by the asterisk).

Now that we have defined the page layout, we have to specify what files will make up
the frameset. We do this with the frame element in lines 25 and 26

<frame name = "nav" src = "nav.html">
<frame name = "main" src = "main.html">

In each frame element, the src attribute gives the URL of the page that will be displayed
in the frame. In the preceding example, the first frame (which covers 110 pixels on the left
side of the frameset) will display the page nav.html and has the attribute name =
"nav". The second frame will display the page main.html and has the attribute name
= "main".

The purpose of a name attribute in the frame element is to identify the frame,
enabling hyperlinks in a frameset to load in their intended target frame. For example,

would load links.html in the frame whose name attribute is "main".
A target in an anchor element can also be set to a number of preset values:

target="_blank" loads the page in a new blank browser window,
target="_self" loads the page into the same window as the anchor element,
target="_parent" loads it in the parent frameset (i.e., the frameset which con-
tains the current frame) and target="_top" loads the page into the full browser
window (the page loads over the frameset).

In lines 28–34 of the code example in Fig. 3.9, the noframes element displays
HTML in those browsers that do not support frames.
No Portability Tip 3.1

Not everyone uses a browser that supports frames. Use the noframes element inside the
frameset to direct users to a non-framed version of your site. 3.1

Look-and-Feel Observation 3.3
Frames are capable of enhancing your page, but are often misused. Never use frames to ac-
complish what you could with other, simpler HTML formatting. 3.3

3.10 Nested framesets
You can use the frameset element to create more complex layouts in a framed Web site
by nesting frameset areas as in Fig. 3.10.

Chapter 3 Introduction to HyperText Markup Language 4: Part II 71

 The first level of frameset tags is on lines 21 and 22

<frameset cols = "110,*">
 <frame name = "nav"src = "nav.html">

The frameset and frame elements here are constructed in the same manner as in Fig.
3.9. We have one frame that extends over the first 110 pixels starting at the left edge.

The second (nested) level of the frameset element covers only the remaining
frame area that was not included in the primary frameset. Thus, any frames included
in the second frameset will not include the left-most 110 pixels of the screen. Lines 26–
29 show the second level of frameset tags.

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"
2 "http://www.w3.org/TR/html4/frameset.dtd">
3 <html>
4
5 <!-- Fig. 3.10: index.html -->
6 <!-- HTML Frames II -->
7
8 <head>
9

10 <meta name = "keywords" content = "Webpage, design, HTML,
11 tutorial, personal, help, index, form, contact, feedback,
12 list, links, frame, deitel">
13
14 <meta name = "description" content = "This Web site will help
15 you learn the basics of HTML and Webpage design through the
16 use of interactive examples and instruction.">
17
18 <title>XML How to Program - Main</title>
19 </head>
20
21 <frameset cols = "110,*">
22 <frame name = "nav" src = "nav.html">
23
24 <!-- Nested framesets are used to change the formatting -->
25 <!-- and spacing of the frameset as a whole -->
26 <frameset rows = "175,*">
27 <frame name = "picture" src = "picture.html">
28 <frame name = "main" src = "main.html">
29 </frameset>
30
31 <noframes>
32 <p>This page uses frames, but your browser does not support
33 them.</p>
34
35 <p>Please, follow this link to browse our
36 site without frames.</p>
37 </noframes>
38
39 </frameset>
40 </html>

Fig. 3.10 Framed Web site with a nested frameset (part 1 of 2).

72 Introduction to HyperText Markup Language 4: Part II Chapter 3

<frameset rows = "175,*">
 <frame name = "picture" src = "picture.html">
 <frame name = "main" src = "main.html">
</frameset>

In this frameset area, the first frame extends 175 pixels from the top of the screen, as
indicated by the rows = "175,*". Be sure to include the correct number of frame ele-
ments inside the second frameset area. Also, be sure to include a noframes element
and to close both of the frameset areas at the end of the Web page.

Testing and Debugging Tip 3.1
When using nested frameset elements, indent every level of frame tag. This makes the
page clearer and easier to debug. 3.1

Look-and-Feel Observation 3.4
Nested framesets can help you create visually pleasing, easy-to-navigate Web sites. 3.4

3.11 Internet and World Wide Web Resources
There are many Web sites that cover the more advanced and difficult features of HTML.
Several of these sites are featured here.

Fig. 3.10 Framed Web site with a nested frameset (part 2 of 2).

Chapter 3 Introduction to HyperText Markup Language 4: Part II 73

www.geocities.com/SiliconValley/Orchard/5212
Adam’s Advanced HTML Page is geared to those looking to master the more advanced techniques of
HTML. It includes instructions for creating tables, frames and marquees and other advanced topics.

www.w3scripts.com/html
This site, an offshoot of W3Schools, is a repository for code examples exhibiting all of the features of
HTML, from beginner to advanced.

www.blooberry.com/indexdot/html
Index Dot HTML, The Advance HTML Reference... The name speaks for itself. This site has a great
directory and tree-based index of all HTML elements plus more.

www.markradcliffe.co.uk/html/advancedhtml.htm
The Advanced HTML Guide gives insights into improving your site using HTML in ways you might
not have thought possible.

SUMMARY
• HTML tables organize data into rows and columns. All tags and text that apply to a table go inside

the <table>…</table> tags. The border attribute lets you set the width of the table’s bor-
der in pixels. The width attribute sets the width of the table—you specify either a number of pix-
els or a percentage of the screen width.

• The text inside the <caption>…</caption> tags is inserted directly above the table in the
browser window. The caption text is also used to help text-based browsers interpret the table data.

• Tables can be split into distinct horizontal and vertical sections. Put all header information (such
as table titles and column headers) inside the <thead>…</thead> tags. The tr (table row)
element is used for formatting the cells of individual rows. All of the cells in a row belong within
the <tr>…</tr> tags of that row.

• The smallest area of the table that we are able to format is the data cell. There are two types of data
cells: ones located in the header (<th>…</th>) and ones located in the table body (<td>…</
td>). Header cells, usually placed in the <thead> area, are suitable for titles and column head-
ings.

• Like thead, the tbody is used for formatting and grouping purposes. Most tables use tbody to
house the majority of their content.

• td table data cells are left aligned by default. th cells are centered by default.

• Just as you can use the thead and tbody elements to format groups of table rows, you can use
the colgroup element to group and format columns. colgroup is used by setting in its open-
ing tag the number of columns it affects and the formatting it imposes on that group of columns.

• Each col element contained inside the <colgroup>…</colgroup> tags can in turn format
a specified number of columns.

• You can add a background color or image to any table row or cell with either the bgcolor or
background attributes, which are used in the same way as in the body element.

• It is possible to make some table data cells larger than others by using the rowspan and col-
span attributes. The attribute value extends the data cell to span the specified number of cells.

• The valign (vertical alignment) attribute of a table data cell accepts the following values:
"top", "middle", "bottom" and "baseline".

• All cells in a table row whose valign attribute is set to "baseline" will have the first text line
on a common baseline.

• The default vertical alignment in all data and header cells is valign="middle".

74 Introduction to HyperText Markup Language 4: Part II Chapter 3

• HTML provides several mechanisms—including the form—to collect information from people
viewing your site.

• Use method = "post" in a form that causes changes to server data, for example when updating
a database. The form data will be sent to the server as an environment variable, which scripts are
able to access. The other possible value, method = "get", should be used when your form does
not cause any changes in server-side data, for example when making a database request. The form
data from method = "get" is appended to the end of the URL. Because of this, the amount of
data submitted using this method is limited to 4K. Also be aware that method = "get" is lim-
ited to standard characters, and cannot submit any special characters.

• A Web server is a machine that runs a software package such as Apache or IIS; servers are de-
signed to handle browser requests. When a user uses a browser to request a page or file somewhere
on the server, the server processes this request and returns an answer to the browser.

• The action attribute in the form tag is the path to a script that processes the form data.

• The input element is common in forms, and always requires the type attribute. Two other at-
tributes are name, which provides a unique identification for the input, and value, which in-
dicates the value that the input element sends to the server upon submission.

• The input type="text" inserts a one-line text bar into the form. The value of this input ele-
ment and the information that the server sends to you from this input is the text that the user
types into the bar. The size attribute determines the width of the text input, measured in charac-
ters. You can also set a maximum number of characters that the text input will accept by inserting
the maxlength="length" attribute.

• You must make sure to include a label element for each form element to indicate the function
of the element.

• The type="submit" input element places a button in the form that submits data to the server
when clicked. The value attribute of the submit input changes the text displayed on the button.

• The type="reset" input element places a button on the form that, when clicked, will clear all
entries the user has entered into the form.

• The textarea element inserts a box into the form. You specify the size of the box (which is
scrollable) inside the opening <textarea> tag with the rows attribute and the cols attribute.

• Data entered in a type="password" input appears on the screen as asterisks. The password is
used for submitting sensitive information that the user would not want others to be able to read. It
is just the browser that displays asterisks—the real form data is still submitted to the server.

• Every input element with type="checkbox" creates a new checkbox in the form. Check-
boxes can be used individually or in groups. Each checkbox in a group should have the same name
(in this case, name="things").

• Inserted into forms by means of the input attribute type="radio", radio buttons are different
from checkboxes in that only one in the group may be selected at any time. All of the name at-
tributes of a group of radio inputs must be the same and all of the value attributes different.

• Insert the attribute checked to indicate which radio button you would like selected initially.

• The select element places a selectable list of items inside your form. To add an item to the list,
insert an option element in the <select>…</select> area and type what you want the list
item to display on the same line. You can change the number of list options visible at one time by
including the size="size" attribute inside the <select> tag. Use this attribute if you prefer an
expanded version of the list to the one-line expandable list.

• A location on a page is marked by including a name attribute in an a element. Clicking this hy-
perlink in a browser would scroll the browser window to that point on the page.

Chapter 3 Introduction to HyperText Markup Language 4: Part II 75

• An image map allows you to designate certain sections of the image as hotspots and then use these
hotspots as anchors for linking.

• All elements of an image map are contained inside the <map>…</map> tags. The required at-
tribute for the map element is name.

• A hotspot on the image is designated with the area element. Every <area> tag has the following
attributes: href sets the target for the link on that spot, shape and coords set the characteris-
tics of the area and alt function just as it does in tags.

• shape="rect" creates a rectangular hotspot around the coordinates of a coords element.

• A coordinate pair consists of two numbers, which are the locations of the point on the x and y axes.
The x axis extends horizontally from the upper-left corner and the y axis vertically. Every point on
an image has a unique x-y coordinate, annotated as (x, y).

• In the case of a rectangular hotspot, the required coordinates are those of the upper-left and lower-
right corners of the rectangle.

• The shape="poly" creates a hotspot of no preset shape—you specify the shape of the hotspot
in the coords attribute by listing the coordinates of every vertex, or corner of the hotspot.

• shape="circle" creates a circular hotspot; it requires both the coordinates of the center of the
circle and the length of the radius, in pixels.

• To use an image map with a graphic on your page, you must insert the usemap="#name" at-
tribute into the img element, where “name” is the value of the name attribute in the map element.

• The main element that interacts with search engines is the meta element.

• meta tags contain two attributes that should always be used. The first of these, name, is an iden-
tification of the type of meta tag you are including. The content attribute gives the information
the search engine will be cataloging.

• The content of a meta tag with name="keywords" provides the search engines with a list
of words that describe the key aspects of your site. By including meta tags and their content in-
formation, you can give precise information about your site to search engines. This will help you
draw a more focused audience to your site.

• The description value of the name attribute in the meta tag should be a 3-to-4 line descrip-
tion of your site, written in sentence form. This description is used by the search engine to catalog
and display your site.

• meta elements are not visible to users of the site and should be placed inside the header section
of your HTML document.

• The frameset tag tells the browser that the page contains frames.

• cols or rows gives the width of each frame in pixels or as a percentage of the screen.

• In each frame element, the src attribute gives the URL of the page that will be displayed in the
specified frame.

• The purpose of a name attribute in the frame element is to give an identity to that specific frame,
in order to enable hyperlinks in a frameset to load their intended frame. The target attribute
in an anchor element is set to the name of the frame in which the new page should load.

• A target in an anchor element can be set to a number of preset values: target="_blank" loads
the page in a new blank browser window, target="self" loads the page into the same window
as the anchor element, target="_parent" loads the page into the parent frameset and
target="_top" loads the page into the full browser window.

• Not everyone viewing a page has a browser that can handle frames. You therefore need to include
a noframes element inside of the frameset. You should include regular HTML tags and ele-

76 Introduction to HyperText Markup Language 4: Part II Chapter 3

ments within the <noframes>…</noframes> tags. Use this area to direct the user to a non-
framed version of the site.

• By nesting frameset elements, you can create more complex layouts.

TERMINOLOGY

SELF-REVIEW EXERCISES
3.1 State whether the following are true or false. If false, explain why.

a) The width of all data cells in a table must be the same.
b) The thead element is mandatory in a table.

<!doctype…> method="get"
<meta> tag method="post"
<option> name attribute in input element
ACTION attribute in form element name="recipient" in input element
area name="redirect" in input element
border property of table element name="subject" in input element
caption element nested lists
cell of a table noframes
CGI script noresize attribute in frame
checked ol (ordered list) element (…)
circular hotspot rectangular hotspot
col element row of a table
colgroup element rowspan attribute of td element
cols attribute of table element scrolling attribute in frame
colspan attribute of td element select element (<select>…</select>)
column of a table shape attribute inside area element
coords attribute inside area element size attribute in select
data cell src attribute of frame element
environment variable table
form table element (<table>…</table>)
frame element (<frame>…</frame>) target="_blank"
frameset element target="_blank"
header cell target="_parent"
hotspot target="_top"
image map tbody
indenting lists td (table data) element (<td>…</td>)
input element (<input>…</input>) text-based browser
input type="button" th (header cell) element (<th>…</th>)
input type="checkbox" thead element (<thead>…</thead>)
input type="password" tr (table row) element (<tr>…</tr>)
input type="radio" type=1 attribute of
input type="reset" type=a attribute of
input type="submit" type=A attribute of
input type="text" type=i attribute of
input type="textarea" type=I attribute of
internal linking ul (unordered list) element (…)
list usemap="name" attribute in img
map element value attribute of input element
maxlength="#" Web server

Chapter 3 Introduction to HyperText Markup Language 4: Part II 77

c) You are limited to a maximum of 100 internal links per page.
d) All browsers can render framesets.

3.2 Fill in the blanks in each of the following statements.
a) The attribute in an input element inserts a button that, when clicked, will

clear the contents of the form.
b) The spacing of a frameset is set by including the attribute or the

 attribute inside of the <frameset> tag.
c) The element inserts a new item in a list.
d) The element tells the browser what version of HTML is included on the

page. Two types of this element are and .
e) The common shapes used in image maps are , and .

3.3 Write HTML tags to accomplish the following:
a) Insert a framed Web page with the first frame extending 300 pixels across the page from

the left side.
b) Insert an ordered list that will have numbering by lowercase Roman numerals.
c) Insert a scrollable list (in a form) that will always display four entries of the list.
d) Insert an image map onto a page using deitel.gif as an image and map with

name="hello" as the image map, and have “hello” be the alt text.

ANSWERS TO SELF-REVIEW EXERCISES
3.1 a) False. You can specify the width of any column either in pixels or as a percentage of the
total width of the table. c) False. The thead element is used only for formatting purposes and is op-
tional (but it is recommended that you include it). d) False. You can have an unlimited number of hy-
perlink locations on any page. e) False. Text-based browsers are unable to render a frameset and
must therefore rely on the information that you include inside the <noframes>…</noframes>
tag.

3.2 a) type = "reset". b) cols, rows. c) li. d) <!doctype…>, transitional,
frameset. e) poly, circle, rect.

3.3 a) <frameset cols = "300,*">…</frameset> b) <ol type = "i">…
c)<select size = "4">…</select> d)<img src = "deitel.gif" alt = "hello"
usemap = "#hello">

EXERCISES
3.4 Categorize each of the following as an element or an attribute:

a) width
b) td
c) th
d) frame
e) name
f) select
g) type

3.5 What will the frameset produced by the following code look like? Assume that the pages
being imported are blank with white backgrounds and that the dimensions of the screen are 800 by
600. Sketch the layout, approximating the dimensions.

78 Introduction to HyperText Markup Language 4: Part II Chapter 3

<frameset rows = "20%,*">
<frame src = "hello.html" name = "hello">
 <frameset cols = "150,*">
 <frame src = "nav.html" name = "nav">
 <frame src = "deitel.html" name = "deitel">
 </frameset>
</frameset>

3.6 Assume that you have a document with many subsections. Write the HTML markup to create
a frame with a table of contents on the left side of the window, and have each entry in the table of
contents use internal linking to scroll down the document frame to the appropriate subsection.

4
 Cascading Style Sheets™

(CSS)

Objectives
• To take control of the appearance of a Web site by

creating stylesheets.
• To use a stylesheet to give all the pages of a Web site

the same look and feel.
• To use the class attribute to apply styles.
• To specify the precise font, size, color and other

properties of displayed text.
• To specify element backgrounds and colors.
• To understand the box model and be able to control

the margins, borders and padding.
• To use stylesheets to separate presentation from

content.
Fashions fade, style is eternal.
Yves Saint Laurent

A style does not go out of style as long as it adapts itself to
its period. When there is an incompatibility between the style
and a certain state of mind, it is never the style that triumphs.
Coco Chanel

How liberating to work in the margins, outside a central
perception.
Don DeLillo

Our words have wings, but fly not where we would.
George Eliot

80 Cascading Style Sheets™ (CSS) Chapter 4

4.1 Introduction
Cascading Style Sheets (CSS) allow you to specify the style of your page elements (spacing,
margins, etc.) separately from the structure of your document (section headers, body text,
links, etc.). This separation of structure from presentation allows greater manageability
and makes changing the style of your document easier.

4.2 Inline Styles
There are many ways to declare styles for a document. Figure 4.1 presents inline styles in
which an individual element’s style is declared using the style attribute.

Outline

4.1 Introduction
4.2 Inline Styles
4.3 Creating Style Sheets with the style Element
4.4 Conflicting Styles
4.5 Linking External Style Sheets
4.6 Positioning Elements
4.7 Backgrounds
4.8 Element Dimensions
4.9 Text Flow and the Box Model
4.10 User Style Sheets
4.11 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. 4.1: inline.html -->
6 <!-- Using inline styles -->
7
8 <head>
9 <title>XML How to Program - Inline Styles</title>

10 </head>
11
12 <body>
13
14 <p>This text does not have any style applied to it.</p>
15
16 <!-- The style attribute allows you to declare inline -->
17 <!-- styles. Separate multiple styles with a semicolon. -->

Fig. 4.1 Inline styles (part 1 of 2).

Chapter 4 Cascading Style Sheets™ (CSS) 81

Our first inline style declaration appears on line 18

<p style = "font-size: 20pt">This text has the font-size

The style attribute allows you to specify a style for an element. Each CSS property
(in this case, font-size) is followed by a colon then by the value of the property. On
line 18 we declare the p element to have 20-point text size.

Line 21

<p style = "font-size: 20pt; color: #0000ff">This text has the

specifies two properties separated by a semicolon. In this line we also set the color of the
text to blue using the hex code #0000ff. Color names may be used in place of hex codes
as we will see in the next example. Note that inline styles override any other styles applied
by the methods we cover later in this chapter.

4.3 Creating Style Sheets with the style Element
In Fig. 4.2 we declare styles in the head of the document. These styles may be applied to
the entire document.

The style element on line 12

<style type = "text/css">

18 <p style = "font-size: 20pt">This text has the font-size
19 style applied to it, making it 20pt.</p>
20
21 <p style = "font-size: 20pt; color: #0000ff">This text has the
22 font-size and color styles applied to it,
23 making it 20pt. and blue.</p>
24
25 </body>
26 </html>

Fig. 4.1 Inline styles (part 2 of 2).

82 Cascading Style Sheets™ (CSS) Chapter 4

begins the style sheet. Styles that are placed here apply to matching elements in the entire
document, not just a single element as with inline styles. The type attribute specifies the
MIME type of the stylesheet. MIME is a standard for specifying the format of content—
some other MIME types are text/html, image/gif, and text/javascript. Reg-
ular text style sheets always use the MIME type text/css.

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. 4.2: declared.html -->
6 <!-- Declaring a style sheet in the header section. -->
7
8 <head>
9 <title>XML How to Program - Style Sheets</title>

10
11 <!-- This begins the style sheet section. -->
12 <style type = "text/css">
13
14 em { background-color: #8000ff;
15 color: white }
16
17 h1 { font-family: arial, sans-serif }
18
19 p { font-size: 14pt }
20
21 .special { color: blue }
22
23 </style>
24 </head>
25
26 <body>
27
28 <!-- This class attribute applies the .blue style -->
29 <h1 class = "special">Deitel & Associates, Inc.</h1>
30
31 <p>Deitel & Associates, Inc. is an internationally recognized
32 corporate training and publishing organization specializing
33 in programming languages, Internet/World Wide Web technology
34 and object technology education. Deitel & Associates, Inc. is
35 a member of the World Wide Web Consortium. The company
36 provides courses on Java, C++, Visual Basic, C, Internet and
37 World Wide Web programming, and Object Technology.</p>
38
39 <h1>Clients</h1>
40 <p class = "special"> The company's clients include many
41 Fortune 1000 companies, government agencies, branches
42 of the military and business organizations. Through its
43 publishing partnership with Prentice Hall, Deitel & Associates,
44 Inc. publishes leading-edge programming textbooks, professional
45 books, interactive CD-ROM-based multimedia Cyber Classrooms,
46 satellite courses and World Wide Web courses.</p>

Fig. 4.2 Declaring styles in the head of a document (part 1 of 2).

Chapter 4 Cascading Style Sheets™ (CSS) 83

The body of the stylesheet on lines 13–22

em { background-color: #8000ff;
 color: white }

h1 { font-family: arial, sans-serif }

p { font-size: 14pt }

.special { color: blue }

declares the CSS rules for this style sheet. We declare rules for the em, h1 and p elements.
All em, h1 and p elements in this document will be modified with the specified properties.
Notice that each rule body begins and ends with a curly brace ({ and }). We also declare a
style class named special on line 21. Class declarations are preceded with a period and
are applied to elements only of that specific class (as we will see momentarily).

The CSS rules in a style sheet use the same syntax as inline styles—the property is fol-
lowed by a colon (:) and the value of that property. Multiple properties are separated with
a semicolon (;). The color property specifies the color of text in an element. Property
background-color specifies the background color of the element.

47
48 </body>
49 </html>

Fig. 4.2 Declaring styles in the head of a document (part 2 of 2).

84 Cascading Style Sheets™ (CSS) Chapter 4

The font-family property (line 17) specifies the name of the font that should be
displayed. In this case, we use the arial font. The second value, sans-serif, is a
generic font family. Generic font families allow you to specify a general type of font
instead of a specific font. This allows much greater flexibility since not every client will
have the same specific fonts installed. In this example, if the arial font is not found on
the system, the browser will instead display another sans-serif font (such as hel-
vetica or verdana). Other generic font families are serif (e.g., times new
roman or Georgia), cursive (e.g., script), fantasy (e.g., critter) and
monospace (e.g., courier or fixedsys).

The font-size property specifies the size to use to render the font—in this case we
use 14 points. Other possible measurements besides pt are covered later in the chapter.
You can also use the relative values xx-small, x-small, small, smaller, medium,
large, larger, x-large and xx-large. In general, relative values for font-size
are preferred because, as an author, you do not know the specific measurements of the dis-
play for each different client. For example, someone may wish to view your page on a hand-
held computer with a small screen. Specifying an 18pt font size in your stylesheet will
prevent such a user from seeing more than one or two characters at a time. However, if you
specify a relative font size, such as large or larger, the actual size will be determined
by the user’s browser and will therefore be displayed properly.

On line 29

<h1 class = "special">Deitel & Associates, Inc.</h1>

the class attribute applies a style class, in this case special (this was declared as
.special in the stylesheet). Note that the text appears on screen with both the properties
of an h1 element (i.e., arial or sans-serif font) and the properties of the.special
style class applied (i.e., color blue).

The p element and the .special class style are applied to the text on lines 40–46.
All styles applied to an element (the parent, or ancestor element) also apply to elements
contained in that element (descendant elements). The em element inherits the style from
the p element (namely, the 14-point font size on line 19). However, because the em element
has its own color property, this overrides the color property of the special class. We
discuss the rules for resolving these kinds of conflicts in Section 4.4.

4.4 Conflicting Styles
CSS stylesheets are cascading because styles may defined by a user, an author and a user
agent (e.g., a Web browser). Styles defined by authors take precedence over styles defined
by the user, and styles defined by the user take precedence over styles defined by the user
agent. Styles defined for parent and ancestor elements are also inherited by child and de-
scendant elements. In this section we discuss the rules for resolving conflicts between
styles defined for elements and those inherited from parent and ancestor elements.

We showed an example of inheritance in Fig. 4.2, in which a child em element inher-
ited the font-size property from its parent p element. However, in Fig. 4.2 the child em
element also had a color property that conflicted with (i.e., had a different value than) the
color property of its parent p element. Properties defined for child and descendant ele-
ments have a greater specificity than properties defined for parent and ancestor elements.

Chapter 4 Cascading Style Sheets™ (CSS) 85

According to the CSS specification, conflicts are resolved in favor properties with a higher
specificity. Figure 4.3 has more examples of inheritance and specificity.

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig 4.3: advanced.html -->
6 <!-- More advanced style sheets -->
7
8 <head>
9 <title>XML How to Program - More Styles</title>

10
11 <style type = "text/css">
12
13 a.nodec { text-decoration: none }
14
15 a:hover { text-decoration: underline;
16 color: red;
17 background-color: #ccffcc }
18
19 li em { color: red;
20 font-weight: bold }
21
22 ul { margin-left: 75px }
23
24 ul ul { text-decoration: underline;
25 margin-left: 15px }
26
27 </style>
28 </head>
29
30 <body>
31
32 <h1>Shopping list for Monday:</h1>
33
34
35 Milk
36 Bread
37
38 White bread
39 Rye bread
40 Whole wheat bread
41
42
43 Rice
44 Potatoes
45 Pizza with mushrooms
46
47
48 <p>Go to the Grocery
49 store</p>
50

Fig. 4.3 Inheritance in style sheets (part 1 of 2).

86 Cascading Style Sheets™ (CSS) Chapter 4

Line 13

a.nodec { text-decoration: none }

applies the text-decoration property to all a elements whose class attribute is set
to nodec. The default browser rendering of an a element is to underline, but here we set
it to none. The text-decoration property applies decorations to text within an ele-
ment. Other possible values are overline, line-through and blink. The .nodec
appended to a is an extension of class styles—this style will apply only to a elements that
specify nodec as their class.

Lines 15–17

a:hover { text-decoration: underline;
color: red;
background-color: #ccffcc }

specify a style for hover, which is a pseudo-class. Pseudo-classes give the author access
to content not specifically declared in the document. The hover pseudo-class is dynami-
cally activated when the user moves the mouse cursor over an a element.

Portability Tip 4.1
Always test stylesheets on all intended client Web browsers to ensure that the display is rea-
sonable. 4.1

51 </body>
52 </html>

Fig. 4.3 Inheritance in style sheets (part 2 of 2).

Chapter 4 Cascading Style Sheets™ (CSS) 87

Lines 19 and 20

li em { color: red;
font-weight: bold }

declare a style for all em elements that are descendants of li elements. In the screen output
of Fig. 4.3 notice that Monday is not made red and bold because it is not contained in an
li element. However, with mushrooms (line 45) is contained in an li element and
therefore is made red and bold.

The syntax for applying rules to multiple elements is similar. For example, to apply the
rule on lines 19 and 20 to both li and em elements, you would separate the elements with
commas, as follows:

li, em { color: red;
 font-weight: bold }

Lines 24 and 25

ul ul { text-decoration: underline;
 margin-left: 15px }

specify that all nested lists (ul elements that are descendants of ul elements) will be un-
derlined and have a left-hand margin of 15 pixels (margins and the box model will be cov-
ered in Section 4.9).

A pixel is a relative-length measurement—it varies in size based on screen resolution.
Other relative lengths are em (the size of the font), ex (the so-called “x-height” of the font,
which is usually set to the height of a lowercase x) and percentages (e.g., margin-left:
10%). To set an element to display text at 150% of its normal size, you could use the syntax

font-size: 1.5em

The other units of measurement available in CSS are absolute-length measurements, i.e.,
units that do not vary in size based on the system. These are in (inches), cm (centimeters),
mm (millimeters), pt (points—1 pt=1/72 in) and pc (picas—1 pc = 12 pt).

Good Programming Practice 4.1
Whenever possible, use relative length measurements. If you use absolute length measure-
ments, your document may not be readable on some client browsers (e.g, wireless phones). 4.1

Software Engineering Observation 4.1
There are three possible sources for styles sheets—browser defaults, preset user styles and
author styles (e.g., in the style section). Author styles have a greater precedence than most
preset user styles, so most conflicts are resolved in favor of the author styles. 4.1

In Fig. 4.3, the whole list is indented because of the 75-pixel left-hand margin for top-
level ul elements, but the nested list is indented only 15 pixels (not another 75 pixels)
because the child ul element’s margin-left property overrides the parent ul ele-
ment’s margin-left property.

4.5 Linking External Style Sheets
As we have seen, style sheets are an efficient way to give a document a uniform theme.
With external linking, you can give your whole Web site a uniform look—separate pages
on your site can all use the same style sheet, and you only need to modify only a single file

88 Cascading Style Sheets™ (CSS) Chapter 4

to make changes to styles across your whole Web site. Figure 4.4 shows an external style
sheet, and Fig. 4.5 shows the syntax for including an external style sheet in an HTML doc-
ument (line 11).

1 /* Fig. 4.4: styles.css */
2 /* An external stylesheet */
3
4 a { text-decoration: none }
5
6 a:hover { text-decoration: underline;
7 color: red;
8 background-color: #ccffcc }
9

10 li em { color: red;
11 font-weight: bold}
12
13 ul { margin-left: 2cm }
14
15 ul ul { text-decoration: underline;
16 margin-left: .5cm }

Fig. 4.4 An external style sheet (styles.css).

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5
6 <!-- Fig. 4.5: imported.html -->
7 <!-- Linking external style sheets -->
8
9 <head>

10 <title>XML How to Program - Importing Style Sheets</title>
11 <link rel = "stylesheet" type = "text/css" href = "styles.css">
12 </head>
13
14 <body>
15
16 <h1>Shopping list for Monday:</h1>
17
18 Milk
19 Bread
20
21 White bread
22 Rye bread
23 Whole wheat bread
24
25
26 Rice
27 Potatoes
28 Pizza with mushrooms
29

Fig. 4.5 Linking an external style sheet (part 1 of 2).

Chapter 4 Cascading Style Sheets™ (CSS) 89

Line 11 (Fig. 4.5) shows a link element, which specifies a relationship between the
current document and another document using the rel attribute. In this case, we declare
the linked document to be a stylesheet for this document. We use the type attribute
to specify the MIME type as text/css and provide the URL for the stylesheet with the
href attribute.

Software Engineering Observation 4.2
Stylesheets are reusable. Creating them once and reusing them reduces programming effort. 4.2

Software Engineering Observation 4.3
The link element can be placed only in the head element. Other relationships you can
specify between documents are next and previous, which would allow you to link a
whole series of documents. This could let browsers print a large collection of related docu-
ments at once (in Internet Explorer, select Print all linked documents in the Print...
submenu of the File menu). 4.3

4.6 Positioning Elements
In the past, controlling the positioning of elements in an HTML document was difficult;
positioning was basically up to the browser. CSS introduces the position property and
a capability called absolute positioning, which gives authors greater control over how doc-
uments are displayed (Fig. 4.6).

30
31 <p>
32 Go to the Grocery store
33 </p>
34
35 </body>
36 </html>

Fig. 4.5 Linking an external style sheet (part 2 of 2).

90 Cascading Style Sheets™ (CSS) Chapter 4

Lines 14 and 15

<p><img src = "i.gif" style = "position: absolute; top: 0px;
 left: 0px; z-index: 1" alt = "First positioned image"></p>

position the first img element (i.gif) on the page. Specifying an element’s position
as absolute removes it from the normal flow of elements on the page and instead, posi-
tions the element according to distance from the top, left, right or bottom margins
of its containing block (i.e., an element such as body or p). Here we position the element
to be 0 pixels away from both the top and left margins of the body element.

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig 4.6: positioning.html -->
6 <!-- Absolute positioning of elements -->
7
8 <head>
9 <title>XML How to Program - Absolute Positioning</title>

10 </head>
11
12 <body>
13
14 <p><img src = "i.gif" style = "position: absolute; top: 0px;
15 left: 0px; z-index: 1" alt = "First positioned image"></p>
16 <p style = "position: absolute; top: 50px; left: 50px;
17 z-index: 3; font-size: 20pt;">Positioned Text</p>
18 <p><img src = "circle.gif" style = "position: absolute; top: 25px;
19 left: 100px; z-index: 2" alt = "Second positioned image"></p>
20
21 </body>
22 </html>

Fig. 4.6 Positioning elements with CSS.

Chapter 4 Cascading Style Sheets™ (CSS) 91

The z-index attribute allows you to properly layer overlapping elements. Elements
that have higher z-index values are displayed in front of elements with lower z-index
values. In this example, i.gif, with a z-index of 1, is displayed at the back;
circle.gif, with a z-index of 2, is displayed in front of that; the h1 element (“Posi-
tioned Text”), with a z-index of 3, is displayed in front of both of the others. If you do
not specify z-index, the elements that occur later in the document are displayed in front
of those that occur earlier.

Absolute positioning is not the only way to specify page layout—relative positioning
is shown in Fig. 4.7.

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. 4.7: positioning2.html -->
6 <!-- Relative positioning of elements -->
7
8 <head>
9 <title>XML How to Program - Relative Positioning</title>

10
11 <style type = "text/css">
12
13 p { font-size: 1.3em;
14 font-family: verdana, arial, sans-serif }
15
16 span { color: red;
17 font-size: .6em;
18 height: 1em }
19
20 .super { position: relative;
21 top: -1ex }
22
23 .sub { position: relative;
24 bottom: -1ex }
25
26 .shiftleft { position: relative;
27 left: -1ex }
28
29 .shiftright { position: relative;
30 right: -1ex }
31
32 </style>
33 </head>
34
35 <body>
36
37 <p>The text at the end of this sentence
38 is in superscript.</p>
39
40 <p>The text at the end of this sentence
41 is in subscript.</p>

Fig. 4.7 Relative positioning of elements (part 1 of 2).

92 Cascading Style Sheets™ (CSS) Chapter 4

Setting the position property to relative, as in lines 20 and 21,

.super { position: relative;
 top: -1ex }

will first lay out the element on the page, then offset the element by the specified top,
bottom, left or right values. Unlike absolute positioning, relative positioning keeps
elements in the general flow of elements on the page.

Common Programming Error 4.1
Because relative positioning keeps elements in the flow of text in your documents, be careful
to avoid overlapping text unintentionally. 4.1

4.7 Backgrounds
CSS also gives you control over the backgrounds of elements. We have used the back-
ground-color property in previous examples. You can also add background images to
your documents using CSS. In Fig. 4.8, we add a corporate logo to the bottom-right corner
of the document—this logo stays fixed in the corner, even when the user scrolls up or down
the screen.

The code that adds the background image in the bottom-right corner of the window is
on lines 13–16

42
43 <p>The text at the end of this sentence
44 is shifted left.</p>
45
46 <p>The text at the end of this sentence
47 is shifted right.</p>
48
49 </body>
50 </html>

Fig. 4.7 Relative positioning of elements (part 2 of 2).

Chapter 4 Cascading Style Sheets™ (CSS) 93

body { background-image: url(logo.gif);
background-position: bottom right;
background-repeat: no-repeat;
background-attachment: fixed; }

The background-image property (line 13) specifies the URL of the image to use, in the
format url(fileLocation). You can also specify background-color to use in
case the image is not found.

The background-position property (line 14) positions the image on the page.
You can use the keywords top, bottom, center, left and right individually or in
combination for vertical and horizontal positioning. You can also position using lengths,
specifying the horizontal length followed by the vertical length. For example, to position
the image centered vertically (positioned at 50% of the distance across the screen) and 30
pixels from the top, you would use

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. 4.8: background.html -->
6 <!-- Adding background images and indentation -->
7
8 <head>
9 <title>XML How to Program - Background Images</title>

10
11 <style type = "text/css">
12
13 body { background-image: url(logo.gif);
14 background-position: bottom right;
15 background-repeat: no-repeat;
16 background-attachment: fixed; }
17
18 p { font-size: 18pt;
19 color: #aa5588;
20 text-indent: 1em;
21 font-family: arial, sans-serif; }
22
23 .dark { font-weight: bold; }
24
25 </style>
26 </head>
27
28 <body>
29
30 <p>
31 This example uses the background-image,
32 background-position and background-attachment
33 styles to place the Deitel
34 & Associates, Inc. logo in the bottom,
35 right corner of the page. Notice how the logo
36 stays in the proper position when you resize the

Fig. 4.8 Adding a background image with CSS (part 1 of 2).

94 Cascading Style Sheets™ (CSS) Chapter 4

background-position: 50% 30px;

The background-repeat property (line 15) controls the tiling of the background
image. Tiling places multiple copies of the image next to each other to fill the background.
Here we set the tiling to no-repeat so that only one copy of the background image is
placed on screen. The background-repeat property can be set to repeat (the
default) to tile the image vertically and horizontally, repeat-x to tile the image only hor-
izontally or repeat-y to tile the image only vertically.

The final property setting, background-attachment: fixed (line 16), fixes the
image in the position specified by background-position. Scrolling the browser
window will not move the image from its set position. The default value, scroll, moves
the image as the user scrolls the browser window down.

Line 20,

text-indent: 1em;

indents the first line of text in the element by the specified amount. You might use this to
make your Web page read more like a novel, in which the first line of every paragraph is
indented.

Line 23,

.dark { font-weight: bold }

37 browser window.
38 </p>
39
40 </body>
41 </html>

Fig. 4.8 Adding a background image with CSS (part 2 of 2).

Chapter 4 Cascading Style Sheets™ (CSS) 95

uses the font-weight property to specify the “boldness” of text. Values besides bold
and normal (the default) are bolder (bolder than bold text) and lighter (lighter
than normal text). You can also specify the value using multiples of 100 from 100 to 900
(i.e., 100, 200, ..., 900). Text specified as normal is equivalent to 400 and bold text
is equivalent to 700. Most systems do not have fonts that can be scaled this finely so using
the 100...900 values might not display the desired effect.

Another CSS property you can use to format text is the font-style property, which
allows you to set text to none, italic or oblique (oblique will default to italic
if the system does not have a separate font file for oblique text).

We introduce the span element on lines 33 and 34

Deitel & Associates, Inc.

Element span is a grouping element—it does not apply any inherent formatting to its con-
tents. Its main use is to apply styles or ID attributes to a block of text. It is displayed inline
(a so-called inline-level element) with other text, with no line breaks. A similar element is
the div element, which also applies no inherent styles, but is displayed on its own line,
with margins above and below (a so-called block-level element).

4.8 Element Dimensions
The dimensions of each element on the page can be specified using CSS (Fig. 4.9).

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. 4.9: width.html -->
6 <!-- Setting box dimensions and aligning text -->
7
8 <head>
9 <title>XML How to Program - Box Dimensions</title>

10
11 <style type = "text/css">
12
13 div { background-color: #ffccff;
14 margin-bottom: .5em }
15 </style>
16
17 </head>
18
19 <body>
20
21 <div style = "width: 20%">Here is some
22 text that goes in a box which is
23 set to stretch across twenty precent
24 of the width of the screen.</div>
25
26 <div style = "width: 80%; text-align: center">
27 Here is some CENTERED text that goes in a box

Fig. 4.9 Setting box dimensions and aligning text (part 1 of 2).

96 Cascading Style Sheets™ (CSS) Chapter 4

The inline style on line 21

<div style = "width: 20%">Here is some

shows how to set the width of an element on screen; here we indicate that this div ele-
ment should occupy 20% of the screen width (which 20% of the screen depends on how the
element is aligned, most elements are left-aligned by default). The height of an element can
be set similarly, using the height property. Relative lengths and absolute lengths may
also be used to specify height and width. For example, you could set the width of an
element using

width: 10em

to have the element’s width be equal to 10 times the size of the font.
Line 26

<div style = "width: 80%; text-align: center">

28 which is set to stretch across eighty precent of
29 the width of the screen.</div>
30
31 <div style = "width: 20%; height: 30%; overflow: scroll">
32 This box is only twenty percent of
33 the width and thirty percent of the height.
34 What do we do if it overflows? Set the
35 overflow property to scroll!</div>
36
37 </body>
38 </html>

Fig. 4.9 Setting box dimensions and aligning text (part 2 of 2).

Chapter 4 Cascading Style Sheets™ (CSS) 97

shows that text within an element can be aligned to the center—other values for the
text-align property are left, right and justify.

One problem with setting both element dimensions is that content inside might some-
times exceed the set boundaries, in which case the element is simply made large enough for
all the content to fit. However, on line 31

<div style = "width: 20%; height: 30%; overflow: scroll">

we can set the overflow property to scroll; this adds scrollbars if the text overflows
the boundaries.

4.9 Text Flow and the Box Model
A browser normally places text and elements on screen in the order they appear in the
HTML document. However, as we saw with absolute positioning, it is possible to remove
elements from the normal flow of text. Floating allows you to move an element to one side
of the screen—other content in the document will then flow around the floated element. In
addition, each block-level element has a box drawn around it, known as the box model—
the properties of this box are easily adjusted (Fig. 4.10).

In addition to text, whole elements can be floated to the left or right of a document.
This means that any nearby text will wrap around the floated element. For example, in lines
29 and 30

<div style = "float: right; margin: .5em; text-align: right">
Corporate Training and Publishing</div>

we float a div element to the right side of the screen. As you can see, the text from lines
32–38 flows cleanly to the left and underneath this div element.

The second property we set in line 29, margin, specifies the distance between the
edge of the element and any other element on the page. When elements are rendered on the
screen using the box model, the content of each element is surrounded by padding, a border
and a margin (Fig. 4.10).

Margins for individual sides of an element can be specified by using margin-top,
margin-right, margin-left and margin-bottom.

A related property, padding, is set for the div element on lines 40 and 41

<div style = "float: right; padding: .5em; text-align:
right"> Leading-edge Programming Textbooks</div>

The padding is the distance between the content inside an element and the edge of the ele-
ment. Like the margin, the padding can be set for each side of the box with padding-
top, padding-right, padding-left and padding-bottom.

A portion of lines 49 and 50

Here is some unflowing text.
Here is some unflowing text.

shows that you can interrupt the flow of text around a floated element by setting the
clear property to the same direction the element is floated—right or left. Setting
the clear property to all interrupts the flow on both sides of the document.

98 Cascading Style Sheets™ (CSS) Chapter 4

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. 4.10: floating.html -->
6 <!-- Floating elements and element boxes -->
7
8 <head>
9 <title>XML How to Program - Flowing Text Around

10 Floating Elements</title>
11
12 <style type = "text/css">
13
14 div { background-color: #ffccff;
15 margin-bottom: .5em;
16 font-size: 1.5em;
17 width: 50% }
18
19 p { text-align: justify; }
20
21 </style>
22
23 </head>
24
25 <body>
26
27 <div style = "text-align: center">Deitel & Associates, Inc.</div>
28
29 <div style = "float: right; margin: .5em; text-align: right">
30 Corporate Training and Publishing</div>
31
32 <p>Deitel & Associates, Inc. is an internationally recognized
33 corporate training and publishing organization specializing
34 in programming languages, Internet/World Wide Web technology
35 and object technology education. Deitel & Associates,
36 Inc. is a member of the World Wide Web Consortium. The company
37 provides courses on Java, C++, Visual Basic, C, Internet and
38 World Wide Web programming, and Object Technology.</p>
39
40 <div style = "float: right; padding: .5em; text-align: right">
41 Leading-edge Programming Textbooks</div>
42
43 <p>The company's clients include many Fortune 1000 companies,
44 government agencies, branches of the military and business
45 organizations. Through its publishing partnership with Prentice
46 Hall, Deitel & Associates, Inc. publishes leading-edge
47 programming textbooks, professional books, interactive
48 CD-ROM-based multimedia Cyber Classrooms, satellite courses
49 and World Wide Web courses.Here
50 is some unflowing text. Here is some unflowing text.</p>
51
52 </body>
53 </html>

Fig. 4.10 Floating elements, aligning text and setting box dimensions (part 1 of 2).

Chapter 4 Cascading Style Sheets™ (CSS) 99

Fig. 4.11 Box model for block-level elements.

Another property of every block-level element on screen is the border. The border lies
between the padding space and the margin space, and has numerous properties to adjust its
appearance (Fig. 4.12).

In this example, we set three properties: the border-width, border-style and
border-color. The border-width property may be set to any of the CSS lengths,
or the predefined values of thin, medium or thick. The border-color sets the
color used for the border (this has different meanings for different borders).

As with padding and margins, each of the border properties may be set for individual
sides of the box (e.g., border-top-style or border-left-color). Also, as
shown on line 40

<div class = "thick groove">This text has a border</div>

Fig. 4.10 Floating elements, aligning text and setting box dimensions (part 2 of 2).

Content

Margin

Border

Padding

100 Cascading Style Sheets™ (CSS) Chapter 4

it is possible to assign more than one class to an HTML element using the class attribute.
The border-styles are none, hidden, dotted, dashed, solid, double,

groove, ridge, inset and outset. Figure 4.13 illustrates these border styles.
As you can see, the groove and ridge border-styles have opposite effects, as

do inset and outset.

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. 4.12: borders.html -->
6 <!-- Setting borders of an element -->
7
8 <head>
9 <title>XML How to Program - Borders</title>

10
11 <style type = "text/css">
12
13 body { background-color: #ccffcc }
14
15 div { text-align: center;
16 margin-bottom: 1em;
17 padding: .5em }
18
19 .thick { border-width: thick }
20
21 .medium { border-width: medium }
22
23 .thin { border-width: thin }
24
25 .groove { border-style: groove }
26
27 .inset { border-style: inset }
28
29 .outset { border-style: outset }
30
31 .red { border-color: red }
32
33 .blue { border-color: blue }
34
35 </style>
36 </head>
37
38 <body>
39
40 <div class = "thick groove">This text has a border</div>
41 <div class = "medium groove">This text has a border</div>
42 <div class = "thin groove">This text has a border</div>
43
44 <p class = "thin red inset">A thin red line...</p>
45 <p class = "medium blue outset">And a thicker blue line</p>
46

Fig. 4.12 Applying borders to elements (part 1 of 2).

Chapter 4 Cascading Style Sheets™ (CSS) 101

47 </body>
48 </html>

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. 4.13: borders2.html -->
6 <!-- Various border-styles -->
7
8 <head>
9 <title>XML How to Program - Borders</title>

10
11 <style type = "text/css">
12
13 body { background-color: #ccffcc }
14
15 div { text-align: center;
16 margin-bottom: .3em;
17 width: 50%;
18 position: relative;
19 left: 25%;
20 padding: .3em }
21 </style>
22
23 </head>
24

Fig. 4.13 Various border-styles (part 1 of 2).

Fig. 4.12 Applying borders to elements (part 2 of 2).

102 Cascading Style Sheets™ (CSS) Chapter 4

4.10 User Style Sheets
An important issue to keep in mind when adding style sheets to your site is what kind of
users will be viewing your site. Users have the option to define their own user style sheets
to format pages based on their own preferences—for example, visually impaired people
might want to increase the text size on all pages they view. As a Web-page author, if you
are not careful, you might inadvertently override user preferences with the styles defined
on your Web pages. This section explores possible conflicts between user styles and author
styles. Figure 4.14 is a simple example of a Web page using the em measurement for the
font-size property to increase text size on the page.

25 <body>
26
27 <div style = "border-style: solid">Solid border</div>
28 <div style = "border-style: double">Double border</div>
29 <div style = "border-style: groove">Groove border</div>
30 <div style = "border-style: ridge">Ridge border</div>
31 <div style = "border-style: inset">Inset border</div>
32 <div style = "border-style: outset">Outset border</div>
33
34 </body>
35 </html>

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4

Fig. 4.14 Modifying text size with the em measurement (part 1 of 2).

Fig. 4.13 Various border-styles (part 2 of 2).

Chapter 4 Cascading Style Sheets™ (CSS) 103

In line 13

.note { font-size: 1.5em }

we multiply by 1.5 the font size of all elements with class = "note" (see lines 20 and
21). Assuming the default browser font size of 12 points, this same text size increase could
also have been accomplished by specifying

.note { font-size: 18pt }

However, what if the user had defined their own font-size in a user style sheet? Be-
cause the CSS specification gives precedence to author styles over user styles, this conflict
would be resolved with the author style overriding the user style. This can be avoided by
using relative measurements (such as em or ex) instead of absolute measurements (such as
pt).

Adding a user style sheet (Fig. 4.15) in Internet Explorer 5 is done by selecting
Internet Options... located in the Tools menu. In the dialog box that appears, click
Accessibility..., check the Format documents using my style sheet check box and
type in the location of your user style sheet. Note that you also have the option of overriding
colors, font styles, and font sizes specified on Web pages with your own user styles.

User style sheets are created in the same format as the linked external style sheet shown
in Fig. 4.4. A sample user style sheet is shown in Fig. 4.16.

The Web page shown in Fig. 4.14 is re-rendered in Fig. 4.17, this time with the user
style sheet from 4.16 applied.

Because the code for this page uses a relative font-size measurement of 1.5em,
it multiplies the original size of the affected text (20pt) by 1.5 times, giving it an effec-
tive size of 30pt.

5 <!-- Fig. 4.14: user.html -->
6 <!-- User styles -->
7
8 <head>
9 <title>XML How to Program - User Styles</title>

10
11 <style type = "text/css">
12
13 .note { font-size: 1.5em }
14
15 </style>
16 </head>
17
18 <body>
19
20 <p>Thanks for visiting my Web site. I hope you enjoy it.</p>
21 <p class = "note">Please Note: This site will be moving soon.
22 Please check periodically for updates.</p>
23
24 </body>
25 </html>

Fig. 4.14 Modifying text size with the em measurement (part 2 of 2).

104 Cascading Style Sheets™ (CSS) Chapter 4

Fig. 4.15 Adding a user style sheet in Internet Explorer 5.

Fig. 4.17 A Web page with user styles enabled.

1 /* Fig. 4.16: userstyles.css */
2 /* A user stylesheet */
3
4 body { font-size: 20pt;
5 background-color: #ccffcc }
6
7 a { color: red }

Fig. 4.16 A sample user style sheet.

Chapter 4 Cascading Style Sheets™ (CSS) 105

4.11 Internet and World Wide Web Resources
www.w3.org/Style/CSS
The W3C Cascading Style Sheets Homepage contains the CSS links and resources deemed most im-
portant by the people in charge of the Web.

www.w3.org/TR/REC-CSS2
The W3C Cascading Style Sheets, Level 2 specification contains a list of all the CSS properties. The
specification is also filled with helpful examples detailing the use of many of the properties.

www.w3.org/TR/REC-CSS1
This site contains the W3C Cascading Style Sheets, Level 1 specification.

style.webreview.com
This site has several charts of CSS properties, including a listing of which browsers support which
attributes, and to what extent.

www.blooberry.com/indexdot/css/index.html
Index Dot CSS is a good reference source for CSS properties, syntax and more.

www.w3schools.com/css
The W3Schools CSS site has a good CSS tutorial and script repository.

SUMMARY
• The inline style allows you to declare a style for an individual element using the style attribute

in that element’s opening HTML tag.

• Each CSS property is followed by a colon, then the value of that attribute.

• The color property sets the color of text. Color names and hex codes may be used as the value.

• Styles that are placed in the <style> section apply to the whole document.

• style element attribute type specifies the MIME type (the specific encoding format) of the
style sheet. Regular text style sheets always use text/css.

• Each rule body begins and ends with a curly brace ({ and }).

• Style class declarations are preceded with a period and are applied to elements of that specific class.

• The CSS rules in a style sheet use the same format as inline styles—the property is followed by a
colon (:) and the value of that property. Multiple properties are separated with a semicolon (;).

• The background-color attribute specifies the background color of the element.

• The font-family attribute specifies the name of the font that should be displayed. Generic font
families allow you to specify a type of font instead of a specific font for greater display flexibility.
The font-size property specifies the size to use to render the font.

• The class attribute applies a style class to an element.

• All styles applied to a parent element also apply to child elements inside that element.

• Pseudo-classes give the author access to content not specifically declared in the document. The
hover pseudo-class is activated when the user moves the mouse cursor over an a element.

• The text-decoration property applies decorations to text within an element, such as
underline, overline, line-through and blink

• To apply rules to multiple elements separate the elements with commas in the stylesheet.

• A pixel is a relative-length measurement—it varies in size based on screen resolution. Other relative
lengths are em (font size), ex (“x-height” of the font—the height of a lowercase x) and percentages.

106 Cascading Style Sheets™ (CSS) Chapter 4

• The other units of measurement available in CSS are absolute-length measurements, i.e., units that
do not vary in size based on the system. These are in (inches), cm (centimeters), mm (millimeters),
pt (points—1 pt=1/72 in) and pc (picas—1 pc = 12 pt).

• External linking can help give a Web site a uniform look—separate pages on a site can all use the
same styles. Modifying a single file can then make changes to styles across an entire Web site.

• link’s rel attribute specifies a relationship between a document and another document.

• The CSS position property allows absolute positioning, which gives us greater control over
how documents are displayed. Specifying an element’s position as absolute removes it
from the normal flow of elements on the page, and positions it according to distance from the top,
left, right or bottom margins of its parent element.

• The z-index property allows you to properly layer overlapping elements. Elements that have
higher z-index values are displayed in front of elements with lower z-index values.

• Unlike absolute positioning, relative positioning keeps elements in the general flow of elements
on the page, and offsets them by the specified top, left, right or bottom values.

• Property background-image specifies the URL of the image to use, in the format url(file-
Location). Specify the background-color to use if the image is not found. The property
background-position positions the image on the page using the values top, bottom,
center, left and right individually or in combination for vertical and horizontal positioning.
You can also position using lengths.

• The background-repeat property controls the tiling of the background image. Setting the til-
ing to no-repeat displays one copy of the background image on screen. The background-
repeat property can be set to repeat (the default) to tile the image vertically and horizontally,
to repeat-x to tile the image only horizontally or repeat-y to tile the image only vertically.

• The property setting background-attachment:fixed fixes the image in the position spec-
ified by background-position. Scrolling the browser window will not move the image from
its set position. The default value, scroll, moves the image as the user scrolls the window.

• The text-indent property indents the first line of text in the element by the specified amount.

• The font-weight property specifies the “boldness” of text. Values besides bold and normal
(the default) are bolder (bolder than bold text) and lighter (lighter than normal text). You
can also specify the value using multiples of 100 from 100 to 900 (i.e., 100, 200, ..., 900). Text
specified as normal is equivalent to 400 and bold text is equivalent to 700.

• The font-style property allows you to set text to none, italic or oblique (oblique
will default to italic if the system does not have a separate font file for oblique text, which is
normally the case).

• span is a generic grouping element—it does not apply any inherent formatting to its contents. Its
main use is to apply styles or ID attributes to a block of text. It is displayed inline (a so-called in-
line element) with other text, with no line breaks. A similar element is the div element, which
also applies no inherent styles, but is displayed on a separate line, with margins above and below
(a so-called block-level element).

• The dimensions of page elements can be set using CSS using the height and width properties.

• Text within an element can be centered using text-align—other values for the text-
align property are left and right.

• One problem with setting both element dimensions is that content inside might sometimes exceed
the set boundaries, in which case the element is simply made large enough for all the content to
fit. However, you can set the overflow property to scroll; this adds scroll bars if the text
overflows the boundaries we have set for it.

Chapter 4 Cascading Style Sheets™ (CSS) 107

• Browsers normally place text and elements on screen in the order they appear in the HTML file.
Elements can be removed from the normal flow of text. Floating allows you to move an element
to one side of the screen—other content in the document will then flow around the floated element.

• Each block-level element has a box drawn around it, known as the box model—the properties of
this box are easily adjusted.

• The margin property determines the distance between the element’s edge and any outside text.

• CSS uses a box model to render elements on screen—the content of each element is surrounded
by padding, a border and margins

• Margins for individual sides of an element can be specified by using margin-top, margin-
right, margin-left and margin-bottom.

• The padding, as opposed to the margin, is the distance between the content inside an element and
the edge of the element. Padding can be set for each side of the box with padding-top, pad-
ding-right, padding-left and padding-bottom.

• You can interrupt the flow of text around a floated element by setting the clear property to
the same direction the element is floated—right or left. Setting the clear property to
all interrupts the flow on both sides of the document.

• A property of every block-level element on screen is its border. The border lies between the pad-
ding space and the margin space and has numerous properties to adjust its appearance.

• The border-width property may be set to any of the CSS lengths, or the predefined values of
thin, medium or thick.

• The border-styles available are none, hidden, dotted, dashed, solid, double,
groove, ridge, inset and outset. Keep in mind that the dotted and dashed styles are
available only for Macintosh systems.

• The border-color property sets the color used for the border.

• It is possible to assign more than one class to an HTML element using the class attribute.

TERMINOLOGY
<link> element class attribute of an element
absolute positioning clear: all
absolute-length measurement clear: left
arial font clear: right
background cm (centimeters)
background-attachment colon (:) in a CSS rule
background-color color
background-image CSS rule
background-position cursive generic font family
background-repeat dashed border style
blink dotted border style
block-level element double border style
border em (size of font)
border-color embedded style sheet
border-style ex (x-height of font)
border-width float property
box model font-style property
Cascading Style Sheet (CSS) specification generic font family
child element groove border style

108 Cascading Style Sheets™ (CSS) Chapter 4

SELF-REVIEW EXERCISES
4.1 Assume that the size of the base font on a system is 12 points.

a) How big is 36 point font in ems?
b) How big is 8 point font in ems?
c) How big is 24 point font in picas?
d) How big is 12 point font in inches?
e) How big is 1 inch font in picas?

4.2 Fill in the blanks in the following questions:
a) Using the element allows you to use external style sheets in your pages.
b) To apply a CSS rule to more than one element at a time, separate the element names with

a .
c) Pixels are a length measurement unit.
d) The hover - is activated when the user moves the mouse cursor

over the specified element.

hidden border style rel attribute of <link> element
hover pseudo-class relative positioning
href attribute of <link> element relative-length measurement
importing a style sheet repeat-x
in (inches) repeat-y
inline styles ridge border style
inline-level element right
inset border style rule in CSS
large font size sans-serif generic font family
larger font size scroll
left separation of structure from content
line-through text decoration serif generic font family
linking to an external style sheet small font size
margin smaller font size
margin-bottom property solid border style
margin-left property style
margin-right property style attribute
margin-top property style class
medium border width style in header of document
medium font size style sheet (CSS rules separate text file)
mm (millimeters) text flow
monospace generic font family text/css MIME type
none border style text-align
outset border style text-decoration
overflow property text-indent
overline text decoration thick border width
padding thin border width
parent element user style sheet
pc (picas) x-large font size
position: absolute x-small font size
position: relative xx-large font size
pseudo-class xx-small font size
pt (points) z-index

Chapter 4 Cascading Style Sheets™ (CSS) 109

e) Setting the overflow property to provides a mechanism for containing in-
ner content without compromising specified box dimensions.

f) While is a generic inline element that applies no inherent formatting, the
 is a generic block-level element that applies no inherent formatting.

g) Setting the background-repeat property to will tile the specified
background-image only vertically.

h) If you float an element, you can stop the flowing text by using the property.
i) The property allows you to indent the first line of text in an element.
j) Three components of the box model are the , and .

ANSWERS TO SELF-REVIEW EXERCISES
4.1 a) 3 ems. b) .75 ems. c) 2 picas. d) 1/6 inch. e) 6 picas.

4.2 a) link. b) comma. c) relative. d) pseudo-element. e) scroll. f) span, div. g) y-re-
peat. h) clear. i) text-indent. j) content, padding, border or margin.

EXERCISES
4.3 Write a CSS rule that makes all text 1.5 times larger than the base font of the system and col-
ors it red.

4.4 Write a CSS rule that removes the underline from all links inside list items (li) and shifts
them left by 3 ems.

4.5 Write a CSS rule that places a background image halfway down the page, tiling horizontally.
The image should remain in place when the user scrolls up or down.

4.6 Write a CSS rule that gives all h1 and h2 elements a padding of .5 ems, a grooved border
style and a margin of .5 ems.

4.7 Write a CSS rule that changes the color of all elements with attribute class="green-
Move" to green and shifts them down 25 pixels and right 15 pixels.

5
Creating Markup with

XML

Objectives
• To create custom markup using XML.
• To understand the concept of an XML parser.
• To use elements and attributes to mark up data.
• To understand the difference between markup text

and character data.
• To be able to use Unicode in an XML document.
• To be able to use CDATA sections.
• To understand the concept of a well-formed XML

document.
• To understand the concept of an XML namespace.
The chief merit of language is clearness, and we know that
nothing detracts so much from this as do unfamiliar terms.
Galen

Every country has its own language, yet the subjects of which
the untutored soul speaks are the same everywhere.
Tertullian

The historian, essentially, wants more documents than he
can really use; the dramatist only wants more liberties than
he can really take.
Henry James

Entities should not be multiplied unnecessarily.
William of Occam

Chapter 5 Creating Markup with XML 111

5.1 Introduction
In Chapters 2 and 3, we discussed HTML, a markup language that is used to structure doc-
uments for delivery on the Web. HTML is an application of the Standard Generalized
Markup Language (SGML). SGML is a meta language (i.e., a language for creating other
languages) that is used to create markup languages, such as HTML. XML is a subset of
SGML and, although XML’s basic syntax is similar to HTML’s, the purpose of XML is
different.

XML is a technology for creating markup languages to describe data of virtually any
type in a structured manner. Unlike HTML, which limits the document author to a fixed set
of tags, XML allows document authors to describe data more precisely by creating new
tags. XML can be used to create markup languages for describing data in almost any field.
In Chapters 20 through 22, we discuss several of these XML-based markup languages that
mark up data such as mathematical formulas, chemical molecular structures, graphics,
financial data, etc. In this chapter, we introduce the basics of XML.

5.2 Introduction to XML Markup
Consider a simple XML document (intro.xml) that marks up a message as XML (Fig.
5.1). Note that line numbers are not part of an XML document, but are included for refer-
ence purposes. We discuss rendering XML documents in the next section.

XML documents are commonly stored in text files that end in the extension .xml,
although this is not a requirement of XML. Any text editor can be used to create an XML
document. Many software packages also allow data to be saved as XML documents.

Outline
5.1 Introduction
5.2 Introduction to XML Markup
5.3 Parsers and Well-formed XML Documents
5.4 Parsing an XML Document with msxml
5.5 Characters

5.5.1 Character Set
5.5.2 Characters vs. Markup
5.5.3 White Space, Entity References and Built-in Entities
5.5.4 Using Unicode in an XML Document

5.6 Markup
5.7 CDATA Sections
5.8 XML Namespaces
5.9 Case Study: A Day Planner Application
5.10 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises •
Exercises

112 Creating Markup with XML Chapter 5

The document in Fig. 5.1 begins with an XML declaration in line 1. This declaration
specifies the version of XML to which the document conforms—in this case, version
1.0, which is currently the only version. Lines 3 and 4 contain comments. XML uses the
same comment syntax as HTML.

Good Programming Practice 5.1
Although the XML declaration is optional, it should be used to identify the XML version to
which the document conforms. Otherwise, in the future, a document without an XML decla-
ration might be assumed to conform to the latest version of XML. Errors or other serious
problems may result. 5.1

All XML documents must contain exactly one root element (e.g., myMessage in lines
6–8). The root element contains all other elements in the XML document. Lines preceding
the root element are the prolog of the XML document. Element message (line 7) is called
a child element of element myMessage because it is nested inside element myMessage.
This child element contains the text Welcome to XML!.

Common Programming Error 5.1
Attempting to create more than one root element in an XML document is an error. 5.1

Common Programming Error 5.2
Improperly nesting XML elements is an error. For example, <x><y>hello</x><y> is an
error; here the nested y element must end before the x element. 5.2

5.3 Parsers and Well-formed XML Documents
A software program called an XML parser (or an XML processor) is required to process an
XML document. The XML parser reads the XML document, checks its syntax, reports any
errors and allows programmatic access to the document’s contents. An XML document is
considered well formed if it is syntactically correct. XML syntax requires a single root el-
ement, a start tag and end tag for each element, properly-nested tags and attribute values in
quotes. Furthermore, XML is case sensitive, so the proper capitalization must be used in
element and attribute names. A document that properly conforms to this syntax is a well-
formed XML document.

Parsers can support the Document Object Model (DOM) and/or the Simple API for
XML (SAX) for accessing a document’s content programmatically using languages such as
Java™, Python, C, etc. A DOM-based parser builds a tree structure containing the XML
document’s data in memory. A SAX-based parser processes the document and generates

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 5.1 : intro.xml -->
4 <!-- Simple introduction to XML markup -->
5
6 <myMessage>
7 <message>Welcome to XML!</message>
8 </myMessage>

Fig. 5.1 Simple XML document containing a message.

Chapter 5 Creating Markup with XML 113

events (i.e., notifications to the application) when tags, text, comments, etc. are encoun-
tered. These events return data from the XML document. In Chapters 8 and 9, we provide
detailed discussions of DOM and SAX, respectively.

Common Programming Error 5.3
XML tags are case sensitive. Using the wrong mixture of case is an error. For example, using
the start tag <message> and end tag </Message> is an error. 5.3

Most XML parsers can be downloaded at no charge. Some applications, such as
Microsoft Internet Explorer 5 (IE5), have built-in XML parsers. In this chapter, we will use
IE5’s XML parser—msxml. In later chapters, we will use msxml, the Apache XML
Project’s parser Xerces, Sun Microsystem’s Java API for XML Parsing (JAXP) and IBM’s
parser XML for Java (XML4J).

5.4 Parsing an XML Document with msxml
An XML document contains data, not formatting information. When an XML document
(e.g., intro.xml in Fig. 5.1) is loaded into IE5, the document is parsed by msxml. If the
document is well formed, the parser makes the document’s data available to the application
(i.e., IE5), using the XML document. The application can format and render the data and
perform other processing. IE5 renders the data as shown in the top screen image in Fig. 5.2
by applying a stylesheet that formats and colors the markup almost identically to the orig-
inal document (in this case, Fig. 5.1). The stylesheet could have done virtually any type of
formatting for presentation, but this formatting is the default chosen by Microsoft.

Fig. 5.2 XML document shown in IE5.

114 Creating Markup with XML Chapter 5

Notice the minus sign (-) and the plus sign (+) in the left margins of Fig. 5.2. These are
not part of the XML document. IE5 places either a plus sign or minus sign next to all ele-
ments that contain one or more child elements. Because these elements store other ele-
ments, they are called container elements. A minus sign indicates that all child elements are
visible. When a minus sign is clicked, it becomes a plus sign—which collapses the con-
tainer element and hides all its children. When a plus sign is clicked, it becomes a minus
sign—which expands the container element and displays all its children.

This behavior is similar to viewing a disk’s directory structure using a program such
as Windows Explorer or File Manager. In fact, a directory structure is often modelled as a
series of tree structures, with one folder (e.g., C:\, /, etc.) representing the root of the
directory tree. Each folder (that contains at least one folder inside it) is a node in the tree.
XML documents (when they are parsed by a DOM-based parser) have their data placed into
a tree structure. We discuss how to retrieve data items from a parsed XML document using
the Document Object Model (DOM) in Chapter 8.

We provide screen captures later in the chapter that show some formatting possibilities
for XML documents using CSS (Chapter 4). In Chapter 12, you will learn about a related-
XML technology called the Extensible Stylesheet Language (XSL) that provides more pow-
erful features than CSS for creating stylesheets. Starting with Chapter 12, we will use XSL
capabilities to format XML documents for display.

If an XML document is not well formed, the parser generates an error. For example, if
we omit the end tag (line 8) in Fig. 5.1, mxsml produces the error message shown in Fig.
5.3.

5.5 Characters
In this section, we discuss the character set used in XML documents and some of its prop-
erties. A character set consists of the characters that may be represented in a document. For
example, the ASCII (American Standard Code for Information Interchange) character set
contains the letters of the English alphabet, the numbers 0–9 and punctuation characters,
such as !, - and ?.

Fig. 5.3 Error message for a missing end tag.

Chapter 5 Creating Markup with XML 115

5.5.1 Character Set
XML documents may contain the following characters: carriage returns, line feeds and
Unicode® characters. Unicode is a standard of the Unicode consortium. Its goal is to enable
computers to process the characters for most of the world’s major languages. In Section
5.5.4, we demonstrate how to use Unicode in an XML document. Visit www.uni-
code.org for more information about the Unicode standard.

5.5.2 Characters vs. Markup
Once a parser determines that all characters in a document are legal, it must differentiate
between markup text and character data. Markup text is enclosed in angle brackets (< and
>). Character data is the text between a start tag and an end tag. Child elements are consid-
ered markup—not character data. Lines 1, 3–4 and 6–8 in Fig. 5.1 contain markup text. In
line 7, tags <message> and </message> are the markup text and the text Welcome
to XML! is the character data.

5.5.3 White Space, Entity References and Built-in Entities
Spaces, tabs, line feeds and carriage returns are characters commonly called whitespace
characters. An XML parser is required to pass all characters in a document, including
whitespace characters, to the application using the XML document. An application may
consider whitespace characters either significant (i.e., preserved by the application) or in-
significant (i.e., not preserved by the application). Depending on the application, insignif-
icant whitespace characters may be collapsed into a single whitespace character or even
removed entirely. This process is called normalization. For example,

<markup>This is character data</markup>

contains three significant whitespace characters in the character data. When this character
data is normalized, the five spaces between character and data are collapsed into a
single significant space. We discuss whitespace characters in greater detail in Chapter 6.

Good Programming Practice 5.2
When creating an XML document, add whitespace to emphasize the document’s hierarchical
structure. This makes documents more readable to humans. 5.2

Almost any character can be used in an XML document, but the characters ampersand
(&), left-angle bracket (<), right-angle bracket (>), apostrophe (’) and double quote (")
are reserved in XML and may not be used in character data. To use these characters in the
content of an element or attribute we must use entity references, which begin with an
ampersand (&) and end with a semicolon (;). Using entity references prevents XML pro-
cessors from misinterpreting character data as XML markup. For example, angle brackets
are reserved for delimiting markup tags. If angle brackets were found in a the content of an
element or attribute, the XML parser would interpret these as XML markup and would
incorrectly parse the document. In the next section, we demonstrate how to use entity ref-
erences to represent Unicode characters in an XML document. The apostrophe and double
quote characters are reserved for delimiting attribute values. We discuss attributes and their
values in Section 5.6.

116 Creating Markup with XML Chapter 5

Common Programming Error 5.4
Attempting to use either the left-angle bracket (<), right-angle bracket (>), apostrophe (’)
or double quote (") in character data is an error. 5.4

Common Programming Error 5.5
Attempting to use the ampersand (&)—other than in an entity reference—in character data
is an error. 5.5

XML provides built-in entities for ampersand (&), left-angle bracket (<),
right-angle bracket (>), apostrophe (') and quotation mark ("). For
example, to mark up the characters “<>&” in element message we would write

<message><>&</message>

Using these entities instead of the <, > and & characters prevents the XML processor from
mistaking these characters for XML markup.

5.5.4 Using Unicode in an XML Document
This section demonstrates XML’s Unicode support. Figure 5.4 lists an XML document that
displays Arabic words. Each Arabic character is represented by an entity reference for a
Unicode character. Each line that contains a series of entity references represents one Ara-
bic word. When translated to English, element from (line 9–17) contains Deitel and
Associates and element subject (lines 19–29) contains Welcome to the world
of Unicode.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 5.4 : lang.xml -->
4 <!-- Demonstrating Unicode -->
5
6 <!DOCTYPE welcome SYSTEM "lang.dtd">
7
8 <welcome>
9 <from>

10
11 <!-- Deitel and Associates -->
12 دايتَل
13 أند
14
15 <!-- entity -->
16 &assoc;
17 </from>
18
19 <subject>
20
21 <!-- Welcome to the world of Unicode -->
22 أهلاً
23 بكم

Fig. 5.4 XML document that contains Arabic words (part 1 of 2).

Chapter 5 Creating Markup with XML 117

The document begins with the XML declaration in line 1. Line 6

<!DOCTYPE welcome SYSTEM "lang.dtd">

specifies the file—called a document type definition (DTD) file—that defines the structure
(i.e., what elements the XML document must contain, what order the elements must have,
etc.) of this document and the entities used by the document. This tag contains four items:
the DOCTYPE, the name of the root element (welcome), the SYSTEM flag—which indi-
cates that the DTD is located in an external file rather than the document itself and the name
of the file (lang.dtd) containing the DTD. We discuss DTDs in detail in Chapter 6.

Root element welcome contains two elements: from (lines 9–17) and subject
(lines 19–29). Both elements contain entity references for Unicode characters. Element
from also contains two comments. Lines 12, 13 and 22–25 contain a sequence of entity
references for Unicode characters in the Arabic alphabet.

New entity references may also be created by the author of a document. In the DTD
for this document, we defined two new entities, assoc and text. The entity reference
&assoc; (line 16) is replaced with the value

24 فيِ
25 عالم
26
27 <!-- entity -->
28 &text;
29 </subject>
30 </welcome>

Fig. 5.4 XML document that contains Arabic words (part 2 of 2).

118 Creating Markup with XML Chapter 5

أسّوشِيَ
تْس

and the entity reference &text; (line 28) is replaced with the value

اليونيكو
د

These values are defined inside the file lang.dtd (referenced on line 6). We will
examine this DTD in detail in Chapter 6.

5.6 Markup
This section elaborates on elements and their attributes as well as how they are used to con-
struct proper XML markup. XML element markup consists of a start tag, content and an
end tag. Unlike HTML, all XML start tags must have a corresponding end tag. For exam-
ple,

is correct HTML, but in XML, the ending tag must also be supplied, as in

This type of element is called an empty element, because it does not contain content (i.e.,
character data). Alternatively, an empty tag may be written more concisely as

which uses the forward slash (/) for termination.
Elements define structure. An element may or may not contain content (i.e., child ele-

ments or character data). Attributes describe elements. An element may have zero, one or
more attributes associated with it. Attributes are placed within the element’s start tag.
Attribute values are enclosed in quotes—either single or double. For example, element car

<car doors = "4"/>

contains attribute doors, whose value is "4".
XML element and attribute names can be of any length and may contain letters, digits,

underscores, hyphens and periods; they must begin with a letter or an underscore.
s. Common Programming Error 5.6

Not placing the value of an attribute in single or double quotes is a syntax error. 5.6

Good Programming Practice 5.3
XML elements and attribute names should be meaningful. For example, use <address> in-
stead of <adr>. 5.3

s. Common Programming Error 5.7
Using spaces in an XML element name or attribute name is an error. 5.7

Chapter 5 Creating Markup with XML 119

Figure 5.5 contains XML markup for a book. The elements in Fig. 5.5 structure the
document such that a book element contains a title element, author element,
chapter element and media element. The output shown is the result of applying an XSL
stylesheet to the XML document (usage.xml). [Note: We will discuss this stylesheet in
Chapter 12, where we formally present XSL.]

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 5.5 : usage.xml -->
4 <!-- Usage of elements and attributes -->
5
6 <?xml:stylesheet type = "text/xsl" href = "usage.xsl"?>
7
8 <book isbn = "999-99999-9-X">
9 <title>Deitel&s XML Primer</title>

10
11 <author>
12 <firstName>Paul</firstName>
13 <lastName>Deitel</lastName>
14 </author>
15
16 <chapters>
17 <preface num = "1" pages = "2">Welcome</preface>
18 <chapter num = "1" pages = "4">Easy XML</chapter>
19 <chapter num = "2" pages = "2">XML Elements?</chapter>
20 <appendix num = "1" pages = "9">Entities</appendix>
21 </chapters>
22
23 <media type = "CD"/>
24 </book>

Fig. 5.5 XML document that marks up information about a fictitious book.

120 Creating Markup with XML Chapter 5

Line 6

<?xml:stylesheet type = "text/xsl" href = "usage.xsl"?>

is an example of a processing instruction (PI). The information contained in a PI is passed
to the application using the XML document and provides additional application-specific in-
formation about the document. Processing instructions are delimited by <? and ?> and
consist of a PI target and a PI value. This PI references an XSL stylesheet, as indicated by
the PI target xml:stylesheet. The PI value is type = "text/xsl" href = "us-
age.xsl". We will discuss this PI in detail later in the book when we discuss XSL.

Document authors may create their own processing instructions. Almost any name
may be used for a PI target, except the reserved word xml (also XML, Xml, etc.). Processing
instructions provide a convenient syntax to allow document authors to embed application-
specific data within an XML document. Processing instructions have no effect on a docu-
ment if the application processing the document does not use them.

Line 8 contains the root element book. Attribute isbn is associated with this element
and has the value "99-99999-9-X". Element book contains four child elements:
title, author, chapters and media. Empty element media contains attribute
type with the value "CD".

Element author contains two child elements: firstName and lastName. Ele-
ment chapters contains four child elements: preface, two chapter elements and
appendix. Each of these elements has two attributes: num and pages. These attributes
describe the chapter, preface or appendix number and their page count.

Figure 5.6 lists a more substantial XML document that contains a marked-up letter.
The output shown is the result of applying an XSL stylesheet to this XML document
(letter.xml). [Note: We will discuss this stylesheet in Chapter 13 where we formally
present XSL formatting objects.
]

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 5.6: letter.xml -->
4 <!-- Business letter formatted with XML -->
5
6 <letter>
7
8 <contact type = "from">
9 <name>Jane Doe</name>

10 <address1>Box 12345</address1>
11 <address2>15 Any Ave.</address2>
12 <city>Othertown</city>
13 <state>Otherstate</state>
14 <zip>67890</zip>
15 <phone>555-4321</phone>
16 <flag gender = "F"/>
17 </contact>
18
19 <contact type = "to">
20 <name>Jane Doe</name>

Fig. 5.6 XML document that marks up a letter (part 1 of 2).

Chapter 5 Creating Markup with XML 121

21 <address1>123 Main St.</address1>
22 <address2></address2>
23 <city>Anytown</city>
24 <state>Anystate</state>
25 <zip>12345</zip>
26 <phone>555-1234</phone>
27 <flag gender = "M"/>
28 </contact>
29
30 <salutation>Dear Sir:</salutation>
31
32 <paragraph>It is our privilege to inform you about our new
33 database managed with <bold>XML</bold>. This new system
34 allows you to reduce the load on your inventory list
35 server by having the client machine perform the work of
36 sorting and filtering the data.</paragraph>
37
38 <paragraph>The data in an XML element is normalized, so
39 plain-text diagrams such as
40 /---\
41 | |
42 \---/
43 will become gibberish.</paragraph>
44
45 <closing>Sincerely</closing>
46 <signature>Ms. Doe</signature>
47
48 </letter>

Fig. 5.6 XML document that marks up a letter (part 2 of 2).

122 Creating Markup with XML Chapter 5

Line 6 contains the root element letter. This element contains six child elements
which represent the different parts of the letter. This letter contains the recipient, the sender,
a salutation, the letter body, a closing remark and a signature. These parts are represented
by the letter element’s six child elements: two contact elements (the sender and the
recipient), salutation, paragraph (the letter body), closing and signature.

Each contact element contains one attribute named type and eight child elements.
Empty element flag (lines 16 and 27) contains one attribute gender. The paragraph
element’s (line 38) content is normalized by IE5, removing the whitespace formatting.

5.7 CDATA Sections
In the previous section, we discussed markup. In this section, we discuss sections of an
XML document—called CDATA sections—that may contain text, reserved characters (e.g.,
<) and whitespace characters. Character data in a CDATA section is not processed by the
XML parser. A common use of a CDATA section is for scripting code (e.g., JavaScript or
VBScript), which often include the characters &, <, >, ' and ". Figure 5.7 lists an XML
document that compares text in a CDATA section to character data.

The first sample element (lines 8–12) contains C++ code as character data. Each
occurrence of <, > and & must be replaced by an entity reference in order prevent syntax
errors. Lines 15–20 use a CDATA section to indicate a block of text that the parser should
not treat as character data or markup. CDATA sections begin with <![CDATA[and termi-
nate with]]>. Notice that <, > and & characters (lines 18 and 19) do not need to be
replaced by entity references. IE5 also preserves whitespace in the CDATA section,
although this is not a requirement of XML processors.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 5.7 : cdata.xml -->
4 <!-- CDATA section containing C++ code -->
5
6 <book title = "C++ How to Program" edition = "3">
7
8 <sample>
9 // C++ comment

10 if (this->getX() < 5 && value[0] != 3)
11 cerr << this->displayError();
12 </sample>
13
14 <sample>
15 <![CDATA[
16
17 // C++ comment
18 if (this->getX() < 5 && value[0] != 3)
19 cerr << this->displayError();
20]]>
21 </sample>
22
23 C++ How to Program by Deitel & Deitel
24 </book>

Fig. 5.7 Using a CDATA section.

Chapter 5 Creating Markup with XML 123

Common Programming Error 5.8
Placing one or more spaces inside the opening <![CDATA[or closing]]> is an error. 5.8

Because a CDATA section is not parsed, it can contain almost any text, including char-
acters normally reserved for XML syntax, such as <, > and &. However, CDATA sections
cannot contain the text]]>, because this is used to terminate a CDATA section. For
example,

<![CDATA[
 The following characters cause an error:]]>
]]>

is an error because the character data in the CDATA section contains]]>.

5.8 XML Namespaces
Because XML allows document authors to create their own tags, naming collisions (i.e.,
two different elements that have the same name) can occur. For example, we may use the
element book to mark up data about one of our publications. A stamp collector may also
create an element book to mark up data about a book of stamps. If both of these elements
were used in the same document there would be a naming collision and it would be difficult
to determine which kind of data each element contained.

Namespaces provide a means for document authors to prevent collisions. For example,

<subject>Math</subject>

and

<subject>Thrombosis</subject>

Fig. 5.7 Using a CDATA section.

124 Creating Markup with XML Chapter 5

use a subject element to mark up a piece of data. However, in the first case the subject
is something one studies in school, whereas in the second case the subject is in the field of
medicine. These two subject elements can be differentiated using namespaces. For ex-
ample

<school:subject>Math</school:subject>

and

<medical:subject>Thrombosis</medical:subject>

Both school and medical are namespace prefixes. Namespace prefixes are prepended
to element and attribute names in order to specify the namespace in which the element or
attribute can be found. Each namespace prefix is tied to a uniform resource identifier (URI)
that uniquely identifies the namespace. Document authors can create their own namespace
prefixes as shown in Fig. 5.8 (lines 6 and 7). Virtually any name may be used for a
namespace, except the reserved namespace xml. We will discuss namespace xml, which
was introduced in Fig. 5.5 later in the book.

Figure 5.8 demonstrates how to create namespaces. In this document, two distinct
file elements are differentiated using namespaces.

Lines 6 and 7

<directory xmlns:text = "urn:deitel:textInfo"
 xmlns:image = "urn:deitel:imageInfo">

use the XML namespace keyword xmlns to create two namespace prefixes: text and
image. The values assigned to attributes xmlns:text and xmlns:image are called
Uniform Resource Identifiers (URIs). By definition, a URI is a series of characters used to
differentiate names.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 5.8 : namespace.xml -->
4 <!-- Namespaces -->
5
6 <directory xmlns:text = "urn:deitel:textInfo"
7 xmlns:image = "urn:deitel:imageInfo">
8
9 <text:file filename = "book.xml">

10 <text:description>A book list</text:description>
11 </text:file>
12
13 <image:file filename = "funny.jpg">
14 <image:description>A funny picture</image:description>
15 <image:size width = "200" height = "100"/>
16 </image:file>
17
18 </directory>

Fig. 5.8 Listing for namespace.xml.

Chapter 5 Creating Markup with XML 125

In order to ensure that a namespace is unique, the document author must provide a
unique URI. Here, we use the text urn:deitel:textInfo and
urn:deitel:imageInfo as URIs. A common practice is to use Universal Resource
Locators (URLs) for URIs, because the domain names (e.g., deitel.com) used in URLs
are guaranteed to be unique. For example, lines 6 and 7 could have been written as

<directory xmlns:text = "http://www.deitel.com/xmlns-text"
 xmlns:image = "http://www.deitel.com/xmlns-image">

where we use URLs related to the Deitel & Associates, Inc. domain name (www.dei-
tel.com). These URLs are never visited by the parser—they only represent a series of
characters for differentiating names and nothing more. The URLs need not even exist or be
properly formed.

Lines 9–11

<text:file filename = "book.xml">
 <text:description>A book list</text:description>
</text:file>

use the namespace prefix text to describe elements file and description. Notice
that end tags have the namespace prefix text applied to them as well. Lines 13–16 apply
namespace prefix image to elements file, description and size.

In order to eliminate the need to place a namespace prefix in each element, authors may
specify a default namespace for an element and all of its child elements. Fig. 5.9 demon-
strates using default namespaces.

We declare a default namespace using the xmlns attribute with a URI as its value (line
6). Once this default namespace is in place, child elements that are part of this namespace
do not need a namespace prefix. Element file (line 9) is in the namespace corresponding
to the URI urn:deitel:textInfo. Compare this to Fig. 5.8, where we prefixed the
file and description elements with the namespace prefix text (lines 9–11).

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 5.9 : defaultnamespace.xml -->
4 <!-- Using Default Namespaces -->
5
6 <directory xmlns = "urn:deitel:textInfo"
7 xmlns:image = "urn:deitel:imageInfo">
8
9 <file filename = "book.xml">

10 <description>A book list</description>
11 </file>
12
13 <image:file filename = "funny.jpg">
14 <image:description>A funny picture</image:description>
15 <image:size width = "200" height = "100"/>
16 </image:file>
17
18 </directory>

Fig. 5.9 Using default namespaces.

126 Creating Markup with XML Chapter 5

The default namespace applies to all elements contained in the directory element.
However, we may use a namespace prefix in order to specify a different namespace for par-
ticular elements. For example, the file element on line 13 uses the prefix image to indi-
cate it is in the namespace corresponding to the URI urn:deitel:imageInfo.

5.9 Case Study: A Day Planner Application
In this section, we discuss markup used by a day planner application for scheduling ap-
pointments. This case study will be enhanced in later chapters.

When scheduling appointments and tasks, the date, time and appointment type are
required. An XML document that marks up appointments is shown in Fig. 5.10.

Line 6 is the root element planner, which holds all of the appointments. Within ele-
ment planner, we have a year element, which has attribute value for storing the year
being planned. If we make appointments for the year 2001, a new year element with
value of 2001 is created before the planner end tag.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 5.10 : planner.xml -->
4 <!-- Day Planner XML document -->
5
6 <planner>
7
8 <year value = "2000">
9

10 <date month = "7" day = "15">
11 <note time = "1430">Doctor's appointment</note>
12 <note time = "1620">Physics class at BH291C</note>
13 </date>
14
15 <date month = "7" day = "4">
16 <note>Independence Day</note>
17 </date>
18
19 <date month = "7" day = "20">
20 <note time = "0900">General Meeting in room 32-A</note>
21 </date>
22
23 <date month = "7" day = "20">
24 <note time = "1900">Party at Joe's</note>
25 </date>
26
27 <date month = "7" day = "20">
28 <note time = "1300">Financial Meeting in room 14-C</note>
29 </date>
30
31 </year>
32
33 </planner>

Fig. 5.10 Day planner XML document planner.xml.

Chapter 5 Creating Markup with XML 127

Line 10 shows element date, which is used to store a specific date. Element date
has two attributes, month and day, which store the month and day of the appointment,
respectively.

Line 11

<note time = "1430">Doctor's appointment</note>

marks up an appointment for July 15, 2000, at 1430 military time (i.e., 2:30 pm). A date
element may contain many note elements, each for a specific time. A note element does
not have to contain a time attribute, such as on line 16

<note>Independence Day</note>

which denotes an event for an entire day—July 4, Independence Day.
Figure 5.11 shows a screen capture of an application that we present in Chapters 8 and

9 for querying the day-planner XML document.

5.10 Internet and World Wide Web Resources

XML Reference Sites

www.w3.org/XML
Worldwide Web Consortium Extensible Markup Language homepage. Contains links to related XML
technologies (e.g., XSL), recommended books, working drafts in progress, time line for publications,
developer discussions, translations, software, etc.

www.w3.org/Addressing
Worldwide Web Consortium addressing homepage. Contains information on URIs and links to other
resources.

www.xml.com
This is one of the most popular XML sites on the Web. It has resources and links relating to all aspects
of XML, including articles, news, seminar information, tools, Frequently Asked Questions (FAQs),
etc.

Fig. 5.11 Application that uses the day planner.

128 Creating Markup with XML Chapter 5

www.xml.org
“The XML Industry Portal,” is another popular XML site that includes links to many different XML
resources.

www.oasis-open.org/cover
Oasis XML Cover Pages home page is a comprehensive reference for many aspects of XML and its
related technologies.

xml.about.com
Contains XML-related information.

msdn.microsoft.com/xml
The Microsoft Developers Network XML homepage. It is a good XML reference source and includes
information about msxml.

XML Tutorial Sites

www.w3schools.com/xml
Contains a tutorial that introduces the reader to the major aspects of XML. The tutorial contains many
examples.

Unicode Sites

www.unicode.org
Unicode Web site that includes general information, versions, character charts, FAQs, etc.

home.att.net/~jameskass
Contains downloadable Unicode charts.

XML Parsers

xml.apache.org
Home page of the Apache XML Project. Contains information about the Xerces XML parser.

www.alphaworks.ibm.com/tech/xml
Home page of IBM’s XML4J parser.

technet.oracle.com/tech/xml
Home page of Oracle’s XML development kit.

java.sun.com/xml
Home page of the Sun’s JAXP and parser technology.

SUMMARY
• XML is a technology for creating markup languages to describe data of virtually any type in a

structured manner.

• XML allows document authors to describe data precisely by creating their own tags. Markup lan-
guages can be created using XML for describing almost anything.

• XML documents are commonly stored in text files that end in the extension .xml. Any text editor
can be used to create an XML document. Many software packages allow data to be saved as XML
documents.

• The XML declaration specifies the version to which the document conforms.

• XML uses the same syntax for comments as HTML.

• All XML documents must contain exactly one root element that contains all of the other elements.
Markup preceding the root element are collectively called the prolog.

Chapter 5 Creating Markup with XML 129

• In order to process an XML document, a software program called an XML parser is required. The
XML parser reads the XML document, checks its syntax, reports any errors and allows access to
the document’s contents.

• An XML document is considered well formed if it is syntactically correct (i.e., the parser did not
report any errors due to missing tags, overlapping tags, etc.). Every XML document must be well
formed.

• Parsers may or may not support the Document Object Model (DOM) and/or the Simple API for
XML (SAX) for accessing a document’s content programmatically by using languages such as Ja-
va, Python, C, etc.

• A related XML technology is the Extensible Stylesheet Language (XSL), which provides more
powerful features than CSS for creating stylesheets.

• XML documents may contain the following characters: carriage return, the line feed and Unicode
characters. Unicode is a standard that was released by the Unicode Consortium in 1991 to expand
character representation for most of the world’s major languages. American Standard Code for In-
formation Interchange (ASCII) is a subset of Unicode.

• Markup text is enclosed in angle brackets (i.e., < and >). Character data is the text between a start
tag and an end tag. Child elements are considered markup—not character data.

• Spaces, tabs, line feeds and carriage returns are whitespace characters. In an XML document, the
parser considers whitespace characters to be either significant (i.e., preserved by the parser) or in-
significant (i.e., not preserved by the parser). Depending on the parser and the XML document’s
structure, insignificant whitespace characters may be collapsed into a single whitespace character
or even removed by the parser. This process is called normalization.

• Almost any character may be used in an XML document. However, the characters ampersand (&),
left-angle bracket (<), right-angle bracket (>), apostrophe (’) and double quote (") are reserved in
XML and may not be used in character data, except in CDATA sections. Angle brackets are re-
served for delimiting markup tags. The ampersand is reserved for delimiting hexadecimal values
that refer to a specific Unicode character. These expressions are terminated with a semicolon (;)
and are called entity references. The apostrophe and double-quote characters are reserved for de-
limiting attribute values.

• XML provides built-in entities for ampersand (&), left-angle bracket (<), right-angle
bracket (>), apostrophe (') and quotation mark (").

• A document type definition (DTD) file defines the structure (i.e., what elements the XML must
contain, what order the elements must have, etc.) of an XML document and the entities used by
the document.

• All XML start tags must have a corresponding end tag and all start- and end tags must be properly
nested. XML is case sensitive, therefore start tags and end tags must have matching capitalization.

• Elements define structure. An element may or may not contain content (i.e., child elements or
character data). Attributes describe elements. An element may have zero, one or more attributes
associated with it. Attributes are nested within the element’s start tag. Attribute values are enclosed
in quotes—either single or double.

• XML element and attribute names can be of any length and may contain letters, digits, under-
scores, hyphens and periods; and they must begin with either a letter or an underscore.

• A processing instruction’s (PI’s) information is passed by the parser to the application using the
XML document. Document authors may create their own processing instructions. Almost any
name may be used for a PI target except the reserved word xml (also XML, Xml, etc.). Processing
instructions allow document authors to embed application-specific data within an XML docu-
ment. This data is not intended to be readable by humans, but application readable.

130 Creating Markup with XML Chapter 5

• CDATA sections may contain text, reserved characters (e.g., <), words and whitespace characters.
XML parsers do not process the text in CDATA sections. CDATA sections allow the document au-
thor to include data that is not intended to be parsed. CDATA sections cannot contain the text]]>.

• Because document authors can create their own tags, naming collisions (e.g., when document au-
thors use the same names for elements) can occur. Namespaces provide a means for document au-
thors to prevent naming collisions. Document authors create their own namespaces. Virtually any
name may be used for a namespace, except the reserved namespace xml.

• A Universal Resource Identifier (URI) is a series of characters used to differentiate names. URIs
are used with namespaces.

TERMINOLOGY
<![CDATA[and]]> to delimit a CDATA
section

namespace prefixes
namespace xml

<? and ?> to delimit a processing instruction naming collision
American Standard Code for Information
Interchange (ASCII)

node
normalization

ampersand (&) parser
angle brackets (< and >) parser in IE5
Apache XML Project PI target
apostrophe (') PI value
application processing instruction (PI)
ASCII (American Standard Code for Information
Interchange)

prolog
quotation mark (")

attributes reserved characters
built-in entities reserved keyword
case-sensitive XML tags reserved namespace
CDATA section right-angle bracket (>)
CDATA section for scripting code root element
character data SAX-based parser
child Standard Generalized Markup Language (SGML)
child element significant whitespace characters
comment Simple API for XML (SAX)
container element start tag
content structured data
Document Object Model (DOM) subelement
document type definition (DTD) tag
DOM-based parser tree structure of an XML document
element Unicode
empty element Unicode consortium
end tag Universal Resource Identifier (URI)
entity references XML
Extensible Stylesheet Language (XSL) XML declaration
insignificant whitespace characters XML document
Java API for XML Parsing (JAXP) .xml extension
left-angle bracket (<) XML namespace
markup language XML parser
markup text XML processor
msxml XML version
namespace

Chapter 5 Creating Markup with XML 131

SELF-REVIEW EXERCISES
5.1 State whether the following are true or false. If false, explain why.

a) XML is a technology for creating markup languages.
b) XML markup text is delimited by forward and backward slashes (/ and \).
c) Arabic characters can only be placed in to an XML document using an Arabic language

keyboard.
d) Unlike HTML, all XML start tags must have corresponding end tags.
e) Parsers check an XML document’s syntax and may support the Document Object Model

and/or the Simple API for XML.
f) An XML document is considered well formed if the XML document contains whitespace

characters.
g) URIs are strings that identify resources such as files, images, services, electronic mail-

boxes and more.
h) When creating new XML tags, document authors must use the set of XML tags provided

by the W3C.
i) The pound character (#), the dollar sign ($), ampersand (&), greater-than (>) and less-

than (<) are examples of XML reserved characters.
j) Any text file is automatically considered to be an XML document by a parser.

5.2 Fill in the blanks in each of the following statements.
a) A/An processes an XML document.
b) Valid characters that can be used in an XML document are the carriage return, the line

feed and characters.
c) An entity reference must be proceeded by a/an character.
d) A/An is delimited by <? and ?>.
e) Text in a/an section is not parsed.
f) An XML document is considered if it is syntactically correct.
g) help document authors prevent element naming collisions.
h) Lines proceeding the root element in an XML document are collectively called the

.
i) A/An tag does not contain character data.
j) XML documents commonly have the file extension .

5.3 Identify and correct the error(s) in each of the following:
a) <my Tag>This is my custom markup<my Tag>
b) <!PI value!> <!-- a sample processing instruction -->
c) <myXML>I know XML!!!</MyXML>
d) <CDATA>This is a CDATA section.</CDATA>
e) <xml>x < 5 && x > y</xml> <!-- mark up a Java condition **>

ANSWERS TO SELF-REVIEW EXERCISES
5.1 a) True. b) False. In an XML document, markup text is any text delimited by angle brackets
(< and >) with a forward slash being used in the end tag. c) False. Arabic characters are placed into
an XML document as Unicode character entity references. d) True. e) True. f) False. An XML docu-
ment is considered well formed if it is parsed successfully. g) True. h) False. When creating new tags,
programmers may use any valid name except the reserved word xml (also XML, Xml, etc.). i) False.
XML reserved characters include the ampersand (&), the left-angle bracket (<) and the right-angle
bracket (>) but not # and $. j) False. The text file must be parsable by an XML parser. If parsing fails,
the document cannot be considered an XML document.

132 Creating Markup with XML Chapter 5

5.2 a) parser. b) Unicode. c) ampersand (&). d) processing instruction. e) CDATA. f) well formed.
g) Namespaces. h) prolog. i) empty. j) .xml.

5.3 a) Element name my tag contains a space. The forward slash, / is missing in the end tag.
Corrected markup is: <myTag>This is my custom markup</myTag>

b) Incorrect delimiters for a processing instruction. Corrected markup is
<?PI value?> <!-- a sample processing instruction -->

c) Incorrect mixture of case in end tag. Corrected markup is
<myXML>I know XML!!!</myXML> or <MyXML>I know XML!!!</MyXML>

d) Incorrect syntax for a CDATA section. Corrected markup is
<![CDATA[This is a CDATA section.]]>

e) The name xml is reserved and cannot be used as an element. The characters <, & and >
must be represented using entities. The closing comment delimiter should be two hy-
phens—not two stars. Corrected markup is
<someName>x < 5 && x > y</someName>
<!-- mark up a Java condition -->

EXERCISES
5.4 Create an XML document that marks up the nutrition facts for a package of Grandma Deitel’s
Cookies. A package of Grandma Deitel’s Cookies has a serving size of 1 package and the following
nutritional value per serving: 260 calories, 100 fat calories, 11 grams of fat, 2 grams of saturated fat,
5 milligrams of cholesterol, 210 milligrams of sodium, 36 grams of total carbohydrates, 2 grams of
fiber, 15 grams of sugars and 5 grams of protein.Render the XML documents in Internet Explorer 5.
[Hint: Your markup should contain elements describing the product name, serving size/amount, cal-
ories, sodium, cholesterol, proteins, etc. Mark up each nutrition fact/ingredient listed above. Use nest-
ed elements as necessary.]

5.5 Markup the Java code listed in Fig. 5.12 using XML. Represent the if statement with ele-
ment if—which contains one or more condition elements and one or more statement ele-
ments. Element condition contains the condition (e.g., m == month && d == day) and element
statement contains the statements (e.g., resultDay = "DATE: D " + d + " M " + m). We have
provided comments to the right of conditions and statements for easy identification. Element else
represents an else statement in Java and contains one or more statement elements. Render the
XML document in IE5.

5.6 Modify your solution to Exercise 5.5 by placing the Java code (Fig. 5.12) inside a CDATA
section. Then render the document in IE5. Other than the syntax coloring, the Java code should be
displayed exactly as shown in Fig. 5.12.

1 if ((m == month && d == day) || // m == month && d == day
2 (month == -1 && d == day) || // month == -1 && d == day
3 (m == month && day == -1) || // m == month && day == -1
4 (month > -1 && day <= -1)) { // month > -1 && day <= -1
5 resultDay = "DATE: D " + d + " M " + m; // a statement
6 processChildNodes(dateElement.getChildNodes());// a statement
7 }
8 else // else statement
9 return; // a statement

Fig. 5.12 Java code to markup.

Chapter 5 Creating Markup with XML 133

5.7 Rewrite the XML document in Fig. 5.10 such that each note element has year, month,
day and time attributes rather than child elements. The solution should contain only the root ele-
ment and note child elements.

5.8 Write a CSS stylesheet for Fig. 5.1 that results in the text Welcome to XML! being dis-
played in blue Times 20 pt.

6
Document Type

Definition (DTD)

Objectives
• To understand what a DTD is.
• To be able to write DTDs.
• To be able to declare elements and attributes in a

DTD.
• To understand the difference between general entities

and parameter entities.
• To be able to use conditional sections with entities.
• To be able to use NOTATIONs.
• To understand how an XML document’s whitespace

is processed.
To whom nothing is given, of him can nothing be required.
Henry Fielding

Like everything metaphysical, the harmony between thought
and reality is to be found in the grammar of the language.
Ludwig Wittgenstein

Grammar, which knows how to control even kings.
Molière

Chapter 6 Document Type Definition (DTD) 135

6.1 Introduction
In this chapter, we discuss Document Type Definitions (DTDs) that define an XML docu-
ment’s structure (e.g., what elements, attributes, etc. are permitted in the document). An
XML document is not required to have a corresponding DTD. However, DTDs are often
recommended to ensure document conformity, especially in business-to-business (B2B)
transactions, where XML documents are exchanged. DTDs specify an XML document’s
structure and are themselves defined using EBNF (Extended Backus-Naur Form) gram-
mar—not the XML syntax introduced in Chapter 5.

Software Engineering Observation 6.1
A transition is underway in the XML community from DTDs to Schema (Chapter 7), which
improve upon DTDs. Schema use XML syntax, not EBNF grammar. 6.1

6.2 Parsers, Well-formed and Valid XML Documents
Parsers are generally classified as validating or nonvalidating. A validating parser is able
to read the DTD and determine whether or not the XML document conforms to it. If the
document conforms to the DTD, it is referred to as valid. If the document fails to conform
to the DTD but is syntactically correct, it is well formed but not valid. By definition, a valid
document is well formed.

A nonvalidating parser is able to read the DTD, but cannot check the document against
the DTD for conformity. If the document is syntactically correct, it is well formed.

Outline
6.1 Introduction
6.2 Parsers, Well-formed and Valid XML Documents
6.3 Document Type Declaration
6.4 Element Type Declarations

6.4.1 Sequences, Pipe Characters and Occurrence Indicators
6.4.2 EMPTY, Mixed Content and ANY

6.5 Attribute Declarations
6.5.1 Attribute Defaults (#REQUIRED, #IMPLIED, #FIXED)

6.6 Attribute Types
6.6.1 Tokenized Attribute Type (ID, IDREF, ENTITY, NMTOKEN)
6.6.2 Enumerated Attribute Types

6.7 Conditional Sections
6.8 Whitespace Characters
6.9 Case Study: Writing a DTD for the Day Planner Application
6.10 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises •
Exercises

136 Document Type Definition (DTD) Chapter 6

We will discuss validating and nonvalidating parsers in greater depth in Chapters 8 and
9. In this chapter, we use Microsoft’s XML Validator to check for document conformance
to a DTD. XML Validator is available at no charge from

msdn.microsoft.com/downloads/samples/Internet/xml/
xml_validator/sample.asp

6.3 Document Type Declaration
DTDs are introduced into XML documents using the document type declaration (i.e.,
DOCTYPE). A document type declaration is placed in the XML document’s prolog and be-
gins with <!DOCTYPE and ends with >. The document type declaration can point to dec-
larations that are outside the XML document (called the external subset) or can contain the
declaration inside the document (called internal subset). For example, an internal subset
might look like

<!DOCTYPE myMessage [
<!ELEMENT myMessage (#PCDATA)>

]>

The first myMessage is the name of the document type declaration. Anything inside
the square brackets ([]) constitutes the internal subset. As we will see momentarily, ELE-
MENT and #PCDATA are used in “element declarations.”

External subsets physically exist in a different file that typically ends with the.dtd
extension, although this file extension is not required. External subsets are specified using
either keyword SYSTEM or PUBLIC. For example, the DOCTYPE external subset might
look like

<!DOCTYPE myMessage SYSTEM "myDTD.dtd">

which points to the myDTD.dtd document. Using the PUBLIC keyword indicates that the
DTD is widely used (e.g., the DTD for HTML documents). The DTD may be made avail-
able in well-known locations for more efficient downloading. We used such a DTD in
Chapters 2 and 3 when we created HTML documents. The DOCTYPE

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

uses the PUBLIC keyword to reference the well-known DTD for HTML version 4.01.
XML parsers that do not have a local copy of the DTD may use the URL provided to down-
load the DTD to perform validation.

Both the internal and external subset may be specified at the same time. For example,
the DOCTYPE

<!DOCTYPE myMessage SYSTEM "myDTD.dtd" [
<!ELEMENT myElement (#PCDATA)>

]>

contains declarations from the myDTD.dtd document as well as an internal declaration.

Chapter 6 Document Type Definition (DTD) 137

Software Engineering Observation 6.2
The document type declaration’s internal subset plus its external subset form the DTD. 6.2

Software Engineering Observation 6.3
The internal subset is visible only within the document in which it resides. Other external
documents cannot be validated against it. DTDs that are used by many documents should be
placed in the external subset. 6.3

6.4 Element Type Declarations
Elements are the primary building block used in XML documents and are declared in a
DTD with element type declarations (ELEMENTs). For example, to declare element
myMessage, we might write

<!ELEMENT myElement (#PCDATA)>

The element name (e.g., myElement) that follows ELEMENT is often called a generic
identifier. The set of parentheses that follow the element name specify the element’s al-
lowed content and is called the content specification. Keyword PCDATA specifies that the
element must contain parsable character data. This data will be parsed by the XML parser,
therefore any markup text (i.e., <, >, &, etc.) will be treated as markup. We will discuss the
content specification in detail momentarily.

Common Programming Error 6.1
Attempting to use the same element name in multiple element type declarations is an error. 6.1

Figure 6.1 lists an XML document that contains a reference to an external DTD in the
DOCTYPE. We use Microsoft’s XML Validator to check the document’s conformity
against its DTD. [Note: To use XML Validator, Internet Explorer 5 is required. In Chapters
8 and 9, we introduce parsers XML4J and Xerces, which can be used to check a document’s
validity against a DTD programmatically. Using Java and one of these parsers provides a
platform-independent way to validate XML documents.]

The document type declaration (line 6) is named myMessage—the name of the root
element. The element myMessage (lines 8–10) contains a single child element named
message (line 9).

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 6.1: intro.xml -->
4 <!-- Using an external subset -->
5
6 <!DOCTYPE myMessage SYSTEM "intro.dtd">
7
8 <myMessage>
9 <message>Welcome to XML!</message>

10 </myMessage>

Fig. 6.1 XML document declaring its associated DTD.

138 Document Type Definition (DTD) Chapter 6

1 <!-- Fig. 6.2: intro.dtd -->
2 <!-- External declarations -->
3
4 <!ELEMENT myMessage (message)>
5 <!ELEMENT message (#PCDATA)>

Fig. 6.2 Validation with using an external DTD.

Chapter 6 Document Type Definition (DTD) 139

 Line 4 of the DTD (Fig. 6.2) declares element myMessage. Notice that the content
specification contains the name message. This indicates that element myMessage con-
tains exactly one child element named message. Because myMessage can only have an
element as its content, it is said to have element content. Line 5 declares element message
whose content is of type PCDATA. [Note: Many XML Validator screen captures contain the
term SCHEMA. The XML Validator is capable of validating an XML document against
both DTDs and documents—called Schemas—that also define an XML document’s struc-
ture. In Chapter 7, we will discuss Schema in Chapter 7 and how they differ from DTDs.]

Common Programming Error 6.2
Having a root element name other than the name specified in the document type declaration
is an error. 6.2

If an XML document’s structure is inconsistent with its corresponding DTD but is syn-
tactically correct, it is only well formed—not valid. Figure 6.3 shows the messages gener-
ated by Microsoft’s XML Validator when the required message element is omitted.

6.4.1 Sequences, Pipe Characters and Occurrence Indicators
DTDs allow the document author to define the order and frequency of child elements. The
comma (,)—called a sequence—specifies the order in which the elements must occur. For
example,

<!ELEMENT classroom (teacher, student)>

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 6.3 : intro-invalid.xml -->
4 <!-- Simple introduction to XML markup -->
5
6 <!DOCTYPE myMessage SYSTEM "intro.dtd">
7
8 <!-- Root element missing child element message -->
9 <myMessage>

10 </myMessage>

Fig. 6.3 Non-valid XML document.

140 Document Type Definition (DTD) Chapter 6

specifies that element classroom must contain exactly one teacher element followed
by exactly one student element. The content specification can contain any number of
items in sequence.

Similarly, choices are specified using the pipe character (|), as in

<!ELEMENT dessert (iceCream | pastry)>

which specifies that element dessert must contain either one iceCream element or one
pastry element, but not both. The content specification may contain any number of pipe
character-separated choices.

An element’s frequency (i.e., number of occurrences) is specified by using either the
plus sign (+), asterisk (*) or question mark (?) occurrence indicator (Fig. 6.4).

 A plus sign indicates one or more occurrences. For example,

<!ELEMENT album (song+)>

specifies that element album contains one or more song elements.
The frequency of an element group (i.e., two or more elements that occur in some com-

bination) is specified by enclosing the element names inside the content specification with
parentheses, followed by either the plus sign, asterisk or question mark. For example,

<!ELEMENT album (title, (songTitle, duration)+)>

indicates that element album contains one title element followed by any number of
songTitle/duration element groups. At least one songTitle/duration group
must follow title, and in each of these element groups, the songTitle must precede
the duration. An example of markup that conforms to this is

<album>
 <title>XML Classical Hits</title>

 <songTitle>XML Overture</songTitle>
 <duration>10</duration>

 <songTitle>XML Symphony 1.0</songTitle>
 <duration>54</duration>
</album>

which contains one title element followed by two songTitle/duration groups.

Occurrence Indicator Description

Plus sign (+) An element can appear any number of times, but must be appear at
least once (i.e., the element appears one or more times).

Asterisk (*) An element is optional and if used, the element can appear any num-
ber of times (i.e., the element appears zero or more times).

Question mark (?) An element is optional, and if used, the element can appear only once
(i.e., the element appears zero or one times).

Fig. 6.4 Occurrence indicators.

Chapter 6 Document Type Definition (DTD) 141

The asterisk (*) character indicates an optional element that, if used, can occur any
number of times. For example,

<!ELEMENT library (book*)>

indicates that element library contains any number of book elements, including the
possibility of none at all. Markup examples that conform to this are

<library>
<book>The Wealth of Nations</book>
<book>The Iliad</book>
<book>The Jungle</book>

</library>

and

<library></library>

Optional elements that, if used, may occur only once are followed by a question mark
(?). For example,

<!ELEMENT seat (person?)>

indicates that element seat contains at most one person element. Examples of markup
that conform to this are

<seat>
<person>Jane Doe</person>

</seat>

and

<seat></seat>

Now we consider three more complicated element type declarations and provide a dec-
laration for each. The declaration

<!ELEMENT class (number, (instructor | assistant+),
 (credit | noCredit))>

specifies that a class element must contain a number element, either one instructor
element or any number of assistant elements and either one credit element or one
noCredit element. Markup examples that conform to this are

<class>
<number>123</number>
<instructor>Dr. Harvey Deitel</instructor>
<credit>4</credit>

</class>

142 Document Type Definition (DTD) Chapter 6

and

<class>
<number>456</number>
<assistant>Tem Nieto</assistant>

 <assistant>Paul Deitel</assistant>
<credit>3</credit>

</class>

The declaration

<!ELEMENT donutBox (jelly?, lemon*,
 ((creme | sugar)+ | glazed))>

specifies that element donutBox can have zero or one jelly elements, followed by zero
or more lemon elements, followed by one or more creme or sugar elements or exactly
one glazed element. Markup examples that conform to this are

<donutBox>
<jelly>grape</jelly>
<lemon>half-sour</lemon>

 <lemon>sour</lemon>
 <lemon>half-sour</lemon>

<glazed>chocolate</glazed>
</donutBox>

and

<donutBox>
<sugar>semi-sweet</sugar>

 <creme>whipped</creme>
 <sugar>sweet</sugar>
</donutBox>

The declaration

<!ELEMENT farm (farmer+, (dog* | cat?), pig*,
 (goat | cow)?,(chicken+ | duck*))>

indicates that element farm can have one or more farmer elements, any number of op-
tional dog elements or an optional cat element, any number of optional pig elements, an
optional goat or cow element and one or more chicken elements or any number of op-
tional duck elements. Examples of markup that conform to this are

<farm>
<farmer>Jane Doe</farmer>
<farmer>John Doe</farmer>

 <cat>Lucy</cat>
<pig>Bo</pig>

 <chicken>Jill</chicken>
</farm>

Chapter 6 Document Type Definition (DTD) 143

and

<farm>
<farmer>Red Green</farmer>

 <duck>Billy</duck>
 <duck>Sue</duck>
</farm>

6.4.2 EMPTY, Mixed Content and ANY
Elements must be further refined by specifying the types of content they contain. In the last
section, we introduced element content, indicating that an element can contain one or more
child elements as its content. In this section, we introduce content specification types for
describing non-element content.

In addition to element content, three other types of content exist: EMPTY, mixed con-
tent and ANY. Keyword EMPTY declares empty elements. Empty elements do not contain
character data or child elements. For example,

<!ELEMENT oven EMPTY>

declares element oven to be an empty element. The markup for an oven element would
appear as

<oven/>

in an XML document conforming to this declaration.
An element can also be declared as having mixed content. Such elements may contain

any combination of elements and PCDATA. For example, the declaration

<!ELEMENT myMessage (#PCDATA | message)*>

indicates that element myMessage contains mixed content. Markup conforming to this
declaration might look like

<myMessage>Here is some text, some
 <message>other text</message>and
 <message>even more text</message>.
</myMessage>

Element myMessage contains two message elements and three instances of character
data. Because of the *, element myMessage could have contained nothing.

Figure 6.5 specifies a DTD as an internal subset (lines 6–10) as opposed to an external
subset (Fig. 6.1). In the prolog (line 1) we use the standalone attribute with a value of
yes. An XML document is standalone if it does not reference an external subset. This
DTD defines three elements: one that contains mixed content and two that contain parsed
character data.

1 <?xml version = "1.0" standalone = "yes"?>
2

Fig. 6.5 Example of a mixed-content element (part 1 of 2).

144 Document Type Definition (DTD) Chapter 6

Line 7 declares element format as a mixed content element. According to the decla-
ration, the format element may contain either parsed character data (PCDATA), element
bold or element italic. The asterisk indicates that the content can occur zero or more
times. Lines 8 and 9 specify that bold and italic elements have PCDATA only for their
content specification—they cannot contain child elements. Despite the fact that elements
with PCDATA content specification cannot contain child elements, they are still considered
to have mixed content. The comma (,), plus sign (+) and question mark (?) occurrence
indicators cannot be used with mixed content elements that contain only PCDATA.

Figure 6.6 shows the results of changing the first pipe character in line 7 of Fig. 6.5 to
a comma and the result of removing the asterisk. Both of these are illegal DTD syntax.

Common Programming Error 6.3
When declaring mixed content, not listing PCDATA as the first item is an error. 6.3

3 <!-- Fig. 6.5 : mixed.xml -->
4 <!-- Mixed content type elements -->
5
6 <!DOCTYPE format [
7 <!ELEMENT format (#PCDATA | bold | italic)*>
8 <!ELEMENT bold (#PCDATA)>
9 <!ELEMENT italic (#PCDATA)>

10]>
11
12 <format>
13 This is a simple formatted sentence.
14 <bold>I have tried bold.</bold>
15 <italic>I have tried italic.</italic>
16 Now what?
17 </format>

Fig. 6.5 Example of a mixed-content element (part 2 of 2).

Chapter 6 Document Type Definition (DTD) 145

Fig. 6.6 Illegal mixed-content element syntax.

An element declared as type ANY can contain any content, including PCDATA, ele-
ments or a combination of elements and PCDATA. Elements with ANY content can also be
empty elements.

Common Programming Error 6.4
Child elements of an element declared as type ANY must have their own element type decla-
rations. 6.4

Software Engineering Observation 6.4
Elements with ANY content are commonly used in the early stages of DTD development. Doc-
ument authors typically replace ANY content with more specific content as the DTD evolves. 6.4

6.5 Attribute Declarations
In this section, we discuss attribute declarations. An attribute declaration specifies an at-
tribute list for an element by using the ATTLIST attribute list declaration. An element can
have any number of attributes. For example,

<!ELEMENT x EMPTY>
<!ATTLIST x y CDATA #REQUIRED>

declares EMPTY element x. The attribute declaration specifies that y is an attribute of x.
Keyword CDATA indicates that y can contain any character text except for the <, >, &, '

146 Document Type Definition (DTD) Chapter 6

and " characters. Note that the CDATA keyword in an attribute declaration has a different
meaning than the CDATA section in an XML document we introduced in Chapter 5. Recall
that in a CDATA section all characters are legal except the]]> end tag. Keyword #RE-
QUIRED specifies that the attribute must be provided for element x. We will say more
about other keywords momentarily.

Figure 6.7 demonstrates how to specify attribute declarations for an element. Line 9
declares attributes id and to for element message. Both id and to contain required
CDATA. Attribute values are normalized (i.e., consecutive whitespace characters are com-
bined into one whitespace character). We discuss normalization in detail in Section 6.8.
Line 13 assigns attribute id the value "445" and assigns attribute to the value "The
world".

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 6.7: intro2.xml -->
4 <!-- Declaring attributes -->
5
6 <!DOCTYPE myMessage [
7 <!ELEMENT myMessage (message)>
8 <!ELEMENT message (#PCDATA)>
9 <!ATTLIST message id CDATA #REQUIRED>

10]>
11
12 <myMessage>
13
14 <message id = "445">
15 Welcome to XML!
16 </message>
17
18 </myMessage>

Fig. 6.7 Declaring attributes.

Chapter 6 Document Type Definition (DTD) 147

6.5.1 Attribute Defaults (#REQUIRED, #IMPLIED, #FIXED)
DTDs allow document authors to specify an attribute’s default value using attribute de-
faults, which we briefly touched upon in the last section. Keywords #IMPLIED, #RE-
QUIRED and #FIXED are attribute defaults. Keyword #IMPLIED specifies that if the
attribute does not appear in the element, then the application using the XML document can
use whatever value (if any) it chooses.

Keyword #REQUIRED indicates that the attribute must appear in the element. The
XML document is not valid if the attribute is missing. For example, the markup

<message>number</message>

when checked against the DTD attribute list declaration

<!ATTLIST message number CDATA #REQUIRED>

does not conform because attribute number is missing from element message.
An attribute declaration with default value #FIXED specifies that the attribute value

is constant and cannot be different in the XML document. For example,

<!ATTLIST address zip #FIXED "02115">

indicates that the value "02115" is the only value attribute zip can have. The XML doc-
ument is not valid if attribute zip contains a value different from "02115". If element
address does not contain attribute zip, the default value "02115" is passed to the ap-
plication using the XML document’s data.

6.6 Attribute Types
Attribute types are classified as either strings (CDATA), tokenized or enumerated. String at-
tribute types do not impose any constraints on attribute values—other than disallowing the
<, >, &, ' and " characters. Entity references (e.g., <, >, etc.) must be used for
these characters. Tokenized attributes impose constraints on attribute values—such as
which characters are permitted in an attribute name. We discuss tokenized attributes in the
next section. Enumerated attributes are the most restrictive of the three types. They can
take only one of the values listed in the attribute declaration. We will discuss enumerated
attribute types in Section 6.6.2.

6.6.1 Tokenized Attribute Type (ID, IDREF, ENTITY, NMTOKEN)
Tokenized attribute types allow a DTD author to restrict the values used for attributes. For
example, an author may want to have a unique ID for each element or only allow an at-
tribute to have one or two different values. Four different tokenized attribute types exist:
ID, IDREF, ENTITY and NMTOKEN.

Tokenized attribute type ID uniquely identifies an element. Attributes with type
IDREF point to elements with an ID attribute. A validating parser verifies that every ID
attribute type referenced by IDREF is in the XML document.

Common Programming Error 6.5
Using the same value for multiple ID attributes is a logic error—the document validated
against the DTD is not valid. 6.5

148 Document Type Definition (DTD) Chapter 6

Figure 6.8 lists an XML document that uses ID and IDREF attribute types. Element
bookstore consists of element shipping and element book. Each shipping ele-
ment describes a shipping method.

Line 9 declares attribute shipID as an ID type attribute (i.e., each shipping ele-
ment has a unique identifier). Lines 24–34 declare book elements with attribute
shippedBy (line 11) of type IDREF. Attribute shippedBy points to one of the ship-
ping elements by matching its shipID attribute.

If we assign shippedBy (line 28) the value "s3", an error occurs when we use
Microsoft’s Validator (Fig. 6.9). No shipID attribute has a value "s3", which results in
a non-valid XML document.

Common Programming Error 6.6
Not beginning a type attribute ID ’s value with a letter, underscore (_) or a colon (:) is an
error. 6.6

Common Programming Error 6.7
Providing more than one ID attribute type for an element is an error. 6.7

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 6.8: IDExample.xml -->
4 <!-- Example for ID and IDREF values of attributes -->
5
6 <!DOCTYPE bookstore [
7 <!ELEMENT bookstore (shipping+, book+)>
8 <!ELEMENT shipping (duration)>
9 <!ATTLIST shipping shipID ID #REQUIRED>

10 <!ELEMENT book (#PCDATA)>
11 <!ATTLIST book shippedBy IDREF #IMPLIED>
12 <!ELEMENT duration (#PCDATA)>
13]>
14
15 <bookstore>
16 <shipping shipID = "s1">
17 <duration>2 to 4 days</duration>
18 </shipping>
19
20 <shipping shipID = "s2">
21 <duration>1 day</duration>
22 </shipping>
23
24 <book shippedBy = "s2">
25 Java How to Program 3rd edition.
26 </book>
27
28 <book shippedBy = "s2">
29 C How to Program 3rd edition.
30 </book>
31

Fig. 6.8 XML document with ID and IDREF attribute types (part 1 of 2).

Chapter 6 Document Type Definition (DTD) 149

Fig. 6.9 Error displayed by XML Validator when an invalid ID is referenced.

32 <book shippedBy = "s1">
33 C++ How to Program 3rd edition.
34 </book>
35 </bookstore>

Fig. 6.8 XML document with ID and IDREF attribute types (part 2 of 2).

150 Document Type Definition (DTD) Chapter 6

Common Programming Error 6.8
Declaring attributes of type ID as #FIXED is an error. 6.8

In Chapter 5, we briefly introduced the concept of DTDs and entities. Figure 5.4
(lang.xml) referenced lang.dtd, which contained the values for the entity references
&assoc; and &text;. External subset lang.dtd contains the two entity declarations

<!ENTITY assoc
"أسّوشِيَ
78;ْس">

and

<!ENTITY text
"اليونيكو
83;">

for entities assoc and text. A parser replaces the entity references with their values. For
example, consider the following entity declaration

<!ENTITY digits "0123456789">

for digits. This entity might be used as follows

<useAnEntity>&digits;</useAnEntity>

The entity reference &digits; is replaced by its value, resulting in

<useAnEntity>0123456789</useAnEntity>

the value 0123456789 being placed inside the tags. These entities are called general en-
tities. Related to entities are entity attributes, which indicate that an attribute has an entity
for its value. These entity attributes are specified by using tokenized attribute type ENTI-
TY. The primary constraint placed on ENTITY attribute types is that they must refer to ex-
ternal unparsed entities. An external unparsed entity is defined in the external subset of a
DTD and consists of character data that will not be parsed by the XML parser.

Figure 6.10 lists an XML document that demonstrates the use of entities and entity
attribute types.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 6.10: entityExample.xml -->
4 <!-- ENTITY and ENTITY attribute types -->
5
6 <!DOCTYPE database [
7 <!NOTATION html SYSTEM "iexplorer">
8 <!ENTITY city SYSTEM "tour.html" NDATA html>
9 <!ELEMENT database (company+)>

10 <!ELEMENT company (name)>

Fig. 6.10 XML document that contains an ENTITY attribute type (part 1 of 2).

Chapter 6 Document Type Definition (DTD) 151

Line 7

<!NOTATION html SYSTEM "iexplorer">

declares a notation named html that refers to a SYSTEM identifier named "iexplor-
er". Notations provide information that an application using the XML document can use
to handle unparsed entities. For example, the application using this document may choose
to open Internet Explorer and load the document tour.html (line 8).

Line 8

<!ENTITY city SYSTEM "tour.html" NDATA html>

declares an entity named city that refers to an external document (tour.html). Key-
word NDATA indicates that the content of this external entity is not XML. The name of the
notation (e.g., html) that handles this unparsed entity is placed to the right of NDATA.

Line 11

<!ATTLIST company tour ENTITY #REQUIRED>

11 <!ATTLIST company tour ENTITY #REQUIRED>
12 <!ELEMENT name (#PCDATA)>
13]>
14
15 <database>
16 <company tour = "city">
17 <name>Deitel & Associates, Inc.</name>
18 </company>
19 </database>

Fig. 6.10 XML document that contains an ENTITY attribute type (part 2 of 2).

152 Document Type Definition (DTD) Chapter 6

declares attribute tour for element company. Attribute tour specifies a required EN-
TITY attribute type. Line 16

<company tour = "city">

assigns entity city to attribute tour. If we replaced line 16 with

<company tour = "country">

the document fails to conform to the DTD because entity country does not exist. Figure
6.11 shows the message generated by XML Validator if country is used.

Common Programming Error 6.9
Not assigning an unparsed external entity to an attribute with attribute type ENTITY results
in a non-valid XML document. 6.9

Attribute type ENTITIES may also be used in a DTD to indicate that an attribute has
multiple entities for its value. Each entity is separated by a space. For example

<!ATTLIST directory file ENTITIES #REQUIRED>

specifies that attribute file is required to contain multiple entities. An example of markup
that conforms to this might look like

<directory file = "animations graph1 graph2">

where animations, graph1 and graph2 are entities declared in a DTD.
A more restrictive attribute type is attribute type NMTOKEN (name token), whose value

consists of letters, digits, periods, underscores, hyphens and colon characters. For example,
consider the declaration

<!ATTLIST sportsClub phone NMTOKEN #REQUIRED>

which indicates sportsClub contains a required NMTOKEN phone attribute. An exam-
ple of markup that conforms to this is

<sportsClub phone = "555-111-2222">

Fig. 6.11 Error generated by XML Validator when a DTD contains a reference to
an undefined entity.

Chapter 6 Document Type Definition (DTD) 153

An example that does not conform to this is

<sportsClub phone = "555 555 4902">

because spaces are not allowed in an NMTOKEN attribute.
Similarly, when an NMTOKENS attribute type is declared, the attribute may contain

multiple string tokens separated by spaces.

6.6.2 Enumerated Attribute Types
In this section, we discuss enumerated attribute types, which declare a list of possible val-
ues an attribute can have. The attribute must be assigned a value from this list to conform
to the DTD. Enumerated type values are separated by pipe characters (|). For example, the
declaration

<!ATTLIST person gender (M | F) "F">

contains an enumerated attribute type declaration that allows attribute gender to have ei-
ther the value M or F. A default value of "F" is specified to the right of the element attribute
type. Alternatively, a declaration such as

<!ATTLIST person gender (M | F) #IMPLIED>

does not provide a default value for gender. This type of declaration might be used to val-
idate a marked up mailing list that contains first names, last names, addresses, etc. The ap-
plication that uses this mailing list may want to precede each name by either Mr., Ms. or
Mrs. However, some first names are gender neutral (e.g., Chris, Sam, etc.), and the appli-
cation may not know the person’s gender. In this case, the application has the flexibility
to process the name in a gender neutral way.

NOTATION is also an enumerated attribute type. For example,

<!ATTLIST book reference NOTATION (JAVA | C) "C">

the declaration indicates that reference must be assigned either JAVA or C. If a value
is not assigned, C is specified as the default. The notation for C might be declared as

<!NOTATION C SYSTEM
 "http://www.deitel.com/books/2000/chtp3/chtp3_toc.htm">

6.7 Conditional Sections
DTDs provide the ability to include or exclude declarations using conditional sections.
Keyword INCLUDE specifies that declarations are included, while keyword IGNORE spec-
ifies that declarations are excluded. For example, the conditional section

<![INCLUDE[
<!ELEMENT name (#PCDATA)>
]]>

directs the parser to include the declaration of element name.

154 Document Type Definition (DTD) Chapter 6

Similarly, the conditional section

<![IGNORE[
<!ELEMENT message (#PCDATA)>
]]>

directs the parser to exclude the declaration of element message.
Conditional sections are often used with entities, as demonstrated in Fig 6.12.
Lines 4 and 5

<!ENTITY % reject "IGNORE">
<!ENTITY % accept "INCLUDE">

declare entities reject and accept, with the values IGNORE and INCLUDE, respec-
tively. Because each of these entities is preceded by a percent (%) character, they can be
used only inside the DTD in which they are declared. These types of entities—called pa-
rameter entities—allow document authors to create entities specific to a DTD—not an
XML document. [Note: Recall that the DTD is the combination of the internal subset and
external subset. Parameter entities may only be placed in the external subset.]

Lines 7–13 use the entities accept and reject, which represent the strings
INCLUDE and IGNORE, respectively. Notice that the parameter entity references are pre-
ceded by %, where as normal entity references are preceded by &. Line 7

<![%accept; [

represents the beginning tag of an IGNORE section (the value of the accept entity is IG-
NORE), while line 11 represents the start tag of an INCLUDE section. By changing the val-
ues of the entities, we can easily choose which message element declaration to allow.

Figure 6.13 shows the XML document that conforms to the DTD in Fig. 6.12.

1 <!-- Fig. 6.12: conditional.dtd -->
2 <!-- DTD for conditional section example -->
3
4 <!ENTITY % reject "IGNORE">
5 <!ENTITY % accept "INCLUDE">
6
7 <![%accept; [
8 <!ELEMENT message (approved, signature)>
9]]>

10
11 <![%reject; [
12 <!ELEMENT message (approved, reason, signature)>
13]]>
14
15 <!ELEMENT approved EMPTY>
16 <!ATTLIST approved flag (true | false) "false">
17
18 <!ELEMENT reason (#PCDATA)>
19 <!ELEMENT signature (#PCDATA)>

Fig. 6.12 Conditional sections in a DTD.

Chapter 6 Document Type Definition (DTD) 155

Software Engineering Observation 6.5
Parameter entities allows document authors to use entity names in DTDs without conflicting
with entities used in an XML document. 6.5

6.8 Whitespace Characters
In Chapter 5, we briefly discussed whitespace characters and normalization. In this section,
we discuss how whitespace characters and normalization relate to DTDs. Whitespace is ei-
ther preserved or normalized, depending on the context in which it is used.

Figure 6.14 contains a DTD and markup that conforms to the DTD. The output shown
is generated by a Java application presented in Chapter 9.

1 <?xml version = "1.0" standalone = "no"?>
2
3 <!-- Fig. 6.13: conditional.xml -->
4 <!-- Using conditional sections -->
5
6 <!DOCTYPE message SYSTEM "conditional.dtd">
7
8 <message>
9 <approved flag = "true"/>

10 <signature>Chairman</signature>
11 </message>

Fig. 6.13 XML document that conforms to conditional.dtd.

1 <?xml version = "1.0"?>
2

Fig. 6.14 Processing whitespace in an XML document (part 1 of 3).

156 Document Type Definition (DTD) Chapter 6

3 <!-- Fig. 6.14 : whitespace.xml -->
4 <!-- Demonstrating whitespace parsing -->
5
6 <!DOCTYPE whitespace [
7 <!ELEMENT whitespace (hasCDATA,
8 hasID, hasNMTOKEN, hasEnumeration, hasMixed)>
9

10 <!ELEMENT hasCDATA EMPTY>
11 <!ATTLIST hasCDATA cdata CDATA #REQUIRED>
12
13 <!ELEMENT hasID EMPTY>
14 <!ATTLIST hasID id ID #REQUIRED>
15
16 <!ELEMENT hasNMTOKEN EMPTY>
17 <!ATTLIST hasNMTOKEN nmtoken NMTOKEN #REQUIRED>
18
19 <!ELEMENT hasEnumeration EMPTY>
20 <!ATTLIST hasEnumeration enumeration (true | false)
21 #REQUIRED>
22
23 <!ELEMENT hasMixed (#PCDATA | hasCDATA)*>
24]>
25
26 <whitespace>
27
28 <hasCDATA cdata = " simple cdata "/>
29
30 <hasID id = " i20"/>
31
32 <hasNMTOKEN nmtoken = " hello"/>
33
34 <hasEnumeration enumeration = " true"/>
35
36 <hasMixed>
37 This is text.
38 <hasCDATA cdata = " simple cdata"/>
39 This is some additional text.
40 </hasMixed>
41
42 </whitespace>

>java Tree yes whitespace.xml
URL: file:C:/Examplesps/Files/deleted/ch09/Tree/whitespace.xml
[document root]
+-[element : whitespace]
 +-[ignorable]
 +-[ignorable]
 +-[ignorable]
 +-[element : hasCDATA]
 +-[attribute : cdata] " simple cdata "
 +-[ignorable]
 +-[ignorable]
 +-[ignorable]

Continued

Fig. 6.14 Processing whitespace in an XML document (part 2 of 3).

Chapter 6 Document Type Definition (DTD) 157

Line 28

<hasCDATA cdata = " simple cdata "/>

assigns a value containing multiple whitespace characters to attribute cdata. Attribute
cdata (declared in line 11) is required and must contain CDATA. As mentioned earlier,
CDATA can contain almost any text, including whitespace. As the output illustrates, spaces
in CDATA are preserved and passed on to the application using the XML document.

Line 30 assigns a value to attribute id that contains leading whitespace. Attribute id
is declared on line 14 with tokenized attribute type ID. Because this is not CDATA, it is nor-
malized and the leading whitespace characters are removed. Similarly, lines 32 and 34
assign values that contain leading whitespace to attributes nmtoken and enumera-
tion—which are declared in the DTD as an NMTOKEN and an enumeration, respectively.
Both these attributes are normalized by the parser. [Note: We discuss the ignorable and
text portions of the output in Chapter 9.]

Continued
 +-[element : hasID]
 +-[attribute : id] "i20"
 +-[ignorable]
 +-[ignorable]
 +-[ignorable]
 +-[element : hasNMTOKEN]
 +-[attribute : nmtoken] "hello"
 +-[ignorable]
 +-[ignorable]
 +-[ignorable]
 +-[element : hasEnumeration]
 +-[attribute : enumeration] "true"
 +-[ignorable]
 +-[ignorable]
 +-[ignorable]
 +-[element : hasMixed]
 +-[text] "
"
 +-[text] " This is text."
 +-[text] "
"
 +-[text] " "
 +-[element : hasCDATA]
 +-[attribute : cdata] " simple cdata"
 +-[text] "
"
 +-[text] " This is some additional text."
 +-[text] "
"
 +-[text] " "
 +-[ignorable]
 +-[ignorable]
[document end]

Fig. 6.14 Processing whitespace in an XML document (part 3 of 3).

158 Document Type Definition (DTD) Chapter 6

6.9 Case Study: Writing a DTD for the Day Planner Application
In this section, we build upon the case study introduced in Chapter 5. Figure 6.15 lists the
external subset of the DTD for the day planner XML document, planner.xml. The fol-
lowing document type declaration is inserted into the day planner XML document

<!DOCTYPE planner SYSTEM "planner.dtd">

1 <!-- Fig. 6.15: planner.dtd -->
2 <!-- DTD for day planner -->
3
4 <!ELEMENT planner (year*)>
5
6 <!ELEMENT year (date+)>
7 <!ATTLIST year value CDATA #REQUIRED>
8
9 <!ELEMENT date (note+)>

10 <!ATTLIST date month CDATA #REQUIRED>
11 <!ATTLIST date day CDATA #REQUIRED>
12
13 <!ELEMENT note (#PCDATA)>
14 <!ATTLIST note time CDATA #IMPLIED>

Fig. 6.15 DTD for planner.xml.

Chapter 6 Document Type Definition (DTD) 159

Software Engineering Observation 6.6
When an attribute’s value is normalized, consecutive carriage returns/line feeds are col-
lapsed into a single carriage return/line feed that is replaced by a space character. 6.6

Element planner is the root element of the document, which contains any number
of optional year elements. The declarations (lines 6 and 7) specify that year element
must contain one or more date elements and must contain an attribute value that has
character data.

Line 9 indicates that a date element contains one or more note elements. Element
date is required to have two attributes: month and day. Element note contains parsed
character data and an optional attribute time.

6.10 Internet and World Wide Web Resources
www.wdvl.com/Authoring/HTML/Validation/DTD.html
Contains a description of the historical uses of DTDs, including a description of SGML and the
HTML DTD.

www.dtd.com
A repository of DTDs for XML documents.

www.xml101.com/dtd
Contains tutorials and explanations on creating DTDs.

wdvl.internet.com/Authoring/Languages/XML/Tutorials/Intro/
index3.html
A DTD tutorial.

www.w3schools.com/dtd
Contains DTD tutorials and examples.

www.schema.net
A DTD repository with XML links and resources.

msdn.microsoft.com/downloads/samples/Internet/xml/xml_validator/
sample.asp
Download page for Microsoft’s XML Validator.

www.networking.ibm.com/xml/XmlValidatorForm.html
IBM’s DOMit XML Validator.

SUMMARY
• Document Type Definitions (DTDs) define an XML document’s structure (e.g., what elements,

attributes, etc. are permitted in the XML document). An XML document is not required to have a
corresponding DTD. DTDs use EBNF (Extended Backus-Naur Form) grammar.

• Parsers are generally classified as validating or nonvalidating. A validating parser is able to read
the DTD and determine whether or not the XML document conforms to it. If the document con-
forms to the DTD, it is referred to as valid. If the document fails to conform to the DTD but is
syntactically correct, it is well formed but not valid. By definition, a valid document is well
formed.

• A nonvalidating parser is able to read a DTD, but cannot check the document against the DTD for
conformity. If the document is syntactically correct, it is well formed.

160 Document Type Definition (DTD) Chapter 6

• DTDs are introduced into XML documents by using the document type declaration (i.e., DOC-
TYPE). The document type declaration can point to declarations that are outside the XML docu-
ment (called the external subset) or can contain the declaration inside the document (called internal
subset).

• External subsets physically exist in a different file that typically ends with the.dtd extension, al-
though this file extension is not required. External subsets are specified using keyword SYSTEM.
Both the internal and external subset may be specified at the same time.

• Elements are the primary building block used in XML documents and are declared in a DTD with
element type declarations (ELEMENTs).

• The element name that follows ELEMENT is often called a generic identifier. The set of parenthe-
ses that follow the element name specify the element’s allowed content and is called the content
specification.

• Keyword PCDATA specifies that the element must contain parsable character data—that is, any
text except the characters less-than (<), greater-than (>), ampersand (&), quote (') and double
quote (").

• An XML document is a standalone XML document if it does not reference an external DTD.

• An XML element that can only have another element for content, it is said to have element content.

• DTDs allow the document author to define the order and frequency of child elements. The comma
(,)—called a sequence—specifies the order in which the elements must occur. Choices are spec-
ified using the pipe character (|). The content specification may contain any number of pipe-char-
acter-separated choices.

• An element’s frequency (i.e., number of occurrences) is specified by using either the plus sign (+),
asterisk (*) or question mark (?) occurrence indicator.

• The frequency of an element group (i.e., two or more elements that occur in some combination) is
specified by enclosing the element names inside the content specification followed by an occur-
rence indicator.

• Elements can be further refined by describing the content types they may contain. Content speci-
fication types (e.g., EMPTY, mixed content, ANY, etc.) describe nonelement content.

• An element can be declared as having mixed content (i.e., a combination of elements and PCDA-
TA). The comma (,), plus sign (+) and question mark (?) occurrence indicators cannot be used
with mixed content elements.

• An element declared as type ANY can contain any content including PCDATA, elements, or a com-
bination of elements and PCDATA. Elements with ANY content can also be empty elements.

• An attribute list for an element is declared using the ATTLIST element type declaration.

• Attribute values are normalized (i.e., consecutive whitespace characters are combined into one
whitespace character).

• DTDs allow document authors to specify an attribute’s default value using attribute defaults. Key-
words #IMPLIED, #REQUIRED and #FIXED are attribute defaults.

• Keyword #IMPLIED specifies that if the attribute does not appear in the element, then the appli-
cation using the XML document can apply whatever value (if any) it chooses.

• Keyword #REQUIRED indicates that the attribute must appear in the element. The XML docu-
ment is not valid if the attribute is missing.

• An attribute declaration with default value #FIXED specifies that the attribute value is constant
and cannot be different in the XML document.

Chapter 6 Document Type Definition (DTD) 161

• Attribute types are classified as either strings (CDATA), tokenized or enumerated. String attribute
types do not impose any constraints on attribute values—other than disallowing the <, >, &, ' and
" characters. Entity references (e.g., <, >, etc.) must be used for these characters. Token-
ized attributes impose constraints on attribute values—such as which characters are permitted in
an attribute name. Enumerated attributes are the most restrictive of the three types. They can take
only one of the values listed in the attribute declaration.

• Four different tokenized attribute types exist: ID, IDREF, ENTITY and NMTOKEN. Tokenized at-
tribute type ID uniquely identifies an element. Attributes with type IDREF point to elements with
an ID attribute. A validating parser verifies that every ID attribute type referenced by IDREF is
in the XML document.

• Entity attributes indicate that an attribute has an entity for its value and are specified using token-
ized attribute type ENTITY. The primary constraint placed on ENTITY attribute types is that they
must refer to external unparsed entities.

• Attribute type ENTITIES may also be used in a DTD to indicate that an attribute has multiple
entities for its value. Each entity is separated by a space.

• A more restrictive attribute type is attribute type NMTOKEN (name token), whose value consists of
letters, digits, periods, underscores, hyphens and colon characters.

• Attribute type NMTOKENS may contain multiple string tokens separated by spaces.

• Enumerated attribute types declare a list of possible values an attribute can have. The attribute
must be assigned a value from this list to conform to the DTD. Enumerated type values are sepa-
rated by pipe characters (|).

• NOTATION is also an enumerated attribute type. Notations provide information that an application
using the XML document can use to handle unparsed entities.

• Keyword NDATA indicates that the content of this external entity is not XML. The name of the
notation that handles this unparsed entity is placed to the right of NDATA.

• DTDs provide the ability to include or exclude declarations using conditional sections. Keyword
INCLUDE specifies that declarations are included, while keyword IGNORE specifies that declara-
tions are excluded. Conditional sections are often used with entities.

• Parameter entities are preceded by percent (%) characters and can be used only inside the DTD in
which they are declared. Parameter entities allow document authors to create entities specific to a
DTD—not an XML document.

• Whitespace is either preserved or normalized, depending on the context in which it is used. Spaces
in CDATA are preserved. Attributes values with tokenized attribute types ID, NMTOKEN and enu-
meration are normalized.

TERMINOLOGY
ANY CDATA
application character data type
ATTLIST statement child elements
attribute comma character
attribute content conditional section
attribute declaration content specification
attribute default content specification type
attribute list declaration
attribute name default value of an attribute
attribute value DOCTYPE (document type declaration)
asterisk (*) document type declaration

162 Document Type Definition (DTD) Chapter 6

SELF-REVIEW EXERCISES
6.1 State whether the following are true or false. If the answer is false, explain why.

a) The document type declaration, DOCTYPE, introduces DTDs in XML documents.
b) External DTDs are specified by using the keyword EXTERNAL.
c) A DTD can contain either internal or external subsets of declarations, but not both.
d) Child elements are declared in parentheses, inside an element type declaration.
e) An element that appears any number of times is followed by an exclamation point (!).
f) A mixed content element can contain text as well as other declared elements.
g) An attribute declared as type CDATA can contain all characters except for the asterisk (*)

and pound sign (#) characters.
h) Each element attribute of type ID must have a unique value.
i) Enumerated attribute types are the most restrictive category of attribute types.
j) An enumerated attribute type requires a default value.

Document Type Definition (DTD) NMTOKEN tokenized attribute type (name token)
double quote (") non-valid document
DTD (Document Type Definition) nonvalidating parser
EBNF (Extended Backus-Naur Form) grammar normalization
.dtd extension NOTATION
ELEMENT statement notation type
element occurrence indicator
element content optional elements
element name parameter entity
element type declaration (!ELEMENT) parsed character data
EMPTY parser
empty element #PCDATA
entity attributes percent sign (%)
ENTITY tokenized attribute type period
ENTITIES pipe character (|)
enumerated attribute type plus sign (+)
Extended Backus-Naur Form (EBNF) grammar question mark (?)
external subset quote (')
external unparsed entity #REQUIRED
#FIXED schema
fixed value sequence (,)
general entity standalone XML document
generic identifier string attribute type
hyphen (-) string token
type structural definition
ID tokenized attribute type syntax
IDREF tokenized attribute type SYSTEM
IGNORE text
#IMPLIED tokenized attribute type
INCLUDE valid document
internal subset validation
mixed content validating parser
mixed content element well-formed document
mixed content type whitespace character
NDATA

Chapter 6 Document Type Definition (DTD) 163

6.2 Fill in the blanks in each of the following statements:
a) The set of document type declarations inside an XML document is called the

.
b) Elements are declared with the type declaration.
c) Keyword indicates that an element contains parsable character data.
d) In an element type declaration, the pipe character (|) indicates that the element can con-

tain of the elements indicated.
e) Attributes are declared by using the type.
f) Keyword specifies that the attribute can only take a specific value that has

been defined in the DTD.
g) ID, IDREF, and NMTOKEN are all types of tokenized attributes.
h) The % character is used to declare a/an .
i) DTD is an acronym for .
j) Conditional sections of DTDs are often used with .

ANSWERS TO SELF-REVIEW EXERCISES
6.1 a) True. b) False. External DTDs are specified using keyword SYSTEM. c) False. A DTD
contains both the internal and external subsets. d) True. e) False. An element that appears one or zero
times is specified by a question mark (?). f) True. g) False. An attribute declared as type CDATA can
contain all characters except for ampersand (&), less than (<), greater than (>), quote (') and double
quotes ("). h) True. i) True. j) False. A default value is not required.

6.2 a) internal subset. b) ELEMENT. c) PCDATA. d) one. e) ATTLIST. f) #FIXED. g) ENTITY.
h) parameter entity. i) Document Type Definition. j) entities.

EXERCISES
6.3 Create a DTD for Fig. 5.6 (letter.xml).

6.4 Create a DTD (products.dtd) for a retailer with the following specifications: The XML
document that conforms to the DTD must contain a list of products and manufacturers. Each product
should be represented by a product element and each manufacturer should be represented by a
manufacturer element. Each manufacturer has a unique ID. Represent details like name, address,
etc., as child elements of a manufacturer element. Each product has attributes such as product
code (which is always unique), unit price, etc. Each product is classified into one of four categories:
electronics, household, furniture and groceries. Each product should be related to a manufacturer de-
scribed in the XML document and should be represented as an element. The product can have a model
name and description as elements. [Hint: Relate products to manufacturers using the IDREF type at-
tribute.]

6.5 Use the DTD shown in Fig. 6.16 to construct an XML document. Use the declared entities
for the authors element. Validate your XML document against the DTD using Microsoft’s XML
Validator (or a similar validation program).

1 <!-- ex06_15.dtd: Database containing books -->
2
3 <!ELEMENT database (book+)>
4
5 <!ENTITY HD "Harvey Deitel">
6 <!ENTITY PD "Paul Deitel">

Fig. 6.16 DTD for a book database (part 1 of 2).

164 Document Type Definition (DTD) Chapter 6

6.6 Write an XML document that declares an address book containing contacts. Each contact has
a name and address. An address should contain attributes for street name, state and phone number.
The attribute value for state should not contain spaces. For example, "New York" would invalidate
the XML document. The attribute value for a phone number must contain hyphens and no spaces
(e.g., 978-555-1212). Use entities for states names. [Hint: use NMTOKENs]

6.7 Write an XML document for the DTD created in Exercise 6.6 and validate it.

6.8 Write a DTD for an XML document that stores company profiles. Each company is repre-
sented by a company element. Profiles must contain a name element and a tour element. Element
tour points to a .jpg image or to an HTML page that relates to the company. Element tour should
specify the type of image or document to which it points. [Note: The type of image should be specified
by a NOTATION type attribute.]. Also write an XML document and validate it against this DTD.

6.9 For the preceding exercise, write an internal subset of declarations that declare the type at-
tribute as enumerated. Make corresponding changes in the XML document. Observe that the internal
subset overrides the external subset when declarations collide.

6.10 Briefly describe each element type declaration:
a) name (firstName, middleName?, lastName)
b) test (question, answer)*
c) discussion (agenda, (issues, solutions)*)

7 <!ENTITY TN "Tem Nieto">
8
9 <!ENTITY % CH "(chapter, description)">

10
11 <!ELEMENT book (author+, image*, content+, newchapters*)>
12 <!ATTLIST book bookID ID #REQUIRED>
13
14 <!ELEMENT author (#PCDATA)>
15
16 <!ELEMENT image (#PCDATA)>
17
18 <!ELEMENT content %CH; >
19
20 <!ELEMENT newchapters %CH; >
21 <!ATTLIST newchapters added (true | false) "false">
22
23 <!ELEMENT chapter (#PCDATA)>
24 <!ATTLIST chapter number CDATA #REQUIRED>
25
26 <!ELEMENT description (section*, resources*, summary?)>
27
28 <!ELEMENT section (#PCDATA)>
29
30 <!ELEMENT resources (#PCDATA)>
31
32 <!ELEMENT summary (#PCDATA)>

Fig. 6.16 DTD for a book database (part 2 of 2).

7
Schemas

Objectives
• To understand what a schema is.
• To understand the basic differences between DTDs

and schema.
• To be able to create Microsoft XML Schema.
• To become familiar with both Microsoft XML

Schema and W3C XML Schema.
• To use schema to describe elements and attributes.
• To use schema data types.
It is hard to be truly excellent, four-square in hand and foot
and mind, formed without blemish.
Simonides

166 Schemas Chapter 7

7.1 Introduction
In Chapter 6, we studied Document Type Definitions (DTDs). These describe an XML doc-
ument’s structure. DTDs are inherited from SGML. Many developers in the XML commu-
nity feel DTDs are not flexible enough to meet today’s programming needs. For example,
DTDs cannot be manipulated (e.g., searched, transformed into different representation such
as HTML, etc.) in the same manner as XML documents can because DTDs are not XML
documents.

In this chapter, we introduce an alternative to DTDs—called schemas—for validating
XML documents. Like DTDs, schemas must be used with validating parsers. Schemas are
expected to replace DTDs as the primary means of describing document structure.

Two major schema models exist: W3C XML Schema and Microsoft XML Schema.
Because W3C XML Schema technology is still in the early stages of development, we
focus primarily on the well-developed Microsoft XML Schema in this chapter. [Note: New
schema models (e.g., RELAX—www.xml.gr.jp/relax) are beginning to emerge.]

At the end of this chapter, we continue enhancing the day-planner case study by
writing a Microsoft XML Schema for it.

Software Engineering Observation 7.1
Schema documents use XML syntax and are therefore XML documents. 7.1

Software Engineering Observation 7.2
Schemas are XML documents that conform to DTDs, which define the structure of a schema.
These DTDs are bundled with the parser and are used to validate the schemas that authors
create. 7.2

Software Engineering Observation 7.3
Many organizations and individuals are creating DTDs and schemas for a broad range of
categories (e.g., financial transactions, medical prescriptions, etc.). These collections—
called repositories—are often available free for download from the Web (see Section 7.8, In-
ternet and World Wide Web Resources). 7.3

Outline
7.1 Introduction
7.2 Schema vs. DTDs
7.3 Microsoft XML Schema: Describing Elements
7.4 Microsoft XML Schema: Describing Attributes
7.5 Microsoft XML Schema: Data Types
7.6 W3C XML Schema
7.7 Case Study: Writing a Microsoft XML Schema for the Day Planner

Application
7.8 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises •
Exercises

Chapter 7 Schemas 167

7.2 Schema vs. DTDs
In this section, we highlight a few major differences between XML Schema and DTDs. A
DTD describes an XML document’s structure—not its element content. For example,

<quantity>5</quantity>

contains character data. Element quantity can be validated to confirm that it does indeed
contain content (e.g., PCDATA), but its content cannot be validated to confirm that it is nu-
meric; DTDs do not provide such a capability. So, unfortunately, markup such as

<quantity>hello</quantity>

is also considered valid. The application using the XML document containing this markup
would need to test if quantity is numeric and take appropriate action if it is not.

With XML Schema, element quantity’s data can indeed be described as numeric.
When the preceding markup examples are validated against an XML Schema that specifies
element quantity’s data must be numeric, 5 conforms and hello fails. An XML doc-
ument that conforms to a schema document is schema valid and a document that does not
conform is invalid.

Software Engineering Observation 7.4
Because schema are XML documents that conform to DTDs, they must be valid. 7.4

Unlike DTDs, schema do not use the Extended Backus-Naur Form (EBNF) grammar.
Instead, schema use XML syntax. Because schema are XML documents, they can be
manipulated (e.g., elements added, elements removed, etc.) like any other XML document.
In Chapter 8, we discuss how to manipulate XML documents programmatically.

In the next section, we begin our discussion of Microsoft XML Schema. We discuss
several key schema elements and attributes, which are used in the chapter examples. We
also present our first Microsoft XML Schema document and use Microsoft’s XML Vali-
dator to check it for validity. XML Validator also validates documents against DTDs as
well as schema.

7.3 Microsoft XML Schema: Describing Elements
Elements are the primary building blocks used to create XML documents. In Microsoft
XML Schema, element ElementType defines an element. ElementType contains at-
tributes that describe the element’s content, data type, name, etc.

Portability Tip 7.1
To use Microsoft XML Schema, Microsoft’s XML parser (msxml) is required; this parser is
part of Internet Explorer 5. 7.1

Fig. 7.1 presents a complete schema. This schema describes the structure for an XML
document that marks up messages passed between users. We name the schema intro-
schema.xml. In Fig. 7.2, we show a document that conforms to this schema.

168 Schemas Chapter 7

Line 7

<Schema xmlns = "urn:schemas-microsoft-com:xml-data">

declares the Microsoft XML Schema root element. Element Schema is the root element
for every Microsoft XML Schema document. The xmlns attribute specifies the default
namespace for the Schema element and the elements it contains. The attribute value
urn:schemas-microsoft-com:xml-data specifies the URI for this namespace.
Microsoft Schema documents always use this URI because it is recognized by msxml. Mi-
crosoft’s XML parser recognizes element Schema and this particular namespace URI and
validates the schema. Element Schema can contain only elements ElementType—for
defining elements, AttributeType—for defining attributes and description—for
describing the Schema element. We will discuss each of these elements momentarily.

Lines 8–11

<ElementType name = "message" content = "textOnly"
 model = "closed">
 <description>Text messages</description>
</ElementType>

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 7.2 : intro-schema.xml -->
4 <!-- Microsoft XML Schema showing the ElementType -->
5 <!-- element and element element -->
6
7 <Schema xmlns = "urn:schemas-microsoft-com:xml-data">
8 <ElementType name = "message" content = "textOnly"
9 model = "closed">

10 <description>Text messages</description>
11 </ElementType>
12
13 <ElementType name = "greeting" model = "closed"
14 content = "mixed" order = "many">
15 <element type = "message"/>
16 </ElementType>
17
18 <ElementType name = "myMessage" model = "closed"
19 content = "eltOnly" order = "seq">
20
21 <element type = "greeting" minOccurs = "0"
22 maxOccurs = "1"/>
23 <element type = "message" minOccurs = "1"
24 maxOccurs = "*"/>
25
26 </ElementType>
27 </Schema>

Fig. 7.1 Microsoft XML Schema document.

Chapter 7 Schemas 169

define element message, which can contain only text, because attribute content is
textOnly. Attribute model has the value closed (line 9)—indicating that only ele-
ments declared in this schema are permitted in a conforming XML document. Any ele-
ments not defined in this schema would invalidate the document. We will elaborate on this
when we discuss an XML document that conforms to the schema (Fig. 7.2). Element de-
scription contains text that describe this schema. In this particular case (line 10), we
indicate in the description element that the message element we define is intended
to contain Text messages.

Software Engineering Observation 7.5
Element description provides a means for the schema author to provide information
about a schema to a parser or application using the schema. 7.5

Lines 13–16

<ElementType name = "greeting" model = "closed"
 content = "mixed" order = "many">
 <element type = "message"/>
</ElementType>

define element greeting. Because attribute content has the value mixed, this ele-
ment can contain both elements and character data. The order attribute specifies the num-
ber and order of child elements a greeting element may contain. The value many
indicates that any number of message elements and text can be contained in the greet-
ing element in any order. The element element on line 15 indicates message elements
(defined on lines 8–11) may be included in a greeting element.

Lines 18 and 19

<ElementType name = "myMessage" model = "closed"
 content = "eltOnly" order = "seq">

define element myMessage. The content attribute’s value eltOnly specifies that the
myMessage element can only contain elements. Attribute order has the value seq, in-
dicating that myMessage child elements must occur in the sequence defined in the sche-
ma. Lines 21–24

<element type = "greeting" minOccurs = "0"
 maxOccurs = "1"/>
<element type = "message" minOccurs = "1"
 maxOccurs = "*"/>

indicate that element myMessage contains child elements greeting and message.
These elements are myMessage child elements, because the element elements that ref-
erence them are nested inside element myMessage. Because the element order in element
myMessage is set as sequential, the greeting element (if used) must precede all mes-
sage elements. Attributes minOccurs and maxOccurs specify the minimum and max-
imum number of times the element may appear in the myMessage element, respectively.
The value 1 for the minOccurs attribute (line 23) indicates that element myMessage
must contain at least one message element. The value * for the maxOccurs attribute
(line 24) indicates that there is no limit on the maximum number of message elements
that may appear in myMessage.

170 Schemas Chapter 7

Figure 7.2 shows an XML document that conforms to the schema shown in Fig. 7.1.
We use Microsoft’s XML Validator to check the document’s conformity. It is available as
a free download at

msdn.microsoft.com/downloads/samples/internet/xml/
xml_validator/sample.asp

Line 6

<myMessage xmlns = "x-schema:intro-schema.xml">

references the schema (Fig. 7.1) through the namespace declaration. A document using a
Microsoft XML Schema uses attribute xmlns to reference its schema through a URI which
begins with x-schema followed by a colon (:) and the name of the schema document.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 7.2 : intro.xml -->
4 <!-- Introduction to Microsoft XML Schema -->
5
6 <myMessage xmlns = "x-schema:intro-schema.xml">
7
8 <greeting>Welcome to XML Schema!
9 <message>This is the first message.</message>

10 </greeting>
11
12 <message>This is the second message.</message>
13 </myMessage>

Fig. 7.2 XML document that conforms to intro-schema.xml.

Chapter 7 Schemas 171

Lines 8–10

<greeting>Welcome to XML Schema!
<message>This is the first message.</message>

</greeting>

use element greeting to mark up text and a message element. Recall that in Fig. 7.1,
element greeting (lines 13–16) may contain mixed content. Line 12

<message>This is the second message.</message>

marks up text in a message element. Line 8 in Fig. 7.1 specifies that element message
can contain only text.

In the discussion of Fig. 7.1, we mentioned that a closed model allows an XML
document to contain only those elements defined in its schema. For example, the markup

<greeting>Welcome to XML Schema!
<message>This is the first message.</message>

 <newElement>A new element.</newElement>
</greeting>

uses element newElement, which is not defined in the schema. With a closed model,
the document containing newElement is invalid. However, with an open model, the
document is valid.

Software Engineering Observation 7.6
The open model makes Microsoft XML Schema documents extensible by allowing authors
to add elements to documents without invalidating a document. 7.6

Figure 7.3 shows a well-formed document that fails to conform to the schema shown
in Fig. 7.1, because element message cannot contain child elements.

Figure 7.4 lists the available attributes for the ElementType element. Schema
authors use these attributes to specify the properties of an element, such as its content, data
type, name, etc.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 7.3 : intro2.xml -->
4 <!-- An invalid document -->
5
6 <myMessage xmlns = "x-schema:intro-schema.xml">
7
8 <greeting>Welcome to XML Schema!</greeting>
9

10 <message>This is a message that contains another message.
11 <message>This is the inner message.</message>
12 </message>
13
14 </myMessage>

Fig. 7.3 Well-formed, but invalid XML document (part 1 of 2).

172 Schemas Chapter 7

If the content attribute for an ElementType element has the value eltOnly or
mixed content, the ElementType may only contain the elements listed in Fig. 7.5.

Attribute Name Description

content Describes the element’s content. The valid values for this attribute are empty
(an empty element), eltOnly (may contain only elements), textOnly
(may contain only text) and mixed (may contain both elements and text).
The default value for this attribute is mixed.

dt:type Defines the element’s data type. Data types exist for real numbers, integers,
booleans, etc. Namespace prefix dt qualifies data types. We discuss data
types in detail in Section 7.5.

name The element’s name. This is a required attribute.

model Specifies whether elements not defined in the schema are permitted in the ele-
ment. Valid values are open (the default, which permits the inclusion of ele-
ments defined outside the schema) and closed (only elements defined inside
the schema are permitted). We use only closed models.

order Specifies the order in which child elements must occur. The valid values for
this attribute are one (exactly one child element is permitted), seq (child ele-
ments must appear in the order in which they are defined) and many (child
elements can appear in any order, any number of times). The default value is
many if attribute content is mixed and is seq if attribute content has
the value eltOnly.

Fig. 7.4 ElementType element attributes.

Fig. 7.3 Well-formed, but invalid XML document (part 2 of 2).

Chapter 7 Schemas 173

Good Programming Practice 7.1
Although the ElementType attributes have default values, explicitly writing the attribute
and its value improves the schema’s readability. 7.1

The element element does not define an element, but rather refers to an element
defined by an ElementType. This allows the schema author to define an element once
and refer to it from many places inside the schema document. The attributes of the ele-
ment element are listed in Fig. 7.6.

Good Programming Practice 7.2
Although 1 is the default value for attributes minOccurs and maxOccurs, explicitly writ-
ing the attribute and its value improves the schema’s readability. 7.2

As mentioned in Fig. 7.5, element group creates groups of element elements.
Groups define the order and frequency in which elements appear using the attributes listed
in Fig. 7.7.

Element Name Description

description Provides a description of the ElementType.

datatype Specifies the data type for the ElementType element. We will discuss
data types in Section 7.5.

element Specifies a child element by name.

group Groups related element elements and defines their order and frequency.

AttributeType Defines an attribute.

attribute Specifies an AttributeType for an element.

Fig. 7.5 Element ElementType’s child elements.

Attribute Name Description

type A required attribute that specifies a child element’s name (i.e., the name
defined in the ElementType).

minOccurs Specifies the minimum number of occurrences an element can have. The
valid values are 0 (the element is optional) and 1 (the element must occur
one or more times). The default value is 1.

maxOccurs Specifies the maximum number of occurrences an element can have. The
valid values are 1 (the element occurs at most once) and * (the element can
occur any number of times). The default value is 1 unless the Element-
Type’s content attribute is mixed.

Fig. 7.6 Element element attributes.

174 Schemas Chapter 7

7.4 Microsoft XML Schema: Describing Attributes
XML elements can contain attributes that describe elements. In Microsoft XML Schema,
element AttributeType defines attributes. Figure 7.8 lists AttributeType element
attributes.

Like element ElementType element, element AttributeType may contain
description elements and datatype elements.

To indicate that an element has an AttributeType, element attribute is used.
The attributes of the attribute element are shown in Fig. 7.9.

Figure 7.10 is a schema for a contact list document that contains a person’s name,
address and phone number(s).

Attribute Name Description

order Specifies the order in which the elements occur. The valid values are one
(contains exactly one child element from the group), seq (all child ele-
ments must appear in the sequential order in which they are listed) and
many (the child elements can appear in any order, any number of times).

minOccurs Specifies the minimum number of occurrences an element can have. The
valid values are 0 (the element is optional) and 1 (the element must occur at
least once). The default value is 1.

maxOccurs Specifies the maximum number of occurrences an element can have. The
valid values are 1 (the element occurs at most once) and * (the element can
occur any number of times). The default value is 1 unless the
ElementType’s content attribute is mixed.

Fig. 7.7 Element group’s attributes.

Attribute Name Description

default Specifies the attribute’s default value.

dt:type Defines the element’s data type. Data types exist for real numbers, integers,
booleans, enumerations (i.e., a series of values from which one can be
selected), etc. Namespace prefix dt qualifies data types. We discuss data
types in detail in Section 7.5.

dt:values Contains an enumeration data type’s values. We discuss the enumeration
data type in Section 7.5.

name The attribute name. This is a required attribute.

required Indicates whether the attribute is required. The valid values for this attribute
are yes and no. The default value is no.

Fig. 7.8 Element AttributeType’s attributes.

Chapter 7 Schemas 175

Attribute Name Description

default Specifies the attribute’s default value. This value overrides the value defined
in the AttributeType element.

type Specifies the name of the AttributeType for the attribute. This is a
required attribute.

required Indicates whether the attribute is required. Valid values for this attribute are
yes and no. The default value is no.

Fig. 7.9 Element attribute’s attributes.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 7.10 : contact-schema.xml -->
4 <!-- Defining attributes -->
5
6 <Schema xmlns = "urn:schemas-microsoft-com:xml-data">
7
8 <ElementType name = "contact" content = "eltOnly" order = "seq"
9 model = "closed">

10
11 <AttributeType name = "owner" required = "yes"/>
12 <attribute type = "owner"/>
13
14 <element type = "name"/>
15 <element type = "address1"/>
16 <element type = "address2" minOccurs = "0" maxOccurs = "1"/>
17 <element type = "city"/>
18 <element type = "state"/>
19 <element type = "zip"/>
20 <element type = "phone" minOccurs = "0" maxOccurs = "*"/>
21 </ElementType>
22
23 <ElementType name = "name" content = "textOnly"
24 model = "closed"/>
25
26 <ElementType name = "address1" content = "textOnly"
27 model = "closed"/>
28
29 <ElementType name = "address2" content = "textOnly"
30 model = "closed"/>
31
32 <ElementType name = "city" content = "textOnly"
33 model = "closed"/>
34
35 <ElementType name = "state" content = "textOnly"
36 model = "closed"/>

Fig. 7.10 Demonstrating AttributeType and attribute (part 1 of 2).

176 Schemas Chapter 7

Line 6

<Schema xmlns = "urn:schemas-microsoft-com:xml-data">

specifies the default namespace for the URI.
Lines 11 and 12

<AttributeType name = "owner" required = "yes"/>
<attribute type = "owner"/>

define the contact element attribute owner. The AttributeType element (line 11)
defines the properties of the attribute (e.g., its name). An attribute element creates an
attribute with a specific AttributeType for an element. The name of the At-
tributeType is referenced in the type attribute of the attribute element (line 12).
In this particular case, line 12 indicates that element contact has an owner attribute.

Lines 40–43

<ElementType name = "phone" content = "textOnly" model =
"closed">

<AttributeType name = "location" default = "home"/>
<attribute type = "location"/>

</ElementType>

define element phone, which can contain textOnly and has one attribute named lo-
cation. If location is omitted, "home" is the default.

An XML document that conforms to the contact list schema (Fig. 7.10) is shown in
Fig. 7.11.

37
38 <ElementType name = "zip" content = "textOnly" model = "closed"/>
39
40 <ElementType name = "phone" content = "textOnly" model = "closed">
41 <AttributeType name = "location" default = "home"/>
42 <attribute type = "location"/>
43 </ElementType>
44
45 </Schema>

Fig. 7.10 Demonstrating AttributeType and attribute (part 2 of 2).

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 7.11 : contact.xml -->
4 <!-- A contact list marked up as XML -->
5
6 <contact owner = "Bob Smith" xmlns = "x-schema:contact-schema.xml">
7 <name>Jane Doe</name>
8 <address1>123 Main St.</address1>
9 <city>Sometown</city>

Fig. 7.11 Contact list that conforms to contact-schema.xml (part 1 of 2).

Chapter 7 Schemas 177

7.5 Microsoft XML Schema: Data Types
One important schema feature is the ability to indicate the type of content an element or
attribute contains—something not possible with DTDs, which treat element and attribute
content as text.

To use data types, namespace prefix dt is defined (by the document author) and
assigned the URI urn:schemas-microsoft-com:datatypes. A wide variety of
data types exists, some of which are listed in Fig. 7.12. For a complete list of data types visit

msdn.microsoft.com/xml/reference/schema/datatypes.asp

Good Programming Practice 7.3
By convention, Microsoft XML Schema authors use namespace prefix dt when referring to
the URI urn:schemas-microsoft-com:datatypes. 7.3

10 <state>Somestate</state>
11 <zip>12345</zip>
12 <phone>617-555-1234</phone>
13 <phone location = "work">978-555-4321</phone>
14 </contact>

Fig. 7.11 Contact list that conforms to contact-schema.xml (part 2 of 2).

Data Type Description

boolean 0 (false) or 1 (true).

char A single character (e.g., "D").

string A series of characters (e.g., "Deitel").

Fig. 7.12 Some Microsoft XML Schema data types (part 1 of 2).

178 Schemas Chapter 7

Figure 7.13 is a schema for an XML document containing book shipping information.

float A real number (e.g., 123.4567890).

int A whole number (e.g., 5).

date A date formatted as YYYY-MM-DD (e.g., 2000-04-25).

time A time formatted as HH-MM-SS (e.g., 14:30:00).

id Text that uniquely identifies an element or attribute.

idref A reference to an id.

enumeration A series of values from which only one may be chosen.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 7.13 : id-schema.xml -->
4 <!-- Using datatype ID -->
5
6 <Schema xmlns = "urn:schemas-microsoft-com:xml-data"
7 xmlns:dt = "urn:schemas-microsoft-com:datatypes">
8
9 <ElementType name = "bookstore" content = "eltOnly"

10 order = "many" model = "closed">
11
12 <element type = "shipping"/>
13 <element type = "book"/>
14 </ElementType>
15
16 <ElementType name = "shipping" content = "eltOnly" order = "seq"
17 model = "closed">
18
19 <AttributeType name = "shipID" dt:type = "id"
20 required = "yes"/>
21 <attribute type = "shipID"/>
22
23 <element type = "duration"/>
24 </ElementType>
25
26 <ElementType name = "duration" content = "textOnly"
27 model = "closed" dt:type = "date"/>
28
29 <ElementType name = "book" content = "textOnly" model = "closed"
30 dt:type = "string">
31

Fig. 7.13 Using Microsoft XML Schema data types (part 1 of 2).

Data Type Description

Fig. 7.12 Some Microsoft XML Schema data types (part 2 of 2).

Chapter 7 Schemas 179

Lines 19 and 20

<AttributeType name = "shipID" dt:type = "id"
 required = "yes"/>

assigns attribute dt:type the value id. This defines attribute shipID as the unique
identifier for element shipping.

Lines 29 and 30

<ElementType name = "book" content = "textOnly" model = "closed"
 dt:type = "string">

define element book, which can contain only text. This element’s content has data
type string. Line 32

<AttributeType name = "shippedBy" dt:type = "idref"/>

specifies attribute shippedBy’s data type as idref—which indicates that attribute
shippedBy must be assigned an attribute declared with type id.

Figure 7.14 shows an XML document that conforms to Fig. 7.13’s schema.

32 <AttributeType name = "shippedBy" dt:type = "idref"/>
33 <attribute type = "shippedBy"/>
34 </ElementType>
35
36 </Schema>

Fig. 7.13 Using Microsoft XML Schema data types (part 2 of 2).

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 7.14 : id.xml -->
4 <!-- Demonstrating ID and IDREF -->
5
6 <bookstore xmlns = "x-schema:id-schema.xml">
7 <shipping shipID = "s1">
8 <duration>2000-08-01</duration>
9 </shipping>

10
11 <shipping shipID = "s2">
12 <duration>2000-08-20</duration>
13 </shipping>
14
15 <book shippedBy = "s1">
16 Java How to Program 3rd edition.
17 </book>
18
19 <book shippedBy = "s2">
20 C How to Program 3rd edition.
21 </book>

Fig. 7.14 XML document conforming to id-schema.xml (part 1 of 2).

180 Schemas Chapter 7

Lines 7–13 contain two shipping elements with the unique identifiers s1 and s2.
Each of these elements contains a duration element that marks up a date. The book ele-
ments (lines 15–25) use the shippedBy attribute to reference the unique identifiers s1
and s2. Recall that the schema requires attribute shippedBy to have an idref data type.

Figure 7.15 shows the result of validating the XML document of Fig. 7.14 when
shippedBy is assigned a value other than s1 or s2.

Fig. 7.15 Invalid XML document.

22
23 <book shippedBy = "s2">
24 C++ How to Program 3rd edition.
25 </book>
26 </bookstore>

Fig. 7.14 XML document conforming to id-schema.xml (part 2 of 2).

Chapter 7 Schemas 181

Figure 7.16 presents another schema that might be used to validate a document that
marks up a book retailer’s inventory. In this example, every element (e.g., name, price,
etc.) that contains character data has a data type. Element book (line 14) has attributes
isbn and inStock. Attribute inStock (line 21) is an enumeration, which is
assigned either yes or no. The value no is the default.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 7.16 : inventory-schema.xml -->
4 <!-- Data type example -->
5
6 <Schema xmlns = "urn:schemas-microsoft-com:xml-data"
7 xmlns:dt = "urn:schemas-microsoft-com:datatypes">
8
9 <ElementType name = "inventory" content = "eltOnly"

10 model = "closed">
11 <element type = "book" minOccurs = "0" maxOccurs = "*"/>
12 </ElementType>
13
14 <ElementType name = "book" content = "eltOnly" order = "seq"
15 model = "closed">
16
17 <AttributeType name = "isbn" dt:type = "string"
18 required = "yes"/>
19 <attribute type = "isbn"/>
20
21 <AttributeType name = "inStock" dt:type = "enumeration"
22 dt:values = "yes no" default = "no"/>
23 <attribute type = "inStock"/>
24
25 <element type = "name"/>
26 <element type = "price"/>
27
28 <group order = "one">
29 <element type = "quantity"/>
30 <element type = "available"/>
31 </group>
32 </ElementType>
33
34 <ElementType name = "name" content = "textOnly" model = "closed"
35 dt:type = "string"/>
36
37 <ElementType name = "price" content = "textOnly" model = "closed"
38 dt:type = "float"/>
39
40 <ElementType name = "quantity" content = "textOnly"
41 dt:type = "int" model = "closed"/>
42
43 <ElementType name = "available" content = "textOnly"
44 dt:type = "date" model = "closed"/>
45 </Schema>

Fig. 7.16 Schema for an inventory document.

182 Schemas Chapter 7

Lines 28–31

<group order = "one">
 <element type = "quantity"/>
 <element type = "available"/>
</group>

group elements quantity and available. Only one of these two elements can be
used in a book element—not both. A book element must contain either quantity or
available, indicating that books are either in stock or available on a certain date.

Figure 7.17 shows an XML document that conforms to the schema shown in Fig. 7.16.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 7.17 : inventory.xml -->
4 <!-- Data type example -->
5
6 <inventory xmlns = "x-schema:inventory-schema.xml">
7 <book isbn = "0-13-012507-5" inStock = "yes">
8 <name>Java How to Program 3/e</name>
9 <price>68.00</price>

10 <quantity>200</quantity>
11 </book>
12
13 <book isbn = "0-13-028418-1" inStock = "no">
14 <name>Perl How to Program</name>
15 <price>68.00</price>
16 <available>2000-12-15</available>
17 </book>
18 </inventory>

Fig. 7.17 XML document conforming to inventory-schema.xml.

Chapter 7 Schemas 183

The first book (lines 7–11) in the inventory has 200 books in stock. The second
book (lines 13–17) is not in stock, but will be available on December 15, 2000.

For additional information about Microsoft XML Schema, visit

msdn.microsoft.com/xml/reference/schema/start.asp

7.6 W3C XML Schema
The W3C is developing an XML Schema specification, which is a Candidate Recommen-
dation (i.e., the last step in the recommendation process) at the time of this writing. For the
latest specification of W3C XML Schema, visit www.w3.org/XML/Schema. [Note: Be-
cause W3C XML Schema was only a Candidate Recommendation at the time of this writ-
ing, the syntax presented here is subject to change.]

Figure 7.18 shows the equivalent W3C XML Schema (i.e., xml-schema.xsd) of
the Microsoft XML Schema (i.e., intro-schema.xml) in Fig. 7.5. Although virtually
any filename extension may be used, Microsoft XML Schema documents commonly use
the .xml extension and W3C XML Schema commonly use the .xsd extension.

W3C XML Schema use the URI http://www.w3.org/2000/10/XMLSchema
and namespace prefix xsd. Root element schema contains the document definitions.

In W3C XML Schema, element element (line 7) defines elements. Attributes name
and type specify the element’s name and data type, respectively. Attribute ref (line
12) references the existing element definition for message. This indicates that
greeting can have element message as a child element.

1 <?xml version = "1.0"?>
2
3 <!-- Figure 7.20 : xml-schema.xsd -->
4 <!-- Example W3C XML Schema -->
5
6 <xsd:schema xmlns:xsd = "http://www.w3.org/2000/10/XMLSchema">
7 <xsd:element name = "message" type = "xsd:string"/>
8
9 <xsd:element name = "greeting" type = "greetingType"/>

10
11 <xsd:complexType name = "greetingType" content = "mixed">
12 <xsd:element ref = "message"/>
13 </xsd:complexType>
14
15 <xsd:element name = "myMessage" type = "myMessageType"/>
16
17 <xsd:complexType name = "myMessageType">
18 <xsd:element ref = "greeting" minOccurs = "0"
19 maxOccurs = "1"/>
20 <xsd:element ref = "message" minOccurs = "1"
21 maxOccurs = "unbounded"/>
22 </xsd:complexType>
23 </xsd:schema>

Fig. 7.18 W3C XML Schema document.

184 Schemas Chapter 7

When an element has a type such as string, it is prohibited from containing
attributes and child elements. Any element (e.g., greeting in line 9) that contains
attributes or child elements, must define a type—called a complex type—that defines each
attribute and child element. Lines 11–13 use element complexType to define an element
type that has mixed content. The element named greeting (line 9) specifies the
name of this complexType in its type attribute to indicate element greeting con-
tains mixed content.

Lines 17–22 use element complexType to create an element that contains an
optional greeting element followed by one or more message elements. Attribute
maxOccurs with the value unbounded (line 21) indicates that there is no limit on the
maximum number of message elements contained in a myMessage element.

Figure 7.19 shows an XML document that conforms to Fig. 7.18’s schema. We use
Icon Information-Systems’ XML development environment (XML Spy 3.0) for validation.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 7.19 : intro3.xml -->
4 <!-- Introduction to W3C XML Schema -->
5
6 <myMessage
7 xmlns:xsd = "http://www.w3.org/2000/10/XMLSchema-instance"
8 xsd:noNamespaceSchemaLocation = "xml-schema.xsd">
9

10 <greeting>Welcome to W3C XML Schema!</greeting>
11 <message>This is a message.</message>
12 <message>This is another message.</message>
13
14 </myMessage>

Fig. 7.19 Document that conforms to xml-schema.xsd (part 1 of 2).

(Courtesy of Icon Information

Chapter 7 Schemas 185

A 30-day trial version of XML Spy 3.0 is available at no charge from
www.xmlspy.com/download.html. [Note: In Chapter 8, we introduce Apache’s
Xerces parser, which also validates an XML document against a W3C Schema.]

Software Engineering Observation 7.7
Independent Software Venders (ISVs) such as Oracle, Apache Foundation Organization, etc.
are beginning to provide parsers that support W3C XML Schema. 7.7

Good Programming Practice 7.4
By convention, W3C XML Schema authors use namespace prefix xsd when referring to the
URI http://www.w3.org/2000/10/XMLSchema. 7.4

7.7 Case Study: Writing a Microsoft XML Schema for the Day
Planner Application
Figure 7.20 is a Microsoft XML Schema for the day planner introduced in Chapter 5.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 7.20 : planner-schema.xml -->
4 <!-- Microsoft XML Schema for day planner -->
5
6 <Schema xmlns = "urn:schemas-microsoft-com:xml-data"
7 xmlns:dt = "urn:schemas-microsoft-com:datatypes">
8
9 <ElementType name = "planner" content = "eltOnly"

10 model = "closed">
11 <element type = "year" minOccurs = "0" maxOccurs = "*"/>
12 </ElementType>
13
14 <ElementType name = "year" content = "eltOnly" model = "closed">
15 <AttributeType name = "value" dt:type = "int"/>
16 <attribute type = "value"/>
17 <element type = "date" minOccurs = "0" maxOccurs = "*"/>
18 </ElementType>
19
20 <ElementType name = "date" content = "eltOnly" model = "closed">
21 <AttributeType name = "month" dt:type = "int"/>
22 <attribute type = "month"/>
23
24 <AttributeType name = "day" dt:type = "int"/>
25 <attribute type = "day"/>
26
27 <element type = "note" minOccurs = "0" maxOccurs = "*"/>
28 </ElementType>
29
30 <ElementType name = "note" content = "textOnly" model = "closed"
31 dt:type = "string">
32
33 <AttributeType name = "time" dt:type = "int"/>
34 <attribute type = "time"/>
35 </ElementType>

Fig. 7.20 Microsoft XML Schema for dayplanner.xml (part 1 of 2).

186 Schemas Chapter 7

Because years, months and days are whole number values, they are defined as ints in
lines 15, 21 and 24, respectively. We also define time (line 33), which stores the time as
an int. We do not use the date or time data types because we use our own format (i.e.,
int) for dates and times.

Figure 7.21 shows an XML document that conforms to the Microsoft XML Schema of
Fig. 7.20.

7.8 Internet and World Wide Web Resources
msdn.microsoft.com/xml/xmlguide/schema-overview.asp
The Microsoft Schema Developer’s Guide provides an extensive coverage of schemas from a basic
introduction to advanced definitions and uses.

msdn.microsoft.com/xml/reference/schema/start.asp
The Microsoft XML Schema Reference contains an introduction to schema.

36
37 </Schema>

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 7.21 : planner.xml -->
4 <!-- Day Planner XML document -->
5
6 <planner xmlns = "x-schema:planner-schema.xml">
7 <year value = "2000">
8 <date month = "7" day = "15">
9 <note time = "1430">Doctor's appointment</note>

10 <note time = "1620">Physics class at BH291C</note>
11 </date>
12
13 <date month = "7" day = "4">
14 <note>Independance Day</note>
15 </date>
16
17 <date month = "7" day = "20">
18 <note time = "0900">General Meeting in room 32-A</note>
19 </date>
20
21 <date month = "7" day = "20">
22 <note time = "1900">Party at Joe's</note>
23 </date>
24
25 <date month = "7" day = "20">
26 <note time = "1300">Financial Meeting in room 14-C</note>
27 </date>
28 </year>
29 </planner>

Fig. 7.21 Day planner XML document that conforms to Fig. 7.20 (part 1 of 2).

Fig. 7.20 Microsoft XML Schema for dayplanner.xml (part 2 of 2).

Chapter 7 Schemas 187

msdn.microsoft.com/downloads/samples/internet/xml/xml_validator/
sample.asp
The Microsoft XML Schema Validator can be used with both schemas and DTDs.

msdn.microsoft.com/xml/reference/schema/datatypes.asp
Provides a list of Microsoft XML Schema data types.

www.w3.org/XML/Schema
The W3C XML Schema Primer provides a succinct introduction to W3C XML Schemas.

www.DTD.com
Provides a schema/DTD repository for a wide range of technologies. Provides a Web-based program
named DTDFactory from which DTDs can be created, edited and saved to disk. DTDFactory allows
DTD authors to submit DTDs they create to the repository. In the future, a Web-based program named
SchemaFactory will be implemented for creating and editing W3C Schema.

www.xmlspy.com/download.html
Download for XML Spy 3.0 development environment. A 30-day trial version is available at this site.

www.extensibility.com
Home page for the XML Authority W3C Schema and DTD editor.

www.xmlschema.com
Provides various resources for creating and validating W3C schema.

SUMMARY
• A DTD cannot be manipulated (e.g., searched, transformed into a different representation such as

HTML, etc.) in the same manner as an XML document—because it is not an XML document.

Fig. 7.21 Day planner XML document that conforms to Fig. 7.20 (part 2 of 2).

188 Schemas Chapter 7

• XML schemas are an alternative for validating XML documents. DTDs and schemas need validat-
ing parsers. Schemas are an emerging technology that is expected to eventually replace DTDs as
the primary means of describing XML document structure.

• Two major schema models exist: W3C XML Schema and Microsoft XML Schema. W3C XML
Schema is still in the early stages of development; Microsoft XML Schema is well defined.

• An XML document that conforms to a schema document is schema valid; a document that does
not conform is invalid.

• Schema do not use the Extended Backus-Naur Form (EBNF) grammar, but use XML syntax and
can be manipulated (e.g., elements can be added, removed, etc.) as with any other XML document.

• Elements are the primary building blocks used to create XML documents. In Microsoft XML
Schema, element ElementType defines elements. Because it is an element, ElementType
may contain attributes that describe the element’s content, data type, name, etc.

• Element element does not define an element, but rather refers to an element defined by Ele-
mentType. This allows the schema author to define an element once and refer to it from poten-
tially many places inside the schema document.

• Element Schema is the root element for every Microsoft XML Schema document. Keyword
xmlns specifies the namespace (i.e., urn:schemas-microsoft-com:xml-data) used by
Schema and its child elements.

• Microsoft’s XML parser automatically recognizes element Schema and its namespace URI, and
validates the schema. Element Schema can contain elements ElementType—for defining ele-
ments, AttributeType—for defining attributes and description—for describing the
Schema element.

• Attribute content specifies the content allowed in an element or attribute.

• Attribute model specifies whether elements can contain elements not defined in the schema. Any
elements not defined in the schema invalidate the document. Assigning model a value of open
indicates that definitions not defined in the schema are permitted. Assigning model a value of
closed specifies that elements defined only in the schema are permitted.

• Element description contains any text the document author chooses to describe the schema
document.

• When attribute content is mixed, an element can contain both elements and character data.

• When attribute order is assigned many, any number of child elements and text can be com-
bined—in any order.

• When attribute order is assigned seq, child elements must occur in sequential order.

• A document using a Microsoft XML Schema references the schema through a URI that begins
with x-schema, followed by a colon (:) and the name of the schema document.

• XML elements can contain attributes that provide additional information for describing elements.
In Microsoft XML Schema, element AttributeType defines attributes.

• Element AttributeType can contain description elements and datatype elements.

• To indicate that an element has an AttributeType, element attribute is used.

• One important schema feature is the ability to indicate the type of content an element or attribute
has—something not possible with DTDs, which treat content as text.

• To use data types in Microsoft XML Schema, namespace prefix dt is defined and assigned the
URI urn:schemas-microsoft-com:datatypes. A wide variety of data types exists.

• The W3C is developing an XML Schema specification, which is at the time of this writing a W3C
Candidate Recommendation.

Chapter 7 Schemas 189

• Although virtually any extension may be used, Microsoft XML Schema documents commonly use
the .xml extension and W3C XML Schema documents commonly use the.xsd extension.

• W3C XML Schema use the URI http://www.w3.org/2000/10/XMLSchema and
namespace prefix xsd. Root element schema contains the document definitions.

• In W3C XML Schema documents, element element defines elements. Attributes name and
type specify the element’s name and data type, respectively. Attribute ref references an ex-
isting element definition.

• When an element has a type such as string (in W3C XML Schema), it is prohibited from containing
attributes and child elements. Any element that contains attributes or child elements, must define
a type—called a complex type—that defines each attribute and child element.

TERMINOLOGY
attribute invalid
attribute element many
AttributeType element maximum occurrence
boolean maxOccurs
char Microsoft XML Schema
character Microsoft XML Validator
character string minOccurs
child element minimum occurrence
closed mixed
complexType element model
contents name attribute of ElementType element
content order notation
data types NOTATION type
default namespace real number
default value repositories
description element required attribute
document type definition (DTD) root element
dt namespace prefix schema element in W3C XML Schema
dt:type Schema element in Microsoft XML Schema
dt:values schema valid
element element
element type

urn:schemas-microsoft-com:xml-
data

ElementType element seq
eltOnly string
empty text data
empty element textOnly
enumeration time
group type
http://www.w3.org/2000/10/
XMLSchema URI

urn:schemas-microsoft-
com:datatypes

id W3C Candidate Recommendation
idref x-schema URI prefix
int .xsd filename extension
integer xsd namespace prefix

190 Schemas Chapter 7

SELF-REVIEW EXERCISES
7.1 State whether the following are true or false. If false, explain why.

a) Web site authors can define data types and constraints for the contents of an element us-
ing schemas.

b) An application can use a schema to validate a document’s contents, but not its structure.
c) Microsoft XML Schema provide a means for defining the structure of HTML documents.
d) The element ElementType is used to define elements using a Microsoft XML Schema.
e) The collect element is used to group a set of element elements together.
f) The AttributeType element defines an attribute type, which is referred to by the at-

tribute element.
g) An enumeration is a list of possible values for an attribute.
h) Element AttributeType is identical to element ElementType, except for the fact

that it cannot contain description elements and datatype elements.
i) The dt:type attribute and the datatype element are each designed for use in specific

locations in an XML document.
j) Any parser can be used to validate an XML document against a Microsoft W3C Schema.

7.2 Fill in the blanks in each of the following statements.
a) If the content of a document conforms to a schema, then the document is said to be

.
b) The root element of a Microsoft XML Schema document is the element.
c) Element Schema can contain ElementType, AttributeType and

elements.
d) Valid values for ElementType’s content attribute include empty, eltOnly,

 and .
e) Element is the root element for all W3C Schema documents.
f) Element element’s attribute specifies the maximum occurrences a child

element can have.
g) Attributes can be created in Microsoft XML schema using the element.
h) In Microsoft Schema documents, namespace prefix dt is defined with the URI

uri:schemas-microsoft-com: .
i) Data type indicates a real number, like 5.3672887.
j) Element AttributeType’s attribute contains enumeration values.

ANSWERS TO SELF-REVIEW EXERCISES
7.1 a) True. b) False. An application can use a schema to validate the contents of an XML doc-
ument, in addition to the document’s structure. c) False. Microsoft XML Schema provide a means for
defining the structure of XML documents. d) True. e) False. The group element is used to group a
set of element elements together. f) True. g) True. h) False. Element AttributeType is similar
to element ElementType in that they can both contain the description and datatype ele-
ments. i) False. The dt:type attribute and the datatype element can be used interchangeably in
an element type of attribute type. j) False. Only msxml can be used.

7.2 a) schema valid. b) Schema. c) description. d) textOnly, mixed. e) schema. f)
maxOccurs. g) AttributeType. h) datatypes. i) float. j) dt:values.

EXERCISES
7.3 Write a Microsoft XML Schema document for the XML document in Fig. 7.2 that would al-
low element note to be a child element of element myMessage. Element note can contain only
text. Validate your document using Microsoft XML Validator.

Chapter 7 Schemas 191

7.4 Write a schema to validate the XML document shown in Fig. 7.22. This XML document con-
tains information about products in a grocery store. Each product is represented by a product ele-
ment that contains the name, manufacturer, quantity and price of the product. Each product has a
unique ID and is categorized as either perishable or nonperishable. If the product is perishable, it con-
tains a food element. Element food contains the expiration date and nutrition facts. Nutrition facts
describe the amount of proteins, fats and calcium in the food. If the product is nonperishable, it con-
tains details of the stock available in one or more warehouses. A warehouse element has a unique ID
and contains a description of the warehouse, along with product stock available at the warehouse.

1 <?xml version = "1.0"?>
2
3 <!-- Exercise 7.4 : exer07_4.xml -->
4
5 <products xmlns = "x-schema:exer07_4-schema.xml">
6
7 <product id = "p12" perishable = "yes">
8 <name>Ice cream</name>
9 <manufacturer>xsz Co.</manufacturer>

10 <quantity>25</quantity>
11 <price>2</price>
12
13 <food>
14 <nutrition>
15 <calcium>10.30</calcium>
16 <proteins>35.5</proteins>
17 <fat>10</fat>
18 </nutrition>
19
20 <expirationDate>2000-09-12</expirationDate>
21 </food>
22 </product>
23
24 <product id = "p13" perishable = "no">
25 <name>AA Battries</name>
26 <manufacturer>DCells</manufacturer>
27 <quantity>100</quantity>
28 <price>4</price>
29
30 <stock>
31 <warehouse id = "w12">
32 xsz warehouse
33 <stock>25000</stock>
34 </warehouse>
35
36 <warehouse id = "w13">
37 rza warehouse
38 <stock>5000</stock>
39 </warehouse>
40 </stock>
41
42 </product>
43 </products>

Fig. 7.22 XML document containing food product information.

8
Document Object Model

(DOM™)

Objectives
• To understand what the Document Object Model is.
• To understand and be able to use the major DOM

features.
• To use JavaScript to manipulate an XML document.
• To use Java to manipulate an XML document.
• To become familiar with DOM-based parsers.
Knowing trees, I understand the meaning of patience.
Knowing grass, I can appreciate persistence.
Hal Borland

There was a child went forth every day,
And the first object he look’d upon, that object he became.
Walt Whitman

I think that I shall never see
A poem lovely as a tree.
Joyce Kilmer

Chapter 8 Document Object Model (DOM™) 193

8.1 Introduction
In previous chapters, we concentrated on basic XML markup and documents (e.g., DTDs
and schema) for validating XML documents. In this chapter, we focus on manipulating the
contents of an XML document.

XML documents, when parsed, are represented as a hierarchical tree structure in
memory. This tree structure contains the document’s elements, attributes, content, etc.
XML was designed to be a live, dynamic technology—a programmer can modify the con-
tents of the tree structure, which essentially allows the programmer to add data, remove
data, query for data, etc. in a manner similar to a database.

The W3C provides a standard recommendation for building a tree structure in memory
for XML documents called the XML Document Object Model (DOM). Any parser that
adheres to this recommendation is called a DOM-based parser. Each element, attribute,
CDATA section, etc., in an XML document is represented by a node in the DOM tree. For
example, the simple XML document

<?xml version = "1.0"?>
<message from = "Paul" to = "Tem">

<body>Hi, Tem!</body>
</message>

results in a DOM tree with several nodes. One node is created for the message element.
This node has a child node that corresponds to the body element. The body element also
has a child node that corresponds to the text Hi, Tem!. The from and to attributes of the
message element also have corresponding nodes in the DOM tree.

A DOM-based parser exposes (i.e., makes available) a programmatic library—called
the DOM Application Programming Interface (API)—that allows data in an XML docu-
ment to be accessed and modified by manipulating the nodes in a DOM tree.

Portability Tip 8.1
The DOM interfaces for creating and manipulating XML documents are platform and lan-
guage independent. DOM parsers exist for many different languages, including Java, C,
C++, Python and Perl. 8.1

Outline
8.1 Introduction
8.2 DOM Implementations
8.3 DOM with JavaScript
8.4 Setup
8.5 DOM Components
8.6 Creating Nodes
8.7 Traversing the DOM
8.8 Case Study: Modifying the Day Planner Application to Use the DOM
8.9 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises •
Exercises

194 Document Object Model (DOM™) Chapter 8

Another API—JDOM—provides a higher-level API than the W3C DOM for working
with XML documents in Java. Because JDOM is an API that is specific to the Java pro-
gramming language, it can take advantage of features in Java that make it easier to program.
JDOM is still in the early stages of development, therefore we do not discuss it in this
Chapter. Visit www.jdom.org for more information on the JDOM API.

In order to use the DOM API, programming experience is required. Although the
DOM API is available in many languages (e.g., C, Java, VBScript, etc.), we use JavaScript
and Java in this chapter. [Note: Chapter 27 provides a concise introduction to Java.]

8.2 DOM Implementations
DOM-based parsers are written in a variety of programming languages and are usually
available for download at no charge. Many applications (such as Internet Explorer 5) have
built-in parsers. Figure 8.1 lists six different DOM-based parsers that are available at no
charge. In this chapter, we use Microsoft’s msxml and Sun Microsystem’s JAXP parsers.

8.3 DOM with JavaScript
To introduce document manipulation with the XML Document Object Model, we begin
with a simple scripting example that uses JavaScript and Microsoft’s msxml parser. This
example takes an XML document (Fig. 8.2) that marks up an article and uses the DOM API
to display the document’s element names and values. Figure 8.3 lists the JavaScript code
that manipulates this XML document and displays its content in an HTML page.

Line 15

<script type = "text/javascript" language = "JavaScript">

Parser Description

JAXP Sun Microsystem’s Java API for XML Parsing (JAXP) is available at no charge
from java.sun.com/xml.

XML4J IBM’s XML Parser for Java (XML4J) is available at no charge from
www.alphaworks.ibm.com/tech/xml4j.

Xerces Apache’s Xerces Java Parser is available at no charge from
xml.apache.org/xerces.

msxml Microsoft’s XML parser (msxml) version 2.0 is built-into Internet Explorer 5.5.
Version 3.0 is also available at no charge from msdn.microsoft.com/
xml.

4DOM 4DOM is a parser for the Python programming language and is available at no
charge from fourthought.com/4Suite/4DOM.

XML::DOM XML::DOM is a Perl module that we use in Chapter 17 to manipulate XML
documents using Perl. For additional information, visit
www-4.ibm.com/software/developer/library/xml-perl2.

Fig. 8.1 Some DOM-based parsers.

Chapter 8 Document Object Model (DOM™) 195

is the opening script tag, which allows the document author to include scripting code.
Attribute type indicates that the script element is of media type text/javascript.
JavaScript is the most popular client-side (e.g., browser) scripting language used in indus-
try. If the browser does not support JavaScript, script’s contents are treated as text. At-
tribute language indicates to the browser that the script is written in the JavaScript
scripting language.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 8.2: article.xml -->
4 <!-- Article formatted with XML -->
5
6 <article>
7
8 <title>Simple XML</title>
9

10 <date>December 6, 2000</date>
11
12 <author>
13 <fname>Tem</fname>
14 <lname>Nieto</lname>
15 </author>
16
17 <summary>XML is pretty easy.</summary>
18
19 <content>Once you have mastered HTML, XML is easily
20 learned. You must remember that XML is not for
21 displaying information but for managing information.
22 </content>
23
24 </article>

Fig. 8.2 Article marked up with XML tags.

1 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3
4 <html>
5
6 <!-- Fig. 8.3 : DOMExample.html -->
7 <!-- DOM with JavaScript -->
8
9 <head>

10 <title>A DOM Example</title>
11 </head>
12
13 <body>
14
15 <script type = "text/javascript" language = "JavaScript">
16

Fig. 8.3 Traversing article.xml with JavaScript (part 1 of 3).

196 Document Object Model (DOM™) Chapter 8

17 var xmlDocument = new ActiveXObject("Microsoft.XMLDOM");
18
19 xmlDocument.load("article.xml");
20
21 // get the root element
22 var element = xmlDocument.documentElement;
23
24 document.writeln(
25 "<p>Here is the root node of the document:");
26 document.writeln("" + element.nodeName
27 + "");
28
29 document.writeln(
30 "
The following are its child elements:");
31 document.writeln("</p>");
32
33 // traverse all child nodes of root element
34 for (i = 0; i < element.childNodes.length; i++) {
35 var curNode = element.childNodes.item(i);
36
37 // print node name of each child element
38 document.writeln("" + curNode.nodeName
39 + "");
40 }
41
42 document.writeln("");
43
44 // get the first child node of root element
45 var currentNode = element.firstChild;
46
47 document.writeln("<p>The first child of root node is:");
48 document.writeln("" + currentNode.nodeName
49 + "");
50 document.writeln("
whose next sibling is:");
51
52 // get the next sibling of first child
53 var nextSib = currentNode.nextSibling;
54
55 document.writeln("" + nextSib.nodeName
56 + ".");
57 document.writeln("
Value of " + nextSib.nodeName
58 + " element is:");
59
60 var value = nextSib.firstChild;
61
62 // print the text value of the sibling
63 document.writeln("" + value.nodeValue + "");
64 document.writeln("
Parent node of ");
65 document.writeln("<string>" + nextSib.nodeName
66 + " is:");
67 document.writeln("" + nextSib.parentNode.nodeName
68 + ".</p>");
69

Fig. 8.3 Traversing article.xml with JavaScript (part 2 of 3).

Chapter 8 Document Object Model (DOM™) 197

Line 17

var xmlDocument = new ActiveXObject("Microsoft.XMLDOM");

instantiates a Microsoft XML Document Object Model object and assigns it to reference
xmlDocument. This object represents an XML document (in memory) and provides
methods for manipulating its data. The statement simply creates the object, which does not
yet refer to any specific XML document.

Line 19

xmlDocument.load("article.xml");

calls method load to load article.xml (Fig. 8.2) into memory. This XML document
is parsed by msxml and stored in memory as a tree structure.

Line 22

var element = xmlDocument.documentElement;

assigns the root element (i.e., article) to variable element. Property document-
Element corresponds to the document’s root element. The root element is important be-
cause it is used as a reference point for retrieving child elements, text, etc.

Lines 26 and 27

document.writeln("" + element.nodeName
 + "");

place the name of the root element in a strong element and write it to the browser where
it is rendered. Property nodeName corresponds to the name of an attribute, element, etc.—

70 </script>
71
72 </body>
73 </html>

Fig. 8.3 Traversing article.xml with JavaScript (part 3 of 3).

198 Document Object Model (DOM™) Chapter 8

which are collectively called nodes. In this particular case, element refers to the root
node named article.

Line 34

for (i = 0; i < element.childNodes.length; i++) {

uses a for loop to iterate through the root node’s child nodes (accessed using property
childNodes). Property length is used to get the number of child nodes of the docu-
ment element.

Individual child nodes are accessed using the item method. Each node is given an
integer index (starting at zero) based on the order in which they occur in the XML docu-
ment. For example in Fig. 8.2, title is given the index 0, date is given the index 1, etc.
Line 35

var curNode = element.childNodes.item(i);

calls method item to return the child node identified by the index i. This node is assigned
to variable curNode.

Line 45

var currentNode = element.firstChild;

retrieves the root node’s first child node (i.e., title) using property firstChild. This
expression is a more concise alternative to

var currentNode = element.childNodes.item(0);

Nodes at the same level in a document (i.e., that have the same parent node) are called
siblings. For example, title, date, author, summary and content are all sibling
nodes. Property nextSibling returns a node’s next sibling. Line 60

var nextSib = currentNode.nextSibling;

assigns currentNode’s (i.e., title from line 45) next sibling (i.e., date) to
nextSib.

In addition to elements and attributes, text (e.g., Simple XML in line 8 of Fig. 8.2) is
also a node. Line 60

var value = nextSib.firstChild;

assigns nextSib’s (i.e., date) first child node to value. In this case, the first child node
is a text node. On line 63 the nodeValue method retrieves the value of this text node. The
value of a text node’s value is the text it contains. Element nodes have a value of null (i.e.,
the absence of a value).

Lines 67 and 68

document.writeln("" + nextSib.parentNode.nodeName
 + ".</p>");

retrieve and display nextSib’s (i.e., date) parent node (i.e., article). Property
parentNode returns a node’s parent node.

Chapter 8 Document Object Model (DOM™) 199

8.4 Setup
In successive sections, we will be using Java applications to illustrate the DOM API. This
section describes the software needed to run these Java applications. To be able to compile
and execute the examples, you will need to do the following:

1. Download and install the Java 2 Standard Edition from

www.java.sun.com/j2se

For step-by-step installation instructions, visit

www.deitel.com/faq/java3install.htm

2. Download and install JAXP from java.sun.com/xml/download.html.
Installation instructions are provided at the Web site and HTML files are included
with the download.

3. Copy the Chapter 8 examples from the CD-ROM that accompanies this book to
your hard drive. These examples are also available for download free of charge
from www.deitel.com.

As we present an example, we will discuss the steps necessary to execute it. However
the steps outlined in this section must be followed before attempting to execute any
example.

8.5 DOM Components
In this section, we will use Java, JAXP and the XML-related Java packages described in
Fig. 8.4 to manipulate an XML document. Before discussing our first Java-based example,
we summarize several important DOM classes, interfaces and methods. Due to the number
of DOM objects and methods available, we provide only a partial list of these objects and
methods.

For a complete list of DOM classes and interfaces, browse the HTML documentation
(index.html in the api folder) included with JAXP.

Class/Interface Description

Document interface Represents the XML document’s top-level node, which pro-
vides access to all the document’s nodes—including the root
element.

Node interface Represents an XML document node.

NodeList interface Represents a read-only list of Node objects.

Element interface Represents an element node. Derives from Node.

Attr interface Represents an attribute node. Derives from Node.

CharacterData interface Represents character data. Derives from Node.

Text interface Represents a text node. Derives from
CharacterData.

Fig. 8.4 DOM classes and interfaces (part 1 of 2).

200 Document Object Model (DOM™) Chapter 8

The Document interface represents the top-level node of an XML document in
memory and provides a means of creating nodes and retrieving nodes. Figure 8.6 lists some
Document methods.

Figure 8.6 lists the methods of class XmlDocument, including the methods inherited
from Document. Class XmlDocument is part of the JAXP internal APIs and its methods
are not part of the W3C DOM recommendation.

Interface Node represents an XML document node. Figure 8.7 lists the methods of
interface Node.

Comment interface Represents a comment node. Derives from
CharacterData.

ProcessingInstruction
interface

Represents a processing instruction node. Derives from Node.

CDATASection interface Represents a CDATA section. Derives from Text.

Method Name Description

createElement Creates an element node.

createAttribute Creates an attribute node.

createTextNode Creates a text node.

createComment Creates a comment node.

createProcessingInstruction Creates a processing instruction node.

createCDATASection Creates a CDATA section node.

getDocumentElement Returns the document’s root element.

appendChild Appends a child node.

getChildNodes Returns the child nodes.

Fig. 8.5 Some Document methods.

Method Name Description

createXmlDocument Parses an XML document.

write Outputs the XML document.

Fig. 8.6 XmlDocument methods.

Class/Interface Description

Fig. 8.4 DOM classes and interfaces (part 2 of 2).

Chapter 8 Document Object Model (DOM™) 201

Figure 8.8 lists some node types that may be returned by method getNodeType.
Each type in Fig. 8.8 is a static final (i.e., constant) member of class Node.

Element represents an element node. Figure 8.9 lists some Element methods.

Method Name Description

appendChild Appends a child node.

cloneNode Duplicates the node.

getAttributes Returns the node’s attributes.

getChildNodes Returns the node’s child nodes.

getNodeName Returns the node’s name.

getNodeType Returns the node’s type (e.g., element, attribute, text, etc.). Node types
are described in greater detail in Fig. 8.9.

getNodeValue Returns the node’s value.

getParentNode Returns the node’s parent.

hasChildNodes Returns true if the node has child nodes.

removeChild Removes a child node from the node.

replaceChild Replaces a child node with another node.

setNodeValue Sets the node’s value.

insertBefore Appends a child node in front of a child node.

Fig. 8.7 Node methods.

Node Type Description

Node.ELEMENT_NODE Represents an element node.

Node.ATTRIBUTE_NODE Represents an attribute node.

Node.TEXT_NODE Represents a text node.

Node.COMMENT_NODE Represents a comment node.

Node.PROCESSING_INSTRUCTION_NODE Represents a processing instruction node.

Node.CDATA_SECTION_NODE Represents a CDATA section node.

Fig. 8.8 Some node types.

Method Name Description

getAttribute Returns an attribute’s value.

Fig. 8.9 Element methods (part 1 of 2).

202 Document Object Model (DOM™) Chapter 8

We are now ready to present our first Java-based example. Figure 8.10 lists a Java
application that validates intro.xml (Fig. 8.12) and replaces the text in its message
element with New Changed Message!!. The output box at the end of the listing shows
the steps necessary to compile and execute the program. We discuss these after presenting
the program.

getTagName Returns an element’s name.

removeAttribute Removes an element’s attribute.

setAttribute Sets an attribute’s value.

1 // Fig 8.10 : ReplaceText.java
2 // Reads intro.xml and replaces a text node.
3
4 import java.io.*;
5 import org.w3c.dom.*;
6 import javax.xml.parsers.*;
7 import com.sun.xml.tree.XmlDocument;
8 import org.xml.sax.*;
9

10 public class ReplaceText {
11 private Document document;
12
13 public ReplaceText()
14 {
15 try {
16
17 // obtain the default parser
18 DocumentBuilderFactory factory =
19 DocumentBuilderFactory.newInstance();
20
21 // set the parser to validating
22 factory.setValidating(true);
23
24 DocumentBuilder builder = factory.newDocumentBuilder();
25
26 // set error handler for validation errors
27 builder.setErrorHandler(new MyErrorHandler());
28
29 // obtain document object from XML document
30 document = builder.parse(new File("intro.xml"));
31
32 // fetch the root node
33 Node root = document.getDocumentElement();
34

Fig. 8.10 Simple example to replace an existing text node.

Method Name Description

Fig. 8.9 Element methods (part 2 of 2).

Chapter 8 Document Object Model (DOM™) 203

Lines 4–8

35 if (root.getNodeType() == Node.ELEMENT_NODE) {
36 Element myMessageNode = (Element) root;
37 NodeList messageNodes =
38 myMessageNode.getElementsByTagName("message");
39
40 if (messageNodes.getLength() != 0) {
41 Node message = messageNodes.item(0);
42
43 // create a text node
44 Text newText = document.createTextNode(
45 "New Changed Message!!");
46
47 // get the old text node
48 Text oldText =
49 (Text) message.getChildNodes().item(0);
50
51 // replace the text
52 message.replaceChild(newText, oldText);
53 }
54 }
55
56 ((XmlDocument) document).write(new FileOutputStream(
57 "intro1.xml"));
58 }
59 catch (SAXParseException spe) {
60 System.err.println("Parse error: " +
61 spe.getMessage());
62 System.exit(1);
63 }
64 catch (SAXException se) {
65 se.printStackTrace();
66 }
67 catch (FileNotFoundException fne) {
68 System.err.println("File \'intro.xml\' not found. ");
69 System.exit(1);
70 }
71 catch (Exception e) {
72 e.printStackTrace();
73 }
74 }
75
76 public static void main(String args[])
77 {
78 ReplaceText d = new ReplaceText();
79 }
80 }

set PATH=%PATH%;C:\jdk1.3\bin\
set CLASSPATH=%CLASSPATH%;C:\jaxp\jaxp.jar;C:\jaxp\parser.jar;.
javac ReplaceText.java MyErrorHandler.java
java ReplaceText

Fig. 8.10 Simple example to replace an existing text node.

204 Document Object Model (DOM™) Chapter 8

import java.io.*;
import org.w3c.dom.*;
import javax.xml.parsers.*;
import com.sun.xml.tree.XmlDocument;
import org.xml.sax.*;

import (i.e., specify the location of) the classes needed by the program. The Java pro-
gramming language provides a feature—called packages—that groups a series of related
Java files (e.g., compiled .class files). For example, the first import statement indi-
cates that our program uses some classes from the package java.io. Sun Microsystems,
the creator of Java, provides several packages related to XML. Package org.w3c.dom
provides the DOM-API programmatic interface (i.e., classes, methods, etc.). Package
javax.xml.parsers provides classes related to parsing an XML document.

Package com.sun.xml.tree contains classes and interfaces from Sun Micro-
system’s internal XML API, which provides features currently not available in the XML
1.0 recommendation (e.g., saving an XML document). Documentation for Sun’s internal
APIs can be found at

java.sun.com/xml/docs/api

[Note: The documentation at this site specifies that the internal APIs are subject to change.]
A DOM-based parser may use an event-based implementation (i.e., as the document is

parsed events are raised when starting tags, attributes, etc. are encountered) to help create
the tree structure in memory. A popular event-based implementation is called the Simple
API for XML (SAX), which we present in Chapter 9. The main SAX features we discuss in
this chapter are exceptions thrown by the default parser used by JAXP. An exception occurs
when an error is encountered in a program. The error may be caught by an exception han-
dler and processed, ensuring the program does not terminate abnormally. Package
org.xml.sax provides the SAX programmatic interface.

Line 11

private Document document;

declares Document reference document. This reference is assigned an object (in line
30) that represents the document root.

JAXP uses the DocumentBuilderFactory class to create a Document-
Builder object. Class DocumentBuilder provides a standard interface to an XML
parser. JAXP can be configured to use many different XML parsers, such as the Apache
Group’s Xerces and IBM’s XML4J. JAXP also has its own parser built in, which is used
by default. The DocumentBuilderFactory produces an appropriate Document-
Builder object for the currently-configured XML parser.

Lines 18 and 19

DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();

create and assign a DocumentBuilderFactory object to reference factory.
Line 22

Chapter 8 Document Object Model (DOM™) 205

factory.setValidating(true);

indicates that a validating parser is being used by passing the value true as an argument
to method setValidating.

Line 24

DocumentBuilder builder = factory.newDocumentBuilder();

creates a new DocumentBuilder object and assigns it to reference builder. This ob-
ject provides an interface for loading and parsing XML documents.

Line 27

builder.setErrorHandler(new MyErrorHandler());

specifies that a MyErrorHandler (Fig. 8.11) object provides methods for handling ex-
ceptions related to parsing.

Line 30

document = builder.parse(new File("intro.xml"));

calls method parse to load and parse the XML document stored in the file intro.xml.
If parsing is successful, a Document object is returned that contains nodes representing
each part of the intro.xml document. If parsing fails, a SAXException is thrown.

Line 33

Node root = document.getDocumentElement();

calls method getDocumentElement to get the Document’s root node and assign it to
Node reference root. Line 35

if (root.getNodeType() == Node.ELEMENT_NODE) {

tests if the root element is an element node. Method getNodeType is called to retrieve
the node’s type.

Line 36

Element myMessageNode = (Element) root;

down casts root from a superclass Node type to an Element derived type. As men-
tioned earlier, class Element inherits from class Node. By down casting, this allows El-
ement myMessageNode to be assigned the object referenced by root. Methods
specific to class Element can now be called on the object using the myMessageNode
reference.

Lines 37 and 38

NodeList messageNodes =
 myMessageNode.getElementsByTagName("message");

get a list of all the message elements in the XML document using method getEle-
mentsByTagName. Each element is stored as an item (i.e., a Node) in a NodeList. The

206 Document Object Model (DOM™) Chapter 8

first item added is stored at index 0, the next at index 1, and so forth. This index is used to
access an individual item in the NodeList.

Line 40

if (messageNodes.getLength() != 0) {

determines if the NodeList contains at least one item by calling method getLength
and testing the value returned from it against zero.

If there are items in the NodeList, line 41

Node message = messageNodes.item(0);

assigns the first NodeList node (i.e., element message) to Node reference message.
Method item returns an individual Node from the NodeList. In this case, the first
Node is returned.

Lines 44 and 45

Text newText = document.createTextNode(
 "New Changed Message!!");

use the createTextNode method to create a text node that contains the text New
Changed Message!!. This node exists in memory independent of the XML docu-
ment—i.e., it has not been inserted into the document yet. Interface Text represents an el-
ement or attribute’s character data.

Lines 48 and 49

Text oldText =
 (Text) message.getChildNodes().item(0);

get the first child node of the message element (referenced by Node message in line
33), which is a text node containing the text Welcome to XML!. Because item returns
an object of superclass type Object, a downcast to Text is performed. Line 52

message.replaceChild(newText, oldText);

calls method replaceChild to replace the Node referenced by the second argument
with the Node referenced by the first argument. The XML document has now been modi-
fied—element message now contains the text New Changed Message!!.

Lines 56 and 57

((XmlDocument) document).write(new FileOutputStream(
 "intro1.xml"));

create a FileOutputStream (package java.io) object for the file intro1.xml
and write the XML document to it using method write. Method write is a member of
XmlDocument, which requires casting document to XmlDocument. We need to use
this internal API class because the Document interface does not provide a method for sav-
ing an XML document to a file.

Lines 59 and 64 begin catch blocks for a SAXParseException and a SAXEx-
ception. These exceptions contain information about errors and warnings thrown by the

Chapter 8 Document Object Model (DOM™) 207

parser. Class SAXParseException is a subclass of SAXException and includes
methods for locating the error.

Figure 8.11 presents MyErrorHandler.java, which provides the implementation
for handling errors thrown by the parser in ReplaceText.java. By default, JAXP does
not throw any exceptions when a document fails to conform to a DTD. The programmer
must provide an error handler, which is registered using method setErrorHandler
(line 27 in Fig. 8.10).

Lines 4–6

import org.xml.sax.ErrorHandler;
import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;

import ErrorHandler, SAXException and SAXParseException. Inter-
face ErrorHandler provides methods fatalError, error and warning for fatal
errors (i.e., errors that violate the XML 1.0 specification; parsing is halted), errors (e.g.,
validity constraints that do not stop the parsing process) and warnings (i.e., not classified
as fatal errors or errors and that do not stop the parsing process), respectively. These
methods are overridden in lines 12, 18 and 25. Fatal errors and errors are rethrown and
warnings are output to the standard error device (cerr).

Three steps (beyond the setup in Section 8.4) are required to run this Java application.
First the CLASSPATH (i.e., the path a Java compiler and interpreter use to locate .class
files) is set to the location where jaxp.jar and parser.jar reside as well as the cur-
rent directory (.). On our Windows machine, we installed these on the C: drive. [Note: in
successive examples, we will assume that the CLASSPATH is already set.] Next, we com-
piled Fig. 8.10 and Fig. 8.11 together, using the Java compiler, javac. Finally, we execute
the application, using the java interpreter.

1 // Fig 8.11 : MyErrorHandler.java
2 // Error Handler for validation errors.
3
4 import org.xml.sax.ErrorHandler;
5 import org.xml.sax.SAXException;
6 import org.xml.sax.SAXParseException;
7
8 public class MyErrorHandler implements ErrorHandler
9 {

10
11 // throw SAXException for fatal errors
12 public void fatalError(SAXParseException exception)
13 throws SAXException
14 {
15 throw exception;
16 }
17
18 public void error(SAXParseException e)
19 throws SAXParseException
20 {
21 throw e;
22 }

Fig. 8.11 Class definition for MyErrorHandler (part 1 of 2).

208 Document Object Model (DOM™) Chapter 8

Figure 8.12 lists the XML document manipulated by the Java application in Fig. 8.10.
Figure 8.13 lists the document after it is modified.

Notice that in Fig. 8.13 the message element’s text has been changed and the com-
ments are missing. The DTD is preserved, because we are using a validating parser—oth-
erwise the DTD would not be included in the file. Fig. 8.13 also introduces an encoding
in the XML declaration. The encoding specifies the character set used in the document.
Recall from Chapter 5 that XML uses the Unicode character set. Unicode provides charac-
ters in most of the worlds major languages. Use an encoding (e.g., UTF-8) to specify a
subset of the characters in Unicode will be used in a document.

23
24 // print any warnings
25 public void warning(SAXParseException err)
26 throws SAXParseException
27 {
28 System.err.println("Warning: " + err.getMessage());
29 }
30 }

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 8.12 : intro.xml -->
4 <!-- Simple introduction to XML markup -->
5
6 <!DOCTYPE myMessage [
7 <!ELEMENT myMessage (message)>
8 <!ELEMENT message (#PCDATA)>
9]>

10
11 <myMessage>
12 <message>Welcome to XML!</message>
13 </myMessage>

Fig. 8.12 Input document (intro.xml).

1 <?xml version = "1.0" encoding = "UTF-8"?>
2
3 <!-- Fig. 8.12 : intro.xml -->
4 <!-- Simple introduction to XML markup -->
5
6 <!DOCTYPE myMessage [
7 <!ELEMENT myMessage (message)>
8 <!ELEMENT message (#PCDATA)>
9]>

10

Fig. 8.13 Ouput of replaceText.java, which is stored in intro1.xml
 (part 1 of 2).

Fig. 8.11 Class definition for MyErrorHandler (part 2 of 2).

Chapter 8 Document Object Model (DOM™) 209

8.6 Creating Nodes
The majority of XML markup presented up to this point has been “hand coded” (i.e., typed
into an editor by a document author). Using the DOM, XML documents can be created in
an automated way through programming.

Figure 8.14 lists a Java application that creates an XML document for a contact list.
This application is compiled and executed in the same manner as the last Java application.

11 <myMessage>
12 <message>New Changed Message!!</message>
13 </myMessage>

1 // Fig. 8.14 : BuildXml.java
2 // Creates element node, attribute node, comment node,
3 // processing instruction and a CDATA section.
4
5 import java.io.*;
6 import org.w3c.dom.*;
7 import org.xml.sax.*;
8 import javax.xml.parsers.*;
9 import com.sun.xml.tree.XmlDocument;

10
11 public class BuildXml {
12 private Document document;
13
14 public BuildXml()
15 {
16
17 DocumentBuilderFactory factory =
18 DocumentBuilderFactory.newInstance();
19
20 try {
21
22 // get DocumentBuilder
23 DocumentBuilder builder =
24 factory.newDocumentBuilder();
25
26 // create root node
27 document = builder.newDocument();
28 }
29 catch (ParserConfigurationException pce) {
30 pce.printStackTrace();
31 }
32
33 Element root = document.createElement("root");
34 document.appendChild(root);
35
36 // add a comment to XML document

Fig. 8.14 Building an XML document with the DOM (part 1 of 3).

Fig. 8.13 Ouput of replaceText.java, which is stored in intro1.xml
 (part 2 of 2).

210 Document Object Model (DOM™) Chapter 8

37 Comment simpleComment = document.createComment(
38 "This is a simple contact list");
39 root.appendChild(simpleComment);
40
41 // add a child element
42 Node contactNode = createContactNode(document);
43 root.appendChild(contactNode);
44
45 // add a processing instruction
46 ProcessingInstruction pi =
47 document.createProcessingInstruction(
48 "myInstruction", "action silent");
49 root.appendChild(pi);
50
51 // add a CDATA section
52 CDATASection cdata = document.createCDATASection(
53 "I can add <, >, and ?");
54 root.appendChild(cdata);
55
56 try {
57
58 // write the XML document to a file
59 ((XmlDocument) document).write(new FileOutputStream(
60 "myDocument.xml"));
61 }
62 catch (IOException ioe) {
63 ioe.printStackTrace();
64 }
65 }
66
67 public Node createContactNode(Document document)
68 {
69
70 // create FirstName and LastName elements
71 Element firstName = document.createElement("FirstName");
72 Element lastName = document.createElement("LastName");
73
74 firstName.appendChild(document.createTextNode("Sue"));
75 lastName.appendChild(document.createTextNode("Green"));
76
77 // create contact element
78 Element contact = document.createElement("contact");
79
80 // create an attribute
81 Attr genderAttribute = document.createAttribute("gender");
82 genderAttribute.setValue("F");
83
84 // append attribute to contact element
85 contact.setAttributeNode(genderAttribute);
86 contact.appendChild(firstName);
87 contact.appendChild(lastName);
88 return contact;
89 }

Fig. 8.14 Building an XML document with the DOM (part 2 of 3).

Chapter 8 Document Object Model (DOM™) 211

Lines 17 and 18

DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();

create and assign a DocumentBuilderFactory object to reference factory. Class
DocumentBuilderFactory is used to obtain an instance of a parser—in this particu-
lar case, the default JAXP parser.

Lines 23 and 24

DocumentBuilder builder =
 factory.newDocumentBuilder();

create a new DocumentBuilder object and assign it to reference builder. This object
provides facilities for loading and parsing XML documents.

Line 27

document = builder.newDocument();

calls method newDocument to create a new Document object. We will use the Docu-
ment object returned by newDocument to build an XML document in memory.

Lines 33 and 34

Element root = document.createElement("root");
document.appendChild(root);

create an element named root and append it to the document root. Because this is the first
element appended, it is the root element of the document.

Lines 37–39

Comment simpleComment = document.createComment(
 "This is a simple contact list");
root.appendChild(simpleComment);

create a comment node using method createComment and append the node as a child
of element root.

Line 42

Node contactNode = createContactNode(document);

90
91 public static void main(String args[])
92 {
93 BuildXml buildXml = new BuildXml();
94 }
95 }

javac BuildXml.java
java BuildXml

Fig. 8.14 Building an XML document with the DOM (part 3 of 3).

212 Document Object Model (DOM™) Chapter 8

calls programmer-defined method createContactNode (line 67) to create the con-
tact element. We will discuss this method momentarily.

Lines 46–48

ProcessingInstruction pi =
 document.createProcessingInstruction(
 "myInstruction", "action silent");

create a processing instruction node. The first argument passed to createProcessin-
gInstruction is the target myInstruction and the second argument passed is the
value action silent. Line 49 appends the processing instruction to the root element.

Lines 52 and 53

CDATASection cdata = document.createCDATASection(
 "I can add <, >, and ?");

create a CDATA section, which is appended to element root in line 54.
Line 67

public Node createContactNode(Document document)

defines method createContactNode that returns a Node object. This method creates
a contact element node and returns it. The returned Node is appended to the root ele-
ment in line 43.

Lines 71 and 72

Element firstName = document.createElement("FirstName");
Element lastName = document.createElement("LastName");

create elements FirstName and LastName, which have their text values set on lines 74
and 75

firstName.appendChild(document.createTextNode("Sue"));
lastName.appendChild(document.createTextNode("Green"));

Lines 81 and 82

Attr genderAttribute = document.createAttribute("gender");
genderAttribute.setValue("F");

create attribute gender using method createAttribute and assign it a value using
Attr method setValue. Line 85

contact.setAttributeNode(genderAttribute);

assigns the attribute to the contact element node using method setAttributeNode.
The XML document is written to disk in lines 59 and 60. Figure 8.14 lists the XML

document (myDocument.xml) created by Fig. 8.13’s buildXml.java.

Chapter 8 Document Object Model (DOM™) 213

8.7 Traversing the DOM
In this section, we demonstrate how to use the DOM to traverse an XML document. In Fig.
8.15, we present a Java application that outputs element nodes, attribute nodes and text
nodes. This application takes the name of an XML document (e.g., simpleCon-
tact.xml in Fig. 8.16) from the command line (i.e., a window—such as a DOS prompt
or shell window—where commands are entered into a computer).

1 <?xml version = "1.0" encoding = "UTF-8"?>
2
3 <root>
4 <!--This is a simple contact list-->
5 <contact gender = "F">
6 <FirstName>Sue</FirstName>
7 <LastName>Green</LastName>
8 </contact>
9 <?myInstruction action silent?>

10 <![CDATA[I can add <, >, and ?]]>
11 </root>

Fig. 8.14 Output for buildXml.java.

1 // Fig. 8.15 : TraverseDOM.java
2 // Traverses DOM and prints various nodes.
3
4 import java.io.*;
5 import org.w3c.dom.*;
6 import org.xml.sax.*;
7 import javax.xml.parsers.*;
8 import com.sun.xml.tree.XmlDocument;
9

10 public class TraverseDOM {
11 private Document document;
12
13 public TraverseDOM(String file)
14 {
15 try {
16
17 // obtain the default parser
18 DocumentBuilderFactory factory =
19 DocumentBuilderFactory.newInstance();
20 factory.setValidating(true);
21 DocumentBuilder builder = factory.newDocumentBuilder();
22
23 // set error handler for validation errors
24 builder.setErrorHandler(new MyErrorHandler());
25
26 // obtain document object from XML document
27 document = builder.parse(new File(file));
28 processNode(document);
29 }

Fig. 8.15 Traversing the DOM (part 1 of 3).

214 Document Object Model (DOM™) Chapter 8

30 catch (SAXParseException spe) {
31 System.err.println(
32 "Parse error: " + spe.getMessage());
33 System.exit(1);
34 }
35 catch (SAXException se) {
36 se.printStackTrace();
37 }
38 catch (FileNotFoundException fne) {
39 System.err.println("File \'"
40 + file + "\' not found. ");
41 System.exit(1);
42 }
43 catch (Exception e) {
44 e.printStackTrace();
45 }
46 }
47
48 public void processNode(Node currentNode)
49 {
50 switch (currentNode.getNodeType()) {
51
52 // process a Document node
53 case Node.DOCUMENT_NODE:
54 Document doc = (Document) currentNode;
55
56 System.out.println(
57 "Document node: " + doc.getNodeName() +
58 "\nRoot element: " +
59 doc.getDocumentElement().getNodeName());
60 processChildNodes(doc.getChildNodes());
61 break;
62
63 // process an Element node
64 case Node.ELEMENT_NODE:
65 System.out.println("\nElement node: " +
66 currentNode.getNodeName());
67 NamedNodeMap attributeNodes =
68 currentNode.getAttributes();
69
70 for (int i = 0; i < attributeNodes.getLength(); i++){
71 Attr attribute = (Attr) attributeNodes.item(i);
72
73 System.out.println("\tAttribute: " +
74 attribute.getNodeName() + " ; Value = " +
75 attribute.getNodeValue());
76 }
77
78 processChildNodes(currentNode.getChildNodes());
79 break;
80
81 // process a text node and a CDATA section
82 case Node.CDATA_SECTION_NODE:

Fig. 8.15 Traversing the DOM (part 2 of 3).

Chapter 8 Document Object Model (DOM™) 215

Lines 13–46 define the class constructor for TraverseDOM, which takes the name of
the file (i.e., simpleContact.xml) specified at the command line, loads and parses the
XML document before passing it to programmer-defined method processNode.

Lines 48–91 define method processNode, which takes one Node argument and
outputs information about the Node and its child elements. This method uses a switch
structure (line 50) to determine the Node type.

Line 53

case Node.DOCUMENT_NODE:

matches a document node. This case outputs the document node and processes its child
nodes by calling method processChildNodes (lines 93–99). We will discuss method
processchildNodes momentarily.

Line 64

case Node.ELEMENT_NODE:

matches an element node. This case outputs the element’s attributes and then processes
its child nodes in processChildNodes.

83 case Node.TEXT_NODE:
84 Text text = (Text) currentNode;
85
86 if (!text.getNodeValue().trim().equals(""))
87 System.out.println("\tText: " +
88 text.getNodeValue());
89 break;
90 }
91 }
92
93 public void processChildNodes(NodeList children)
94 {
95 if (children.getLength() != 0)
96
97 for (int i = 0; i < children.getLength(); i++)
98 processNode(children.item(i));
99 }
100
101 public static void main(String args[])
102 {
103 if (args.length < 1) {
104 System.err.println(
105 "Usage: java TraverseDOM <filename>");
106 System.exit(1);
107 }
108
109 TraverseDOM traverseDOM = new TraverseDOM(args[0]);
110 }
111 }

Fig. 8.15 Traversing the DOM (part 3 of 3).

216 Document Object Model (DOM™) Chapter 8

Lines 82 and 83

case Node.CDATA_SECTION_NODE:
case Node.TEXT_NODE:

match CDATA section nodes and text nodes. These cases output the node’s text content
(lines 87–88).

Lines 93–99 define method processChildNodes, which takes one NodeList
argument and calls processNode on a node’s child nodes. Each child node is retrieved
by calling NodeList method item (line 98).

In Java, command-line arguments are accessible by using String array args passed
to the main method (line 93). The command line used to execute this example is

java TraverseDOM simpleContact.xml

where java is the Java interpreter, TraverseDOM is the program being executed and
simpleContact.xml is the command-line argument stored in array args. More pre-
cisely, args[0] contains the string simpleContact.xml.

Figure 8.16 lists the contents simpleContact.xml—the XML document used by
TraverseDOM.java.

8.8 Case Study: Modifying the Day Planner Application to Use
the DOM
In this section, we continue enhancing our day planner application—by creating a Java
graphical user interface (GUI) for it and by creating a Java class that uses the DOM to query
the day planner XML document (Fig. 5.10) for specific days, months, years or times.

We begin by presenting the Java class DOMPlanner (Fig. 8.17), which queries the
XML document.

1 <?xml version = "1.0"?>
2
3 <!-- Fig 8.16 : simpleContact.xml -->
4 <!-- Input file for traverseDOM.java -->
5
6 <!DOCTYPE contacts [
7 <!ELEMENT contacts (contact+)>
8 <!ELEMENT contact (FirstName, LastName)>
9 <!ATTLIST contact gender (M | F) "M">

10 <!ELEMENT FirstName (#PCDATA)>
11 <!ELEMENT LastName (#PCDATA)>
12]>
13
14 <contacts>
15 <contact gender = "M">
16 <FirstName>John</FirstName>
17 <LastName>Black</LastName>
18 </contact>
19 </contacts>

Fig. 8.16 Sample execution for TraverseDOM.java (part 1 of 2).

Chapter 8 Document Object Model (DOM™) 217

javac TraverseDOM.java
java TraverseDOM simpleContact.xml

Document node: #document
Root element: contacts

Element node: contacts

Element node: contact
 Attribute: gender ; Value = M

Element node: FirstName
 Text: John

Element node: LastName
 Text: Black

1 // Fig. 8.17 : DOMPlanner.java
2 // A day planner application using DOM.
3 // The following program uses Sun's validating parser.
4
5 import java.io.*;
6 import java.awt.*;
7 import java.util.*;
8 import javax.swing.*;
9

10 import org.w3c.dom.*;
11 import org.xml.sax.*;
12 import javax.xml.parsers.*;
13 import com.sun.xml.tree.XmlDocument;
14
15 public class DOMPlanner {
16
17 private JTextArea display; // for displaying output
18 private InputSource input; // for reading the XML document
19 private Document document; // document node object
20
21 // variables to store the query parameters and the result
22 private int year, month, day, timePeriod;
23 private String resultYear, resultDay;
24
25 public DOMPlanner(JTextArea output)
26 {
27 year = month = day = timePeriod = -1;
28 display = output;
29
30 try {
31

Fig. 8.17 Day planner using DOM (part 1 of 6).

Fig. 8.16 Sample execution for TraverseDOM.java (part 2 of 2).

218 Document Object Model (DOM™) Chapter 8

32 // obtain the default parser
33 DocumentBuilderFactory factory =
34 DocumentBuilderFactory.newInstance();
35 factory.setValidating(true);
36 DocumentBuilder builder = factory.newDocumentBuilder();
37
38 // set error handler for validation errors
39 builder.setErrorHandler(new MyErrorHandler());
40
41 // obtain document object from XML document
42 document = builder.parse(new File("planner.xml"));
43 }
44 catch (SAXParseException spe) {
45 System.err.println("Parse error: " +
46 spe.getMessage());
47 System.exit(1);
48 }
49 catch (SAXException se) {
50 se.printStackTrace();
51 }
52 catch (FileNotFoundException fne) {
53 System.err.println("File \"planner.xml\" not found.");
54 System.exit(1);
55 }
56 catch (Exception e) {
57 e.printStackTrace();
58 }
59 }
60
61 // method to get the available years from the XML file
62 public String[] getYears()
63 {
64 String availableYears[];
65 StringTokenizer tokens;
66 String str = " ";
67 int i = 0;
68
69 Element root = document.getDocumentElement();
70 NodeList yearNodes =
71 root.getElementsByTagName("year");
72
73 // get value of attribute 'value' for each 'year' node
74 for (i = 0; i < yearNodes.getLength(); i++) {
75 NamedNodeMap yearAttributes =
76 yearNodes.item(i).getAttributes();
77
78 str += " " + yearAttributes.item(0).getNodeValue();
79 }
80
81 tokens = new StringTokenizer(str);
82 availableYears = new String[tokens.countTokens() + 1];
83 availableYears[0] = "ANY";
84 i = 1;

Fig. 8.17 Day planner using DOM (part 2 of 6).

Chapter 8 Document Object Model (DOM™) 219

85
86 // form an array of strings containing available years
87 while (tokens.hasMoreTokens())
88 availableYears[i++] = tokens.nextToken();
89
90 return availableYears;
91 }
92
93 // method to initialize the query
94 public void getQueryResult(int y, int m, int d, int t)
95 {
96 year = y;
97 month = m;
98 day = d;
99 resultYear = "";
100 resultDay = "";
101 timePeriod = t;
102 display.setText("*** YOUR DAY PLANNER ***");
103 getResult(document);
104 }
105
106 // method to output the result of query
107 public void getResult(Node node)
108 {
109 // process each type of node
110 // if the node contains child nodes,
111 // process it recursively
112 switch (node.getNodeType()) {
113
114 // if it is a Document node process its children
115 case Node.DOCUMENT_NODE:
116 Document doc = (Document) node;
117
118 getResult(doc.getDocumentElement());
119 break;
120
121 // process element node according to its tag name
122 case Node.ELEMENT_NODE:
123
124 if (node.getNodeName().equals("planner"))
125 processChildNodes(node.getChildNodes());
126 else if (node.getNodeName().equals("year")) {
127
128 // find the attribute value for year and
129 // check if it matches the query
130 NamedNodeMap yearAttributes =
131 node.getAttributes();
132 Node value = yearAttributes.item(0);
133
134 if (Integer.parseInt(value.getNodeValue())
135 == year || year == -1) {
136 resultYear = " Y " +
137 Integer.parseInt(value.getNodeValue());

Fig. 8.17 Day planner using DOM (part 3 of 6).

220 Document Object Model (DOM™) Chapter 8

138 processChildNodes(node.getChildNodes());
139 }
140 else
141 return;
142
143 }
144 else if (node.getNodeName().equals("date")) {
145 Element dateElement = (Element) node;
146 int m = Integer.parseInt(
147 dateElement.getAttribute("month"));
148 int d = Integer.parseInt(
149 dateElement.getAttribute("day"));
150
151 // check if the current 'date' node satisfies query
152 if ((m == month && d == day) ||
153 (month == -1 && d == day) ||
154 (m == month && day == -1) ||
155 (month == -1 && day == -1)) {
156 resultDay = "DATE: D " + d + " M " + m ;
157 processChildNodes(
158 dateElement.getChildNodes());
159 }
160 else
161 return;
162
163 }
164 else if (node.getNodeName().equals("note")) {
165
166 // fetch attributes for the note node and
167 // verify its attribute values with the query
168 NamedNodeMap noteAttributes =
169 node.getAttributes();
170
171 int scheduleTime;
172
173 if (noteAttributes.getLength() != 0) {
174 Node nodeTime = noteAttributes.item(0);
175
176 scheduleTime =
177 Integer.parseInt(nodeTime.getNodeValue());
178 }
179 else
180 scheduleTime = -1;
181
182 // if the time lies between the periods of the
183 // day display the value of node 'note'
184 if (isBetween(scheduleTime)) {
185 Node child =
186 (node.getChildNodes()).item(0);
187 String s =
188 child.getNodeValue().trim();
189
190 display.append("\n" + resultDay +

Fig. 8.17 Day planner using DOM (part 4 of 6).

Chapter 8 Document Object Model (DOM™) 221

191 resultYear);
192
193 if (scheduleTime != -1)
194 display.append("\nTIME: " +
195 scheduleTime +" > " + s);
196 else
197 display.append("\nALL DAY > " + s);
198
199 display.append("\n* * * * * * * * * *");
200 }
201 else
202 return;
203 }
204 break;
205 }
206 }
207
208 // method to process child nodes
209 public void processChildNodes(NodeList children)
210 {
211 if (children.getLength() != 0)
212
213 for (int i = 0; i < children.getLength(); i++)
214 getResult(children.item(i));
215
216 return;
217 }
218
219 // method to compare the time with various periods
220 // of the day
221 public boolean isBetween(int time)
222 {
223 switch (timePeriod) {
224
225 case -1: // add day
226 return true;
227
228 case 0: // morning
229
230 if (time >= 500 && time < 1200)
231 return true;
232
233 break;
234
235 case 1: // afternoon
236
237 if (time >= 1200 && time < 1800)
238 return true;
239
240 break;
241
242 case 2: // evening
243

Fig. 8.17 Day planner using DOM (part 5 of 6).

222 Document Object Model (DOM™) Chapter 8

Lines 25–59 define the constructor that initializes the application and loads and parses
the day planner XML document (i.e., planner.xml). Line 28 assigns the JTextArea
reference display (line 17), which allows a DOMPlanner object to display text in the
GUI of the object that created it. We will discuss the GUI in Fig. 8.18.

Lines 62–91 define method getYears, which returns a String array containing the
day planner document’s years. Line 69

Element root = document.getDocumentElement();

retrieves the planner document element and assigns it to reference root. Lines 70 and
71

NodeList yearNodes =
 root.getElementsByTagName("year");

retrieve all the year elements in the document and places them in a NodeList object ref-
erenced by yearNodes. This NodeList is then processed using a for loop (lines 74–
79) to create a string containing the years—each separated by a space character. Method
getNodeValue is called to retrieve each year’s value.

Lines 81–83

tokens = new StringTokenizer(str);
availableYears = new String[tokens.countTokens() + 1];
availableYears[0] = "ANY";

construct a StringTokenizer (java.util package) object to split the space-delim-
ited String into individual tokens (i.e., Strings). By default, the class StringTo-
kenizer uses whitespace characters as delimiters. Method countTokens is called to
get the number of strings in tokens.We initialize the first item of the array to ANY to que-
ry any year.

244 if (time >= 1800 && time < 2100)
245 return true;
246
247 break;
248
249 case 3: // night
250
251 if (time >= 2100 || time < 500)
252 return true;
253
254 break;
255
256 default:
257 System.out.println("Illegal time in XML file");
258 }
259
260 return false;
261 }
262 }

Fig. 8.17 Day planner using DOM (part 6 of 6).

Chapter 8 Document Object Model (DOM™) 223

Lines 87 and 88

while (tokens.hasMoreTokens())
 availableYears[i++] = tokens.nextToken();

take the Strings contained in tokens and place them in array availableYears.
This array is returned in line 90.

Lines 94–104 define method getQueryResult, which initializes the variables
(e.g., year, month, etc.) used in the query. Programmer-defined method getResult is
called in line 103 to output the results of the query.

Lines 107–206 define method getResult, which processes the XML document. A
switch structure (line 112) determines the Node’s type.

The case on lines 115–119 matches the document’s root node and calls method
getResult to process the document’s nodes, beginning with the root element. Recursion
(i.e., the process by which a method—such as getResult—calls itself repeatedly until
some condition is met) is often used with tree structures for efficient traversal.

Lines 122–204 are the Node.ELEMENT_NODE case for element nodes. Lines 124
and 125

if (node.getNodeName().equals("planner"))
 processChildNodes(node.getChildNodes());

check for the root element (i.e., planner) and process them if the condition is true.
Line 126 checks for year elements. We get the first year element’s attribute (i.e.,

value in planner.xml) and reference it using Node value in lines 130–132. Next,
(lines 134 and 135), we determine if the Node referenced by value matches the value of
the year (declared in line 22) for which we are searching. If it matches, lines 136 and 137

resultYear = " Y " +
 Integer.parseInt(value.getNodeValue());

concatenate the string " Y " to the year in variable resultYear. The element’s child
nodes are passed to method processChildNodes in line 138.

Line 144 tests for date elements. We get attribute month’s (lines 146 and 147) value
and attribute day’s (lines 148 and 149) value. Using these values, we check the query and
if they match, we store the month and day in variable resultDay and process the ele-
ment’s child nodes.

Line 164 tests for note elements. If an appointment time was specified (i.e., attribute
time is present), we get the appointment time (lines 173–178). Otherwise, we set the
appointment time as the entire day by setting scheduleTime to -1.

Line 184’s condition

isBetween(scheduleTime)

calls programmer-defined method isBetween (lines 221–261) to check the time against
the query. If they match, the date, time and appointment information are displayed in the
JTextArea object referenced by display.

Lines 209–217 define processChildNodes, which iterates through a NodeList
(i.e., an element’s child nodes) and processes them using method getResult.

224 Document Object Model (DOM™) Chapter 8

Lines 221–261 define method isBetween, which checks the time value of an
appointment against the query. We define five periods of the day: all day, morning, after-
noon, evening and night.

Figure 8.18 shows the Java application that creates the GUI. Class DayPlanner
extends JFrame to create the user interface.

1 // Fig. 8.18 : DayPlanner.java
2 // Program for GUI interface for the day planner application.
3
4 import java.awt.*;
5 import java.awt.event.*;
6 import javax.swing.*;
7 import javax.swing.event.*;
8
9 public class DayPlanner extends JFrame

10 implements ActionListener {
11
12 // GUI components
13 private JTextArea display;
14 private JComboBox year, month, day, time;
15 private JButton query;
16 private JPanel panel1, panel2;
17 private DOMPlanner handler;
18
19 public DayPlanner()
20 {
21 super("Day planner using DOM");
22
23 // set the output font
24 Font font = new Font("Monospaced",
25 java.awt.Font.BOLD, 16);
26 display = new JTextArea();
27 display.setFont(font);
28 display.setEditable(false);
29
30 handler = new DOMPlanner(display);
31
32 // initialize the user interface components
33 year = new JComboBox(handler.getYears());
34
35 String months[] = new String[13];
36 months[0] = "ANY";
37
38 for (int i = 1; i < 13; i++)
39 months[i] = Integer.toString(i);
40
41 month = new JComboBox(months);
42
43 String days[] = new String[32];
44 days[0] = "ANY";
45

Fig. 8.18 Interface for day planner (part 1 of 3).

Chapter 8 Document Object Model (DOM™) 225

46 for (int i = 1; i < 32; i++)
47 days[i] = Integer.toString(i);
48
49 day = new JComboBox(days);
50
51 String times[] = { "ANY", "Morning", "Afternoon",
52 "Evening", "Night" };
53 time = new JComboBox(times);
54
55 query = new JButton("Get Schedules");
56 query.addActionListener(this);
57
58 // panel containing components for querying
59 panel1 = new JPanel();
60 panel1.setLayout(new GridLayout(4, 2));
61 panel1.add(new JLabel("Year"));
62 panel1.add(year);
63 panel1.add(new JLabel("Month"));
64 panel1.add(month);
65 panel1.add(new JLabel("Day"));
66 panel1.add(day);
67 panel1.add(new JLabel("Time"));
68 panel1.add(time);
69
70 // panel containing text area for output
71 // and panel2 containing other GUI components.
72 panel2 = new JPanel();
73 panel2.setLayout(new GridLayout(1, 2));
74 panel2.add(panel1);
75 panel2.add(query);
76
77 Container c = getContentPane();
78 c.setLayout(new BorderLayout());
79 c.add(new JScrollPane(display), BorderLayout.CENTER);
80 c.add(panel2, BorderLayout.SOUTH);
81 setSize(600, 450);
82 show();
83 }
84
85 // method executed when query button is pressed
86 public void actionPerformed(ActionEvent e)
87 {
88 if (e.getSource() == query) {
89 int yearIndex, monthIndex, dayIndex, timeIndex;
90
91 // get the integer values of all the query parameters
92 yearIndex =
93 getIntegerValue((String) year.getSelectedItem());
94 monthIndex =
95 getIntegerValue((String) month.getSelectedItem());
96 dayIndex =
97 getIntegerValue((String) day.getSelectedItem());
98 timeIndex = time.getSelectedIndex() - 1;

Fig. 8.18 Interface for day planner (part 2 of 3).

226 Document Object Model (DOM™) Chapter 8

99
100 // get the result of query
101 handler.getQueryResult(yearIndex, monthIndex,
102 dayIndex, timeIndex);
103 }
104 }
105
106 // method to convert the string value to integer
107 public int getIntegerValue(String str)
108 {
109 // if the value 'ANY' is selected, return -1
110 if (str.equals("ANY"))
111 return -1;
112 else
113 return Integer.parseInt(str);
114 }
115
116 public static void main(String s[])
117 {
118 DayPlanner d = new DayPlanner();
119
120 d.addWindowListener(
121 new WindowAdapter()
122 {
123 public void windowClosing(WindowEvent e)
124 {
125 System.exit(0);
126 }
127 }
128);
129 }
130 }

Fig. 8.18 Interface for day planner (part 3 of 3).

Chapter 8 Document Object Model (DOM™) 227

Line 30

handler = new DOMPlanner(display);

instantiates a DOMPlanner object and assigns it to reference handler. The JTextAr-
ea object referenced by display is passed to the DOMPlanner constructor. This allows the
DOMPlanner object to write text to the JTextArea.

Line 33

year = new JComboBox(handler.getYears());

instantiates a JComboBox object and populates it with the String array values returned
from method getYears (line 62 in Fig. 8.17). Lines 35–53 create the other JComboBox
objects and populate them with the month, day and time, respectively.

Method actionPerformed (lines 86–104) is invoked when Get Schedules is
pressed. The four JComboBox values are passed to getQueryResult (line 94 in Fig.
8.17), which calls getResult to perform the query.

Lines 107–114 define method getIntegerValue, which converts the JCom-
boBox values. A value of ANY is results in -1 being returned. Other Strings are con-
verted into integers using parseInt.

8.9 Internet and World Wide Web Resources
www.w3.org/DOM
W3C DOM home page.

www.w3schools.com/dom
The W3Schools DOM introduction, tutorial and links site.

www.oasis-open.org/cover/dom.html
The Oasis-Open DOM page contains a comprehensive overview of the Document Object Model with
references and links.

dmoz.org/Computers/Programming/Internet/W3C_DOM
This is a useful set of DOM links to different locations and instructional matter.

www.w3.org/DOM/faq.html
Answers to Frequently Asked DOM Questions.

www.jdom.org
Home page for the JDOM XML API in Java.

SUMMARY
• XML documents, when parsed, are represented as a hierarchal tree structure in memory. This tree

structure contains the document’s elements, attributes, text, etc. XML was designed to be a live,
dynamic technology—the contents of the tree structure can be modified by a programmer. This
essentially allows the programmer to add data, remove data, query for data, etc., in a manner sim-
ilar to a database.

• The W3C provides a standard recommendation for building a tree structure in memory for XML
documents called the XML Document Object Model (DOM). Any parser that adheres to this rec-
ommendation is called a DOM-based parser.

228 Document Object Model (DOM™) Chapter 8

• A DOM-based parser exposes (i.e., makes available) a programmatic library—called the DOM
Application Programming Interface (API)—that allows data in an XML document to be accessed
and manipulated. This API is available for many different programming languages.

• DOM-based parsers are written in a variety of programming languages and are usually available
for download at no charge. Many applications (such as Internet Explorer 5) have built-in parsers.

• A Microsoft XML Document Object Model object (i.e., Microsoft.XMLDOM) represents an
XML document (in memory) and provides methods for manipulating its data.

• Property documentElement returns a document’s root element. The root element is important
because it is used as a reference point for retrieving child elements, text, etc.

• Property nodeName returns the name of an attribute, element, etc.—which are collectively called
nodes.

• Property childNodes contains a node’s child nodes. Property length returns the number of
child nodes.

• Individual child nodes are accessed using the item method. Each node is given an integer value
(starting at zero) based on the order in which they occur in the XML document.

• Property firstChild retrieves the root node’s first child node.

• Nodes at the same level in a document (i.e., that have the same parent node) are called siblings.
Property nextSibling returns a node’s next sibling.

• A text node’s value is its text, an element node’s value is null (which indicates the absence of a
value) and an attribute node’s value is the attribute’s value.

• Property parentNode returns a node’s parent node.

• The Document object represents the top-level node of an XML document in memory and pro-
vides a means of creating nodes and retrieving nodes.

• Interface Node represents an XML document node.

• Element represents an element node.

• Sun Microsystems, the creator of Java, provides several packages related to XML. Package
org.w3c.dom provides the DOM-API programmatic interface (i.e., classes, methods, etc.).
Package javax.xml.parsers provides classes related to parsing an XML document. Package
com.sun.xml.tree contains classes and interfaces from Sun Microsystem’s internal API,
which provides features (e.g., saving an XML document) currently not available in the DOM rec-
ommendation.

• A DOM-based parser may use an event-based implementation (i.e., as the document is parsed
events are raised when starting tags, attributes, etc. are encountered) to help create the tree struc-
ture in memory. A popular event-based implementation is called the Simple API for XML (SAX).
Package org.xml.sax provides the SAX programmatic interface.

• Class DocumentBuilderFactory (package javax.xml.parsers) obtains an instance of
a parser.

• Method setValidating specifies whether a parser is validating or nonvalidating.

• Method parse loads and parses XML documents. If parsing is successful, a Document object
is returned. Otherwise, a SAXException is thrown.

• Method getDocumentElement returns the Document’s root node. The Document’s root
node represents the entire document—not the root element node.

• Method getNodeType retrieves the node’s type.

• Elements in the XML document are retrieved by calling method getElementsByTagName.
Each element is stored as an item (i.e., a Node) in a NodeList. The first item added is stored at

Chapter 8 Document Object Model (DOM™) 229

index 0, the next at index 1, and so forth. This index is used to access an individual item in the
NodeList.

• Interface Text represents an element or attribute’s character data.

• Method replaceChild replaces a Node.

• Method write is a member of XmlDocument, which requires casting a Document to Xml-
Document. This internal API class is used because Document does not provide a method for
saving an XML document.

• SAXParseException and SAXException contain information about errors and warnings
thrown by the parser. Class SAXParseException is a subclass of SAXException and in-
cludes methods for locating the location of the error.

• By default, JAXP does not throw any exceptions when a document fails to conform to a DTD. The
programmer must provide their own implementation, which is registered using method setEr-
rorHandler.

• Interface ErrorHandler provides methods fatalError, error and warning for fatal er-
rors (i.e., errors that violate the XML 1.0 recommendation; parsing is halted), errors (e.g., such as
validity constraints that do not stop the parsing process) and warnings (i.e., not classified as fatal
errors or errors and that do not stop the parsing process), respectively.

• Method newDocument creates a new Document object, which can be used to build an XML
document in memory.

• Method createComment creates a comment.

• Method createProcessingInstruction creates a processing instruction and method
createCDATASection creates a CDATA section.

TERMINOLOGY
API getNodeType
appendChild getNodeValue
Attr getParentNode
CDATA section getTagName
cloneNode hasChildNodes
Comment item method
comment node Java API for XML Parsing (JAXP)
createAttribute length property
createCDATASection msxml
createComment Node
createElement Node.ATTRIBUTE_NODE
createProcessingInstruction Node.CDATA_SECTION_NODE
createTextNode Node.COMMENT_NODE
createXmlDocument Node.ELEMENT_NODE
Document Node.PROCESSING_INSTRUCTION_NODE
document root Node.TEXT_NODE
DOM NodeList
Element processing instruction node
encoding attribute ProcessingInstruction
getAttribute childNodes
getChildNodes documentElement
getDocumentElement firstChild
getNodeName nextSibling

230 Document Object Model (DOM™) Chapter 8

SELF-REVIEW EXERCISES
8.1 State whether each of the following are true or false. If false, explain why.

a) Class XmlDocument is a Sun Microsystem’s internal API class.
b) Text in XML document is not represented as a node.
c) A NodeList contains a list of Nodes.
d) Interface CDATASection extends interface CharacterData.
e) Interface Attr extends interface Element.
f) Method parse loads and parses an XML document.
g) Interface ErrorHandler defines methods fatalError, error and warning.
h) Method getElementByTagName of class Element returns the first element in the

XML document that matches the specified name.
i) The replaceChild method of XmlDocument can be used to replace a processing in-

struction with a comment inside an element.
j) An element’s node value is text (i.e., character data).

8.2 Fill in the blanks in each of the following statements:
a) DOM is an acronym for .
b) DOM-based parsers represent an XML document’s data as a structure.
c) The number of Nodes in a NodeList is determined by calling method .
d) Method replaces one child node with another.
e) Method creates a text node.
f) Method returns a NodeList containing every occurrence of a particular el-

ement.
g) represents the root of an XML document.
h) is a static Node constant that represents an element.
i) method outputs an XML document.

ANSWERS TO SELF-REVIEW EXERCISES
8.1 a) True. b) False. Text is represented as a node. c) True. d) True. e) False. Interface Attr
is derived from interface Node. f) True. g) True. h) False. Method getElementByTagName re-
turns a NodeList containing all the element nodes that match the specified name. i) True. j) False.
An element’s node value is null.

8.2 a) Document Object Model. b) tree. c) getLength. d) replaceChild. e) create-
TextNode. f) getElementsByTagName. g) Document. h) NODE.ELEMENT_NODE. i) Xml-
Document, write.

nodeName setNodeValue
nodeValue setValue method of Attr
parentNode Text
removeAttribute write
removeChild Xerces
replaceChild XML::DOM
root element node XML4J
script element XmlDocument
setAttribute

Chapter 8 Document Object Model (DOM™) 231

EXERCISES
8.3 Using JavaScript, add to article.xml’s (Fig. 8.2) root element

<rating>*****</rating>

Display the result as shown in Fig. 8.3.

8.4 Using JavaScript, create an XML document. The document should have a root element
named message that contains the child element myMessage—which contains a text node. Render
the document using Internet Explorer. [Hint: Use the HTML innerText property to display the
XML. Also use the xml property of DOMDocument object.]

8.5 Enhance the day planner case study (Figs. 8.17 and 8.18) to allow the user to add a note as
a child node of date. Use graphical user interface components to accept year, month, day, time and
notes from the user. If no existing date node matches the date entered by the user, create a new date
node within the appropriate year node and append a new note node. If no year node matches,
create both the year node and the date node and append a new note node to it. View the new
nodes by query.

8.6 Write a Java application that loads an XML document that contains the DTD in Fig. 8.19 as
part of its internal subset. Use the XML document’s data to draw rectangles and circles with text in-
side them. Attributes x and y represent the top-left coordinates. Assume a circle is bounded by an
imaginary rectangle. Attributes width and height represent the rectangle’s width and height and
attribute radius is the circle’s radius. Validate your XML document(s) against the DTD.

8.7 (Validator) Write a Web page that uses JavaScript and msxml to validate XML documents.
Display either a message indicating the document is valid or an error message indicating that the doc-
ument does not conform to its DTD/schema. Error messages should include line numbers as well as
a description. [Hint: Use Microsoft’s XMLDOMParseError object to check for parse errors and
property reason to get a description of why a document failed validation.]

1 <!DOCTYPE figure [
2 <!ELEMENT figure (rectangle*, circle*)>
3 <!ELEMENT rectangle (#PCDATA)>
4 <!ATTLIST rectangle x CDATA #REQUIRED
5 y CDATA #REQUIRED
6 width CDATA #REQUIRED
7 height CDATA #REQUIRED>
8
9 <!ELEMENT circle (#PCDATA)>

10 <!ATTLIST circle x CDATA #REQUIRED
11 y CDATA #REQUIRED
12 radius CDATA #REQUIRED>
13]>

Fig. 8.19 DTD for Exercise 8.6.

9
Simple API for XML

(SAX)

Objectives
• To be able to use the Simple API for XML (SAX).
• To understand the differences between the Document

Object Model (DOM) and SAX.
• To be able to use JAXP’s SAX implementation to

parse a document.
• To understand fundamental differences between SAX

1.0 and SAX 2.0.
• To be able to use Xerces’ SAX implementation to

parse a document.
Tis one thing to show a man that he is in an error, and
another to put him in possession of truth.
John Locke

An error is the more dangerous in proportion to the degree of
truth which it contains.
Henri-Frédéric Amiel

I claim not to have controlled events, but confess plainly that
events have controlled me.
Abraham Lincoln

Chapter 9 Simple API for XML (SAX) 233

9.1 Introduction
In Chapter 8, we discussed the Document Object Model (DOM) for programmatically ma-
nipulating an XML document. This chapter will discuss another method for accessing an
XML document’s contents, called the Simple API for XML, or SAX.

SAX was developed by the members of the XML-DEV mailing list and was released in
May of 1998. SAX is an alternate method for parsing XML documents that uses an event-
based model—notifications called events are raised as the document is parsed. In this
chapter, we discuss how to use SAX. We also program the day planner case study using
SAX instead of the DOM.

9.2 DOM vs. SAX
SAX and DOM are dramatically different APIs for accessing information in XML docu-
ments. DOM is a tree-based model that stores the document’s data in a hierarchy of nodes.
Because all the document’s data is in memory, data can be quickly accessed. DOM also
provides facilities for adding or removing nodes (i.e., modifying the document).

SAX-based parsers invoke methods when markup (e.g., a start tag, end tag, etc.) is
encountered. With this event-based model, no tree structure is created by the SAX-based
parser to store the XML document’s data—data is passed to the application from the XML
document as it is found. This results in greater performance and less memory overhead than
with the DOM. In fact, Many DOM parsers use a SAX parser to retrieve data from a doc-
ument for building the DOM tree. However, many programmers find it easier to traverse
and manipulate XML documents using the DOM tree structure. As a result, SAX parsers
are typically used for reading XML documents that will not be modified.

Performance Tip 9.1
SAX-based parsers are commonly used in situations where memory must be conserved. 9.1

Outline
9.1 Introduction
9.2 DOM vs. SAX
9.3 SAX-based Parsers
9.4 Setup
9.5 Events
9.6 Example: Tree Diagram
9.7 Case Study: Using SAX with the Day Planner Application
9.8 SAX 2.0
9.9 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises •
Exercises

234 Simple API for XML (SAX) Chapter 9

Software Engineering Observation 9.1
SAX was developed independently of the W3C and has been widely supported by industry.
DOM is the official W3C recommendation. 9.1

9.3 SAX-based Parsers
SAX-based parsers are available for a variety of programming languages (e.g., Java, Py-
thon, etc.). Several SAX-based parsers are available for free download (Fig. 9.1). We use
Sun Microsystem’s JAXP with its default parser for the majority of the examples.

9.4 Setup
In successive sections, we will be using Java applications to illustrate the SAX API. This
section describes the software needed to run these Java applications. To be able to compile
and execute the examples you will need to

1. Download and install the Java 2 Standard Edition from

www.java.sun.com/j2se.

2. Visit www.deitel.com/faq/java3install.htm,

to receive step-by-step installation instructions.

3. Download and install JAXP from java.sun.com/xml/download.html.
Installation instructions are provided at this Web site and as HTML documents in-
cluded with the download.

4. Copy the Chapter 9 examples from the CD-ROM that accompanies this book to
your hard drive. These examples are also available for download free of charge
from www.deitel.com.

As we present an example, we will discuss the steps necessary to execute it. The steps
outlined in this section must be followed before attempting to execute any example.

9.5 Events
The SAX parser invokes certain methods (Fig. 9.2) when events occur. Programmers over-
ride these methods to process the data in an XML document. Other SAX implementations
may invoke additional methods on events.

Product Description

JAXP Sun’s JAXP is available from java.sun.com/xml. JAXP supports both
SAX and DOM.

Xerces Apache’s Xerces parser is available at www.apache.org. Xerces sup-
ports both SAX and DOM.

MSXML 3.0 Microsoft’s msxml parser available at msdn.microsoft.com/xml.
This parser supports both SAX and DOM.

Fig. 9.1 Some SAX-based parsers.

Chapter 9 Simple API for XML (SAX) 235

9.6 Example: Tree Diagram
Figure 9.3 is a program that parses an XML document with a SAX-based parser and outputs
the document’s data as a tree diagram.

Method Name Description

setDocumentLocator Invoked at the beginning of parsing.

startDocument Invoked when the parser encounters the start of an XML docu-
ment.

endDocument Invoked when the parser encounters the end of an XML docu-
ment.

startElement Invoked when the start tag of an element is encountered.

endElement Invoked when the end tag of an element is encountered.

characters Invoked when text characters are encountered.

ignorableWhitespace Invoked when whitespace that can be safely ignored is
encountered.

processingInstruction Invoked when a processing instruction is encountered.

Fig. 9.2 Methods invoked by the SAX parser.

1 // Fig. 9.3 : Tree.java
2 // Using the SAX Parser to generate a tree diagram.
3
4 import java.io.*;
5 import org.xml.sax.*; // for HandlerBase class
6 import javax.xml.parsers.SAXParserFactory;
7 import javax.xml.parsers.ParserConfigurationException;
8 import javax.xml.parsers.SAXParser;
9

10 public class Tree extends HandlerBase {
11 private int indent = 0; // indentation counter
12
13 // returns the spaces needed for indenting
14 private String spacer(int count)
15 {
16 String temp = "";
17
18 for (int i = 0; i < count; i++)
19 temp += " ";
20
21 return temp;
22 }
23
24 // method called before parsing
25 // it provides the document location

Fig. 9.3 Application to create a tree diagram for an XML document (part 1 of 4).

236 Simple API for XML (SAX) Chapter 9

26 public void setDocumentLocator(Locator loc)
27 {
28 System.out.println("URL: " + loc.getSystemId());
29 }
30
31 // method called at the beginning of a document
32 public void startDocument() throws SAXException
33 {
34 System.out.println("[document root]");
35 }
36
37 // method called at the end of the document
38 public void endDocument() throws SAXException
39 {
40 System.out.println("[document end]");
41 }
42
43 // method called at the start tag of an element
44 public void startElement(String name,
45 AttributeList attributes) throws SAXException
46 {
47 System.out.println(spacer(indent++) +
48 "+-[element : " + name + "]");
49
50 if (attributes != null)
51
52 for (int i = 0; i < attributes.getLength(); i++)
53 System.out.println(spacer(indent) +
54 "+-[attribute : " + attributes.getName(i) +
55 "] \"" + attributes.getValue(i) + "\"");
56 }
57
58 // method called at the end tag of an element
59 public void endElement(String name) throws SAXException
60 {
61 indent--;
62 }
63
64 // method called when a processing instruction is found
65 public void processingInstruction(String target,
66 String value) throws SAXException
67 {
68 System.out.println(spacer(indent) +
69 "+-[proc-inst : " + target + "] \"" + value + "\"");
70 }
71
72 // method called when characters are found
73 public void characters(char buffer[], int offset,
74 int length) throws SAXException
75 {
76 if (length > 0) {
77 String temp = new String(buffer, offset, length);
78

Fig. 9.3 Application to create a tree diagram for an XML document (part 2 of 4).

Chapter 9 Simple API for XML (SAX) 237

79 System.out.println(spacer(indent) +
80 "+-[text] \"" + temp + "\"");
81 }
82 }
83
84 // method called when ignorable whitespace is found
85 public void ignorableWhitespace(char buffer[],
86 int offset, int length)
87 {
88 if (length > 0) {
89 System.out.println(spacer(indent) + "+-[ignorable]");
90 }
91 }
92
93 // method called on a non-fatal (validation) error
94 public void error(SAXParseException spe)
95 throws SAXParseException
96 {
97 // treat non-fatal errors as fatal errors
98 throw spe;
99 }
100
101 // method called on a parsing warning
102 public void warning(SAXParseException spe)
103 throws SAXParseException
104 {
105 System.err.println("Warning: " + spe.getMessage());
106 }
107
108 // main method
109 public static void main(String args[])
110 {
111 boolean validate = false;
112
113 if (args.length != 2) {
114 System.err.println("Usage: java Tree [validate] " +
115 "[filename]\n");
116 System.err.println("Options:");
117 System.err.println(" validate [yes|no] : " +
118 "DTD validation");
119 System.exit(1);
120 }
121
122 if (args[0].equals("yes"))
123 validate = true;
124
125 SAXParserFactory saxFactory =
126 SAXParserFactory.newInstance();
127
128 saxFactory.setValidating(validate);
129
130 try {
131 SAXParser saxParser = saxFactory.newSAXParser();

Fig. 9.3 Application to create a tree diagram for an XML document (part 3 of 4).

238 Simple API for XML (SAX) Chapter 9

Lines 4–8 import classes and interfaces used by the program. Package
org.xml.sax provides the SAX programmatic interface (i.e., classes and interfaces)
required by a SAX parser. JAXP package javax.xml.parsers provides classes for
instantiating DOM and SAX parsers. We will discuss classes SAXParserFactory,
ParserConfigurationException and SAXParser momentarily.

On line 10, we create class Tree, which extends class HandlerBase (package
org.xml.sax). Class HandlerBase implements four interfaces: EntityRe-
solver—for handling external entities, DTDHandler—for handling notations and
unparsed entities, DocumentHandler—for handling parsing events and ErrorHan-
dler—for error handling. Because we do not want HandlerBase’s default implemen-
tation, we inherit from it and override (i.e., provide a different implementation) several
methods. We discuss each overridden method below.

Programmer-defined method spacer (lines 14–22) returns a String of spaces that
is used to emphasize the hierarchal relationship of the data output by indenting each part of
the document. We use two spaces per tree level.

Lines 26–29

public void setDocumentLocator(Locator loc)
{
 System.out.println("URL: " + loc.getSystemId());
}

override HandlerBase method setDocumentLocator to output the parsed docu-
ment’s URL. Using reference loc, the document’s URL is retrieved by calling method
getSystemId. Lines 32–35

public void startDocument() throws SAXException
{
 System.out.println("[document root]");
}

132 saxParser.parse(new File(args[1]), new Tree());
133 }
134 catch (SAXParseException spe) {
135 System.err.println("Parse Error: " + spe.getMessage());
136 }
137 catch (SAXException se) {
138 se.printStackTrace();
139 }
140 catch (ParserConfigurationException pce) {
141 pce.printStackTrace();
142 }
143 catch (IOException ioe) {
144 ioe.printStackTrace();
145 }
146
147 System.exit(0);
148 }
149 }

Fig. 9.3 Application to create a tree diagram for an XML document (part 4 of 4).

Chapter 9 Simple API for XML (SAX) 239

override HandlerBase method startDocument, which is called when the docu-
ment’s root node is encountered. This method is called exactly once. We output the text
[document root] to indicate that the root node was encountered.

There are a few specialized exceptions for SAX parsing, consisting of fatal errors,
nonfatal errors and warnings. Fatal errors most often occur because the XML document is
not well formed. Nonfatal errors typically occur due to validation errors, and warnings usu-
ally occur because of DTD inconsistencies (e.g., duplicate or unused declarations). The
exceptions that are thrown by the SAX parser are SAXException (thrown when an error
occurs), SAXParseException (a subclass of SAXException that is thrown when a
parsing error occurs) and ParserConfigurationException (thrown if the parser
could not be instantiated).

Lines 38–41

public void endDocument() throws SAXException
{
 System.out.println("[document end]");
}

override HandlerBase method endDocument, which is called when the end of the
document is encountered. This method is called last and exactly once. We output the text
[document end] to indicate that the end of the document was encountered. Method
endDocument is also called when a fatal error occurs.

Lines 44–56 override HandlerBase method startElement, which is called
when a start tag is encountered. Method startElement takes two arguments: the ele-
ment name (referenced by name) and the element’s attributes (referenced by
attributes). Lines 47 and 48 output the element’s name with the appropriate indenting
returned by method spacer.

Lines 50–55

if (attributes != null)

for (int i = 0; i < attributes.getLength(); i++)
 System.out.println(spacer(indent) +
 "+-[attribute : " + attributes.getName(i) +
 "] \"" + attributes.getValue(i) + "\"");

determine whether the element contains attributes. If the element does not contain at-
tributes, attributes has the value null, and the for loop is not executed. Otherwise,
we output each attribute’s name and value. To retrieve the number of attributes, we call
AttributeList method getLength. Methods getName and getValue each take
an integer argument, which represents the position of the attribute, and return the name and
value of the attribute, respectively. The first attribute is at position zero.

Software Engineering Observation 9.2
Method startElement’s second argument contains only attributes with explicit values.
Attributes with #IMPLIED are not placed in the attribute list. 9.2

Lines 59–62 override HandlerBase method endElement, which is called when
the end of an element—including an empty element—is encountered. On line 61, we dec-
rement the value of indent because we are moving up one level in the tree.

240 Simple API for XML (SAX) Chapter 9

Lines 65–70 override HandlerBase method processingInstruction, which
is called when a processing instruction is encountered. This method takes two String
arguments representing the processing instruction’s target and value. For example, the pro-
cessing instruction

<?test this is a test?>

contains target test and value this is a test. On lines 68–69, we output the process-
ing instruction node. [Note: A SAX parser does not invoke processingInstruction
for an XML declaration (e.g., line 1).]

Lines 73–82 override HandlerBase method characters, which is invoked when
character data is encountered. We declare variables buffer, offset and length of
type char [], int and int, respectively. Variable buffer contains the element’s char-
acter data, starting at offset and containing length number of characters. In prepara-
tion for output, we convert the character array to a String in line 77.

Lines 85–91 override HandlerBase method ignorableWhitespace, which is
invoked when ignorable whitespace characters are encountered. If a DTD is not present for
an XML document, all text is considered important and cannot be ignored. Method
ignorableWhitespace takes three arguments, similar to method characters.

When a DTD is present, some whitespace characters are ignorable. For example,
whitespace characters between an element’s child elements are ignored—if the parent ele-
ment does not contain mixed content (i.e., character data and elements). When ignorable
whitespace characters are encountered, method ignorableWhitespace is invoked
instead of method characters.

Lines 94–99

public void error(SAXParseException spe)
throws SAXParseException

{
// Treat non-fatal errors as fatal errors.
throw spe;

}

override HandlerBase method error, which is usually invoked when a validation er-
ror occurs. Because we do not want to continue parsing if the document fails validation, we
rethrow the SAXParseException.

Lines 102–106 override HandlerBase method warning. This method is invoked
when problems are detected that are not considered errors, according to the XML 1.0 rec-
ommendation.

Lines 109–148 define method main where we check for correct program initialization
and start the parsing of an XML document. Line 111

boolean validate = false;

will be used to specify whether or not to use a validating parser. If the user specifies a val-
idating parser from the command line (by typing yes), we change validate to true
(lines 122 and 123). Lines 125 and 126

SAXParserFactory saxFactory =
 SAXParserFactory.newInstance();

Chapter 9 Simple API for XML (SAX) 241

instantiate a SAXParserFactory (package javax.xml.parsers) object from
which a SAX-based parser can be obtained. Line 128

saxFactory.setValidating(validate);

configures the SAXParserFactory object for a validating parser if validate is
true or a nonvalidating parser if validate is false.

Lines 131 and 132

SAXParser saxParser = saxFactory.newSAXParser();
saxParser.parse(new File(args[1]), new Tree());

instantiate a SAX-based parser object by calling method newSAXParser and passes the
parser an XML document and an instance of our Tree class. The parser reads the XML
document and invokes the appropriate methods. If the parser throws any exceptions, we
catch them on lines 134–145.

To compile Tree, either the CLASSPATH environment variable must be set or the
compiler option classpath must be used to include the appropriate classes for JAXP.
For example, to compile the application on a Windows machine, type the following at the
command line:

set CLASSPATH=c:\jaxp\jaxp.jar;c:\jaxp\parser.jar;.
javac Tree.java

Note that this assumes JAXP was installed in the jaxp folder on the C: drive. We will
defer the discussion of executing the application until we have presented our first XML
document.

Figure 9.4 shows an XML document that contains elements test, example andob-
ject. Root element test contains one attribute name that is assigned the value
" spacing 1 ". Element object, which contains the character data World, is a child
element of example. This document does not reference a DTD. To load this document
into the program shown in Fig. 9.3, type

java Tree no spacing1.xml

The output generated by class Tree is displayed in Fig. 9.4.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 9.4 : spacing1.xml -->
4 <!-- Whitespaces in nonvalidating parsing -->
5 <!-- XML document without DTD -->
6
7 <test name = " spacing 1 ">
8 <example><object>World</object></example>
9 </test>

Fig. 9.4 XML document spacing1.xml (part 1 of 2).

242 Simple API for XML (SAX) Chapter 9

Notice that whitespace characters are preserved. The attribute value (line 7) is not nor-
malized. The line feed (at the end of line 7) is passed to our application and is shown in the
output. The indentation in line 8 is also preserved and displayed as text. The line feed at
end of line 8 is also output.

Figure 9.5 shows an XML document that contains elements test, example and
object. Root element test contains one attribute name that is assigned the value
" spacing 2 ". Element object, which contains the character data World, is a child
element of example. This document references a DTD (lines 7–12). To load the docu-
ment into the program of Fig. 9.3, type

java Tree no spacing2.xml

the output generated by Tree.java is displayed in Fig. 9.5. Even though we are not val-
idating the XML document, the DTD is used to check the XML document’s characters—
so any whitespace that can be removed is set as ignorable.

URL: file:C:/Tree/spacing1.xml
[document root]
+-[element : test]
 +-[attribute : name] " spacing 1 "
 +-[text] "
"
 +-[text] " "
 +-[element : example]
 +-[element : object]
 +-[text] "World"
 +-[text] "
"
[document end]

Fig. 9.4 XML document spacing1.xml (part 2 of 2).

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 9.5 : spacing2.xml -->
4 <!-- Whitespace and nonvalidated parsing -->
5 <!-- XML document with DTD -->
6
7 <!DOCTYPE test [
8 <!ELEMENT test (example)>
9 <!ATTLIST test name CDATA #IMPLIED>

10 <!ELEMENT element (object*)>
11 <!ELEMENT object (#PCDATA)>
12]>
13
14 <test name = " spacing 2 ">
15 <example><object>World</object></example>
16 </test>

Fig. 9.5 XML document spacing2.xml (part 1 of 2).

Output of line 7’s
line feed (this line
and the next).

Output of line 8’s
line feed (this line
and the next).

Chapter 9 Simple API for XML (SAX) 243

The three ignorables in the output are the line feed at the end of line 14, the spaces
at the beginning of line 15 and the line feed at the end of line 15.

Consider the XML document shown in Fig. 9.6. This document contains a DTD (lines
6–9), root element test, which contains a processing instruction (line 12) and an
example element. Element example contains an item element, which contains a
CDATA section.

The first output shows the result when

java Tree no notvalid.xml

is typed at the command line. The DTD is not used to validate the document. The second
output shows the result when

java Tree yes notvalid.xml

is typed at the command line.
This document is well formed, but not valid, because element example cannot con-

tain an item element. In the first output, validation was disabled and the document was
successfully parsed. When a CDATA section is encountered, the parser does not process the
text—it simply returns the character data. Because validation is enabled in the second
output, a fatal error occurs when element item is encountered inside element example.
Parsing terminates when the fatal error occurs. Recall that in Fig. 9.3 (lines 94–99) the
error method was overridden to rethrow the SAXParseException.

URL: file:C:/Tree/spacing2.xml
[document root]
+-[element : test]
 +-[attribute : name] " spacing 2 "
 +-[ignorable]
 +-[ignorable]
 +-[element : example]
 +-[element : object]
 +-[text] "World"
 +-[ignorable]
[document end]

Fig. 9.5 XML document spacing2.xml (part 2 of 2).

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 9.6 : notvalid.xml -->
4 <!-- Validation and non-validation -->
5
6 <!DOCTYPE test [
7 <!ELEMENT test (example)>
8 <!ELEMENT example (#PCDATA)>
9]>

10

Fig. 9.6 Well-formed XML document (part 1 of 2).

244 Simple API for XML (SAX) Chapter 9

Figure 9.7 presents an XML document containing root element test, which contains
element example. This document does not contain a DTD. The first output shows the
result when

java Tree no valid.xml

is typed at the command line. The second output shows the result when

java Tree yes valid.xml

is typed at the command line.
The first output shows a successful parse. Notice that the ampersand (&) character is

placed in its own text node. When an entity is encountered, the parser replaces the entity
with its associated character in its own text node. By doing so, the current text node is ter-
minated, and a new one is started for the entity. Any remaining characters are placed in
another text node.

The second output shows the result when validation is attempted. The second execu-
tion fails because a DTD is required for an XML document to be valid. Before failing due

11 <test>
12 <?test message?>
13 <example><item><![CDATA[Hello & Welcome!]]></item></example>
14 </test>

URL: file:C:/Tree/notvalid.xml
[document root]
+-[element : test]
 +-[ignorable]
 +-[ignorable]
 +-[proc-inst : test] "message"
 +-[ignorable]
 +-[ignorable]
 +-[element : example]
 +-[element : item]
 +-[text] "Hello & Welcome!"
 +-[ignorable]
[document end]

URL: file:C:/Tree/notvalid.xml
[document root]
+-[element : test]
 +-[ignorable]
 +-[ignorable]
 +-[proc-inst : test] "message"
 +-[ignorable]
 +-[ignorable]
 +-[element : example]
Parse Error: Element "example" does not allow "item"

Fig. 9.6 Well-formed XML document (part 2 of 2).

Chapter 9 Simple API for XML (SAX) 245

to a fatal error, method warning (Fig. 9.3 line 102) is invoked, indicating the DOCTYPE
is missing from this document.

9.7 Case Study: Using SAX with the Day Planner Application
In this section, we implement the day planner application from Chapter 8 using SAX. Re-
call that unlike the DOM, SAX does not store data in a tree structure. For this application,
we have to either create one ourselves or parse the XML document multiple times. For sim-
plicity, we have chosen to re-parse the document (e.g., planner.xml) each time a query
is performed. Figure 9.8 shows the GUI for the appointment query application. The only
change made to dayPlanner.java from the version in Chapter 8 is to use SAXPlan-
ner (Fig. 9.9) instead of DOMPlanner in line 17 and 30.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 9.7 : valid.xml -->
4 <!-- DTD-less document -->
5
6 <test>
7 <example>Hello & Welcome!</example>
8 </test>

URL: file:C:/Tree/valid.xml
[document root]
+-[element : test]
 +-[text] "
"
 +-[text] " "
 +-[element : example]
 +-[text] "Hello "
 +-[text] "&"
 +-[text] " Welcome!"
 +-[text] "
"
[document end]

URL: file:C:/Tree/valid.xml
[document root]
Warning: Valid documents must have a <!DOCTYPE declaration.
Parse Error: Element type "test" is not declared.

Fig. 9.7 Checking an XML document without a DTD for validity.

1 // Fig. 9.8: DayPlanner.java
2 // Program for GUI interface for day planner.
3

Fig. 9.8 User interface for a day-planning application (part 1 of 4).

246 Simple API for XML (SAX) Chapter 9

4 import java.awt.*;
5 import java.awt.event.*;
6 import javax.swing.*;
7 import javax.swing.event.*;
8
9 public class DayPlanner extends JFrame

10 implements ActionListener {
11
12 // GUI components
13 private JTextArea display;
14 private JComboBox year, month, day, time;
15 private JButton query;
16 private JPanel panel1, panel2;
17 private SAXPlanner handler;
18
19 public DayPlanner()
20 {
21 super("Day planner using SAX");
22
23 // set the output font
24 Font font = new Font("Monospaced",
25 java.awt.Font.BOLD, 16);
26 display = new JTextArea();
27 display.setFont(font);
28 display.setEditable(false);
29
30 handler = new SAXPlanner(display);
31
32 // initialize the user interface components
33 year = new JComboBox(handler.getYears());
34
35 String months[] = new String[13];
36 months[0] = "ANY";
37
38 for (int i = 1; i < 13; i++)
39 months[i] = "" + (i);
40
41 month = new JComboBox(months);
42
43 String days[] = new String[32];
44 days[0] = "ANY";
45
46 for (int i = 1; i < 32; i++)
47 days[i] = "" + (i);
48
49 day = new JComboBox(days);
50
51 String times[] = { "ANY", "Morning", "Afternoon",
52 "Evening", "Night" };
53 time = new JComboBox(times);
54
55 query = new JButton("Get Schedules");
56 query.addActionListener(this);

Fig. 9.8 User interface for a day-planning application (part 2 of 4).

Chapter 9 Simple API for XML (SAX) 247

57
58 // panel containing components for querying
59 panel1 = new JPanel();
60 panel1.setLayout(new GridLayout(4, 2));
61 panel1.add(new JLabel("Year"));
62 panel1.add(year);
63 panel1.add(new JLabel("Month"));
64 panel1.add(month);
65 panel1.add(new JLabel("Day"));
66 panel1.add(day);
67 panel1.add(new JLabel("Time"));
68 panel1.add(time);
69
70 // panel containing text area for output
71 // and panel2 containing other GUI components
72 panel2 = new JPanel();
73 panel2.setLayout(new GridLayout(1, 2));
74 panel2.add(panel1);
75 panel2.add(query);
76
77 Container c = getContentPane();
78 c.setLayout(new BorderLayout());
79 c.add(new JScrollPane(display), BorderLayout.CENTER);
80 c.add(panel2, BorderLayout.SOUTH);
81 setSize(600, 450);
82 show();
83 }
84
85 // method executed when query button is pressed
86 public void actionPerformed(ActionEvent e)
87 {
88 if (e.getSource() == query) {
89 int yearIndex, monthIndex, dayIndex, timeIndex;
90
91 // get the integer values of all the query parameters
92 yearIndex =
93 getIntegerValue((String) year.getSelectedItem());
94 monthIndex =
95 getIntegerValue((String) month.getSelectedItem());
96 dayIndex =
97 getIntegerValue((String) day.getSelectedItem());
98 timeIndex = time.getSelectedIndex() - 1;
99
100 // get the result of query
101 handler.getQueryResult(yearIndex, monthIndex,
102 dayIndex, timeIndex);
103 }
104 }
105
106 // method to convert the string value to integer
107 public int getIntegerValue(String str)
108 {
109

Fig. 9.8 User interface for a day-planning application (part 3 of 4).

248 Simple API for XML (SAX) Chapter 9

Figure 9.9 shows the SAX implementation (i.e., SAXPlanner) of the day planner.

110 // if ANY value is selected, return -1
111 if (str.equals("ANY"))
112 return -1;
113 else
114 return Integer.parseInt(str);
115 }
116
117 public static void main(String s[])
118 {
119 DayPlanner d = new DayPlanner();
120 d.addWindowListener(
121
122 new WindowAdapter()
123 {
124 public void windowClosing(WindowEvent e)
125 {
126 System.exit(0);
127 }
128 }
129);
130 }
131 }

132 // Fig. 9.9 : SAXPlanner.java
133 // Using the JAXP Parser to retrieve schedules
134
135 import java.io.*;
136 import java.util.*;
137 import javax.swing.*;
138 import org.xml.sax.*;
139 import javax.xml.parsers.SAXParserFactory;
140 import javax.xml.parsers.ParserConfigurationException;
141 import javax.xml.parsers.SAXParser;
142
143 public class SAXPlanner extends HandlerBase {
144
145 // variables used for parsing
146 private File fileXML;
147 private SAXParserFactory saxFactory;
148
149 // variables used for returning data
150 private static String strYear, strOutput;
151
152 // variables used for querying
153 private static int queryYear = -1;
154 private static int queryMonth = -1;
155 private static int queryDay = -1;
156 private static int queryTime = -1;

Fig. 9.9 Day-planning application with SAX (part 1 of 6).

Fig. 9.8 User interface for a day-planning application (part 4 of 4).

Chapter 9 Simple API for XML (SAX) 249

157
158 // variables used for node state
159 private boolean boolYear, boolDate, boolNote;
160
161 // variables used for information state
162 private int currYear, currMonth, currDay, currTime;
163
164 // variable for display
165 private JTextArea display;
166
167 public SAXPlanner(){}
168
169 public SAXPlanner(JTextArea output)
170 {
171 display = output;
172
173 // the XML document needed is "planner.xml"
174 init("planner.xml");
175 }
176
177 public void startDocument() throws SAXException
178 {
179 strYear = "";
180 strOutput = "";
181 }
182
183 public void startElement(String name,
184 AttributeList attributes) throws SAXException
185 {
186 if (name.equals("year")) {
187 currYear =
188 Integer.parseInt(attributes.getValue(0));
189
190 strYear += attributes.getValue(0) + " ";
191
192 boolYear = false;
193 boolDate = false;
194 boolNote = false;
195
196 // check the elements within this year
197 if (queryYear == -1 || queryYear == currYear)
198 boolYear = true;
199
200 }
201 else if (boolYear && name.equals("date")) {
202 currMonth =
203 Integer.parseInt(attributes.getValue(0));
204 currDay =
205 Integer.parseInt(attributes.getValue(1));
206
207 boolDate = false;
208 boolNote = false;
209

Fig. 9.9 Day-planning application with SAX (part 2 of 6).

250 Simple API for XML (SAX) Chapter 9

210 if ((queryMonth == -1 || queryMonth == currMonth) &&
211 (queryDay == -1 || queryDay == currDay)) {
212
213 // check the elements within this date
214 boolDate = true;
215 }
216 }
217 else if (boolDate && name.equals("note")) {
218
219 if (attributes.getValue(0) != null)
220 currTime =
221 Integer.parseInt(attributes.getValue(0));
222 else
223 currTime = -1;
224
225 boolNote = false;
226
227 switch (queryTime) {
228
229 case 0:
230
231 if (currTime >= 500 && currTime < 1200)
232 boolNote = true;
233
234 break;
235
236 case 1:
237
238 if (currTime >= 1200 && currTime < 1800)
239 boolNote = true;
240
241 break;
242
243 case 2:
244
245 if (currTime >= 1800 && currTime < 2100)
246 boolNote = true;
247
248 break;
249
250 case 3:
251
252 if (currTime >= 2100 && currTime < 500)
253 boolNote = true;
254
255 break;
256
257 default:
258 boolNote = true;
259 }
260
261 if (currTime == -1)
262 boolNote = true;

Fig. 9.9 Day-planning application with SAX (part 3 of 6).

Chapter 9 Simple API for XML (SAX) 251

263 }
264 }
265
266 public void characters(char buffer[], int offset,
267 int length) throws SAXException
268 {
269 if (boolNote) {
270 String value = new String(buffer, offset, length);
271 value = value.trim();
272
273 if (!value.equals("")) {
274 strOutput += "\nDATE: D " + currDay + " M " +
275 currMonth + " Y " + currYear + "\n";
276
277 if (currTime != -1)
278 strOutput += "TIME: " + currTime + " > " +
279 value + "\n";
280 else
281 strOutput += "ALL DAY > " + value + "\n";
282
283 strOutput += "* * * * * * * * * *";
284 }
285 }
286 }
287
288 public void error(SAXParseException spe)
289 throws SAXParseException
290 {
291 throw spe;
292 }
293
294 public void warning(SAXParseException spe)
295 throws SAXParseException
296 {
297 System.err.println("Warning: " + spe.getMessage());
298 }
299
300 public void init(String filename)
301 {
302 fileXML = new File(filename);
303 saxFactory = SAXParserFactory.newInstance();
304 saxFactory.setValidating(true);
305 }
306
307 public String[] getYears()
308 {
309 String buffer[];
310 StringTokenizer tokens;
311 int i;
312
313 try {
314
315 // parse the file

Fig. 9.9 Day-planning application with SAX (part 4 of 6).

252 Simple API for XML (SAX) Chapter 9

316 SAXParser saxParser = saxFactory.newSAXParser();
317 saxParser.parse(fileXML, new SAXPlanner());
318 }
319 catch (SAXParseException spe) {
320
321 // parser error
322 System.out.println("Parse Error: " +
323 spe.getMessage());
324 }
325 catch (Exception e) {
326 e.printStackTrace();
327 }
328
329 tokens = new StringTokenizer(strYear);
330
331 buffer = new String[tokens.countTokens() + 1];
332 buffer[0] = "ANY";
333 i = 1;
334
335 while (tokens.hasMoreTokens())
336 buffer[i++] = tokens.nextToken();
337
338 return buffer;
339 }
340
341 public void getQueryResult(int year, int month,
342 int day, int time)
343 {
344 queryYear = year;
345 queryMonth = month;
346 queryDay = day;
347 queryTime = time;
348 display.setText("*** YOUR DAY PLANNER ***");
349 display.append(getResult());
350 }
351
352 public String getResult()
353 {
354 try {
355
356 // parse the file
357 SAXParser saxParser = saxFactory.newSAXParser();
358
359 saxParser.parse(fileXML, new SAXPlanner());
360 }
361 catch(SAXParseException spe) {
362
363 // parser error
364 System.err.println("Parse Error: " +
365 spe.getMessage());
366 spe.printStackTrace();
367
368 }

Fig. 9.9 Day-planning application with SAX (part 5 of 6).

Chapter 9 Simple API for XML (SAX) 253

Lines 146–165 declare the references and instance variables used to process the XML
document. References strYear and strOutput store the processed data. Variables
queryYear, queryMonth, queryDay and queryTime store the search data. Vari-
ables boolYear, boolDate and boolNote keep track of the current location within
the XML document. Variables currYear, currMonth, currDay and currTime
store the current date and time.

Class SAXPlanner’s constructor is defined in line 169 and associates the user inter-
face with the document processor and then sets planner.xml as the XML document to
be parsed by passing it to programmer-defined method init (defined in line 300).

Method startDocument (lines 177) initializes variables strYear and
strOutput to the empty string. We do this to ensure that these variables are “cleared out”
on each successive parse.

Method startElement (line 183) processes the document’s elements. Lines 190–
205 process year elements. We retrieve the year element’s value attribute and append
it to strYear (lines 187–190), which stores the years that are available in the document.
The state variables are reset (lines 192–194), and if the year matches the query, we set
boolYear to true, thus allowing any date elements within this year element to be
processed.

Lines 201–216 process date elements. The month and day attributes are retrieved
(lines 202–205) and then checked against the query. If they match, boolDate is set to
true (line 214), which allows processing of note elements.

Lines 217–263 process note elements. Attribute time is retrieved in line 221. If it
does not exist, it is assigned -1, which denotes “any” time. If the query matches, then we

369 catch (Exception e) {
370 e.printStackTrace();
371 }
372
373 return strOutput;
374 }
375 }

Fig. 9.9 Day-planning application with SAX (part 6 of 6).

254 Simple API for XML (SAX) Chapter 9

set boolNote to true inside the switch structure (line 227), which allows processing
of the text in the note element.

Method characters (line 266) processes the character data only if boolNote is
true. Using the current date and time information, we create the output string and append
it to strOutput, which is eventually displayed in the GUI.

Method init (line 300) sets the file to be parsed; and creates a SAXParserFac-
tory object and configures it for validation.

Method getYears (line 307) is called from class DayPlanner (line 33 of Day-
Planner.java) to populate a combo box. This method returns the years in the XML
document as an array of Strings and creates a SAX-based parser object (line 316) that
parses the XML document. After parsing, we tokenize the String object referenced by
strYear and return the resulting array.

Method getQueryResult (line 341) is called from class DayPlanner (line 101
of DayPlanner.java). This method queries the XML document with the date argu-
ments, with the assistance of method getResult (line 352), and displays the result.

Method getResult (lines 352) creates a SAX parser object that parses the XML
document. The result is retrieved from strOutput and returned. Method getResult
is called each time a query is made.

Comparing our SAX implementation with the DOM implementation in Chapter 8, we
find that the total lines of code in each is about the same. The SAX implementation has to
store its own state to determine the current location in the XML document—in the DOM
implementation this is handled automatically. Programming of the SAX application was
easier because recursion was not needed, but requerying the XML document requires
parsing the document again.

For a large planner XML document, the SAX implementation would make more effi-
cient use of memory than the DOM implementation, because the overhead of storing the
document in memory is eliminated. However, in the SAX implementation each query
requires time to parse the document.

9.8 SAX 2.0
The examples we have studied up to this point use the SAX Version 1.0 API. SAX Version
2.0 was recently released. Although eagerly anticipated, industry is slow to adapt to rapidly
changing technologies. Code based on SAX 1.0 is widely used in industry and it will take
some time for this code to be upgraded to SAX 2.0. Many parsers either do not support
SAX 2.0 or are just beginning to support it. In this section, we provide an example of SAX
2.0 and contrast it with SAX 1.0.

In previous sections, we used JAXP to demonstrate some SAX 1.0 features. Because
JAXP does not support SAX 2.0, we use Apache’s Xerces Java Parser Version 1.1.3, which
does. The Xerces parser can be downloaded from xml.apache.org/xerces.

The methods used to process an XML document are mostly the same. Some of the
major changes between SAX 1.0 and SAX 2.0 are class HandlerBase being replaced
with class DefaultHandler; element and attribute processing has been expanded to
support namespaces; and the process of loading and parsing an XML document has
changed. SAX 2.0 also provides methods for retrieving and setting parser properties and
features, such as whether the parser performs validation.

Chapter 9 Simple API for XML (SAX) 255

Figure 9.10 shows a Java application that uses SAX 2.0 to output the document’s data
in a hierarchical format. This Java application is based upon the code in Fig. 9.3.

Line 11

public class PrintXML extends DefaultHandler {

1 // Fig. 9.10 : printXML.java
2 // Using the SAX Parser to indent an XML document.
3
4 import java.io.*;
5 import org.xml.sax.*;
6 import org.xml.sax.helpers.*;
7 import javax.xml.parsers.SAXParserFactory;
8 import javax.xml.parsers.ParserConfigurationException;
9 import javax.xml.parsers.SAXParser;

10
11 public class PrintXML extends DefaultHandler {
12 private int indent = 0; // indention counter
13
14 // returns the spaces needed for indenting
15 private String spacer(int count)
16 {
17 String temp = "";
18
19 for (int i = 0; i < count; i++)
20 temp += " ";
21
22 return temp;
23 }
24
25 // method called at the beginning of a document
26 public void startDocument() throws SAXException
27 {
28 System.out.println("<?xml version = \"1.0\"?>");
29 }
30
31 // method called at the end of the document
32 public void endDocument() throws SAXException
33 {
34 System.out.println("---[document end]---");
35 }
36
37 // method called at the start tag of an element
38 public void startElement(String uri, String eleName,
39 String raw, Attributes attributes) throws SAXException
40 {
41
42 System.out.print(spacer(indent) + "<" + eleName);
43
44 if (attributes != null)
45

Fig. 9.10 Java application that indents an XML document (part 1 of 3).

256 Simple API for XML (SAX) Chapter 9

46 for (int i = 0; i < attributes.getLength(); i++)
47 System.out.print(" "+ attributes.getLocalName(i) +
48 " = " + "\"" +
49 attributes.getValue(i) + "\"");
50 System.out.println(">");
51 indent += 3;
52 }
53
54 // method called at the end tag of an element
55 public void endElement(String uri, String eleName,
56 String raw) throws SAXException
57 {
58 indent -= 3;
59 System.out.println(spacer(indent) + "</" + eleName + ">");
60 }
61
62 // method called when characters are found
63 public void characters(char buffer[], int offset,
64 int length) throws SAXException
65 {
66 if (length > 0) {
67 String temp = new String(buffer, offset, length);
68
69 if (!temp.trim().equals(""))
70 System.out.println(spacer(indent) + temp.trim());
71 }
72 }
73
74 // method called when a processing instruction is found
75 public void processingInstruction(String target,
76 String value) throws SAXException
77 {
78 System.out.println(spacer(indent) +
79 "<?" + target + " " + value + "?>");
80 }
81
82 // main method
83 public static void main(String args[])
84 {
85
86 try {
87 XMLReader saxParser = (XMLReader) Class.forName(
88 "org.apache.xerces.parsers.SAXParser").newInstance();
89
90 saxParser.setContentHandler(new PrintXML());
91 FileReader reader = new FileReader(args[0]);
92 saxParser.parse(new InputSource(reader));
93 }
94 catch (SAXParseException spe) {
95 System.err.println("Parse Error: " + spe.getMessage());
96 }
97 catch (SAXException se) {
98 se.printStackTrace();

Fig. 9.10 Java application that indents an XML document (part 2 of 3).

Chapter 9 Simple API for XML (SAX) 257

defines class PrintXML, which extends class DefaultHandler (instead of Han-
dlerBase). Class DefaultHandler provides essentially the same interface as class
HandlerBase. In SAX 2.0, class HandlerBase is deprecated (i.e., obsolete).

Lines 26–29 override DefaultHandler method startDocument, lines 32–35
override method endDocument, lines 63–72 override method characters and lines
75–80 override method processingInstruction. All these methods provide the
same services they did in SAX 1.0.

Lines 38–52 override method startElement, which now has four arguments, the
namespace URI, the element name, the qualified element name and the element attributes.
Element attributes are now stored in an object of type Attributes and support retrieval
of URIs, attribute names and qualified attribute names.

Lines 55–60 override method endElement, which now has three arguments, the
namespace URI, the element name and the qualified element name.

Lines 87 and 88

XMLReader saxParser = (XMLReader) Class.forName(
 "org.apache.xerces.parsers.SAXParser").newInstance();

create a SAX-based parser object and assign it to reference saxParser. Method for-
Name is called to load the class definition for Xerces. Method newInstance creates the
instance that is downcast from Object to XMLReader.

Line 90

saxParser.setContentHandler(new PrintXML());

specifies that an object of type PrintXML (which extends DefaultHandler) con-
tains the event methods (e.g., startElement, etc.) that the parser will call.

Lines 91 and 92

FileReader reader = new FileReader(args[0]);
saxParser.parse(new InputSource(reader));

create an InputSource using the filename passed to the application and parses it. To
compile this example, we type

set CLASSPATH=c:\xerces\xerces.jar;.
javac PrintXML.java

at the command line.

99 }
100 catch (Exception e) {
101 e.printStackTrace();
102 }
103
104 System.exit(0);
105 }
106 }

Fig. 9.10 Java application that indents an XML document (part 3 of 3).

258 Simple API for XML (SAX) Chapter 9

Figure 9.11 lists an XML document that contains a processing instruction that links to
a stylesheet in line 5. The root element test (lines 7–13) contains example and a child
elements. Element example contains attribute value and the character data Hello and
Welcome!. Element a contains element b, which contains the character data 12345. To
pass this XML document to the program of Fig. 9.10, type

java PrintXML test.xml

at the command line.

9.9 Internet and World Wide Web Resources
www.megginson.com/SAX
The SAX 2.0 home page features various SAX specifications and resources.

www.whatis.com/sax.htm
Definition of SAX and links on the Whatis.com site.

xarch.tu-graz.ac.at/publ/tutorial/java/tutorials/5120/Java826.htm
Provides the tutorial “XML to Objects and Objects to XML using SAX.”

SUMMARY
• SAX was developed by the members of the XML-DEV mailing list and is an alternative model for

parsing XML documents that uses an event-based model—notifications called events are raised as
the document is parsed.

• DOM is a tree-based model, which stores the document’s data in a hierarchy of nodes. Because all
the document’s data is in memory, data can be quickly accessed. DOM also provides facilities for
adding or removing nodes (i.e., modifying the document).

• SAX-based parsers invoke methods when markup (e.g., a start tag, end tag, etc.) is encountered.
With this event-based model, no object (e.g., a tree structure) is created by the SAX-based parser
to store the XML document’s data—data is passed to the application using the XML document as
it is encountered.

• SAX-based parsers are available for a variety of programming languages (e.g., Java, Python, etc.).
Several SAX-based parsers (e.g., JAXP, Xerces and msxml) are available for free download.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 9.11 : test.xml -->
4
5 <?xml:stylesheet type = "text/xsl" href = "something.xsl"?>
6
7 <test>
8 <example value = "100">Hello and Welcome!</example>
9

10 <a>
11 12345
12
13 </test>

Fig. 9.11 Sample execution of printXML.java (part 1 of 2).

Chapter 9 Simple API for XML (SAX) 259

• Package org.xml.sax provides the SAX programmatic interface (i.e., classes and interfaces)
required by a SAX parser. JAXP package javax.xml.parsers provides classes for instanti-
ating DOM and SAX parsers.

• Class HandlerBase implements four interfaces: EntityResolver—for handling external
entities, DTDHandler—for handling notations and unparsed entities, DocumentHandler—
for handling parsing events and ErrorHandler—for error handling.

• HandlerBase method setDocumentLocator provides access to the parsed document’s
URL. Calling method getSystemID retrieves a document’s URL.

• HandlerBase method startDocument is called when the document’s root node is encoun-
tered. This method is called exactly once.

• When a fatal error occurs, the XML document is usually not well formed. Nonfatal errors typically
occur due to validation errors, and warnings usually occur because of DTD inconsistencies (e.g.,
duplicate or unused declarations).

• The exceptions that are thrown by the SAX parser are SAXException (thrown when an error
occurs), SAXParseException (a subclass of SAXException that is thrown when a parsing
error occurs) and ParserConfigurationException (thrown if the parser could not be in-
stantiated).

• HandlerBase method endDocument is called when the end of the document is reached. This
method is called last and exactly once. It is also called when a fatal error occurs.

• HandlerBase method startElement is called when a start tag is encountered. Method
startElement takes two arguments: the element name and the element’s attributes.

• AttributeList method getLength returns the number of attributes an element has. Meth-
ods getName and getValue each take an integer argument, which represents the position of the
attribute, and return the name and value of the attribute, respectively. The first attribute is at posi-
tion zero.

• HandlerBase method endElement is called when the end of an element—including an emp-
ty element—is encountered.

• HandlerBase method processingInstruction is called when a processing instruction
is encountered. This method takes two String arguments representing the processing instruc-
tion’s target and value. A SAX parser does not invoke processingInstruction for an XML
declaration.

<?xml version = "1.0"?>
<?xml:stylesheet type = "text/xsl" href = "something.xsl"?>
<test>
 <example value = "100">
 Hello and Welcome!
 </example>
 <a>

 12345

</test>
---[document end]---

Fig. 9.11 Sample execution of printXML.java (part 2 of 2).

260 Simple API for XML (SAX) Chapter 9

• HandlerBase method characters is invoked when character data is encountered.

• HandlerBase method ignorableWhitespace is invoked when ignorable whitespace char-
acters are encountered. If a DTD is not present for an XML document, all text is considered im-
portant and cannot be ignored. Method ignorableWhitespace takes three arguments, similar
to method characters.

• When a DTD is present, some whitespace characters are ignorable. When ignorable whitespace
characters are encountered, method ignorableWhitespace is invoked instead of method
characters.

• HandlerBase method error is usually invoked when a validation error occurs.

• HandlerBase method warning is invoked when problems are detected that are not considered
errors according to the XML 1.0 recommendation.

• A SAX-based parser can be obtained from a SAXParserFactory object.

• A SAXParserFactory object is configured for a validating parser by passing method vali-
date true. Passing validate false indicates that a nonvalidating parser is being used.

• A SAX-based parser object is obtained by calling method newSAXParser.

• Some of the major changes between SAX 1.0 and SAX 2.0 are class HandlerBase being re-
placed with class DefaultHandler, element and attribute processing has been expanded to
support namespaces; and the process of loading and parsing an XML document has changed.

• Class DefaultHandler provides essentially the same interface as class HandlerBase. In
SAX 2.0, class HandlerBase is deprecated (i.e., obsolete).

TERMINOLOGY

SELF-REVIEW EXERCISES
9.1 State whether the following are true or false. If false, explain why.

a) SAX is an alternate model for parsing XML documents that uses a tree-based model, un-
like DOM, which is event-based.

b) SAX is a W3C recommendation.
c) JAXP utilizes the DTD for element definitions, even if document validation is not per-

formed.
d) Method characters throws a SAXException.
e) Because SAX dynamically builds an object to store the information in an XML docu-

ment, processing the document depends on the methods that are automatically built into
that object for handling events.

AttributeList interface ParserConfigurationException
document root node processingInstruction
DOM processing instruction node
endDocument method of HandlerBase SAX (Simple API for XML)
endElement method of HandlerBase SAX parser
error method of HandlerBase SAX Version 2.0
ignorableWhitespace SAXException
JAXP parser SAXParseException
getLength method of AttributeList
getName method of class AttributeList

setDocumentLocator method
of HandlerBase

getSystemId method of class Locator startDocument method of HandlerBase
getValue method of AttributeList startElement method of HandlerBase
name warning method of HandlerBase

Chapter 9 Simple API for XML (SAX) 261

f) When SAX is used, any data that is not stored upon parsing is lost to the application, un-
less the document is parsed again.

g) When a DTD is present, some whitespace is ignorable.
h) SAX is an event-based model, so a parser will invoke methods when certain objects are

encountered.
i) JAXP supports SAX 2.0.
j) SAX 2.0 provides class HandlerBase, which deprecates class DefaultHandler.

9.2 Fill in the blanks in each of the following statements:
a) SAX is an acronym for .
b) The JAXP package that provides all the interfaces for the SAX parser is .
c) Method is called when the end of the document is reached.
d) During parsing, if a section is encountered, the parser will not process the

text, but will simply return the character data.
e) Method is called when a element is encountered.
f) Both SAX and are APIs for accessing information in XML documents.
g) SAX method is invoked when the end tag of an element is encountered.
h) Method is invoked when a nonfatal error occurs.
i) Method is invoked when a processing instruction is encountered.
j) Method is invoked when the end of an element is encountered.

ANSWERS TO SELF-REVIEW EXERCISES
9.1 a) False. SAX is an alternate model for parsing XML documents using an event-based
system, unlike DOM, which is tree based. b) False. DOM is a W3C recommendation. c) True. d) True.
e) False. Because SAX does not build an object to store the information in an XML document, pro-
cessing the document depends only on the methods that the programmer writes for handling events.
f) True. g) True. h) True. i) False. JAXP supports SAX 1.0. j) False. Class DefaultHandler dep-
recates HandlerBase.

9.2 a) Simple API for XML. b) org.xml.sax. c) endDocument. d) CDATA. e) method. f)
DOM. g) endElement. h) error. i) processingInstruction. j) endElement.

EXERCISES
9.3 Modify the code of Fig. 9.3 (Tree.java) to replace the JAXP default parser with the Xe-
rces SAX 2.0 parser.

9.4 Using the JAXP default parser, write an application to process the document in Fig. 9.12 and
output it as shown at the end of the code document. Also write a DTD for the application to validate
the document.

1 <?xml version = "1.0"?>
2
3 <!DOCTYPE community SYSTEM "community.dtd">
4
5 <community>
6
7 <family>
8 <parent>
9

Fig. 9.12 Input XML document (part 1 of 2).

262 Simple API for XML (SAX) Chapter 9

10 John
11 <child>Sue</child>
12 <child>Bob</child>
13 <child>Mary</child>
14 </parent>
15 </family>
16
17 <family>
18 <parent>
19 Mike
20
21 <child>
22 Bill
23 <grandchild>Jane</grandchild>
24 </child>
25
26 <child>Gary</child>
27 </parent>
28 </family>
29 </community>

OUTPUT:
Head of Family: John
John's Children:
 1. Sue
 2. Bob
 3. Mary

Head of Family: Mike
Mike's Children:
 1. Bill
 Bill's Children:
 1.Jane
 2. Gary

Fig. 9.12 Input XML document (part 2 of 2).

10
Case Study:

XmlMessenger Program

Objectives
• To understand how XML can be used with Java to

achieve powerful results.
• To manipulate and traverse the DOM from within a

Java application.
• To understand the advantage of using XML to

communicate between the client and the server.
• To understand the advantage of using XML to store

data.
• To know when it is appropriate to use XML instead of

a Java class.
Friends share all things.
Pythagorus

Mr. Watson, come here, I want you.
Alexander Graham Bell

What networks of railroads, highways and canals were in
another age, the networks of telecommunications,
information and computerization...are today.
Bruno Kreisky, Austrian Chancellor

264 Case Study: XmlMessenger Program Chapter 10

10.1 Introduction
Instant messaging is one of the fastest growing communications media in history. Accord-
ing to America On-Line, the pioneer of instant messaging, its instant messaging services
grew from 0 to 50 million users in less than three years, and it now has over 64 million us-
ers. There are predictions that over 175 million users will be instant messaging by 2002.
Instant-messaging applications enable users to instantly send text messages to other users
on the Internet. They combine the immediacy of a phone call with the functionality of a e-
mail-based application. Currently, there are number of instant-messaging services provided
by software giants such as Microsoft, Yahoo, AOL and Infoseek. Some of these services
also provide more sophisticated instant-messaging features that allow voice communica-
tion, file transfer and Internet conferencing. Once, instant messaging was thought of as the
province of teenagers, but that perception has changed. Lawyers, doctors, scientists and all
other types of professionals are on-line. Instant messaging is becoming standard operating
procedure at businesses worldwide. It is integrated into the next generation of Web brows-
ers. It is spreading rapidly to other platforms and is already available for cellular phones,
personal digital assistants (PDAs) and even televisions.

This chapter implements a Java-based instant-messenger application that uses XML.
There are two main components in the system: the server and the client/user. Figure 10.1
shows the architecture of our application. Clients, or users of the system, are the people who
need to communicate with other users in the system. Consider a case where user 1 needs to
communicate with user 2. For communication to be established, both users need to be
logged on to the server. The instant-messenger application used by user 1 and user 2 dis-
plays all the users who are currently logged on to the server. User 1 can then choose to send
messages to user 2. When user 1 types in a message for user 2, the message is tagged with
XML and sent to the server. The XML message also contains the destination (user 2) of the
message and its source (user 1). The server then reroutes the message to the respective user
based on the destination information provided in the message.

The client-side application has two main functions. First, it registers the user with the
server by sending an XML document that contains the user’s name and ID. It then updates
its current list of logged-on users with the new information it receives from the server.
During the session, that is, the period during which the user is logged on, it has to update
this list whenever a new user logs in. All such information is exchanged in the form of
XML. The second function of the client is to convert the text typed in by the user into XML-
based messages, tagging them appropriately to identify the source and destination of each

Outline
10.1 Introduction
10.2 Setup
10.3 Overview: Server Side of XmlMessenger
10.4 Implementation: Server Side of XmlMessenger
10.5 Overview: Client Side of XmlMessenger
10.6 Implementation: Client Side of XmlMessenger

Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

Chapter 10 Case Study: XmlMessenger Program 265

message, and to send them to the server. The client also has to parse the XML messages
received from the server and display them to the user.

This messaging system demonstrates how to incorporate XML into all the tiers of a
client/server interface. It can be expanded to include many more advanced capabilities, but
for our purposes, the system we implement provides ample illustration of XML. Because
the XmlMessenger uses Sun’s Java implementation of the org.w3c.dom package,
Chapter 8 is a prerequisite for this chapter.

10.2 Setup
To run the XmlMessenger, implement the following steps:

1. Make sure the following are installed: J2SDK and JAXP from Sun.

2. Copy the XmlMessenger directory from the Chapter 10 examples directory on
the CD included with this book onto your computer. This set of steps assumes that
you will copy it onto your C drive; if you install it into a different directory, be
sure to change the paths in the steps.

3. To execute the server, start MS-DOS (or a command window), change to the
XmlMessenger directory (cd XmlMessenger) and type the command

java MessengerServer

4. For each client, start MS-DOS (or, in Windows 2000, open a command window),
change to the XmlMessenger directory and type the command

java MessengerClient

5. The server application must be running before you run any client applications.

Fig. 10.1 XmlMessenger architecture.

KEY

User Database
(in memory)

User messages
marked up
as XML User 2

User 1

User 3

Server

XML

XML XML

XML

266 Case Study: XmlMessenger Program Chapter 10

10.3 Overview: Server Side of XmlMessenger
Overview: Server Side

Using a ServerSocket, a MessengerServer object waits for clients to connect.
When a client connects, the server creates a new UserThread object to manage the cli-
ent’s socket and streams. The MessengerServer object uses a Vector to store all
UserThread instances.

The MessengerServer also uses a Document object users, consisting of the
names of on-line users stored in individual user elements. For example, after User1 and
User2 have logged in, the server’s Document users is

<users>
<user>User1</user>
<user>User2</user>

</users>

When a user first logs in, an XML document is sent to the MessengerServer
object’s corresponding UserThread object as

<user>username</user>

The UserThread object processes all incoming messages; when it receives this message,
it tests if username has already been taken by another user. If so, the UserThread object
sends the client an XML document containing

<nameInUse />

If username is not in use, the UserThread object sends the client the Messen-
gerServer object’s Document users. The MessengerServer then notifies all
other users of this new user’s login by sending them the XML document

<update type = "login">
<user>username</user>

</update>

If the user sends a message to another user, the corresponding UserThread object
receives an XML document with root element message. For example, if User1 sends
“hello” to User2, the following XML is received by the UserThread corresponding to
User1

<message to = "User2" from = "User1">hello</message>

When the UserThread object receives the XML, it relays it to the MessengerServer
for appropriate routing. The MessengerServer object then sends the above XML to the
user referenced in the to attribute.

The last XML document the UserThread object receives from the client is sent
when the user disconnects. This XML document contains

<disconnect/>

When this XML message is received, the MessengerServer object notifies all other us-
ers that this user has logged out by sending them the following:

Chapter 10 Case Study: XmlMessenger Program 267

<update type = "logout">
<user>username</user>

</update>

The MessengerServer object then removes the user from its Vector onlineUsers
and its Document users. The GUI for the MessengerServer is updated as the above
processes occur (Fig. 10.2).

10.4 Implementation: Server Side of XmlMessenger
In this section, we discuss the server-side Java files. Figure 10.3 contains the source code
for MessengerServer.java, which implements the server, and Fig. 10.4 contains the
source code for UserThread.java, which implements the thread used to manage each
client.

Fig. 10.2 MessengerServer graphical user interface.

1 // Fig. 10.3: MessengerServer.java
2 // This program provides implementation for the
3 // messenger server.
4
5 import java.awt.*;
6 import java.awt.event.*;
7 import java.net.*;
8 import java.io.*;
9 import javax.swing.*;

10 import java.util.*;
11
12 import org.w3c.dom.*;
13 import org.xml.sax.*;
14 import javax.xml.parsers.*;
15 import com.sun.xml.tree.XmlDocument;
16

Fig. 10.3 MessengerServer.java (part 1 of 6).

268 Case Study: XmlMessenger Program Chapter 10

17 public class MessengerServer extends JFrame {
18 private JLabel status;
19 private JTextArea display;
20 private Vector onlineUsers;
21 private DocumentBuilderFactory factory;
22 private DocumentBuilder builder;
23 private Document users;
24
25 public MessengerServer()
26 {
27 // create GUI
28 super ("Messenger Server");
29
30 try {
31
32 // obtain the default parser
33 factory = DocumentBuilderFactory.newInstance();
34
35 // get DocumentBuilder
36 builder = factory.newDocumentBuilder();
37 }
38 catch (ParserConfigurationException pce) {
39 pce.printStackTrace();
40 }
41
42 Container c = getContentPane();
43
44 status = new JLabel("Status");
45 c.add(status, BorderLayout.NORTH);
46
47 display = new JTextArea();
48 display.setLineWrap(true);
49 display.setEditable(false);
50 c.add(new JScrollPane(display), BorderLayout.CENTER);
51 display.append("Server waiting for connections\n");
52
53 setSize(300, 300);
54 show();
55
56 // initialize variables
57 onlineUsers = new Vector();
58 users = initUsers();
59 }
60
61 public void runServer()
62 {
63 ServerSocket server;
64
65 try {
66 // create a ServerSocket
67 server = new ServerSocket(5000, 100);
68

Fig. 10.3 MessengerServer.java (part 2 of 6).

Chapter 10 Case Study: XmlMessenger Program 269

69 // wait for connections
70 while (true) {
71 Socket clientSocket = server.accept();
72
73 display.append("\nConnection received from: " +
74 clientSocket.getInetAddress().getHostName());
75
76 UserThread newUser =
77 new UserThread(clientSocket, this);
78
79 newUser.start();
80 }
81 }
82 catch (IOException e) {
83 e.printStackTrace();
84 System.exit(1);
85 }
86 }
87
88 private Document initUsers()
89 {
90 // initialize users xml document with root element users
91 Document init = builder.newDocument();
92
93 init.appendChild(init.createElement("users"));
94 return init;
95 }
96
97 public void updateGUI(String s)
98 {
99 display.append("\n" + s);
100 }
101
102 public Document getUsers()
103 {
104 return users;
105 }
106
107 public void addUser(UserThread newUserThread)
108 {
109 // get new user's name
110 String userName = newUserThread.getUsername();
111
112 updateGUI("Received new user: " + userName);
113
114 // notify all users of user's login
115 updateUsers(userName, "login");
116
117 // add new user element to Document users
118 Element usersRoot = users.getDocumentElement();
119 Element newUser = users.createElement("user");
120

Fig. 10.3 MessengerServer.java (part 3 of 6).

270 Case Study: XmlMessenger Program Chapter 10

121 newUser.appendChild(
122 users.createTextNode(userName));
123 usersRoot.appendChild(newUser);
124
125 updateGUI("Added user: " + userName);
126
127 // add to Vector onlineUsers
128 onlineUsers.addElement(newUserThread);
129 }
130
131 public void sendMessage(Document message)
132 {
133 // transfer message to specified receiver
134 Element root = message.getDocumentElement();
135 String from = root.getAttribute("from");
136 String to = root.getAttribute("to");
137 int index = findUserIndex(to);
138
139 updateGUI("Received message To: " + to + ", From: " + from);
140
141 // send message to corresponding user
142 UserThread receiver =
143 (UserThread) onlineUsers.elementAt(index);
144 receiver.send(message);
145 updateGUI("Sent message To: " + to +
146 ", From: " + from);
147 }
148
149 public void updateUsers(String userName, String type)
150 {
151 // create xml update document
152 Document doc = builder.newDocument();
153 Element root = doc.createElement("update");
154 Element userElt = doc.createElement("user");
155
156 doc.appendChild(root);
157 root.setAttribute("type", type);
158 root.appendChild(userElt);
159 userElt.appendChild(doc.createTextNode(userName));
160
161 // send to all users
162 for (int i = 0; i < onlineUsers.size(); i++) {
163 UserThread receiver =
164 (UserThread) onlineUsers.elementAt(i);
165 receiver.send(doc);
166 }
167
168 updateGUI("Notified online users of " +
169 userName + "'s " + type);
170 }
171

Fig. 10.3 MessengerServer.java (part 4 of 6).

Chapter 10 Case Study: XmlMessenger Program 271

172 public int findUserIndex(String userName)
173 {
174 // find index of specified UserThread in Vector onlineUsers
175 // return -1 if no corresponding UserThread is found
176 for (int i = 0; i < onlineUsers.size(); i++) {
177 UserThread current =
178 (UserThread) onlineUsers.elementAt(i);
179
180 if (current.getUsername().equals(userName))
181 return i;
182 }
183
184 return -1;
185 }
186
187 public void removeUser(String userName)
188 {
189 // remove user from Vector onlineUsers
190 int index = findUserIndex(userName);
191
192 onlineUsers.removeElementAt(index);
193
194 // remove this user's element from Document users
195 NodeList userElements =
196 users.getDocumentElement().getElementsByTagName(
197 "user");
198
199 for (int i = 0; i < userElements.getLength(); i++) {
200 String str =
201 userElements.item(i).getFirstChild().getNodeValue();
202
203 if (str.equals(userName))
204 users.getDocumentElement().removeChild(
205 userElements.item(i));
206
207 }
208
209 updateGUI("Removed user: " + userName);
210
211 // update all users of user's logout
212 updateUsers(userName, "logout");
213 }
214
215 public static void main(String args[])
216 {
217 MessengerServer ms = new MessengerServer();
218
219 ms.addWindowListener(
220 new WindowAdapter() {
221 public void windowClosing(WindowEvent e) {
222 System.exit(0);
223 }
224 }

Fig. 10.3 MessengerServer.java (part 5 of 6).

272 Case Study: XmlMessenger Program Chapter 10

Class MessengerServer (Fig. 10.3) implements the server for the XmlMes-
senger application. Lines 5–15 import the packages necessary for this class; these
include Java networking and I/O packages as well as packages for manipulating the DOM.
Vector onlineUsers stores the individual UserThread objects, which represent the
individual users. The names of all users are stored in the Document object referenced by
users. Each user is stored in a separate user element, as in

<users>
<user>username1</user>
<user>username2</user>

 ...
</users>

This Document is sent to every new user that logs in and is updated whenever a user logs
in or out.

The constructor creates the GUI; note that class MessengerServer extends
class JFrame. It also initializes the instance variables; when initializing the Document
users, it invokes the private method initUsers (line 88), which creates a new
Document. We then create the root element users and append it as the child of the Doc-
ument object referenced by init (line 93). Note that a Document object can have only
one child—its root element.

Method runServer (line 61) is invoked by method main (line 227). It creates a new
ServerSocket server, which waits for clients to connect. When server receives a
connection, method accept returns a Socket object specific to the client. This Socket
object is then passed UserThread’s constructor. Class UserThread (Fig. 10.4)
extends class Thread. By managing each client as a separate thread, the server can
handle more than one client at a time.

When a new user successfully logs in, method addUser is invoked (lines 107–129).
We notify all users of this user’s login using MessengerServer method upda-
teUsers (discussed momentarily). Lines 119–123 add the user to the users Document
by creating a new user element and setting its contents to the specified username. Finally,
we add the passed UserThread object to the Vector onlineUsers; note that we do
not want to add it until a successful login has occurred, since the user is not officially on-
line until that point.

Lines 131–147 define method sendMessage, which is invoked when a message
from one user to another is received by the sender’s UserThread. Parameter message
references a Document object containing the message in the form

<message to = "receiver" from = "sender">
message text

</message>

225);
226
227 ms.runServer();
228 }
229 }

Fig. 10.3 MessengerServer.java (part 6 of 6).

Chapter 10 Case Study: XmlMessenger Program 273

We traverse the DOM to access attributes to and from to determine the receiver and send-
er of this message, respectively. Local variable index stores the index of the User-
Thread corresponding to the receiver in the Vector onlineUsers. To initialize
index, we call helper method findUserIndex (line 137). This method searches the
Vector onlineUsers for the userName. When a match is found, the index is re-
turned; if there is no match, -1 is returned. Using index, sendMessage sends the mes-
sage to the receiving client using the receiver’s UserThread method send. Finally,
method sendMessage calls method updateGUI, updating the server’s GUI to reflect
the message transfer.

Method updateUsers is invoked when a user either successfully logs in or logs out.
It is used to notify all other users of the login or logout. Line 152 creates a Document
object. Lines 153 and 154 create the root element update and element user. After the
root element is appended as the child of Document doc, attribute type is created, and
its value is set to “login” or “logout,” depending on the passed String parameter
type. Then element user is appended as a child to the root element (line 158). Finally,
a text node containing the passed String userName is added to element user. This
step creates the XML document

<update type = "type">
<user>userName</user>

</update>

The for loop (lines 162–166) iterates through the UserThread instances stored in the
Vector onlineUsers, sending each the newly created XML document. The method
updateGUI is called to update the GUI.

When a user logs out, method removeUser is invoked. We remove the specified
UserThread from the Vector onlineUsers. We must also remove the user from the
Document users. To do this, we retrieve all user elements with Element method
getElementsByTagName. We iterate through the resulting NodeList until we find
the user element corresponding to this user. Using Node method removeChild, we
remove this element from the root element users.

Class UserThread (Fig. 10.4) extends class Thread. A UserThread class
object is created for each client that connects to the server. Variable connection refer-
ences the Socket for this particular client; input and output reference the input and
output streams, respectively. Variable server references the MessengerServer that
instantiated this UserThread object. The client’s username is stored in String user-
name. Finally, boolean keepListening is used in a while loop (line 351); the
UserThread object listens for communication from the client until keepListening
is set to false (line 318) in response to the user’s logout.

230 // Fig. 10.4: UserThread.java
231 // This program provides implementation on the server side
232 // for threads which are created for each of the clients who
233 // have connected.
234
235 import java.net.*;
236 import java.io.*;

Fig. 10.4 UserThread.java (part 1 of 4).

274 Case Study: XmlMessenger Program Chapter 10

237
238 import org.w3c.dom.*;
239 import org.xml.sax.*;
240 import javax.xml.parsers.*;
241 import com.sun.xml.tree.XmlDocument;
242
243 public class UserThread extends Thread {
244 private Socket connection;
245 private InputStream input;
246 private OutputStream output;
247 private MessengerServer server;
248 private String username = "";
249 private boolean keepListening;
250 private DocumentBuilderFactory factory;
251 private DocumentBuilder builder;
252
253 public UserThread(Socket s, MessengerServer ms)
254 {
255 try
256 {
257 // obtain the default parser
258 factory = DocumentBuilderFactory.newInstance();
259
260 // get DocumentBuilder
261 builder = factory.newDocumentBuilder();
262 }
263 catch (ParserConfigurationException pce) {
264 pce.printStackTrace();
265 System.exit(1);
266 }
267
268 // initialize variables
269 connection = s;
270 server = ms;
271 keepListening = true;
272
273 // get input and output streams
274 try {
275 input = connection.getInputStream();
276 output = connection.getOutputStream();
277 }
278 catch (IOException e) {
279 e.printStackTrace();
280 System.exit(1);
281 }
282 }
283
284 public String getUsername()
285 {
286 return username;
287 }
288

Fig. 10.4 UserThread.java (part 2 of 4).

Chapter 10 Case Study: XmlMessenger Program 275

289 public void messageReceived(Document message)
290 {
291 Element root = message.getDocumentElement();
292
293 if (root.getTagName().equals("user")) {
294
295 // if initial login, root element is "user"
296 // add user element to server's user document
297
298 // test if user entered unique name
299 String enteredName = root.getFirstChild().getNodeValue();
300
301 if (server.findUserIndex(enteredName) != -1)
302 nameInUse(); // not a unique name
303 else {
304
305 // unique name
306 // send server's Document users
307 send(server.getUsers());
308
309 username = enteredName; // update username variable
310
311 // add user to server
312 server.addUser(this);
313 }
314 }
315 else if (root.getTagName().equals("message"))
316 server.sendMessage(message);
317 else if (root.getTagName().equals("disconnect")) {
318 keepListening = false;
319
320 // remove user from server
321 server.removeUser(username);
322 }
323 }
324
325 private void nameInUse()
326 {
327 Document enterUniqueName = builder.newDocument();
328
329 enterUniqueName.appendChild(
330 enterUniqueName.createElement("nameInUse"));
331
332 send(enterUniqueName);
333 }
334
335 public void send(Document message)
336 {
337 try {
338 // write to output stream
339 ((XmlDocument)message).write(output);
340 }

Fig. 10.4 UserThread.java (part 3 of 4).

276 Case Study: XmlMessenger Program Chapter 10

Method messageReceived (line 289) is invoked by method run and is used to
process incoming XML from the client. It references the XML through parameter Docu-
ment message. Line 291 uses Document method getDocumentElement to
retrieve the root element. If the root element is user, then this message indicates that
the user is attempting to log in. Recall that the XML sent looks like

<user>username</user>

To access username, we must first access the root’s first child and then obtain the
String username with Node method getNodeValue. We then check to see if the sub-
mitted name is already in use by another user (line 301).

341 catch (IOException e) {
342 e.printStackTrace();
343 }
344 }
345
346 public void run()
347 {
348 try {
349 int bufferSize = 0;
350
351 while (keepListening) {
352 bufferSize = input.available();
353
354 if (bufferSize > 0) {
355 byte buf[] = new byte[bufferSize];
356
357 input.read(buf);
358
359 InputSource source = new InputSource(
360 new ByteArrayInputStream(buf));
361 Document message = builder.parse(source);
362
363 if (message != null)
364 messageReceived(message);
365 }
366 }
367
368 input.close();
369 output.close();
370 connection.close();
371 }
372 catch (SAXException e) {
373 e.printStackTrace();
374 }
375 catch (IOException e) {
376 e.printStackTrace();
377 }
378 }
379 }

Fig. 10.4 UserThread.java (part 4 of 4).

Chapter 10 Case Study: XmlMessenger Program 277

If it is, we call method nameInUse, which is defined on line 325. This method creates
a Document object enterUniqueName. It then creates and appends element nameI-
nUse, resulting in the XML

<nameInUse/>

The Document is then sent to the client by invoking method send (discussed shortly).
If the name is not in use, then we send the server’s users Document to the client

using method send (discussed momentarily). Instance variable name is updated to reflect
the submitted username. We call MessengerServer method addUser to add this user
to the server.

If the root element is not user, line 315 tests if it is message. If so, it passes the
Document as a parameter to the MessengerServer method sendMessage (dis-
cussed in Fig. 10.3).

If the root element is disconnect, then the user is logging off. Line 318 sets
boolean keepListening to false to exit the while loop. We invoke Messen-
gerServer method removeUser to remove this user from the server.

Method send (lines 335–344) accepts a Document object as its parameter. We cast
the Document object to an XmlDocument and invoke the XmlDocument’s write
method to send the XML to the client, using the specified output stream.

Finally, method run, which is executed when the UserThread object receives
Thread method start, is defined in lines 346–378. Using boolean keepLis-
tening, which is set to true by the constructor, we create a while loop (lines 351–366)
to continuously listen for messages. The UserThread object listens for incoming mes-
sages from the client. Line 355 creates a buffer to hold the current XML data. Using a
byteArrayInputStream, we instantiate an InputSource from this buffer. Line
361 then uses this InputSource to create a Document object, which is passed as a
parameter to method messageReceived (defined in line 289). This while loop termi-
nates when the client disconnects, at which point messageReceived sets boolean
keepListening to false. Once the loop has been exited, the Socket and streams are
closed, terminating the server’s connection with the client.

10.5 Overview: Client Side of XmlMessenger
On the client side, a MessengerClient object connects to the server, establishing a
socket. Once a connection has been made, the MessengerClient object gets the input
and output streams. The user attempts to login by entering a username and clicking on
Submit (Fig. 10.5); the username entered is sent to the server in the following XML doc-
ument

<user>username</user>

If username is already taken by another user, the server sends back the XML

<nameInUse/>

When the MessengerClient processes this message, it displays an alert dialog to the
user, asking for a unique name (Fig. 10.5).

278 Case Study: XmlMessenger Program Chapter 10

Fig. 10.5 MessengerClient GUI and alert dialog box.

Once the user has entered a unique name, the server sends back an XML document
containing the names of all users currently on-line. For example, if User2 and User3 are
the only other users on-line, the client receives

<users>
<user>User2</user>
<user>User3</user>

</users>

The MessengerClient object stores this XML document as a Document object for
use by the ClientStatus object it creates. The ClientStatus GUI displays all us-
ers, as in Fig. 10.6, by traversing the DOM. Because the user has successfully logged on,
the Messenger Client window (Fig. 10.5) is hidden. The main window for the user is
now the ClientStatus window (i.e., Messenger Status). When the user double
clicks a name in this window, a new Conversation object is created. The Conversa-
tion object is stored in the MessengerClient’s conversations Vector, allow-
ing the MessengerClient to access it as needed.

For instance, if User1 double clicks User2, a window pops up, created by a new
Conversation object. When User1 types “hello” and clicks Enter (Fig. 10.7), a new
Document is created, containing

Fig. 10.6 ClientStatus GUI.

Chapter 10 Case Study: XmlMessenger Program 279

<message to = "User2" from = "User1">hello</message>

This message is sent to the server through the MessengerClient’s output stream.
Now suppose User2 replies with “hi.” The server sends User1’s Messenger-

Client the XML

<message to = "User1" from = "User2">hi</message>

After retrieving the from attribute, the MessengerClient then accesses the Conver-
sation with User2 and displays User2’s “hi” message, as demonstrated in Fig. 10.7.

If User2 then logs out, User1’s MessengerClient receives XML from the
server

<update type = "logout">
<user>User2</user>

</update>

User1’s ClientStatus updates its onlineUsers Vector and GUI to reflect
User2’s logout, then checks for an open Conversation with User2; if so, it informs
User1 that User2 has logged out and disables the Conversation’s GUI components
(Fig. 10.7).

Fig. 10.7 User1’s Conversation with User2.

280 Case Study: XmlMessenger Program Chapter 10

If User4 logs in, a similar process occurs. First, User1’s MessengerClient
receives the XML update message

<update type = "login">
<user>User4</user>

</update>

User1’s ClientStatus then updates its onlineUsers Vector and GUI to indicate
that User4 is now on-line (Fig. 10.8).

User1 can disconnect by clicking the Disconnect button in the ClientStatus
window. This action creates and sends the XML

<disconnect/>

to the server. The server terminates the connection to this client, and the client’s application
closes.

10.6 Implementation: Client Side of XmlMessenger
In this section, we discuss the client-side of XmlMessenger. Figure 10.9 contains the
source code for MessengerClient.java, which manages the connection with the
server; Fig. 10.10 contains the source code for ClientStatus.java, which creates the
status window for the user after login, and Fig. 10.11 contains the source code for Con-
versation.java, which implements an individual conversation with another user.

Fig. 10.8 User1’s updated GUI after User4 logs in.

380 // Fig. 10.9: MessengerClient.java
381 // This program provides implementation for user login
382 // and client connection with server.
383

Fig. 10.9 MessengerClient.java (part 1 of 7).

Chapter 10 Case Study: XmlMessenger Program 281

384 import java.awt.*;
385 import java.awt.event.*;
386 import javax.swing.*;
387 import java.io.*;
388 import java.net.*;
389 import java.util.*;
390
391 import org.w3c.dom.*;
392 import org.xml.sax.*;
393 import javax.xml.parsers.*;
394 import com.sun.xml.tree.XmlDocument;
395
396 public class MessengerClient extends JFrame {
397 private JPanel centerPanel, namePanel;
398 private JLabel status, nameLab;
399 private JTextField name;
400 private ImageIcon bug;
401 private JButton submit;
402 private Socket clientSocket;
403 private OutputStream output;
404 private InputStream input;
405 private boolean keepListening;
406 private ClientStatus clientStatus;
407 private Document users;
408 private Vector conversations;
409 private DocumentBuilderFactory factory;
410 private DocumentBuilder builder;
411
412 public MessengerClient()
413 {
414 // create GUI
415 super ("Messenger Client");
416
417 try
418 {
419 // obtain the default parser
420 factory = DocumentBuilderFactory.newInstance();
421
422 // get DocumentBuilder
423 builder = factory.newDocumentBuilder();
424 }
425 catch (ParserConfigurationException pce) {
426 pce.printStackTrace();
427 }
428
429 Container c = getContentPane();
430
431 centerPanel = new JPanel(new GridLayout(2, 1));
432
433 namePanel = new JPanel();
434
435 nameLab = new JLabel("Please enter your name: ");
436 namePanel.add(nameLab);

Fig. 10.9 MessengerClient.java (part 2 of 7).

282 Case Study: XmlMessenger Program Chapter 10

437
438 name = new JTextField(15);
439 namePanel.add(name);
440
441 centerPanel.add(namePanel);
442
443 bug = new ImageIcon("travelbug.jpg");
444 submit = new JButton("Submit", bug);
445 submit.setEnabled(false);
446 centerPanel.add(submit);
447
448 submit.addActionListener(
449 new ActionListener() {
450 public void actionPerformed(ActionEvent e) {
451 loginUser();
452 }
453 }
454);
455
456 c.add(centerPanel, BorderLayout.CENTER);
457
458 status = new JLabel("Status: Not connected");
459 c.add(status, BorderLayout.SOUTH);
460
461 addWindowListener(
462 new WindowAdapter() {
463 public void windowClosing(WindowEvent e) {
464 System.exit(0);
465 }
466 }
467);
468
469 setSize(200, 200);
470 show();
471 }
472
473 public void runMessengerClient()
474 {
475 try {
476 clientSocket = new Socket(
477 InetAddress.getByName("127.0.0.1"), 5000);
478 status.setText("Status: Connected to " +
479 clientSocket.getInetAddress().getHostName());
480
481 // get input and output streams
482 output = clientSocket.getOutputStream();
483 input = clientSocket.getInputStream();
484
485 submit.setEnabled(true);
486 keepListening = true;
487
488 int bufferSize = 0;
489

Fig. 10.9 MessengerClient.java (part 3 of 7).

Chapter 10 Case Study: XmlMessenger Program 283

490 while (keepListening) {
491
492 bufferSize = input.available();
493
494 if (bufferSize > 0) {
495 byte buf[] = new byte[bufferSize];
496
497 input.read(buf);
498
499 InputSource source = new InputSource(
500 new ByteArrayInputStream(buf));
501 Document message;
502
503 try {
504
505 // obtain document object from XML document
506 message = builder.parse(source);
507
508 if (message != null)
509 messageReceived(message);
510
511 }
512 catch (SAXException se) {
513 se.printStackTrace();
514 }
515 catch (Exception e) {
516 e.printStackTrace();
517 }
518 }
519 }
520
521 input.close();
522 output.close();
523 clientSocket.close();
524 System.exit(0);
525 }
526 catch (IOException e) {
527 e.printStackTrace();
528 System.exit(1);
529 }
530 }
531
532 public void loginUser()
533 {
534 // create Document with user login
535 Document submitName = builder.newDocument();
536 Element root = submitName.createElement("user");
537
538 submitName.appendChild(root);
539 root.appendChild(
540 submitName.createTextNode(name.getText()));
541

Fig. 10.9 MessengerClient.java (part 4 of 7).

284 Case Study: XmlMessenger Program Chapter 10

542 send(submitName);
543 }
544
545 public Document getUsers()
546 {
547 return users;
548 }
549
550 public void stopListening()
551 {
552 keepListening = false;
553 }
554
555 public void messageReceived(Document message)
556 {
557 Element root = message.getDocumentElement();
558
559 if (root.getTagName().equals("nameInUse"))
560 // did not enter a unique name
561 JOptionPane.showMessageDialog(this,
562 "That name is already in use." +
563 "\nPlease enter a unique name.");
564 else if (root.getTagName().equals("users")) {
565 // entered a unique name for login
566 users = message;
567 clientStatus = new ClientStatus(name.getText(), this);
568 conversations = new Vector();
569 hide();
570 }
571 else if (root.getTagName().equals("update")) {
572
573 // either a new user login or a user logout
574 String type = root.getAttribute("type");
575 NodeList userElt = root.getElementsByTagName("user");
576 String updatedUser =
577 userElt.item(0).getFirstChild().getNodeValue();
578
579 // test for login or logout
580 if (type.equals("login"))
581 // login
582 // add user to onlineUsers Vector
583 // and update usersList
584 clientStatus.add(updatedUser);
585 else {
586 // logout
587 // remove user from onlineUsers Vector
588 // and update usersList
589 clientStatus.remove(updatedUser);
590
591 // if there is an open conversation, inform user
592 int index = findConversationIndex(updatedUser);
593

Fig. 10.9 MessengerClient.java (part 5 of 7).

Chapter 10 Case Study: XmlMessenger Program 285

594 if (index != -1) {
595 Conversation receiver =
596 (Conversation) conversations.elementAt(index);
597
598 receiver.updateGUI(updatedUser + " logged out");
599 receiver.disableConversation();
600 }
601 }
602 }
603 else if (root.getTagName().equals("message")) {
604 String from = root.getAttribute("from");
605 String messageText = root.getFirstChild().getNodeValue();
606
607 // test if conversation already exists
608 int index = findConversationIndex(from);
609
610 if (index != -1) {
611 // conversation exists
612 Conversation receiver =
613 (Conversation) conversations.elementAt(index);
614 receiver.updateGUI(from + ": " + messageText);
615 }
616 else {
617 // conversation does not exist
618 Conversation newConv =
619 new Conversation(from, clientStatus, this);
620 newConv.updateGUI(from + ": " + messageText);
621 }
622 }
623 }
624
625 public int findConversationIndex(String userName)
626 {
627 // find index of specified Conversation
628 // in Vector conversations
629 // if no corresponding Conversation is found, return -1
630 for (int i = 0; i < conversations.size(); i++) {
631 Conversation current =
632 (Conversation) conversations.elementAt(i);
633
634 if (current.getTarget().equals(userName))
635 return i;
636 }
637
638 return -1;
639 }
640
641 public void addConversation(Conversation newConversation)
642 {
643 conversations.add(newConversation);
644 }
645

Fig. 10.9 MessengerClient.java (part 6 of 7).

286 Case Study: XmlMessenger Program Chapter 10

Class MessengerClient (Fig. 10.9) establishes and maintains the client’s connec-
tion to the server. We import packages in lines 384–394, including the Java networking
and I/O packages as well as the DOM and SAX packages. As with class UserThread
(Fig. 10.4), boolean keepListening is used in a while loop (line 490); this allows
the client to listen continually for communication from the server until the user disconnects.
Variable clientStatus references the ClientStatus object that is created when a
successful login occurs. We store the server’s response to a successful login in the Docu-
ment object users. Finally, every class Conversation object (discussed in Fig.
10.11) that is affiliated with this user is stored in Vector conversations.

Lines 412–471 define the constructor, setting up the GUI for the Messenger-
Client. Note that we disable JButton submit in line 445; it is enabled in line 485 if
a successful connection to the server has been established.

Method runMessengerClient is called by method main (line 667). It attempts
to establish a connection with the server (lines 476 and 477). We set up the output and
input streams in lines 482 and 483. Once a successful connection has been made, we
enable the Submit button in line 485 and set boolean keepListening to true.
Lines 490–519 create a while loop, in which the MessengerClient object listens for
communication from the server. As with the loop in the UserThread class, we create a
buffer to hold the incoming XML. We then instantiate a new InputSource object from
this buffer, using a byteArrayInputStream. By invoking XmlDocument method
createXmlDocument, we create a Document object from this InputSource (line
506). If this object is not null, it is passed to method messageReceived (discussed

646 public void removeConversation(String userName)
647 {
648 conversations.removeElementAt(
649 findConversationIndex(userName));
650 }
651
652 public void send(Document message)
653 {
654 try {
655 // write to output stream
656 ((XmlDocument) message).write(output);
657 }
658 catch (IOException e) {
659 e.printStackTrace();
660 }
661 }
662
663 public static void main(String args [])
664 {
665 MessengerClient cm = new MessengerClient();
666
667 cm.runMessengerClient();
668 }
669 }

Fig. 10.9 MessengerClient.java (part 7 of 7).

Chapter 10 Case Study: XmlMessenger Program 287

momentarily) for processing. When the user disconnects, the while loop is exited, and the
client’s application terminates (line 524).

When the user clicks the Submit button, method loginUser (lines 532–543) is
invoked. This method creates a new Document object. In line 536, we create a new ele-
ment user, to which a new text node is appended containing JTextField name’s text.
This step creates the XML

<user>username</user>

Using method send (discussed momentarily), we send the XML to the server.
When an XML message is received, method runMessengerClient passes the

Document to messageReceived. Lines 555–623 define method messageRe-
ceived, which processes the XML from the server. First, we retrieve the root element
in line 557. Then we test if it is nameInUse; if it is, then the server is responding to an
attempted login by indicating that the submitted name is already in use by another user. We
inform the user by displaying a dialog box asking the user to enter a unique name (Fig.
10.5).

If the root is users, then the server is responding to a successful login by sending
XML containing the name of all the users. We initialize reference users with the Docu-
ment object for later use. Then, in line 567, a new ClientStatus (discussed in Fig.
10.10) object is created. Finally, we initialize the conversations Vector to a new
Vector and hide the window for the MessengerClient class. Note that creating a
new ClientStatus object displays a different window; the current login window is no
longer relevant.

The server could also send XML with root update, indicating that another user has
either logged in or logged out. Recall that this XML takes the form

<update type = "login or logout">
<user>username</user>

</update>

We retrieve the contents of attribute type and element user in lines 574–577. Then we
test if the type attribute is login (line 580). If so, we invoke ClientStatus method
add, which will be discussed in Fig. 10.10. Otherwise, the type attribute must be “lo-
gout,” and we invoke ClientStatus method remove (also discussed in Fig. 10.10).
We also check if a Conversation with the specified user exists; if so, we inform the user
that the other user has logged out and disable various GUI components of the Conversa-
tion object.

Finally, the root element could be message, indicating that the user is receiving an
instant message from another user. We retrieve the sender’s username in line 604 and the
of the text message in line 605. Then we initialize local variable index using helper
method findConversationIndex. Lines 625–639 define method findConversa-
tionIndex. We iterate through the conversations Vector, testing if the Con-
versation instance variable target equals userName. If no Conversation
matching userName is found, findConversationIndex returns -1. Line 594 of
method messageReceived tests if index is not -1 (i.e., a Conversation with the
sender already exists); if it is not -1, we access the Conversation with the sender and

288 Case Study: XmlMessenger Program Chapter 10

display the message text. If index is -1 (line 594), we create a new Conversation
object with the sender and display the message text.

Methods addConversation and removeConversation (lines 641–650) add
and remove the specified Conversation object from Vector conversations,
respectively.

In lines 652–661, we define method send. This method accepts a Document object
as its parameter. We send the XML to the server via the output stream by using Xml-
Document method write

670 // Fig. 10.10: ClientStatus.java
671 // This program provides implementation for
672 // displaying all current users on the client side.
673
674 import java.awt.*;
675 import java.awt.event.*;
676 import javax.swing.*;
677 import java.util.*;
678
679 import org.w3c.dom.*;
680 import org.xml.sax.*;
681 import javax.xml.parsers.*;
682 import com.sun.xml.tree.XmlDocument;
683
684 public class ClientStatus extends JFrame {
685 private MessengerClient client;
686 private JLabel statusLabel;
687 private JList usersList;
688 private JButton disconnectButton;
689 private String user;
690 private Vector onlineUsers;
691
692 public ClientStatus(String name, MessengerClient mc)
693 {
694 // create GUI
695 super(name + "'s Messenger Status");
696
697 client = mc;
698 user = name;
699
700 Container c = getContentPane();
701
702 statusLabel = new JLabel("Available users:");
703 c.add(statusLabel, BorderLayout.NORTH);
704
705 // determine how many users are online
706 NodeList userElts =
707 client.getUsers().getDocumentElement().
708 getElementsByTagName("user");
709 int numberOfUsers = userElts.getLength();
710
711 // initialize Vector onlineUsers
712 onlineUsers = new Vector(numberOfUsers);

Fig. 10.10 ClientStatus.java (part 1 of 4).

Chapter 10 Case Study: XmlMessenger Program 289

713
714 for (int i = 0; i < numberOfUsers; i++) {
715 String currentUser =
716 userElts.item(i).getFirstChild().getNodeValue();
717 onlineUsers.addElement(currentUser);
718 }
719
720 usersList = new JList(onlineUsers);
721 usersList.setSelectionMode(
722 ListSelectionModel.SINGLE_SELECTION);
723
724 MouseListener usersListener = new MouseAdapter() {
725 public void mouseClicked(MouseEvent e) {
726 int selectedIndex = usersList.getSelectedIndex();
727
728 if (e.getClickCount() == 2 && selectedIndex >= 0)
729 initiateMessage(selectedIndex);
730 }
731 };
732 usersList.addMouseListener(usersListener);
733 c.add(new JScrollPane(usersList), BorderLayout.CENTER);
734
735 disconnectButton = new JButton("Disconnect");
736 disconnectButton.addActionListener(
737 new ActionListener() {
738 public void actionPerformed(ActionEvent e) {
739 disconnectUser();
740 }
741 }
742);
743 c.add(disconnectButton, BorderLayout.SOUTH);
744 addWindowListener(
745 new WindowAdapter() {
746 public void windowClosing(WindowEvent e) {
747 disconnectUser();
748 }
749 }
750);
751
752 setSize(250, 300);
753 show();
754 }
755
756 public String getUser()
757 {
758 return user;
759 }
760
761 public void initiateMessage(int index)
762 {
763 String target = (String) onlineUsers.elementAt(index);
764

Fig. 10.10 ClientStatus.java (part 2 of 4).

290 Case Study: XmlMessenger Program Chapter 10

765 // only open a new Conversation
766 // if there is not an already open one
767 if (client.findConversationIndex(target) == -1)
768 new Conversation(target, this, client);
769 }
770
771 public void add(String userToAdd)
772 {
773 // add user to Vector onlineUsers
774 onlineUsers.addElement(userToAdd);
775
776 // update JList usersList
777 usersList.setListData(onlineUsers);
778 }
779
780 public void remove(String userToRemove)
781 {
782 // remove user from Vector onlineUsers
783 onlineUsers.removeElementAt(
784 findOnlineUsersIndex(userToRemove));
785
786 // update JList usersList
787 usersList.setListData(onlineUsers);
788 }
789
790 public int findOnlineUsersIndex(String onlineUserName)
791 {
792 for (int i = 0; i < onlineUsers.size(); i++) {
793 String currentUserName =
794 (String) onlineUsers.elementAt(i);
795
796 if (currentUserName.equals(onlineUserName))
797 return i;
798 }
799
800 return -1;
801 }
802
803 public void disconnectUser()
804 {
805 DocumentBuilderFactory factory =
806 DocumentBuilderFactory.newInstance();
807 Document disconnectUser;
808 try {
809
810 // get DocumentBuilder
811 DocumentBuilder builder =
812 factory.newDocumentBuilder();
813
814 // create root node
815 disconnectUser = builder.newDocument();
816

Fig. 10.10 ClientStatus.java (part 3 of 4).

Chapter 10 Case Study: XmlMessenger Program 291

Class ClientStatus (Fig. 10.10) creates the status window for the user after a suc-
cessful login has occurred. Variable client references the MessengerClient object
that created this ClientStatus object. We store the user’s username in String name.
Vector onlineUsers is used to create and update the usersList.

The constructor (lines 692–754) creates the GUI for the ClientStatus window.
When initializing Vector onlineUsers (used as the basis for JList usersList),
we access the client’s users Document. Using Element method getElements-
ByTagName, we retrieve all the user elements. The for loop (lines 714–718) iterates
through the user elements, accessing the content of each and adding it to the
onlineUsers Vector. We use this Vector to initialize JList usersList in line
720. In lines 724–731, we create a new MouseAdapter object to respond when the user
double clicks a name in the usersList component. In line 728, we check to see if the
user double clicked a username. If so, we call method initiateMessage (discussed
momentarily). We also create an event handler for JButton disconnect; when the
user clicks the Disconnect button, method disconnectUser (also discussed momen-
tarily) is invoked.

Method initiateMessage first determines the name the user selected (lines 761–
769). We then test to see if a Conversation with the targeted user already exists by
using ClientMessenger method findConversationIndex (discussed in Fig.
10.9). If no Conversation exists, we create a new Conversation object (discussed
in Fig. 10.11).

Lines 771–778 define method add, which is invoked in response to the server
informing the client that a new user is logging in. We add the specified user to the
onlineUsers Vector and update the JList usersList so that the user knows that
a new user is on-line.

When the server notifies the client that a user has logged out, method remove is
invoked. We first remove the specified user from the onlineUsers Vector. To find
the index of the element that we want to remove, method findOnlineUsersIndex
(defined in lines 790–801) is invoked. Method findOnlineUsersIndex iterates
through the onlineUsers Vector, returning the index corresponding to parameter
onlineUserName; it returns -1 otherwise. Once the corresponding element has been
removed, we update the usersList.

We define method disconnectUser in lines 803–826. This method is invoked in
response to the user clicking the Disconnect button. To inform the server that this user is

817 disconnectUser.appendChild(
818 disconnectUser.createElement("disconnect"));
819
820 client.send(disconnectUser);
821 client.stopListening();
822 }
823 catch (ParserConfigurationException pce) {
824 pce.printStackTrace();
825 }
826 }
827 }

Fig. 10.10 ClientStatus.java (part 4 of 4).

292 Case Study: XmlMessenger Program Chapter 10

disconnecting, we create a new Document object. We then create and append element
disconnect. Using the MessengerClient method send (discussed in Fig. 10.9),
we send the XML to the server. Finally, we invoke MessengerClient method
stopListening, which results in the termination of the client’s application.

828 // Fig. 10.11: Conversation.java
829 // This program provides implementation on the client side
830 // for exchanging messages between users.
831
832 import java.awt.*;
833 import java.awt.event.*;
834 import javax.swing.*;
835
836 import org.w3c.dom.*;
837 import org.xml.sax.*;
838 import javax.xml.parsers.*;
839
840 public class Conversation extends JFrame {
841 private ClientStatus clientStatus;
842 private MessengerClient client;
843 private JTextArea display;
844 private JTextField message;
845 private JButton enter;
846 private JPanel messageArea;
847 private GridLayout messageAreaLayout;
848 private String target;
849
850 public Conversation(String contact, ClientStatus cs,
851 MessengerClient mc)
852 {
853 // create GUI and initialize variables
854 super(cs.getUser() + "'s conversation with " + contact);
855 target = contact;
856 clientStatus = cs;
857 client = mc;
858
859 Container c = getContentPane();
860 Font font = new Font("SansSerif",
861 java.awt.Font.BOLD, 14);
862
863 display = new JTextArea();
864 display.setLineWrap(true);
865 display.setEditable(false);
866 display.setFont(font);
867 c.add(new JScrollPane(display), BorderLayout.CENTER);
868
869 messageArea = new JPanel();
870 messageArea.setLayout(new GridLayout(2, 1));
871
872 message = new JTextField(20);
873 message.setText("");
874 messageArea.add(message);

Fig. 10.11 Conversation.java (part 1 of 3).

Chapter 10 Case Study: XmlMessenger Program 293

875
876 message.addActionListener (
877 new ActionListener () {
878 public void actionPerformed (ActionEvent e) {
879 submitMessage();
880 }
881 }
882);
883
884 enter = new JButton("Enter");
885 messageArea.add(enter);
886 c.add(messageArea, BorderLayout.SOUTH);
887
888 enter.addActionListener (
889 new ActionListener () {
890 public void actionPerformed (ActionEvent e) {
891 submitMessage();
892 }
893 }
894);
895
896 addWindowListener(
897 new WindowAdapter() {
898 public void windowClosing(WindowEvent e) {
899 // remove conversation from client's
900 // conversations Vector
901 client.removeConversation(target);
902 }
903 }
904);
905
906 setSize(400, 200);
907 show();
908
909 // add this Conversation object to conversations Vector
910 client.addConversation(this);
911 }
912
913 public String getTarget()
914 {
915 return target;
916 }
917
918 public void disableConversation()
919 {
920 message.setEnabled(false);
921 enter.setEnabled(false);
922 }
923
924 public void updateGUI(String dialog)
925 {
926 display.append(dialog + "\n");
927 }

Fig. 10.11 Conversation.java (part 2 of 3).

294 Case Study: XmlMessenger Program Chapter 10

Every Conversation object (Fig. 10.11) manages an instant-message conversation
between this user and another user. The clientStatus and client variables reference
the ClientStatus object that created this Conversation object and the Client-
Messenger object associated with it, respectively. String target contains the name
of the user with whom this user is conversing.

The constructor (lines 850–911) creates the GUI and initializes the instance variables.
In lines 896–904, we specify that when the window is closed, this Conversation object
should be removed from the client’s conversations Vector. We add this Con-
versation object to the client’s conversations Vector in line 910.

928
929 public void submitMessage()
930 {
931 String messageToSend = message.getText();
932
933 // do nothing if the user has not typed a message
934 if (!messageToSend.equals("")) {
935
936 Document sendMessage;
937 DocumentBuilderFactory factory =
938 DocumentBuilderFactory.newInstance();
939
940 try {
941
942 // get DocumentBuilder
943 DocumentBuilder builder =
944 factory.newDocumentBuilder();
945
946 // create xml message
947 sendMessage = builder.newDocument();
948 Element root = sendMessage.createElement("message");
949
950 root.setAttribute("to", target);
951 root.setAttribute("from", clientStatus.getUser());
952 root.appendChild(
953 sendMessage.createTextNode(messageToSend));
954 sendMessage.appendChild(root);
955
956 client.send(sendMessage);
957
958 updateGUI(clientStatus.getUser() +
959 ": " + messageToSend);
960 message.setText("");
961 }
962 catch (ParserConfigurationException pce) {
963 pce.printStackTrace();
964 }
965 }
966 }
967 }

Fig. 10.11 Conversation.java (part 3 of 3).

Chapter 10 Case Study: XmlMessenger Program 295

When the user hits the Enter key or clicks the Enter button, method submitMes-
sage is invoked. We define submitMessage in lines 929–966. First, we retrieve the
text contained in the JTextField message (line 931). Then, line 934 tests if the user
actually entered text. If so, we create XML to send to the server; recall that it takes the form

<message to = "receiver" from = "sender">
message text

</message>

We create a new Document object in lines 936–938; then we create the root element
message. Lines 950 and 951 set the attributes to and from to target and the cli-
entStatus’s instance variable user, respectively. We create and append a text node
containing the message text in lines 952 and 953. Using the MessengerClient method
send, we send the XML to the server (line 956). Finally, we update the Conversation
GUI to display the entered message and clear the message JTextField.

TERMINOLOGY

SELF-REVIEW EXERCISES
10.1 What is the significance of XmlDocument object users (Fig 10.3, line 23)? How does
class UserThread use it?

10.2 Explain the significance of class UserThread and its role in the application.

10.3 Explain briefly the sequence of steps that take place between the server and a client before
the client can start a conversation. Mention the relevant methods and classes involved.

ANSWERS TO SELF-REVIEW EXERCISES
10.1 Object users is used to store the information of all on-line users in an XML document. It
acts as a database on the server side. Class UserThread retrieves the list of current users from ob-
ject users using MessengerServer method getUsers. It also uses object users to update
the list of users whenever a new user logs in or logs out of the system. The content of object users
is written to the output stream to update the client.

10.2 Class UserThread acts as an interface between server and client. Each client has a User-
Thread object created for it on the server side. The server communicates with the client through this
UserThread object. A UserThread object continuously listens to the client. Upon receiving a
message from the client, it parses the message and identifies the type of message. It then passes the
message to the server for further processing.

class JFrame networking
class Thread org.w3c.dom package
client SAX
client connection to a server SAX package
clients handled by separate threads server
Document interface of org.w3c.dom packageServerSocket class
DOM Socket class
graphical user interface (GUI) streams
InputSource terminate connection to a client
instant messaging Vector class
J2SDK write method of class XMLDocument
JAXP parser XmlDocument class

296 Case Study: XmlMessenger Program Chapter 10

10.3 An instant-messenger user logs on to the system by typing in their username or ID. The user-
name is tagged with XML by method loginUser. It is then sent to the server by method send.
This message is received by UserThread object method run. The message is parsed here, and
method messageReceived is invoked to identify the type of message. If the user is a valid user,
the user is updated using method addUser of MessengerServer. The list of current users is re-
trieved using method getUsers of MessengerServer and sent to the client using method send
of UserThread. The list of users is received by the client using runMessengerClient. A new
object of ClientStatus is instantiated by method messageReceived of MessengerCli-
ent to display the list of users.

EXERCISES
10.4 Modify the XmlMessenger application so that the server holds an XML file of registered
users with passwords. This file should be stored on the server and should contain every user ever to
register (i.e., not just those who log in to the current server session). When a user logs in, their name
and password should be checked against this document for validity. If the name is registered with a
different password, indicate so to the user and ask for the correct password or a unique user name.

10.5 Modify your solution to Exercise 10.4 so that a user can create a list of on-line friends to be
displayed instead of displaying all on-line users. The user should be able to add to the list of friends;
if the new friend is currently on-line, the friend’s name should be added to the list of on-line friends.
If the friend is not logged in, nothing should be added to the display; however, if the friend logs in
later, the friend’s username should then be added to the list.

11
XML Path Language

(XPath)

Objectives
• To understand why XML Path Language (XPath) is

useful for information processing.
• To be able to write XPath expressions.
• To understand the usage of XPath for locating parts of

an XML document.
• To be able to use axes and predicates to locate

information in multiple nodes.
Attempt the end, and never stand to doubt;
Nothing’s so hard, but search will find it out.
Robert Herrick

It is an immutable law in business that words are words,
explanations are explanations, promises are promises—but
only performance is reality.
Harold S. Green

I read part of it all the way through.
Samual Goldwyn

298 XML Path Language (XPath) Chapter 11

11.1 Introduction
XML provides a way of describing data in a rich, flexible and efficient way by marking up
data with descriptive tags. However, XML does not provide a way to locate specific pieces
of structured data within a given document. For example, an XML document containing
data about books published by Deitel & Associates, Inc., would need to be parsed and then
searched through element by element in order to find a specific book. For large documents,
this process could be inefficient and error prone.

The XML Path Language (XPath) provides a syntax for locating specific parts (e.g.,
attribute values) of an XML document effectively and efficiently. XPath is not a structural
language like XML; rather, it is a string-based language of expressions used by other XML
technologies, such as Extensible Stylesheet Language Transformations (XSLT), which con-
verts or transforms XML documents to other formats (e.g., HTML), and the XML Pointer
Language (XPointer), which provides a means to “point” to information inside an XML
document. In this chapter, we discuss XPath. In Chapters 12 and 14, we discuss XSLT and
XPointer, respectively. At the time of this writing, XPath Version 1.0 was the current W3C
Recommendation.

11.2 Nodes
In XPath, an XML document is viewed conceptually as a tree in which each part of the doc-
ument is represented as a node. Recall that a tree is much like the structure of files and fold-
ers on a computer’s hard drive; nodes are much like the individual files and folders. Just as
folders may contain files and other folders, some nodes may contain other nodes. In XPath,
the result is a hierarchy of nodes that represent the elements of an XML document in a
searchable structure.

XPath has seven node types: root, element, attribute, text, comment, processing
instruction and namespace. The nodes in this tree are similar to those in the DOM we pre-
sented in Chapter 8. The first two examples illustrate each of these seven node types.

The XPath tree has a single root node, which contains all other nodes in the tree. The
root node and element nodes contain ordered lists of child nodes. Each node except the root
node has a parent node, and parent nodes may have any number of child, or descendant,
nodes. The only node types that may be child nodes are the element, comment, text and pro-

Outline
11.1 Introduction
11.2 Nodes
11.3 Location Paths

11.3.1 Axes
11.3.2 Node Tests
11.3.3 Location Paths Using Axes and Node Tests

11.4 Node-set Operators and Functions
11.5 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises •
Exercises

Chapter 11 XML Path Language (XPath) 299

cessing node types. Note that although an attribute or namespace node has a parent node
that is either an element or root node, the attribute or namespace node is not considered a
child of its parent node. The relationship between a parent node and a child node is contain-
ment, that is, a parent node contains a child node. Attribute nodes and namespace nodes
describe their parent nodes. A namespace node, for example, describes the namespace in
which its parent node can be found. Therefore attribute and namespace nodes are not child
nodes because they are not contained in a parent node, but are used to provide descriptive
information about their parent node.

Software Engineering Observation 11.1
Namespace and attribute nodes have parent nodes, but are not children of those parent
nodes. 11.1

Figure 11.1 shows a simple XML document that marks up a description for a Deitel &
Associates, Inc., textbook. Figure 11.2 shows a graphical representation of the XPath tree
for this document. The root node contains two child nodes (i.e., a comment—lines 3 and
4—and an element—book). Element node book (lines 6–18) contains a child-element
node sample (lines 8–15) and a child-text node (lines 16 and 17) that includes the
whitespace on line 16. The element node book is the parent of the attribute nodes title
and edition (line 6), but the attribute nodes title and edition are not children of
the element node book. The element node sample contains a text node (lines 9–14) that
consists of a single attribute CDATA section.

Each XPath tree node has a string representation—called a string-value—that XPath
uses to compare nodes. Let us discuss the string-value for each node in the tree, starting
with the text node on lines 9–14. The string-value of a text node consists of the character
data contained in the node. Because the character data in lines 9–14 are contained within a
CDATA section, the &, < and > characters are permitted and are part of the character data
in the text node that will be used to determine the string-value. However, <![CDATA[and
]]> are not part of the character data and are therefore not part of the string-value. The
string-value for the text node on lines 9–14 is therefore

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 11.1 : simple.xml -->
4 <!-- Simple XML document -->
5
6 <book title = "C++ How to Program" edition = "3">
7
8 <sample>
9 <![CDATA[

10
11 // C++ comment
12 if (this->getX() < 5 && value[0] != 3)
13 cerr << this->displayError();
14]]>
15 </sample>
16
17 C++ How to Program by Deitel & Deitel
18 </book>

Fig. 11.1 Simple XML document.

300 XML Path Language (XPath) Chapter 11

Fig. 11.2 XPath tree for Fig. 11.1.

// C++ comment
if (this->getX() < 5 && value[0] != 3)
 cerr << this->displayError();

The string-value for the sample element node is determined by concatenating the
string-values for all of its descendant text nodes (i.e., all text nodes that follow the node) in
document order. Nodes in an XPath tree have an ordering—called document order—that is
determined by the order in which the nodes appear in the original XML document. The
reverse document order is the reverse ordering of the nodes in a document. In this case, the
sample element node has as its only descendent the text node on lines 9–14. Therefore,
the string-value for the sample element node is the same as the string-value for the text
node on lines 8–13.

The book element node (lines 6–18) has two descendent text nodes. The first is the
text node shown on lines 16 and 17. The second is the text node on lines 9–14. The string-

Root

Element

book

Comment

Fig. 11.1 : simple.xml

Comment

Simple XML document

Attribute

Title
C++ How to Program

Attribute

edition 3

Element

sample

Text

// C++ comment
if (this -> getX() < 5 && value[0] != 3)
 cerr << this->displayError();

Text

C++ How to Program by Deitel & Deitel

Chapter 11 XML Path Language (XPath) 301

value for the book element node therefore consists of the concatenation of these two text
nodes in document order. Thus, the resulting string-value is

// C++ comment
if (this->getX() < 5 && value[0] != 3)
 cerr << this->displayError();
C++ How to Program by Deitel & Deitel

Because the text node on lines 16 and 17 is not contained within a CDATA section, it is nor-
malized (i.e., whitespace is either removed or combined into a single whitespace character).
For the root node of the document, the string-value is also determined by concatenating the
string-values of its text-node descendents in document order. The string-value of the root
node is therefore identical to the string-value calculated for the book element node.

The attribute node title (line 6) has a string-value that consists of the normalized
value of the attribute (i.e., C++ How to Program). The string-value for the edition
attribute node consists of its value as well, which is 3. The string-value for a comment node
consists only of the comment’s text, excluding <!-- and -->. The string-value for the
comment node on line 4 is therefore: simple XML document.

The XML document in Fig. 11.3 includes processing instruction and namespace nodes.
Figure 11.4 shows a graphical representation of the document’s XPath tree. In this docu-
ment, the root node contains two comment nodes (lines 3–4) and one element node, html
(lines 6–23). The namespace node’s parent is html. This namespace node is not a child of
the html element node, because namespace nodes cannot be child nodes. The element
node html has three child nodes, including the element node head (lines 8–10), the pro-
cessing-instruction node (line 12) and the element node body (lines 14–21).

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 11.3 : simple2.xml -->
4 <!-- Processing instructions and namespacess -->
5
6 <html xmlns = "http://www.w3.org/TR/REC-html40">
7
8 <head>
9 <title>Processing Instruction and Namespace Nodes</title>

10 </head>
11
12 <?deitelprocessor example = "fig11_03.xml"?>
13
14 <body>
15
16 <deitel:book deitel:edition = "1"
17 xmlns:deitel = "http://www.deitel.com/xmlhtp1">
18 <deitel:title>XML How to Program</deitel:title>
19 </deitel:book>
20
21 </body>
22
23 </html>

Fig. 11.3 XML document with processing-instruction and namespace nodes.

302 XML Path Language (XPath) Chapter 11

Fig. 11.4 Tree diagram of an XML document with a processing-instruction node.

The element node head contains the element node title (line 9) as its only child.
In turn, the element node title contains a text node as its only child (line 9). The element

Root

Comment

Fig. 11.3 : simple2.xml

Comment

Processing instructions and namespaces.

Element

html

Namespace

http://www.w3.org/TR/REC-html40

Element

head

Element

title

Text

Processing instructions and Namespace Nodes

Processing Instruction

deitelprocessor
example = "fig11_03.xml"

Element

body

Element

book

Namespace

http://www.deitel.com/xmlhtpl

Element

title

Text

XML How to Program

Attribute

edition
1

Chapter 11 XML Path Language (XPath) 303

node body (lines 14–21) contains one element node, deitel:book (lines 16–19). In
element node deitel:book, we introduce a new namespace (line 17) with the URI
http://www.deitel.com/xmlhtp1 bound to the prefix deitel. This code results
in a namespace node in the XPath tree whose parent is the element node deitel:book.
The element node deitel:title (line 18), which is in the deitel namespace, is the
only child of element node deitel:book and has a single text-node child.

The string-values for the nodes in this tree are determined exactly as they were for the
nodes in Fig. 11.1. For the element node html, the string-value is the concatenation of the
string-values of all its text-node descendents in document order. In the document in Fig.
11.3, there are only two text nodes (lines 9 and 18), and both are descendents of the element
node html. The string-value for element node html is

Processing Instruction and Namespace NodesXML How to Program

Because all whitespace is removed when the text nodes are normalized, there is no space
in the concatenation.

For processing instructions, the string-value consists of the remainder of the pro-
cessing instruction after the target, including whitespace, but excluding the ending ?>. The
string-value for the processing instruction on line 12 is

example = "fig11_03.xml"

Namespace-node string-values consist of the URI for the namespace. The string-value for
the namespace declaration on line 17 is

http://www.deitel.com/xmlhtp1

Certain nodes (i.e., element, attribute, processing instruction and namespace) also have
a name—called an expanded-name—that can be used to locate specific nodes in the XPath
tree. We will see how we can use the expanded-name in Section 11.4. Let us now determine
the expanded-names for each of the nodes in Fig. 11.3. Expanded-names consist of both a
local part and a namespace URI. For element nodes, the local part of the expanded-name
corresponds to the name of the element in the XML document. The local part for the ele-
ment node html (line 6) is therefore html. For each of the element nodes head, title,
body, book and title and the attribute node edition, the local part of the expanded-
name is head, title, body, book, title and edition, respectively.

If there is a prefix for the element node, the namespace URI of the expanded-name is
the URI to which the prefix is bound. If there is no prefix for the element node, the
namespace URI of the expanded name is the URI for the default namespace. The html,
head, title and body element nodes on lines 6, 8, 9 and 14, respectively, do not have
a prefix, but are in a default namespace, which is bound to the URI on line 6. This URI (i.e.,
http://www.w3.org/TR/REC-html40) is the namespace URI for the expanded-name
of these nodes. Element nodes book and title (lines 16 and 18) have the namespace
prefix deitel, which is bound to the URI

http://www.deitel.com/xmlhtp1

on line 17. This URI is the namespace URI for the expanded-name of these element nodes.
The local part of the expanded name for an attribute node is the name of the attribute. The
local part of the expanded name for the edition attribute node is edition.

304 XML Path Language (XPath) Chapter 11

The local part of the expanded name for a processing instruction node corresponds to
the target of the processing instruction in the XML document. Therefore, the local part of
the expanded-name for the processing instruction on line 12 is the string deitelpro-
cessor. For processing instructions, the namespace URI of the expanded-name is null
(i.e., it has no value).

The local part of the expanded-name for a namespace node corresponds to the prefix
for the namespace, if one exists; or, if it is a default namespace, the local part is empty (i.e.,
the empty string). The namespace URI of the expanded-name for a namespace node is
always null.

For reference purposes, we provide a summary of the node types in Fig. 11.5.

Node Type string-value expanded-name Description

root Determined by con-
catenating the
string-values of all
text-node descen-
dents in document
order.

None. Represents the root of an XML
document. This node exists only
at the top of the tree and may
contain element, comment or
processor-instruction children.

element Determined by con-
catenating the
string-values of all
text-node descen-
dents in document
order.

The element tag,
including the
namespace prefix (if
applicable).

Represents an XML element
and may contain element, text,
comment or processor-instruc-
tion children.

attribute The normalized
value of the
attribute.

The name of the
attribute, including the
namespace prefix (if
applicable).

Represents an attribute of an ele-
ment.

text The character data
contained in the text
node.

None. Represents the character data
content of an element.

comment The content of the
comment (not
including <!-- and
-->).

None. Represents an XML comment.

processing
instruction

The part of the pro-
cessing instruction
that follows the tar-
get and any
whitespace.

The target of the pro-
cessing instruction.

Represents an XML processing
instruction.

namespace The URI of the
namespace.

The namespace prefix. Represents an XML namespace.

Fig. 11.5 XPath node types.

Chapter 11 XML Path Language (XPath) 305

11.3 Location Paths
Now that we have seen the structure of an XML document in XPath, we examine how we
can use this structure to locate particular parts of a document. A location path is an expres-
sion that specifies how to navigate an XPath tree from one node to another. A location path
is composed of location steps, each of which is composed of an “axis,” a “node test” and
an optional “predicate.” We show several examples of location steps and location paths in
Section 11.3.3. To locate a specific node in an XML document, we put together multiple
location steps, each of which refines the search. The following sections introduce each part
of a location step.

11.3.1 Axes
Searching through an XML document begins at a context node in the XPath tree. Searches
through the XPath tree are made relative to this context node. For example, the XML doc-
ument in Fig. 11.3 contains a head element (lines 8–10). The head element contains a
single child element named title (line 9). In XPath, the head element would be repre-
sented as an element node whose parent is the html element node (lines 6–23). The head
element node would have a single child element node corresponding to the title ele-
ment. Suppose we have an XPath expression that returns the first child element node of the
context node. Using the head element node as the context node, this expression would re-
turn the title element node. However, if we use the html element node as the context
node, this expression would return the head element node.

An axis indicates which nodes, relative to the context node, should be included in the
search. The axis also dictates the ordering of the nodes in the set. Axes that select nodes
that follow the context node in document order are called forward axes. Axes that select
nodes that precede the context node in document order are called reverse axes. Figure 11.6
summarizes the 13 XPath axes and their ordering and provides a description of each.

Axis Name Ordering Description

self none The context node itself.

parent reverse The context node’s parent, if one exists.

child forward The context node’s children, if they exist.

ancestor reverse The context node’s ancestors, if they exist.

ancestor-or-self reverse The context node’s ancestors and also itself.

descendant forward The context node’s descendants.

descendant-or-self forward The context node’s descendants and also
itself.

following forward The nodes in the XML document following
the context node, not including descendants.

following-sibling forward The sibling nodes following the context node.

Fig. 11.6 XPath axes (part 1 of 2).

306 XML Path Language (XPath) Chapter 11

An axis has a principal node type that corresponds to the type of node the axis may
select. For attribute axes, the principal node type is attribute. For namespace axes, the
principal node type is namespace. All other axes have a element principal node type.

11.3.2 Node Tests
An axis selects a set of nodes from the document tree. The set of selected nodes is refined
with node tests. In Section 11.3.4 we will use these node tests to select nodes from the doc-
ument tree. As we will see, node tests rely upon the principal node type of an axis for se-
lecting nodes in a location path. Figure 11.7 lists some node tests and provides a description
of each.

11.3.3 Location Paths Using Axes and Node Tests
Location paths are composed of sequences of location steps. A location step contains an
axis and a node test separated by a double-colon (::) and, optionally, a “predicate” en-
closed in square brackets ([]). We discuss predicates in Section 11.4. Let us now intro-
duce example location paths for locating particular elements in an XML document. For the
upcoming examples, we will use the XML document presented in Fig. 11.3 and its corre-
sponding tree representation in Fig. 11.4. The location step

preceding reverse The nodes in the XML document preceding
the context node, not including ancestors.

preceding-sibling reverse The sibling nodes preceding the context
node.

attribute forward The attribute nodes of the context node.

namespace forward The namespace nodes of the context node.

Node Test Description

* Selects all nodes of the same principal node type.

node() Selects all nodes, regardless of their type.

text() Selects all text nodes.

comment() Selects all comment nodes.

processing-instruction() Selects all processing-instruction nodes.

node name Selects all nodes with the specified node name.

Fig. 11.7 Some XPath node tests.

Axis Name Ordering Description

Fig. 11.6 XPath axes (part 2 of 2).

Chapter 11 XML Path Language (XPath) 307

child::*

selects all element-node children of the context node, because the principal node type for
the child axis is element. If we use the html element node from line 6 in Fig. 11.3 as our
context node, the head and body element nodes will be selected. The location step

child::text()

uses the axis child and the node test text() to select all text-node children of the con-
text node. We can combine these two location steps to form the location path

child::*/child::text()

which selects all text-node grandchildren of the context node. There are two steps in this
location path. The first step, child::*, selects all element-node children of the context
node. The second step, child::text(), selects all the child-text nodes contained in the
set of nodes selected in the first step. If we again use the html element node from line 6
of Fig. 11.3 as our context node, there will be no nodes selected by this location path, be-
cause the html element node does not have any text-node grandchildren. If element node
head had a text-node child, it would be selected by this location path.

Some location paths can also be abbreviated, as shown in Fig. 11.8. The child axis, for
example, may be omitted, as it is considered the default axis. The location path

body

is therefore equivalent to the location path

child::body

and will select all element-node body children of the context node. In order to select all
body element nodes in an entire document, the abbreviation

//body

may be used in place of the location path

/descendent-or-self::node()/child::body

Location Path Description

child:: This location path is used by default if no axis is
supplied and may therefore be omitted.

attribute:: The attribute axis may be abbreviated as @.

/descendant-or-self::node()/ This location path is abbreviated as
two slashes (//).

self::node() The context node is abbreviated with a period
(.).

Fig. 11.8 Some location-path abbreviations (part 1 of 2).

308 XML Path Language (XPath) Chapter 11

In Fig. 11.9, we show an XML document that marks up some book translations. [Note:
In Chapter 12, we will discuss the stylesheet used to render this document.] We show the
XPath tree for the first book element node in Fig. 11.10.

parent::node() The context node’s parent is abbreviated with
two periods (..).

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 11.9 : books.xml -->
4 <!-- XML book list -->
5
6 <books>
7
8 <book>
9 <title>Java How to Program</title>

10 <translation edition = "1">Spanish</translation>
11 <translation edition = "1">Chinese</translation>
12 <translation edition = "1">Japanese</translation>
13 <translation edition = "2">French</translation>
14 <translation edition = "2">Japanese</translation>
15 </book>
16
17 <book>
18 <title>C++ How to Program</title>
19 <translation edition = "1">Korean</translation>
20 <translation edition = "2">French</translation>
21 <translation edition = "2">Spanish</translation>
22 <translation edition = "3">Italian</translation>
23 <translation edition = "3">Japanese</translation>
24 </book>
25
26 </books>

Fig. 11.9 XML document that marks up book translations .

Location Path Description

Fig. 11.8 Some location-path abbreviations (part 2 of 2).

Chapter 11 XML Path Language (XPath) 309

Fig. 11.10 XPath tree for books.xml.

Suppose we want to know which books have Japanese translations available in one or
more editions, so that we can send a copy to a client who reads Japanese. Using the root
node of the XPath tree as the context node, we could use the location path

Other

Element

title

Element

translation

nodes...

Element

book

Text

Java How to Program

Element

translation

Element

translation

Element

translation

Element

translation

Text

Spanish

Text

Chinese

Text

Japanese

Text

French

Text

Japanese

Attribute

edition 2

Attribute

edition 2

Attribute

edition 1

Attribute

edition 1

Attribute

edition 1

Other
nodes...

310 XML Path Language (XPath) Chapter 11

/books/book/translation[. = 'Japanese']/../title

to select the title element node for each book that has a Japanese translation. This loca-
tion path uses a simple predicate that compares the string value of the current node to the
string 'Japanese'. A predicate is a boolean expression used as part of a location path to
filter nodes from the search. We discuss predicates further in Section 11.4. We could use
the location path

/books/book/translation[. = 'Japanese']/@edition

to select the edition attribute node for books with Japanese translations. In the case
study in Chapter 12, we study XPath in further detail. In particular, we use many of the axes
listed in Fig. 11.6.

11.4 Node-set Operators and Functions
In the previous section, we discussed how we can select sets of nodes from a document tree
using location paths. Node-set operators (Fig. 11.11) allow us to manipulate these node sets
to form other node sets. We will show examples of how node-set operators are used mo-
mentarily.

XPath also provides node-set functions that perform an action on a node-set returned
by a location path (Fig. 11.12).

Node-set Operators Description

pipe (|) Performs the union of two node-sets.

slash (/) Separates location steps.

double-slash (//) Abbreviation for the location path
/descendant-or-self::node()/

Fig. 11.11 Node-set operators.

Node-set Functions Description

last() Returns the number of nodes in the node-set.

position() Returns the position number of the current node in the
node-set being tested.

count(node-set) Returns the number of nodes in node-set.

id(string) Returns the element node whose ID attribute matches the
value specified by argument string.

Fig. 11.12 Some node-set functions (part 1 of 2).

Chapter 11 XML Path Language (XPath) 311

Node-set operators and functions can be combined to form location-path expressions.
For example, the location

head | body

selects all head and body children element nodes of the context node. If we use the html
element node on line 6 of Fig. 11.3 as our context node, the above location path will result
in the set of nodes containing the head element node on lines 8–10 and the body element
node on lines 14–21. The location path

head/title[last()]

uses the predicate last to select the last bold element node contained in the head ele-
ment node. Predicates are expressions used as criteria for inclusion in the set of nodes se-
lected. For each node in a node set, the predicate expression is tested with that node as the
context node. In Fig. 11.3, the above location path and predicate would select the title
element node on line 9. The location path

book[position() = 3]

and the abbreviated location path

bold[3]

would each select the third book element of the context node. The location path

count(*)

would return the total number of element-node children of the context node. For our exam-
ple, the result would be 2. The location path

//book

selects all book element nodes in the document.
Figure 11.13 is an XML document that contains stock information for several compa-

nies. In Fig. 11.14 we use XPath string functions in an XSL stylesheet to locate certain
nodes in this document. We discuss XSL in greater detail in Chapter 12 and Chapter 13.
String functions allow us to manipulate the strings of characters. For example, string func-
tion concat takes two string arguments and concatenates them into a single string.

local-name(node-set) Returns the local part of the expanded-name for the first
node in node-set.

namespace-uri(node-set) Returns the namespace URI of the expanded-name for the
first node in node-set.

name(node-set) Returns the qualified name for the first node in node-set.

Node-set Functions Description

Fig. 11.12 Some node-set functions (part 2 of 2).

312 XML Path Language (XPath) Chapter 11

Figure 11.14 is an XSLT stylesheet that uses string functions in XPath expressions. We
discuss XSLT in detail in Chapter 12. This XSLT stylesheet selects particular elements
from an XML document and builds an HTML page containing an unordered list.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 11.13 : stocks.xml -->
4 <!-- Stock list -->
5
6 <stocks>
7
8 <stock symbol = "INTC">
9 <name>Intel Corporation</name>

10 </stock>
11
12 <stock symbol = "CSCO">
13 <name>Cisco Systems, Inc.</name>
14 </stock>
15
16 <stock symbol = "DELL">
17 <name>Dell Computer Corporation</name>
18 </stock>
19
20 <stock symbol = "MSFT">
21 <name>Microsoft Corporation</name>
22 </stock>
23
24 <stock symbol = "SUNW">
25 <name>Sun Microsystems, Inc.</name>
26 </stock>
27
28 <stock symbol = "CMGI">
29 <name>CMGI, Inc.</name>
30 </stock>
31
32 </stocks>

Fig. 11.13 List of companies with stock symbols.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 11.14 : stocks.xsl -->
4 <!-- string function usage -->
5
6 <xsl:stylesheet version = "1.0"
7 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
8
9 <xsl:template match = "/stocks">

10 <html>
11 <body>
12
13

Fig. 11.14 Demonstrating some String functions (part 1 of 2).

Chapter 11 XML Path Language (XPath) 313

Line 17 of Fig. 11.14

"starts-with(@symbol, 'C')"

uses the XPath string function starts-with, which takes two string arguments. The
function returns the boolean value true if the string passed in the second argument match-
es the beginning of the string passed in the first argument. In this example, we retrieve the
value of the symbol attribute using @symbol and compare it to the string 'C'. If the
string returned by @symbol begins with the letter C, starts-with returns true; oth-
erwise, starts-with returns false. Line 21

"concat(@symbol,' - ', name)"

uses the XPath string function concat. The XPath expression @ symbol again returns the
value of the symbol attribute. The XPath expression name returns the string-value of the
name element node. Recall that the string-value of an element node is the text that it con-
tains. In Fig. 11.13, the name elements contain the names of companies listed in a stock
exchange. In this case, the concat function returns the concatenation of the value of the
symbol attribute, the string ' - ' and the name of the company.

The result of applying the XSLT stylesheet in Fig. 11.14 to the XML document in Fig.
11.13 is shown in Fig. 11.14. The XPath expression on line 17 matched only those element
nodes in the document whose stock symbols began with the letter 'C' (i.e., CSCO and
CMGI). The XPath expression on line 21 then concatenated the stock symbol with the string
' - ' and the name of the company.

14 <xsl:for-each select = "stock">
15
16 <xsl:if test =
17 "starts-with(@symbol, 'C')">
18
19
20 <xsl:value-of select =
21 "concat(@symbol,' - ', name)"/>
22
23 </xsl:if>
24
25 </xsl:for-each>
26
27 </body>
28 </html>
29 </xsl:template>
30 </xsl:stylesheet>

Fig. 11.14 Demonstrating some String functions (part 2 of 2).

314 XML Path Language (XPath) Chapter 11

11.5 Internet and World Wide Web Resources
www.w3.org/TR/xpath
The World Wide Web Consortium’s XML Path Language Recommendation.

www.vbxml.com/xsl/XPathRef.asp
The XPath Reference Page on the vbxml.comWeb site.

SUMMARY
• In XPath, an XML document is viewed conceptually as a tree in which each XML construct is rep-

resented as a node.

• For each node, there is a corresponding string-value, which is determined differently for each node
type.

• Some node types have a corresponding expanded-name, which has both a local part and a
namespace URI.

• Nodes in an XPath tree have an ordering, called document order, which is determined by the order
in which the nodes appear in the original XML document. The reverse document order is simply
the reverse ordering of the nodes in a document.

• Each node, except the root node, has a parent node, and parent nodes may have any number of
child, or descendant, nodes.

• The only node types that may be child nodes are the element, comment, text and processing-in-
struction node types.

• Namespace and attribute nodes have parent nodes, but are not children of those parent nodes.

• The string-value of a text node consists of the character data contained in the node.

• The string-value of an element node is determined by concatenating the string-values for all of its
descendent text nodes in document order.

• An attribute node has a string-value that consists of the normalized value of the attribute.

• For processing instructions the string-value consists of the remainder of the processing instruction
after the target, including whitespace, but excluding the ending ?>.

• Namespace-node string-values consist of the URI for the namespace.

• Expanded-names consist of both a local part and a namespace URI.

• For element nodes, the local part of the expanded-name corresponds to the name of the element in
the XML document.

• The local part of the expanded name for a processing-instruction node corresponds to the target of
the processing instruction in the XML document.

• The local part of the expanded-name for a namespace node corresponds to the prefix for the
namespace, if one exists; or, if it is a default namespace, the local part is empty.

• The namespace URI of the expanded-name for a namespace node is always null.

• Searching through an XML document begins at a context node in the XPath tree.

• An axis indicates which nodes, relative to the context node, are included in the search.

• An axis has a principal node type that corresponds to the type of node the axis may select.

• Predicates are expressions used as criteria for inclusion in the set of nodes selected.

• Location paths are composed of sequences of location steps.

• A location step contains an axis and node test separated by a double-colon (::) and, optionally, a
predicate enclosed in square brackets ([]).

Chapter 11 XML Path Language (XPath) 315

• The child axis may be omitted, as it is considered the default axis.

• XPath provides node-set functions that perform an action on a node-set returned by a location path.

• Node-set operators and functions can be combined to form location-path expressions.

• The boolean comparison operations can also be performed on numerical values.

TERMINOLOGY

SELF-REVIEW EXERCISES
11.1 State whether the following are true or false. If false, explain why.

a) XML Path Language (XPath) is used to locate specific parts of an XML document.
b) XPath views an XML document as a SAX document containing different elements.
c) There are seven different types of nodes that are found in the constructs of XML docu-

ments.
d) Attribute nodes have parent nodes and are also children of those parent nodes.
e) An axis indicates which nodes to search for and is defined relative to the context node.
f) Axes, node tests and predicates can be combined to form a location path.
g) Node-set operators perform actions on a node-set returned by a location path.
h) Predicates are used to refine a node-set based on certain criteria.
i) A step in a location path always contains a predicate.

11.2 Fill in the blanks in each of the following statements.
a) According to XPath, every node in an XML document, except for the root node, has a

 node, each of which may have any number of nodes.
b) In an XML document, the node exists only at the top of the tree.
c) Each XML element has a set of automatically associated with it.

ancestor axis location step
ancestor-or-self axis namespace axis
asterisk (*) namespace node
attribute axis namespace URI
attribute node node
axis node test
brackets ([]) node type
child axis parent axis
comment node period (.)
context node pipe (|)
default namespace node position function
descendant axis preceding axis
descendent-or-self axis preceding-sibling axis
document order predicate
double-colon (::) processing-instruction node
double-slash (//) reverse document order
expanded-name root node
following axis self axis
following-sibling axis slash (/)
forward-slash character (/) string-value
id function text node
last function two periods (..)
local part XML Path Language (XPath)
location path XPath (XML Path Language)

316 XML Path Language (XPath) Chapter 11

d) The node where an XPath search begins is called a node.
e) Node specify a subset of nodes that are specified by an axis.
f) A path consists of location separated by the forward-slash char-

acter.
g) Node-set perform an action on a node-set returned by a location path.
h) The node-set function returns the number of nodes in the argument node-set.
i) The value associated with a comment node includes the of the

comment, with leading and trailing whitespace removed.

ANSWERS TO SELF-REVIEW EXERCISES
11.1 a) True. b) False. XPath views an XML document as a tree, with each XML construct rep-
resented by a node. c) True. d) False. Attribute nodes have parent nodes, but are not children of those
parent nodes. e) True. f) True. g) False. Node-set operators are used to perform operations on a node-
set returned by a location path. h) True. i) False. A step in a location path sometimes contains a pred-
icate.

11.2 a) parent, child. b) root. c) namespaces. d) context. e) tests. f) location, steps. g) functions. h)
count (or last). i) string, contents.

EXERCISES
11.3 From the XML document in Fig. 11.15, answer the following questions.

a) What is the XPath expression that selects all transaction elements with attribute
date having values between 06/01/2000 and 07/30/2000, inclusive?

b) What is the XPath expression that selects all transaction elements that have an
amount of U.S. dollars (USD) with a value greater than 200?

c) What is the XPath expression that selects all transaction elements from account
100392?

d) What is the XPath expression that calculates the total value of transactions in account
203921?

e) What is the XPath expression to determine the average amount transferred to account
203921?

f) What is the XPath expression that selects all transactions dated 09/03/2000?
g) What is the XPath expression that selects all amount elements with a currency of

NTD whose transaction date is after 09/01/2000?
h) What is the XPath expression to get all transaction elements from part (a) with ac-

count value 100392?

1 <?xml version = "1.0"?>
2
3 <transactions>
4
5 <transaction date = "05/22/2000" id = "0122">
6 <from account = "100392"/>
7 <to account = "203921"/>
8 <amount currency = "USD">15</amount>
9 </transaction>

Fig. 11.15 Account transaction XML document (part 1 of 2).

Chapter 11 XML Path Language (XPath) 317

11.4 From the XPath expressions and results in Fig. 11.16, generate the XML document.

10
11 <transaction date = "06/01/2000" id = "0129">
12 <from account = "203921"/>
13 <to account = "877521"/>
14 <amount currency = "USD">4800</amount>
15 </transaction>
16
17 <transaction date = "06/01/2000" id = "0130">
18 <from account = "100392"/>
19 <to account = "992031"/>
20 <amount currency = "YEN">7000</amount>
21 </transaction>
22
23 <transaction date = "06/10/2000" id = "0152">
24 <from account = "992031"/>
25 <to account = "100392"/>
26 <amount currency = "USD">402.53</amount>
27 </transaction>
28
29 <transaction date = "06/22/2000" id = "0188">
30 <from account = "100392"/>
31 <to account = "203921"/>
32 <amount currency = "USD">10000</amount>
33 </transaction>
34
35 <transaction date = "07/12/2000" id = "0200">
36 <from account = "100392"/>
37 <to account = "039211"/>
38 <amount currency = "NTD">3000</amount>
39 </transaction>
40
41 <transaction date = "07/26/2000" id = "0211">
42 <from account = "203921"/>
43 <to account = "100392"/>
44 <amount currency = "USD">400</amount>
45 </transaction>
46
47 <transaction date = "08/05/2000" id = "0225">
48 <from account = "039211"/>
49 <to account = "203921"/>
50 <amount currency = "USD">150</amount>
51 </transaction>
52
53 <transaction date = "09/03/2000" id = "0293">
54 <from account = "100392"/>
55 <to account = "039211"/>
56 <amount currency = "NTD">200000</amount>
57 </transaction>
58
59 </transactions>

Fig. 11.15 Account transaction XML document (part 2 of 2).

318 XML Path Language (XPath) Chapter 11

Expression Result

count(//*) 7

count(//@*) 6

count(//argument) 2

count(//description) 1

count(//class) 1

count(//function) 2

count(//return) 1

count(//text()) 1

count(//processing-instruction()) 0

count(//function/return) 1

count(//function/argument) 2

count(//class/*) 3

count(//description/*) 0

//class/description { "This class handles
input" }

//@name { "input", "text",
"number" }

//@type { "string", "int",
"string" }

//return/@type { "int" }

//argument/@type { "string", "string" }

boolean(//function/@name) true

boolean(//class/@name) true

Fig. 11.16 XPath expressions.

12
XSL: Extensible

Stylesheet Language
Transformations (XSLT)

Objectives
• To understand what Extensible Stylesheet Language

is and how it relates to XML.
• To understand what an Extensible Stylesheet

Language Transformation (XSLT) is.
• To be able to write XSLT documents.
• To be able to write templates.
• To be able to iterate through a node set returned by an

XPath expression.
• To be able to sort.
• To be able to perform conditional processing.
• To be able to copy nodes.
• To be able to declare variables.
Guess if you can, choose if you dare.
Pierre Corneille

A Mighty Maze! but not without a plan.
Alexander Pope

Behind the outside pattern
the dim shapes get clearer every day.
It is always the same shape, only very numerous.
Charlotte Perkins Gilman, The Yellow Wallpaper

320 XSL: Extensible Stylesheet Language Transformations (XSLT) Chapter 12

12.1 Introduction
The previous chapter discussed XML Path Language (XPath), which provides a syntax for
locating specific nodes in an XML document. The Extensible Stylesheet Language (XSL)
is used to format XML documents and consists of two parts. In this chapter, we present the
first part of XSL, which is the XSL Transformation Language (XSLT). XSLT is used to
transform an XML document from one form to another. XSLT uses XPath to match nodes
for transforming an XML document into a different document. The resulting document
may be XML, HTML, plain text or any other text-based document. The second part of XSL
is XSL formatting objects. Formatting objects provide an alternative to CSS for formatting
and styling an XML document. We discuss formatting objects in Chapter 13. The following
sections describe the use of XSLT and present many code examples.

12.2 Setup
To process XSLT documents, you will need an XSLT processor. In the following sections,
we will provide examples using Microsoft Internet Explorer 5 and Apache’s Xalan.

Internet Explorer 5 has the ability to process XML and XSLT documents, providing
an easy method to view XML documents as HTML documents via a transformation. In
order to execute the examples in this chapter, you will need to download and install version
3.0 of msxml—the XML processor used by IE5. For instructions on downloading and
installing msxml, visit the Deitel & Associates, Inc. Web site at www.deitel.com.

Apache has created the Xalan XSLT processor for Java and C++. In this chapter, we
run a Java version of this application from the command line to perform the transforma-
tions. To use Xalan, you will need to perform the following steps:

1. Install the Java 2 SDK. For instructions, please visit www.deitel.com.

2. Get Apache Xalan from xml.apache.org/xalan. The Xalan distribution
comes with Apache’s XML parser, Xerces. In this chapter, we will assume that
you have installed Xalan in C:\xalan\.

3. Add the Xalan and Xerces JAR files to your CLASSPATH environment variable.

Outline
12.1 Introduction
12.2 Setup
12.3 Templates
12.4 Creating Elements and Attributes
12.5 Iteration and Sorting
12.6 Conditional Processing
12.7 Copying Nodes
12.8 Combining Stylesheets
12.9 Variables
12.10 Case Study: XSLT and XPath
12.11 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises •
Exercises

Chapter 12 XSL: Extensible Stylesheet Language Transformations (XSLT) 321

12.3 Templates
An XSLT document is an XML document with a root element stylesheet. The
namespace for an XSLT document is http://www.w3.org/1999/XSL/Trans-
form. The XSLT document shown in Fig. 12.1 transforms intro.xml (Fig. 12.2) into a
simple HTML document (Fig 12.3). XSLT uses XPath expressions (discussed in Chapter
11) to locate nodes in an XML document. In an XSL transformation, there are two trees of
nodes. The first node tree is the source tree. The nodes in this tree correspond to the original
XML document to which the transformation is applied. The second node tree is the result
tree. The result tree contains all of the nodes produced by the XSL transformation. This re-
sult tree represents the document produced by the transformation.

Lines 6 and 7

<xsl:stylesheet version = "1.0"
xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">

show the XSLT document’s root element (i.e., xsl:stylesheet) and its attributes. At-
tribute version defines the XSLT specification used. Namespace prefix xsl is defined
and assigned the URI "http://www.w3.org/1999/XSL/Transform".

Line 9

<xsl:template match = "myMessage">

shows a template element. This element matches specific XML document nodes by us-
ing an XPath expression in attribute match. In this case, we match any myMessage el-
ement nodes.

Lines 10–12

<html>
 <body><xsl:value-of select = "message"/></body>
</html>

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 12.1 : intro.xsl -->
4 <!-- Simple XSLT document for intro.xml -->
5
6 <xsl:stylesheet version = "1.0"
7 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
8
9 <xsl:template match = "myMessage">

10 <html>
11 <body><xsl:value-of select = "message"/></body>
12 </html>
13 </xsl:template>
14
15 </xsl:stylesheet>

Fig. 12.1 Simple template.

322 XSL: Extensible Stylesheet Language Transformations (XSLT) Chapter 12

are the contents of the template element in line 9. When a myMessage element node
is matched in the source tree, the contents of the template element are placed in the re-
sult tree. By using element value-of and an XPath expression in attribute select, the
text contents of the node-set returned by the XPath expression are placed in the result tree.

We will be using Internet Explorer 5 to process the XML and XSLT documents. By
viewing the XML document, IE5 will automatically apply the XSLT document.

Figure 12.2 lists the input XML document and Fig. 12.3 lists the result of the transfor-
mation.

Line 6

<?xml:stylesheet type = "text/xsl" href = "intro.xsl"?>

uses element stylesheet to attach a style sheet to an XML document. Attribute type
defines the type of file being attached. The two valid values are text/xsl, which denotes
an XSL document, and text/css, which denotes a CSS document. Attribute href holds
the file being attached.

12.4 Creating Elements and Attributes
In the previous section, we demonstrated the use of XSLT for simple element matching.
This section discuss the creation of new elements and attributes within an XSLT document.

Figure 12.4 lists an XML document that marks up various sports.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 12.2 : intro.xml -->
4 <!-- Simple introduction to XML markup -->
5
6 <?xml:stylesheet type = "text/xsl" href = "intro.xsl"?>
7
8 <myMessage>
9 <message>Welcome to XSLT!</message>

10 </myMessage>

Fig. 12.2 Input XML document.

1 <html><body>Welcome to XSLT!</body></html>

Fig. 12.3 Internet Explorer 5 displaying the results of an XSL transformation.

Chapter 12 XSL: Extensible Stylesheet Language Transformations (XSLT) 323

Figure 12.5 lists the XSLT document that transforms the XML document of Fig. 12.4
into another XML document.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 12.4 : games.xml -->
4 <!-- Sports Database -->
5
6 <sports>
7
8 <game title = "cricket">
9 <id>243</id>

10
11 <para>
12 More popular among commonwealth nations.
13 </para>
14 </game>
15
16 <game title = "baseball">
17 <id>431</id>
18
19 <para>
20 More popular in America.
21 </para>
22 </game>
23
24 <game title = "soccer">
25 <id>123</id>
26
27 <para>
28 Most popular sport in the world.
29 </para>
30 </game>
31
32 </sports>

Fig. 12.4 XML document containing a list of sports.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 12.5 : elements.xsl -->
4 <!-- Using xsl:element and xsl:attribute -->
5
6 <xsl:stylesheet version = "1.0"
7 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
8
9 <xsl:template match = "/">

10 <xsl:apply-templates/>
11 </xsl:template>
12

Fig. 12.5 Using XSLT to create elements and attributes (part 1 of 2).

324 XSL: Extensible Stylesheet Language Transformations (XSLT) Chapter 12

Lines 9–11

<xsl:template match = "/">
 <xsl:apply-templates/>
</xsl:template>

use the match attribute to select the document root of an XML document. Recall from
Chapter 11 that the / character in an XPath expression selects the root element of an XML
document. Element apply-templates is used to apply the templates of the XSLT doc-
ument to specific nodes of an element. In this case, we have not specified any particular
nodes. By default, element apply-templates will match all the child nodes of an ele-
ment to templates. In Fig. 12.4, the child nodes of the document root are two comment
nodes and the sports element node.

The XSLT recommendation defines default templates for the nodes of an XML docu-
ment. If a programmer does not specify a template that matches a particular element, the
default XSLT template will be applied. These templates are described in Fig. 12.6.

Lines 13–17

<xsl:template match = "sports">
 <sports>
 <xsl:apply-templates/>
 </sports>
</xsl:template>

match element sports. We output the sports element and apply templates to the child
nodes of the sports element.

13 <xsl:template match = "sports">
14 <sports>
15 <xsl:apply-templates/>
16 </sports>
17 </xsl:template>
18
19 <xsl:template match = "game">
20 <xsl:element name = "{@title}">
21
22 <xsl:attribute name = "id">
23 <xsl:value-of select = "id"/>
24 </xsl:attribute>
25
26 <comment>
27 <xsl:value-of select = "para"/>
28 </comment>
29
30 </xsl:element>
31 </xsl:template>
32
33 </xsl:stylesheet>

Fig. 12.5 Using XSLT to create elements and attributes (part 2 of 2).

Chapter 12 XSL: Extensible Stylesheet Language Transformations (XSLT) 325

Line 19

<xsl:template match = "game">

matches element game. In the input XML document, element game contains the name of
a sport, its unique identifier and a description.

Line 20

<xsl:element name = "{@title}">

shows the element element, which is used to create an element, with the element name
specified in attribute name. An XPath expression in XSL is specified using curly braces
({}). Therefore, the name of this XML element will be the name of the sport contained in
attribute title of element game.

Lines 22–24

<xsl:attribute name = "id">
 <xsl:value-of select = "id"/>
</xsl:attribute>

show element attribute, which is used to create an attribute for an element. Element
attribute can be contained only within an element element. Attribute name pro-
vides the name of the attribute. The text contained in element attribute will result in the
value of the attribute. The result of this statement will create attribute id for the new ele-
ment, which contains the text in element id of element game.

Template / Description

<xsl:template match = "/ | *">

<xsl:apply-templates/>

</xsl:template>

This template matches the document root node (/) and any element nodes (*) of an XML docu-
ment and applies templates to their child nodes.

<xsl:template match = "text() | @*">
 <xsl:value-of select = "."/>
</xsl:template>
This template matches text nodes (text()) and attribute nodes (@) and outputs their values.

<xsl:template match = "processing-instruction() | comment()"/>
This template matches processing-instruction nodes (processing-instruction()) and
comment nodes (comment()), but does not perform any actions with them.

Fig. 12.6 Default XSLT templates.

326 XSL: Extensible Stylesheet Language Transformations (XSLT) Chapter 12

Lines 26–28

<comment>
 <xsl:value-of select = "para"/>
</comment>

create element comment with the contents of element para.
The Apache Group has produced the Xalan XSLT processor. In the following exam-

ples, we use Xalan with Java to perform XSL transformations on XML documents. To use
Apache Xalan to transform XML documents, set the CLASSPATH variable to point to
xalan.jar and xerces.jar. For example, assuming that Xalan and Xerces are
installed on the C: drive on a Windows machine, type

set CLASSPATH=C:\xalan\xalan.jar;C:\xalan\xerces.jar;.

From the command line, type

java org.apache.xalan.xslt.Process -INDENT 3 -IN games.xml
-XSL elements.xsl -OUT output.xml

Figure 12.7 lists the output of the transformation. Your output may not look exactly
like that in the figure, because we have modified the output in the figure for presentation.

As you can see, the original XML document has been transformed into a new XML
document with sport names as elements (instead of attributes, as in the original document).
By using XSLT, you can easily convert XML documents from one form to another.

1 <?xml version = "1.0" encoding = "UTF-8"?>
2 <sports>
3
4 <cricket id = "243">
5 <comment>
6 More popular among commonwealth nations.
7 </comment>
8 </cricket>
9

10 <baseball id = "431">
11 <comment>
12 More popular in America.
13 </comment>
14 </baseball>
15
16 <soccer id = "123">
17 <comment>
18 Most popular sport in the world.
19 </comment>
20 </soccer>
21
22 </sports>

Fig. 12.7 Output of transformation.

Chapter 12 XSL: Extensible Stylesheet Language Transformations (XSLT) 327

12.5 Iteration and Sorting
XSLT also allows for iteration through a node set returned by an XPath expression. The
node set can also be sorted. Figure 12.8 shows an XML document we introduced in Chapter
5. At the time we introduced this XML document, we briefly introduced the concept of an
XSL stylesheet. Figure 12.9 shows the XML stylesheet used to render the document.

Figure 12.9 lists an XSLT document for transforming this XML document into an
HTML document.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 12.8 : usage.xml -->
4 <!-- Usage of elements and attributes -->
5
6 <?xml:stylesheet type = "text/xsl" href = "usage.xsl"?>
7
8 <book isbn = "999-99999-9-X">
9 <title>Deitel's XML Primer</title>

10
11 <author>
12 <firstName>Paul</firstName>
13 <lastName>Deitel</lastName>
14 </author>
15
16 <chapters>
17 <preface num = "1" pages = "2">Welcome</preface>
18 <chapter num = "1" pages = "4">Easy XML</chapter>
19 <chapter num = "2" pages = "2">XML Elements?</chapter>
20 <appendix num = "1" pages = "9">Entities</appendix>
21 </chapters>
22
23 <media type = "CD"/>
24 </book>

Fig. 12.8 Book table of contents as XML .

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 12.9 : usage.xsl -->
4 <!-- Transformation of Book information into HTML -->
5
6 <xsl:stylesheet version = "1.0"
7 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
8
9 <xsl:template match = "/">

10 <html>
11 <xsl:apply-templates/>
12 </html>
13 </xsl:template>
14

Fig. 12.9 Transforming XML data into HTML (part 1 of 3).

328 XSL: Extensible Stylesheet Language Transformations (XSLT) Chapter 12

15 <xsl:template match = "book">
16 <head>
17 <title>ISBN <xsl:value-of select = "@isbn"/> -
18 <xsl:value-of select = "title"/></title>
19 </head>
20
21 <body bgcolor = "white">
22 <h1><xsl:value-of select = "title"/></h1>
23
24 <h2>by <xsl:value-of select = "author/lastName"/>,
25 <xsl:value-of select = "author/firstName"/></h2>
26
27 <table border = "1">
28 <xsl:for-each select = "chapters/preface">
29 <xsl:sort select = "@num" order = "ascending"/>
30 <tr>
31 <td align = "right">
32 Preface <xsl:value-of select = "@num"/>
33 </td>
34
35 <td>
36 <xsl:value-of select = "."/> (
37 <xsl:value-of select = "@pages"/> pages)
38 </td>
39 </tr>
40 </xsl:for-each>
41
42 <xsl:for-each select = "chapters/chapter">
43 <xsl:sort select = "@num" order = "ascending"/>
44 <tr>
45 <td align = "right">
46 Chapter <xsl:value-of select = "@num"/>
47 </td>
48
49 <td>
50 <xsl:value-of select = "."/> (
51 <xsl:value-of select = "@pages"/> pages)
52 </td>
53 </tr>
54 </xsl:for-each>
55
56 <xsl:for-each select = "chapters/appendix">
57 <xsl:sort select = "@num" order = "ascending"/>
58 <tr>
59 <td align = "right">
60 Appendix <xsl:value-of select = "@num"/>
61 </td>
62
63 <td>
64 <xsl:value-of select = "."/> (
65 <xsl:value-of select = "@pages"/> pages)
66 </td>
67 </tr>

Fig. 12.9 Transforming XML data into HTML (part 2 of 3).

Chapter 12 XSL: Extensible Stylesheet Language Transformations (XSLT) 329

Line 15

<xsl:template match = "book">

is an XSLT template that matches the book element. In this template, we construct the
body of the HTML document.

Lines 17 and 18

<title>ISBN <xsl:value-of select = "@isbn"/> -
<xsl:value-of select = "title"/></title>

create the title for the HTML document. We use the ISBN of the book from attribute isbn
and also the contents of element title to create the title string, resulting in ISBN 999-
99999-9-X - Deitel’s XML Primer.

Line 22

<h1><xsl:value-of select = "title"/></h1>

creates a header element with the title of the book, selected from element title.
Lines 24 and 25

<h2>by <xsl:value-of select = "author/lastName"/>,
<xsl:value-of select = "author/firstName"/></h2>

create another header element, displaying the author of the book. The XPath expression
author/lastName is used to select the author’s last name, and the expression au-
thor/firstName selects the author’s first name.

Line 28

<xsl:for-each select = "chapters/preface">

shows XSLT element for-each, which applies the contents of the element to each of the
nodes selected by attribute select. In this case, we select all preface elements of the
chapters element.

Line 29

<xsl:sort select = "@num" order = "ascending"/>

shows XSLT element sort, which sorts the nodes selected by the for-each element by
the field in attribute select, in the order specified in attribute order. Attribute order
has values ascending (i.e., A–Z) and descending (i.e., Z–A). For this for-each el-
ement, we sort the nodes by attribute num, in ascending order.

Lines 30–39 output a table row displaying the preface number, the title of the preface
and the number of pages in that preface for each preface element.

68 </xsl:for-each>
69 </table>
70 </body>
71 </xsl:template>
72
73 </xsl:stylesheet>

Fig. 12.9 Transforming XML data into HTML (part 3 of 3).

330 XSL: Extensible Stylesheet Language Transformations (XSLT) Chapter 12

Similarly, lines 40–51 output the chapter elements, and lines 56–68 output the
appendix elements.

We can use Xalan or IE 5 to output the resulting transformation, shown in Fig. 12.10.
Your output may look different though, because we have modified ours for presentation.

1 <html>
2 <head>
3 <title>ISBN 999-99999-9-X - Deitel's XML Primer</title>
4 </head>
5
6 <body bgcolor = "white">
7 <h1>Deitel's XML Primer</h1>
8 <h2>by Deitel, Paul</h2>
9

10 <table border = "1">
11 <tr>
12 <td align = "right">Preface 1</td>
13 <td>Welcome (2 pages)</td>
14 </tr>
15
16 <tr>
17 <td align = "right">Chapter 1</td>
18 <td>Easy XML (4 pages)</td>
19 </tr>
20
21 <tr>
22 <td align = "right">Chapter 2</td>
23 <td>XML Elements? (2 pages)</td>
24 </tr>
25
26 <tr>
27 <td align = "right">Appendix 1</td>
28 <td>Entities (9 pages)</td>
29 </tr>
30 </table>
31 </body>
32
33 </html>

Fig. 12.10 Output of the transformation .

Chapter 12 XSL: Extensible Stylesheet Language Transformations (XSLT) 331

12.6 Conditional Processing
In the previous section, we discussed iteration of a node set. XSLT also provides elements
to perform conditional processing, such as if statements. Figure 12.11 provides an XSLT
document used to transform the day planner created in previous chapters into an HTML
document.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 12.11 : conditional.xsl -->
4 <!-- xsl:choose, xsl:when, and xsl:otherwise -->
5
6 <xsl:stylesheet version = "1.0"
7 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
8
9 <xsl:template match = "/">

10 <html>
11
12 <body>
13 Appointments
14

15 <xsl:apply-templates select = "planner/year"/>
16 </body>
17
18 </html>
19 </xsl:template>
20
21 <xsl:template match = "year">
22 Year:
23 <xsl:value-of select = "@value"/>
24

25 <xsl:for-each select = "date/note">
26 <xsl:sort select = "../@day" order = "ascending"
27 data-type = "number"/>
28
29 Day:
30 <xsl:value-of select = "../@day"/>/
31 <xsl:value-of select = "../@month"/>
32
33
34 <xsl:choose>
35
36 <xsl:when test =
37 "@time > '0500' and @time < '1200'">
38 Morning (<xsl:value-of select = "@time"/>):
39 </xsl:when>
40
41 <xsl:when test =
42 "@time > '1200' and @time < '1700'">
43 Afternoon (<xsl:value-of select = "@time"/>):
44 </xsl:when>
45

Fig. 12.11 Using conditional elements (part 1 of 2).

332 XSL: Extensible Stylesheet Language Transformations (XSLT) Chapter 12

XSLT provides the choose element (lines 34–60) to allow alternate conditional state-
ments, similar to a switch statement in C++ or Java. Element choose allows child ele-
ments when and otherwise.

46 <xsl:when test =
47 "@time > '1200' and @time < '1700'">
48 Evening (<xsl:value-of select = "@time"/>):
49 </xsl:when>
50
51 <xsl:when test =
52 "@time > '1200' and @time < '1700'">
53 Night (<xsl:value-of select = "@time"/>):
54 </xsl:when>
55
56 <xsl:otherwise>
57 Entire day:
58 </xsl:otherwise>
59
60 </xsl:choose>
61
62 <xsl:value-of select = "."/>
63
64 <xsl:if test = ". = ''">
65 n/a
66 </xsl:if>
67
68

69 </xsl:for-each>
70
71 </xsl:template>
72
73 </xsl:stylesheet>

Fig. 12.11 Using conditional elements (part 2 of 2).

Chapter 12 XSL: Extensible Stylesheet Language Transformations (XSLT) 333

Lines 36–39

<xsl:when test =
"@time > '0500' and @time < '1200'">
Morning (<xsl:value-of select = "@time"/>):

</xsl:when>

show one when conditional of the choose element. Attribute test provides the condi-
tional statement to be tested. The when element stops after the first true result. The con-
tents of element when are used if the condition is met. In this element, we test if attribute
time of element note has a value greater than 0500 and less than 1200.

Lines 56–58

<xsl:otherwise>
Entire day:

</xsl:otherwise>

show the otherwise condition of the choose element. Element otherwise is option-
al, but if included, it must occur only once, after all when elements. This element is used
if no when elements have been matched.

Lines 64–66

<xsl:if test = ". = ''">
n/a

</xsl:if>

show the if conditional statement. Unlike element choose, element if is used to provide
a single conditional test, in attribute test.

12.7 Copying Nodes
Instead of providing a template for each element of an XML document, XSLT provides an
element to duplicate nodes from the source tree into the result tree. The XSLT element
copy is used to produce a copy of the context node and place it in the result tree. An ex-
ample using element copy is provided in Fig. 12.12.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 12.12: copyIntro.xsl -->
4 <!-- xsl:copy example using Intro.xml -->
5
6 <xsl:stylesheet version = "1.0"
7 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
8
9 <xsl:template match = "myMessage">

10
11 <xsl:copy>
12 <xsl:apply-templates/>
13 </xsl:copy>
14

Fig. 12.12 Using the XSLT element copy (part 1 of 2).

334 XSL: Extensible Stylesheet Language Transformations (XSLT) Chapter 12

Lines 11–13

<xsl:copy>
 <xsl:apply-templates/>
</xsl:copy>

show element copy. Element copy produces a duplicate of the context node in the result
tree. Any child nodes or attributes are not duplicated. If element copy contains children,
they are processed after the copy has been performed. In this case, we apply templates to
the child nodes of the element.

Lines 19–21

<xsl:copy>
 How about 'Hi World' for a change!
</xsl:copy>

show element copy, but in this case we replace the content of the element with text.
The result of the transformation on intro.xml from Fig. 12.2 is shown in Fig. 12.13.
If lines 19–21 of Fig. 12.12 were changed to

<xsl:copy/>

the transformation would result in an empty message element, because this uses an empty
xsl:copy element.

Figure 12.14 demonstrates element copy-of, which performs a copy of the subtree,
starting with the selected node.

15 </xsl:template>
16
17 <xsl:template match = "message">
18
19 <xsl:copy>
20 How about 'Hi World' for a change!
21 </xsl:copy>
22
23 </xsl:template>
24
25 </xsl:stylesheet>

Fig. 12.12 Using the XSLT element copy (part 2 of 2).

1 <?xml version = "1.0" encoding = "UTF-8"?>
2 <myMessage>
3 <message>
4 How about 'Hi World' for a change!
5 </message>
6 </myMessage>

Fig. 12.13 Resulting transformation.

Chapter 12 XSL: Extensible Stylesheet Language Transformations (XSLT) 335

Lines 11–13

<xsl:comment>
 The following XML tree has been copied into output.
</xsl:comment>

create a comment in the resulting XML document.
Line 15

<xsl:copy-of select = "."/>

duplicates the nodes selected by attribute select into the output. Unlike element copy,
element copy-of duplicates all children (i.e., text, processing instructions, comments,
etc.) and attributes of the node.

Figure 12.15 shows the output of the transformation applied to intro.xml from Fig.
12.2.

12.8 Combining Stylesheets
XSLT allows for modularity in stylesheets. This feature enables XSLT documents to im-
port other XSLT documents. Figure 12.16 lists an XSLT document that is imported into the
XSLT document in Fig. 12.17 using element import.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 12.14 : usingCopyOf.xsl -->
4 <!-- xsl:copy-of example using intro.xml -->
5
6 <xsl:stylesheet version = "1.0"
7 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
8
9 <xsl:template match = "myMessage">

10
11 <xsl:comment>
12 The following XML tree has been copied into output.
13 </xsl:comment>
14
15 <xsl:copy-of select = "."/>
16 </xsl:template>
17
18 </xsl:stylesheet>

Fig. 12.14 xsl:copy-of element.

1 <?xml version = "1.0" encoding = "UTF-8"?>
2 <!-- The following XML tree has been copied into output. -->
3 <myMessage>
4 <message>Welcome to XSLT!</message>
5 </myMessage>

Fig. 12.15 Ouput of the copy-of transformation.

336 XSL: Extensible Stylesheet Language Transformations (XSLT) Chapter 12

Line 33

<xsl:template match = "*|text()"/>

provides a template to match any text and leftover element nodes.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 12.16 : usage2.xsl -->
4 <!-- xsl:import example -->
5
6 <xsl:stylesheet version = "1.0"
7 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
8
9 <xsl:template match = "book">

10 <html>
11
12 <body>
13 <xsl:apply-templates/>
14 </body>
15 </html>
16
17 </xsl:template>
18
19 <xsl:template match = "title">
20 <xsl:value-of select = "."/>
21 </xsl:template>
22
23 <xsl:template match = "author">
24

25
26 <p>Author:
27 <xsl:value-of select = "lastName"/>,
28 <xsl:value-of select = "firstName"/>
29 </p>
30
31 </xsl:template>
32
33 <xsl:template match = "*|text()"/>
34
35 </xsl:stylesheet>

Fig. 12.16 XSLT document being imported .

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 12.17 : usage1.xsl -->
4 <!-- xsl:import example using usage.xml -->
5
6 <xsl:stylesheet version = "1.0"
7 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
8

Fig. 12.17 Importing another XSLT document (part 1 of 2).

Chapter 12 XSL: Extensible Stylesheet Language Transformations (XSLT) 337

Line 9

<xsl:import href = "usage2.xsl"/>

uses element import to use the templates defined in the XSLT document referenced by
attribute href.

Common Programming Error 12.1
The value of the href attribute in an import element must reference a local XSL docu-
ment. Referencing a remote XSL document is an error. 12.1

Line 13 provides a template for element title, which has already been defined in the
XSLT document being imported. This local template has higher precedence than the
imported template, so it is used instead of the imported template.

Figure 12.18 shows the transformed document usage.xml (Fig. 12.8). Figure 12.19
shows an example of the XSLT element include, which includes other XSLT documents
in the current XSLT document. Lines 28 and 29

<xsl:include href = "author.xsl"/>
<xsl:include href = "chapters.xsl"/>

show element include, which includes the files referenced by attribute href. The dif-
ference between element include and element import is that templates included using
element include have the same precedence as the local templates. Therefore, if any tem-
plates are duplicated, the template that occurs last is used.

9 <xsl:import href = "usage2.xsl"/>
10
11 <!-- This template has higher precedence over the
12 templates being imported -->
13 <xsl:template match = "title">
14
15 <h2>
16 <xsl:value-of select = "."/>
17 </h2>
18
19 </xsl:template>
20
21 </xsl:stylesheet>

Fig. 12.17 Importing another XSLT document (part 2 of 2).

1 <html>
2 <body>
3 <h2>Deitel's XML Primer</h2>
4

5 <p>
6 Author: Deitel, Paul
7 </p>
8 </body>
9 </html>

Fig. 12.18 Resulting HTML document using XSLT import.

338 XSL: Extensible Stylesheet Language Transformations (XSLT) Chapter 12

Figure 12.20 and 12.21 list the XSLT documents being included by Fig. 12.19.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 12.19 : book.xsl -->
4 <!-- xsl:include example using usage.xml -->
5
6 <xsl:stylesheet version = "1.0"
7 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
8
9 <xsl:template match = "/">

10
11 <html>
12 <body>
13 <xsl:apply-templates select = "book"/>
14 </body>
15 </html>
16
17 </xsl:template>
18
19 <xsl:template match = "book">
20
21 <h2>
22 <xsl:value-of select = "title"/>
23 </h2>
24
25 <xsl:apply-templates/>
26 </xsl:template>
27
28 <xsl:include href = "author.xsl"/>
29 <xsl:include href = "chapters.xsl"/>
30
31 <xsl:template match = "*|text()"/>
32
33 </xsl:stylesheet>

Fig. 12.19 Combining stylesheets using xsl:include.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 12.20 : author.xsl -->
4 <!-- xsl:include example using usage.xml -->
5
6 <xsl:stylesheet version = "1.0"
7 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
8
9 <xsl:template match = "author">

10
11 <p>Author:
12 <xsl:value-of select = "lastName"/>,
13 <xsl:value-of select = "firstName"/>
14 </p>

Fig. 12.20 XSLT document for rendering the author’s name (part 1 of 2).

Chapter 12 XSL: Extensible Stylesheet Language Transformations (XSLT) 339

The result of the XSLT document (Fig. 12.19) applied to the XML document
describing a book (Fig. 12.8) is shown in Fig. 12.22.

15
16 </xsl:template>
17
18 </xsl:stylesheet>

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 12.21 : chapters.xsl -->
4 <!-- xsl:include example using usage.xml -->
5
6 <xsl:stylesheet version = "1.0"
7 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
8
9 <xsl:template match = "chapters">

10 Chapters:
11
12
13 <xsl:apply-templates select = "chapter"/>
14
15 </xsl:template>
16
17 <xsl:template match = "chapter">
18
19
20 <xsl:value-of select = "."/>
21
22
23 </xsl:template>
24
25 </xsl:stylesheet>

Fig. 12.21 XSLT document for rendering chapter names.

1 <html>
2 <body>
3 <h2>Deitel’s XML Primer</h2>
4 <p>Author:
5 Deitel, Paul</p>
6
7 Chapters:
8
9 Easy XML

10 XML Elements?
11
12 </body>
13 </html>

Fig. 12.22 Output of an XSLT document using element include (part 1 of 2).

Fig. 12.20 XSLT document for rendering the author’s name (part 2 of 2).

340 XSL: Extensible Stylesheet Language Transformations (XSLT) Chapter 12

12.9 Variables
XSLT also provides the ability to keep variables for the processing of information. Figure
12.23 provides an example of an XSLT document using element variable.

Lines 13 and 14

<xsl:variable name = "sum"
 select = "sum(book/chapters/*/@pages)"/>

create element variable with attribute name of sum, for storing the sum of the number
of pages in the book. Attribute select has value sum(book/chapters/*/@pages),
which is an XPath expression summing up the number of pages attributes of the elements
in element chapters.

Fig. 12.22 Output of an XSLT document using element include (part 2 of 2).

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 12.23 : variables.xsl -->
4 <!-- using xsl:variables -->
5
6 <xsl:stylesheet version = "1.0"
7 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
8
9 <xsl:template match = "/">

10
11 <total>
12 Number of pages =
13 <xsl:variable name = "sum"
14 select = "sum(book/chapters/*/@pages)"/>
15 <xsl:value-of select = "$sum"/>
16 </total>
17
18 </xsl:template>
19
20 </xsl:stylesheet>

Fig. 12.23 Example for xsl:variable.

Chapter 12 XSL: Extensible Stylesheet Language Transformations (XSLT) 341

Line 15

<xsl:value-of select = "$sum"/>

uses element value-of to output the variable sum by using the dollar sign ($) to refer-
ence the variable. The value-of element can also be used to output the value of an ele-
ment or attribute.

Figure 12.24 shows the output of the XSLT document in Fig. 12.23 applied to the book
XML document in Fig. 12.8.

The XPath expression calculated the sum of the number of pages in each preface,
chapter and appendix, which is 17 for the document in Fig. 12.8.

12.10 Case Study: XSLT and XPath
XPath and XSL are intimately related. The examples in this chapter used simple XPath ex-
pressions to locate elements, attributes and text in XML documents. In this section, we
present a more substantial example that uses more complex XPath expressions.

Figure 12.25 marks up information about Deitel & Associates, Inc.’s complete training
course and Web-based training products. The document contains root element product,
which has three child elements: completeTrainingCourses, books and web-
BasedTraining. Each completeTrainingCourse element contains a title,
book and cd. Element books contains book elements, and webBasedTraining con-
tains subject elements.

1 <?xml version = "1.0" encoding = "UTF-8"?>
2 <total>Number of pages = 17</total>

Fig. 12.24 Ouput of transformation.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 12.25: axes.xml -->
4
5 <product>
6
7 <completeTrainingCourses>
8
9 <completeTrainingCourse>

10
11 <title>
12 The Complete C++ Training Course: Third Edition
13 </title>
14
15 <book>
16 C++ How to Program: Third Edition
17 </book>

Fig. 12.25 XML document containing information about complete training courses
and Web-based training (part 1 of 2).

342 XSL: Extensible Stylesheet Language Transformations (XSLT) Chapter 12

The XSL stylesheet in Fig. 12.26 uses a number of different XPath expressions to
locate parts of the original XML document. The result of applying this stylesheet to the
XML document in Fig. 12.25 is shown in Fig. 12.27.

18
19 <cd>
20 C++ Multimedia Cyber Classroom: Third Edition
21 </cd>
22
23 </completeTrainingCourse>
24
25 <completeTrainingCourse>
26
27 <title>
28 The Complete Java 2 Training Course: Third Edition
29 </title>
30
31 <book>
32 Java How to Program: Third Edition
33 </book>
34
35 <cd>
36 Java Multimedia Cyber Classroom: Third Edition
37 </cd>
38
39 </completeTrainingCourse>
40
41 <completeTrainingCourse>
42 <title>The Complete XML Training Course</title>
43 <book>XML How to Program</book>
44 <cd>XML Multimedia Cyber Classroom</cd>
45 </completeTrainingCourse>
46
47 </completeTrainingCourses>
48
49 <books>
50
51 <book>
52 Getting Started with Microsoft Visual C++
53 6 with an Introduction to MFC
54 </book>
55
56 <book>C How to Program</book>
57 </books>
58
59 <webBasedTraining>
60 <subject>Introduction to Java programming</subject>
61 <subject>Advanced C++ programming</subject>
62 <subject>Programming COM+ with Visual Basic</subject>
63 </webBasedTraining>
64
65 </product>

Fig. 12.25 XML document containing information about complete training courses
and Web-based training (part 2 of 2).

Chapter 12 XSL: Extensible Stylesheet Language Transformations (XSLT) 343

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 12.26 : axes.xsl -->
4 <!-- XSLT document using XPath -->
5
6 <xsl:stylesheet version = "1.0"
7 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
8
9 <xsl:template match = "/product">

10
11 <html>
12
13 <head>
14 <title>Axes example</title>
15
16 <style type = "text/css">
17 .node { font-family: monospace;
18 font-weight: bold; }
19 </style>
20 </head>
21
22 <body>
23 Decendents of
24
25 completeTrainingCourse are:
26
27 <xsl:apply-templates select =
28 "completeTrainingCourses//node()"/>
29

30
31 Self for
32 webBasedTraining is
33
34 <xsl:apply-templates
35 select = "webBasedTraining"/>
36

37
38 Parent of
39 C How to Program is
40
41
42 <!-- returns the name of the parent element -->
43 <xsl:value-of select =
44 "name(//parent::node()[. = 'C How to Program'])"/>
45
46
47

48
49 Child of
50 title
51 element for the second
52

Fig. 12.26 XSL stylesheet for transforming axes.xml into HTML.

344 XSL: Extensible Stylesheet Language Transformations (XSLT) Chapter 12

53 completeTrainingCourse is
54
55
56 <xsl:value-of select =
57 "//child::completeTrainingCourse[2]/title"/>
58
59
60

61
62 Is product
63
64 the ancestor of
65 XML How to Program?
66
67 <xsl:if test = "name(//node()[. =
68 'XML How to Program']/ancestor::product) = 'product'">
69 Yes
70 </xsl:if>
71
72

73
74 First subject preceding
75
76
77 Programming COM+ with Visual Basic
78 is
79
80
81 <xsl:value-of select =
82 "//subject[. = 'Programming COM+ with Visual Basic'
83]/preceding-sibling::subject[1]"/>
84
85
86

87
88 First subject following
89
90
91 Introduction to Java programming
92 is
93
94
95 <xsl:value-of select =
96 "//subject[. = 'Introduction to Java programming'
97]/following-sibling::subject[1]"/>
98
99
100 </body>
101
102 </html>
103
104 </xsl:template>
105

Fig. 12.26 XSL stylesheet for transforming axes.xml into HTML.

Chapter 12 XSL: Extensible Stylesheet Language Transformations (XSLT) 345

Fig. 12.27 HTML page generated by transforming axes.xml with axes.xsl.

106 <xsl:template match = "completeTrainingCourse">
107

108 <xsl:value-of select = "title"/>
109 <xsl:value-of select = "book"/>
110 <xsl:value-of select = "cd"/>
111 </xsl:template>
112
113 <xsl:template match = "webBasedTraining">
114 <xsl:value-of select = "subject"/>
115 </xsl:template>
116
117 <xsl:template match = "* | text()"/>
118
119 </xsl:stylesheet>

Fig. 12.26 XSL stylesheet for transforming axes.xml into HTML.

346 XSL: Extensible Stylesheet Language Transformations (XSLT) Chapter 12

On line 9, we use the location path /product to select all product children of the
root node. In this case, this location path selects the product element node on lines 5–65
of axes.xml (Fig. 12.25). On line 27, there is an XSL element named xsl:apply-
templates. This XSL element contains the location path completeTraining-
Courses//node() in its select attribute (line 28). This location path selects the set
of all nodes that are descendents of completeTrainingCourses elements. This set
of nodes matches the location path defined in the match attribute of the xsl:template
element on line 106–111. When the xsl:apply-templates element selects a set of
nodes that match the location path of the xsl:template element’s match attribute, the
contents of the xsl:template element are applied to each node in the selected set in
document order. In this case, lines 108–110 retrieve the string-values for the title, book
and cd elements, respectively, and add them to an HTML unordered list. The elements of
this unordered list then become elements in the resulting HTML document. On lines 34 and
35, we have another xsl:apply-templates element, with the location path web-
BasedTraining. This matches the xsl:template on lines 113–115. This template
adds the string-values for webBasedTraining nodes to the resulting HTML document.

On lines 43 and 44, the xsl:value-of element with the location path

name(//parent::node()[. = 'C How to Program'])

retrieves the parent node of any node in the XML document whose string-value equals the
string 'C How to Program'. The xsl:value-of element then adds the string-value
of the resulting node to the HTML document. On lines 56 and 57, the xsl:value-of
element uses the location path

//child::completeTrainingCourse[2]/title

which selects the title element node of the second completeTrainingCourse el-
ement in the document and adds its string-value to the resulting HTML document.

On lines 67–70, we use an xsl:if element with the XPath expression

name(//node()[. = 'XML How to Program']/ancestor::product) =
'product'

to determine if the product element is an ancestor of the node whose string-value is XML
How to Program. If this XPath expression evaluates to true, then the HTML element
on line 69 is included in the resulting HTML document.

The xsl:value-of element on lines 81–83 uses the location path

//subject[. = 'Programming COM+ with Visual Basic']/preced-
ing-sibling::subject[1]

to add the string-value of the subject element on line 61 of axes.xml to the resulting
HTML document. The first location step of this location path selects the subject element
with the string-value Programming COM+ with Visual Basic. The second step uses the
preceding-sibling axis to select the subject element from the first sibling. Recall
that the preceding-sibling axis is a reverse axis, so the nodes it selects are in reverse
document order. Therefore this location path selects the subject node that corresponds
to line 61 of axes.xml.

Chapter 12 XSL: Extensible Stylesheet Language Transformations (XSLT) 347

Lines 95–97 use another xsl:value-of element, with the location path

//subject[. = 'Introduction to Java programming']/following-
sibling::subject[1]

The first location step of this location path selects the subject element node whose
string-value is Introduction to Java programming. The second location step
selects the first subject element in document order on the following-sibling axis.
The resulting HTML page is shown in Fig. 12.27.

12.11 Internet and World Wide Web Resources
www.w3.org/Style/XSL
The W3C Extensible Style Language Web site.

www.w3.org/TR/xsl
The most current W3C XSL Specification.

www.w3schools.com/xsl
This site features an XSL tutorial, along with a list of links and resources.

www.dpawson.co.uk/xsl/xslfaq.html
A comprehensive collection of XSL FAQs.

www.xml101.com/examples/default.asp
A collection of XSL examples, located on XML101.com (IE5+ required).

www.bayes.co.uk/xml/index.xml
A portal site written entirely using XML and XSL.

msdn.microsoft.com/xml
Microsoft Developer Network XML Home page, which provides information on XML and XML-re-
lated technologies, such as XSL/XSLT.

xml.apache.org/xalan
Home page for Apache’s XSLT processor Xalan.

www.jclark.com/xml/xt.html
Home page for XT, an implementation of XSLT in Java.

SUMMARY
• The Extensible Stylesheet Language (XSL) is used to format XML documents and consists of two

parts—XSLT and XSL formatting objects.

• XSL Transformation Language (XSLT) transforms XML documents into other text-based docu-
ments using XSL format instructions. XSLT uses XPath to match nodes when transforming an
XML document into a different document. The resulting document may be XML, HTML, plain
text or any other text-based document.

• To process XSLT documents, an XSLT processor is required. Examples of XSLT processors in-
clude msxml in Microsoft Internet Explorer 5 and Apache’s Xalan.

• An XSLT document is an XML document with a root element xsl:stylesheet. Attribute
version defines the XSLT specification used.

• An XSLT document’s namespace URI is http://www.w3.org/1999/XSL/Transform.

• A template element matches specific XML document nodes by using an XPath expression in
attribute match.

348 XSL: Extensible Stylesheet Language Transformations (XSLT) Chapter 12

• Element stylesheet associates a stylesheet to an XML document. Attribute type defines the
file type (i.e., text/xsl, which denotes an XSL document, and text/css, which denotes a
CSS document). Attribute href specifies the file.

• Element apply-templates applies an XSLT document’s templates to specific element nodes.
By default, element apply-templates matches all element child nodes.

• The XSLT specification defines default templates for an XML document’s nodes. The template

<xsl:template match = "/ | *">
<xsl:apply-templates/>

</xsl:template>

matches the document root node and any element nodes of an XML document and applies tem-
plates to their child nodes. The template

<xsl:template match = "text() | @*">
 <xsl:value-of select = "."/>
</xsl:template>

matches text nodes and attribute nodes and outputs their values.

<xsl:template match ="processing-instruction() | comment()"/>

This template matches processing-instruction nodes and comment nodes, but does not perform any
actions with them.

• Element element creates an element with the name specified in attribute name.

• An XPath expression is specified using curly braces ({}).

• Element attribute creates an attribute for an element and can be contained only within an el-
ement element. Attribute name provides the name of the attribute.

• XSLT provides the capability to iterate through a node set returned by an XPath expression. XSLT
also provides the capability to sort a node set.

• XSLT element for-each applies the element’s contents to each of the nodes specified by at-
tribute select.

• Element sort sorts (in the order specified by attribute order) the nodes specified in attribute
select. Attribute order has values ascending (i.e., A–Z) and descending (i.e., Z–A).

• XSLT provides elements to perform conditional processing.

• Element choose allows alternate conditional statements to be processed. Element choose al-
lows child elements when and otherwise. Attribute test provides the conditional statement
to be tested. The contents of element when are used if the condition is met. Element otherwise
is optional, but, if included, must occur only once, after all when elements. This element is used
when no when elements have been matched.

• Instead of providing a template for each element of an XML document, XSLT provides an element
to duplicate nodes. The XSLT element copy is used to copy only the context node.

• Children and attributes are not duplicated. If element copy has content, the content is processed
after the copy has been performed.

• Element copy-of duplicates all children (i.e., text, processing instructions, comments, etc.) and
attributes of the node.

• XSLT allows for modularity in stylesheets. This feature allows XSLT documents to import other
XSLT documents by using element import. Other XSLT document are referenced using at-
tribute href.

Chapter 12 XSL: Extensible Stylesheet Language Transformations (XSLT) 349

• Local templates have higher precedence than imported templates. XSLT element include in-
cludes other XSLT documents in the current XSLT document.

• The difference between element include and element import is that templates included using
element include have the same precedence as the local templates. Therefore, if any templates
are duplicated, the template that occurs last is used.

TERMINOLOGY

SELF-REVIEW EXERCISES
12.1 State whether the following are true or false. If false, explain why.

a) XSLT uses XLink to match nodes for transforming an XML document into a different
document.

b) In its most current specification, XSLT does not allow for iteration through a node set
returned by an XPath expression.

c) By using XSLT, XML documents can easily be converted between formats.
d) Like element choose, element if is used to provide a single conditional test.
e) XSLT allows for modularity in style sheets, which enables XSLT documents to import

other XSLT documents.
f) The document resulting from an XSLT transformation may be in the format of an XML

document, HTML/plain text or any other text-based document.
g) Instead of providing a template for each element of an XML document, XSLT provides

an element to duplicate nodes.
h) XSLT provides no default templates for the nodes of an XML document; all templates

must be custom built by the programmer.
i) XSLT provides elements to perform conditional processing, such as if statements.
j) One of the shortcomings of XSLT is that it does not provide variables.

alternate conditional statements element import
ascending element include
attribute href element otherwise
attribute match element sort
attribute name element value-of
attribute num element variable
attribute order element when
attribute select Extensible Stylesheet Language (XSL)
attribute test
attribute type

http://www.w3.org/1999/XSL/Trans-
form URI

attribute version if conditional statement
Cascading Style Sheets (CSS) otherwise condition
choose element root element stylesheet
CLASSPATH environment variable template element
conditional processing text/css
descending text/xsl
element apply-templates text-based document
element attribute when conditional
element comment XSL (Extensible Stylesheet Language)
element copy XSL document
element copy-of XSL Transformation Language (XSLT)
element element XSLT (XSL Transformation Language)
element for-each XSLT processor
element if

350 XSL: Extensible Stylesheet Language Transformations (XSLT) Chapter 12

12.2 Fill in the blanks in each of the following statements.
a) Attribute is used to define the XSLT specification that is being used.
b) An XSLT document is an XML document with a root element .
c) XSLT provides the element to allow alternate conditional statements.
d) The XSLT element copy is used to copy only the node, not duplicate nodes.
e) XSLT stands for the XSL Language.
f) Templates of an XSLT document can be applied to specific nodes of an element by using

element .
g) The template element is used to match specific of an XML document.
h) The two valid values for attribute type are and .
i) Attribute has values ascending and descending.
j) Element includes other XSLT documents in the current XSLT document.

ANSWERS TO SELF-REVIEW EXERCISES
12.1 a) False. XSLT uses XPath to match nodes for transforming an XML document into a dif-
ferent document. b) False. XSLT allows for iteration through a node set returned by an XPath expres-
sion. c) True. d) False. Unlike element choose, element if is used to provide a single conditional
test. e) True. f) True. g) True. h) False. XSLT provides several default templates for the nodes of an
XML document. i) True. j) False. XSLT provides the ability to keep variables for the processing of
information.

12.2 a) version. b) stylesheet. c) choose. d) context. e) Transformation.
f) apply-templates. g) nodes. h) text/xsl, text/css. i) order. j) include.

EXERCISES
12.3 Write an XSLT document that would transform the XML document in Fig. 12.28 into the
XML document Fig. 12.29.

1 <?xml version = "1.0"?>
2
3 <!-- Fig 12.28: xmlProducts.xml -->
4
5 <products>
6 <product unitPrice = "100" id = "A12">
7 <name>XML parser</name>
8 </product>
9

10 <product unitPrice = "50" id = "A14">
11 <name>XML editor</name>
12 </product>
13
14 <product unitPrice = "200" id = "A15">
15 <name>XML toolkit</name>
16 </product>
17 </products>

Fig. 12.28 XML document listing products.

Chapter 12 XSL: Extensible Stylesheet Language Transformations (XSLT) 351

12.4 Write an XSLT document that transforms the XML document in Fig. 12.29 back to the XML
document in Fig. 12.28.

12.5 For planner.xml in Chapter 6, write an XSLT document that would sort year elements
by attribute value (ascending), date elements by attribute month (ascending) and attribute day
(ascending) and note elements by attribute time (ascending). The output should have the same
structure as the original document.

12.6 Write an XSLT document that transforms games.xml (Fig. 12.4) by adding attribute in-
dex for each game element. The value of attribute index should be its position among game ele-
ments. [Hint: Use XSLT element number, which outputs the position of the node that is specified in
attribute count.]

12.7 Write an XSLT document to transform planner.xml from Chapter 5 into an HTML doc-
ument that displays the schedules in a table. Each row should consist of a year, month, date and time.
Sort the columns as in Exercise 12.5.

12.8 Write an XSLT document to transform planner.xml from Chapter 5 into the structure
shown in Fig. 12.30.

1 <?xml version = "1.0" encoding = "UTF-8"?>
2
3 <!-- Fig 12.29 : xmlProducts2.xml -->
4
5 <products>
6 <product>
7 <unitPrice>100</unitPrice>
8 <id>A12</id>
9 <name>XML parser</name>

10 </product>
11
12 <product>
13 <unitPrice>50</unitPrice>
14 <id>A14</id>
15 <name>XML editor</name>
16 </product>
17
18 <product>
19 <unitPrice>200</unitPrice>
20 <id>A15</id>
21 <name>XML toolkit</name>
22 </product>
23 </products>

Fig. 12.29 Transformed XML document.

1 <?xml version = "1.0" encoding = "UTF-8" ?>
2 <planner>
3
4 <note year = "2001" month = "5" day = "15" time = "1620">
5 Physics class at BH291C
6 </note>
7

Fig. 12.30 Document for Exercise 12.8 (part 1 of 2).

352 XSL: Extensible Stylesheet Language Transformations (XSLT) Chapter 12

8 <note year = "2001" month = "5" day = "15" time = "1430">
9 Doctor's appointment

10 </note>
11
12 <note year = "2001" month = "7" day = "4">
13 Independance Day
14 </note>
15
16 <note year = "2001" month = "8" day = "20" time = "0900">
17 General Meeting in room 32-A
18 </note>
19
20 </planner>

Fig. 12.30 Document for Exercise 12.8 (part 2 of 2).

13
XSL: Extensible

Stylesheet Language
Formatting Objects

Objectives
• To become familiar with XSL formatting objects.
• To be able to use XSL Transformations to generate

XSL documents.
• To be able to mark up a document with XSL

formatting objects.
• To be able to use Apache’s FOP processor to

transform XSL documents.
Vigorous writing is concise. A sentence should contain no
unnecessary words, a paragraph no unnecessary sentences.
William Strunk, Jr.

I have made this letter longer than usual, because I lack the
time to make it short.
Blaise Pascal

354 XSL: Extensible Stylesheet Language Formatting Objects Chapter 13

13.1 Introduction
An XSL stylesheet can be used to transform an XML document into a variety of formats
(Fig. 13.1). In Chapter 12, we used XSLT to transform XML documents into HTML, which
is perhaps the most common use of XSLT. In this chapter, we introduce another aspect of
XSL—called formatting objects—used to format XML documents for presentation. For-
matting objects constitute the vast majority of XSL features. We present only a small subset
of formatting-object features in this chapter. The latest XSL Working Draft can be found
at www.w3.org/TR/xsl.

Fig. 13.1 Using XSL to transform XML into a variety of formats.

Formatting objects are typically used when the result of a transformation is for print
media (e.g., books, magazines, etc.). An XML document is transformed into an XSL doc-
ument that marks up the data using formatting objects. This XSL document can then be
transformed into other formats, including Portable Document Format (PDF), a portable,
proprietary format created by Adobe; a Microsoft Word document; etc.

Outline
13.1 Introduction
13.2 Setup
13.3 Examples of XSL Formatting-object Documents
13.4 Lists
13.5 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises •
Exercises

XML
document

CSS
document

HTML
document

XSL
document

XML
document

etc.

Chapter 13 XSL: Extensible Stylesheet Language Formatting Objects 355

In this chapter, we present several examples that use Apache’s Java-based tool FOP to
transform XSL documents containing formatting objects (which we call “XSL formatting-
object documents”) into PDF documents. Apache FOP implements only a small subset of
the available formatting-object elements, but full support for the Working Draft is expected
in the near future. [Note: RenderX’s XEP is another major tool (or processor) for trans-
forming XSL documents containing formatting objects. A trial version of XEP can be
downloaded from www.renderx.com.]

13.2 Setup
In this section, we describe the software necessary to execute the chapter examples. The
following software is required:

1. Java 2 Standard Edition. Download and install the Java 2 Standard Edition from
www.java.sun.com/j2se.

2. FOP requires a Java parser. In this chapter we use Apache’s Xerces parser to run
FOP. Apache’s Xerces parser for Java can be downloaded from
xml.apache.org/xerces-j.

3. Apache Xalan XSLT processor. Xalan can be downloaded free of charge from
xml.apache.org/xalan.

4. Apache FOP. We use the Java-based version available at xml.apache.org/
fop.

5. Chapter 13 examples. Copy them from the CD-ROM that accompanies this book
to your machine. Our convention is to give XSL formatting objects documents the
file extension .fo. Because these files are XML documents, they can have other
extension (e.g., .xsl, .xml, etc.) as well.

13.3 Examples of XSL Formatting-object Documents
Figure 13.2 shows an XSL document that contains a formatted description of Deitel & As-
sociates, Inc. Formatting objects describe the physical page dimensions, fonts, etc.
Apache’s FOP is used to transform the document into PDF form. [Note: This XSL format-
ting-object document typically would not be written by a document author, but would be
created from an XSL transformation. For simplicity, we simply show the document.]

To generate a PDF document from this XSL formatting-object document, type

java org.apache.fop.apps.CommandLine welcome.fo welcome.pdf

at the command line to transform welcome.fo (Fig. 13.2) to PDF form (wel-
come.pdf). The CLASSPATH variable must be set for the CommandLine application
(i.e., FOP) and Xalan. In case you do not wish to execute this example, we have provided
welcome.pdf in the Chapter 13 examples directory. To open the PDF file created for
viewing, Adobe® Acrobat Reader™ is required. Adobe Acrobat Reader is available for
download free of charge from www.adobe.com.

Apache FOP also provides an alternative to Acrobat Reader—Apache’s FO viewer
application—for viewing the XSL formatting object-document. To view the results of the
transformation, type

356 XSL: Extensible Stylesheet Language Formatting Objects Chapter 13

java org.apache.fop.apps.AWTCommandLine welcome.fo

at the command line. The CLASSPATH for AWTCommandLine (i.e., Apache’s FO view-
er) must be set. Line 6

<fo:root xmlns:fo = "http://www.w3.org/1999/XSL/Format">

defines root element fo:root and namespace prefix fo with the URI http://
www.w3.org/1999/XSL/Format. Element fo:root is a container element only; it
does not affect the document’s format.

In publishing, page masters define a page’s layout (e.g., its margins, headers, footers,
etc.). Page masters provide the document author with the flexibility of changing the docu-
ment’s format on a page-by-page basis. Lines 8–11

<fo:layout-master-set>

 <fo:simple-page-master master-name = "layout1"
 page-height = "4in">

use container element fo:layout-master-set to group the document’s page masters
(i.e., page templates). To create a page master, element fo:simple-page-master is
used. Attributes master-name and page-height specify the page name (i.e.,
layout1) and page height (i.e., 4in), respectively. XSL formatting objects also provide
attribute page-width, for specifying a page’s width. Although a document may contain
any number of page masters, we use only one page master. In a simple-page-master
page master, the document is divided into the five regions shown in Fig. 13.3. The header,
body, footer, start and end are represented by XSL formatting elements fo:region-be-
fore, fo:region-body, fo:region-after, fo:region-start and fo:re-
gion-end, respectively.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 13.2 : welcome.fo -->
4 <!-- Simple FO example -->
5
6 <fo:root xmlns:fo = "http://www.w3.org/1999/XSL/Format">
7
8 <fo:layout-master-set>
9

10 <fo:simple-page-master master-name = "layout1"
11 page-height = "4in">
12
13 <fo:region-body margin-top = "1in"
14 margin-bottom = "1in" margin-left = "1.5in"
15 margin-right = "1.5in"/>
16
17 <fo:region-before extent = "1in" margin-top = "0.2in"
18 margin-bottom = "0.2in" margin-left = "0.2in"
19 margin-right = "0.2in"/>
20
21 </fo:simple-page-master>

Fig. 13.2 Simple FO example (part 1 of 3).

Chapter 13 XSL: Extensible Stylesheet Language Formatting Objects 357

22
23 <fo:page-sequence-master master-name = "run">
24 <fo:repeatable-page-master-reference
25 master-name = "layout1"/>
26 </fo:page-sequence-master>
27
28 </fo:layout-master-set>
29
30 <fo:page-sequence master-name = "run">
31
32 <fo:static-content flow-name = "xsl-region-before">
33
34 <fo:block font-size = "10pt" line-height = "12pt"
35 font-family = "sans-serif">
36 page <fo:page-number/>
37 </fo:block>
38
39 </fo:static-content>
40
41 <fo:flow flow-name = "xsl-body">
42
43 <fo:block font-size = "36pt"
44 font-family = "sans-serif" font-weight = "bold"
45 space-after.optimum = "24pt" color = "blue"
46 text-align = "center">Welcome!
47 </fo:block>
48
49 <fo:block font-size = "12pt"
50 font-family = "sans-serif" line-height = "14pt"
51 space-after.optimum = "12pt">Deitel & Associates,
52 Inc. is an internationally recognized corporate
53 training and publishing organization specializing in
54 programming languages, Internet/World Wide Web
55 technology and object technology education.
56 </fo:block>
57
58 <fo:block font-size = "12pt"
59 font-family = "sans-serif" line-height = "14pt"
60 space-after.optimum = "12pt">Deitel & Associates,
61 Inc. is a member of the
62 <fo:inline-sequence font-weight = "bold">World
63 Wide Web</fo:inline-sequence>
64 Consortium.
65 </fo:block>
66
67 <fo:block font-size = "12pt"
68 font-family = "sans-serif" line-height = "14pt"
69 space-after.optimum = "12pt">The company's
70 clients include some of the world's largest
71 computer companies, government agencies, branches
72 of the military and business organizations.
73 </fo:block>
74

Fig. 13.2 Simple FO example (part 2 of 3).

358 XSL: Extensible Stylesheet Language Formatting Objects Chapter 13

Fig. 13.2 Adobe Acrobat displaying welcome.pdf. (Adobe and Acrobat
Reader are either registered trademarks or trademarks of Adobe
Systems Incorporated in the United States and/or other countries.)

Fig. 13.3 Regions in a simple-page-master document.

75 </fo:flow>
76
77 </fo:page-sequence>
78
79 </fo:root>

Fig. 13.2 Simple FO example (part 3 of 3).

Header

Body

Footer

Start End

Chapter 13 XSL: Extensible Stylesheet Language Formatting Objects 359

Lines 13–15

<fo:region-body margin-top = "1in"
 margin-bottom = "1in" margin-left = "1.5in"
 margin-right = "1.5in"/>

use element fo:region-body to define the document’s body size as having top and bot-
tom margins of 1 inch, and left and right margins of 1.5 inches. Attributes margin-top,
margin-bottom, margin-left and margin-right represent the top, bottom, left
and right values, respectively.

Lines 17–19

<fo:region-before extent = "1in" margin-top = "0.2in"
 margin-bottom = "0.2in" margin-left = "0.2in"
 margin-right = "0.2in"/>

use element fo:region-before to set the page header’s margins to 1 inch in height,
with a 0.2-inch margin on all sides. The page header is contained within the top margin of
the body.

Lines 23–26

<fo:page-sequence-master master-name = "run">
 <fo:repeatable-page-master-reference
 master-name = "layout1"/>
</fo:page-sequence-master>

use element fo:page-sequence-master to specify the order in which master pages
will be created for the master-name run. We use element repeatable-page-
master-reference to indicate that the simple-page-master layout1 can be
repeated as many times as necessary to contain the document’s content. Notice that the sec-
ond page (in Fig. 13.2) has the same format as the first page.

Lines 30–77 define the pages of the document. Lines 32–39

<fo:static-content flow-name = "xsl-region-before">

 <fo:block font-size = "10pt" line-height = "12pt"
 font-family = "sans-serif">

page <fo:page-number/>
 </fo:block>

</fo:static-content>

use element fo:static-content to specify text that appears on each document page.
Attribute flow-name is assigned the value xsl-region-before, indicating that text
will appear in each document page’s “header.” The text (i.e., the page number) is formatted
using an fo:block element. Attribute line-height sets the line height to 12 points,
and attribute font-family sets the text’s font to sans-serif. When the document is
transformed, empty element fo:page-number is replaced with the page number. Page
numbers begin at 1 by default.

Lines 41–75 denote the contents of the pages, with the text being placed in the region
set by fo:region-body.

360 XSL: Extensible Stylesheet Language Formatting Objects Chapter 13

The first block, on lines 43–47

<fo:block font-size = "36pt"
 font-family = "sans-serif" font-weight = "bold"
 space-after.optimum = "24pt" color = "blue"
 text-align = "centered">Welcome!
</fo:block>

marks up blue, bold text that has a font size of 36 points and is centered in the page. We
also set to 24 points the optimal amount of space that should follow the text by using at-
tribute space-after.optimum. XSL formatting objects also provide attribute
space-before.optimum, to specify the optimum amount of space preceding the text.

The three blocks of text on lines 49–73 each have a font size of 12 points, a line height
of 14 points and an optimal spacing of 12 points following each block of text.

Lines 62 and 63

<fo:inline-sequence font-weight = "bold">World
Wide Web</fo:inline-sequence>

use element inline-sequence to change the format of World Wide Web to bold.
We present an XSL document (Fig. 13.5) for transforming Chapter 5’s XML business

letter (Fig. 5.6) into an XSL formatted-object document. We then transform the document
to PDF format (Fig. 13.6) using Apache FOP. To generate a PDF document from this XSL
formatting-object document, type (on a single line)

java -classpath C:\xalan\xerces.jar;C:\xalan\xalan.jar
 org.apache.xalan.xslt.Process -IN letter.xml
 -XSL letter.xsl -OUT letter.fo

Fig. 13.4 Viewing with Apache’s FO viewer application.

Courtesy of XML project of the Apache Software Foundation; xml.apache.org.

Chapter 13 XSL: Extensible Stylesheet Language Formatting Objects 361

to transform the document using Xalan to an XSL formatted-object document. Next, type

java org.apache.fop.apps.CommandLine letter.fo welcome.pdf

at the command line to transform letter.fo (Fig. 13.2) to PDF format (wel-
come.pdf). [Note: the Apache FOP JAR file must be in the CLASSPATH.] For more in-
formation about the PDF, visit the Web site www.adobe.com/products/acrobat.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 13.5 : letter.xsl -->
4 <!-- Formatting a business letter -->
5
6 <xsl:stylesheet version = "1.0"
7 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform"
8 xmlns:fo = "http://www.w3.org/1999/XSL/Format">
9

10 <xsl:template match = "/">
11
12 <fo:root xmlns:fo = "http://www.w3.org/1999/XSL/Format">
13
14 <fo:layout-master-set>
15
16 <fo:simple-page-master master-name = "first">
17
18 <fo:region-body margin-top = "1.75in"
19 margin-bottom = "1in" margin-left = "1.25in"
20 margin-right = "1.25in"/>
21
22 <fo:region-before extent = "1.5in"
23 margin-top = "0.5in" margin-bottom = "0.2in"
24 margin-left = "4.25in"
25 margin-right = "1.25in"/>
26
27 </fo:simple-page-master>
28
29 <fo:simple-page-master master-name = "other">
30
31 <fo:region-body margin-top = "1in"
32 margin-bottom = "1in" margin-left = "1.25in"
33 margin-right = "1.25in"/>
34
35 </fo:simple-page-master>
36
37 <fo:page-sequence-master master-name = "run1">
38
39 <fo:single-page-master-reference
40 master-name = "first"/>
41
42 <fo:repeatable-page-master-reference
43 master-name = "other"/>
44

Fig. 13.5 XSLT document for transforming an XML document into an XSL formatted-
object document (part 1 of 4).

362 XSL: Extensible Stylesheet Language Formatting Objects Chapter 13

45 </fo:page-sequence-master>
46
47 </fo:layout-master-set>
48
49 <fo:page-sequence master-name = "run1">
50 <xsl:apply-templates/>
51 </fo:page-sequence>
52
53 </fo:root>
54
55 </xsl:template>
56
57 <xsl:template match = "letter">
58
59 <fo:static-content flow-name = "xsl-region-before">
60
61 <xsl:apply-templates
62 select = "contact[@type = 'from']"/>
63
64 </fo:static-content>
65
66 <fo:flow flow-name = "xsl-body">
67
68 <fo:block font-size = "10pt"
69 font-family = "monospace" line-height = "10pt">
70
71 <xsl:apply-templates
72 select = "contact[@type = 'to']"/>
73
74 </fo:block>
75
76 <fo:block font-size = "12pt"
77 font-family = "monospace" line-height = "14pt"
78 space-before.optimum = "18pt"
79 space-after.optimum = "18pt">
80 <xsl:value-of select = "salutation"/>
81 </fo:block>
82
83 <xsl:apply-templates select = "paragraph"/>
84
85 <fo:block font-size = "12pt"
86 font-family = "monospace" line-height = "14pt">
87 <xsl:value-of select = "closing"/>,
88 </fo:block>
89
90 <fo:block font-size = "12pt"
91 font-family = "monospace" line-height = "14pt">
92 <xsl:value-of select = "signature"/>
93 </fo:block>
94
95 </fo:flow>
96

Fig. 13.5 XSLT document for transforming an XML document into an XSL formatted-
object document (part 2 of 4).

Chapter 13 XSL: Extensible Stylesheet Language Formatting Objects 363

97 </xsl:template>
98
99 <xsl:template match = "contact[@type = 'from']">
100
101 <fo:block font-size = "10pt"
102 font-family = "monospace" line-height = "12pt">
103 <xsl:value-of select = "name"/>
104 </fo:block>
105
106 <fo:block font-size = "10pt"
107 font-family = "monospace" line-height = "12pt">
108 <xsl:value-of select = "address1"/>
109 </fo:block>
110
111 <fo:block font-size = "10pt"
112 font-family = "monospace" line-height = "12pt">
113 <xsl:value-of select = "address2"/>
114 </fo:block>
115
116 <fo:block font-size = "10pt"
117 font-family = "monospace" line-height = "12pt">
118 <xsl:value-of select = "city"/>,
119 <xsl:value-of select = "state"/>
120 <xsl:text> </xsl:text>
121 <xsl:value-of select = "zip"/>
122 </fo:block>
123
124 <fo:block font-size = "10pt"
125 font-family = "monospace" line-height = "12pt">
126 <xsl:value-of select = "phone"/>
127 </fo:block>
128
129 </xsl:template>
130
131 <xsl:template match = "contact[@type = 'to']">
132
133 <fo:block font-size = "12pt"
134 font-family = "monospace" line-height = "14pt">
135 <xsl:value-of select = "name"/>
136 </fo:block>
137
138 <fo:block font-size = "12pt"
139 font-family = "monospace" line-height = "14pt">
140 <xsl:value-of select = "address1"/>
141 </fo:block>
142
143 <fo:block font-size = "12pt"
144 font-family = "monospace" line-height = "14pt">
145 <xsl:value-of select = "address2"/>
146 </fo:block>
147

Fig. 13.5 XSLT document for transforming an XML document into an XSL formatted-
object document (part 3 of 4).

364 XSL: Extensible Stylesheet Language Formatting Objects Chapter 13

Lines 16–27 create a page master named first that contains two regions. The first
region (lines 18–20) is the document’s body, while the second region (lines 22–25) is the
document’s header that contains the letter’s return address. Attribute extent specifies the
size of a region (i.e., fo:region-before, fo:region-after, fo:region-
start and fo:region-end). Region fo:region-body does not have an extent
attribute and is given the remaining area after the other four regions are sized.

Lines 29–35 create a second page master named other that will define the layout for
successive pages (after the first). Lines 37–45

<fo:page-sequence-master master-name = "run1">

 <fo:single-page-master-reference
 master-name = "first"/>

 <fo:repeatable-page-master-reference
 master-name = "other"/>

</fo:page-sequence-master>

148 <fo:block font-size = "12pt"
149 font-family = "monospace" line-height = "14pt">
150 <xsl:value-of select = "city"/>,
151 <xsl:value-of select = "state"/>
152 <xsl:text> </xsl:text>
153 <xsl:value-of select = "zip"/>
154 </fo:block>
155
156 <fo:block font-size = "12pt"
157 font-family = "monospace" line-height = "14pt">
158 <xsl:value-of select = "phone"/>
159 </fo:block>
160
161 </xsl:template>
162
163 <xsl:template match = "paragraph">
164
165 <fo:block font-size = "12pt" font-family = "monospace"
166 line-height = "14pt" space-after.optimum = "18pt">
167 <xsl:apply-templates/>
168 </fo:block>
169
170 </xsl:template>
171
172 <xsl:template match = "bold">
173
174 <fo:inline-sequence font-weight = "bold">
175 <xsl:value-of select = "."/>
176 </fo:inline-sequence>
177
178 </xsl:template>
179
180 </xsl:stylesheet>

Fig. 13.5 XSLT document for transforming an XML document into an XSL formatted-
object document (part 4 of 4).

Chapter 13 XSL: Extensible Stylesheet Language Formatting Objects 365

Fig. 13.6 PDF output of the business letter. (Adobe and Acrobat Reader are either
registered trademarks or trademarks of Adobe Systems Incorporated in
the United States and/or other countries.)

uses element fo:page-sequence-master to set the order in which the page masters
occur. Page master first (line 16) occurs first and can occur only once, because it is
marked up as fo:single-page-master-reference. Page master other (line 29)
follows the first page master and can occur any number of times. Lines 59–64

<fo:static-content flow-name = "xsl-region-before">

 <xsl:apply-templates
 select = "contact[@type = 'from']"/>

</fo:static-content>

place the letter’s return address in the document’s header (i.e., xsl-region-before).
The remainder of the document uses templates to match the text for the document’s body.

13.4 Lists
XSL formatting objects also provide the capabilities to format lists of items. Apache FOP
provides support for lists and tables. In this section, we provide an example (Fig. 13.7) that
formats data into a list. The rendered output is rendered in Fig. 13.8.

366 XSL: Extensible Stylesheet Language Formatting Objects Chapter 13

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 13.7 : topic_list.fo -->
4 <!-- List example -->
5
6 <fo:root xmlns:fo = "http://www.w3.org/1999/XSL/Format">
7
8 <fo:layout-master-set>
9

10 <fo:simple-page-master master-name = "layout1">
11
12 <fo:region-body margin-top = "1in"
13 margin-bottom = "1in" margin-left = "1.5in"
14 margin-right = "1.5in"/>
15 </fo:simple-page-master>
16
17 <fo:page-sequence-master master-name = "run">
18 <fo:repeatable-page-master-reference
19 master-name = "layout1"/>
20 </fo:page-sequence-master>
21
22 </fo:layout-master-set>
23
24 <fo:page-sequence master-name = "run">
25
26 <fo:flow>
27
28 <fo:block font-size = "36pt"
29 font-family = "sans-serif" font-weight = "bold"
30 space-after.optimum = "12pt" color = "yellow"
31 background-color = "black"
32 text-align = "center" line-height = "42pt">
33 Deitel Book Topics
34 </fo:block>
35
36 <fo:block font-size = "12pt"
37 font-family = "sans-serif" line-height = "14pt"
38 space-after.optimum = "12pt">Here are some topics
39 that have been covered:
40 </fo:block>
41
42 <fo:list-block>
43
44 <fo:list-item>
45
46 <fo:list-item-label>
47 <fo:block>-</fo:block>
48 </fo:list-item-label>
49
50 <fo:list-item-body>
51 <fo:block>Java</fo:block>
52 </fo:list-item-body>
53

Fig. 13.7 List supported by Apache’s FOP (part 1 of 2).

Chapter 13 XSL: Extensible Stylesheet Language Formatting Objects 367

Element fo:flow (line 26) specifies content that can flow from one page to the next.
A common example of fo:flow is text on a book’s page that naturally flows to the next
page. The primary difference between fo:flow and fo:static-content is that
fo:static-content is duplicated on each page. For example, a book title and page
number (e.g., fo:static-content) generally appear on every page in a book. How-
ever, the text of a paragraph (e.g., fo:flow) in a novel is not duplicated on every page.

54 </fo:list-item>
55
56 <fo:list-item>
57
58 <fo:list-item-label>
59 <fo:block>-</fo:block>
60 </fo:list-item-label>
61
62 <fo:list-item-body>
63 <fo:block>C / C++</fo:block>
64 </fo:list-item-body>
65
66 </fo:list-item>
67
68 <fo:list-item>
69
70 <fo:list-item-label>
71 <fo:block>-</fo:block>
72 </fo:list-item-label>
73
74 <fo:list-item-body>
75 <fo:block>HTML</fo:block>
76 </fo:list-item-body>
77
78 </fo:list-item>
79
80 <fo:list-item>
81
82 <fo:list-item-label>
83 <fo:block>-</fo:block>
84 </fo:list-item-label>
85
86 <fo:list-item-body>
87 <fo:block>XML</fo:block>
88 </fo:list-item-body>
89
90 </fo:list-item>
91
92 </fo:list-block>
93
94 </fo:flow>
95
96 </fo:page-sequence>
97
98 </fo:root>

Fig. 13.7 List supported by Apache’s FOP (part 2 of 2).

368 XSL: Extensible Stylesheet Language Formatting Objects Chapter 13

Lines 28–34 define a block that formats the text Deitel Book Topics. Attribute
background-color sets the background color to black. Attribute text-align aligns
the text. In this particular case, we center the text.

Lines 42–92 set the fo:list-block element, which contains the list items. Lines
46–48

<fo:list-item-label>
 <fo:block>-</fo:block>
</fo:list-item-label>

use element fo:list-item-label to mark up the text that precedes each item in the
list. In this particular case, we mark up a hyphen, -.

Lines 50–52

<fo:list-item-body>
 <fo:block>Java</fo:block>
</fo:list-item-body>

use element fo:list-item-body to mark up an individual list item’s text (i.e., Java).
The remaining list items are marked up in a similar manner.

13.5 Internet and World Wide Web Resources
www.xml.com/pub/Guide/XSL_FO's
XSL Formatting Object vocabulary links.

www.renderx.com/Tests/validator/fo2000.dtd.html
DTD for the last version of XSL FO.

Fig. 13.8 Adobe Acrobat displaying topic_list.pdf. (Adobe and Acrobat
Reader are either registered trademarks or trademarks of Adobe
Systems Incorporated in the United States and/or other countries.)

Chapter 13 XSL: Extensible Stylesheet Language Formatting Objects 369

xml.apache.org/fop
Home page of FOP, an open-source XSL formatter-renderer, from Apache.

www.renderx.com
Provides XEP, a commercial XSL FO processor.

www.arbortext.com
Arbortext Web site where a commercial XSL FO processor is available.

www.xmlsoftware.com
Provides links to many different XML-related pieces of software—including XSL processors.

SUMMARY
• XSL formatting objects format XML documents for presentation. Formatting objects constitute

the vast majority of XSL features.

• Formatting objects are typically used when the result of a transformation is for print media (e.g.,
books, magazines, etc.).

• Apache’s Java-based tool, FOP, transforms XSL documents containing formatting objects into
PDF documents.

• XSL formatting-object documents have root element fo:root and namespace prefix fo.
Namespace URI http://www.w3.org/1999/XSL/Format is used with formatting ob-
jects. Element fo:root is a container element only; it does not affect the document’s format.

• In publishing, page masters define a page’s layout (e.g., its margins, headers, footers, etc.). Page
masters provide the document author with the flexibility of changing the document’s format on a
page-by-page basis.

• Element fo:layout-master-set groups the document’s page masters (i.e., page templates).
To create a page master, element fo:simple-page-master is used. Attributes master-
name and page-height specify the page name and page height, respectively. XSL formatting
objects also provide attribute page-width, for specifying a page’s width.

• In a simple-page-master page master, the document is divided into five regions: header,
body, footer, start and end. Each of these regions are represented by XSL formatting elements
fo:region-before, fo:region-body, fo:region-after, fo:region-start
and fo:region-end, respectively.

• Attributes margin-top, margin-bottom, margin-left and margin-right represent
the top, bottom, left and right margin values, respectively.

• Element fo:page-sequence-master specifies the order in which master pages are created
for a page master. Element repeatable-page-master-reference indicates that a sim-
ple-page-master can be repeated as many times as necessary in order to contain the docu-
ment’s content.

• Element fo:static-content specifies text that appears on each document page. Attribute
flow-name, when assigned the value xsl-region-before, indicates that text will appear
in each document page’s header.

• Attribute line-height sets the line height, and attribute font-family sets the text’s font.
Empty element fo:page-number represents the page number.

• XSL formatting objects provide attributes space-before.optimum and space-af-
ter.optimum to specify the optimum amount of space preceding and following the text, respec-
tively.

• Element inline-sequence changes the format of text inside a block.

370 XSL: Extensible Stylesheet Language Formatting Objects Chapter 13

• Attribute extent specifies the size of a region (i.e., fo:region-before, fo:region-af-
ter, fo:region-start and fo:region-end). Region fo:region-body does not have
an extent attribute and is given the remaining area after the other four regions are sized.

• A page master occurs first and can occur only once when it is marked up as fo:single-page-
master-reference.

• XSL formatting objects also provide the capabilities to format lists of items.

• Element fo:flow specifies content that can flow from one page to the next. The primary differ-
ence between fo:flow and fo:static-content is that fo:static-content is dupli-
cated on each page.

• Attribute background-color sets the background color of text. Attribute text-align
aligns text.

• Element fo:list-block marks up a list of items.

• Element fo:list-item-label marks up the text that precedes an item in a list.

• Element fo:list-item-body mark ups an individual list item’s text.

TERMINOLOGY

SELF-REVIEW EXERCISES
13.1 State whether the following are true or false. If false, explain why.

a) Apache’s FOP provides support for lists and tables.
b) Extensible Stylesheet Language was created to provide formatting for CSS documents.
c) Element fo:root is the root element for an XSL formatting-object document.
d) Attribute text-align specifies how text is aligned.

Adobe Portable Document Format (PDF)
document
Apache FOP

fo:root element
fo:repeatable-page-master-refer-
ence element

Apache Xalan
background-color attribute
color attribute

fo:simple-page-master element
fo:single-page-master-reference
element

document layout scheme fo:static-content element
document pages
extent attribute

font-family attribute
font-size attribute

.fo filename extension formatting object
fo namespace prefix line-height attribute
fo:block element margin-bottom attribute
fo:flow element margin-left attribute
fo:layout-master-set element margin-right attribute
fo:list-block element margin-top attribute
fo:list-item element master-name attribute
fo:list-item-body element page masters
fo:list-item-label element page-height attribute
fo:page-sequence-master element page-width attribute
fo:region-after element space-after.optimum attribute
fo:region-before element space-before.optimum attribute
fo:region-body element text-align attribute
fo:region-end element XSL formatting-object document
fo:region-start element

Chapter 13 XSL: Extensible Stylesheet Language Formatting Objects 371

e) Each page sequence in a styled XML document is defined using element fo:se-
quence-specification, which contains elements fo:static-content and
fo:flow.

f) If multiple single-page specifiers are used in sequence definitions, then each page of con-
tent is mapped to a page master.

g) The fo:block element is usually used to format paragraphs, titles, captions and other
textual objects.

h) The set of page masters for a page sequence is defined using the element fo:page-or-
der.

i) The fo:static-content element must precede any fo:flow elements.
j) The repeating page specifier does not allow for setting the page master for the first page.

Another page master must be used to do this.

13.2 Fill in the blanks in each of the following statements.
a) XSL formatting objects are usually given the namespace prefix.
b) Element fo:page-sequence defines a sequence of pages that use a specific

.
c) Attribute defines a region’s width or height.
d) A single-page instantiates a single-page master.
e) The page specifier sets the page masters for and odd pages.
f) Element fo: is used to define static content for a page region in the pages of

a page .
g) Element fo:flow is used to hold the content for a of a page, which can

 multiple pages.
h) Element is used within elements fo:static-content and fo:flow.
i) Element fo:inline- formats inline objects.
j) fo:list-block formats and contains elements fo:list- .

ANSWERS TO SELF-REVIEW EXERCISES
13.1 a) True. b) False. The Extensible Stylesheet Language was created to provide formatting for
XML documents. c) True. d) True. e) False. Each page sequence is defined using element fo:page-
sequence, which contains element fo:sequence-specification, fo:static-con-
tent and fo:flow. f) True. g) True. h) False. The set of page masters for a page sequence is de-
fined using the element fo:sequence-specification. i) True. j) False. The repeating page
specifier allows for setting the page master for the first page and another page master for all pages
following the first.

13.2 a) fo. b) page master. c) extent. d) specifier. e) alternating, even. f) static-con-
tent, sequence. g) region, span. h) fo:block. i) sequence. j) lists, item.

EXERCISES
13.3 Write a simple XSLT document that would transform intro.xml (Fig. 5.1) into an FO
document. Process the FO document to obtain a PDF document by using Apache’s FOP. Render the
message element in different colors and font sizes. Each page in the PDF document should contain a
page number on its top-right corner.

13.4 Write code that would create a PDF document using usage.xml (Fig. 5.5). The PDF doc-
ument generated should contain the title of the book, appearing in bold fonts, followed by the author
of the book. It should also contain a table with two columns, consisting of page numbers and corre-
sponding titles (preface, chapter and appendix). [Hint: Tables can be drawn using the fo:table el-
ement. Columns are declared with the fo:table-column element. Rows are represented by the
fo:table-row element that contains the fo:table-cell element.]

14
XLink, XPointer,

XInclude and XBase

Objectives
• To become familiar with XML Linking Language

(XLink).
• To become familiar with XML Pointer Language

(XPointer).
• To become familiar with XML Inclusions (XInclude).
• To become familiar with XML Base (XBase).
I feel
The link of nature draw me: flesh of flesh,
Bone of my bone thou art, and from thy state
Mine never shall be parted, bliss or woe.
John Milton

Chapter 14 XLink, XPointer, XInclude and XBase 373

14.1 Introduction
One of the major contributing factors to the Web’s popularity is hyperlinks, which provide
a simple, yet powerful, means of linking documents. In this chapter, we introduce several
emerging XML-related technologies that promise to go significantly beyond what is cur-
rently possible with HTML hyperlinks. We introduce the XML Linking Language (XLink)
for describing links between resources (e.g., documents), the XML Pointer Language
(XPointer) for “pointing” to a document’s contents, XML Inclusions (XInclude) for includ-
ing existing XML documents or portions of XML documents into another XML document
and XML Base (XBase) for specifying a “base” URL for relative URLs.

[Note: The technologies presented in this chapter are still evolving and subject to
change. Although some of the technologies presented in this chapter have not yet been
implemented in industry, the technologies are critical to XML and will have a profound
impact on the Web. When possible, we have provided sample markup to illustrate the tech-
nologies.]

14.2 XML Linking Language (XLink)
In Chapter 2, we discussed HTML’s a element and href attribute for linking to documents
on the Web. The W3C has been actively developing a specification, called the XML Linking
Language (XLink), for linking to “resources” from an XML document. As we will soon dis-
cover, XLink goes far beyond HTML linking. XLink is currently a W3C Candidate Rec-
ommendation (i.e., one step away from becoming a W3C Recommendation). XLink was
designed using ideas from other linking standards; HTML, HyTime and the Text Encoding
Initiative (TEI) were the most influential. Visit www.w3.org/TR/xlink for the latest
version of the XLink specification.

XLink is capable of linking more than just documents; XLink links resources, which
include documents, audio, video, database data, etc. For example, a movie could be linked
to its corresponding sound track, or a song could be linked to corresponding information
about it. When the song begins to play, the link could be activated, allowing the user to view
the lyrics, find out information about the songwriter, etc. With XLink, the song resource

Outline
14.1 Introduction
14.2 XML Linking Language (XLink)

14.2.1 Simple Links
14.2.2 Extended Links

14.3 XLink and DTDs
14.4 XML Pointer Language (XPointer)
14.5 XML Inclusions (XInclude)
14.6 XML Base (XBase)
14.7 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises •
Exercises

374 XLink, XPointer, XInclude and XBase Chapter 14

need not be accessed through a single link, but can be accessed through multiple links. One
link might provide the lyrics; another link might provide the songwriter’s biography and a
third link might provide the sheet music. This type of link is quite different from HTML’s
a element, which links only one document.

Web browsers will eventually support XLink. However, XLink is intended for a
broader base of applications than just Web browsers. As industry begins to implement
XLink, it will become more obvious what these XLink-aware applications might be.

14.2.1 Simple Links
With XLink, resources can be linked in a variety of ways. The most basic type of link spec-
ified by XLink is a simple link, which links one resource to another in the same way that an
HTML link does. Figure 14.1 illustrates a simple link, which is represented by the arrow
between document1 and document2.

 XLink elements that specify linking information are called linking elements. For
example, the linking element book in document1 might look like

<book xlink:type = "simple"
xlink:href = "/textbooks/xmlHowToProgram.xml">

where document2 is referenced using the URI /textbooks/xmlHowToPro-
gram.xml. We will explain the linking element’s attributes momentarily. In this particu-
lar scenario, the linking element (i.e., book) that references document2 is called a local
resource. The resource referenced is called the remote resource.

In XLink terminology, the markup that specifies how to traverse between resources is
called an arc. More precisely, Fig. 14.1 illustrates an outbound arc, which is named as such
because the starting resource (i.e., book) is a local resource and the ending resource (i.e.,
xmlHowToProgram.xml) is a remote resource.

Figure 14.2 shows an XML document that contains a simple link.
On line 6, we introduce the xlink namespace prefix bound to the URI http://

www.w3.org/1999/xlink. Lines 18–22

<contact
 xlink:type = "simple"
 xlink:href = "about.xml"
 xlink:role = "http://www.deitel.com/xlink/contact"
 xlink:title = >

create an XLink link in element contact. Line 19 uses required attribute type to specify
the type of linking—in this case, a simple link. The href, role and title attributes
describe the link. Attribute href defines the remote resource’s URI (i.e., about.xml,
shown in Fig. 14.3) and is required. Attribute role is a URI that references a resource that
describes the link, and attribute title is a descriptive title for the link. Both role and
title are optional.

Chapter 14 XLink, XPointer, XInclude and XBase 375

Fig. 14.1 Illustrating a simple link.

XLink provides attributes show and actuate for specifying how to display a
resource when it is loaded and for specifying when the resource should be retrieved, respec-
tively. Figure 14.4 is a variation of Fig. 14.2 that includes attributes show and actuate.

Software Engineering Observation 14.1
Attribute title provides a human-readable description of the link, and attribute role pro-
vides a machine-readable description of the link. 14.1

document 1 document 2

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 14.2 : simpleLinks1.xml -->
4 <!-- XML file that shows simple linking -->
5
6 <contacts xmlns:xlink = "http://www.w3.org/1999/xlink">
7
8 Deitel & Associates, Inc. is an internationally recognized
9 corporate training and content creation organization specializing

10 in programming languages, Internet/World Wide Web technology and
11 object technology education. Deitel & Associates, Inc. is a
12 member of the World Wide Web Consortium. The company provides
13 elementary through advanced courses on Java, C++, Visual Basic,
14 C, Perl, Python, XML, Internet and World Wide Web programming,
15 e-business and e-commerce programming and Object Technology.
16 The principals of Deitel & Associates, Inc. are
17
18 <contact
19 xlink:type = "simple"
20 xlink:href = "about.xml"
21 xlink:role = "http://www.deitel.com/xlink/contact"
22 xlink:title = >
23
24 Dr. Harvey Deitel
25 </contact>
26
27 and Paul J. Deitel. The company's clients include many of
28 the world's largest computer companies, government agencies,
29 branches of the military and business organizations. Through its
30 publishing partnership with Prentice Hall, Deitel & Associates,
31 Inc. publishes leading-edge programming textbooks, professional
32 books, interactive CD-ROM-based multimedia Cyber Classrooms,
33 satellite courses and Web-based training courses.
34 </contacts>

Fig. 14.2 XML document with a simple link (part 1 of 2).

376 XLink, XPointer, XInclude and XBase Chapter 14

1 <?xml version = "1.0" ?>
2
3 <!-- Fig. 14.3 : about.xml -->
4 <!-- About Harvey Deitel -->
5
6 <about>
7 Dr. Harvey M. Deitel, CEO of Deitel & Associates, Inc., has
8 40 years experience in the computing field including extensive
9 industry and academic experience. He is one of the world's

10 leading computer science instructors and seminar presenters.
11 Dr. Deitel earned B.S. and M.S. degrees from the Massachusetts

Fig. 14.3 Listing for about.xml (part 1 of 2).

Fig. 14.2 XML document with a simple link (part 2 of 2).

Netscape Communicator browser window© 1999 Netscape Communications
Corporation. Used with permission. Netscape Communications has not authorized,
sponsored, endorsed, or approved this publication and is not responsible for its
content.

Chapter 14 XLink, XPointer, XInclude and XBase 377

Line 13

xlink:show = "new"

assigns attribute show the value new, which indicates that the resource should be dis-
played in a new window (or equivalent, based on the XLink-aware application). Attribute
show can also be assigned replace, for replacing the current resource with the linked
resource; embed, for replacing the current element with the linked resource, and other
or none, which allows the XLink-aware application to decide how to display the link.

Line 14

xlink:actuate = "onRequest"

12 Institute of Technology and a Ph.D. from Boston University.
13 He worked on the pioneering virtual memory operating systems
14 projects at IBM and MIT that developed techniques widely
15 implemented today in systems like UNIX, Linux and Windows NT.
16 He has 20 years of college teaching experience including earning
17 tenure and serving as the Chairman of the Computer Science
18 Department at Boston College before founding Deitel &
19 Associates, Inc. with Paul J. Deitel. He is author or co-author
20 of several dozen books and multimedia packages and is currently
21 writing many more. With translations published in Japanese,
22 Russian, Spanish, Elementary Chinese, Advanced Chinese, Korean,
23 French, Polish, Portuguese and Italian, Dr. Deitel's texts have
24 earned international recognition. Dr. Deitel has delivered
25 professional seminars internationally to major corporations,
26 government organizations and various branches of the military.
27 </about>

Fig. 14.3 Listing for about.xml (part 1 of 2).

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 14.4 : simpleLinks2.xml -->
4 <!-- XML file that shows simple linking -->
5
6 <contacts xmlns:xlink = "http://www.w3.org/1999/xlink">
7
8 <contact
9 xlink:type = "simple"

10 xlink:href = "about.xml"
11 xlink:role = "http://www.deitel.com/xlink/contact"
12 xlink:title = "About Harvey Deitel"
13 xlink:show = "new"
14 xlink:actuate = "onRequest">
15
16 Dr. Harvey Deitel
17 </contact>
18
19 </contacts>

Fig. 14.4 Attributes show and actuate (part 1 of 2).

378 XLink, XPointer, XInclude and XBase Chapter 14

assigns attribute actuate the value onRequest, which indicates that the resource
should not be retrieved until the user requests it (e.g., by clicking on the link). Attribute
actuate can also be assigned the value onLoad, which indicates that the document
should be retrieved as soon as it is loaded, the value other, which allows the XLink-aware
application to decide when to load the resource based on other markup in the document and
the value none, which provides no information on when to load the resource.

14.2.2 Extended Links
XLink’s capabilities go well beyond simple links. XLink also provides extended links, for
linking multiple combinations of local and remote resources. In Fig. 14.1, the illustration
of a simple link shows a unidirectional link (i.e., a link that can only be traversed in one
direction) between two resources. The remote resource (i.e., xmlHowToProgram.xml)

Fig. 14.4 Attributes show and actuate (part 2 of 2).

Netscape Communicator browser window© 1999 Netscape Communications
Corporation. Used with permission. Netscape Communications has not authorized,
sponsored, endorsed, or approved this publication and is not responsible for its
content.

Chapter 14 XLink, XPointer, XInclude and XBase 379

has no knowledge of the local resource. If these two resources are documents in a Web
browser, the back button can be clicked on to return to the local resource. This function is
not linking, but simply browser functionality. Recall that XLink-aware applications are not
necessarily browsers and may not provide such a feature. Consider Fig. 14.5, which modi-
fies Fig. 14.1 by adding a link from document2 to document1. Although this link might
appear to provide the remote resource with knowledge of the local resource, it does not. All
we have done is add another unidirectional link.

Software Engineering Observation 14.2
One of the greatest benefits of XLink is that it allows authors to create links between docu-
ments that they do not own. 14.2

With XLink, we can create multidirectional links for traversing between resources
(Fig. 14.6). The user (or an application) can start at either end and traverse to the other.
Multidirectional links are not limited to just two resources, but can link any number of
resources (Fig. 14.7). The links need not be traversed sequentially. For example, the linking
element in document1 could be used to traverse to document4 without going through
document2 and document3.

Figure 14.8 is an XML document that contains extended links that link a book, author,
publisher and warehouse. Figure 14.9 shows the rendering of booklinks.xml in the
Fujitsu XLink Processor.

Fig. 14.5 Two unidirectional links.

Fig. 14.6 Multidirectional link.

Fig. 14.7 Multidirectional linking between four resources.

document 1 document 2

document 1 document 2

document 1 document 2 document 3 document 4

380 XLink, XPointer, XInclude and XBase Chapter 14

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 14.8 : booklinks.xml -->
4 <!-- XML document containing extended links -->
5
6 <books xmlns:xlink = "http://www.w3.org/1999/xlink"
7 xlink:type = "extended"
8 xlink:title = "Book Inventory">
9

10 <author xlink:label = "authorDeitel"
11 xlink:type = "locator"
12 xlink:href = "#authors"
13 xlink:role = "http://deitel.com/xlink/author"
14 xlink:title = "Deitel & Associates, Inc.">
15 <persons id = "authors">
16 <person>Deitel, Harvey</person>
17 <person>Deitel, Paul</person>
18 </persons>
19 </author>
20
21 <publisher xlink:label = "publisherPrenticeHall"
22 xlink:type = "locator"
23 xlink:href = "/publisher/prenticehall.xml"
24 xlink:role = "http://deitel.com/xlink/publisher"
25 xlink:title = "Prentice Hall"/>
26
27 <warehouse xlink:label = "warehouseXYZ"
28 xlink:type = "locator"
29 xlink:href = "/warehouse/xyz.xml"
30 xlink:role = "http://deitel.com/xlink/warehouse"
31 xlink:title = "X.Y.Z. Books"/>
32
33 <book xlink:label = "JavaBook"
34 xlink:type = "resource"
35 xlink:role = "http://deitel.com/xlink/author"
36 xlink:title = "Textbook on Java">
37 Java How to Program: Third edition
38 </book>
39
40 <arcElement xlink:type = "arc"
41 xlink:from = "JavaBook"
42 xlink:arcrole = "http://deitel.com/xlink/info"
43 xlink:to = "authorDeitel"
44 xlink:show = "new"
45 xlink:actuate = "onRequest"
46 xlink:title = "About the author"/>
47
48 <arcElement xlink:type = "arc"
49 xlink:from = "JavaBook"
50 xlink:arcrole = "http://deitel.com/xlink/info"
51 xlink:to = "publisherPrenticeHall"
52 xlink:show = "new"

Fig. 14.8 XML document containing extended links (part 1 of 2).

Chapter 14 XLink, XPointer, XInclude and XBase 381

Fig. 14.9 XLink tree browser rendering of booklinks.xml.

Lines 6–8

<books xmlns:xlink = "http://www.w3.org/1999/xlink"
xlink:type = "extended"
xlink:title = "Book Inventory">

53 xlink:actuate = "onRequest"
54 xlink:title = "About the publisher"/>
55
56 <arcElement xlink:type = "arc"
57 xlink:from = "warehouseXYZ"
58 xlink:arcrole = "http://deitel.com/xlink/info"
59 xlink:to = "JavaBook"
60 xlink:show = "new"
61 xlink:actuate = "onRequest"
62 xlink:title = "Information about this book"/>
63
64 <arcElement xlink:type = "arc"
65 xlink:from = "publisherPrenticeHall"
66 xlink:arcrole = "http://deitel.com/xlink/stock"
67 xlink:to = "warehouseXYZ"
68 xlink:show = "embed"
69 xlink:actuate = "onLoad"
70 xlink:title = "Publisher's inventory"/>
71
72 </books>

Fig. 14.8 XML document containing extended links (part 2 of 2).

382 XLink, XPointer, XInclude and XBase Chapter 14

define root element books. This element defines the namespace prefix xlink and binds
it to the URI http://www.w3.org/1999/xlink. The link type of extended in-
dicates that the XLink being declared is an extended link. Attribute title is assigned
"Book Inventory".

Lines 10–19

<author xlink:label = "authorDeitel"
xlink:type = "locator"
xlink:href = "#authors"
xlink:role = "http://deitel.com/xlink/author"
xlink:title = "Deitel & Associates, Inc.">

 <persons id = "authors">
<person>Deitel, Harvey</person>
<person>Deitel, Paul</person>

 </persons>
</author>

mark up a link to the book’s authors with information located at /authors/dei-
tel.xml. Attribute label is assigned a value that identifies the resource—in this case,
authorDeitel. A label’s value is used to link one resource to another. We will dis-
cuss how this linking is done momentarily. Element author has type locator, which
specifies a remote resource. Child element persons contains person elements that
mark up individual authors. In this case, when either Deitel, Harvey or Deitel, Paul is
selected, the document deitel.xml will be retrieved.

Lines 21–25

<publisher xlink:label = "publisherPrenticeHall"
xlink:type = "locator"
xlink:href = "/publisher/prenticehall.xml"
 xlink:role = "http://deitel.com/xlink/publisher"
 xlink:title = "Prentice Hall"/>

mark up the publisher. This resource is given the identifier publisherPrenticeHall.
Attribute value locator indicates that this remote resource is located at /publisher/
prenticeHall.xml.

Lines 27–31

<warehouse xlink:label = "warehouseXYZ"
xlink:type = "locator"
xlink:href = "/warehouse/xyz.xml"
xlink:role = "http://deitel.com/xlink/warehouse"
xlink:title = "X.Y.Z. Books"/>

mark up the warehouse. This remote resource is given the identifier warehouseXYZ and
is located at /warehouse/xyz.xml.

Lines 33–38

<book xlink:label = "JavaBook"
xlink:type = "resource"
xlink:role = "http://deitel.com/xlink/author"
xlink:title = "Textbook on Java">

 Java How to Program: Third edition
</book>

Chapter 14 XLink, XPointer, XInclude and XBase 383

create a local resource labeled JavaBook. This resource represents a book, which can be
linked to (or from) an author or publisher. We will discuss how this linking occurs momen-
tarily.

Lines 40–46

<arcElement xlink:type = "arc"
xlink:from = "JavaBook"
xlink:arcrole = "http://deitel.com/xlink/info"
xlink:to = "authorDeitel"
xlink:show = "new"
xlink:actuate = "onRequest"
xlink:title = "About the author"/>

create an outbound arc between the book local resource (i.e., JavaBook) and the author
remote resource (i.e., authorDeitel) using attributes from and to. Attribute ar-
crole, which describes the relationship between the resources, is assigned http://de-
itel.com/xlink/info. In this case, the arc’s role is to provide information about the
book’s author. Attribute show is assigned new, so when the link is activated, the ending
resource (the author resource) is loaded in a new window. Attribute actuate has value
onRequest, so an application will traverse the link when a user requests it.

Lines 48–54

<arcElement xlink:type = "arc"
xlink:from = "JavaBook"
xlink:arcrole = "http://deitel.com/xlink/info"
xlink:to = "publisherPrenticeHall"
xlink:show = "new"
xlink:actuate = "onRequest"
xlink:title = "About the publisher"/>

create an outbound arc between the book local resource and the publisher local resource.
Figure 14.10 shows the traversal of the link defined in lines 33–38. This link is the

starting resource of two different arcs. The title of the first arc (lines 40–46) is About the
author and links to the authorDeitel resource (lines 10–19). The title of the second
arc (lines 48–54) is About the publisher and links to the publisherPrenticeHall
resource (lines 21–25).

Figure 14.11 shows the result of following the About the author link. The link’s
title—Deitel & Associates, Inc.— is shown with an option to traverse the link.

Figure 14.12 shows the result of traversing the authorDeitel link. The ending
resource of the link is displayed in a new window because the xlink:show attribute (line
44) of the arcElement (line 40) has the value new.

Lines 56–62

<arcElement xlink:type = "arc"
xlink:from = "warehouseXYZ"
xlink:arcrole = "http://deitel.com/xlink/info"
xlink:to = "JavaBook"
xlink:show = "new"
xlink:actuate = "onRequest"
xlink:title = "Information about this book"/>

384 XLink, XPointer, XInclude and XBase Chapter 14

Fig. 14.10 Traversing on outbound link. (©Fujitsu Laboratories Ltd.)

Fig. 14.11 Traversing an outbound link. (©Fujitsu Laboratories Ltd.)

Chapter 14 XLink, XPointer, XInclude and XBase 385

Fig. 14.12 Ending resource shown in a new window. (©Fujitsu Laboratories Ltd.)

create an arc, called an inbound arc, that has a starting resource that is remote (i.e., ware-
houseXYZ) and an ending resource that is local (i.e., JavaBook).

Lines 64–70

<arcElement xlink:type = "arc"
xlink:from = "publisherPrenticeHall"
xlink:arcrole = "http://deitel.com/xlink/stock"
xlink:to = "warehouseXYZ"
xlink:show = "embed"
xlink:actuate = "onLoad"
xlink:title = "Publisher's inventory"/>

create an arc, called a third-party arc, that has starting and ending resources that are both
remote. In this case, the arc is between resources publisherPrenticeHall and
warehouseXYZ. Attribute show has value embed, which indicates that the ending re-
source should replace the starting resource when the link is traversed (Fig. 14.10). Attribute
actuate has value onLoad, so upon loading the XML document, the link is traversed.
Because we consider the relationship between the publisher and warehouse as being differ-
ent than the previous three arcs, we provide a different arcrole value for this link.

14.3 XLink and DTDs
DTDs are often used with documents that use XLink for validation and to reduce the num-
ber of XLink attributes appearing in an XML document. For example, the linking element

<car xmlns:xlink = "http://www.w3.org/1999/xlink"
xlink:type = "simple" xlink:role = "MT4606"
xlink:title = "The Latest Model">

386 XLink, XPointer, XInclude and XBase Chapter 14

contains a namespace declaration and three attributes. By providing default values in the
DTD, we could “hide” some of these attributes and the namespace declaration. The linking
element might then look like

<car xlink:role = "MT4606" xlink:title = "The Latest Model">

where the namespace declaration and type attribute have #FIXED values in the DTD.
Figure 14.13 shows the DTD to which the example in Fig. 14.8 would conform.

Common Programming Error 14.1
Forgetting to declare XLink attributes in a DTD can result in an invalid document. 14.1

1 <!-- Fig. 14.13 : booklinks.dtd -->
2 <!-- DTD for extended Links -->
3
4 <!ELEMENT books (author, publisher, warehouse, book, arcElement*)>
5 <!ATTLIST books
6 xmlns:xlink CDATA #FIXED "http://www.w3.org/1999/xlink"
7 xlink:type (extended) #FIXED "extended"
8 xlink:role CDATA #IMPLIED
9 xlink:title CDATA #IMPLIED>

10
11 <!ELEMENT book (#PCDATA)>
12 <!ATTLIST book
13 xlink:type (resource) #FIXED "resource"
14 xlink:role CDATA #FIXED "http://deitel.com/xlink/book"
15 xlink:title CDATA #IMPLIED
16 xlink:label NMTOKEN #IMPLIED>
17
18 <!ELEMENT author (person*)>
19 <!ATTLIST author
20 xlink:type (locator) #FIXED "locator"
21 xlink:href CDATA #REQUIRED
22 xlink:role CDATA #FIXED "http://deitel.com/xlink/author"
23 xlink:title CDATA #IMPLIED
24 xlink:label NMTOKEN #IMPLIED>
25
26 <!ELEMENT publisher EMPTY>
27 <!ATTLIST publisher
28 xlink:type (locator) #FIXED "locator"
29 xlink:href CDATA #REQUIRED
30 xlink:role CDATA #FIXED "http://deitel.com/xlink/publisher"
31 xlink:title CDATA #IMPLIED
32 xlink:label NMTOKEN #IMPLIED>
33
34 <!ELEMENT warehouse EMPTY>
35 <!ATTLIST warehouse
36 xlink:type (locator) #FIXED "locator"
37 xlink:href CDATA #REQUIRED
38 xlink:role CDATA #FIXED "http://deitel.com/xlink/warehouse"

Fig. 14.13 DTD for extended XLink example (part 1 of 2).

Chapter 14 XLink, XPointer, XInclude and XBase 387

Line 4

<!ELEMENT books (author, publisher, book, arcElement*)>

defines element books, which contains elements author, publisher, book and ar-
cElement. Lines 5–9

<!ATTLIST books
 xmlns:xlink CDATA #FIXED "http://www.w3.org/1999/xlink"
 xlink:type (extended) #FIXED "extended"
 xlink:role CDATA #IMPLIED
 xlink:title CDATA #IMPLIED>

define the attributes for element books. We set the namespace prefix xlink to the URI
http://www.w3.org/1999/xlink, and we set attribute type to extended,
which specifies an extended link. Because the namespace prefix is bound to a URI and at-
tribute type is assigned a value in the DTD, we do not need to explicitly provide these
attributes and their values in the XML document that conforms to this DTD.

Lines 11–16

<!ELEMENT book (#PCDATA)>
<!ATTLIST book
 xlink:type (resource) #FIXED "resource"
 xlink:role CDATA #FIXED "http://deitel.com/xlink/book"
 xlink:title CDATA #IMPLIED
 xlink:label NMTOKEN #IMPLIED>

define element book and its attributes. Element book references a local resource, because
type is assigned resource. The element’s role is http://deitel.com/xlink/
book, which describes the element.

39 xlink:title CDATA #IMPLIED
40 xlink:label NMTOKEN #IMPLIED>
41
42 <!ELEMENT arcElement EMPTY>
43 <!ATTLIST arcElement
44 xlink:type (arc) #FIXED "arc"
45 xlink:arcrole CDATA #IMPLIED
46 xlink:title CDATA #IMPLIED
47 xlink:from NMTOKEN #IMPLIED
48 xlink:to NMTOKEN #IMPLIED
49 xlink:show (new | replace | embed | undefined) #IMPLIED
50 xlink:actuate (onLoad | onRequest | undefined) #IMPLIED>
51
52 <!ELEMENT persons (person+)>
53 <!ATTLIST persons id ID #REQUIRED>
54
55 <!ELEMENT person (#PCDATA)>

Fig. 14.13 DTD for extended XLink example (part 2 of 2).

388 XLink, XPointer, XInclude and XBase Chapter 14

Lines 18–24

<!ELEMENT author (persons)>
<!ATTLIST author
 xlink:type (locator) #FIXED "locator"
 xlink:href CDATA #REQUIRED
 xlink:role CDATA #FIXED "http://deitel.com/xlink/author"
 xlink:title CDATA #IMPLIED
 xlink:label NMTOKEN #IMPLIED>

define element author and its attributes. This element can contain a persons element.
Attribute type has value locator, which indicates that the element references remote
resources.

Lines 26–32 define element publisher, and lines 34–40 define element ware-
house. Each element’s type attribute references a remote resource, because it is assigned
locator.

Lines 42–50

<!ELEMENT arcElement EMPTY>
<!ATTLIST arcElement
 xlink:type (arc) #FIXED "arc"
 xlink:arcrole CDATA #IMPLIED
 xlink:title CDATA #IMPLIED
 xlink:from NMTOKEN #IMPLIED
 xlink:to NMTOKEN #IMPLIED
 xlink:show (new | replace | embed | undefined) #IMPLIED
 xlink:actuate (onLoad | onRequest | undefined) #IMPLIED>

define element arcElement and its attributes. Attribute show takes one of the values
new, replace, embed or undefined. Attribute actuate is assigned either onLoad,
onRequest or undefined.

14.4 XML Pointer Language (XPointer)
The XML Pointer Language (XPointer) is used to reference fragments of an XML docu-
ment via a URI. In Chapter 11, we discussed XPath, which allowed for selecting specific
nodes in an XML document. XPointer uses XPath expressions to provide a means for ref-
erencing an XML document’s nodes from a URI. The XPointer specification is currently a
W3C Candidate Recommendation. For the latest XPointer specification, visit
www.w3.org/TR/xptr.

In Section 14.2, we discussed XLink, which links resources. By using XPointer with
XLink, we can link to specific parts of a resource, instead of linking to the entire resource.
XPointer can link to specific locations (i.e., nodes in an XPath tree), or even ranges of loca-
tions, in an XML document. XPointer also adds the ability to search XML documents by
using string matching.

Software Engineering Observation 14.3
XPointer provides the ability to reference locations at a much finer level of granularity than
does XPath. For example, XPointer is capable of referencing the location of a single char-
acter. 14.3

Chapter 14 XLink, XPointer, XInclude and XBase 389

Figure 14.14 is an example XML contact list that contains ids for three authors.
XPointer has not been implemented as of the time of this writing. We use this XML docu-
ment as a basis for writing a few simple XPointer expressions.

Assume that the contact list has the relative URI /contacts.xml. With XLink, we
can reference the entire contact list with the URI

xlink:href = "/contacts.xml"

We can use the XPointer expression

xlink:href =
 "/contacts.xml#xpointer(//contact[@id = 'author02'])"

to reference the contact element with an id of author02. The name xpointer—
called a scheme—expresses the full XPointer form.

XPointer also provides abbreviations for expressions that use attribute id. For
example, if a document’s unique identifier is referenced in an expression such as

xlink:href = "/contacts.xml#xpointer(id('author01'])"

the expression can be simplified by writing

xlink:href = "/contacts.xml#author01"

which is a bare-name XPointer address. This simplified syntax is provided to encourage
document authors to use IDs for elements.

XPointer also provides extensions to XPath, such as the ability to select ranges of loca-
tions and perform string searches in an XML document. For information about the
XPointer extensions of XPath, please refer to the XPointer specification.

14.5 XML Inclusions (XInclude)
The XML 1.0 specification does not provide a method to reuse XML documents by includ-
ing one or more documents within other XML documents. To provide this feature, the W3C
has begun development of the XML Inclusions (XInclude) specification (currently a W3C
Working Draft). The latest XInclude specification is available at www.w3.org/TR/
xinclude.

1 <?xml version = "1.0"?>
2 <!-- Fig. 14.14 : contacts.xml -->
3 <!-- contact list document -->
4
5 <contacts>
6 <contact id = "author01">Deitel, Harvey</contact>
7 <contact id = "author02">Deitel, Paul</contact>
8 <contact id = "author03">Nieto, Tem</contact>
9 </contacts>

Fig. 14.14 Example contact list.

390 XLink, XPointer, XInclude and XBase Chapter 14

Software Engineering Observation 14.4
XInclude differs from xlink:show = "embed" in that it merges the tree structures of the
two documents into a single tree. 14.4

In object-oriented languages, such as Java and C++, methods and data are encapsulated
in reusable components called classes. Entire programs can then be built by simply piecing
together instances of these classes. Similarly, XInclude provides a framework for reusing
existing XML documents.

To add one XML document inside another, an include element is used. An include ele-
ment is any XML element that has particular attributes from the namespace http://
www.w3.org/1999/XML/xinclude. For example,

<includer
xmlns:xinclude = "http://www.w3.org/1999/XML/xinclude"
xinclude:href = "test.xml"
xinclude:parse = "xml"/>

includes the XML document test.xml in the current XML document. Element in-
cluder is an include element, with the required XInclude href attribute for referencing
an XML document. To include portions of another XML document, XPointer can be used
in the xinclude attribute href. The optional XInclude attribute parse can have value
xml or text. The default value, xml, parses the XML document as XML for inclusion;
thus, any entities, include elements and other parsable items are processed before being em-
bedded into the XML document. Using the value text in the parse attribute incorporates
the document referenced in the href attribute as plain-text character data, which is not
parsed.

14.6 XML Base (XBase)
The W3C is currently working on a specification (currently a W3C Candidate Recommen-
dation) to provide base URIs for relative links, similar to the HTML element base. XBase
allows a document author to change the base URI for relative links in a document. For the
latest specification, visit www.w3.org/TR/xmlbase.

In Section 14.4, we used the relative link /contacts.xml to reference a resource.
If the base URI were http://deitel.com, then the complete URI for the resource
would be http://deitel.com/contacts.xml.

By using the XML attribute xml:base, a document author can provide a new base
URI. For example,

<contact
xml:base = "http://deitel.net/"
xlink:type = "simple"
xlink:href = "/authors/author01biography.xml"
xlink:role = "http://deitel.com/xlink/contact"
xlink:title = "About this author">

uses attribute xml:base to provide the base URI http://deitel.net/ for attribute
href. The complete URI referenced by href is therefore

http://deitel.net/authors/author01biography.xml

Chapter 14 XLink, XPointer, XInclude and XBase 391

14.7 Internet and World Wide Web Resources
www.w3.org/TR/xlink
The most recent W3C XLink Recommendation.

www.w3.org/TR/xmlbase
The most recent XMLBase specification from the W3C.

www.w3.org/TR/xptr
The most recent W3C XML Pointer Language Recommendation.

www.oasis-open.org/cover/xll.html
Oasis’s XML Linking and Addressing Languages Cover Page provides a good introduction to XLink
and XPath, accompanied by references and links.

www.consistencycheck.com
This site provides an introductory discussion of XLink and contains several examples.

www.simonstl.com/projects/xlinkfilter/resources.html
This site provides links to resources on XLink and XPointer.

www.thefaactory.com/xlink2html
Home page for XLink2HTML, which creates HTML representations of XLink elements.

SUMMARY
• The W3C has been actively developing a specification, called the XML Linking Language

(XLink), for linking to “resources” from an XML document. XLink goes far beyond HTML link-
ing and is currently a W3C Candidate Recommendation. XLink was designed using ideas from
other linking standards; HTML, HyTime and Text Encoding Initiative (TEI) were the most influ-
ential.

• XLink is capable of linking more than just documents; XLink links resources, which include doc-
uments, audio, video, database data, etc. Web browsers will eventually support XLink. However,
XLink is intended for a broader base of applications, not just Web browsers. As industry begins to
implement XLink, it will become more obvious what these XLink-aware applications will be.

• With XLink, resources can be linked in a variety of ways. The most basic type of link specified by
XLink is a simple link, which links one resource to another the same way that an HTML link does.
Simple links are also called inline links, because the link’s content is a resource.

• XLink elements that specify linking information are called linking elements.

• A local resource is contained in the linking element, and a remote resource is external to the linking
element.

• In XLink terminology, the markup that specifies how to traverse between resources is called an
arc. An outbound arc has a starting resource that is local and an ending resource that is remote.

• The xlink namespace prefix is bound to the URI http://www.w3.org/1999/xlink.

• Attribute type specifies the type of linking—either simple or extended. Attribute href defines
the remote resource’s URI and is required. Attribute role is a URI that references a resource that
describes the link, and attribute title is a descriptive title for the link.

• XLink provides attributes show and actuate for specifying how to display a resource when it
is loaded and for specifying when the resource should be retrieved, respectively.

• Attribute show can be assigned the value new, which indicates that the resource should be dis-
played in a new window (or equivalent, based on the XLink-aware application); replace, for
replacing the current resource with the linked resource; embed, for replacing the current element

392 XLink, XPointer, XInclude and XBase Chapter 14

with the linked resource, and other or none, which allows the XLink-aware application to de-
cide how to display the link.

• Attribute actuate can be assigned the value onRequest, which indicates that the resource
should not be retrieved until the user requests it (e.g., by clicking on the link); onLoad, which
indicates that the document should be retrieved as soon as it is loaded; other, which allows the
XLink-aware application to decide when to load the resource based on other markup in the docu-
ment and the value none, which provides no information on when to load the resource.

• XLink’s capabilities go well beyond simple links. XLink also provides extended links for linking
multiple combinations of local and remote resources. With XLink, we can create multidirectional
links for traversing between resources. The user (or an application) can start at either end and
traverse to the other. Multidirectional links are not limited to just two resources, but can link any
number of resources. The links need not be traversed sequentially.

• Attribute type is assigned extended for extended links.

• Attribute label is assigned a value that identifies the resource. A label’s value is used to link
one resource to another.

• Attribute type is assigned locator for remote resources.

• Attribute arcrole describes the relationship between resources.

• An inbound arc has a starting resource that is remote and an ending resource that is local.

• A third-party arc has starting and ending resources that are both remote.

• DTDs are often used with documents that use XLink for validation and to reduce the number of
XLink attributes appearing in a linking element.

• The XML Pointer Language (XPointer) is used to reference fragments of an XML document via
a URI. XPointer uses XPath expressions to provide a means for referencing an XML document’s
nodes from a URI. The XPointer specification is currently a W3C Candidate Recommendation.

• By using XPointer with XLink, we can link to specific parts of a resource, instead of linking to the
entire resource. XPointer can link to specific locations, or even ranges of locations, in an XML
document. XPointer also adds the ability to search XML documents by using string matching.

• The XML 1.0 specification does not provide a method to reuse XML documents by including one
or more documents within other XML documents. To provide this feature, the W3C has begun de-
velopment of the XML Inclusion (XInclude) specification (currently a W3C Working Draft).

• To add one XML document inside another, an include element is used. An include element is any
XML element that has particular attributes from the namespacehttp://www.w3.org/1999/
XML/xinclude.

• To include portions of another XML document, XPointer can be used in the xinclude attribute
href. The optional XInclude attribute parse can have value xml or text. The default value,
xml, parses the XML document as XML for inclusion; thus, any entities, include elements and
other parsable items are processed before being embedded into the XML document. Using the val-
ue text in the parse attribute incorporates the document referenced in the href attribute as
plain-text character data, which is not parsed.

• XBase allows a document author to change the base URI for any relative links in a document, sim-
ilar to the HTML element base. XBase is currently a W3C Candidate Recommendation. By using
the XML attribute xml:base, a document author can provide a new base URI.

TERMINOLOGY
actuate attribute resource
arc resource

Chapter 14 XLink, XPointer, XInclude and XBase 393

SELF-REVIEW EXERCISES
14.1 State whether the following are true or false. If false, explain why.

a) XLink links resources.
b) Simple links provide multiple links between resources.
c) Extended links can contain any combination of inbound, outbound or third-party arcs.
d) XPointer expressions always reference entire resources.
e) An arc describes how to traverse between two resources.
f) XLink attribute actuate specifies the meaning between an ending resource and a start-

ing resource.
g) A simple linking element can contain href, role, arcrole, title, show and ac-

tuate attributes.
h) XLink adds the ability to search XML documents by using string matching.
i) XPath extends XPointer.
j) A simple link requires attribute type to have the value simple.

14.2 Fill in the blanks in each of the following statements:
a) The two types of XLink links are and .
b) A/An link can contain any number of links between local and/or remote re-

sources.
c) XLink attribute type=" " defines an element for addressing a remote re-

source.

arc role attribute
arcrole attribute show attribute
bare-name XPointer address simple attribute value
base URI simple link
Candidate Recommendation starting resource
embed attribute value Text Encoding Initiative (TEI)
ending resource text attribute
extended attribute value third-party arc
extended link title attribute
from attribute to attribute
href attribute traverse a link
http://www.w3.org/1999/XML/xin-
clude

type attribute
undefined attribute value

hyperlink unidirectional link
inbound arc XBase (XML Base)
include element XInclude (XML Inclusions)
inline link XInclude attribute href
label attribute XInclude attribute parse
link XLink (XML Linking Language)
local resource xlink namespace prefix
locator attribute value XML Base
new attribute value xml:base attribute
onLoad attribute value XML Inclusion
onRequest attribute value XML Linking Language
outbound arc XML Pointer Language
relative link XPointer (XML Pointer)
remote resource xpointer scheme
replace

394 XLink, XPointer, XInclude and XBase Chapter 14

d) The XML Language references a resource or a fragment of a resource.
e) A XPointer address simplifies expressions that use ids.
f) An XPath node is called a in XPointer.
g) was developed to provide a method for including XML documents within

other XML documents.
h) An XML element that has XInclude attributes is called an element.
i) XLink attribute contains a human-readable description of a link.
j) Links between remote resources and local resources are known as links.

ANSWERS TO SELF-REVIEW EXERCISES
14.1 a) True. b) False. Simple links provide a single outbound link between two resources. c)
True. d) False. XPointer can reference resource fragments as well as the entire resource. e) True. f)
False. XML attribute actuate specifies when to initiate traversal. g) True. h) False. XPointer adds
the ability to search XML documents using string matching. i) False. XPointer extends XPath. j) True.

14.2 a) extended, simple. b) extended. c) locator. d) Pointer. e) bare-name. f) locations. g)
XML Inclusions (XInclude). h) include. i) title. j) inbound.

EXERCISES
14.3 Construct a DTD and a corresponding XML document for the following scenario: Consider
a video store that maintains a record (as an XML document) of every cassette it has. Each cassette is
marked up by a movie element, which contains a simple link whose local resource is the document
itself and whose remote resource is the movie’s Web site. Element movie further contains element
stock, which specifies the number of cassettes available, and element dealer, which describes the
dealer who supplies the cassette. Element dealer also contains a simple link whose remote resource
is the dealer’s Web page. Specify all of the attributes required for each simple link.

14.4 A search engine needs to display all of the links related to an XML store. The store sells
products such as XML browsers and parsers. The search engine provides information about custom-
ers and manufacturers related to the store. It also provides information about the manufacturers’ fran-
chises. Write an XML document with an extended link that would help the search engine. Product
descriptions should be local resources. Customer data, manufacturer data and franchise data should
be remote resources. Each product has inbound arcs from the customer database as well as from the
manufacturer database. The document should also describe a third-party arc from a manufacturer to
its franchise. Also, create a DTD for the XML document.

15
Case Study: Message

Forum with Active
Server Pages

Objectives
• To create a Web-based message forum using Active

Server Pages.
• To use XML with Active Server Pages.
• To be able to add new forums.
• To be able to post messages to the message forum.
• To use Microsoft’s DOM to manipulate an XML

document.
• To use XSLT to transform XML documents.
If any man will draw up his case, and put his name at the foot
of the first page, I will give him an immediate reply. Where he
compels me to turn over the sheet, he must wait my leisure.
Lord Sandwich

They also serve who only stand and wait.
John Milton

A fair request should be followed by a deed in silence.
Dante Alighieri

396 Case Study: Message Forum with Active Server Pages Chapter 15

15.1 Introduction
In this chapter, we use XML and many of the technologies presented in the first 14 chapters
to create one of the most popular types of Web sites—a message forum. Message forums
are “virtual” bulletin boards where various topics are discussed. Common features of mes-
sage forum include discussion groups, questions and answers and general comments. Many
Web sites host message forums. For example,

www.egroups.com
web.eesite.com/forums
www.deja.com

are popular message forums.
The message forum we create in this chapter uses Microsoft’s Active Server Pages

(ASP) technology. [Note: If you are not familiar with ASP or need a review, we have pro-
vided an introduction to ASP in Chapter 25.] In the case study presented in this chapter,
users can post messages and start new forums. We leave the removal of a forum as an exer-
cise for the reader.

15.2 Setup and Message Forum Documents
In this section, we provide the setup instructions for executing the case study. The case
study requires the following software:

1. Microsoft Personal Web Server (PWS), Microsoft Internet Information Services
or Microsoft Internet Information Server (IIS).

2. Internet Explorer 5.5 (for XML and XSLT processing).

Copy the files from the Chapter 15 examples directory (on the CD-ROM that accom-
panies this book) to the Web directory (e.g., c:\inetpub\wwwroot). [Note: Either
PWS or IIS must be installed; otherwise, the Web directory will not exist. This directory
must also have Write permissions to allow users to post messages and add forums.] Each
of these files and documents is summarized in Fig. 15.1. We will discuss each of these files
later in the chapter.

Outline
15.1 Introduction
15.2 Setup and Message Forum Documents
15.3 Forum Navigation
15.4 Adding Forums
15.5 Forum XML Documents
15.6 Posting Messages
15.7 Other HTML Documents
15.8 Internet and World Wide Web Resources

Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

Chapter 15 Case Study: Message Forum with Active Server Pages 397

The main page, default.asp, displays the list of available message forums, which
is stored in the XML document forums.xml. Hyperlinks are provided to each XML mes-
sage forum document and also to addForum.asp, which adds a forum to forums.xml
and creates a new XML message forum (e.g., forum2.xml) using the message forum
template template.xml.

Each XML message forum document (e.g., forum1.xml) is transformed into an
HTML document using the XSLT document formatting.xsl. The CSS document
site.css formats the HTML for display. New messages are posted to a forum by
addPost.asp. If errors occur when the document is processed, invalid.html is dis-
played. Some of these key interactions between documents are illustrated in Fig. 15.2.

15.3 Forum Navigation
This section introduces the documents used for organizing and displaying the message fo-
rums. Figure 15.3 lists the XML document (forums.xml) that marks up each message
forum.

Fig. 15.2 Key interactions between message forum documents.

File Name Description

forums.xml XML document listing all available forums and their filenames.

default.asp Main page, providing navigational links to the forums.

template.xml Template for a message forum XML document.

addForum.asp Adds a forum.

forum1.xml Sample message forum.

formatting.xsl Document for transforming message forums into HTML.

addPost.asp Adds a message to a forum.

invalid.html Used to display an error message.

site.css Stylesheet for formatting HTML documents.

Fig. 15.1 Message forum documents.

default.asp

addForum.asp

forums.xml

forum1.xml

addPost.asp

formatting.xsl

398 Case Study: Message Forum with Active Server Pages Chapter 15

Root element forums can hold any number of message forums. We provide an initial
forum named forum1.xml. An individual message forum is marked up using element
forum. Attribute filename stores the name of the XML document that contains the
forum’s markup. Child element name marks up the name of the forum, which is used as a
hyperlink descriptor in default.asp. We will discuss how this XML document is
manipulated momentarily.

Figure 15.4 shows the Active Server Page (default.asp) that displays the list of
message forums contained in forums.xml. CSS document site.css is applied to the
HTML sent to the Web browser. On line 1 we set the scripting language for the ASP page
to VBScript. Although other languages may be used (e.g., JavaScript, Perl, etc.),
VBScript is the most common language for ASP scripting.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 15.3 : forums.xml -->
4
5 <forums>
6
7 <forum filename = "forum1.xml">
8 <name>Forum 1 Name</name>
9 </forum>

10
11 </forums>

Fig. 15.3 XML document that marks up the message forums.

1 <% @LANGUAGE = "VBScript" %>
2 <% Option Explicit %>
3
4 <% ' Fig. 15.4 : default.asp %>
5
6 <!DOCTYPE html
7 PUBLIC "-//W3C//DTD HTML 4.0//EN"
8 "http://www.w3.org/TR/REC-html40/strict.dtd">
9

10 <html>
11
12 <head>
13 <title>Deitel Message Forums</title>
14 <link rel = "stylesheet" type = "text/css" href = "site.css">
15 </head>
16
17 <body>
18 <h1>Deitel Message Forums</h1>
19 <p>Available Forums</p>
20
21 <%
22 Dim xmlFile, xmlNodes, xmlItem
23 Dim strPath, strTitle, strFileName

Fig. 15.4 Message forums main page (part 1 of 2).

Chapter 15 Case Study: Message Forum with Active Server Pages 399

24
25 strPath = Server.MapPath("forums.xml")
26
27 Set xmlFile = Server.CreateObject("Microsoft.XMLDOM")
28 xmlFile.Async = False
29
30 If Not xmlFile.Load(strPath) Then
31 Call Response.Redirect("invalid.html")
32 End If
33
34 Set xmlNodes = xmlFile.DocumentElement.ChildNodes
35
36 For Each xmlItem In xmlNodes
37 strFileName = xmlItem.getAttribute("filename")
38 strTitle = xmlItem.text
39 %>
40
41 <a href = "<% =strFileName %>"><% =strTitle %>
42
43 <%
44 Next
45 %>
46
47
48 <p>Forum Management</p>
49
50
51 Add a Forum
52 Delete a Forum
53
54
55 </body>
56
57 </html>

Fig. 15.4 Message forums main page (part 2 of 2).

400 Case Study: Message Forum with Active Server Pages Chapter 15

Line 25

strPath = Server.MapPath("forums.xml")

gets the absolute path for the file forums.xml and stores it in variable strPath. Mi-
crosoft’s XML parser (i.e., msxml) requires an absolute path.

Line 27

Set xmlFile = Server.CreateObject("Microsoft.XMLDOM")

calls the Server object’s CreateObject method to instantiate a DOMDocument ob-
ject (Microsoft.XMLDOM) and assigns the object to xmlFile. The DOMDocument
object is the document root of an XML document.

Line 28

xmlFile.Async = False

sets the object referenced by xmlFile to behave synchronously (i.e., when a method is
called, it must finish executing before any other method is allowed to execute). We will ex-
plain the significance of setting Async to False momentarily.

Lines 30–32

If Not xmlFile.Load(strPath) Then
Call Response.Redirect("invalid.html")

End If

call method Load to parse the XML document (e.g., forums.xml). If parsing succeeded,
True is returned; otherwise, False is returned. Because xmlFile is synchronous, exe-
cution does not continue until method Load completes. If method calls are not synchro-
nous (i.e., they are asynchronous), execution continues despite the fact that the method may
not have finished executing, which could result in logic errors (i.e., the code does not exe-
cute as intended). If parsing fails, we redirect the browser to invalid.html, which is
discussed in Section 15.7.

Line 34

Set xmlNodes = xmlFile.DocumentElement.ChildNodes

uses property DocumentElement to get the root element’s child nodes. Element nodes
have property ChildNodes, which returns a collection (e.g., a list) of the element node’s
child nodes.

Lines 36–44 contain a For Each loop that iterates through all the nodes in the collec-
tion of child nodes stored in xmlNodes. Line 36

For Each xmlItem In xmlNodes

uses a For Each loop to iterate through each node referenced by xmlNodes and sets vari-
able xmlItem to that node.

Line 37

strFileName = xmlItem.getAttribute("filename")

Chapter 15 Case Study: Message Forum with Active Server Pages 401

calls method getAttribute to get a forum’s filename. This method returns the value of
the node’s filename attribute and assigns it to strFileName.

Line 38

strTitle = xmlItem.text

uses property text to return the node’s text content, which is the forum’s name.
Line 41

<a href = "<% =strFileName %>"><% =strTitle %>

writes, as an anchor, the value of strFileName and writes the value of strTitle to
describe the anchor.

Line 51 provides a hyperlink to addForum.asp, which adds a new forum and is dis-
cussed in the next section. Line 52 is a placeholder for a link to delete forums, the process
of which is left to the reader as an exercise.

15.4 Adding Forums
In this section, we discuss the documents used to add new forums. Each new forum created
is based upon a template XML document named template.xml (Fig. 15.5).

This template document contains the bare components for a message forum. It contains
a stylesheet element that references formatting.xsl (discussed in Fig. 15.8) and
the root element forum. The Active Server Page (addForum.asp) that modifies the
template document is presented in Fig. 15.6. [Note: Actually, the copy of the template doc-
ument loaded into memory is modified and saved to disk with a different name.]

This Active Server Page performs two tasks: First, it displays the form that gets the
new forum’s information (lines 104–146), and it provides the script for creating the forum
(lines 1–102). We will discuss the form for getting information first.

Line 114

<p><% =strError %></p>

writes strError’s content to the Web browser. Error messages, if they exist, are stored
in strError.

Lines 117–154 create a form to post information back to addForum.asp. The form
has fields for the forum name, forum filename, user name, first message title and first mes-
sage text. The Request object is used to retrieve the submitted form’s value.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 15.5 : template.xml -->
4 <?xml:stylesheet type = "text/xsl" href = "formatting.xsl"?>
5
6 <forum>
7 </forum>

Fig. 15.5 Template for message forum XML documents.

402 Case Study: Message Forum with Active Server Pages Chapter 15

1 <% @LANGUAGE = "VBScript" %>
2 <% Option Explicit %>
3
4 <% ' Fig. 15.6 : addForum.asp %>
5
6 <%
7 Dim xmlFile, xmlRoot, xmlNode
8 Dim strTitle, strError, strPath
9

10 If Request("submit") <> Empty Then
11
12 If Request("name") <> Empty And _
13 Request("filename") <> Empty And _
14 Request("user") <> Empty And _
15 Request("title") <> Empty And _
16 Request("text") <> Empty Then
17
18 ' Lock application. No modifications but ours.
19 Call Application.Lock()
20
21 ' Creating a new XML file.
22 strPath = Server.MapPath(Request("filename"))
23
24 Set xmlFile = Server.CreateObject("Microsoft.XMLDOM")
25 xmlFile.Async = False
26
27 If xmlFile.Load(strPath) Then
28 Call Application.Unlock()
29 Call Response.Redirect("invalid.html")
30 End If
31
32 ' Set up the file.
33 Call xmlFile.Load(Server.MapPath("template.xml"))
34
35 ' Get the root node.
36 Set xmlRoot = xmlFile.DocumentElement
37
38 ' Set the filename.
39 Call xmlRoot.SetAttribute("filename", _
40 Request("filename"))
41
42 ' Create Name node.
43 Set xmlNode = xmlFile.CreateElement("name")
44 xmlNode.Text = Request("name")
45 Call xmlRoot.AppendChild(xmlNode)
46
47 ' Create first message.
48 Set xmlNode = xmlFile.CreateElement("message")
49 Call xmlNode.SetAttribute("timestamp", Now & " EST")
50 Call xmlRoot.AppendChild(xmlNode)
51
52 Set xmlRoot = xmlNode
53

Fig. 15.6 Page to add a forum (part 1 of 4).

Chapter 15 Case Study: Message Forum with Active Server Pages 403

54 ' Create user node.
55 Set xmlNode = xmlFile.CreateElement("user")
56 xmlNode.Text = Request("user")
57 Call xmlRoot.AppendChild(xmlNode)
58
59 ' Create title node.
60 Set xmlNode = xmlFile.CreateElement("title")
61 xmlNode.Text = Request("title")
62 Call xmlRoot.AppendChild(xmlNode)
63
64 ' Create text node.
65 Set xmlNode = xmlFile.CreateElement("text")
66 xmlNode.Text = Request("text")
67 Call xmlRoot.AppendChild(xmlNode)
68
69 Call xmlFile.Save(strPath) ' Save the file.
70
71 ' Load XML file.
72 strPath = Server.MapPath("forums.xml")
73
74 Set xmlFile = Server.CreateObject("Microsoft.XMLDOM")
75 xmlFile.Async = False
76
77 If Not xmlFile.Load(strPath) Then
78 Call Application.Unlock()
79 Call Response.Redirect("invalid.html")
80 End If
81
82 ' Get the root node.
83 Set xmlRoot = xmlFile.DocumentElement
84
85 ' Create Nodes.
86 Set xmlNode = xmlFile.CreateElement("forum")
87 Call xmlNode.SetAttribute("filename", _
88 Request("filename"))
89 xmlNode.Text = Request("name")
90 Call xmlRoot.AppendChild(xmlNode)
91
92 Call xmlFile.Save(strPath) ' Save the file.
93
94 ' Finished processing.
95 Call Application.Unlock()
96 Call Response.Redirect("default.asp")
97 Else
98 strError = "ERROR: Invalid input."
99 End If
100
101 End If
102 %>
103
104 <!DOCTYPE html
105 PUBLIC "-//W3C//DTD HTML 4.0//EN"
106 "http://www.w3.org/TR/REC-html40/strict.dtd">

Fig. 15.6 Page to add a forum (part 2 of 4).

404 Case Study: Message Forum with Active Server Pages Chapter 15

107
108 <html>
109 <head>
110 <title>Add a Forum</title>
111 <link rel = "stylesheet" TYPE = "text/css" href = "site.css">
112 </head>
113
114 <body>
115 <p><% =strError %></p>
116
117 <form method = "POST" action = "addForum.asp">
118
119 <p>
120 Forum Name:

121 <input type = "text" size = "40" name = "name"
122 value = "<% =Request("name") %>">
123 </p>
124
125 <p>
126 Forum File Name:

127 <input type = "text" size = "40" name = "filename"
128 value = "<% =Request("filename") %>">
129 </p>
130
131 <p>
132 User:

133 <input type = "text" size = "40" name = "user"
134 value = "<% =Request("user") %>">
135 </p>
136
137 <p>
138 Message Title:

139 <input type = "text" size = "40" name = "title"
140 value = "<% =Request("title") %>">
141 </p>
142
143 <p>
144 Message Text:

145 <textarea name = "text" cols = "40"
146 rows = "4"><% =Request("text") %></textarea>
147 </p>
148
149 <p>
150 <input type = "submit" name = "submit" value = "Submit">
151 <input type = "Reset" value = "Clear">
152 </p>
153
154 </form>
155
156 <p>
157 Return to Main Page
158 </p>
159

Fig. 15.6 Page to add a forum (part 3 of 4).

Chapter 15 Case Study: Message Forum with Active Server Pages 405

We will now discuss the script logic for the page. Line 10

If Request("submit") <> Empty Then

checks if the form was submitted by testing the form’s submit field for a value. If the
submit field is Empty, then the form was not submitted.

Lines 12–16 check the form’s fields for values. If any of the fields are Empty, the
information for the new forum is incomplete, and line 98

strError = "ERROR: Invalid input."

sets strError to "ERROR: Invalid input.".
Line 19

Call Application.Lock()

calls Application method Lock to prevent another instance of this script from execut-
ing simultaneously. Simultaneous execution can occur when one client is executing the
script and another client requests the same document. This type of behavior creates prob-
lems for scripts that access files.

160 </body>
161
162 </html>

Fig. 15.6 Page to add a forum (part 4 of 4).

406 Case Study: Message Forum with Active Server Pages Chapter 15

Lines 27–30 attempt to load the file specified by the user. If the file successfully loads,
then the file already exists, so we redirect to invalid.html. Remember, we want to add
a new forum, not open an existing one.

Line 33

Call xmlFile.Load(Server.MapPath("template.xml"))

loads the template XML document (i.e., template.xml). We will mark up the form’s
data and add the data to the in-memory representation of template.xml.

Lines 39 and 40

Call xmlRoot.SetAttribute("filename", _
 Request("filename"))

call method SetAttribute to create an attribute node named filename that has the
value contained in form field filename. If the attribute specified does not exist in the
document, it is automatically created.

Line 43

Set xmlNode = xmlFile.CreateElement("name")

creates a new element node named name using DOMDocument method CreateEle-
ment. New nodes (i.e., elements, attributes, etc.) can be created only by the document root.

Line 44

xmlNode.Text = Request("name")

assigns form field name’s value to the element node’s (created in line 43) Text property.
Line 45

Call xmlRoot.AppendChild(xmlNode)

uses method AppendChild to append the newly created element name node to the root
element (i.e., forum).

Lines 48–50 create and append element message, along with attribute timestamp,
to the root element forum. Lines 55–57 create and append element user to element mes-
sage. Lines 60–62 create and append element title, and lines 65–67 create and append
element text, to the root element.

Line 69

Call xmlFile.Save(strPath) ' Save the file.

saves the XML document to disk by calling method Save. Variable strPath contains
the filename provided by the user in line 22.

Lines 72–92 open, modify and save forums.xml. Line 95

Call Application.Unlock()

unlocks the script so that other pages can execute it.

Chapter 15 Case Study: Message Forum with Active Server Pages 407

15.5 Forum XML Documents
This section presents a sample forum (Fig. 15.7) that contains several messages and the
XSLT document (Fig. 15.8) that transforms it into HTML.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 15.7 : forum1.xml -->
4
5 <?xml:stylesheet type = "text/xsl" href = "formatting.xsl"?>
6
7 <forum file = "forum1.xml">
8
9 <name>Forum 1 Name</name>

10
11 <message timestamp = "06/28/00 14:22">
12 <user>Person1</user>
13 <title>Title One</title>
14 <text>Text of message of Title One</text>
15 </message>
16
17 <message timestamp = "06/29/00 14:22">
18 <user>Person2</user>
19 <title>Title Two</title>
20 <text>Text of message of Title Two</text>
21 </message>
22
23 <message timestamp = "06/29/00 14:28">
24 <user>Person1</user>
25 <title>Title Three</title>
26 <text>Text of message of Title Three</text>
27 </message>
28
29 </forum>

Fig. 15.7 Sample forum.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 15.8 : formatting.xsl -->
4
5 <xsl:stylesheet version = "1.0"
6 xmlns:xsl = "http://www.w3.org/TR/WD-xsl">
7
8 <xsl:template match = "/">
9 <html>

10 <xsl:apply-templates select = "*"/>
11 </html>
12 </xsl:template>
13

Fig. 15.8 XSLT to transform XML forum document into HTML (part 1 of 3).

408 Case Study: Message Forum with Active Server Pages Chapter 15

14 <xsl:template match = "forum">
15
16 <head>
17 <title><xsl:value-of select = "name"/></title>
18 <link rel = "stylesheet" type = "text/css"
19 href = "site.css"/>
20 </head>
21
22 <body>
23
24 <table width = "100%" cellspacing = "0"
25 cellpadding = "2">
26 <tr>
27 <td class = "forumTitle">
28 <xsl:value-of select = "name" />
29 </td>
30 </tr>
31 </table>
32 <xsl:apply-templates select = "message" />
33
34 <p>
35 <a>
36 <xsl:attribute
37 name = "href">addPost.asp?file=<xsl:value-of
38 select = "@file" />
39 </xsl:attribute>
40 Post a Message

41 Return to Main Page
42 </p>
43
44 </body>
45
46 </xsl:template>
47
48 <xsl:template match = "message">
49
50 <table width = "100%" cellspacing = "0"
51 cellpadding = "2">
52
53 <tr>
54 <td class = "msgTitle">
55 <xsl:value-of select = "title"/>
56 </td>
57 </tr>
58
59 <tr>
60 <td class = "msgInfo">
61 by
62 <xsl:value-of select = "user"/>
63 at
64
65 <xsl:value-of select = "@timestamp"/>
66

Fig. 15.8 XSLT to transform XML forum document into HTML (part 2 of 3).

Chapter 15 Case Study: Message Forum with Active Server Pages 409

Lines 5 and 6 (Fig. 15.8)

<xsl:stylesheet version = "1.0"
xmlns:xsl = "http://www.w3.org/TR/WD-xsl">

use a different XSL namespace than the one presented in Chapter 12. Internet Explorer uses
the URI http://www.w3.org/TR/WD-xsl for processing of XSL documents. We
use this namespace because Internet Explorer does not support the newer, XSLT
namespace.

Figure 15.9 shows the result of the transformation of forum1.xml. Line 67 (Fig.
15.9)

Post a Message

67 </td>
68 </tr>
69
70 <tr>
71 <td class = "msgText">
72 <xsl:apply-templates select = "text"/>
73 </td>
74 </tr>
75
76 </table>
77
78 </xsl:template>
79
80 </xsl:stylesheet>

Fig. 15.8 XSLT to transform XML forum document into HTML (part 3 of 3).

1 <html>
2
3 <head>
4 <title>Forum 1 Name</title>
5 <link href = "site.css" type = "text/css" rel = "stylesheet">
6 </head>
7
8 <body>
9 <table cellpadding = "2" cellspacing = "0" width = "100%">

10 <tr>
11 <td class = "forumTitle">Forum 1 Name</td>
12 </tr>
13 </table>
14
15 <table cellpadding = "2" cellspacing = "0" width = "100%">
16 <tr>
17 <td class = "msgTitle">Title One</td>
18 </tr>
19 <tr>

Fig. 15.9 Output of the transformation of the forum XML document (part 1 of 3).

410 Case Study: Message Forum with Active Server Pages Chapter 15

20 <td class = "msgInfo">
21 by
22 Person1
23 at
24 06/28/00 14:22
25 </td>
26 </tr>
27 <tr>
28 <td class = "msgText">Text of message of Title One</td>
29 </tr>
30 </table>
31
32 <table cellpadding = "2" cellspacing = "0" width = "100%">
33 <tr>
34 <td class = "msgTitle">Title Two</td>
35 </tr>
36 <tr>
37 <td class = "msgInfo">
38 by
39 Person2
40 at
41 06/29/00 14:22
42 </td>
43 </tr>
44 <tr>
45 <td class = "msgText">Text of message of Title Two</td>
46 </tr>
47 </table>
48
49 <table cellpadding = "2" cellspacing = "0" width = "100%">
50 <tr>
51 <td class = "msgTitle">Title Three</td>
52 </tr>
53 <tr>
54 <td class = "msgInfo">
55 by
56 Person1
57 at
58 06/29/00 14:28
59 </td>
60 </tr>
61 <tr>
62 <td class = "msgText">Text of message of Title Three</td>
63 </tr>
64 </table>
65
66 <p>
67 Post a Message
68

69 Return to Main Page
70 </p>
71 </body>
72
73 </html>

Fig. 15.9 Output of the transformation of the forum XML document (part 2 of 3).

Chapter 15 Case Study: Message Forum with Active Server Pages 411

provides a link to addPost.asp, along with the name of the file to which the new mes-
sage will be added.

15.6 Posting Messages
In this section, we present the ASP document addPost.asp (Fig. 15.10), which posts
messages to a forum. This ASP uses much of the same functionality that addForum.asp
uses.

Lines 25–28 load the forum XML document. Lines 34–36 create a message element
and an associated timestamp attribute. Lines 41–43 create child element user; lines
46–48 create child element title and lines 51–53 create child element text for element
message. Finally, the forum is saved to disk in line 55.

15.7 Other HTML Documents
In this section, we present two other documents used in the case study. Figure 15.11 lists
the HTML document that displays error messages (invalid.html).

1 <% @LANGUAGE = "VBScript" %>
2 <% Option Explicit %>
3

Fig. 15.10 Adding a message to a forum (part 1 of 4).

Fig. 15.9 Output of the transformation of the forum XML document (part 3 of 3).

412 Case Study: Message Forum with Active Server Pages Chapter 15

4 <% ' Fig. 15.10 : addPost.asp %>
5
6 <%
7 Dim xmlFile, xmlRoot, xmlNode
8 Dim strTitle, strError, strPath
9

10 If Request("submit") <> Empty Then
11
12 If Request("file") <> Empty And _
13 Request("user") <> Empty And _
14 Request("title") <> Empty And _
15 Request("text") <> Empty Then
16
17 ' Lock application. No modifications but ours.
18 Call Application.Lock()
19
20 strPath = Server.MapPath(Request("file"))
21
22 Set xmlFile = Server.CreateObject("Microsoft.XMLDOM")
23 xmlFile.Async = False
24
25 If Not xmlFile.Load(strPath) Then
26 Call Application.Unlock()
27 Call Response.Redirect("invalid.html")
28 End If
29
30 ' Get the root node.
31 Set xmlRoot = xmlFile.DocumentElement
32
33 ' Create first message.
34 Set xmlNode = xmlFile.CreateElement("message")
35 Call xmlNode.SetAttribute("timestamp", Now & " EST")
36 Call xmlRoot.AppendChild(xmlNode)
37
38 Set xmlRoot = xmlNode
39
40 ' Create user node.
41 Set xmlNode = xmlFile.CreateElement("user")
42 xmlNode.Text = Request("user")
43 Call xmlRoot.AppendChild(xmlNode)
44
45 ' Create title node.
46 Set xmlNode = xmlFile.CreateElement("title")
47 xmlNode.Text = Request("title")
48 Call xmlRoot.AppendChild(xmlNode)
49
50 ' Create text node.
51 Set xmlNode = xmlFile.CreateElement("text")
52 xmlNode.Text = Request("text")
53 Call xmlRoot.AppendChild(xmlNode)
54
55 Call xmlFile.Save(strPath) ' Save the file.
56

Fig. 15.10 Adding a message to a forum (part 2 of 4).

Chapter 15 Case Study: Message Forum with Active Server Pages 413

57 ' Finished processing.
58 Call Application.Unlock()
59 Call Response.Redirect(Request("file"))
60 Else
61 strError = "ERROR: Invalid input."
62 End If
63
64 End If
65 %>
66
67 <!DOCTYPE html
68 PUBLIC "-//W3C//DTD HTML 4.0//EN"
69 "http://www.w3.org/TR/REC-html40/strict.dtd">
70
71 <html>
72 <head>
73 <title>Post a Message</title>
74 <link rel = "stylesheet" type = "text/css" href = "site.css">
75 </head>
76
77 <body>
78 <p><% =strError %></p>
79
80 <form method = "POST" action = "addPost.asp">
81 <p>
82 User:

83 <input type = "text" size = "40" name = "user"
84 value = "<% =Request("user") %>">
85 </p>
86 <p>
87 Message Title:

88 <input type = "text" size = "40" name = "title"
89 value = "<% =Request("title") %>">
90 </p>
91 <p>
92 Message Text:

93 <textarea name = "text" cols = "40"
94 rows = "4"><% =Request("text") %></textarea>
95 </p>
96 <p>
97 <input type = "hidden" name = "file"
98 value = "<% =Request("file") %>">
99 <input type = "submit" name = "submit" value = "Submit">
100 <input type = "Reset" value = "Clear">
101 </p>
102 </form>
103
104 <p>
105 <a href = "<% =Request("file") %>">Return to Forum
106 </p>
107 </body>
108
109 </html>

Fig. 15.10 Adding a message to a forum (part 3 of 4).

414 Case Study: Message Forum with Active Server Pages Chapter 15

Figure 15.12 lists the cascading stylesheet document used to format the HTML docu-
ments (site.css).

1 <!DOCTYPE html
2 PUBLIC "-//W3C//DTD HTML 4.0//EN"
3 "http://www.w3.org/TR/REC-html40/strict.dtd">
4
5 <html>
6
7 <!-- Fig. 15.11 : invalid.html -->
8
9 <head>

10 <title>Deitel Book Organization</title>
11 <link rel = "stylesheet" type = "text/css" href = "site.css">
12 </head>
13
14 <body>
15 <h1>Invalid Request.</h1>
16 <p>
17 Return to Main Page
18 </p>
19 </body>
20
21 </html>

Fig. 15.11 Document showing that an error has occurred.

Fig. 15.10 Adding a message to a forum (part 4 of 4).

Chapter 15 Case Study: Message Forum with Active Server Pages 415

1 /* Fig. 15.12 : site.css */
2
3 BODY
4 {
5 background: white;
6 color: black;
7 font-family: Arial, sans-serif;
8 font-size: 10pt;
9 }

10
11 A
12 {
13 background: transparent;
14 color: blue;
15 text-decoration: none;
16 }
17
18 A:hover
19 {
20 text-decoration: underline;
21 }
22
23 TABLE
24 {
25 border-width: 1px;
26 border-style: solid;
27 }
28
29 .forumTitle
30 {
31 background: lime;
32 color: black;
33 font-size: 12pt;
34 font-weight: bold;
35 text-align: center;
36 }
37
38 .msgTitle
39 {
40 background: silver;
41 color: black;
42 font-size: 10pt;
43 font-weight: bold;
44 }
45
46 .msgInfo
47 {
48 background: silver;
49 color: black;
50 font-size: 10pt;
51 }
52

Fig. 15.12 CSS document for HTML pages (part 1 of 2).

416 Case Study: Message Forum with Active Server Pages Chapter 15

15.8 Internet and World Wide Web Resources
msdn.microsoft.com/workshop/c-frame.htm?/workshop/server/asp/ASP-
over.asp
This Web site is arguably the best ASP resource on the Web. This page, part of the Microsoft Devel-
opers Network, provides an introduction to ASP technologies.

msdn.microsoft.com/workshop/server/asp/asptutorial.asp
This site is the starting page of an ASP tutorial provided by the Microsoft Developers Network. It is
one of the most comprehensive ASP tutorials on the Web.

support.microsoft.com/support/default.asp?SD=SO&PR=asp
This site, located on the Microsoft Personal Online Support Network, should be your first stop when
you are having trouble or when you are just curious about an aspect of ASP. In addition to providing
links to other useful help sites, the site also includes a collection of links to ASP technical resources.

html.about.com/compute/html/msubasp.htm
This page has a listing of links to many ASP-related resources on the Web. The sites links range from
FAQs pages to tutorials to descriptions of more advanced aspects of ASP. The page is a good place to
start if you are interested in finding out more about specific ASP-related technologies.

www.w3schools.com/asp
This site is the home of a number of comprehensive ASP tutorials. Topic categories range from ASP
objects to general syntax usage. The page is a great place to go to if you are unclear on any individual
aspect of ASP programming. Examples are provided at this site.

www.w3scripts.com/asp
This site is the home page of an ASP script repository written to teach different aspects of ASP pro-
gramming. All script example screens are split into two parts: the script being demonstrated and the
script’s output. It is an extremely useful site for all levels of ASP programmers.

TERMINOLOGY

53 .msgPost
54 {
55 background: silver;
56 color: black;
57 font-size: 8pt;
58 }
59
60 .msgText
61 {
62 font-size: 10pt;
63 padding-left: 10px;
64 }
65
66 .date
67 {
68 font-size: 8pt;
69 }

Application object Lock method
Async property MapPath method of Server object
asynchronous Request method

Fig. 15.12 CSS document for HTML pages (part 2 of 2).

Chapter 15 Case Study: Message Forum with Active Server Pages 417

SELF-REVIEW EXERCISES
15.1 What purpose does the Async property of a DOMDocument object serve?

15.2 To create child element nodes for elements in an XML document, what needs to be done?

ANSWERS TO SELF-REVIEW EXERCISES
15.1 The Async property is used to set the execution type of DOMDocument methods. If Async
is set to True, methods are performed asynchronously, so execution continues even if the method
call was not completed. If Async is set to False, methods are performed synchronously, so execu-
tion waits until the method call is completed.

15.2 To create element nodes, call DOMDocument object’s method CreateElement, with the
name of the element to be created as a parameter. Next, method appendChild is called on the el-
ement to which the new element is to be a child, with the child element as the parameter.

EXERCISES
15.3 Create an Active Server Page to delete messages from a forum. This ASP should take a fo-
rum’s filename and the timestamp of the message as form arguments. Modify formatting.xsl
to provide a link to the ASP for each message. [Hint: To remove an element’s child, use remove-
Child, with the node to remove as a parameter.]

15.4 Create an Active Server Page to delete forums. This ASP should list the available forums and
allow the user to select one for deletion.

collection Save method
CreateElement method Server object
CreateObject method synchronous
DOMDocument object Unlock method
Load method

16
Server-side Java
Programming

Objectives
• To understand server-side technologies based on

XML.
• To be able to use Cocoon to deliver specialized

content to different browsers using XSL.
• To be able to use Extensible Server Pages (XSP) and

Java to handle user input.
• To be able to use Java servlets and the DOM to

dynamically build XML documents.
• To understand how Java servlets, XML, XSL and

Wireless Markup Language (WML) can be used
together to create a wireless e-business application.

A deck of cards was built like the purest of hierarchies...
Ely Culbertson

Chapter 16 Server-side Java Programming 419

16.1 Introduction
In this chapter we introduce three technologies that take advantage of XML to deliver Web
content. We first introduce the Apache Group’s Web publishing framework Cocoon. In our
first example we take advantage of Cocoon’s XSL capabilities to dynamically deliver Web
content to different types of clients, including Web browsers, such as Netscape Communi-
cator and Internet Explorer, and wireless devices, such as digital cellular phones. In our sec-
ond example, we use Cocoon’s XML-based scripting technology—Extensible Server
Pages (XSP)—to perform a user survey.

Also included in this chapter is a case study in which we build a wireless online book-
store using Java servlets, XML, XSL and wireless markup language (WML). WML is part
of the wireless applications protocol (WAP) and is used to deliver Web content to cellular
phones and other wireless devices.

16.2 Cocoon
Throughout the history of the Web, delivering content to different Web browsers has been
problematic. Because of a lack of adherence to a standard for HTML early on in the Web’s
development, different Web browsers supported different sets of tags in HTML pages. Web
pages that appeared one way in one Web browser would often look very different when dis-
played in another Web browser. In the past few years there have been a number of standards
defined for HTML, however the most popular Web browsers still differ in a number of re-
spects and often display Web pages differently. To solve the problem of having a Web site
appear differently on each browser, Web site developers began detecting which browser
was requesting a Web page so that a page with appropriate tags could be delivered. This,
of course, meant developing at least two versions of the same content, one for each of the
most popular Web browsers.

Cocoon takes advantage of XML technologies to enable content creators and Web
developers to deliver the same content to any type of client without the need to create mul-
tiple versions of their Web sites. Cocoon separates the Web publishing process into three
steps: XML creation, XML processing and XSL rendering. In this framework, the content
for a site is marked up using XML. The XML data is then processed and formatted for dis-
play using XSL transformations and formatting objects. Each type of client has an associ-

Outline
16.1 Introduction
16.2 Cocoon
16.3 Extensible Server Pages (XSP)
16.4 Case Study: A Wireless Online Bookstore
16.5 Jakarta Tomcat Setup
16.6 WAP and WML: Client-side Documents
16.7 Java Servlets
16.8 Internet and World Wide Web Resources

Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

420 Server-side Java Programming Chapter 16

ated XSL style sheet, so the XSL transformation is performed based on the type of client
that made the request. In older HTML applications, formatting, fonts, colors and other ele-
ments of presentation were mixed in with the data. Using XSL to transform and format
XML data allows content creators to generate pure content without worrying about presen-
tation.

Cocoon uses Java technologies along with XML and XSL. Notes on installation can
be found at xml.apache.org/cocoon/index.html. In Fig. 16.1 we show our con-
tent marked up with XML. In this example our content consists of the message (line 10)

Welcome to XML!

The processing instruction on line 2 instructs Cocoon to use its XSLT processor to process
this document before delivering it to the client. The processing instruction on line 3 speci-
fies welcome.xsl as the default style sheet to use with the XSLT processor. This style
sheet will be used to transform the document for all clients except those for which a specific
style sheet is defined. On lines 4 and 5 we instruct the XSLT processor to use the wel-
come-wml.xsl style sheet for WAP devices.

Figure 16.2 lists the types of clients that Cocoon is pre-configured to detect using the
media attribute, shown in line 5 of Fig 16.1.

Figure 16.3 lists the default XSL style sheet used to render our content. This style sheet
transforms the original XML document into an HTML document for display in a browser.

1 <?xml version = "1.0"?>
2 <?cocoon-process type = "xslt"?>
3 <?xml-stylesheet href = "welcome.xsl" type = "text/xsl"?>
4 <?xml-stylesheet href = "welcome-wml.xsl"
5 type = "text/xsl" media = "wap"?>
6
7 <!-- Fig. 16.1 : welcome.xml -->
8
9 <myMessage>

10 <message>Welcome to XML!</message>
11 </myMessage>

Fig. 16.1 XML document to be processed by Cocoon.

Media type Browser

explorer Microsoft Internet Explorer browser.

opera Opera browser.

lynx Lynx browser.

java Java code using standard URL classes.

wap Nokia WAP Toolkit browser.

netscape Netscape Communicator browser.

Fig. 16.2 Cocoon’s media types for various browsers.

Chapter 16 Server-side Java Programming 421

In Fig. 16.4 we present the XSL style sheet welcome-wml.xsl, which is used to
transform the XML content into WML for display on a wireless device, such as a cellular
phone. WML places multiple pages of content into a deck. Each deck is composed of one
or more cards, which each contain a page of content. In this example we only have a single
page of information, which is contained in the card on lines 15–26. On line 17 the p ele-
ment begins a new paragraph, into which we place the text of the message element from
the original XML document. On lines 21–24 there is another p element that contains text

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 16.3 : welcome.xsl -->
4
5 <xsl:stylesheet
6 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform"
7 version = "1.0">
8
9 <xsl:template match = "myMessage">

10 <html>
11 <head>
12 <title><xsl:value-of select = "message"/></title>
13 </head>
14
15 <body bgcolor = "cyan">
16 <xsl:apply-templates select = "message"/>
17 <p>This page has been transformed
18 from XML into HTML by Cocoon’s XSLT processor.
19 </p>
20 </body>
21
22 </html>
23 </xsl:template>
24
25 <xsl:template match = "message">
26 <h1>
27 <xsl:apply-templates/>
28 </h1>
29 </xsl:template>
30 </xsl:stylesheet>

Fig. 16.3 Style sheet to render welcome.xml .

422 Server-side Java Programming Chapter 16

describing how the original XML document was transformed. The output from this style
sheet is also shown in a wireless device simulator in Fig. 16.4. We will show how to use
this simulator for testing wireless applications in the case study later in this chapter.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 16.4 : welcome-wml.xsl -->
4
5 <xsl:stylesheet
6 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform"
7 version = "1.0">
8
9 <xsl:template match = "myMessage">

10 <xsl:processing-instruction name = "cocoon-format">
11 type = "text/wml"
12 </xsl:processing-instruction>
13
14 <wml>
15 <card>
16
17 <p>
18 <xsl:value-of select = "message"/>
19 </p>
20
21 <p>
22 This page has been transformed
23 from XML into WML by Cocoon’s XSLT processor.
24 </p>
25
26 </card>
27 </wml>
28 </xsl:template>
29 </xsl:stylesheet>

Fig. 16.4 welcome-wml.xsl.

Chapter 16 Server-side Java Programming 423

16.3 Extensible Server Pages (XSP)
Cocoon also includes a processor for Extensible Server Page (XSP), part of the Apache Co-
coon Project. XSPs are similar to JavaServer Pages™ and ASP, allowing programming
code to be included within markup for processing on the server. Figure 16.5 lists some of
the tags available in XSP along with their descriptions.

We present an example that uses XSP to perform a survey. The client is first sent an
HTML page with a form asking their favorite color. This HTML page is the result of XSLT
processing of survey.xml (Fig. 16.6) with style sheet survey.xsl (Fig. 16.7). When
the client clicks Submit, a POST request is sent to the server. Figure 16.8
(response.xml) is an XSP document used to generate a response to this POST request,
updating the survey results. The survey results are stored in an XML document on the
server—colors.xml—containing

<colors total = "0">
<color name = "Red" votes = "0"/>
<color name = "Blue" votes = "0"/>
<color name = "Green" votes = "0"/>
<color name = "Yellow" votes = "0"/>
<color name = "Purple" votes = "0"/>

</colors>

After XSP processing, XML similar to

<survey title = "Color survey">
<total>23</total>
<color value = "Red" percentage = "26.09%"/>
<color value = "Blue" percentage = "17.39%"/>
<color value = "Green" percentage = "30.43%"/>
<color value = "Yellow" percentage = "8.70%"/>
<color value = "Purple" percentage = "17.39%"/>

</survey>

XSP element Description

xsp:page This is the root element for every XSP page; specify the coding language to be
used with the language attribute. Any tag libraries should be specified
within this element as well.

xsp:structure This element contains program-level code declarations, such as
<xsp:include>.

xsp:include This element is used to include a predefined package in a language-dependent
manner; for example, if the coding language has been specified as Java, this
element imports a package.

xsp:logic Program code in the specified language is included within this element.

xsp:content Within <xsp:logic>, XML content is embedded so that no further nested
<xsp:logic> elements are needed.

xsp:expr This element is used to include a program expression.

Fig. 16.5 XSP elements (part 1 of 2).

424 Server-side Java Programming Chapter 16

is passed to Cocoon to be transformed with style sheet response.xsl. Cocoon uses the
XSLT processor to send an HTML page containing the results of the survey back to the
browser client.

xsp:element This element dynamically creates an XML element.

xsp:attribute This element sets an attribute of the enclosing XML element.

xsp:pi Processing instructions are included with this element.

xsp:comment This element embeds an XML comment.

1 <?xml version = "1.0"?>
2 <?cocoon-process type = "xslt"?>
3 <?xml-stylesheet href = "survey.xsl" type = "text/xsl"?>
4
5 <!-- Fig. 16.6 : survey.xml -->
6
7 <page title = "Color survey">
8 <color>Red</color>
9 <color>Blue</color>

10 <color>Green</color>
11 <color>Yellow</color>
12 <color>Purple</color>
13 </page>

Fig. 16.6 XML document with color choices.

14 <?xml version = "1.0"?>
15
16 <!-- Fig. 16.7 : survey.xsl -->
17
18 <xsl:stylesheet
19 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform"
20 version = "1.0">
21
22 <xsl:template match = "page">
23 <html>
24 <head>
25 <title>
26 <xsl:value-of select = "@title"/>
27 </title>
28 </head>
29 <body bgcolor = "cyan">
30 <h1>
31 <xsl:value-of select = "@title"/>
32 </h1>

Fig. 16.7 Style sheet to present color choices as HTML (part 1 of 2).

XSP element Description

Fig. 16.5 XSP elements (part 2 of 2).

Chapter 16 Server-side Java Programming 425

33 What is your favorite color?
34 <form method = "post"
35 action =
36 "http://127.0.0.1:8080/CocoonEx/response.xml">
37
38 <xsl:apply-templates select = "color"/>
39 <input type = "submit" value = "Submit"/>
40 </form>
41 </body>
42 </html>
43 </xsl:template>
44
45 <xsl:template match = "color">
46 <input type = "radio" name = "color">
47 <xsl:attribute name = "value">
48 <xsl:value-of select = "."/>
49 </xsl:attribute>
50 </input>
51 <xsl:value-of select = "."/>
52

53 </xsl:template>
54 </xsl:stylesheet>

55 <?xml version = "1.0"?>
56 <?cocoon-process type = "xsp"?>
57 <?cocoon-process type = "xslt"?>
58 <?xml-stylesheet href = "response.xsl" type = "text/xsl"?>

Fig. 16.8 XML document containing the logic to retrieve survey statistics (part 1 of 4).

Fig. 16.7 Style sheet to present color choices as HTML (part 2 of 2).

426 Server-side Java Programming Chapter 16

59
60 <!-- Fig. 16.8 : response.xml -->
61
62 <xsp:page language = "java"
63 xmlns:xsp = "http://www.apache.org/1999/XSP/Core">
64
65 <xsp:structure>
66 <xsp:include>java.text.*</xsp:include>
67 <xsp:include>org.apache.xerces.parsers.*</xsp:include>
68 <xsp:include>org.apache.xml.serialize.*</xsp:include>
69 </xsp:structure>
70
71 <xsp:logic>
72 private Document colors = inputColors();
73 private int total = Integer.parseInt(
74 colors.getDocumentElement().getAttribute("total"));
75 NodeList colorElements =
76 colors.getDocumentElement().
77 getElementsByTagName("color");
78
79 private Document inputColors()
80 {
81 try {
82 InputSource input =
83 new InputSource(new FileInputStream(
84 "../webapps/CocoonEx/colors.xml"));
85 DOMParser domParser = new DOMParser();
86
87 domParser.parse(input);
88 return domParser.getDocument();
89 }
90 catch (Exception e) {
91 e.printStackTrace();
92 return null;
93 }
94 }
95
96 private Element getColorElement(String color)
97 {
98 for (int i = 0; i < colorElements.getLength(); i++) {
99 Element current = (Element) colorElements.item(i);
100
101 if (current.getAttribute("name").equals(color))
102 return current;
103
104 }
105 return null;
106 }
107
108 private String getPercentage(String color)
109 {
110 if (total == 0)
111 return "No entries yet";

Fig. 16.8 XML document containing the logic to retrieve survey statistics (part 2 of 4).

Chapter 16 Server-side Java Programming 427

112 else {
113 int votes = Integer.parseInt(
114 getColorElement(color).getAttribute("votes"));
115 double percentage = 100.0 * votes / total;
116
117 return
118 new DecimalFormat("#0.00").format(percentage)
119 + "%";
120 }
121 }
122
123 private void updateSurvey(String voteColor)
124 {
125 // update total number of votes
126 ++total;
127 colors.getDocumentElement().setAttribute(
128 "total", Integer.toString(total));
129
130 // update number of votes for voted color
131 Element votedColorElement = getColorElement(voteColor);
132 int votes = Integer.parseInt(
133 votedColorElement.getAttribute("votes")) + 1;
134
135 votedColorElement.setAttribute(
136 "votes", Integer.toString(votes));
137
138 // save XML file
139 try {
140 XMLSerializer serializer = new XMLSerializer(
141 new FileOutputStream(
142 "../webapps/CocoonEx/colors.xml"),
143 null);
144
145 serializer.serialize(colors);
146 }
147 catch (Exception e) {
148 e.printStackTrace();
149 }
150 }
151 </xsp:logic>
152
153 <survey title = "Color survey">
154 <xsp:logic>
155 String vote = request.getParameter("color");
156 updateSurvey(vote);
157
158 // create total element to hold total number of votes
159 <total><xsp:expr>total</xsp:expr></total>
160
161 // create a new color element for each color
162 for (int i = 0; i < colorElements.getLength(); i++) {
163 Element current = (Element) colorElements.item(i);
164 String colorName = current.getAttribute("name");

Fig. 16.8 XML document containing the logic to retrieve survey statistics (part 3 of 4).

428 Server-side Java Programming Chapter 16

XSP page response.xml (Fig. 16.8) processes the client’s POST request. The root
element of every XSP page is xsp:page (line 62). Attribute language specifies that the
programming language used is Java. Line 65 uses XSP tag xsp:structure. This tag
contains top-level code declarations such as xsp:include. Lines 66–68 use
xsp:include tags to import Java packages. We import packages that allow us to
input and output XML documents.

We embed all Java code in the xsp:logic element. Note that since this is an XML
document we must use the < entity instead of < in lines 98 and 162. Within the first
xsp:logic element (lines 71–151), we define methods to manipulate the XML docu-
ment storing the results of the survey. Method inputColors uses the DOMParser
object from package org.apache.xerces.parsers to parse colors.xml and
create Document object colors in memory.

Method getColorElement (lines 96–106) returns the color element corre-
sponding to the parameter String color. This method uses a for loop to iterate
through the NodeList colorElements, returning the element whose name attribute
is color.

We use method getPercentage to calculate the percentage of votes the specified
color has received. First, we retrieve the color element corresponding to color by
using method getColorElement. We then access the votes attribute, which contains
the total number of votes this color has received. Line 115 calculates the per-
centage, and lines 117–119 create an instance of class DecimalFormat (from
package java.text) to return the percentage, formatted to two decimal places, as
a String.

Lines 123–150 define method updateSurvey, which is used to update
colors.xml to reflect the client’s vote. First we increment variable total by 1 (line
126); then we update attribute total of root element colors. In lines 131 and 132, we
access the voted color element and its votes attribute, incrementing local variable
votes by 1 on lines 135–136. We then save the XML document, using a new instance of
class XMLSerializer (from package org.apache.xml.serialize).

We create the root element survey of the XML document that is the target of XSP
processing. Using another xsp:logic element, we embed Java code to create the child
elements of root element survey. First, we retrieve the client’s vote using the request
object. The request object is Cocoon’s wrapper for the HttpServletRequest

165 <color>
166 <xsp:attribute name = "value">
167 <xsp:expr>colorName</xsp:expr>
168 </xsp:attribute>
169 <xsp:attribute name = "percentage">
170 <xsp:expr>getPercentage(colorName)</xsp:expr>
171 </xsp:attribute>
172 </color>
173 }
174 </xsp:logic>
175 </survey>
176 </xsp:page>

Fig. 16.8 XML document containing the logic to retrieve survey statistics (part 4 of 4).

Chapter 16 Server-side Java Programming 429

object. We then call method updateSurvey to update colors.xml. Line 159 creates
element total to hold the total number of votes. In the <total> element, we use the
xsp:expr element to substitute the value of variable total. The for loop (lines 162–
173) iterates through the color elements (stored in NodeList colorElements); for
each color element, we create a new color element. Using XSP tag
<xsp:attribute>, we dynamically set the attributes value and percentage to
colorName and the returned value of method getPercentage, respectively. After
XSP processing, this produces an XML document containing the results of the survey.
Combined with the style sheet response.xsl (Fig. 16.9), these data are returned to the
client as HTML.

177 <?xml version = "1.0"?>
178
179 <!-- Fig. 16.09 : response.xsl -->
180
181 <xsl:stylesheet
182 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform"
183 version = "1.0">
184
185 <xsl:template match = "survey">
186 <html>
187 <head>
188 <title>
189 <xsl:value-of select = "@title"/>
190 </title>
191 </head>
192 <body bgcolor = "cyan">
193 <h1>
194 <xsl:value-of select = "@title"/>
195 </h1>
196 <table border = "1">
197 <thead>
198 <td>Color</td>
199 <td>Percentage</td>
200 </thead>
201 <xsl:apply-templates/>
202 </table>
203 </body>
204 </html>
205 </xsl:template>
206
207 <xsl:template match = "total">
208 <p>Total votes so far:
209 <xsl:value-of select = "."/>
210 </p>
211 </xsl:template>
212
213 <xsl:template match = "color">
214 <tr>
215 <td><xsl:value-of select = "@value"/></td>
216 <td><xsl:value-of select = "@percentage"/></td>

Fig. 16.9 response.xsl (part 1 of 2).

430 Server-side Java Programming Chapter 16

16.4 Case Study: A Wireless Online Bookstore
In this section we present a case study that uses XML and XSL with Java servlets and the
Wireless Applications Protocol (WAP) to build a wireless online bookstore. WAP uses the
Wireless Markup Language (WML), which adheres to the XML 1.0 recommendation from
the World Wide Web Consortium (W3C). Many digital cellular phones now support WAP
for browsing the Web, reading e-mail and shopping online. Using WAP will allow custom-
ers to purchase books from our store using these devices.

The wireless bookstore application uses a multitier application model. A multitier
application—sometimes called an n-tier application—is divided into several modular parts
(i.e., tiers), each of which may be located on a different physical computer. In the wireless
bookstore application, we use the three-tier architecture shown in Fig. 16.10.

The data tier maintains all of the information needed for an application. Most often this
information is stored in a database. The database may contain product information, such as
a description, price and quantity in stock and customer information, such as a user name,
billing and shipping information.

The middle tier of a multitier application acts as a sort of “middleman” between the
data in the data tier and users of the application. All user requests for data (e.g., a request
to view the product catalog) go through the middle tier before reaching the database. Like-
wise, responses to requests for data travel back through the middle tier before reaching the
user. The middle tier implements business logic and presentation logic to control interac-
tions between users and data.

217 </tr>
218 </xsl:template>
219 </xsl:stylesheet>

Fig. 16.9 response.xsl (part 2 of 2).

Chapter 16 Server-side Java Programming 431

Fig. 16.10 Three-tier architecture for the Deitel wireless book store.

Business logic enforces business rules and is used to ensure data is reliable before it is
updated in the database or retrieved for the user. Business rules dictate how this data can
and cannot be accessed and updated. For example, an online store may have a business rule
requiring that a customer’s credit card is verified with the credit card issuer before the cus-
tomer’s order is shipped. Business logic might implement this business rule by obtaining
the credit card number and expiration date from the user and performing the verification.
Once this verification is successful, the business logic would update the database to indi-
cate the customer’s order may be shipped.

The middle tier is also responsible for presenting data to the user. The middle tier
accepts a user request for data, retrieves the data from the data tier, and then transforms the
data into a suitable representation for the user. In our application, the middle tier transforms
database data into WML documents, which are then presented to the user.

The third tier is the client tier, which provides a user interface for the application. Users
interact directly with the client tier through the user interface. For our online bookstore
application, the client is a WAP-enabled wireless device, such as a digital cellular phone.
The user interface on a wireless phone is text based, so data from our application is pre-
sented to the user in the client tier as text. The user also makes requests through the user
interface in the client tier. Again, our user interface is text based, so the user makes requests
by typing letters and numbers on the phone keypad. Our application uses the familiar shop-
ping cart e-commerce model to make it easy for customers to select and purchase products.

Our online wireless bookstore application consists of a number of different compo-
nents in each tier. Figure 16.11 lists each of these components along with a short descrip-
tion of the functionality each one provides.

File Name Description

index.wml Home page for bookstore; allows user to log in or to create a new account.

Fig. 16.11 Client-side documents for wireless bookstore (part 1 of 2).

RDBMSServlets

XSLT
Processor XSL

Wireless
Client

XML

JDBCWAP

WML

Client Middle Data

Web Server

432 Server-side Java Programming Chapter 16

Figure 16.12 lists the source code components of this case study along with a brief
description of the role of each component.

login.wml Login page; asks the user to enter a username and password.

newuser.wml Page to create a new account; asks the user to enter a username and password.
User re-enters password for verification.

File Name Description

Database.java Class Database; used to query and update the data-
base.

ShoppingCart.java Class ShoppingCart; represents the customer’s
shopping cart.

Book.java Class Book; each Book instance represents a book in
the bookstore.

XMLCreator.java Class XMLCreator; used to create XML Document
objects and manipulate the DOM.

Processor.java Class Processor; applies an XSL style sheet to an
XML document.

LoginServlet.java Servlet to handle a log-in and new account requests.

newuser.xsl Style sheet used to transform XML created by Login-
Servlet into WML.

welcome.xsl Style sheet used to transform XML created by Login-
Servlet into WML.

GetTechnologyServlet.java Servlet that generates XML containing technology sub-
jects from the catalog database (catalog.mdb).

catalog.xsl Style sheet used to generate WML to display catalog
contents.

GetTitlesServlet.java Servlet that generates XML containing the book titles
in each technology subject from the catalog database
(catalog.mdb).

titles.xsl Style sheet used to transform XML containing book
titles into WML.

GetDescriptionServlet.java Servlet that generates XML containing a description of
a book.

description.xsl Style sheet used to transform XML containing book
descriptions into WML.

Fig. 16.12 Server-side components for wireless bookstore (part 1 of 2).

File Name Description

Fig. 16.11 Client-side documents for wireless bookstore (part 2 of 2).

Chapter 16 Server-side Java Programming 433

16.5 Jakarta Tomcat Setup
In order to build this wireless application we will need several different tools. Java servlets
execute in a servlet container in a Web server. A servlet container is simply part of a Web
server in which Java servlets are run so they may respond to requests from clients. The
Apache Group has built a reference implementation for Java servlets called Jakarta Tomcat,
which we will use in our application. We will also make use of a Microsoft Access database
to store user and product information. You will therefore need Microsoft Access 97 or later
installed on your computer. To setup your computer to build the wireless online bookstore
application, follow these steps:

1. Register the databases cart.mdb and catalog.mdb as ODBC data sources.
The username is anonymous and the password is guest for both databases.

2. Download and install Java™ 2 SDK, Standard Edition Version 1.3.0 from
www.java.sun.com.

3. Download Jakarta Tomcat from jakarta.apache.org/downloads/
binindex.html and follow the installation instructions in the user’s guide. In
this example, we assume Jakarta Tomcat is installed in C:\jakarta-tomcat.

4. Place the XSL files in the directory jakarta-tomcat\webap-
ps\chapter16\ and the Java class files in the directory jakarta-tom-
cat\webapps\chapter16\WEB-INF\classes\cartXML\.

5. Download the Xalan XSLT processor from xml.apache.org/xalan/in-
dex.html. Place xalan.jar and xerces.jar in jakarta-tom-
cat\webapps\chapter16\WEB-INF\lib\.

6. Download and install the UP.SDK from www.phone.com/products/ups-
dk.html. This includes UP.Simulator, which simulates a wireless phone. We
will use this to test the wireless online bookstore.

AddToCartServlet.java Servlet for adding a book to the shopping cart.

ViewCartServlet.java Servlet that generates XML contain the contents of the
customer’s shopping cart.

viewcart.xsl Style sheet used to transform XML containing the con-
tents of the customer’s shopping cart into WML.

UpdateCartServlet.java Servlet used to change the quantity of the selected item
in the customer’s shopping cart.

login.xsl Style sheet to generate WML to display message to
user.

GetShoppingCartServlet.java Servlet used retrieve a customer’s shopping cart con-
tents from a previous shopping session.

LogoutServlet.java Servlet to log out of the online bookstore.

File Name Description

Fig. 16.12 Server-side components for wireless bookstore (part 2 of 2).

434 Server-side Java Programming Chapter 16

7. Add the following XML tag in the ContextManager element in \jakarta-
tomcat\conf\server.xml:

<Context path = "/chapter16" docBase = "webapps/chapter16"
debug = "0" reloadable = "true"></Context>

8. Add the following XML in the web-app element in jakarta-tom-
cat\conf\web.xml:

<mime-mapping>
<extension>wml</extension>
<mime-type>text/vnd.wap.wml</mime-type>

</mime-mapping>

9. Run Jakarta Tomcat by executing \jakarta-tomcat\bin\startup.bat.

16.6 WAP and WML: Client-side Documents
The client portion of the bookstore consists of both static and dynamically generated WML
documents. In the next section we will see how to dynamically generate WML. In this sec-
tion we introduce WML and discuss the static WML documents used in the wireless book-
store. The first document presented to the user—index.wml (Fig. 16.13)—allows the
user to choose to log in to the store with an existing account or to create a new account.

WML is an application of XML, so the XML declaration (line 1) is required. On lines
2 and 3 there are two comments that describe the purpose of this WML document. On lines
4 and 5 we specify the DTD for this document, which is defined by the WAP Forum. Line
6 begins the document element wml.

1 <?xml version = "1.0"?>
2 <!-- Fig. 16.13: index.wml -->
3 <!-- Home page for bookstore -->
4 <!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
5 "http://www.wapforum.org/DTD/wml_1.1.xml">
6 <wml>
7 <card>
8 <p>Welcome to Deitel Wireless shopping.</p>
9 <p>

10 <select>
11 <option onpick = "login.wml">
12 Log in
13 </option>
14 <option onpick = "newuser.wml">
15 New account
16 </option>
17 </select>
18 </p>
19 </card>
20 </wml>

Fig. 16.13 Code listing for index.wml(part 1 of 2).

Chapter 16 Server-side Java Programming 435

Fig. 16.13 Web browser rendering WML (part 2 of 2). (Courtesy of Phone.com, Inc.)

Since wireless devices that use WAP and WML have limited internet connections,
WML places multiple pages of content in a single WML document, called a deck. This way,
several pages worth of data is downloaded at once, reducing the number of times the wire-
less device needs to connect to the wireless network to download information. Each page
is stored in a card element (line 7). The WML document in Fig. 16.13 consists of only a
single card (lines 7–19). The p element (line 8) begins a new paragraph. Here we have an
introductory message to the customer. On lines 10–17 we have a select element, which
is used to present multiple options from which the user can choose. The first option
element (lines 11–13) allows the user to log in to the application. The onpick attribute of
the option element indicates the action to take when the user “picks” (i.e., selects) this
option. For the first option, the user is sent to login.wml. The second option element
(lines 14–16) allows the user to create a new account. When selected, the onpick attribute
indicates that the user will be sent to newuser.wml.

Figure 16.14 shows login.wml. This page prompts the user for a username and
password and submits this information to LoginServlet. Notice login.wml contains
multiple cards, the first of which can be found on lines 7–26. In this card the user is
prompted to enter a user name.

On lines 8–14 we declare and initialize the variable param1, which will be used to
store the user’s login name. The event enclosed by the <onevent> element is executed
when this card is requested from a <go> element.

436 Server-side Java Programming Chapter 16

1 <?xml version = "1.0"?>
2 <!-- Fig. 16.14: login.wml -->
3 <!-- Prompts for username and password -->
4 <!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
5 "http://www.wapforum.org/DTD/wml_1.1.xml">
6 <wml>
7 <card>
8 <onevent type = "onenterforward">
9

10 <refresh>
11 <setvar name = "param1" value = ""/>
12 </refresh>
13
14 </onevent>
15
16 <do type="accept">
17 <go href="#pass" />
18 </do>
19
20 <p>Enter your name and password to login</p>
21 <p>
22 Name:
23 <input name = "param1" format = "mmmmm*m" type = "text"
24 maxlength = "10"/>
25 </p>
26 </card>
27
28 <card id = "pass">
29 <onevent type = "onenterforward">
30
31 <refresh>
32 <setvar name = "param2" value = ""/>
33 </refresh>
34
35 </onevent>
36
37 <do type = "accept">
38 <go href = "cartXML.LoginServlet?action=login"
39 method = "post">
40
41 <postfield name = "param2" value = "$(param2)"/>
42 <postfield name = "param1" value = "$(param1)"/>
43
44 </go>
45 </do>
46 <p>Password:
47
48 <input name = "param2" format = "mmmmm*m"
49 type = "password" maxlength = "10"/>
50
51 </p>
52 </card>
53 </wml>

Fig. 16.14 Code listing for login.wml (part 1 of 2).

Chapter 16 Server-side Java Programming 437

Fig. 16.14 Web browser rendering login.wml (part 2 of 2). (Courtesy of
Phone.com, Inc.)

Lines 16–18

<do type = "accept">
<go href = "#pass"/>

</do>

allow the user to press the accept key on the wireless device to continue on to the pass
card, where the user will be prompted for a password. Element do has an optional label
attribute that specifies the text to be displayed to the user. If no label is specified most
devices will display the text “OK.”

Lines 23–24

<input name = "param1" format = "mmmmm*m" type = "text"
 maxlength = "10"/>

prompt the customer to enter a username. The format attribute indicates the format of the
text to be entered by the user. The value mmmmm*m specifies that the user must enter at least
five characters, followed by any number of characters. Attribute maxlength with the val-
ue 10 limits the maximum number of characters to 10.

Once the user has entered a user name and pressed the accept key, the user is taken
to the pass card (lines 28–52). In this card, the user is prompted for a password using an
input element on line 49. This input element has the attribute type with the value

438 Server-side Java Programming Chapter 16

password, which prevents the characters from being displayed on the screen, thus adding
security. On Lines 38–39

<go href = "cartXML.LoginServlet?action=login"
 method = "post">

we use a query string to redirect the user to LoginServlet, which then reads the user-
name and password from the param1 and param2 variables to authenticate the user.

Selecting option “New account” from index.wml directs the user to
newuser.wml (Fig. 16.15), which allows a user to create a new account. This WML deck
is similar to login.wml. The card on lines 9–27 first prompts the user to enter a new user-
name (lines 24 and 25). The card on lines 29–46 then prompts the user to enter a new pass-
word. The card on lines 48–73 prompts the user to re-enter the password for verification.

16.7 Java Servlets
Java servlets provide business logic and presentation logic in the middle tier of the wireless
bookstore application. Every request that a client makes for data, such as viewing the prod-
uct catalog, adding an item to a shopping cart and checking out of the store, goes through
a servlet, The servlet then processes the request, retrieves data from or updates data to the
database and processes the data to be sent back to the client. Using XSL, the servlets trans-
form the XML data built from the database into WML for display on the WAP client.

As business logic components, the servlets in this case study interact directly with the
database. Class Database (Fig. 16.16) is used to connect to the database and execute que-
ries to retrieve and update data.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 16.15: newuser.wml -->
4 <!-- Prompts for username and password -->
5
6 <!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
7 "http://www.wapforum.org/DTD/wml_1.1.xml">
8 <wml>
9 <card>

10 <onevent type = "onenterforward">
11
12 <refresh>
13 <setvar name = "param1" value = ""/>
14 </refresh>
15
16 </onevent>
17 <do type = "accept">
18 <go href = "#pass1"/>
19 </do>
20 <p>Please enter a name and password to create your
21 account</p>

Fig. 16.15 Code listing for newuser.wml (part 1 of 3).

Chapter 16 Server-side Java Programming 439

22 <p>
23 Name(5-10 characters):
24 <input name = "param1" format = "mmmmm*m" type = "text"
25 maxlength = "10"/>
26 </p>
27 </card>
28
29 <card id = "pass1">
30 <onevent type = "onenterforward">
31
32 <refresh>
33 <setvar name = "param2" value = ""/>
34 </refresh>
35
36 </onevent>
37
38 <do type = "accept">
39 <go href = "#pass2"/>
40 </do>
41
42 <p>Password(5-10 characters):
43 <input name = "param2" format = "mmmmm*m"
44 type = "password" maxlength = "10"/>
45 </p>
46 </card>
47
48 <card id = "pass2">
49 <onevent type = "onenterforward">
50
51 <refresh>
52 <setvar name = "param3" value = ""/>
53 </refresh>
54
55 </onevent>
56 <do type = "accept">
57 <go href=
58 "cartXML.LoginServlet?action=newuser"
59 method = "post">
60
61 <postfield name = "param2" value = "$(param2)"/>
62 <postfield name = "param1" value = "$(param1)"/>
63 <postfield name = "param3" value = "$(param3)"/>
64
65 </go>
66 </do>
67 <p>Verify Password:
68
69 <input name = "param3" format = "mmmmm*m"
70 type = "password" maxlength = "10"/>
71
72 </p>
73 </card>
74 </wml>

Fig. 16.15 Code listing for newuser.wml (part 2 of 3).

440 Server-side Java Programming Chapter 16

The constructor for this class (lines 13–19) takes three arguments. Variable url spec-
ifies the URL (Uniform Resource Locator) where the database can be located. Remember
that in a multitier application each tier may reside on a different computer. The database
tier, in this case, could be running on a computer across the network. The username and
password are needed to log into the database. Line 24

1 // Fig. 16.16: Database.java
2 // Queries a database
3 package cartXML;
4 import java.sql.*;
5
6 public class Database {
7 private Connection connection;
8 private static String username;
9 private static String password;

10 private static String url;
11 private Statement statement;
12

Fig. 16.16 Code listing for Database.java (part 1 of 3).

Fig. 16.15 Code listing for newuser.wml (part 3 of 3).

(Courtesy of Phone.com,
Inc.)

Chapter 16 Server-side Java Programming 441

13 public Database(String url, String username,
14 String password)
15 {
16 this.url = url;
17 this.username = username;
18 this.password = password;
19 }
20
21 public boolean connect()
22 {
23 try {
24 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
25 connection = DriverManager.getConnection(url, username,
26 password);
27 return true;
28 }
29 catch (Exception ex) {
30 ex.printStackTrace();
31 }
32
33 return false;
34 }
35
36 public ResultSet get(String query)
37 {
38 try {
39 statement = connection.createStatement();
40 ResultSet rs = statement.executeQuery(query);
41 return rs;
42 }
43 catch (SQLException sqle) {
44 return null;
45 }
46 }
47
48 public boolean update(String query)
49 {
50 try {
51 statement = connection.createStatement();
52 statement.executeUpdate(query);
53 return true;
54 }
55 catch (SQLException sqle) {
56 return false;
57 }
58 }
59
60 public boolean shutDown()
61 {
62 try {
63 connection.close();
64 return true;
65 }

Fig. 16.16 Code listing for Database.java (part 2 of 3).

442 Server-side Java Programming Chapter 16

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

loads the database driver for ODBC databases. This ODBC driver is part of the Java 2 Plat-
form and can be used with any ODBC database. In this example we use two Microsoft Ac-
cess Databases, each of which is registered as an ODBC database. For more information on
JDBC drivers and supported databases, visit the Sun Microsystems JDBC Web site at

java.sun.com/products/jdbc

Lines 25 and 26

connection = DriverManager.getConnection(url, username,
 password);

retrieve a connection to the database. This connection will be used to perform queries and
updates to the database throughout the application. The static method getConnec-
tion of class DriverManager (package java.sql) uses username and pass-
word to log into the database specified in url.

Line 39

statement = connection.createStatement();

invokes the createStatement method of object Connection to obtain an object that
implements the Statement interface. The object is used to query the database.

Line 40

ResultSet rs = statement.executeQuery(query);

performs the query by calling method executeQuery of object Statement. When a
query is performed on a database, a ResultSet object is returned containing the results
of the query. It is also possible to insert values into a database. Method update is used to
accomplish this task. Line 52

statement.executeUpdate(query);

uses method executeUpdate of object Statement to update the database with a new
record. The method returns a boolean that indicates the success or failure of the update
operation.

Class ShoppingCart (Fig. 16.17) represents the shopping cart for a user. This class
is placed in the session when the user logs in or creates a new account so that its data can
be maintained for the entire time the user is browsing the site.

By implementing the HttpSessionBindingListener interface, the user’s
shopping cart is written to a database when the session ends. This allows the application to
retrieve the customers’ previous shopping carts when they return to the site.

66 catch (SQLException sqlex) {
67 return false;
68 }
69 }
70 }

Fig. 16.16 Code listing for Database.java (part 3 of 3).

Chapter 16 Server-side Java Programming 443

1 // Fig. 16.17: ShoppingCart.java
2 // Shopping cart
3 package cartXML;
4 import javax.servlet.http.*;
5 import java.text.*;
6 import java.io.*;
7 import org.w3c.dom.*;
8 import java.util.*;
9

10 public class ShoppingCart implements HttpSessionBindingListener {
11 private Vector books;
12 private String username;
13 private Database database;
14
15 public ShoppingCart()
16 { books = new Vector(5); }
17
18 public void valueBound(HttpSessionBindingEvent e) {}
19
20 public void valueUnbound(HttpSessionBindingEvent e)
21 {
22 if (username == null) // if username is null, exit
23 return;
24
25 save();
26 }
27
28 public void save()
29 {
30 database = new Database("jdbc:odbc:cart", "anonymous",
31 "guest");
32 database.connect();
33 delete(username);
34
35 for (int i = 0; i < getLength(); i++) {
36 Book b = (Book) books.elementAt(i);
37 String productID = b.getProductID();
38 int quantity = b.getQuantity();
39
40 insert(username, productID, String.valueOf(quantity));
41 }
42
43 database.shutDown();
44 }
45
46 public void delete(String username)
47 {
48 String query = "DELETE * FROM Carts WHERE username = '"
49 + username + "'";
50
51 database.update(query);
52 }
53

Fig. 16.17 Code listing for ShoppingCart.java (part 1 of 4).

444 Server-side Java Programming Chapter 16

54 public void insert(String username, String productID,
55 String quantity)
56 {
57 Date today;
58 String date;
59 DateFormat dateFormatter;
60
61 dateFormatter = DateFormat.getDateInstance(
62 DateFormat.DEFAULT);
63 today = new Date();
64 date = dateFormatter.format(today);
65
66 String query = "INSERT INTO Carts (username, productID, "
67 + "quantity, dateCreated) VALUES ('" + username + "',"
68 + productID + "," + quantity + ",'" + date + "')";
69
70 database.update(query);
71 }
72
73 public void add(Book b)
74 { books.addElement(b); }
75
76 public void remove(int i)
77 { books.removeElementAt(i); }
78
79 public void setQuantity(int i, int quantity)
80 {
81 Book b = (Book) books.elementAt(i);
82
83 b.setQuantity(quantity);
84 }
85
86 public String getUsername()
87 { return username; }
88
89 public void setUsername(String s)
90 { username = s; }
91
92 public String[] getDescription(int i)
93 {
94 Book b = (Book) books.elementAt(i);
95
96 return b.getDescription();
97 }
98
99 public String getProductID(int i)
100 {
101 Book b = (Book) books.elementAt(i);
102
103 return b.getProductID();
104 }
105

Fig. 16.17 Code listing for ShoppingCart.java (part 2 of 4).

Chapter 16 Server-side Java Programming 445

106 public int getQuantity(int i)
107 {
108 Book b = (Book) books.elementAt(i);
109
110 return b.getQuantity();
111 }
112
113 public double getPrice(int i)
114 {
115 Book b = (Book) books.elementAt(i);
116
117 return b.getPrice();
118 }
119
120 public String getFormattedPrice(int i)
121 {
122 Book b = (Book) books.elementAt(i);
123 double price = b.getPrice();
124 NumberFormat priceFormatter =
125 NumberFormat.getCurrencyInstance();
126 String formattedPrice = priceFormatter.format(price);
127
128 return formattedPrice;
129 }
130
131 public int getLength()
132 { return books.size(); }
133
134 // returns the index of the vector if productID is found in
135 // cart, -1 otherwise
136 public int contains(String id)
137 {
138
139 for (int i = 0; i < getLength(); i++) {
140 Book b = (Book) books.elementAt(i);
141 String bookID = b.getProductID();
142
143 if (bookID != null && bookID.equals(id))
144 return i;
145 }
146
147 return -1;
148 }
149
150 public String getTotal()
151 {
152 double total = 0;
153
154 for (int i = 0; i < getLength(); i++)
155 total += getPrice(i) * getQuantity(i);
156
157 NumberFormat priceFormatter =
158 NumberFormat.getCurrencyInstance();

Fig. 16.17 Code listing for ShoppingCart.java (part 3 of 4).

446 Server-side Java Programming Chapter 16

Lines 66–68

String query = "INSERT INTO Carts (username, productID, "
+ "quantity, dateCreated) VALUES ('" + username + "',"

 + productID + "," + quantity + ",'" + date + "')";

insert one item from the user’s current shopping cart into table Carts. Method view-
CartXML is called from ViewCartServlet when the user requests to view the shop-

159 String formattedTotal = priceFormatter.format(total);
160
161 return formattedTotal;
162 }
163
164 public Document viewCartXML()
165 {
166 XMLCreator xmlCreator = new XMLCreator();
167 Node cartNode = xmlCreator.initialize("cart");
168
169 xmlCreator.addAttribute(cartNode, "numItems",
170 String.valueOf(getLength()));
171 xmlCreator.addAttribute(cartNode, "total", getTotal());
172
173 if (getLength() != 0) {
174
175 for (int i = 0; i < getLength(); i++) {
176 Node itemNode = xmlCreator.addChild(cartNode,
177 "item");
178
179 xmlCreator.addTextNode(xmlCreator.addChild(
180 itemNode, "productID"), getProductID(i));
181 xmlCreator.addTextNode(xmlCreator.addChild(
182 itemNode, "quantity"),
183 String.valueOf(getQuantity(i)));
184 xmlCreator.addTextNode(xmlCreator.addChild(
185 itemNode, "price"), getFormattedPrice(i));
186
187 String description[] = getDescription(i);
188
189 xmlCreator.addTextNode(xmlCreator.addChild(
190 itemNode, "title"), description[0]);
191 xmlCreator.addTextNode(xmlCreator.addChild(
192 itemNode, "author"), description[1]);
193 xmlCreator.addTextNode(xmlCreator.addChild(
194 itemNode, "isbn"), description[2]);
195 }
196
197 }
198
199 return xmlCreator.getDocument();
200 }
201 }

Fig. 16.17 Code listing for ShoppingCart.java (part 4 of 4).

Chapter 16 Server-side Java Programming 447

ping cart. This method produces XML that describes the shopping cart. We will see how
this XML shopping cart is transformed with XSL to create WML.

Each instance of class Book (Fig. 16.18) represents a book in our bookstore. Both set
and get methods are provided to give access to the Book’s data, such as its price, the
quantity of books in the cart, the product ID and a description.

1 // Fig. 16.18: Book.java
2 // Represents a book
3 package cartXML;
4
5 public class Book
6 {
7 private double price;
8 private int quantity;
9 private String productID;

10 private String[] description; //title, author, isbn
11
12 public Book()
13 {
14 description = null;
15 productID = null;
16 quantity = 0;
17 price = 0;
18 }
19
20 public Book(double price, int quantity, String productID)
21 {
22 this.price = price;
23 this.quantity = quantity;
24 this.productID = productID;
25 }
26
27 public Book(double price, int quantity, String productID,
28 String description[])
29 {
30 this.price = price;
31 this.quantity = quantity;
32 this.productID = productID;
33 this.description = description;
34 }
35
36 public String[] getDescription()
37 { return description; }
38
39 public double getPrice()
40 { return price; }
41
42 public int getQuantity()
43 { return quantity; }
44
45 public String getProductID()
46 { return productID; }

Fig. 16.18 Code listing for Book.java (part 1 of 2).

448 Server-side Java Programming Chapter 16

The servlets retrieve data from a database and create XML documents that describe
that data. Class XMLCreator (Fig. 16.19) is a utility class we use to create XML docu-
ments using the Document Object Model (DOM), which we first discussed in Chapter 8.

47
48 public void setDescription(String description[])
49 { this.description = description; }
50
51 public void setPrice(double d)
52 { price = d; }
53
54 public void setQuantity(int i)
55 { quantity = i; }
56
57 public void setProductID(String s)
58 { productID = s; }
59 }

1 // Fig. 16.19: XMLCreator.java
2 // Creates XML
3 package cartXML;
4 import java.io.*;
5 import org.w3c.dom.*;
6 import java.util.*;
7 import javax.xml.parsers.*;
8
9 public class XMLCreator

10 {
11 private Document document;
12
13 public Node initialize(String rootElement)
14 {
15 try {
16 System.setProperty(
17 "javax.xml.parsers.DocumentBuilderFactory",
18 "org.apache.xerces.jaxp.DocumentBuilderFactoryImpl");
19 System.setProperty(
20 "javax.xml.parsers.SAXParserFactory",
21 "org.apache.xerces.jaxp.SAXParserFactoryImpl");
22 DocumentBuilderFactory dbf =
23 DocumentBuilderFactory.newInstance();
24 DocumentBuilder db = dbf.newDocumentBuilder();
25
26 document = db.newDocument();
27
28 Node rootNode = document.createElement(rootElement);
29
30 document.appendChild(rootNode);
31 return rootNode;
32 }

Fig. 16.19 Code listing for XMLCreator.java (part 1 of 2).

Fig. 16.18 Code listing for Book.java (part 2 of 2).

Chapter 16 Server-side Java Programming 449

The static method newInstance of class DocumentBuilderFactory cre-
ates a new instance of class DocumentBuilderFactory. On lines 16–21 we set a
system property that instructs DocumentBuilderFactory to use the Xerces XML
parser. Using a DocumentBuilderFactory permits a change of your XML parser
implementation without changing how the document is actually built.

Class Processor (Fig. 16.20) applies an XSL style sheet to transform an XML doc-
ument. In this case study the result of the transformation is a WML document that is deliv-
ered to the client using the PrintWriter object out on line 17. This PrintWriter
object is used to deliver the resulting WML document to the client.

Class LoginServlet (Fig. 16.21) handles user requests to log in to the application.
The action taken depends on the value of variable action, which LoginServlet
retrieves from the request object. If the value of action is login, LoginServlet
attempts to verify the username and password in the database.

33 catch (DOMException domex) {
34 domex.printStackTrace();
35 }
36 catch (ParserConfigurationException pcex) {
37 pcex.printStackTrace();
38 }
39
40 return null;
41 }
42
43 public Node addChild(Node parentNode, String element)
44 {
45 parentNode.appendChild(document.createElement(
46 element));
47 return parentNode.getLastChild();
48 }
49
50 public void addTextNode(Node parentNode, String element)
51 {
52 parentNode.appendChild(document.createTextNode(
53 element));
54 }
55
56 public void addAttribute(Node parentNode, String name,
57 String value)
58 {
59 Element element = (Element) parentNode;
60
61 element.setAttribute(name, value);
62 }
63
64 public Document getDocument()
65 {
66 return document;
67 }
68 }

Fig. 16.19 Code listing for XMLCreator.java (part 2 of 2).

450 Server-side Java Programming Chapter 16

1 // Figure 16.20: Processor.java
2 // Applies XSL style sheet to XML
3 package cartXML;
4 import org.xml.sax.SAXException;
5 import org.apache.xalan.xslt.XSLTProcessorFactory;
6 import org.apache.xalan.xslt.XSLTInputSource;
7 import org.apache.xalan.xslt.XSLTResultTarget;
8 import org.apache.xalan.xslt.XSLTProcessor;
9 import java.io.*;

10 import java.util.*;
11 import org.xml.sax.InputSource;
12 import org.w3c.dom.*;
13
14 public class Processor
15 {
16 public void process(Node node, String xslFile,
17 PrintWriter out)
18 {
19 try {
20 XSLTProcessor processor = XSLTProcessorFactory.getProcessor(
21 new org.apache.xalan.xpath.xdom.XercesLiaison());
22 processor.process(new XSLTInputSource(node),
23 new XSLTInputSource(new InputSource("file:///"
24 + xslFile)), new XSLTResultTarget(out));
25 }
26 catch(SAXException saxex) { saxex.printStackTrace(); }
27 }
28 }

Fig. 16.20 Code listing for Processor.java.

1 // Fig. 16.21: LoginServlet.java
2 // Logs user into site and creates new account
3 package cartXML;
4 import java.io.*;
5 import javax.servlet.*;
6 import javax.servlet.http.*;
7 import java.util.*;
8 import java.sql.*;
9 import org.w3c.dom.*;

10
11 public class LoginServlet extends HttpServlet {
12 private Database database;
13
14 public void init(ServletConfig config)
15 throws ServletException
16 {
17 super.init(config);
18 database = new Database("jdbc:odbc:cart", "anonymous",
19 "guest");

Fig. 16.21 Code listing for LoginServlet.java (part 1 of 4).

Chapter 16 Server-side Java Programming 451

20 database.connect();
21 }
22
23 public void service(HttpServletRequest req,
24 HttpServletResponse res)
25 throws ServletException, IOException
26 {
27 HttpSession session = req.getSession(true);
28 ShoppingCart test = (ShoppingCart) session.getAttribute(
29 "cart");
30 ServletContext sc = getServletConfig().getServletContext();
31
32 if (test != null) { // do not allow a user to log in twice
33 sc.getRequestDispatcher(
34 "/servlet/cartXML.GetTechnologyServlet")
35 .forward(req, res);
36 return;
37 }
38
39 ShoppingCart cart = new ShoppingCart();
40 String name = req.getParameter("param1");
41 String password = req.getParameter("param2");
42 String action = req.getParameter("action");
43 XMLCreator xmlCreator = new XMLCreator();
44 Node loginNode = xmlCreator.initialize("login");
45 Processor processor = new Processor();
46 res.setContentType("text/vnd.wap.wml");
47 PrintWriter output = res.getWriter();
48
49 if (action.equals("login")) {
50
51 // send to servlet that retrieves cart
52 if(isValid(name, password)) {
53 cart.setUsername(name);
54 session.setAttribute("cart", cart);
55 sc.getRequestDispatcher(
56 "/servlet/cartXML.GetShoppingCartServlet")
57 .forward(req, res);
58 }
59 else {
60 Node messageNode = xmlCreator.addChild(loginNode,
61 "message");
62
63 xmlCreator.addTextNode(messageNode,
64 "You entered an invalid password");
65 processor.process(xmlCreator.getDocument(),
66 "C:/jakarta-tomcat/webapps/chapter16/login.xsl",
67 output);
68 }
69 }
70 else {
71

Fig. 16.21 Code listing for LoginServlet.java (part 2 of 4).

452 Server-side Java Programming Chapter 16

72 if (!password.equals(req.getParameter("param3")))
73 {
74 xmlCreator.addTextNode(xmlCreator.addChild(
75 loginNode, "message"), "You entered two "
76 + "different passwords. Please try again.");
77 processor.process(xmlCreator.getDocument(),
78 "C:/jakarta-tomcat/webapps/chapter16/newuser.xsl",
79 output);
80 }
81 else {
82 boolean created = createUser(name, password);
83
84 if (created) {
85 cart.setUsername(name);
86 xmlCreator.addTextNode(xmlCreator.addChild(
87 loginNode, "message"), "Account created \n "
88 + "username: " + name + "\n password: "
89 + password);
90
91 session.setAttribute("cart", cart);
92 processor.process(xmlCreator.getDocument(),
93 "C:/jakarta-tomcat/webapps/chapter16/welcome.xsl",
94 output);
95 }
96 else {
97 xmlCreator.addTextNode(xmlCreator.addChild(
98 loginNode, "message"), "That username already "
99 + "exists. Please try again.");
100 processor.process(xmlCreator.getDocument(),
101 "C:/jakarta-tomcat/webapps/chapter16/newuser.xsl",
102 output);
103 }
104 }
105 }
106 }
107
108 public boolean isValid(String user, String passwd)
109 {
110 try {
111 String query = "SELECT username FROM Users WHERE "
112 + "username = '" + user + "' and password = '"
113 + passwd + "'";
114 ResultSet rs = database.get(query);
115
116 if (rs.next())
117 return true;
118 }
119 catch (SQLException sqlex) {
120 sqlex.printStackTrace();
121 }
122
123 return false;
124 }

Fig. 16.21 Code listing for LoginServlet.java (part 3 of 4).

Chapter 16 Server-side Java Programming 453

Lines 27–29

HttpSession session = req.getSession(true);
ShoppingCart test = (ShoppingCart) session.getAttribute(
 "cart");

retrieve the object named cart from the session. If no object named cart is bound to
the session, test will be null. If test is not null, lines 33–35 use the Request-
Dispatcher interface to forward the request to another page; this prevents a user from
logging in more than once per session.

If a user is logging in (line 49), line 52 tests for a successful login by invoking method
isValid. Method isValid is defined in lines 108–124; we use an instance of class
Database to query the cart.mdb database. Lines 111–113

125
126 private boolean found(String user)
127 {
128 try
129 {
130 String query = "SELECT username FROM Users WHERE "
131 + "username= '" + user + "'";
132 ResultSet rs = database.get(query);
133
134 if (rs.next())
135 return true;
136 }
137 catch (SQLException sqlex) {
138 sqlex.printStackTrace();
139 }
140
141 return false;
142 }
143
144 public boolean createUser(String user, String passwd)
145 {
146 boolean canInsert = found(user);
147
148 if (!canInsert) { // if name does not already exist
149 String query = "INSERT INTO Users (username, "
150 + "password) VALUES ('" + user + "','"
151 + passwd + "')";
152 return database.update(query);
153 }
154
155 return false;
156 }
157
158 public void destroy()
159 { database.shutDown(); }
160 }

Fig. 16.21 Code listing for LoginServlet.java (part 4 of 4).

454 Server-side Java Programming Chapter 16

String query = "SELECT username FROM Users WHERE "
 + "username = '" + user + "' and password = '"
 + passwd + "'";

build an SQL SELECT query. This query selects fields username and password from
table Users. Lines 114–117

ResultSet rs = database.get(query);

if (rs.next())
return true;

check to see if the username and password exist in the cart database. Initially, the
ResultSet is positioned before the first record. ResultSet method next returns a
boolean indicating whether the method was able to position to the next record. If the
method returns false, there are no more records to process (i.e., the username and
password are not in the database).

Lines 60–67 are executed when isValid returns false (i.e., the user entered an
invalid password for the specified username). Lines 63 and 64

xmlCreator.addTextNode(messageNode,
 "You entered an invalid password");

add a text node containing the text "You entered an invalid password" to node
messageNode.

If action is not login (lines 70–104), the user is creating a new account. First, we
test if the user entered the same password twice for verification (line 72). If the user
entered two different passwords, we create XML indicating so.

If the user entered the same password in both fields, we attempt to create a new
account. We invoke method createUser (lines 144–156). Method found is called in
line 146 to check if username already exists in the cart.mdb database; a user can only
create an account with a username that does not yet exist. If the username does not yet
exist, method createUser inserts the username and password into table Users.
Lines 149–151

String query = "INSERT INTO Users (username, "
 + "password) VALUES ('" + user + "','"
 + passwd + "')";

build the INSERT INTO statement, which indicates the values to be inserted in the user-
name and password fields in table Users. Line 152

return database.update(query);

inserts the record into table Users.
The XML document

<login>
<message>

 You entered two different passwords. Please try again.
</message>

</login>

Chapter 16 Server-side Java Programming 455

or the XML document

<login>
<message>

 That username already exists. Please try again.
</message>

</login>

is produced in LoginServlet when a user unsuccessfully attempts to create a new ac-
count. This XML document, the XSL file newuser.xsl (Fig. 16.22) and the Print-
Writer object output are passed as arguments to class Processor’s process
method. Recall that class process applies a style sheet to an XML document. The above
XML is used with style sheet newuser.xsl to generate a WML page for LoginServ-
let to display.

The style sheet newuser.xsl (Fig. 16.22) is used when a user attempts to create a
new account using a username that has already been taken or if the user enters two different
passwords. When this style sheet is applied to the XML generated in LoginServlet, a
WML document is generated. The xsl:output element (lines 7–9)

<xsl:output method = "xml" omit-xml-declaration = "no"
 doctype-system = "http://www.wapforum.org/DTD/wml_1.1.xml"
 doctype-public = "-//WAPFORUM//DTD WML 1.1//EN"/>

1 <xsl:stylesheet xmlns:xsl = "http://www.w3.org/1999/XSL/Transform"
2 version = "1.0">
3
4 <!-- Fig. 16.22 : newuser.xsl -->
5 <!-- Transforms XML from LoginServlet to WML -->
6
7 <xsl:output method = "xml" omit-xml-declaration = "no"
8 doctype-system = "http://www.wapforum.org/DTD/wml_1.1.xml"
9 doctype-public = "-//WAPFORUM//DTD WML 1.1//EN"/>

10 <xsl:template match = "/">
11 <wml>
12 <card>
13 <onevent type = "onenterforward">
14
15 <refresh>
16 <setvar name = "param1" value = ""/>
17 </refresh>
18
19 </onevent>
20
21 <do type = "accept">
22 <go href = "#pass1"/>
23 </do>
24 <p>
25 <xsl:value-of select = "//message"/>
26 </p>
27 <p>

Fig. 16.22 Code listing for newuser.xsl (part 1 of 3).

456 Server-side Java Programming Chapter 16

28
29 Name:
30
31 <input name = "param1" format = "mmmmm*m"
32 type = "text" maxlength = "10"/>
33 </p>
34 </card>
35
36 <card id = "pass1">
37 <onevent type = "onenterforward">
38
39 <refresh>
40 <setvar name = "param2" value = ""/>
41 </refresh>
42
43 </onevent>
44
45 <do type = "accept">
46 <go href = "#pass2"/>
47 </do>
48
49 <p>Password(5-10chars.):
50 <input name = "param2" format = "mmmmm*m"
51 type = "password" maxlength = "10"/>
52 </p>
53 </card>
54 <card id = "pass2">
55 <onevent type = "onenterforward">
56
57 <refresh>
58 <setvar name = "param3" value = ""/>
59 </refresh>
60
61 </onevent>
62 <do type = "accept">
63 <go href =
64 "cartXML.LoginServlet?action=newuser"
65 method = "post">
66
67 <postfield name = "param2" value = "$(param2)"/>
68 <postfield name = "param1" value = "$(param1)"/>
69 <postfield name = "param3" value = "$(param3)"/>
70
71 </go>
72 </do>
73 <p>Password:
74 <input name = "param3" format = "mmmmm*m"
75 type = "password" maxlength = "10"/>
76 </p>
77 </card>
78 </wml>
79 </xsl:template>
80 </xsl:stylesheet>

Fig. 16.22 Code listing for newuser.xsl (part 2 of 3).

Chapter 16 Server-side Java Programming 457

produces the XML declaration and document type definition (DTD)

<?xml version = "1.0" encoding = "UTF-8"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
 "http://www.wapforum.org/DTD/wml_1.1.xml">

Line 10

<xsl:template match = "/">

matches the root node of the XML document. Then the next six lines of WML are written
out. Line 25

<xsl:value-of select = "//message"/>

prints out the value between the <message>...</message> tags. The two slashes in
front of message tell the XSL processor to look for this element at any level in the tree.

When a user successfully creates a new account, LoginServlet produces the XML

Fig. 16.22 Code listing for newuser.xsl (part 3 of 3).

(Courtesy of Phone.com,
Inc.)

458 Server-side Java Programming Chapter 16

<login>
<message>

 Account created \n username: harvey\n password: deitel
</message>

</login>

The style sheet welcome.xsl (Fig. 16.23) is applied to this XML to generate WML
When the user selects the Shopping link, servlet GetTechnologyServlet (Fig.

16.24) is requested.
Servlet GetTechnologyServlet (Fig. 16.24) queries the database cat-

alog.mdb for a list of technologies for which books are available. Line 42

String query = "SELECT * FROM tech";

shows the use of an asterisk (*) to select all fields from the table tech. Once the informa-
tion has been retrieved, lines 40–54 use class XMLCreator to create the XML

<catalog>
<product>

<techID>1</techID>
<technology>C</technology>

</product>
<product>

<techID>2</techID>
<technology>C++</technology>

</product>
<product>

<techID>3</techID>
<technology>Visual Basic</technology>

</product>
<product>

<techID>4</techID>
<technology>Java</technology>

</product>
</catalog>

.

1 <xsl:stylesheet xmlns:xsl = "http://www.w3.org/1999/XSL/Transform"
2 version = "1.0">
3
4 <!-- Fig. 16.23 : welcome.xsl -->
5 <!-- Stylesheet to transform into WML -->
6
7 <xsl:output method = "xml" omit-xml-declaration = "no"
8 doctype-system = "http://www.wapforum.org/DTD/wml_1.1.xml"
9 doctype-public = "-//WAPFORUM//DTD WML 1.1//EN"/>

10
11 <xsl:template match = "/">
12 <wml>
13
14 <card>

Fig. 16.23 Code listing for welcome.xsl.

Chapter 16 Server-side Java Programming 459

15 <do type = "accept" label = "Shopping">
16
17 <go href =
18 "cartXML.GetTechnologyServlet"
19 method = "post"/>
20
21 </do>
22
23 <p>
24 <xsl:value-of select = "//message"/>
25 </p>
26
27 </card>
28
29 </wml>
30 </xsl:template>
31 </xsl:stylesheet>

Fig. 16.23 Code listing for welcome.xsl.

(Courtesy of Phone.com,

460 Server-side Java Programming Chapter 16

1 // Fig. 16.24: GetTechnologyServlet.java
2 // Retrieves technologies from database
3 package cartXML;
4 import java.io.*;
5 import javax.servlet.*;
6 import javax.servlet.http.*;
7 import java.util.*;
8 import java.sql.*;
9 import org.w3c.dom.*;

10
11 public class GetTechnologyServlet extends HttpServlet {
12 private Database database;
13
14 public void init(ServletConfig config)
15 throws ServletException
16 {
17 super.init(config);
18 database = new Database("jdbc:odbc:catalog", "anonymous",
19 "guest");
20 database.connect();
21 }
22
23 public void service(HttpServletRequest req,
24 HttpServletResponse res)
25 throws ServletException, IOException
26 {
27 try {
28 HttpSession session = req.getSession(true);
29 ShoppingCart cart =
30 (ShoppingCart) session.getAttribute("cart");
31 ServletContext sc = getServletConfig()
32 .getServletContext();
33
34 if (cart.getUsername() == null) {
35 sc.getRequestDispatcher("/index.wml")
36 .forward(req, res);
37 return;
38 }
39
40 XMLCreator xmlCreator = new XMLCreator();
41 Node catalogNode = xmlCreator.initialize("catalog");
42 String query = "SELECT * FROM tech";
43 ResultSet rs = database.get(query);
44
45 while (rs.next()) {
46 Node productNode = xmlCreator.addChild(catalogNode,
47 "product");
48 xmlCreator.addTextNode(xmlCreator.addChild(
49 productNode, "techID"),
50 rs.getString("techID"));
51 xmlCreator.addTextNode(xmlCreator.addChild(
52 productNode, "technology"),
53 rs.getString("technology"));
54 }

Fig. 16.24 Code listing for GetTechnologyServlet.java (part 1 of 2).

Chapter 16 Server-side Java Programming 461

GetTechnologyServlet uses class Processor to apply style sheet cata-
log.xsl (Fig. 16.25) to the XML.

55
56 res.setContentType("text/vnd.wap.wml");
57 PrintWriter output = res.getWriter();
58 Processor processor = new Processor();
59 processor.process(xmlCreator.getDocument(),
60 "C:/jakarta-tomcat/webapps/chapter16/catalog.xsl",
61 output);
62 }
63 catch (SQLException sqlex) {
64 sqlex.printStackTrace();
65 }
66 }
67
68 public void destroy()
69 {
70 database.shutDown();
71 }
72 }

1 <xsl:stylesheet xmlns:xsl =
2 "http://www.w3.org/1999/XSL/Transform" version = "1.0">
3
4 <!-- Fig. 16.25 : catalog.xsl -->
5 <!-- Tranforms XML from GetTechnologyServlet to WML -->
6
7 <xsl:output method = "xml"
8 omit-xml-declaration = "no"
9 doctype-system = "http://www.wapforum.org/DTD/wml_1.1.xml"

10 doctype-public = "-//WAPFORUM//DTD WML 1.1//EN"/>
11 <xsl:template match = "/">
12 <wml>
13 <card>
14 <do type = "options" label = "Logout" >
15 <go href =
16 "cartXML.LogoutServlet"/>
17 </do>
18 <p> Select a link to view titles </p>
19 <p>
20 <select name = "items" ivalue = "1">
21 <xsl:apply-templates/>
22 </select>
23 </p>
24 </card>
25 </wml>
26 </xsl:template>
27 <xsl:template match = "product">

Fig. 16.25 Code listing for catalog.xsl (part 1 of 2).

Fig. 16.24 Code listing for GetTechnologyServlet.java (part 2 of 2).

462 Server-side Java Programming Chapter 16

The user is presented with a list of technologies; selecting a technology requests servlet
GetTitlesServlet (Fig. 16.26). GetTitlesServlet queries the catalog data-

28 <option onpick=
29 "cartXML.GetTitlesServlet?techID={techID}">
30 <xsl:value-of select = "technology"/>
31 </option>
32 </xsl:template>
33 </xsl:stylesheet>

1 // Fig. 16.26: GetTitlesServlet.java
2 // Retrieves titles from database
3 package cartXML;
4 import java.io.*;
5 import javax.servlet.*;
6 import javax.servlet.http.*;
7 import java.util.*;
8 import java.sql.*;
9 import org.w3c.dom.*;

Fig. 16.26 Code listing for GetTitlesServlet.java (part 1 of 3).

Fig. 16.25 Code listing for catalog.xsl (part 2 of 2).

(Courtesy of Phone.com,

Chapter 16 Server-side Java Programming 463

10
11 public class GetTitlesServlet extends HttpServlet {
12 private Database database;
13
14 public void init(ServletConfig config)
15 throws ServletException
16 {
17 super.init(config);
18 database = new Database("jdbc:odbc:catalog", "anonymous",
19 "guest");
20 database.connect();
21 }
22
23 public void service(HttpServletRequest req,
24 HttpServletResponse res)
25 throws ServletException, IOException
26 {
27 try {
28 HttpSession session = req.getSession(true);
29 ShoppingCart cart =
30 (ShoppingCart) session.getAttribute("cart");
31 ServletContext sc = getServletConfig().
32 getServletContext();
33
34 if (cart.getUsername() == null) {
35 sc.getRequestDispatcher("/index.wml")
36 .forward(req, res);
37 return;
38 }
39
40 XMLCreator xmlCreator = new XMLCreator();
41 Node productNode = xmlCreator.initialize("products");
42 String techID = req.getParameter("techID");
43 String query = "SELECT title, edition, productID FROM "
44 + "products WHERE techid= " + techID;
45 ResultSet rs = database.get(query);
46
47 while (rs.next()) {
48 Node itemNode = xmlCreator.addChild(productNode,
49 "item");
50
51 xmlCreator.addTextNode(xmlCreator.addChild(itemNode,
52 "title"), rs.getString("title"));
53 xmlCreator.addTextNode(xmlCreator.addChild(itemNode,
54 "productID"), rs.getString("productID"));
55 xmlCreator.addTextNode(xmlCreator.addChild(itemNode,
56 "techID"), techID);
57 }
58
59 res.setContentType("text/vnd.wap.wml");
60 PrintWriter output = res.getWriter();
61 Processor processor = new Processor();

Fig. 16.26 Code listing for GetTitlesServlet.java (part 2 of 3).

464 Server-side Java Programming Chapter 16

base for a list of titles in a given technology and uses class XMLCreator to create XML
that contains information obtained from the database. The following XML would be cre-
ated if the user selected C technology:

<products>
<item>

<title>C: How to Program</title>
<productID>4</productID>
<techID>1</techID>

</item>
</products>

GetTitlesServlet uses class Processor to transform the passed XML into
WML by using style sheet titles.xsl (Fig. 16.27).

62 processor.process(xmlCreator.getDocument(),
63 "C:/jakarta-tomcat/webapps/chapter16/titles.xsl",
64 output);
65 }
66 catch(SQLException sqlex){}
67 }
68
69 public void destroy()
70 {
71 database.shutDown();
72 }
73 }

Fig. 16.26 Code listing for GetTitlesServlet.java (part 3 of 3).

1 <xsl:stylesheet xmlns:xsl = "http://www.w3.org/1999/XSL/Transform"
2 version = "1.0">
3
4 <!-- Fig. 16.27 : titles.xsl -->
5 <!-- Tranforms XML from GetTitlesServlet to WML -->
6
7 <xsl:output method = "xml" omit-xml-declaration = "no"
8 doctype-system = "http://www.wapforum.org/DTD/wml_1.1.xml"
9 doctype-public = "-//WAPFORUM//DTD WML 1.1//EN"/>

10
11 <xsl:template match = "/">
12 <wml>
13 <card>
14 <do type = "options" label = "Shopping">
15 <go href =
16 "cartXML.GetTechnologyServlet"
17 method = "post"/>
18 </do>
19 <p>Titles</p>
20 <p>
21 <select name = "items" ivalue = "1">

Fig. 16.27 Code listing for titles.xsl (part 1 of 2).

Chapter 16 Server-side Java Programming 465

22 <xsl:apply-templates/>
23 </select>
24 </p>
25 </card>
26 </wml>
27 </xsl:template>
28 <xsl:template match = "item">
29 <option title = "Info" onpick =
30 "cartXML.GetDescriptionServlet?productID={produc-
tID}&techID={techID}">
31 <xsl:value-of select = "title"/>
32 </option>
33 </xsl:template>
34 </xsl:stylesheet>

Fig. 16.27 Code listing for titles.xsl (part 2 of 2).

(Courtesy of Phone.com,
Inc.)

466 Server-side Java Programming Chapter 16

The WML generated by applying style sheet titles.xsl allows the user to select
a title corresponding to the chosen technology. Selecting a title results in the servlet Get-
DescriptionServlet (Fig. 16.28) being requested.

GetDesriptionServlet also queries the catalog database. This servlet looks
up a description of a book from the database and generates XML such as

1 // Fig. 16.28: GetDescriptionServlet.java
2 // Retrieves description of an item from database
3 package cartXML;
4 import java.io.*;
5 import javax.servlet.*;
6 import javax.servlet.http.*;
7 import java.util.*;
8 import java.text.*;
9 import java.sql.*;

10 import org.w3c.dom.*;
11
12 public class GetDescriptionServlet extends HttpServlet {
13 private Database database;
14
15 public void init(ServletConfig config)
16 throws ServletException
17 {
18 super.init(config);
19 database = new Database("jdbc:odbc:catalog", "anonymous",
20 "guest");
21 database.connect();
22 }
23
24 public void service(HttpServletRequest req,
25 HttpServletResponse res)
26 throws ServletException, IOException
27 {
28 try {
29 HttpSession session = req.getSession(true);
30 ShoppingCart cart =
31 (ShoppingCart) session.getAttribute("cart");
32
33 ServletContext sc = getServletConfig()
34 .getServletContext();
35
36 if (cart.getUsername() == null) {
37 sc.getRequestDispatcher("/index.wml")
38 .forward(req, res);
39 return;
40 }
41
42 String productID = req.getParameter("productID");
43 String techID = req.getParameter("techID");
44 String query = "SELECT * FROM Products, Authors, "
45 + "AuthorList WHERE Products.productID= "
46 + productID + " AND Products.productID = "

Fig. 16.28 Code listing for GetDescriptionServlet.java (part 1 of 2).

Chapter 16 Server-side Java Programming 467

47 + "Authorlist.productid AND Authorlist.authorid = "
48 + "Authors.authorID";
49
50 ResultSet rs = database.get(query);
51
52 rs.next();
53
54 double price = rs.getDouble("price");
55 String unformattedPrice = String.valueOf(price);
56 NumberFormat priceFormatter =
57 NumberFormat.getCurrencyInstance();
58 String formattedPrice = priceFormatter.format(price);
59
60 XMLCreator xmlCreator = new XMLCreator();
61 Node productNode = xmlCreator.initialize("product");
62 Node itemNode = xmlCreator.addChild(
63 productNode, "item");
64
65 xmlCreator.addTextNode(xmlCreator.addChild(itemNode,
66 "title"), rs.getString("title"));
67 xmlCreator.addTextNode(xmlCreator.addChild(itemNode,
68 "edition"), rs.getString("edition"));
69 xmlCreator.addTextNode(xmlCreator.addChild(itemNode,
70 "pubdate"), rs.getString("pubdate"));
71 xmlCreator.addTextNode(xmlCreator.addChild(itemNode,
72 "isbn"), rs.getString("isbn"));
73 xmlCreator.addTextNode(xmlCreator.addChild(itemNode,
74 "author"), rs.getString("Name"));
75 xmlCreator.addTextNode(xmlCreator.addChild(itemNode,
76 "productID"), productID);
77 xmlCreator.addTextNode(xmlCreator.addChild(itemNode,
78 "formattedPrice"), formattedPrice);
79 xmlCreator.addTextNode(xmlCreator.addChild(itemNode,
80 "techID"), techID);
81
82 res.setContentType("text/vnd.wap.wml");
83 PrintWriter output = res.getWriter();
84 Processor processor = new Processor();
85 processor.process(xmlCreator.getDocument(),
86 "C:/jakarta-tomcat/webapps/chapter16/description.xsl",
87 output);
88 }
89 catch (SQLException sqlex) {
90 sqlex.printStackTrace();
91 }
92 }
93
94 public void destroy()
95 {
96 database.shutDown();
97 }
98 }

Fig. 16.28 Code listing for GetDescriptionServlet.java (part 2 of 2).

468 Server-side Java Programming Chapter 16

<product>
<item>

<title>C: How to Program</title>
<edition>2</edition>
<pubdate>1994</pubdate>
<isbn>0-13-226119-7</isbn>
<author>Harvey Deitel</author>
<productID>4</productID>
<formattedPrice>$50</formattedPrice>
<unFormattedPrice>50.00</unFormattedPrice>
<techID>1</techID>

</item>
</product>

containing information for the specified book. This servlet applies style sheet descrip-
tion.xsl (Fig. 16.29) to the XML generated.

1 <!-- Fig. 16.29 : description.xsl -->
2 <!-- Transforms XML from GetDescriptionServlet to WML -->
3 <xsl:stylesheet xmlns:xsl = "http://www.w3.org/1999/XSL/Transform"
4 version = "1.0">
5
6 <xsl:output method = "xml" omit-xml-declaration = "no"
7 doctype-system = "http://www.wapforum.org/DTD/wml_1.1.xml"
8 doctype-public = "-//WAPFORUM//DTD WML 1.1//EN"/>
9

10 <xsl:template match = "/">
11 <wml>
12 <head>
13 <meta http-equiv = "Cache-Control" content = "max-age=0"
14 forua = "true"/>
15 </head>
16 <card>
17 <xsl:apply-templates/>
18 </card>
19 </wml>
20 </xsl:template>
21
22 <xsl:template match = "item">
23 <do type = "options" label = "Back">
24 <go href =
25 "cartXML.GetTitlesServlet?techID={techID}"
26 method = "post"/>
27 </do>
28 <do type = "accept" label = "Add to cart">
29 <go href =
30 "cartXML.AddToCartServlet"
31 method = "post">
32 <postfield name = "productID" value = "{productID}"/>
33 <postfield name = "title" value = "{title}"/>
34 <postfield name = "author" value = "{author}"/>
35 <postfield name = "isbn" value = "{isbn}"/>
36 <postfield name = "price" value = "{unFormattedPrice}"/>

Fig. 16.29 Code listing for description.xsl (part 1 of 2).

Chapter 16 Server-side Java Programming 469

If the user selects the Add to cart link, servlet AddToCartServlet (Fig. 16.30)
is requested.

AddToCartServlet (Fig. 16.30) adds one item to the user’s shopping cart and for-
wards the request to ViewCartServlet (Fig. 16.31), which displays the user’s shop-
ping cart. Line 42 of Fig. 16.30.

int bookElement = cart.contains(productID);

checks whether the item is already in the cart. If the book is in the cart, its quantity is in-
creased by one. Otherwise, a new instance of class Book (Fig. 16.18) is created and added
to the cart (line 45).

37 </go>
38 </do>
39
40 <p>author: <xsl:value-of select = "author"/></p>
41 <p>price: $<xsl:value-of select = "formattedPrice"/></p>
42 <p>isbn: <xsl:value-of select = "isbn"/></p>
43 <p>edition: <xsl:value-of select = "edition"/></p>
44 <p>published: <xsl:value-of select = "pubdate"/></p>
45 </xsl:template>
46 </xsl:stylesheet>

Fig. 16.29 Code listing for description.xsl (part 2 of 2).

(Courtesy of Phone.com,

470 Server-side Java Programming Chapter 16

1 // Fig. 16.30: AddToCartServlet.java
2 // Adds an item to shopping cart
3 package cartXML;
4 import java.io.*;
5 import javax.servlet.*;
6 import javax.servlet.http.*;
7 import java.util.*;
8 import java.sql.*;
9

10 public class AddToCartServlet extends HttpServlet {
11
12 public void service(HttpServletRequest req,
13 HttpServletResponse res)
14 throws ServletException, IOException
15 {
16 HttpSession session = req.getSession(true);
17 ShoppingCart cart =
18 (ShoppingCart) session.getAttribute("cart");
19 ServletContext sc = getServletConfig().getServletContext();
20
21 if (cart.getUsername() == null) {
22 sc.getRequestDispatcher("/index.wml")
23 .forward(req, res);
24 return;
25 }
26
27 String productID = req.getParameter("productID");
28
29 if (productID == null) {
30 sc.getRequestDispatcher(
31 "/servlet/cartXML.ViewCartServlet")
32 .forward(req, res);
33 return;
34 }
35
36 double price = Double.parseDouble(
37 req.getParameter("price"));
38 String title = req.getParameter("title");
39 String author = req.getParameter("author");
40 String isbn = req.getParameter("isbn");
41 String description[] = { title, author, isbn };
42 int bookElement = cart.contains(productID);
43
44 if (bookElement == -1)
45 cart.add(new Book(price, 1, productID, description));
46 else
47 cart.setQuantity(bookElement, cart.getQuantity (
48 bookElement) + 1);
49
50 session.setAttribute("cart", cart);
51 productID = null;
52 sc.getRequestDispatcher("/servlet/cartXML.ViewCartServlet")
53 .forward(req, res);

Fig. 16.30 Code listing for AddToCartServlet.java (part 1 of 2).

Chapter 16 Server-side Java Programming 471

The ShoppingCart bean is used to create XML because the XML represents what is in
the shopping cart. The other servlets used XML that displayed information not belonging
to a class. The XML

<cart numItems = "1" total = "$50">
<item>

<productID>4</productID>
<quantity>1</quantity>
<price>$50</price>
<title>C: How to Program</title>
<author>Harvey Deitel</author>
<isbn>0-13-226119-7</isbn>

</item>
</cart>

is an example of the XML that could be generated by ShoppingCart method view-
CartXML.

54 }
55
56 }

Fig. 16.30 Code listing for AddToCartServlet.java (part 2 of 2).

1 // Fig. 16.31: ViewCartServlet.java
2 // displays items in shopping cart
3 package cartXML;
4 import java.io.*;
5 import javax.servlet.*;
6 import javax.servlet.http.*;
7 import java.util.*;
8 import java.sql.*;
9 import org.w3c.dom.*;

10
11 public class ViewCartServlet extends HttpServlet {
12
13 public void service(HttpServletRequest request,
14 HttpServletResponse response)
15 throws ServletException, IOException
16 {
17 HttpSession session = request.getSession(true);
18 ShoppingCart cart = (ShoppingCart) session.getAttribute(
19 "cart");
20 ServletContext sc = getServletConfig()
21 .getServletContext();
22
23 if (cart.getUsername() == null) {
24 sc.getRequestDispatcher("/index.wml")
25 .forward(request, response);
26 return;
27 }

Fig. 16.31 Code listing for ViewCartServlet.java (part 1 of 2).

472 Server-side Java Programming Chapter 16

The document viewcart.xsl (Fig. 16.32), the most complicated style sheet in our
example, is used to display the user’s current shopping cart.

28 Document doc = cart.viewCartXML();
29 response.setContentType("text/vnd.wap.wml");
30 PrintWriter output = response.getWriter();
31 Processor processor = new Processor();
32 processor.process(doc,
33 "C:/jakarta-tomcat/webapps/chapter16/viewcart.xsl",
34 output);
35 }
36 }

1 <xsl:stylesheet xmlns:xsl = "http://www.w3.org/1999/XSL/Transform"
2 version = "1.0">
3
4 <!-- Figure 16.32 : viewcart.xsl -->
5 <!-- Tranforms XML from ShoppingCart to WML -->
6
7 <xsl:output method = "xml" omit-xml-declaration = "no"
8 doctype-system = "http://www.wapforum.org/DTD/wml_1.1.xml"
9 doctype-public = "-//WAPFORUM//DTD WML 1.1//EN"/>

10
11 <xsl:template match = "/">
12 <wml>
13
14 <head>
15 <meta http-equiv = "Cache-Control" content = "max-age=0"
16 forua = "true"/>
17 </head>
18
19 <card>
20
21 <do type = "options" label = "Shopping">
22 <go href =
23 "cartXML.GetTechnologyServlet"
24 method = "post"/>
25 </do>
26
27 <xsl:choose>
28 <xsl:when test = "/cart/@numItems = '0'">
29 <p>Your cart is empty</p>
30 </xsl:when>
31 <xsl:otherwise> <!-- numItems != 0 -->
32 <p> Your cart </p>
33 <p> Total: $<xsl:value-of select =
34 "/cart/@total"/></p>
35 <p>
36 <select name = "items" ivalue = "1">

Fig. 16.32 Code listing for viewcart.xsl (part 1 of 3).

Fig. 16.31 Code listing for ViewCartServlet.java (part 2 of 2).

Chapter 16 Server-side Java Programming 473

37 <xsl:for-each select = "/cart/item">
38
39 <option title = "Info"
40 onpick = "#product{productID}">
41 <xsl:value-of select = "title"/>
42 </option>
43
44 </xsl:for-each>
45 </select>
46 </p>
47 </xsl:otherwise>
48 </xsl:choose>
49 </card>
50 <xsl:apply-templates select = "/cart/item"/>
51 </wml>
52 </xsl:template>
53 <xsl:template match = "item">
54
55 <card id = "product{productID}">
56 <p>price: $<xsl:value-of select = "price"/></p>
57 <p>quantity: <xsl:value-of select = "quantity"/></p>
58 <p>author: <xsl:value-of select = "author"/></p>
59 <p>isbn: <xsl:value-of select = "isbn"/></p>
60
61 <do type = "options" label = "change quant">
62 <go href = "#quant{productID}"/>
63 </do>
64
65 </card>
66
67 <card id = "quant{productID}">
68 <onevent type = "onenterforward">
69 <refresh>
70 <setvar name = "quantity" value = ""/>
71 </refresh>
72 </onevent>
73
74 <do type = "accept">
75 <go href =
76 "cartXML.UpdateCartServlet" method = "post">
77 <postfield name = "quantity" value = "$(quantity)"/>
78 <postfield name = "productID" value = "{productID}"/>
79 </go>
80 </do>
81
82 <p>Enter a new quantity</p>
83 <p>
84 <input name = "quantity" emptyok = "false"
85 type = "text" maxlength = "10"/>
86 </p>
87 </card>
88 </xsl:template>
89 </xsl:stylesheet>

Fig. 16.32 Code listing for viewcart.xsl (part 2 of 3).

474 Server-side Java Programming Chapter 16

Lines 14–17

<head>
<meta http-equiv = "Cache-Control" content = "max-age=0"

 forua = "true"/>
</head>

delete the cache for this deck. The deck cache is kept by the browser in order to display a
page again without requesting it again.

XSL enables document authors to make decisions about what to output, depending on
which elements are in an XML document. A common way of doing this is with the
xsl:choose element. This element selects a condition as specified in the xsl:when
element. Line 28

<xsl:when test = "/cart/@numItems = '0'">

 is selected when attribute numItems of element cart has value 0, and line 31

<xsl:otherwise> <!-- numItems != 0 -->

Fig. 16.32 Code listing for viewcart.xsl (part 3 of 3).

(Courtesy of Phone.com,

Chapter 16 Server-side Java Programming 475

is selected when none of the other <when> elements are true (in our example, there is only
one <when> element). Lines 33 and 34

<p> Total: $<xsl:value-of select =
"/cart/@total"/> </p>

print out the total attribute of element cart. The $ sign escapes the $ sign contained in
the total attribute.

There are two ways in XSL to process more than one element. The first way is shown
on line 37

<xsl:for-each select = "/cart/item">

This statement processes all elements of type item. Lines 39–42

<option title = "Info"
 onpick = "#product{productID}">
 <xsl:value-of select = "title"/>
</option>

do not use the xsl:value-of element to output a node as previously seen, but use curly
braces to display the value of the productID element. It is necessary to use this format
because it is an error to use the < or > characters inside an attribute.

The other way of processing multiple elements is by using the xsl:apply-tem-
plates element. Line 50

<xsl:apply-templates select = "/cart/item"/>

recursively processes all item nodes.
UpdateCartServlet (Fig. 16.33) is requested when the quantity of an item in the

user’s shopping cart is changed.

1 // Fig. 16.33: UpdateCartServlet.java
2 // Changes quantity of an item in shopping cart
3 package cartXML;
4 import java.io.*;
5 import javax.servlet.*;
6 import javax.servlet.http.*;
7 import java.util.*;
8 import java.sql.*;
9

10 public class UpdateCartServlet extends HttpServlet {
11
12 public void service(HttpServletRequest req,
13 HttpServletResponse res)
14 throws ServletException, IOException
15 {
16 HttpSession session = req.getSession(true);
17 ShoppingCart cart = (ShoppingCart) session.getAttribute(
18 "cart");

Fig. 16.33 Code listing for UpdateCartServlet.java (part 1 of 2).

476 Server-side Java Programming Chapter 16

Line 34

cart.remove(bookElement);

removes an item from the cart if the user changes the quantity to zero. Line 36

cart.setQuantity(bookElement, quantity);

sets the quantity of an item if the quantity is changed to a number other than zero.
The file login.xsl (Fig. 16.34) uses the XML

<login>
<message>

 You entered an invalid password.
</message>

</login>

created in LoginServlet to generate a WML page that displays the message to the user.
If a user logs in successfully, LoginServlet requests GetShoppingCart-

Servlet (Fig. 16.35).
GetShoppingCartServlet (Fig. 16.35) retrieves the user’s stored items from

database cart.mdb and adds the items to the current shopping cart. After the items from
the database are added to the shopping cart, line 69

session.setAttribute("cart", cart);

adds the shopping cart to the session. Finally, when the user decides to log out, servlet
LogoutServlet (Fig. 16.36) is requested.

19 ServletContext sc = getServletConfig()
20 .getServletContext();
21
22 if (cart.getUsername() == null) {
23 sc.getRequestDispatcher("/index.wml")
24 .forward(req, res);
25 return;
26 }
27
28 String productID = req.getParameter("productID");
29 int bookElement = cart.contains(productID);
30 int quantity = Integer.parseInt(req.getParameter(
31 "quantity"));
32
33 if (quantity == 0)
34 cart.remove(bookElement);
35 else
36 cart.setQuantity(bookElement, quantity);
37
38 session.setAttribute("cart", cart);
39 sc.getReq uestDispatcher("/servlet/cartXML.ViewCartServlet")
40 .forward(req, res);
41 }
42
43 }

Fig. 16.33 Code listing for UpdateCartServlet.java (part 2 of 2).

Chapter 16 Server-side Java Programming 477

Line 27

session.invalidate()

invalidates the session, causing the valueUnbound method in class Shopping-
Cart to be called. The request is then forwarded to index.wml.

1 <xsl:stylesheet xmlns:xsl = "http://www.w3.org/1999/XSL/Transform"
2 version = "1.0">
3
4 <!-- Fig. 16.34 : login.xsl -->
5 <!-- Generate WML page -->
6
7 <xsl:output method = "xml" omit-xml-declaration = "no"
8 doctype-system = "http://www.wapforum.org/DTD/wml_1.1.xml"
9 doctype-public = "-//WAPFORUM//DTD WML 1.1//EN"/>

10 <xsl:template match = "/">
11 <wml>
12 <card>
13 <do type = "accept">
14 <go href = "#pass"/>
15 </do>
16 <p>
17 <xsl:value-of select = "//message"/>
18 </p>
19 <p>
20 Name:
21 <input name = "param1" format = "mmmmm*m"
22 type = "text" maxlength = "10"/>
23 </p>
24 </card>
25 <card id = "pass">
26 <onevent type = "onenterforward">
27 <refresh>
28 <setvar name = "param2" value = ""/>
29 </refresh>
30 </onevent>
31 <do type = "accept">
32 <go href =
33 "cartXML.LoginServlet?action=login"
34 method = "post">
35 <postfield name = "param2" value = "$(param2)"/>
36 <postfield name = "param1" value = "$(param1)"/>
37 </go>
38 </do>
39 <p>Password:
40 <input name = "param2" format = "mmmmm*m"
41 type = "password" maxlength = "10"/>
42 </p>
43 </card>
44 </wml>
45 </xsl:template>
46 </xsl:stylesheet>

Fig. 16.34 Code listing for login.xsl (part 1 of 2).

478 Server-side Java Programming Chapter 16

1 // Fig. 16.35 : GetShoppingCartServlet.java
2 // Retrieves shopping cart from database
3 package cartXML;
4 import java.io.*;
5 import javax.servlet.*;
6 import javax.servlet.http.*;
7 import java.util.*;
8 import java.sql.*;
9

10 public class GetShoppingCartServlet extends HttpServlet {
11 private Database database1;
12 private Database database2;
13
14 public void init(ServletConfig config)
15 throws ServletException
16 {
17 super.init(config);

Fig. 16.35 Code listing for GetShoppingCartServlet.java (part 1 of 3).

Fig. 16.34 Code listing for login.xsl (part 2 of 2).

(Courtesy of Phone.com,

Chapter 16 Server-side Java Programming 479

18 database1 = new Database("jdbc:odbc:cart", "anonymous",
19 "guest");
20 database1.connect();
21 database2 = new Database("jdbc:odbc:catalog", "anonymous",
22 "guest");
23 database2.connect();
24 }
25
26 public void service(HttpServletRequest req,
27 HttpServletResponse res)
28 throws ServletException, IOException
29 {
30
31 HttpSession session = req.getSession(true);
32 ShoppingCart cart =
33 (ShoppingCart) session.getAttribute("cart");
34 ServletContext sc = getServletConfig()
35 .getServletContext();
36
37 if (cart.getUsername() == null) {
38 sc.getRequestDispatcher("/index.wml")
39 .forward(req, res);
40 return;
41 }
42
43 ResultSet rs2 = null;
44 ResultSet rs1 = getSavedCart(cart.getUsername());
45
46 try {
47
48 while (rs1.next()) {
49 String productID = rs1.getString("productID");
50 int quantity = rs1.getInt("quantity");
51
52 rs2 = getBookInfo(productID);
53 rs2.next();
54
55 double price = rs2.getDouble("price");
56 Book b = new Book(price, quantity, productID);
57 String[] description = { rs2.getString("title"),
58 rs2.getString("Name"), rs2.getString("isbn") };
59
60 b.setDescription(description);
61 cart.add(b);
62 }
63
64 }
65 catch (SQLException sqlex) {
66 sqlex.printStackTrace();
67 }
68
69 session.setAttribute("cart", cart);

Fig. 16.35 Code listing for GetShoppingCartServlet.java (part 2 of 3).

480 Server-side Java Programming Chapter 16

70 sc.getRequestDispatcher("/servlet/cartXML.ViewCartServlet")
71 .forward(req, res);
72 }
73
74 public ResultSet getSavedCart(String username)
75 {
76 String query = "SELECT productID, quantity FROM Carts "
77 + "WHERE username= '" + username + "'";
78
79 return database1.get(query);
80 }
81
82 public ResultSet getBookInfo(String s)
83 {
84 String query = "SELECT * FROM Products, Authors, "
85 + "AuthorList WHERE Products.productID= " + s + " AND "
86 + " Products.productID = Authorlist.productid AND "
87 + "Authorlist.authorid = Authors.authorID";
88
89 return database2.get(query);
90 }
91
92 public void destroy()
93 {
94 database1.shutDown();
95 database2.shutDown();
96 }
97 }

1 // Fig. 16.36: LogoutServlet.java
2 // Logs user out of site
3 package cartXML;
4 import java.io.*;
5 import javax.servlet.*;
6 import javax.servlet.http.*;
7 import java.util.*;
8
9 public class LogoutServlet extends HttpServlet {

10
11 public void service(HttpServletRequest req,
12 HttpServletResponse res)
13 throws ServletException, IOException
14 {
15 HttpSession session = req.getSession(true);
16 ShoppingCart cart = (ShoppingCart) session.getAttribute(
17 "cart");
18 ServletContext sc = getServletConfig().getServletContext();
19

Fig. 16.36 Code listing for LogoutServlet.java (part 1 of 2).

Fig. 16.35 Code listing for GetShoppingCartServlet.java (part 3 of 3).

Chapter 16 Server-side Java Programming 481

16.8 Internet and World Wide Web Resources
xml.apache.org/cocoon
Home page of the Cocoon Web publishing framework. You can download the latest version of Cocoon
with its documentations from this site. Also featured are introductions and explanations of various Co-
coon-related technologies and links to useful Java and Cocoon resources on the Web.

www-4.ibm.com/software/developer/education/jsptech
An extensive tutorial for JavaServer Pages. Topics covered include servlets and JavaBeans, in addition
to a general comprehensive JSP introduction and tutorial.

java.sun.com/products/jsp/html/jspbasics.fm.html
This is a JSP tutorial from Sun Microsystems. This tutorial provides many code examples and screen
shots to demonstrate features and techniques.

java.about.com/compute/java/msubservlet.htm
This page has links to many servlet resources, covering just about all servlet-related topics for which
a Web site has been created. This is a great place to start if you would like to get a closer look into
current servlet technology.

www.jguru.com/jguru/faq/faqpage.jsp?name=Servlets
The Servlets Frequently Asked Questions page. In addition to providing a good overview of servlets,
the site allows you to post your own question to it.

TERMINOLOGY

20 if (cart.getUsername() == null) {
21 sc.getRequestDispatcher("/index.wml")
22 .forward(req, res);
23 return;
24 }
25
26 // causes method valueUnbound in ShoppingCart to be called
27 session.invalidate();
28 sc.getRequestDispatcher(" /index.wml")
29 .forward(req, res);
30 }
31
32 }

Apache Cocoon Project package org.apache.xerces.parsers
application POST request
attribute class print methods

attribute id PrintWriter class

attribute language program-level code declarations

attribute scope query string
boolean request
class DecimalFormat request object

class Document RequestDispatcher interface

class XMLSerializer response

Cocoon ResultSet

Fig. 16.36 Code listing for LogoutServlet.java (part 2 of 2).

482 Server-side Java Programming Chapter 16

SELF-REVIEW EXERCISES
16.1 How does Cocoon separate content from presentation for delivering Web content to different
types of clients?

16.2 How is processing logic embedded and implemented in an XSP?

16.3 What is the structure of a WML document and how does this benefit wireless device users?

16.4 What is the purpose of the Java servlets in the wireless online bookstore case study?

ANSWERS TO SELF-REVIEW EXERCISES
16.1 Cocoon uses a three-level framework in which content is marked up as XML and then pro-
cessed and formatted using XSLT. Through XSLT processing the original content is transformed into
a specialized presentation for each type of client for which an XSL style sheet is supplied.

16.2 XSP uses the xsp:logic element to embed processing logic within an XSP. The process-
ing logic is then implemented in a programming language, such as Java.

16.3 A WML document consists of a deck of cards. Each card contains one page of content to be
displayed on the WAP device. Since multiple pages of content are contained in a single WML deck,
the overhead of connecting to the network to download each page of content is reduced. This provides
quicker response to the user and reduced connection costs.

data sources ResultSet object
Document object server
Document object colors servlet engine
Document Object Model session
DOM SELECT query
DOMParser object Statement interface
Element supported databases
explorer tag libraries
Extensible Server Pages (XSP) top-level code declarations
HttpServletRequest object Uniform Resource Locator (URL)
import packages URL (Uniform Resource Locator)
INSERT INTO statement useBean tag
IOException WAP (Wireless Application Protocol)
Java Web publishing framework
JavaServer Pages™ (JSP) WML (Wireless Markup Language)
JDBC wrapper
JDBC drivers XSP (Extensible Server Pages)
language-dependent manner XSP document
lynx xsp:attribute
method executeQuery xsp:comment

method executeUpdate xsp:content

method update xsp:element

netscape xsp:expr
Node interface xsp:include
class Connection xsp:logic

object out xsp:page

ODBC data sources xsp:pi
opera xsp:structure

Chapter 16 Server-side Java Programming 483

16.4 In the wireless online bookstore case study, servlets form the middle tier of the three-tier ap-
plication. Servlets implement all of the business and presentation logic needed to present data to users
and receive and process requests from users.

EXERCISES
16.5 Use Cocoon to transform a simple XML file. Create a separate XSL style sheet for four of
the browsers listed in Fig. 16.2. After XSL processing, each page should indicate which browser the
client is using.

16.6 Create an XSP guestbook that allows users to enter their names, e-mail addresses and com-
ments. The guestbook should ask the user to select a color, which should be used when displaying the
user’s comments. Once the user has entered information, the server should display all the comments
stored in the guestbook, as well as the dates on which the comments were entered; the contents of the
guestbook should be stored as an XML file on the server.

16.7 Modify the online bookstore application by creating a WML page that allows the user to
search for a book by title and year published. This information should be sent to a servlet that looks
up the search string in the database and returns the results, if any. The servlet should create XML con-
taining the search results. The servlet should also process the XSL to generate the results.

17
Perl and XML:

A Web-based Message
Forums Application

Objectives
• To understand how to use Perl and XML to create a

message forum.
• To understand how to use the XML::Parser

module.
• To understand how to use the XML::DOM module.
• To be able to add a new forum.
• To be able to add a message to a forum.
• To understand how to perform XSLT transformations

on both the client and server.
If it’s a good script I’ll do it. And if it’s a bad script, and they
pay me enough, I’ll do it.
George Burns

The Universe is like a safe to which there is a combination.
But the combination is locked up in the safe.
Peter De Vries

Comment is free, but facts are sacred.
C. P. Scott

Chapter 17 Perl and XML: A Web-based Message Forums Application 485

17.1 Introduction
In this chapter, we use XML and many of the technologies presented in the first 14 chapters
to create one of the most popular types of Web sites: a message forum. Message forums are
“virtual” bulletin boards where various topics are discussed. Common features of message
forums include discussion groups, questions and answers and general comments. Many
Web sites host message forums. For example,

www.egroups.com
web.eesite.com/forums
www.deja.com

are popular message forums.
The message forum we create in this chapter uses Perl (Practical Extraction and

Report Language). [Note: If you are not familiar with Perl or need a review, we have pro-
vided an introduction to Perl in Chapter 26.] In this case study, users can post messages and
start new forums. We leave the removal of a forum as an exercise for the reader.

17.2 Perl and XML
Perl is well known for its powerful text-processing capabilities, which make it an ideal can-
didate for XML processing. Support for XML is provided through a large collection of
XML libraries, or modules, which are freely available. In this chapter, we focus on the two
most mature Perl/XML modules, XML::Parser and XML::DOM, to process and manip-
ulate our XML documents.

17.3 Setup
In this section, we provide the instructions for setting up the software and networks neces-
sary to execute this case study. Perform the following steps:

1. Install Microsoft Personal Web Server (PWS), Microsoft Internet Information
Server (IIS) or Apache Web Server. [Note: Each of these three servers may be
used with Windows.] The Web server must be configured to execute Common
Gateway Interface (CGI) scripts. This usually means that the server must be set up

Outline

17.1 Introduction
17.2 Perl and XML
17.3 Setup
17.4 Displaying the Forums using XML::Parser
17.5 Using XML::DOM to Add Forums and Messages
17.6 Alterations for Non-XSL Browsers
17.7 Internet and World Wide Web Resources

Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

486 Perl and XML: A Web-based Message Forums Application Chapter 17

to execute files located in a certain directory (e.g., cgi-bin) or with a certain ex-
tension (such as .cgi or .pl). The CGI scripts must be accessible and (on Unix
systems) executable by the Web server. From the Chapter 17 examples directory
on the CD-ROM that accompanies this book, copy the files default.pl, ad-
dForum.pl, addPost.pl and forum.pl to the cgi-bin directory. This
directory is at the same level as our Web root directory (e.g., htdocs on Apache,
c:\InetPub\Wwwroot on Windows, etc.). See the Web server’s documenta-
tion for the specifics of CGI configuration.

2. Install Perl 5. Windows users can download ActivePerl (a Perl 5 implementation
for Windows) from www.activestate.com. Unix users can download Perl 5
from www.perl.com.

3. Install the XML::Parser and XML::DOM Perl modules. These modules are
available at CPAN (www.cpan.org) or may be installed with ActivePerl using
the PPM (Perl Package Manager).

4. Copy the XML, XSL and CSS files from the Chapter 17 examples directory (on
the CD-ROM that accompanies this book) to the directory named XML, located in
your Web root directory. If this directory does not exist, create it. Each of these
files and documents is summarized in Fig. 17.1. We discuss these momentarily.

The main page generated by default.pl displays the list of available message
forums, which are stored in the XML document forums.xml. Hyperlinks are provided
to each XML message forum document and to script addForum.pl, which adds a forum
to forums.xml and creates a new XML message forum (e.g., forum2.xml) using the
message forum template template.xml.

Each XML message forum document (e.g., feedback.xml) is transformed into an
HTML document using XSLT document formatting.xsl. The CSS document
site.css formats the HTML for display. New messages are posted to a forum by
addPost.pl. If errors occur when the document is processed, invalid.html is dis-
played. Some of the key interactions between documents are illustrated in Fig. 17.2.

Filename Description

forums.xml XML document listing all available forums and their filenames.

default.pl Main page, providing navigational links to the forums.

template.xml Template for a message forum XML document.

addForum.pl Adds a forum.

feedback.xml Sample message forum.

formatting.xsl Document for transforming message forums into HTML.

addPost.pl Adds a message to a forum.

invalid.html Used to display an error message.

site.css Stylesheet for formatting HTML documents.

Fig. 17.1 Message forum documents.

Chapter 17 Perl and XML: A Web-based Message Forums Application 487

Fig. 17.2 Key interactions between message forum documents.

17.4 Displaying the Forums using XML::Parser
This section introduces the documents used for organizing and displaying the message fo-
rums. For this case study, we provide a sample forum named feedback.xml (Fig. 17.3)
to show the structure of a form document.

Notice on line 4 the reference to the stylesheet formatting.xsl. This XSL docu-
ment, which we discuss later in the chapter, transforms the forum to HTML for display.
Every forum document has root element forum, which contains one attribute named
file. This attribute’s value is the name of the forum’s XML document. Child elements
include name, for specifying the title of the forum, and message, for marking up the of
the message. A message contains a user name, a message title and the message text, which
are marked up by elements user, title and text, respectively.

Every message forum name and filename is stored in a document named
forums.xml (Fig. 17.4). As forums are added, this document is modified to add the new
forum names and filenames.

1 <?xml version = "1.0"?>
2 <!-- Fig. 17.3: feedback.xml -->
3
4 <?xml:stylesheet type = "text/xsl" href = "../XML/formatting.xsl"?>
5
6 <forum file = "feedback.xml">
7 <name>Feedback</name>
8
9 <message timestamp = "Tue Aug 8 13:18:15 2000">

10 <user>Emily</user>
11 <title>Nice forums!</title>
12 <text>These forums are great! Well done, all.</text>
13 </message>
14
15 </forum>

Fig. 17.3 XML document representing a forum containing one message.

default.pl

addForum.pl

forums.xml

feedback.xml

addPost.pl

formatting.xsl

488 Perl and XML: A Web-based Message Forums Application Chapter 17

Root element forums (line 6) contains one or more forum child elements. Initially,
one forum (i.e., Feedback) is provided. Each forum element has attribute filename
and child element name. This forum corresponds to the XML document presented in Fig.
17.3.

Visitors to the message forum are first greeted by the Web page displayed in Fig. 17.5,
which displays links to all forums and provides forum management options. Initially, only
two links are active—one to the Feedback forum and one to create a new forum. The links
for modifying and deleting forums are to be created by the reader in chapter exercises and
are therefore disabled here. This Perl CGI script uses the XML::Parser module (line 8)
to parse forums.xml.

1 <?xml version = "1.0"?>
2 <!-- Fig. 17.4: forums.xml -->
3
4 <?xml:stylesheet type = "text/xsl" href = "formatting.xsl"?>
5
6 <forums>
7
8 <forum filename = "feedback.xml">
9 <name>Feedback</name>

10 </forum>
11
12 </forums>

Fig. 17.4 XML document containing data for all available forums.

1 #!/usr/bin/perl
2 # Fig. 17.5: default.pl
3 # Default page for XML forums
4
5 use warnings;
6 use strict;
7 use CGI qw(:standard);
8 use XML::Parser;
9 use Fcntl qw(:flock);

10
11 my ($parser, @files, @forums, @items);
12
13 open XML, "../htdocs/XML/forums.xml" or die "Could not open: $!";
14 flock XML, LOCK_SH;
15 $parser = new XML::Parser(Handlers => { Start => \&startTag,
16 Char => \&text });
17 $parser->parse(*XML);
18 close XML;
19
20 print header, start_html(-title => "Deitel Message Forums",
21 -style => { -src => "../XML/site.css" });
22
23 print h1("Deitel Message Forums");
24

Fig. 17.5 Opening page for message forums (part 1 of 2).

Chapter 17 Perl and XML: A Web-based Message Forums Application 489

In order to perform the parsing, we open forums.xml (line 13) and obtain a shared
lock on the file (line 14) using flock. The first argument to flock is a filehandle. The
second argument is one of four different lock types. If the second argument is a 1, it locks
the file with a shared lock (i.e., more than one script may read from the file at the same
time). We use the Fcntl module’s :flock tag (line 9) so that we can use LOCK_SH
instead of the number 1 (line 14) to specify a shared lock.

Lines 15 and 16

$parser = new XML::Parser(Handlers => { Start => \&startTag,
 Char => \&text });

25 @items = map { a({ -href => "../XML/$files[$_]" }, $forums[$_])}
26 (0 .. $#files);
27
28 print p(strong("Available Forums"), ul(li(\@items)));
29
30 @items = (a({ -href => "addForum.pl" }, "Add a Forum"),
31 "Delete a Forum", "Modify a Forum");
32
33 print p(strong("Forum Management"), ul(li(\@items))),
34 end_html;
35
36 sub startTag
37 {
38 my ($expat, $element, %attributes) = @_;
39 push(@files, $attributes{ "filename" }) if $element eq "forum";
40 }
41
42 sub text
43 {
44 my ($expat, $string) = @_;
45 push(@forums, $string) if $expat->in_element("name");
46 }

Fig. 17.5 Opening page for message forums (part 2 of 2).

490 Perl and XML: A Web-based Message Forums Application Chapter 17

instantiate an event-based parser object. A set of handlers, i.e., references to programmer-
defined subroutines, are declared and passed to the Parser constructor. For example, the
assignment of subroutine startTag to handler Start indicates that every time the pars-
er encounters a start tag, it invokes subroutine startTag. Similarly, every time the parser
encounters character data, it invokes subroutine text. [Note: A reference is a scalar whose
value is the location of another variable. A reference is created when a variable or subrou-
tine is preceded with a backslash, \.]

Line 17

$parser->parse(*XML);

invokes the parser object’s parse method to parse forums.xml. We pass this method a
reference to a filehandle. Method parse creates the arrays of filenames and forum names.
Once the parsing is complete, we close forums.xml (line 18).

In lines 20–34, we output the HTML shown in Fig. 17.5. We set the attribute -style
(line 21) in order to use a Cascading Style Sheet to format the page. Lines 25 and 26

@items = map { a({ -href => "../XML/$files[$_]" }, $forums[$_])}
 (0 .. $#files);

use map to create an array (@items) containing links to the various forums. To create this
array, we call function a (i.e., an anchor) to create anchors for the filenames and forum
names. One link is created for each element in @files (line 26).

After array @items is created, we create a reference to it (line 28) and use li’s dis-
tributive property to output an unordered list (i.e., ul) to the page.

We reuse array @items in lines 30 and 31 to create an array of links to forum-man-
agement option. These links are written to the client in lines 33 and 34.

Lines 36–46 are the handler subroutines that the parser calls. The parser passes argu-
ments to these subroutines. The first argument passed to all handlers is an Expat object
(defined in the XML::Parser::Expatmodule) that describes the element encountered.
This object is a low-level interface to expat, an XML parser written in C by James Clark.
We use this Expat object in startTag, which we discuss momentarily.

The other arguments passed to a handler vary, depending on the handler. A Start
handler is passed the name of the start tag and an attribute name-value pair list. In line 38,
we assign these arguments to the variables $expat, $element and %attributes,
respectively. A Char handler is passed a string containing the character data, which we
assign to variable $string in the text subroutine in line 44.

In startTag, we check if we have encountered the start tag of a forum element (line
39). If so, we extract the filename attribute from the element and push it onto an array
of filenames (@files). Similarly, in subroutine text, we call method in_element for
the object referenced by $expat to determine if the text was found within a name ele-
ment. If so, we push the found text ($string) onto a list of forum names (@forums).

17.5 Using XML::DOM to Add Forums and Messages
In this section, we discuss the scripts and documents used to add forums and messages. The
Perl script that adds a new forum is shown in Fig. 17.6. It uses the XML::DOM module to
manipulate XML documents in accordance with the W3C DOM recommendation.

Chapter 17 Perl and XML: A Web-based Message Forums Application 491

1 #!/usr/bin/perl
2 # Fig. 17.6: addForum.pl
3 # Adds a forum to the list
4
5 use warnings;
6 use strict;
7 use CGI qw(:standard);
8 use XML::DOM;
9 use Fcntl qw(:flock :DEFAULT);

10
11 if (param) {
12 my ($parser, $document, $forums, $forum, $name);
13
14 my ($file, $newfile) = ("forums.xml", param("filename"));
15 $newfile =~ /^\w+\.xml$/ or die "Not a valid file: $!";
16
17 sysopen NEW, "../htdocs/XML/$newfile" , O_WRONLY|O_EXCL|O_CREAT
18 or die "Could not create: $!";
19 open FORUMS, "+< ../htdocs/XML/$file" or die "Could not open: $!";
20 flock FORUMS, LOCK_EX;
21
22 $parser = new XML::DOM::Parser;
23 $document = $parser->parse(*FORUMS);
24 $forums = $document->getDocumentElement;
25
26 $forum = $document->createElement("forum");
27 $forum->setAttribute("filename", $newfile);
28 $forums->insertBefore($forum, $forums->getFirstChild);
29
30 $name = $document->createElement("name");
31 $name->addText(param("name"));
32 $forum->appendChild($name);
33
34 seek FORUMS, 0, 0;
35 truncate FORUMS, 0;
36 $document->print(*FORUMS);
37 close FORUMS;
38
39 $document = $parser->parsefile("../htdocs/XML/template.xml");
40 $forum = $document->getDocumentElement;
41 $forum->setAttribute("file", $newfile);
42
43 $name = $document->createElement("name");
44 $name->addText(param("name"));
45 $forum->appendChild($name);
46
47 $document->print(*NEW);
48 close NEW;
49 print redirect("default.pl");
50
51 }
52 else {

Fig. 17.6 Script that adds a new forum to forums.xml (part 1 of 2).

492 Perl and XML: A Web-based Message Forums Application Chapter 17

When the script is initially executed, it is not passed any parameters. The if statement
in line 11 directs program flow immediately to line 52. Lines 52–64 output a simple form
that prompts the user for a forum name and a filename for the XML document to be created.
When the form is submitted, the script is executed again. This time, param returns true,
and lines 12–49 are executed.

In line 15, as a security precaution, we examine the filename posted to the script to
make sure it contains only alphanumeric characters and ends with .xml; if not, the script
terminates. This helps prevent the possibility of someone writing to a system file or other-
wise gaining unrestricted access to the server. If the filename is valid, we attempt to create
the new file in lines 17 and 18 using function sysopen. This file is write only (i.e.,
O_WRONLY). The sysopen operation will fail if the file already exists, as specified by
O_EXCL. Constant O_CREAT specifies that the file should be created if it does not exist.

In lines 19 and 20, we open file forums.xml for reading and writing (+<) and obtain
an exclusive lock (i.e., only this script can access the file’s contents), because we will be
altering the file. This lock is released when the script terminates.

The XML::DOM::Parser object created in line 22 is a derivation of the
XML::Parser object discussed in Fig. 17.5. Method parse creates a DOM representa-
tion of the document (a W3C Document object), which we assign to variable $docu-
ment. In line 24, we call getDocumentElement to access the root element forums.

53 print header, start_html(-title => "Add a forum",
54 -style => { -src => "../XML/site.css" });
55 print start_form,
56 "Forum Name", br,
57 textfield(-name => "name", -size => 40), br,
58 "Forum File Name", br,
59 textfield(-name => "filename", -size => 40), br,
60 submit(-name => "submit", value => "Submit"),
61 reset, end_form,
62 a({ -href => "default.pl" }, "Return to Main Page"),
63 end_html;
64 }

Fig. 17.6 Script that adds a new forum to forums.xml (part 2 of 2).

Chapter 17 Perl and XML: A Web-based Message Forums Application 493

Because we wish to create a new forum element within forums, we call the Doc-
ument object’s method createElement in line 26 with the name of the new element
(forum). We set the filename attribute of the newly created element (an Element
object) by calling setAttribute with the name and value of the attribute. Line 28

$forums->insertBefore($forum, $forums->getFirstChild);

inserts the new $forum before the first child of $forums (found with method get-
FirstChild) by calling method insertBefore. This way, the most recently added
forums appear first in the forum list.

The forum element contains only one piece of information—the forum name—which
we add in lines 30–32. We first create another new element (line 30). To add character data
between the start and end tags of the new element, we call method addText in line 31 with
the name entered by the user in the form, i.e., param("name"). We then add this child
element to $forum with the method appendChild (line 32).

To rewrite over the old file, we seek (line 34) to the beginning and delete any existing
data (by truncating the file to size 0). We use method print to print the updated XML
document to filehandle FORUMS, and then we close the filehandle (lines 36 and 37).

Line 39 parses file template.xml (Fig. 17.7, which is discussed momentarily) by
calling method parsefile and assigns the new document to $document. We again call
getDocumentElement to get the empty forum (line 40) and then set its filename
attribute to contain the given filename (line 41). In lines 43–45, we add the name element,
much as we did earlier in lines 30–32. We output the final result to NEW and close the file-
handle in lines 47 and 48. The user is returned to the default page in line 49.

After updating forums.xml to include the new forum, we must create a new XML
document that represents the forum. To simplify things, we provide a template XML doc-
ument named template.xml (Fig. 17.7), which we use for all new forums. The template
contains an empty forums element, to which we add the forum name and filename.

Figure 17.8 is a script that allows users to add messages. When the documents are ren-
dered using formatting.xsl (Fig. 17.9), a link to addPost.pl is added to the page,
which includes the current forum’s filename. This filename is passed as a parameter to
addPost.pl (e.g., addPost.pl?file=forum1.xml) in Fig. 17.8.

If a single parameter (i.e., the filename) is passed, the script execution proceeds to lines
40–57, which, as in Fig. 17.5, output a simple form. The form includes fields for the user
name, message title and message text and passes the forum filename as a hidden value (line
51). Note that if no parameters are passed to the script, the script has been accessed in an
inappropriate way, and the user is redirected to an error document (line 59).

When the form data are submitted, the posted information is processed, starting by the
script starting in line 11. As in the previous example (Fig. 17.6), we validate the filename,
open the file and obtain an exclusive lock (lines 15–17). We parse the forum file, create a
new message element, set the timestamp attribute and append the timestamp attribute
as a child to the forum element (lines 19–25).

In lines 27–31, we create elements representing the user, title and text, and add
text based on the values entered in the form (obtained by param). We then seek and
truncate to eliminate the old data, and then we write the new XML markup to FORUM
in lines 33–35, after which the filehandle is closed and the user is redirected to the
newly created XML document.

494 Perl and XML: A Web-based Message Forums Application Chapter 17

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 17.7 : template.xml -->
4
5 <?xml:stylesheet type = "text/xsl" href = "../XML/formatting.xsl"?>
6 <forum>
7 </forum>

Fig. 17.7 XML template used to generate new forums.

1 #!/usr/bin/perl
2 # Fig. 17.8: addPost.pl
3 # Adds a posting to a forum
4
5 use warnings;
6 use strict;
7 use CGI qw(:standard);
8 use XML::DOM;
9 use Fcntl qw(:flock);

10
11 if (param("submit")) {
12 my ($parser, $document, $forum, $message, $element);
13
14 my $file = param("file");
15 $file =~ /^\w+\.xml$/ or die "Not a valid file: $!";
16 open FORUM, "+< ../htdocs/XML/$file" or die "Could not open: $!";
17 flock FORUM, LOCK_EX;
18
19 $parser = new XML::DOM::Parser;
20 $document = $parser->parse(*FORUM);
21 $forum = $document->getDocumentElement;
22
23 $message = $document->createElement("message");
24 $message->setAttribute("timestamp", scalar(localtime));
25 $forum->appendChild($message);
26
27 foreach (qw(user title text)) {
28 $element = $document->createElement($_);
29 $element->addText(param($_));
30 $message->appendChild($element);
31 }
32
33 seek FORUM, 0, 0;
34 truncate FORUM, 0;
35 $document->printToFileHandle(*FORUM);
36 close FORUM;
37 print redirect("../XML/$file");
38
39 }
40 elsif (param) {
41 my $file = param("file");

Fig. 17.8 Script that adds a new message to a forum (part 1 of 2).

Chapter 17 Perl and XML: A Web-based Message Forums Application 495

17.6 Alterations for Non-XSL Browsers
The forum system implemented in this case study uses an XSL stylesheet to display XML
documents in the client’s browser. This XSL file (formatting.xsl) is shown in Fig.
17.9. Lines 18–53 contain the template for the forum element, and lines 55–84 describe
the template for rendering each message element in the forum file.

42 print header, start_html(-title => "Add a posting",
43 -style => { -src => "../XML/site.css" });
44 print start_form,
45 "User", br,
46 textfield(-name => "user", -size => 40), br,
47 "Message Title", br,
48 textfield(-name => "title", -size => 40), br,
49 "Message Text", br,
50 textarea(-name => "text", -cols => 40, -rows => 5), br,
51 hidden(-name => "file", -value => $file),
52 submit(-name => "submit", -value => "Submit"),
53 reset, end_form,
54 a({ -href => "../XML/$file" }, "Return to Forum"),
55 end_html;
56
57 }
58 else {
59 print redirect("error.html");
60 }

Fig. 17.8 Script that adds a new message to a forum (part 2 of 2).

496 Perl and XML: A Web-based Message Forums Application Chapter 17

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 17.9 : formatting.xsl -->
4
5 <xsl:stylesheet xmlns:xsl = "http://www.w3.org/TR/WD-xsl">
6
7 <xsl:template match = "*|@*|text()|cdata()|comment()|pi()">
8 <xsl:copy><xsl:apply-templates
9 select = "*|@*|text()|cdata()|comment()|pi()"/></xsl:copy>

10 </xsl:template>
11
12 <xsl:template match = "/">
13 <HTML>
14 <xsl:apply-templates select = "*"/>
15 </HTML>
16 </xsl:template>
17
18 <xsl:template match = "forum">
19 <HEAD>
20 <TITLE><xsl:value-of select = "name"/></TITLE>
21 <LINK REL = "stylesheet" TYPE = "text/css"
22 HREF = "../XML/site.css"/>
23 </HEAD>
24
25 <BODY>
26 <TABLE WIDTH = "100%" CELLSPACING = "0"
27 CELLPADDING = "2">
28 <TR>
29 <TD CLASS = "forumTitle">
30 <xsl:value-of select = "name"/>
31 </TD>
32 </TR>
33 </TABLE>
34
35

36 <xsl:apply-templates select = "message"/>
37

38
39 <CENTER>
40 <A>
41 <xsl:attribute name = "HREF">
42 ../cgi-bin/addPost.pl?file=
43 <xsl:value-of select = "@file"/>
44 </xsl:attribute>
45 Post a Message
46
47

48

49 Return to Main Page
50 </CENTER>
51
52 </BODY>

Fig. 17.9 XSL stylesheet used to format and display XML forum files (part 1 of 2).

Chapter 17 Perl and XML: A Web-based Message Forums Application 497

However, support for XSL is currently available only for Internet Explorer 5 and
higher. This means that our message forum application will send XML documents to some
browsers (e.g., Netscape Navigator 4.7) that will not know how to render them. To create
a more portable application, we will need to include a server-side XML parser that will
translate the forum XML documents into HTML.

There is a module named XML::XSLT, written by Geert Josten and Egon Willighagen
and available on CPAN, that transforms XML using an XSL stylesheet. However, the
module is still in its alpha stages (partly because XSL itself is a W3C Candidate Recom-
mendation). For this example, therefore, we use XML::Parser to transform the XML
forum files.

We first need to make some minor modifications to the existing code in default.pl
(Fig. 17.5) and addPost.pl (Fig. 17.8). Instead of including links to the XML forum
files themselves, we want to direct clients to a CGI script that will parse the XML document
and display the appropriate HTML. However, it is more efficient to direct browsers that

53 </xsl:template>
54
55 <xsl:template match = "message">
56 <TABLE WIDTH = "100%" CELLSPACING = "0"
57 CELLPADDING = "2">
58 <TR>
59
60 <TD CLASS = "msgTitle">
61 <xsl:value-of select = "title"/>
62 </TD>
63
64 </TR>
65
66 <TR>
67 <TD CLASS = "msgInfo">
68 by
69 <xsl:value-of select = "user"/>
70 at
71
72 <xsl:value-of select = "@timestamp"/>
73
74 </TD>
75 </TR>
76
77 <TR>
78 <TD CLASS = "msgText">
79 <xsl:apply-templates select = "text"/>
80 </TD>
81 </TR>
82
83 </TABLE>
84 </xsl:template>
85
86 </xsl:stylesheet>

Fig. 17.9 XSL stylesheet used to format and display XML forum files (part 2 of 2).

498 Perl and XML: A Web-based Message Forums Application Chapter 17

support XSL straight to the XML. We therefore insert a browser check at line 24 of
default.pl and line 10 of addPost.pl:

if ($ENV{ "HTTP_USER_AGENT" } =~ /MSIE/i) {
 $prefix = "../XML/";
}
else {
 $prefix = "forum.pl?file=";
}

The check sets variable $prefix according to whether or not MSIE (Microsoft Internet
Explorer) appears in the HTTP_USER_AGENT environment variable. For simplicity, we
assume that Internet Explorer 5 is the only version of MSIE being used and do not test for
older versions. Note that use strict requires that we declare $prefix using my earlier
in the program.

Once $prefix has been set, we may use it to customize the URLs generated by the
scripts. For example, in line 25 of default.pl, we change

a({ -href => "../XML/$files[$_]" }, $forums[$_])

to the more versatile

a({ -href => "$prefix$files[$_]" }, $forums[$_])

This change directs Internet Explorer users to ../XML/forum.xml, as before, but sends
users of other browsers to forum.pl?file=forum.xml, a CGI script (forum.pl)
that receives a single parameter (i.e., the filename). Similar changes are made in lines 37
and 53 of addPost.pl. [Note: These modified files are available in the Chapter 17 ex-
amples XSL directory on the CD-ROM that accompanies this book. The files are named
default_new.pl and addPost_new.pl. Rename the files to default.pl and
addPost.pl, respectively, and place them in the cgi-bin directory.]

Figure 17.10 shows forum.pl, which transforms the XML documents to HTML.
The figure also includes the rendered HTML output. We use Netscape’s Communicator to
render the HTML.

1 #!/usr/bin/perl
2 # Fig. 17.10: forum.pl
3 # Display forum postings for non-XSL browser
4
5 use warnings;
6 use strict;
7 use CGI qw(:standard *center *table);
8 use XML::Parser;
9 use Fcntl qw(:flock);

10
11 print redirect("error.html") if not param;
12
13 my ($file, $parser, %info);
14

Fig. 17.10 Script that transforms an XML forum file into HTML (part 1 of 3).

Chapter 17 Perl and XML: A Web-based Message Forums Application 499

15 $file = param("file");
16 $file =~ /^\w+\.xml$/ or die "Not a valid file: $!";
17 open FORUM, "../htdocs/XML/$file" or die "Could not open: $!";
18 flock FORUM, LOCK_SH;
19
20 $parser = new XML::Parser(Style => "Subs",
21 Handlers => { Char => \&text });
22 $parser->parse(*FORUM);
23 close FORUM;
24
25 sub forum
26 {
27 print header;
28 }
29
30 sub forum_
31 {
32 print br, start_center,
33
34 a({ -href => "../cgi-bin/addPost.pl?file=$file" },
35 "Post a Message"),
36 br, br,
37 a({ -href => "../cgi-bin/default.pl" },
38 "Return to Main Page"),
39 end_center, end_html;
40 }
41
42 sub name_
43 {
44 print start_html(-title => $info{ "name" },
45 -style => { -src => "../XML/site.css" }),
46
47 start_table({ -width => "100%",
48 -cellspacing => "0",
49 -cellpadding => "2" }),
50
51 Tr(td({ -class => "forumTitle" }, $info{ "name" })),
52
53 end_table, br;
54 }
55
56 sub message
57 {
58 my ($expat, $element, %attributes) = @_;
59 $info{ "date" } = $attributes{ "timestamp" };
60 }
61
62 sub message_
63 {
64 print start_table({ -width => "100%",
65 -cellspacing => "0",
66 -cellpadding => "2" }),
67

Fig. 17.10 Script that transforms an XML forum file into HTML (part 2 of 3).

500 Perl and XML: A Web-based Message Forums Application Chapter 17

If no filename is passed to the script, the user is redirected to an error page (Fig. 17.10,
line 11). The basic program procedure (validating the filename, opening, locking, parsing
and closing the XML document) in lines 15–23 is similar to the procedure of the last few
examples. In line 7, we add *center and *table to import tag :standard, thus
instructing CGI.pm to create start_center, start_table, end_center and
end_table subroutines for us, which generate the corresponding HTML tags.

One notable change appears in line 20, where we set the parser Style attribute to the
value Subs. The XML::Parser Subs style automatically creates handlers set to subrou-
tines with names derived from the corresponding tag names. For example, every time an
opening <message> tag is encountered, subroutine message is called. Closing-tag han-

68 Tr([td({ -class => "msgTitle" }, $info{ "title" }),
69
70 td({ -class => "msgInfo" },
71 " by " . em($info{ "user" }) . " at " .
72 span({ -class => "date" }, $info{ "date" })),
73
74 td({ -class => "msgText" }, $info{ "text" })]),
75
76 end_table;
77 }
78
79 sub text
80 {
81 my ($expat, $string) = @_;
82 $info{ $expat->current_element } = $string;
83 }

Fig. 17.10 Script that transforms an XML forum file into HTML (part 3 of 3).

Netscape Communicator browser window© 1999 Netscape Communications
Corporation. Used with permission. Netscape Communications has not authorized,
sponsored, endorsed, or approved this publication and is not responsible for its
content.

Chapter 17 Perl and XML: A Web-based Message Forums Application 501

dler subroutines are marked by a trailing underscore; a closing </message> tag results
in subroutine message_ being invoked.

Subroutines forum and forum_ (lines 25 and 30) show how the Subs style is used.
When the opening <forum> tag is found, subroutine forum outputs the HTTP header
(line 27). Its companion closing tag is handled by subroutine forum_, which prints two
hyperlinks at the bottom of the page, along with the closing HTML tag (lines 32–39).

Note that we declare our own handler for character data (line 21), because the Subs
style does not automatically create one for us. The handler subroutine text is listed in
lines 79–83. Because the majority of the data in the XML document we are parsing is rep-
resented by character data, we create hash %info (line 13) to store these data so they may
be used by other handlers. Subroutine text, in turn, simply places the encountered string
into hash %info, using the current_element as the key name. For example, text
found within <title> tags is placed in $info{ "title" }.

Because the textual data are placed into %info only after we encounter the opening
tag that contains them, we access the data in the closing-tag handlers (name_ and
message_). Thus, in lines 44 and 51 of subroutine name_, we can access the forum title,
which has been placed into $info{ "name" } by subroutine text.

Subroutine message (lines 56–60) reads the message element’s value for the time-
stamp attribute and (like subroutine text) stores the value in hash %info. That value,
along with the values for user, title and text, are output by subroutine message_.
Note that in lines 68–74, we use the distributive property of the table-row function Tr with
an anonymous array (contained in square brackets []) to create three rows, each with one
data cell.

17.7 Internet and World Wide Web Resources
www.perl.com
Perl.com is the first place to look for information about Perl. The home page provides up-to-date
news on Perl, answers to common questions about Perl and an impressive collection of links to Perl
resources of all kinds on the Internet. It includes sites for Perl software, tutorials, user groups and
demos.

www.cpan.org
Modules XML::Parser and XML::DOM can be downloaded at this site, the official central reposi-
tory for Perl builds and modules.

TERMINOLOGY
addText method parsefile method
appendChild method Perl modules
createElement method Perl (Practical Extraction and Report Language)
exclusive lock reference
expat parser seek method
getDocumentElement method shared lock
getFirstChild method Start handler
HTTP_USER_AGENT environment variable Style attribute
in_element method Subs attribute value
insertBefore method Subs style for XML::Parser
map sysopen method

502 Perl and XML: A Web-based Message Forums Application Chapter 17

SELF-REVIEW EXERCISES
17.1 What is the purpose of the startTag and text subroutines in Fig. 17.5? What do they do?

17.2 Why must we use XML::DOM instead of XML::Parser to add forums and messages?

17.3 In Fig. 17.10, why do we output most of the HTML in the closing-tag handlers?

ANSWERS TO SELF-REVIEW EXERCISES
17.1 The startTag and text subroutines are handlers that are called when the XML parser en-
counters an opening tag and character data, respectively. Subroutine startTag takes the filename
attribute of the tag and pushes its value onto array @files (if the tag that triggered the handler was
a <forum> tag). Subroutine text pushes the string value encountered onto array @forums if the
character data are found within a name element.

17.2 XML::DOM creates a DOM structure representing XML, data which we can then modify and
save to a file as XML. This structure allows us to add nodes that represent new forums and messages.
XML::Parser simply parses XML and thus cannot be used to modify the underlying XML docu-
ment.

17.3 Because XML::Parser is an event-based parser, when we encounter the start tag of an el-
ement that contains a child node of character data, the character data have not yet been seen by the
parser. Once we reach the end tag, we know that any character data surrounded by the tags have been
handled by subroutine text, and the necessary information has been stored in hash %info.

EXERCISES
17.4 Implement the Delete a Forum option in default.pl. Selecting this option should dis-
play the initial screen, but with each forum name followed by a hyperlink to a script named delFo-
rum.pl. Your script should remove the given forum from forums.xml and delete the underlying
XML document. [Hint: Look at the getElementsByTagName and removeChild methods de-
scribed in the XML::DOM documentation.]

17.5 Implement the Modify a Forum option in default.pl such that individual messages can
be deleted. Selecting this option should display the initial screen, but with each forum name followed
by a hyperlink to a script named modForum.pl. Script modForum.pl should display the messag-
es as in forum.pl, but each message title should be followed by a link to a script named del-
Post.pl, which removes the given message from the current forum. [Hint: Look at the
getElementsByTagName, removeChild and item methods described in the XML::DOM
documentation.]

O_CREAT constant XML::DOM module
O_EXCL constant XML::Parser module
O_WRONLY constant XML::XSLT module
parse method

18
Accessibility

Objectives
• To introduce the World Wide Web Consortium’s Web

Content Accessibility Guidelines 1.0 (WCAG 1.0).
• To understand how to use the alt attribute of the
img tag to describe images to blind and vision-
impaired people, mobile-Web-device users, search
engines, etc.

• To understand how to make tables more accessible to
page readers by using the headers attribute in
HTML 4.01.

• To understand how to verify that HTML tags are used
properly and to ensure that Web pages are viewable
on any type of display or reader.

• To better understand how VoiceXML™ will change
the way people with disabilities access information
on the Web.

I once was lost, but now am found,
Was blind, but now I see.
John Newton

’Tis the good reader that makes the good book...
Ralph Waldo Emerson

504 Accessibility Chapter 18

18.1 Introduction
On April 7, 1997, the World Wide Web Consortium (W3C) launched the Web Accessibility
Initiative (WAI™). Accessibility refers to the level of usability of an application or Web
site for people with disabilities. The vast majority of Web sites are considered inaccessible
to people with visual, learning or mobility impairments. A high level of accessibility is dif-
ficult to achieve, because there are many different disabilities, language barriers, hardware
and software inconsistencies, etc. As greater numbers of people with disabilities begin to
use the Internet, it is imperative that Web site designers increase the accessibility of their
sites. The WAI is an attempt to make the Web more accessible; its mission is described at
www.w3.org/WAI.

As a member of the World Wide Web Consortium, Deitel & Associates, Inc., is com-
mitted to supporting the WAI. This chapter discusses some of the techniques for devel-
oping accessible Web sites. The Web Content Accessibility Guidelines 1.0
(www.w3.org/TR/WCAG10) are divided into a three-tier structure of checkpoints
according to their priority. Priority-one checkpoints are goals that must be met in order to
ensure accessibility; we focus on these points in this chapter. Priority-two checkpoints,
though not essential, are highly recommended. Priority three checkpoints slightly improve
accessibility. The WAI also presents a supplemental list of quick tips, which are sugges-
tions aimed at solving priority-one problems. More information on the WAI Quick Tips can
be found at www.w3.org/WAI/References/Quicktips.

18.2 Providing Alternatives for Multimedia Content
One important WAI requirement is to ensure that every image, movie and sound used on a
Web page is accompanied by a description that clearly defines its purpose. One way of ac-
complishing this task is to include a description of each item using the alt attribute of the
img and input tags. A text equivalent for object elements should also be provided, be-
cause the elements do not have an alt attribute in the HTML 4.01 specification. Figure
18.1 demonstrates use of the alt attribute of the img tag.

Outline

18.1 Introduction
18.2 Providing Alternatives for Multimedia Content
18.3 Maximizing Readability by Focusing on Structure
18.4 Accessibility in HTML Tables
18.5 Accessibility in HTML Frames
18.6 Accessibility in XML
18.7 Using Voice Synthesis and Recognition with VoiceXML™
18.8 JAWS® for Windows
18.9 Other Accessibility Tools
18.10 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

Chapter 18 Accessibility 505

The lack of well-defined alt elements increases the difficulty visually impaired users
experience in navigating the Web. Specialized user agents, such as screen readers (pro-
grams that allow users to hear what is being displayed on their screen) and braille displays
(devices that receive data from screen-reading software and output the data as braille),
allow blind and visually impaired people to access text-based information that is normally
displayed on the screen. A user agent is an application that interprets Web-page source code
and translates it into formatted text and images. Web browsers, such as Microsoft Internet
Explorer and Netscape Communicator, and the screen readers mentioned throughout this
chapter are examples of user agents.

Web pages with large amounts of multimedia content are difficult for nonvisual user
agents to interpret, unless they are designed properly. Images, movies and other non-
HTML objects cannot be read by screen readers. Providing multimedia-based information
in a variety of ways (i.e., using the alt attribute or providing inline descriptions of images)
helps maximize the content’s accessibility.

Web designers should be sure to provide useful descriptions in the alt attribute for
use in nonvisual user agents. For example, if the alt attribute describes a sales growth
chart, it should not describe the data in the chart. Instead, it should specify the chart’s title.
The chart’s data should be included in the Web site’s text. Web designers may also use the
longdesc attribute, which is intended to augment the alt attribute’s description. The
value of the longdesc attribute is a URL that links to a Web page describing the image
or multimedia content. [Note: If an image is used as a hyperlink and the longdesc
attribute is also used, there is no set standard as to which page is loaded when the image is
clicked.]

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
2 <html>
3
4 <!-- Fig. 18.1 : altattribute.html -->
5 <!-- Using The alt attribute to Make an Image Accessible -->
6
7 <head>
8
9 <title>How To Use the alt Attribute</title>

10
11 <style type = "text/css">
12 body { background: powderblue; }
13 h1 { text-align: center; }
14 p { margin-top: 1em; text-align: center; }
15 p.description { text-align: left; }
16 </style>
17
18 </head>
19
20 <body>
21 <h1>How to use the alt attribute</h1>
22
23 <p class = "description">Below we compare two images,
24 one with the alt attribute present,
25 and one without. The alt appears as

Fig. 18.1 Using the alt attribute of the img tag (part 1 of 3).

506 Accessibility Chapter 18

26 a tool tip in most Web browsers, but, more importantly,
27 will help users who cannot view information conveyed
28 graphically.</p>
29
30 <p>This image has the alt attribute</p>
31
32 <p><img width = "182" height = "238"
33 src = "advjhtp1cov.jpg"
34 alt = "This is a picture of the cover of Advanced Java
35 How to Program">
36 </p>
37
38 <p>
39 This image does not have the alt attribute
40 </p>
41
42 <p>
43 <!-- This markup should be changed -->
44 <!-- to include the alt attribute. -->
45
46 </p>
47
48 </body>
49 </html>

Fig. 18.1 Using the alt attribute of the img tag (part 2 of 3).

Chapter 18 Accessibility 507

Server-side image maps (images stored on a Web server with areas designated as
hyperlinks) are another troublesome technology for some Web users, particularly those
who cannot use a mouse. Server-side image maps require clicks of the mouse to initiate
their actions. User agents are unable to make server-side image maps accessible to blind
people or to users who cannot use a mouse. If equivalent text links are not provided when
a server-side image map is used, some users will be unable to navigate the site. User-agent
manufacturers will provide accessibility to server-side image maps in the future. Until then,
if image maps are used, we recommend using client-side image maps (image maps whose
links are designated in the Web page’s source and thus can be understood by nongraphical
user agents). For an example of the use of client-side image maps, see Fig. 3.7 in Chapter
3, “Introduction to HyperText Markup Language 4: Part II.” For more information
regarding the use of image maps, visit www.w3.org/TR/REC-html40/struct/
objects.html#h-13.6.

Good Programming Practice 18.1
Always provide generous descriptions and corresponding text links for all image maps. 18.1

Using a screen reader to navigate a Web site can be time consuming and frustrating, as
screen readers are unable to interpret pictures and other graphical content. One method of
combatting this problem is to include a link at the top of each Web page that provides easy
access to the page’s content. Users can use the link to bypass an image map or other inac-
cessible element, by jumping to another part of the page or to a different page.

18.3 Maximizing Readability by Focusing on Structure
Many Web sites use tags for aesthetic purposes, rather than the purpose for which they were
intended. For example, the h1 heading tag is often erroneously used to make text large and

Fig. 18.1 Using the alt attribute of the img tag (part 3 of 3).

508 Accessibility Chapter 18

bold. The desired visual effect may be achieved, but it creates a problem for screen readers:
When the screen reader software encounters the h1 tag, it may verbally inform the user that
a new section has been reached, which may confuse the user. Only use tags such as h1 in
accordance with their HTML specification (e.g., as headings to introduce important sec-
tions of a document). Instead of using h1 to make text large and bold, use Cascading Style
Sheets (discussed in Chapter 4) or XSL (discussed in Chapters 12 and 13) to format and
style the text. Please refer to the Web Content Accessibility Guidelines 1.0 at
www.w3.org/TR/WCAG for further examples. [Note: the strong tag may also be used
to make text bold; however, the inflection with which the text is spoken by screen readers
may be affected.]

Another accessibility issue is readability. When creating a Web page intended for the
general public, it is important to consider the reading level at which it is written. Web site
designers can make their site more readable through the use of shorter words, as some users
may have difficulty reading long words. In addition, users from other countries may have
difficulty understanding slang and other nontraditional language, so these types of words
should also be avoided.

The Web Content Accessibility Guidelines 1.0 suggest using a paragraph’s first sen-
tence to convey its subject. Immediately stating the point of the paragraph in the first sen-
tence makes finding crucial information much easier and allows readers to bypass
unwanted material.

A good way to evaluate a Web site’s readability is by using the Gunning Fog Index.
The Gunning Fog Index is a formula that produces a readability grade when applied to a
text sample. For more information on the Gunning Fog Index, see www.w3.org/TR/
WAI-WEBCONTENT-TECHS.

18.4 Accessibility in HTML Tables
Complex Web pages often contain tables for formatting content and presenting data. Tables
cause problems for many screen readers, which are often incapable of translating tables in
an understandable manner unless the tables are designed properly. For example, the CAST
eReader, a screen reader developed by the Center for Applied Special Technology
(www.cast.org), starts at the top-left-hand cell and reads, from top to bottom, columns
from left to right. This procedure is known as reading a table in a linearized manner. The
CAST eReader would thus read the table in Fig. 18.2 as follows:

Price of Fruit Fruit Price Apple $0.25 Orange $0.50 Banana
$1.00 Pineapple $2.00

This reading does not adequately present the content of the table. The Web Content Acces-
sibility Guidelines 1.0 recommend using Cascading Style Sheets (discussed in Chapter 4)
instead of tables unless the content in your tables, linearizes in an understandable way.

If the table in Fig. 18.2 were large, the screen reader’s linearized reading would be
even more confusing to the user. By modifying the td tag with the headers attribute and
modifying header cells (cells specified by the th tag) with the id attribute, you can ensure
that a table is read as intended. Figure 18.3 demonstrates how these modifications change
the way a table is interpreted.

Chapter 18 Accessibility 509

This table does not appear to be different from a standard HTML table. However, to a
person using a screen reader, this table is read in a more intelligent manner. A screen reader
would vocalize the data from the table in Fig. 18.3 as follows:

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
2
3 <html>
4 <!-- Fig. 18.2 : withoutheaders.html -->
5
6 <head>
7 <title>HTML Table Without Headers</title>
8
9 <style type = "text/css">

10 body { background: #ccffaa;
11 text-align: center; }
12 </style>
13 </head>
14
15 <body>
16
17 <p>Price of Fruit</p>
18
19 <table border = "1" width = "50%">
20
21 <tr>
22 <td>Fruit</td>
23 <td>Price</td>
24 </tr>
25
26 <tr>
27 <td>Apple</td>
28 <td>$0.25</td>
29 </tr>
30
31 <tr>
32 <td>Orange</td>
33 <td>$0.50</td>
34 </tr>
35
36 <tr>
37 <td>Banana</td>
38 <td>$1.00</td>
39 </tr>
40
41 <tr>
42 <td>Pineapple</td>
43 <td>$2.00</td>
44 </tr>
45
46 </table>
47
48 </body>
49 </html>

Fig. 18.2 HTML table without accessibility modifications (part 1 of 2).

510 Accessibility Chapter 18

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
2
3 <html>
4 <!-- Fig. 18.3 : withheaders.html -->
5
6 <head>
7 <title>HTML Table With Headers</title>
8
9 <style type = "text/css">

10 body { background: #ccffaa;
11 text-align: center; }
12 </style>
13 </head>
14
15 <body>
16
17 <!-- This table uses the id and headers attributes to -->
18 <!-- ensure readability by text-based browsers. It also -->
19 <!-- uses a summary attribute, used screen readers to -->
20 <!-- describe the table. -->
21
22 <table width = "50%" border = "1"
23 summary = "This table uses th elements and id and headers
24 attributes to make the table readable by screen readers">
25
26 <caption>Price of Fruit</caption>
27
28 <tr>
29 <th id = "fruit">Fruit</th>
30 <th id = "price">Price</th>
31 </tr>

Fig. 18.3 Table optimized for screen reading using attribute headers (part 1 of 2).

Fig. 18.2 HTML table without accessibility modifications (part 2 of 2).

Chapter 18 Accessibility 511

Caption: Price of Fruit
Summary: This table uses th and the id and headers attributes
to make the table readable by screen readers.
Fruit: Apple, Price: $0.25
Fruit: Orange, Price: $0.50
Fruit: Banana, Price: $1.00
Fruit: Pineapple, Price: $2.00

32
33 <tr>
34 <td headers = "fruit">Apple</td>
35 <td headers = "price">$0.25</td>
36 </tr>
37
38 <tr>
39 <td headers = "fruit">Orange</td>
40 <td headers = "price">$0.50</td>
41 </tr>
42
43 <tr>
44 <td headers = "fruit">Banana</td>
45 <td headers = "price">$1.00</td>
46 </tr>
47
48 <tr>
49 <td headers = "fruit">Pineapple</td>
50 <td headers = "price">$2.00</td>
51 </tr>
52
53 </table>
54
55 </body>
56 </html>

Fig. 18.3 Table optimized for screen reading using attribute headers (part 2 of 2).

512 Accessibility Chapter 18

Every cell in the table is preceded by its corresponding header when read by the screen
reader. This format helps the listener understand the table. The headers attribute is spe-
cifically intended for tables that hold large amounts of data. Most small tables linearize
fairly well as long as the th tag is used properly. It also helps to use the summary and
caption attributes.

For more examples demonstrating how to make tables more accessible, visit
www.w3.org/TR/WCAG.

18.5 Accessibility in HTML Frames
Web designers often use frames to display more than one HTML file in a single browser
window. Frames are a convenient way to ensure that certain content is always on screen.
Unfortunately, frames often lack proper descriptions, which prevents users with text-based
browsers, or users who lack sight, from navigating the Web site.

The most important part of documenting a site with frames is making sure that all of
the frames are given a meaningful description in the title tag. Examples of good titles
are “Navigation Frame” and “Main Content Frame.” Users with text-based browsers, such
as Lynx, a UNIX-based Web browser, must choose which frame they want to open, and the
use of descriptive titles can make this choice much simpler for them. However, giving titles
to frames does not solve all of the navigation problems associated with frames. The nof-
rames tag allows Web designers to offer alternative content to users whose browsers do
not support frames.

Good Programming Practice 18.2
Always give a text equivalent for frames to ensure that user agents, which do not support
frames, are given an alternative. 18.0

Good Programming Practice 18.3
Include a description of each frame’s contents within the noframes tag. 18.0

The Web Content Accessibility Guidelines 1.0 suggest using Cascading Style Sheets
as an alternative to frames, because Cascading Style Sheets can provide similar function-
ality to that of frames and are highly customizible. Unfortunately, the ability to display
multiple HTML documents in a single browser window requires the second generation of
Cascading Style Sheets (CSS2), which is not yet fully supported by many user agents.

18.6 Accessibility in XML
Because of the freedom that XML gives developers in creating new markup languages, it
is possible that many of these languages might not incorporate accessibility features. To
prevent the proliferation of inaccessible languages, the WAI created guidelines for creating
accessible XML. The specification focuses only on languages used to mark up data for
user-interface rendering, such as the Extensible Hypertext Markup Language (XHTML)
discussed in Chapter 19. Accessible DTDs and schemas result in accessible XML docu-
ments, so the requirements for accessible DTDs and schemas have been defined. Reuse of
existing accessible DTDs and schemas prevents developers from having to reinvent the
wheel. In addition, the Guidelines recommend including a text description, similar to HT-

Chapter 18 Accessibility 513

ML’s alt tag, for each nontext object on a page. XSL, rather than presentational elements,
should be used to format XML documents for presentation. To further facilitate accessibil-
ity, element types should allow grouping and classification and should identify important
content. Without an accessible user interface, other efforts to implement accessibility are
much less effective, so it is essential to create stylesheets that can produce multiple outputs,
including document outlines. To ensure that hyperlinks are accessible, XLink (discussed in
Chapter 14) should be used.

Many XML languages follow the WAI guidelines, including Synchronized Multi-
media Integration Language (SMIL) and Scalable Vector Graphics (SVG), which are dis-
cussed in Chapter 20. The WAI XML Accessibility Guidelines can be found at
www.w3.org/WAI/PF/xmlgl.htm.

18.7 Using Voice Synthesis and Recognition with VoiceXML™
A joint effort by AT&T, IBM®, Lucent and Motorola has created an XML application that
uses speech synthesis to enable the computer to speak to the user. This technology, called
VoiceXML, has tremendous implications for visually impaired people and for the illiterate.
Not only does VoiceXML read Web pages to the user, but it also includes speech recogni-
tion technology, a technology that enables computers to understand words spoken into a
microphone, enabling the computer to interact with the user. An example of a speech rec-
ognition tool is IBM’s ViaVoice (www-4.ibm.com/software/speech).

VoiceXML is processed by a VoiceXML interpreter or VoiceXML browser; Web
browsers may incorporate these interpreters in the future. When a VoiceXML document is
loaded, a voice server sends a message to the VoiceXML browser and begins a conversa-
tion between the user and the computer.

Voice Server SDK, which was developed by IBM, is a free beta version of a
VoiceXML interpreter and can be used for desktop testing of VoiceXML documents. Visit
www.alphaworks.ibm.com for hardware and software specifications and for more
information on Voice Server SDK. Instructions on how to run VoiceXML documents can
be obtained along with the software.

Figures 18.4 and 18.5 show examples of VoiceXML for a Web site. The document’s
text is spoken to the user, and the text embedded within the VoiceXML tags allow for inter-
activity between the user and the browser. The output included in Fig. 18.5 demonstrates a
conversation that might take place between the user and the computer when this document
is loaded.

1 <?xml version = "1.0"?>
2 <vxml version = "1.0">
3
4 <!-- Fig. 18.4: main.vxml -->
5 <!-- Voice page -->
6
7 <link next = "#home">
8 <grammar>home</grammar>
9 </link>

10

Fig. 18.4 A home page written in VoiceXML (part 1 of 3).

514 Accessibility Chapter 18

11 <link next = "#end">
12 <grammar>exit</grammar>
13 </link>
14
15 <var name = "currentOption" expr = "'home'"/>
16
17 <form>
18 <block>
19 <emp>Welcome</emp> to the voice page of Deitel and
20 Associates. To exit any time say exit.
21 To go to the home page any time say home.
22 </block>
23 <subdialog src = "#home"/>
24 </form>
25
26 <menu id = "home">
27 <prompt count = "1" timeout = "10s">
28 You have just entered the Deitel home page.
29 Please make a selection by speaking one of the
30 following options:
31 <break msecs = "1000 "/>
32 <enumerate/>
33 </prompt>
34
35 <prompt count = "2">
36 Please say one of the following.
37 <break msecs = "1000 "/>
38 <enumerate/>
39 </prompt>
40
41 <choice next = "#about">About us</choice>
42 <choice next = "#directions">Driving directions</choice>
43 <choice next = "publications.vxml">Publications</choice>
44 </menu>
45
46 <form id = "about">
47 <block>
48 About Deitel and Associates, Inc.
49 Deitel and Associates, Inc. is an internationally
50 recognized corporate training and publishing organization,
51 specializing in programming languages, Internet and World
52 Wide Web technology and object technology education.
53 Deitel and Associates, Inc. is a member of the World Wide
54 Web Consortium. The company provides courses on Java, C++,
55 Visual Basic, C, Internet and World Wide Web programming
56 and Object Technology.
57 <assign name = "currentOption" expr = "'about'"/>
58 <goto next = "#repeat"/>
59 </block>
60 </form>
61
62 <form id = "directions">

Fig. 18.4 A home page written in VoiceXML (part 2 of 3).

Chapter 18 Accessibility 515

63 <block>
64 Directions to Deitel and Associates, Inc.
65 We are located on Route 20 in Sudbury,
66 Massachusetts, equidistant from route
67 <sayas class = "digits">128</sayas> and route
68 <sayas class = "digits">495</sayas>.
69 <assign name = "currentOption" expr = "'directions'"/>
70 <goto next = "#repeat"/>
71 </block>
72 </form>
73
74 <form id = "repeat">
75 <field name = "confirm" type = "boolean">
76 <prompt>
77 To repeat say yes. To go back to home, say no.
78 </prompt>
79
80 <filled>
81 <if cond = "confirm == true">
82 <goto expr = "'#' + currentOption"/>
83 <else/>
84 <goto next = "#home"/>
85 </if>
86 </filled>
87
88 </field>
89 </form>
90
91 <form id = "end">
92 <block>
93 Thank you for visiting Deitel and Associates voice page.
94 Have a nice day.
95 <exit/>
96 </block>
97 </form>
98
99 </vxml>

100 <?xml version = "1.0"?>
101 <vxml version = "1.0">
102
103 <!-- Fig. 18.5: publications.vxml -->
104 <!-- Voice page for various publications -->
105
106 <link next = "main.vxml#home">
107 <grammar>home</grammar>
108 </link>

Fig. 18.5 Publication page of Deitel’s VoiceXML page (part 1 of 4).

Fig. 18.4 A home page written in VoiceXML (part 3 of 3).

516 Accessibility Chapter 18

109 <link next = "main.vxml#end">
110 <grammar>exit</grammar>
111 </link>
112 <link next = "#publication">
113 <grammar>menu</grammar>
114 </link>
115
116 <var name = "currentOption" expr = "'home'"/>
117
118 <menu id = "publication">
119
120 <prompt count = "1" timeout = "12s">
121 Following are some of our publications. For more
122 information visit our web page at www.deitel.com.
123 To repeat the following menu, say menu at any time.
124 Please select by saying one of the following books:
125 <break msecs = "1000 "/>
126 <enumerate/>
127 </prompt>
128
129 <prompt count = "2">
130 Please select from the following books.
131 <break msecs = "1000"/>
132 <enumerate/>
133 </prompt>
134
135 <choice next = "#java">Java.</choice>
136 <choice next = "#c">C.</choice>
137 <choice next = "#cplus">C plus plus.</choice>
138 </menu>
139
140 <form id = "java">
141 <block>
142 Java How to program, third edition.
143 The complete, authoritative introduction to Java.
144 Java is revolutionizing software development with
145 multimedia-intensive, platform-independent,
146 object-oriented code for conventional, Internet,
147 Intranet and Extranet-based applets and applications.
148 This Third Edition of the world's most widely used
149 university-level Java textbook carefully explains
150 Java's extraordinary capabilities.
151 <assign name = "currentOption" expr = "'java'"/>
152 <goto next = "#repeat"/>
153 </block>
154 </form>
155
156 <form id = "c">
157 <block>
158 C How to Program, third edition.
159 This is the long-awaited, thorough revision to the
160 world's best-selling introductory C book! The book's
161 powerful "teach by example" approach is based on

Fig. 18.5 Publication page of Deitel’s VoiceXML page (part 2 of 4).

Chapter 18 Accessibility 517

162 more than 10,000 lines of live code, thoroughly
163 explained and illustrated with screen captures showing
164 detailed output.World-renowned corporate trainers and
165 best-selling authors Harvey and Paul Deitel offer the
166 most comprehensive, practical introduction to C ever
167 published with hundreds of hands-on exercises, more
168 than 250 complete programs written and documented for
169 easy learning, and exceptional insight into good
170 programming practices, maximizing performance, avoiding
171 errors, debugging, and testing. New features include
172 thorough introductions to C++, Java, and object-oriented
173 programming that build directly on the C skills taught
174 in this book; coverage of graphical user interface
175 development and C library functions; and many new,
176 substantial hands-on projects.For anyone who wants to
177 learn C, improve their existing C skills, and understand
178 how C serves as the foundation for C++, Java, and
179 object-oriented development.
180 <assign name = "currentOption" expr = "'c'"/>
181 <goto next = "#repeat"/>
182 </block>
183 </form>
184
185 <form id = "cplus">
186 <block>
187 The C++ how to program, second edition.
188 With nearly 250,000 sold, Harvey and Paul Deitel's C++
189 How to Program is the world's best-selling introduction
190 to C++ programming. Now, this classic has been thoroughly
191 updated! The new, full-color Third Edition has been
192 completely revised to reflect the ANSI C++ standard, add
193 powerful new coverage of object analysis and design with
194 UML, and give beginning C++ developers even better live
195 code examples and real-world projects. The Deitels' C++
196 How to Program is the most comprehensive, practical
197 introduction to C++ ever published with hundreds of
198 hands-on exercises, roughly 250 complete programs written
199 and documented for easy learning, and exceptional insight
200 into good programming practices, maximizing performance,
201 avoiding errors, debugging, and testing. This new Third
202 Edition covers every key concept and technique ANSI C++
203 developers need to master: control structures, functions,
204 arrays, pointers and strings, classes and data
205 abstraction, operator overloading, inheritance, virtual
206 functions, polymorphism, I/O, templates, exception
207 handling, file processing, data structures, and more. It
208 also includes a detailed introduction to Standard
209 Template Library containers, container adapters,
210 algorithms, and iterators.
211 <assign name = "currentOption" expr = "'cplus'"/>
212 <goto next = "#repeat"/>
213 </block>
214 </form>

Fig. 18.5 Publication page of Deitel’s VoiceXML page (part 3 of 4).

518 Accessibility Chapter 18

A VoiceXML document is made up of a series of dialogs and subdialogs, which result
in spoken interaction between the user and the computer. The tags that implement the dia-
logs are the form and menu tags. A form element presents information and gathers data
from the user. A menu element provides options to the user and transfers control to other
dialogs, based on the user’s selections.

Lines 7–9

<link next = "#home">
<grammar>home</grammar>

</link>

215
216 <form id = "repeat">
217 <field name = "confirm" type = "boolean">
218
219 <prompt>
220 To repeat say yes. Say no, to go back to home.
221 </prompt>
222
223 <filled>
224 <if cond = "confirm == true">
225 <goto expr = "'#' + currentOption"/>
226 <else/>
227 <goto next = "#publication"/>
228 </if>
229 </filled>
230 </field>
231 </form>
232 </vxml>

Computer:
Welcome to the voice page of Deitel and Associates. To exit any time
say exit. To go to the home page any time say home.

User:
Home

Computer:
You have just entered the Deitel home page. Please make a selection by
speaking one of the following options: About us, Driving directions,
Publications.

User:
Driving directions

Computer:
Directions to Deitel and Associates, Inc.
We are located on Route 20 in Sudbury,
Massachusetts, equidistant from route 128
and route 495.
To repeat say yes. To go back to home, say no.

Fig. 18.5 Publication page of Deitel’s VoiceXML page (part 4 of 4).

Chapter 18 Accessibility 519

use element link to create an active link to the home page. Attribute next holds the URI
that is navigated to when the link is selected. Element grammar provides the text that the
user must speak in order to select the link. In this link element, we navigate to the element
with id home when the user says the word home. Lines 11–13 use element link to cre-
ate a link to id end when the user says the word exit.

Lines 17–24 create a form dialog using element form, which collects information
from the user. Lines 18–22

<block>
 <emp>Welcome</emp> to the voice page of Deitel and
 Associates. To exit any time say exit.
 To go to the home page any time say home.
</block>

present introductory text to the user. Element emp is used to add emphasis to a section of
speech.

The menu element on line 26 enables the user to select the page to which they would
like to link. The choice element, which is always part of either a menu or a form, pre-
sents these options to the user. The next attribute indicates the page to be loaded when the
user makes a selection. The user selects a choice element by speaking the words con-
tained in the element into a microphone. In this example, the first and second choice ele-
ments on lines 41 and 42 transfer control to a local dialog (i.e., a location within the same
document) when they are selected. The third choice element transfers the user to the doc-
ument publications.vxml. Lines 27–33

<prompt count = "1" timeout = "10s">
You have just entered the Deitel home page.
Please make a selection by speaking one of the
following options:
<break msecs = "1000" />
<enumerate/>

</prompt>

use element prompt to instruct the user to make a selection. Attribute count is used to
provide multiple prompts for a task. VoiceXML keeps track of the number of prompts giv-
en and matches them to attribute count. The closest prompt with attribute count that
is less than the current number of prompts is output. Attribute timeout provides a length
of time to wait after the output of the prompt. In case the user does not respond before the
timeout period expires, lines 35–39 provide a second, shorter prompt to remind the user that
a selection is required.

The publications.vxml (Fig. 18.5) is loaded into the browser when the user
chooses the publications option. Lines 106–111 define link elements that provide
links to main.vxml. Lines 112–114 provide links to the menu element (lines 118–138),
which asks the user to select one of the publications. Java, C and C++ are the three options
the user can select. Each of the books on these topics is described in the form elements
(lines 140–214). Once the browser speaks out the description, the control is transferred to
the form element with id attribute whose value equals repeat (lines 216–231).

Figure 18.6 provides a brief description of each of the VoiceXML tags used in the pre-
vious example (Fig. 18.5).

520 Accessibility Chapter 18

18.8 JAWS® for Windows
JAWS (Job Access with Sound) is one of the leading screen readers on the market today.
It was created by Henter-Joyce, a division of Freedom Scientific™. Freedom Scientific is
a company that works to help visually impaired people use technology.

To download a demonstration version of JAWS, visit www.hj.com/JAWS/
JAWS35DemoOp.htm and select the JAWS 3.5 FREE Demo link. The demo will run
for 40 minutes, after which it will terminate. The computer must be rebooted before another
40 minute session can be started.

The JAWS demo is fully functional and includes an extensive help system that is
highly customizible. The user can select which voice to use, as well as the rate at which text
is spoken. Although the demo is in English, the full version of JAWS 3.5 allows the user to
choose one of several supported languages.

VoiceXML Tag Description

<assign>
Assigns a value to a variable.

<block> Presents information to the user without any interaction between the user and
the computer (i.e., the computer does not expect any input from the user).

<break> Instructs the computer to pause its speech output for a specified period of time.

<choice> Specifies an option in a menu element.

<enumerate> Lists all of the available options to the user.

<exit> Exits the program.

<filled> Contains elements to be executed when the computer receives input for a form
element from the user.

<form> Gathers information from the user for a set of variables.

<goto> Transfers control from one dialog to another.

<grammar> Specifies grammar for the expected input from the user.

<if>,

<else>,

<elseif>

Control statements used for making logic decisions.

<link> A transfer of control similar to the goto statement, but a link can be exe-
cuted at any time during the program’s execution.

<menu> Provides user options and transfers control to other dialogs, based on the
selected option.

<prompt> Specifies text to be read to the user when a selection is needed.

<subdialog> Calls another dialog. Control is transferred back to the calling dialog after the
subdialog is executed.

<var> Declares a variable.

<vxml> The top-level tag which specifies that the document should be processed by a
VoiceXML interpreter.

Fig. 18.6 Elements in VoiceXML.

Chapter 18 Accessibility 521

JAWS also includes special key commands for popular programs, such as Microsoft
Internet Explorer and Microsoft Word. For example, when browsing in Internet Explorer,
JAWS’s capabilities extend beyond just reading the content on the screen. If JAWS is
enabled, pressing Insert + F7 in Internet Explorer opens a Links List dialog, which dis-
plays all of the links available on a Web page. For more information about JAWS and the
other products offered by Henter-Joyce, visit www.hj.com.

18.9 Other Accessibility Tools
Most of the accessibility products offered today are aimed at helping hearing and visually
impaired users. However, there is also software designed to help people with other types of
disabilities. This section describes some accessibility products other than the ones we have
already discussed.

One such product, the braille keyboard, is similar to a standard keyboard, except that
in addition to having each key labeled with the letter it represents, it has the equivalent
braille symbol printed on the key. Most often, braille keyboards are combined with a
speech synthesizer or a braille display, so users are able to interact with the computer to
verify that their typing is correct.

Speech synthesis is another area in which research is being done to help people with
disabilities. Speech synthesizers have been used to aid those who are unable to communi-
cate verbally for many years. However, the growing popularity of the Web has prompted a
great deal of work in the field of speech synthesis and speech recognition. These technolo-
gies are allowing the handicapped to use computers more than ever before. The develop-
ment of speech synthesizers is also enabling other technologies to improve, such as
VoiceXML and AuralCSS (www.w3.org/TR/REC-CSS2/aural.html). These tools
allow visually impaired people and people who cannot read to access Web sites.

Despite the existence of adaptive software and hardware for the visually impaired, the
accessibility of computers and the Internet is still hampered by the high costs, rapid obso-
lescence and unnecessary complexity of current technology. Moreover, almost all software
currently available requires installation by a person who can see. Ocularis is a project
launched in the open-source community to help rectify these problems. Open-source soft-
ware for the visually impaired already exists, and although it is often superior to its propri-
etary, closed-source counterparts, it has not yet reached its full potential. Ocularis will
ensure that the blind can fully use the Linux operating system by providing an Audio User
Interface (AUI). Currently, Ocularis is in the planning stage. Programs to be integrated with
Ocularis include a word processor, calculator, basic finance application, Internet browser
and e-mail client. A screen reader will also be included for use with programs that have a
command-line interface. The official Ocularis Web site is located at ocu-
laris.sourceforge.net.

Visually impaired people are not the only beneficiaries of the effort being made to
improve markup languages. The deaf also have a great number of tools to help them inter-
pret auditory information delivered over the Web. Hearing-impaired Web users will soon
benefit from what is called Synchronized Multimedia Integration Language (SMIL™), dis-
cussed in Chapter 20. This markup language is designed to add extra tracks—layers of con-
tent found within a single audio or video file—to multimedia content. The additional tracks
may contain data such as closed captioning.

522 Accessibility Chapter 18

Technologies are also being designed to help severely handicapped persons, such as
those with quadriplegia, a form of paralysis that affects the body from the neck down. One
such technology, EagleEyes, developed by researchers at Boston College (www.bc.edu/
eagleeyes), is a system that translates eye movements into mouse movements. The user
moves the mouse cursor by moving his or her eyes or head and is thereby able to control
the computer.

These examples are just a few of the accessibility projects and technologies that cur-
rently exist. For more information on Web and general computer accessibility, see the
resources provided in the next section.

18.10 Internet and World Wide Web Resources
There are many accessibility resources on the Internet and World Wide Web, and this sec-
tion lists a variety of them.

www.w3.org/WAI
The World Wide Web Consortium’s Web Accessibility Initiative (WAI) site promotes design of univer-
sally accessible Web sites. This site will help you keep up to date with current guidelines and forth-
coming standards for Web accessibility.

www.w3.org/TR/WCAG10
This page is a note published by the WCAG working group. It discusses techniques that can be used
to comply with the WAI. This page is a great resource and can be used to find additional information
on many of the topics covered in this chapter.

deafness.about.com/health/deafness/msubmenu6.htm
This site is the home page of deafness.about.com. It is an excellent resource to find informa-
tion pertaining to deafness.

www.cast.org
CAST stands for the Center for Applied Special Technology. CAST offers software intended to help
individuals with disabilities use a computer, including a valuable accessibility checker—free of
charge. The accessibility checker is a Web-based program used to validate the accessibility of Web
sites.

www.trainingpost.org/3-2-inst.htm
This site presents a tutorial on the Gunning Fog Index. The Gunning Fog Index is a method of grading
text on its readability.

www.w3.org/TR/REC-CSS2/aural.html
This page discusses Aural Style Sheets, outlining the purpose and uses of this new technology.

laurence.canlearn.ca/English/learn/newaccessguide/indie
INDIE is an acronym that stands for “Integrated Network of Disability Information and Education.”
This site is home to a powerful search engine that help users find out information about disabilities.

java.sun.com/products/java-media/speech/forDevelopers/JSML
This site outlines the specifications for JSML, Sun Microsystem’s Java Speech Markup Language.
This language, like VoiceXML, could drastically improve accessibility for visually impaired people.

www.slcc.edu/webguide/lynxit.html
Lynxit is a development tool that allows users to view any Web site just as a text-only browser would.
The site’s form allows you to enter a URL and returns the Web site in text-only format.

www.trill-home.com/lynx/public_lynx.html
This site allows you to use browse the Web using a Lynx browser. Doing so will allow you to see how
your page will load for users without the most current technologies.

Chapter 18 Accessibility 523

www.wgbh.org/wgbh/pages/ncam/accesslinks.html
This site provides links to other accessibility pages across the Web.

ocfo.ed.gov/coninfo/clibrary/software.htm
This page is the U.S. Department of Education’s Web site for software accessibility requirements. It
is aimed at helping developers produce accessible products.

www.alphaworks.ibm.com
This site is the home page for IBM Alphaworks. It provides information on VoiceXML and offers a
download of the beta version of Voice Server SDK.

www-3.ibm.com/able/access.html
This site is the homepage of IBM’s accessibility site. It provides information on IBM products and
their accessibility and also discusses hardware, software and Web accessibility.

www.microsoft.com/enable/dev/guidelines/software.htm
This Web site presents Microsoft’s guidelines for designing accessible software.

www.w3.org/TR/voice-tts-reqs
This page explains the speech synthesis markup requirements for voice markup languages.

deafness.about.com/health/deafness/msubvib.htm
This site provides information on vibrotactile devices. These devices allow deaf people to experience
audio in the form of vibrations.

web.ukonline.co.uk/ddmc/software.html
This site provides links to software for people with disabilities.

www.hj.com
Henter-Joyce a division of Freedom Scientific that provides software for blind and visually impaired
people. It is the home of JAWS.

www.abledata.com/text2/icg_hear.htm
This page contains a consumer guide that discusses technologies for hearing-impaired people.

www.washington.edu/doit
The University of Washington’s DO-IT (Disabilities, Opportunities, Internetworking and Technolo-
gy) site provides information and Web development resources for creating universally accessible Web
sites.

www.webable.com
The WebABLE site contains links to many disability-related Internet resources and is geared towards
those looking to develop technologies for people with disabilities.

www.speech.cs.cmu.edu/comp.speech/SpeechLinks.html
The Speech Technology Hyperlinks page has over 500 links to sites related to computer-based speech
and speech recognition tools.

www.islandnet.com/~tslemko
The Micro Consulting Limited site contains shareware speech synthesis software.

www.chantinc.com/technology
This page is the Chant Web site, which discusses speech technology and how it works. Chant also pro-
vides speech synthesis and speech recognition software.

SUMMARY
• Accessibility refers to the level of usability of an application or Web site for people with disabili-

ties. The vast majority of Web sites are considered inaccessible to people with visual, learning or
mobility impairments.

524 Accessibility Chapter 18

• The WAI is an attempt to make the Web more accessible; its mission is described at
www.w3.org/WAI.

• Specialized user agents, such as screen readers (programs that allow users to hear what is being
displayed on their screen) and braille displays (devices that receive data from screen-reading soft-
ware and output the data as braille), allow blind and visually impaired people to access text-based
information that is normally displayed on the screen.

• Web designers should avoid misuse of the alt attribute; it is intended to provide a short descrip-
tion of an HTML object that may not load properly on all user agents.

• The value of the longdesc attribute is a text-based URL that is linked to a Web page which de-
scribes the image associated with the attribute.

• User agents are unable to make server-side image maps accessible to blind people or to others who
cannot use a mouse. If equivalent text links are not provided when a server-side image map is used,
some users will be unable to navigate the site.

• When creating a Web page intended for the general public, it is important to consider the reading
level at which it is written. Web site designers can make their site more readable through the use
of shorter words, as some users may have difficulty reading long words. In addition, users from
other countries may have difficulty understanding slang and other nontraditional language, so
these types of words should also be avoided.

• Web designers often use frames to display more than one HTML file at a time and are a convenient
way to ensure that certain content is always on screen. Unfortunately, frames often lack proper de-
scriptions, which prevents users with text-based browsers, or users who lack sight, from navigating
the Web site.

• The noframes tag allows the designer to offer alternative content to users whose browsers do
not support frames.

• A VoiceXML document is made up of a series of dialogs and subdialogs, which result in spoken
interaction between the user and the computer.

• Braille keyboards are similar to standard keyboards, except that in addition to having each key la-
beled with the letter it represents, braille keyboards have the equivalent braille symbol printed on
the key. Most often, braille keyboards are combined with a speech synthesizer or a braille display,
so users are able to interact with the computer to verify that their typing is correct.

• Speech synthesis is another area in which research is being done to help people with disabilities.

• Open-source software for the visually impaired already exists and is often superior to most of its
proprietary, closed-source counterparts, but it still does not use the Linux OS to its fullest extent.

• Visually impaired people are not the only beneficiaries of the effort being made to improve mark-
up languages. The deaf also have a great number of tools to help them interpret auditory informa-
tion delivered over the Web.

• EagleEyes, developed by researchers at Boston College (www.bc.edu/eagleeyes), is a sys-
tem that translates eye movements into mouse movements. The user moves the mouse cursor by
moving his or her eyes or head and is thereby able to control the computer.

TERMINOLOGY
accessibility Lynx
alt attribute markup language
assign tag in VoiceXML menu tag in VoiceXML
AuralCSS noframes tag
block tag in VoiceXML priority 1 checkpoint

Chapter 18 Accessibility 525

SELF-REVIEW EXERCISES
18.1 Spell out the following acronyms:

a) W3C.
b) WAI.
c) JAWS.
d) SMIL.
e) CSS.

18.2 Fill in the blanks in each of the following statements.
a) The highest priority of the Web Accessibility Initiative is to ensure that each ,

 and is accompanied by a description that clearly defines its pur-
pose.

b) Although they can be used as a great layout tool, are difficult for screen read-
ers to interpret and convey clearly to a user.

c) In order to make your frame accessible to the handicapped, it is important to include
 tags on your page.

d) Blind people using computers are often assisted by and .

braille display priority 2 checkpoint
braille keyboard priority 3 checkpoint
break tag in VoiceXML prompt tag in VoiceXML
b tag (bold) quick tips
caption readability
Cascading Style Sheets (CSS) screen reader
choice tag in VoiceXML server-side image map
client-side image map speech recognition
CSS2 speech synthesizer
default settings strong tag
EagleEyes subdialog tag in VoiceXML
enumerate tag in VoiceXML summary attribute
exit tag in VoiceXML
field variable

Synchronized Multimedia Integration Language
(SMIL)

filled tag in VoiceXML tables
form tag in VoiceXML td tag
frames text-to-speech
goto tag in VoiceXML th tag
grammar tag in VoiceXML timeout
Gunning Fog Index title tag
header cells user agent
headers attribute of td tag var tag in VoiceXML
h1 ViaVoice
IBM ViaVoice Voice Server
id attribute Voice Server SDK
img tag VoiceXML
JAWS (Job Access With Sound) by Henter-Joyce vxml tag in VoiceXML
a division of Freedom Scientific
linearized reading of a table

Web Content Accessibility Guidelines 1.0
(WCAG 1.0)

link tag in VoiceXML Web Accessibility Initiative (WAI)
longdesc attribute

526 Accessibility Chapter 18

18.3 State whether each of the following is true or false. If false, explain why.
a) Screen readers have no problem reading and translating images.
b) Image maps are no problem for screen readers to translate, so long as the programmer has

made changes to their code to improve accessibility.
c) When writing pages for the general public, it is important to consider the reading diffi-

culty level of the text you are writing.
d) The alt tag helps screen readers describe images in a Web page.
e) Left-handed people have been helped by the improvements made in speech-recognition

technology more than any other group of people.
f) VoiceXML lets users interact with Web content using speech recognition and speech

synthesis technologies.

ANSWERS TO SELF-REVIEW EXERCISES
18.1 a) World Wide Web Consortium. b) Web Accessibility Initiative. c) Job Access with Sound.
d) Synchronized Multimedia Integration Language. e) Cascading Style Sheets.

18.2 a) image, movie, sound. b) tables. c) noframes. d) braille displays, braille keyboards.

18.3 a) False. Screen readers have no way of telling a user what is shown in an image. If the pro-
grammer includes an alt attribute inside the img tag, the screen reader will read this description to
the user. b) False. Screen readers have no way of translating image maps, no matter what program-
ming changes are made. The solution to this problem is to include text-based links alongside all image
maps. c) True. d) True. e) False. Although left-handed people can use speech-recognition technology
as everyone else can, speech-recognition technology has had the largest impact on the blind and on
people who have trouble typing. f) True.

EXERCISES
18.4 Insert HTML markup into each segment to make the segment accessible to someone with dis-
abilities. The contents of images and frames should be apparent from the context and filenames.

a)
b)

Language Version
HTML 4.01
Perl 5.6.0
Java 1.3

c) <map name = "links">
<area href = "index.html" shape = "rect"

coords = "50, 120, 80, 150">
<area href = "catalog.html" shape = "circle"

coords = "220, 30">
</map>
<img src = "antlinks.gif" width = "300" height = "200"

usemap = "#links">

19
XHTML and XForms

Objectives
• To understand the need for XHTML.
• To understand the differences between XHTML and

HTML.
• To understand how XHTML relates to XML.
• To use the three XHTML DTDs.
• To validate an XHTML document.
• To understand the concept of XForms.
• To become familiar with the Extended Forms

Architecture (XFA).
This fell sergeant, death,
Is strict in his arrest.
William Shakespeare

Form ever follows function.
Louis Henri Sullivan

528 XHTML and XForms Chapter 19

19.1 Introduction
This chapter provides a brief introduction to an XML-related technology called Extensible
Hypertext Markup Language (XHTML). XHTML is HTML’s proposed successor. The cur-
rent version of XHTML—the XHTML 1.0 W3C Recommendation—includes HTML 4 el-
ements for backwards compatibility and to help Web authors make the transition from
HTML to XHTML.

In this chapter, we also discuss a more flexible replacement for HTML forms being
developed by the World Wide Web Consortium—called XForms.

Software Engineering Observation 19.1
XHTML is an application of XML and uses the http://www.w3.org/1999/xhtml
namespace URI. 19.1

19.2 XHTML
XHTML is better equipped than HTML to represent complex data on the Internet. The ma-
jority of existing HTML code is not well formed because browsers do not explicitly check
the markup for errors. Most browsers accommodate incorrectly-written HTML documents.
The result is that the same document may look different in each Web browser, depending
upon how the browser interprets the incorrect HTML code. With the emergence of the
wireless Web and Web-enabled appliances, incorrect HTML poses a portability problem.
Small devices such as PDAs (personal digital assistants) and digital cellular phones have
limited amounts of memory and cannot provide the extra resources required to process in-
correctly-written HTML. Documents intended for these devices must be well formed to
guarantee uniform processing.

Figure 19.1 shows an HTML document that is not well formed because a closing
double quote is missing in line 9. The output shows the document rendered in Internet
Explorer 5. Notice that the anchor is displayed as text.

XHTML takes advantage of XML’s strict syntax to ensure well-formedness. Although
XHTML’s elements are almost identical to the elements of HTML, some notable differ-
ences exist. All XHTML tags must be in lowercase; a document with uppercase tags is
invalid. All XHTML start tags (e.g., <p>) must have a corresponding end tag (e.g., </p>).
Empty tags (i.e., tags that do not have closing tags) must be terminated using the forward
slash character (/). Therefore, the
 tag in HTML becomes the
 tag in XHTML.

Outline
19.1 Introduction
19.2 XHTML
19.3 XForms
19.4 Extended Forms Architecture (XFA)
19.5 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises •
Exercises

Chapter 19 XHTML and XForms 529

Portability Tip 19.1
Adding a space before /> in an empty XHTML element (e.g.,
) improves compati-
bility with older Web browsers. 19.1

XHTML does not permit overlapping tags. For example, the line

<p>This is some text</p>

is invalid, because the and <p> tags overlap. In XHTML, attribute values must
appear in quotes and cannot be minimized. For example, the hr tag has a minimized at-
tribute noshade. According to XHTML specifications, the HTML tag <hr noshade>
must be written as <hr noshade = "noshade"/>.

Common Programming Error 19.1
 All the elements in an XHTML file must be in lowercase and must have proper open and
close tags. 19.1

XHTML documents conform to one of three DTDs—strict, transitional or frameset.
The strict DTD is used when the document implements content presentation with cascading
style sheets. The transitional DTD is used when the document contains presentational ele-
ments (e.g., font and color information) embedded in the XHTML elements. The frameset
DTD is used when a browser window is partitioned with HTML frames. The examples in
Figs. 19.2–19.7 make use of each of these DTDs.

Figure 19.2 is an XHTML document that conforms to the frameset DTD. The docu-
ment defines the frames that contain the remaining documents in this chapter.

1 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
2 <html>
3
4 <!-- Fig. 19.1 : simple.html -->
5 <!-- An ill-formed HTML -->
6
7 Here is a link to our home page:
8

9 www.deitel.com

10
11 </html>

Fig. 19.1 Rendering an ill-formed HTML document.

530 XHTML and XForms Chapter 19

Lines 1 and 2 declare the document type and specify the DTD to which this document
conforms. Because this document uses frames, we use XHTML’s frameset DTD. Line 3
declares the namespace URI for this XHTML document. Because a namespace prefix is not
used, elements belong to the default namespace.

The remainder of the document looks almost identical to HTML. All XHTML tags
conform to the requirements we described earlier (e.g., the tags are lowercase, all attributes
are enclosed in quotes, etc.). XHTML requires the title element to appear within the
head element. The frameset DTD also requires the body element to appear within the
noframes element.

We can validate xhtmlFrame.html (Fig. 19.2) using the W3C’s validator located
at validator.w3.org. Figure 19.3 displays the results of validating this document.

Figure 19.4 is the XHTML document that is rendered in the page’s picture frame.
The document displays the Deitel & Associates, Inc. logo that, when clicked, opens the
Deitel & Associates, Inc. Web site in a separate browser window. This document uses the
transitional DTD because the target attribute of tag <a> is not defined in the strict DTD.

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
2 "http://www.w3.org/TR/xhtml1/DTD/frameset.dtd">
3 <html xmlns = "http://www.w3.org/1999/xhtml">
4
5 <!-- Fig. 19.2: xhtmlFrame.html -->
6 <!-- An XHTML example -->
7
8 <head>
9 <meta name = "keywords" content = "Webpage, design, XHTML,

10 tutorial, personal, help, index, form, contact, feedback,
11 list, links, frame, deitel"/>
12 <meta name = "description" content = "This Web site will
13 help you learn the basics of XHTML and Web page design
14 through the use of interactive examples and
15 instruction."/>
16 <title>Welcome to XHTML</title>
17 </head>
18
19 <frameset rows = "150,*">
20 <frame name = "picture" scrolling = "no"
21 src = "picture.html"/>
22 <frameset cols = "250,*">
23 <frame name = "nav" scrolling = "no" src = "nav.html"/>
24 <frame name = "main" src = "main.html"/>
25 </frameset>
26 <noframes>
27 <body>
28 <p>This page uses frames, but your browser does
29 not support them.</p>
30
31 <p>Please, follow this link
32 to browse our site without frames.</p>
33 </body>
34 </noframes>

Fig. 19.2 XHTML frameset document (part 1 of 2).

Chapter 19 XHTML and XForms 531

Fig. 19.3 Validating an XHTML document.

35 </frameset>
36 </html>

Fig. 19.2 XHTML frameset document (part 2 of 2).

532 XHTML and XForms Chapter 19

Figure 19.5 is the XHTML document that is rendered in the page’s nav frame. The
document displays a list of links that, when clicked, displays the appropriate page in the
main frame. Again, we use the transitional DTD because this document makes use of the
target attribute. In line 10, we import the style sheet styles.css (Fig. 19.6).

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
2 "http://www.w3c.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
3 <html xmlns = "http://www.w3.org/1999/xhtml">
4
5 <!-- Fig. 19.4: picture.html -->
6 <!-- An XHTML transitional example -->
7
8 <head>
9 <title>Click on our logo to go to deitel.com</title>

10 </head>
11
12 <body>
13 <div style = "text-align: center">
14
15 <img src = "logotiny.jpg" alt = "deitel.com"
16 border = "0"/>
17 </div>
18 </body>
19 </html>

Fig. 19.4 XHTML transitional document.

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
2 "http://www.w3c.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
3 <html xmlns = "http://www.w3.org/1999/xhtml">
4
5 <!-- Fig. 19.5: nav.html -->
6 <!-- An XHTML transitional example -->
7
8 <head>
9 <title>Enter the title of your XHTML document here</title>

10 <link rel = "stylesheet" type = "text/css"
11 href = "styles.css"/>
12 </head>
13
14 <body>
15 XHTML Links: <hr />
16
17 <a class = "nodec" href = "http://www.xhtml.org"
18 target = "main">xhtml.org
19 <a class = "nodec" target = "main"
20 href = "http://www.w3.org/TR/xhtml1/">
21 W3C XHTML 1 Document
22 <a class = "nodec" href = "http://validator.w3.org"
23 target = "main">HTML / XHTML validator
24
25 </body>
26 </html>

Fig. 19.5 XHTML transitional document.

Chapter 19 XHTML and XForms 533

Figure 19.7 shows the page displayed (in the main frame) when the document is first
rendered. This document conforms to the strict DTD. In lines 11–17, we define a style for
element div. We use this style in the body of the document to format and display some
sample text.

1 a.nodec { text-decoration: none;
2 color: blue }
3 a:hover { text-decoration: underline;
4 background-color: #FFFF80 }

Fig. 19.6 Style sheet used by nav.html—styles.css.

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
2 "http://www.w3c.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
3 <html xmlns = "http://www.w3.org/1999/xhtml">
4
5 <!-- Fig. 19.7: main.html -->
6 <!-- An XHTML / CSS example -->
7
8 <head>
9 <title>This is the main page</title>

10
11 <style type = "text/css">
12
13 div { background-color: #FFFF80;
14 margin-bottom: .5em;
15 font-size: 1.5em;
16 width: 50% }
17 </style>
18
19 </head>
20
21 <body>
22 <p>This is the main page of our site. We use Cascading
23 Style Sheets to format text:</p><hr />
24
25 <div style = "text-align: center">Deitel and
26 Associates, Inc.</div>
27 <div style = "text-align: right">Introduction to
28 Deitel & Associates, Inc.</div>
29
30 <div style = "float: right; margin: .5em">Java, C, C++,
31 Visual Basic, XML, Perl.</div>
32
33 <p>Deitel & Associates, Inc. is an internationally
34 recognized corporate training and publishing
35 organization specializing in programming languages,
36 Internet/World Wide Web technology and object technology
37 education. Deitel & Associates, Inc. is a member of
38 the World Wide Web Consortium. The company provides
39 courses on Java, C++, Visual Basic, C, Internet

Fig. 19.7 XHTML document that conforms to the strict DTD (part 1 of 2).

534 XHTML and XForms Chapter 19

XHTML 1.1, the next version of the XHTML recommendation under development,
provides greater extensibility and modularity than XHTML 1.0. Deprecated tags and
attributes, most of which are presentation-oriented relics from HTML, will no longer be
supported. XHTML will also have a modular framework. Each module will provide spe-
cific functionality. For example, there will be modules for frames, stylesheets and hyper-
links. The initial XHTML 1.1 DTD from the W3C is based solely on modules; a similar
schema is under development. Content developers will be able to combine and extend mod-
ules, as well as integrate tags from other XML languages, such as SMIL. Designers will
also be able to specify which features of XHTML are supported by their technologies. This
enables software to easily handle XHTML documents by either tailoring content for a
device or loading software for processing a particular module. As a result, devices such as
cellular phones will be able to render XHTML content more accurately.

19.3 XForms
With the growth of e-commerce, HTML forms have become an essential part of many Web
sites for collecting customer data. However, HTML forms suffer from many drawbacks.
Forms lack the flexibility that would enable their use by people working on many different
platforms. The World Wide Web Consortium is currently developing an XML-based re-
placement for HTML forms—XForms.

XForms are currently a “work in progress.” The information in this section is likely to
change as the World Wide Web Consortium continues its work. For the most current infor-
mation on XForms, visit www.w3.org/MarkUp/Forms.

The goal of XForms is to make forms more flexible by separating data from logic and
presentation. This separation is accomplished by dividing the form into three portions: data,
logic and presentation. The "uncoupling" of data from presentation enables form designers
to define different user interfaces for different platforms (e.g., desktops, handhelds, phones,

40 and World Wide Web programming, and Object
41 Technology.</p>
42
43 <div style = "float: right; padding: .5em">Our How to
44 Program Series publications in Java, C, C++ and
45 Visual Basic--each published by Prentice Hall
46 (the world's largest computer science publisher)--
47 are the best-selling college programming language
48 textbooks in their respective fields.
49 </div>
50
51 <div style = "clear: right">The company's clients include
52 some of the world's largest computer companies,
53 government agencies, branches of the military and
54 business organizations.
55 </div>
56 </body>
57
58 </html>

Fig. 19.7 XHTML document that conforms to the strict DTD (part 2 of 2).

Chapter 19 XHTML and XForms 535

paper, etc.). The data portion defines the structure of the data to be represented in or gath-
ered by the form. The logic portion defines relationships between the fields in the form
using a syntax similar to that used in spreadsheet applications. The presentation portion
defines how the form looks to users.

The different portions of the form work together to gather data from users and process
the data over the Web. The user enters the data through the user interface. The logic portion
of the form processes the data entered by the user. The form designer can provide logic, for
example, to ensure that the user has entered a telephone number in the proper format or to
combine data from different fields. When the form is submitted, the user-entered data is
converted to appropriately-formatted XML and sent to the server for further processing.
Although much of the functionality provided by XForms can be implemented with a
scripting language such as JavaScript, XForms will provide a more flexible architecture for
building forms.

19.4 Extended Forms Architecture (XFA)
Extended Forms Architecture (XFA) is a specification developed by JetForm for advanced
manipulation of XML forms by both humans and computer systems. It has capabilities for
creating, processing, printing, modifying and archiving all types of forms. XFA provides
methods for adding interactivity to computer forms, including database query and mathe-
matical functions. In addition, it is optimized for enterprise application integration, en-
abling form interoperability with different systems.

The specification consists of two parts. The first is the form template, which is a col-
lection of schema and objects that define the rules and intelligence of the form. XFA has
flexible formatting capabilities that enable a form to be viewed in many different ways, and
multiple presentations can be encoded into one form definition. The data and the form can
either be kept separate or merged, depending on the application for which they will be used.
The former allows the exchange of data without requiring translation or additional pro-
cessing, whereas the latter ensures that the data will always be in context. Support for dig-
ital signatures (i.e., the equivalent of written signatures that authenticates users) is inherent
in XFA, which enables signing of the data, the form or the combined document.

The second part of the specification is a scripting language that can be used to perform
queries, calculations and other form manipulations. With the combination of XFA tem-
plates and scripting, an individual or organization can create unique, customizable forms
that are fully interoperable throughout any electronic network.

Further information on XFA can be found at Jetform’s official XFA site,
www.xfa.org.

19.5 Internet and World Wide Web Resources
www.w3.org/TR/xhtml1
This is the W3C’s recommendation document for XHTML. The document covers use of the language
and provides links to the three XHTML DTDs.

www.w3.org/TR/xforms-datamodel
This is the W3C’s draft version of the XForm data-model definition. It contains detailed recommen-
dations and comments on XForm technology design and implementation.

536 XHTML and XForms Chapter 19

www.w3.org/MarkUp/Forms
This is the W3C’s XForms information site.

www.xhtml.org
This Web site is a resource for XHTML users.

validator.w3.org
This site is the W3C’s validating tool that can validate XHTML pages.

www.w3schools.com/xhtml
Learn more about XHTML at this site, which features a tutorial and other XHTML resources.

encyclozine.com/WD/XHTML
This site is an introductory article about XHTML. It contains a simple example and links to other in-
formational articles.

wdvl.internet.com/Authoring/Languages/XML/XHTML/dtd.html
This site contains an article on the differences among the three XHTML DTDs.

encyclozine.com/WD/XHTML/dif.html
This site contains an article on the differences between HTML and XHTML.

encyclozine.com/WD/XHTML/dtd.html
This site contains an article about the three XHTML DTDs.

www.xfa.org
Jetform’s official Extended Forms Architecture (XFA) Web site.

SUMMARY
• Extensible Hypertext Markup Language (XHTML) is an application of XML and is HTML’s pro-

posed successor. The current version of XHTML includes HTML 4 elements to help Web authors
make the transition from HTML to XHTML.

• XHTML’s design is better equipped than HTML’s to represent complex data on the Internet.
Browsers can treat poorly written HTML documents differently, requiring browser vendors to
write additional features to handle the problem.

• XHTML takes advantage of XML’s strict syntax to ensure well-formedness. All XHTML tags
must be in lowercase; a document with uppercase tags is invalid. All XHTML opening tags—in-
cluding empty ones—must have a corresponding closing tag. XHTML does not permit overlap-
ping tags.

• XHTML uses the namespace URI http://www.w3.org/1999/xhtml.

• In XHTML, attribute values must appear in quotes and cannot be minimized.

• XHTML documents conform to one of three DTDs—strict, transitional or frameset. The strict
DTD is used when the document implements content presentation with cascading style sheets. The
transitional DTD is used when the document contains presentational elements embedded in the
XHTML elements. The frameset DTD is used when a browser window is partitioned with HTML
frames.

• XHTML requires the title element to appear within the head element. The frameset DTD also
requires the body element to appear within the noframes element.

• The W3C provides a validator that can be used to validate XHTML documents.

• XHTML 1.1, the next version of the XHTML recommendation under development, provides
greater extensibility and modularity than XHTML 1.0. Deprecated tags and attributes, most of
which are presentation-oriented relics from HTML, will no longer be supported. XHTML will also
have a modular framework.

Chapter 19 XHTML and XForms 537

• The World Wide Web Consortium is currently developing XML-based XForms as a more flexible
replacement to HTML forms. The goal of XForms is to separate data from presentation. This sep-
aration is accomplished by dividing the form into three portions: data, logic and presentation.

• Extended Forms Architecture (XFA) is a specification developed by Jetform technologies for ad-
vanced manipulation of XML forms by both users and computer systems. It has capabilities for
creating, processing, printing, modifying and archiving all types of forms. XFA provides methods
for adding interactivity to computer forms, including database query and mathematical functions.
In addition, it is optimized for enterprise application integration, enabling form interoperability
with different systems.

TERMINOLOGY

SELF-REVIEW EXERCISES
19.1 State which of the following statements are true and which are false. If false, explain why.

a) Although the recommendation calls for all XHTML tags to be written in lowercase, an
XHTML document with uppercase tags is valid.

b) Browsers can treat poorly written HTML documents differently.
c) XHTML tags may optionally have a corresponding closing tag.
d) XHTML empty tags must be terminated.
e) XHTML permits overlapping tags.
f) More than one XForm user interface can be associated with a data representation.
g) Though XHTML attributes must appear in quotes, they can be minimized like HTML at-

tributes.
h) HTML forms lack the flexibility that would enable their use by people working on many

different platforms.

19.2 Fill in the blanks for each of the following:
a) XHTML takes advantage of the strict syntax of to ensure well-formedness.
b) Documents intended for portable devices must be to guarantee uniform pro-

cessing.
c) In XHTML, attribute values must appear in and cannot be .
d) XHTML documents conform to one of three types of DTDs: ,

and .
e) The goal of XForms is to separate data from .
f) The XForm architecture is divided into three portions: , and

.

data portion of XForm architecture presentation portion of XForm architecture
document type presentational elements
Extensible Hypertext Markup Language
(XHTML)

strict
strict DTD

frameset DTD target attribute
HTML 4 transitional
in-line style transitional DTD
logic portion of XForm architecture validating an XHTML document
main frame Web-enabled appliances
minimized wireless Web
nav frame XForms
picture frame XHTML
presentation XML-based XForms

538 XHTML and XForms Chapter 19

g) All XHTML tags must have corresponding tags.
h) The portion of an XForm defines how the form looks to users.

ANSWERS TO SELF-REVIEW EXERCISES
19.1 a) False. All XHTML tags must be in lowercase. b) True. c) False. All XHTML tags are
required to have corresponding closing tags. d) True. e) False. XHTML prohibits overlapping tags. f)
True. g) False. XHTML attribute values must appear in quotes and cannot be minimized. h) True.

19.2 a) XML. b) well formed. c) quotes, minimized. d) strict, transitional, frameset. e) presenta-
tion. f) data, logic, presentation. g) closing. h) presentation.

EXERCISES
19.3 Write an XHTML document showing the result of a color survey. The document should con-
tain a table showing various colors and corresponding percentage of votes for each color (each row
should be displayed in its color). Use attributes to format width, border and cell spacing for the table.
The document should also contain a form with radio buttons that allows the users to select their fa-
vorite color. One of the colors should be selected as a default. Validate the document against an ap-
propriate XHTML DTD.

19.4 Make changes to Fig. 19.5 so that it conforms to XHTML strict DTD. Validate it using the
XHTML validator discussed in Fig. 19.3.

20
Custom Markup

Languages: Part I

Objectives
• To understand and be able to use the Mathematical

Markup Language (MathML).
• To become familiar with the Chemical Markup

Language (CML).
• To understand and be able to use the Wireless Markup

Language (WML).
• To understand and be able to use the Synchronized

Multimedia Integration Language (SMIL).
• To understand and be able to use the Scalable Vector

Graphics (SVG) markup language.
• To become familiar with the Bean Markup Language

(BML).
• To become familiar with the Extensible 3D (X3D)

language.
What we experience of nature is in models, and all of
nature’s models are so beautiful.
Richard Buckminster Fuller

Treat nature in terms of the cylinder, the sphere, the cone, all
in perspective.
Paul Cezanne

540 Custom Markup Languages: Part I Chapter 20

20.1 Introduction
XML is a metalanguage—a language for creating other languages. In this and the next
chapter, we discuss notable markup languages that have been created using XML.

20.2 Mathematical Markup Language (MathML)
Until recently, mathematical expressions have typically been displayed using images or
specialized software packages such as TeX (www.math.upenn.edu/TeX.html) and
LaTeX (www.iac.es/galeria/vass/latex/node2.html). MathML was de-
veloped by the W3C for describing mathematical notations and expressions using XML
syntax. It enables document authors to describe mathematical expressions that can be pro-
cessed by different applications for different purposes. This flexibility promotes wide reuse
of mathematical content over many domains. MathML Version 1.01 is the current W3C
Recommendation.

The W3C provides a browser/editing environment called Amaya™ to edit, parse and
render MathML. The Amaya browser can be downloaded free from

www.w3.org/Amaya/User/BinDist.html

This Web page contains several download links for Windows 95/98/NT, Linux® and So-
laris™. Amaya documentation and installation notes are also available at the W3C Web
site.

We now take a calculus expression and mark it up with MathML. MathML defines two
sets of elements: one set describes mathematical content and the other describes mathemat-
ical presentation. Figure 20.1 uses MathML’s presentation set to mark up a mathematical
expression that contains an integral symbol and a square-root symbol. We embed the
MathML content directly into an HTML file by using the HTML math element (line 8).

Outline
20.1 Introduction
20.2 Mathematical Markup Language (MathML)
20.3 OpenMath
20.4 Chemical Markup Language (CML)
20.5 Wireless Markup Language (WML)
20.6 Geography Markup Language (GML)
20.7 Synchronized Multimedia Integration Language (SMIL)
20.8 Scalable Vector Graphics (SVG)
20.9 Bean Markup Language (BML)
20.10 Extensible 3D Language (X3D)
20.11 Additional Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

Chapter 20 Custom Markup Languages: Part I 541

1 <html>
2
3 <!-- Fig. 20.1 mathml.html -->
4 <!-- Calculus example using MathML -->
5
6 <body>
7
8 <math>
9 <mrow>

10
11 <msubsup>
12 <mo>∫</mo>
13 <mn>0</mn>
14 <mrow>
15 <mn>1</mn>
16 <mo>-</mo>
17 <mi>x</mi>
18 </mrow>
19 </msubsup>
20
21 <msqrt>
22 <mrow>
23 <mn>4</mn>
24 <mo>⁢</mo>
25
26 <msup>
27 <mi>x</mi>
28 <mn>2</mn>
29 </msup>
30
31 <mo>+</mo>
32 <mi>y</mi>
33 </mrow>
34 </msqrt>
35
36 <mo>δ</mo>
37 <mi>x</mi>
38 </mrow>
39 </math>
40 </body>
41 </html>

Fig. 20.1 A calculus expression marked up with MathML. (Courtesy of World Wide
Web Consortium)

Integral
symbol Delta symbol

542 Custom Markup Languages: Part I Chapter 20

We use element mrow (line 9) to group the elements of the mathematical expression.
Element mrow is a container element that groups related elements. We use element
msubsup to mark up the integral symbol set (lines 10–18). Element msubsup requires
three child elements: the expression to which the subscript and superscript are applied, the
subscript and the superscript. In our example, the integral symbol is the expression portion
of element msubsup.

The integral symbol is represented by the entity ∫ (line 12). We use tag
<mo>—the MathML element for marking up mathematical operators—to mark up the inte-
gral operator. Element mn (line 13) marks up the number (i.e., 0) that represents the sub-
script. Element mrow groups the superscript expression (i.e., 1-x) in msubsup. To mark
up variables in MathML, element mi (line 17) is used. Collectively, the three child ele-
ments within mrow (lines 14–18) define the expression 1-x.

Element msqrt (lines 21–34) represents a square-root expression. We use element
mrow (line 21) to group the expression contained in the square root. Line 24 uses entity
⁢ to specify a multiplication operation without a symbolic represen-
tation (i.e., a multiplication symbol is not displayed between the 4 and the x2). Element
msup (lines 26–29) marks up an expression containing a base and an exponent. This ele-
ment contains two child elements: the base and the exponent. Although not used in this
example, MathML does provide element msub for marking up an expression that contains
a subscript.

Line 36 introduces the entity δ for representing a delta symbol. Because it is
an operator, it is marked up using element mo. For information on other operations and
symbols provided by MathML visit the resources listed in Fig. 20.2.

URL / Description

www.w3.org/Math
This is the W3C’s official Web site for MathML; the site includes a brief introduction and history
and links to software and additional documentation.

www.w3.org/TR/MathML2
This document is the current draft standard of MathML 2.0.

www.w3.org/Math/DTD
The MathML DTD can be obtained from this site.

www.oasis-open.org/cover/xml.html#xml-mml
This is a brief overview of MathML.

www.irt.org/articles/js081
This site contains a detailed introduction to MathML. It also contains a comprehensive list of Math-
ML elements.

www.webeq.com/mathml
Use this Web page as a starting point for MathML resources.

www.w3.org/Amaya
This is the main Web site for the Amaya editor/browser.

Fig. 20.2 MathML reference Web sites.

Chapter 20 Custom Markup Languages: Part I 543

20.3 OpenMath
OpenMath is an emerging standard—developed at www.openmath.org—for describ-
ing mathematical content. Although MathML does provide a set of semantic elements, it is
mostly limited to describing the presentation of mathematical expressions. OpenMath con-
tent can be embedded in MathML, synthesizing the description of mathematical content
and presentation. See Fig. 20.3 for OpenMath Web resources.

OpenMath represents mathematical expressions with objects that can be exchanged
between different software systems, manipulated in databases, displayed by different appli-
cations including Internet browsers, used in different contexts and even checked for math-
ematical correctness. The standard itself includes specifications of binary and XML
encoding of OpenMath, extensible libraries of OpenMath objects and libraries defining
semantic content.

An OpenMath object has three layers of representation: as an application-specific
entity, as an abstract OpenMath object and as a byte stream for communication purposes.
The content dictionaries define the meaning of an object so that an application can convert
it to an internal representation.

Software is currently being developed to utilize and support OpenMath, as it has great
potential in many industries involving manipulation of complex mathematical expressions.

20.4 Chemical Markup Language (CML)
The Chemical Markup Language (CML) is an XML-based language for representing mo-
lecular and chemical information. Many of the methods previously used to store this type
of information (e.g., special file types) inhibited document reuse. CML takes advantage of
XML’s portability to enable document authors to use and reuse molecular information
without corrupting important data in the process. Although many of our readers will not
know the chemistry required to fully understand the example in this section, we feel that
CML so beautifully illustrates the purpose of XML that we chose to include the example
for the readers who wish to see XML “at its best.” Document authors can edit and view
CML using the Jumbo browser, which is available at www.xml-cml.org. [Note: At the
time of this writing, CML documents could not be uploaded to Jumbo for rendering. For
illustration purposes, we have created the image shown in Fig. 20.4.]

URL / Description

www.openmath.org
This is the official Web site for OpenMath. It contains white papers, specifications and links to more
resources.

www.oasis-open.org/cover/openMath.html
This is a listing of articles about OpenMath and other resources.

www.nag.co.uk/projects/OpenMath
This is the Web site of the ESPRIT project, which currently maintains the OpenMath standard and
all related documents.

Fig. 20.3 OpenMath reference Web sites (part 1 of 2).

544 Custom Markup Languages: Part I Chapter 20

We now provide an example of marking up the ammonia molecule in Fig. 20.4.

www.naomi.math.ca
This is the Web site of the North American OpenMath Initiative, a coalition of academia and indus-
try working to develop OpenMath and its applications.

www.uni-koeln.de/themen/Computeralgebra/OpenMath/om-obj-jsc/om-
obj-jsc.html
This site contains a technological introduction to OpenMath.

www.acm.org/crossroads/xrds6-2/openmath.html
This site contains an introduction to mathematical markup using OpenMath and MathML.

www-sop.inria.fr/safir/OpenMath/papers/Alignment-JHD/align/
align.html
This document contains the results of a meeting whose goal was to see how OpenMath and MathML
could be more closely aligned.

1 <?jumbo:namespace ns = "http://www.xml-cml.org"
2 prefix = "C" java = "jumbo.cmlxml.*Node" ?>
3
4 <!-- Fig. 20.4 : ammonia.xml -->
5 <!-- Structure of ammonia -->
6
7 <C:molecule id = "Ammonia">
8
9 <C:atomArray builtin = "elsym">

10 N H H H
11 </C:atomArray>
12
13 <C:atomArray builtin = "x2" type = "float">
14 1.5 0.0 1.5 3.0
15 </C:atomArray>
16
17 <C:atomArray builtin = "y2" type = "float">
18 1.5 1.5 0.0 1.5
19 </C:atomArray>
20
21 <C:bondArray builtin = "atid1">
22 1 1 1
23 </C:bondArray>
24
25 <C:bondArray builtin = "atid2">
26 2 3 4
27 </C:bondArray>
28

Fig. 20.4 CML markup for ammonia molecule (part 1 of 2).

URL / Description

Fig. 20.3 OpenMath reference Web sites (part 2 of 2).

Chapter 20 Custom Markup Languages: Part I 545

Lines 1 and 2

<?jumbo:namespace ns = "http://www.xml-cml.org"
 prefix = "C" java = "jumbo.cmlxml.*Node" ?>

are a processing instruction used by the Jumbo browser that includes a URI, namespace
prefix and package information.

Line 7

<C:molecule id = "Ammonia">

defines an ammonia molecule using element molecule. Attribute id is used to identify
this molecule as Ammonia.

Lines 9–11

<C:atomArray builtin = "elsym">
N H H H

</C:atomArray>

show element atomArray with the attribute builtin of value elsym that defines this
element as containing the atoms of the molecule. Ammonia is composed of one nitrogen
atom and three hydrogen atoms, each of which is listed in the element.

Lines 13–15

<C:atomArray builtin = "x2" type = "float">
 1.5 0.0 1.5 3.0
</C:atomArray>

show element atomArray with attribute builtin assigned the value x2 and type
float. This defines the element as containing a list of floating-point numbers, each of
which is the x-coordinate of an atom. The first value (1.5) is the x-coordinate of the first

29 <C:bondArray builtin = "order" type = "integer">
30 1 1 1
31 </C:bondArray>
32
33 </C:molecule>

Fig. 20.4 CML markup for ammonia molecule (part 2 of 2).

546 Custom Markup Languages: Part I Chapter 20

atom (nitrogen), the second value (0.0) is the x-coordinate of the second atom (the first
hydrogen atom) and so forth.

Lines 17–19

<C:atomArray builtin = "y2" type = "float">
 1.5 1.5 0.0 1.5

</C:atomArray>

show element atomArray with attribute builtin assigned the value y2 and type
float. This defines the element as containing a list of values, each being the y-coordinate
of an atom. The first value (1.5) is the y-coordinate of the first atom (nitrogen), the second
value (1.5) is the y-coordinate of the second atom (the first hydrogen atom) and so forth.

Lines 21–23

<C:bondArray builtin = "atid1">
1 1 1

</C:bondArray>

show element bondArray with attribute builtin assigned the value atid1. Element
bondArray defines the bonds between atoms. Because this element has a builtin val-
ue of atid1, the values of this element compose the first atom in a pair of atoms. We are
defining three bonds, so we specify three values. Each value is a 1, which denotes the first
atom in the atomArray, the nitrogen atom.

Lines 25–27

<C:bondArray builtin = "atid2">
2 3 4

</C:bondArray>

show element bondArray with attribute builtin assigned the value atid2. The val-
ues of this element compose the second atom in a pair of atoms and denote the three hydro-
gen atoms.

Lines 29–31

<C:bondArray builtin = "order" type = "integer">
 1 1 1
</C:bondArray>

show element bondArray with the attribute builtin assigned the value order and
type integer. The values of this element are integers that represent the number of
bonds between the pairs of atoms. Thus, the bond between the nitrogen atom and the first
hydrogen is a single bond, the bond between the nitrogen atom and the second hydrogen
atom is also a single bond and likewise for the third pair.

Figure 20.5 lists several URLs related to CML. The official CML Web site
(www.xml-cml.org) provides many resources related to CML. One such resource is
ChiMeraL (Fig. 20.6), which provides several tools for transforming CML documents. The
Molecule Data combo box provides a selection of CML documents. The Display Mol-
ecules using combo box provides several style sheets and Java applets. Many of the
applets provide animation and/or allow the user to rotate the molecule using the mouse. The
Display Spectra using combo box provides series of choices for displaying the mole-
cule’s spectra. [Note: Internet Explorer 5 is required for ChiMeraL.]

Chapter 20 Custom Markup Languages: Part I 547

Fig. 20.6 Rendering a CML document using JMol applet - 3D viewer. (Courtesy of
Prof. Peter Murray-Rust]

URL / Description

www.xml-cml.org
This is the official Web site for CML. Features include a brief introduction and history and links to
software and additional documentation.

www.xml-cml.org/dtdschema/index.html
The CML DTD and schema can be obtained from this site.

www.xml-cml.org/jumbo.html
This is the Web page for obtaining Jumbo, a CML authoring environment.

www.xml-cml.org/cmlfaq.html
The xml-cml organization maintains an FAQ document here.

www.xml-cml.org/cmlref.html
This site contains a detailed CML reference.

www.xml-cml.org/chimeral/index.html
This site provides many CML demonstrations that use style sheets and Java applets. A link to the
Jumbo browser can also be found here.

Fig. 20.5 CML reference Web sites.

548 Custom Markup Languages: Part I Chapter 20

ChiMeraL also provides a link in the left frame to the next generation Jumbo browser
called Jumbo 3. Figure 20.7 shows the Jumbo 3 browser rendering a caffeine molecule.
Buttons are provided to manipulate (e.g., rotate, scale, etc.) the rendering of the molecule.
[Note: Jumbo 3 provides a text field for loading CML documents in Jumbo 3. However, at
the time of this writing, this feature was not yet implemented.]

20.5 Wireless Markup Language (WML)
The Wireless Markup Language (WML) is an XML-based language that allows Web pages
to be displayed on wireless devices such as cellular phones and personal digital assistants
(PDA). WML also has a companion scripting language, WMLScript, which is based on the
ECMAScript standard. WML works with the Wireless Application Protocol (WAP) to de-
liver this content. WML is similar to HTML but does not require input devices such as a
keyboard or mouse for navigation. A WML document is called a deck and contains static
parts called cards. Each card consists of one page of information, providing the WML
browser with a small, self-contained document for browsing. This packaging of multiple
pages of information is necessary because the devices to which WML is delivered have lim-
ited connections to the Internet. WML includes telephone elements so that secure telephone
functionality can be implemented with WML/WMLScript. For instance, a voice mail ser-
vice can have a WML user interface that gives the users choices about their mailbox. WML
also has image support for devices that can display bitmapped graphics.

Consider a PDA that requests a Web page on the Internet. A WAP gateway receives
the request, translates it to HTTP and sends it to the appropriate Internet server. The server
responds by sending the requested WML document, which may be a static WML page or
generated dynamically by JavaServer™ Pages, ASP, Perl or some other server-side tech-
nology. The gateway then parses the document, sending the proper text to the PDA.

Fig. 20.7 A CML document in Jumbo 3. (Courtesy of Prof. Peter Murray-Rust]

Chapter 20 Custom Markup Languages: Part I 549

Any WML document will be presented properly on a WAP compliant device, as
microbrowsers will automatically tailor the WML presentation to the specific device. For
additional information on WAP and WML, visit www.wapforum.org or
www.xml.com/pub/Guide/WML.

Figure 20.8 is an example of a WML document. To be able to view this example, a
WML browser and an HTTP server is needed, such as the Nokia WAP Developer Toolkit,
which is available free for download from www.nokia.com/corporate/wap/
sdk.html. [Note: You must register at this Web site before being allowed to download
the WAP Developer Toolkit.]

Line 8 contains the wml root element, which contains card elements. Lines 9–21

<card id = "paybill" title = "Welcome">

comprise the first card element, which has unique identifier paybill and title Welcome.
Lines 10–12

<p>
Welcome to Pay your bill from your cell!

</p>

contain a section of text that is denoted by the p element.
Line 15

<input type = "text" name = "amount" format = "*N"/>

shows element input with type value text, marking up a text input box with the iden-
tifier amount. The format attribute has value *N, which sets the input box to take only nu-
merical values.

1 <?xml version = "1.0"?>
2 <!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
3 "http://www.wapforum.org/DTD/wml_1.1.xml">
4
5 <!-- Fig. 20.8 : payBill.wml -->
6 <!-- Simple WML example -->
7
8 <wml>
9 <card id = "paybill" title = "Welcome">

10 <p>
11 Welcome to Pay your bill from your cell!
12 </p>
13
14 <p>
15 Enter the amount:
16 <input type = "text" name = "amount" format = "*N"/>
17 </p>
18
19 <do type = "accept" label = "Submit amount">
20 <go href = "#pay"/>
21 </do>
22 </card>

Fig. 20.8 WML document for paying a bill (part 1 of 2).

550 Custom Markup Languages: Part I Chapter 20

Lines 19–21

<do type = "accept" label = "Submit amount">
 <go href = "#pay"/>
</do>

set an action for the page using element do. The accept value for attribute type defines
that when the user accepts the data input to the text field—most commonly by pressing a
button on a cellular phone—the contents of the do element are performed. Element go is
used to perform hyperlinking to the object in the href attribute. In this case, we navigate
to the pay card. Note that the pay card is in the same WML deck as the paybill card.
The pay card is therefore loaded from memory, reducing the number of times the wireless
device needs to download information from the Internet.

23
24 <card id = "pay" title = "PAID">
25 <p>
26 You have paid $$$(amount). Thank you!
27 </p>
28 </card>
29
30 </wml>

Fig. 20.8 WML document for paying a bill (part 2 of 2).

(©2000. Nokia Mobile Phones)

Chapter 20 Custom Markup Languages: Part I 551

Line 24

<card id = "pay" title = "PAID">

is the pay card. We display the amount entered into the text box by dereferencing the text
box identifier. This is done with the dollar sign ($). To display a dollar sign, two dollar
signs are needed (i.e., $$). So, on line 26

You have paid $$$(amount). Thank you!

we display a dollar sign, and then output the value entered into the text box with the iden-
tifier amount. Figure 20.9 lists some WML Web resources.

20.6 Geography Markup Language (GML)
The Geography Markup Language (GML) was developed by the OpenGIS Consortium
(OGC). GML separates content from presentation. GML describes geographic information
for use and reuse by different applications for different purposes. In GML, geographic in-
formation is described in terms of features. A feature is composed of properties and geom-
etries. GML properties contain name, type and value elements. Features are geometric
entities (e.g., lines, polygons, etc.). Geometries contain the bulk of geographic data, and
properties augment that data with descriptive information. Figure 20.10 provides three ref-
erence Web sites related to GML.

As a recent markup language, GML is in the early stages of development. Figures
20.11 and 20.12 show an example GML map displayed when the Experimental GML
Viewer link is selected at gis.about.com/science/gis/msub30.htm. This map con-
tains several irregular-shape buildings. The user can zoom, pan and select buildings on the
map. Figure 20.12 shows two buildings being selected. The GML markup (Fig. 20.13) for
the map is shown at the bottom of the Web page.

URL / Description

www.wapforum.org
This is the official WAP Web site.

www.wapforum.org/DTD/wml_1.1.xml
This is the location of the WML DTD.

allnetdevices.com/faq
This is the WAP/WML FAQ document.

www.oasis-open.org/cover/wap-wml.html
This site contains an extensive list of WML articles and a list of some WML and WAP resources.

webreference.com/js/column61
This site contains an in-depth WML tutorial.

Fig. 20.9 WML reference Web sites (part 1 of 2).

552 Custom Markup Languages: Part I Chapter 20

Fig. 20.11 GML example map. (Courtesy of About.com]

www.wirelessdevnet.com/training/WAP/WML.html
This site contains a WML tutorial.

www.w3scripts.com/wap
A thorough and easy WML tutorial (Requires Internet Explorer 5 or higher).

URL / Description

www.opengis.org
Home page of the OpenGIS Web Consortium, the originators of GML.

www.opengis.org/techno/rfc11info.htm
A draft of the GML recommendation.

gis.about.com/science/gis/msub30.htm
List of GML-related links.

Fig. 20.10 GML reference Web sites.

URL / Description

Fig. 20.9 WML reference Web sites (part 2 of 2).

Chapter 20 Custom Markup Languages: Part I 553

Fig. 20.12 Selecting two buildings in the GML example map. (Courtesy of
About.com]

20.7 Synchronized Multimedia Integration Language (SMIL)
The Synchronized Multimedia Integration Language (SMIL, pronounced “smile”) enables
Web document authors to coordinate the presentation of a wide range of multimedia ele-
ments. A SMIL document specifies the source (i.e., the URL) of multimedia elements and
how these elements are presented. In HTML, multimedia elements are autonomous entities
that cannot interact without complicated scripts. In SMIL, multimedia elements can work
together; this enables document authors to specify when and how these multimedia ele-
ments appear in the document. For example, SMIL may be used to produce TV-style con-
tent, in which static and dynamic text, audio and video occur simultaneously and
sequentially. One way to render SMIL documents is with RealPlayer, a multimedia player
from Real Networks. This player can be downloaded free from www.real.com.

The example in Fig. 20.14 is a SMIL document that displays .jpg images for a
variety of Java How to Program book covers. The images are displayed sequentially, and
each image is accompanied by a sound.

Element head (lines 5–13) contains all the information for setting up the document.
Lines 6–12 show element layout, which sets the layout attributes for the document.

Lines 7 and 8

<root-layout height = "300" width = "300"
 background-color = "#bbbbee" title = "Example"/>

set the document size, color and title using element root-layout.

554 Custom Markup Languages: Part I Chapter 20

Fig. 20.13 GML markup for the example map. (Courtesy of About.com]

1 <smil>
2 <!-- Fig. 20.14 : example1.smil -->
3 <!-- Example SMIL Document -->
4
5 <head>
6 <layout>
7 <root-layout height = "300" width = "280"
8 background-color = "#bbbbee" title = "Example"/>
9

10 <region id = "image1" width = "177" height = "230"
11 top = "35" left = "50" background-color = "#ffffff"/>
12 </layout>
13 </head>
14 <body>
15 <seq>
16
17 <par>
18 <img src = "book1.jpg" region = "image1"
19 alt = "book1" dur = "1s" fit = "fill"/>

Fig. 20.14 SMIL document with images and sound (part 1 of 2).

Chapter 20 Custom Markup Languages: Part I 555

Lines 10 and 11

<region id = "image1" width = "177" height = "230"
 top = "35" left = "50" background-color = "#ffffff"/>

set a region for displaying objects (e.g., images) using element region. Attribute id is a
unique identifier for the region. Attributes width and height specify the size of the re-
gion, and attributes top and left provide the position. Attribute background-color
sets the color of the region’s background.

Line 14 begins the element body, which encloses the contents of the document. Line
15 starts element seq, which sets its child elements to execute sequentially (i.e., in chro-
nological order), and line 17 starts a par element, which sets its child elements to execute
in parallel (i.e., at the same time).

20 <audio src = "bounce.au" dur = ".5s"/>
21 </par>
22
23 <par>
24 <img src = "book2.jpg" region = "image1"
25 alt = "book2" dur = "1s" fit = "fill"/>
26 <audio src = "bounce.au" dur = ".5s"/>
27 </par>
28
29 <par>
30 <img src = "book3.jpg" region = "image1"
31 alt = "book3" dur = "1s" fit = "fill"/>
32 <audio src = "bounce.au" dur = ".5s"/>
33 </par>
34
35 <par>
36 <img src = "book4.jpg" region = "image1"
37 alt = "book4" dur = "1s" fit = "fill"/>
38 <audio src = "bounce.au" dur = ".5s"/>
39 </par>
40
41 <par>
42 <img src = "book5.jpg" region = "image1"
43 alt = "book5" dur = "1s" fit = "fill"/>
44 <audio src = "bounce.au" dur = ".5s"/>
45 </par>
46
47 <par>
48 <img src = "book6.jpg" region = "image1"
49 alt = "book6" dur = "1s" fit = "fill"/>
50 <audio src = "bounce.au" dur = ".5s"/>
51 </par>
52 </seq>
53 </body>
54 </smil>

Fig. 20.14 SMIL document with images and sound (part 2 of 2).

556 Custom Markup Languages: Part I Chapter 20

Lines 18 and 19

<img src = "book1.jpg" region = "image1"
 alt = "book1" dur = "1s" fit = "fill"/>

show element img, which references an image. Attribute src contains the location of the
image, and attribute alt provides a description of the image. Attribute region specifies
the region in which the image is to be displayed; a fit value of fill sets the image to fill
the entire region. Attribute dur describes how long the image will appear on the screen
(e.g., one second). Line 20

<audio src = "bounce.au" dur = ".5s"/>

shows element audio, which references audio file bounce.au. The remaining elements
in the document (lines 23–51) display a different image and play the audio file.

We can also embed a SMIL document in a Web page. Figure 20.15 uses the Soja applet
to view our example SMIL document. This applet can be downloaded from
www.helio.org/products/smil.

1 <html>
2
3 <!-- Fig. 20.15 : example1.html -->
4 <!-- HTML document rendering SMIL -->
5
6 <body>
7 <applet code = "org.helio.soja.SojaApplet.class"
8 archive = "soja.jar" width = "300" height = "300">
9 <param name = "source" value = "example1.smil">

10 <param name = "bgcolor" value = "#FFFFFF">
11 </applet>
12 </body>
13 </html>

Fig. 20.15 Using the Soja applet to display a SMIL document.

Chapter 20 Custom Markup Languages: Part I 557

Lines 7 and 8

<applet code = "org.helio.soja.SojaApplet.class"
 archive = "soja.jar" width = "300" height = "300">

reference the Soja applet. Line 9

<param name = "source" value = "example1.smil">

sets the source SMIL document (i.e., the document in Fig. 20.14), and line 10

<param name = "bgcolor" value = "#FFFFFF">

sets the background color for the applet. Figure 20.16 provides a list of SMIL resources.

20.8 Scalable Vector Graphics (SVG)
The Scalable Vector Graphics (SVG) markup language is a way to describe vector graphics
data for use over the Web. SVG provides considerable advantages over current methods
(e.g., the .jpg, .gif and .png formats) for distributing graphics on the Web. The cur-
rent formats use bitmaps, which describe each pixel in the image and may take quite a bit
of time to download. Bitmap resolution is fixed, so bitmap images cannot be scaled (i.e.,
zoomed, panned, etc.) without a loss in image quality, and printed bitmap images often con-
tain low-resolution, jagged lines. Conversely, vector graphics describe graphical informa-
tion in terms of lines, curves, etc. Not only do images rendered in vector graphics require
less bandwidth, but these images also can be easily scaled and printed without producing
jagged lines. In addition, because SVG is an application of XML, SVG documents can be
scripted, searched and dynamically created.

Both Internet Explorer and Netscape Communicator intend to provide native support
for SVG in the near future. Currently, Adobe provides a plug-in for Internet Explorer (ver-
sion 4.0 or higher for Windows and version 5.0 for Mac) and for Netscape Communicator
(version 4.0 or higher for both Windows and Mac) that enables SVG documents to be
directly rendered in those browsers. This plug-in is available free of charge from Adobe at
www.adobe.com/svg.

URL / Description

www.w3.org/AudioVideo
The W3C Synchronized Multimedia Integration Language (SMIL) home page.

www.w3.org/TR/REC-smil
The most up-to-date W3C SMIL Specification.

xml.about.com/compute/xml/msubsmil.htm
List of SMIL-related links.

smw.internet.com/smil/smilhome.html
A site dedicated to SMIL with a group of links, resources and definitions.

Fig. 20.16 SMIL Web resources.

558 Custom Markup Languages: Part I Chapter 20

Figure 20.17 is an SVG document that displays some simple shapes in a browser. We
use the Adobe plug-in to view the document in Internet Explorer.

Line 6

<svg viewBox = "0 0 300 300" width = "300" height = "300">

1 <?xml version="1.0"?>
2
3 <!-- Fig. 20.17 : shapes.svg -->
4 <!-- Simple example of SVG -->
5
6 <svg viewBox = "0 0 300 300" width = "300" height = "300">
7
8 <!-- Generate a background -->
9 <g>

10 <path style = "fill: #eebb99" d = "M0,0 h300 v300 h-300 z"/>
11 </g>
12
13 <!-- Some shapes and colors -->
14 <g>
15
16 <circle style = "fill: green; fill-opacity: 0.5"
17 cx = "150" cy = "150" r = "50"/>
18
19 <rect style = "fill: blue; stroke: white"
20 x = "50" y = "50" width = "100" height = "100"/>
21
22 <text style = "fill: red; font-size: 24pt"
23 x = "25" y = "250">Welcome to SVG!</text>
24
25 </g>
26 </svg>

Fig. 20.17 SVG document example.

Chapter 20 Custom Markup Languages: Part I 559

is the root element for an SVG document. Attribute viewBox sets the viewing area for the
document. The first two numbers in the value are the x- and y-coordinates of the upper-left
corner of the viewing area, and the last two numbers are the width and height of the viewing
area. Attribute width specifies the width of the image, and attribute height specifies the
height of the image.

Element g groups elements of an SVG document. Line 10

<path style = "fill: #eebb99" d = "M0,0 h300 v300 h-300 z"/>

uses element path to create a box. Attribute style uses CSS property fill to fill the
inside of the box with the color #eebb99. Attribute d defines the points of the box. Prop-
erty M specifies the starting coordinates (0, 0) of the path. Property h specifies that the next
point is horizontal to the current point and spaced 300 pixels to the right of the current point
(300, 0). Property v specifies that the next point is vertical to the current point and spaced
300 pixels below it (300, 300). Property h now places the point to the left by 300 pixels (0,
300). Property z sets the path to connect the first and last points, thus closing the box.

Lines 14–25 group three elements: a circle, a rectangle and a text element.
Lines 16 and 17

<circle style = "fill: blue; fill-opacity: 0.5"
 cx = "150" cy = "150" r = "50"/>

create a circle with element circle. The circle has an x-axis center coordinate (attribute
cx) of 150 pixels, a y-axis center coordinate (attribute cy) of 150 pixels and a radius (at-
tribute r) of 50 pixels. The circle is filled blue, with 50% opacity.

Lines 19 and 20

<rect style = "fill: blue; stroke: white"
 x = "50" y = "50" width = "100" height = "100"/>

use element rectangle to create a rectangle. The rectangle’s upper-left corner is set us-
ing attributes x and y. Attribute width sets the width of the rectangle, and attribute
height sets the height of the rectangle.

Lines 22 and 23

<text style = "fill: red; font-size: 24pt"
 x = "25" y = "250">Welcome to SVG!</text>

create some text with element text. The text is placed using attributes x and y. The format
of the text is defined using attribute style; in this case, the text is red and has a font size
of 24 points.

Figure 20.18 contains a complex SVG image that simulates the Earth and Moon
rotating around the Sun. This example uses SVG’s animation feature to animate the circles.

1 <?xml version = "1.0"?>
2
3 <!-- Figure 20.18 : planet.svg -->
4 <!-- Planetary motion with SVG -->

Fig. 20.18 SVG document with animated elements (part 1 of 3).

560 Custom Markup Languages: Part I Chapter 20

5
6 <svg viewBox = "-500 -500 1000 1000">
7 <g id = "background">
8 <path style = "fill: black"
9 d = "M -2000,-2000 H 2000 V 2000 H -2000 Z"/>

10 </g>
11
12 <circle id = "sun" style = "fill: yellow"
13 cx = "0" cy = "0" r = "100"/>
14
15 <g>
16 <animateTransform attributeName = "transform"
17 type = "rotate" dur = "80s" from = "0" to = "360"
18 repeatCount = "indefinite"/>
19
20 <circle id = "earth" style = "fill: blue"
21 cx = "400" cy = "0" r = "40"/>
22
23 <g transform = "translate(400 0)">
24 <circle id = "moon" style = "fill: white"
25 cx = "70" cy = "0" r = "10">
26 <animateTransform attributeName = "transform"
27 type = "rotate" dur = "20s" from = "360"
28 to = "0" repeatCount = "indefinite"/>
29 </circle>
30 </g>
31 </g>
32 </svg>

Fig. 20.18 SVG document with animated elements (part 2 of 3).

Chapter 20 Custom Markup Languages: Part I 561

Lines 8 and 9

<path style = "fill: black"
 d = "M -2000,-2000 H 2000 V 2000 H -2000 Z"/>

create a box for the background that is much bigger than the viewable size. Attribute d has
properties H and V that specify absolute coordinates for the path. Thus, the coordinates of
the box are: (-2000, -2000), (2000, -2000), (2000, 2000) and (-2000, 2000).

Lines 12 and 13

<circle id = "sun" style = "fill: yellow"
 cx = "0" cy = "0" r = "100"/>

create a yellow circle with a radius of 100 pixels at coordinate (0, 0) to represent the Sun.
Line 15 defines element g, which groups together the circles representing the Earth

and Moon. Lines 16–18

<animateTransform attributeName = "transform"
 type = "rotate" dur = "80s" from = "0" to = "360"
 repeatCount = "indefinite"/>

use element animateTransform, which changes the attribute of the parent element
specified in attribute attributeName. Attribute type defines the property of the at-
tribute that changes. The initial and final values of the transformation are set by attributes
from and to. Attribute dur sets the time (i.e., 80 seconds) it takes to change from the ini-
tial to the final values, and attribute repeatCount sets the amount of times to perform
this transformation. In our example, we rotate the group element from 0 degrees to 360 de-
grees in 80 seconds, repeating the rotation indefinitely (i.e., continuously).

Fig. 20.18 SVG document with animated elements (part 3 of 3).

562 Custom Markup Languages: Part I Chapter 20

Lines 20 and 21

<circle id = "earth" style = "fill: blue"
 cx = "400" cy = "0" r = "40"/>

create a blue circle with a radius of 40 pixels at coordinates (400, 0). When the group ro-
tates, this circle’s center will stay at a distance of 400 pixels from the origin (0, 0).

Line 23 uses element g to group the circle element that represents the Moon. This
element has attribute transform, which translates (shifts) the group element 400
pixels to the right, thus centering the group on the blue circle. For other transformations,
see the SVG specification.

The white circle (the Moon) on lines 24 and 25 has a child animateTransform ele-
ment on lines 26–28

<animateTransform attributeName = "transform"
 type = "rotate" dur = "20s" from = "360"
 to = "0" repeatCount = "indefinite"/>

that rotates the Moon 360 degrees counterclockwise around the Earth every 20 seconds.
Figure 20.19 lists SVG-related Web resources.

20.9 Bean Markup Language (BML)
JavaBeans™ (often called beans) are software components that can be combined to create
Java applications and applets. The Bean Markup Language (BML) is an XML-based mark-
up language for describing JavaBeans. BML defines how various beans are interconnected.
The BML specification and tools can be downloaded free from www.al-
phaworks.ibm.com/aw.nsf/techmain/bml.

Software Engineering Observation 20.1
BML can be used to manipulate JavaBeans programmatically. For example, an XSLT trans-
formation might create Java code that contains JavaBeans. 20.1

URL / Description

www.w3.org/TR/SVG
The W3C Scalable Vector Graphics Specification.

www.w3.org/Graphics/SVG
The W3C SVG Home page.

www.irt.org/articles/js176
Good site with overview of SVG accompanied by links and references.

www.adobe.com/svg
Adobe Software’s page dedicated to SVG accompanied by tutorials and other resources.

webreview.com/pub/1999/08/13/feature/index4.html
Review of SVG on Webreview.com along with useful links.

Fig. 20.19 SVG Web resources.

Chapter 20 Custom Markup Languages: Part I 563

Figure 20.20 presents an example of a JavaBean that animates a Deitel & Associates,
Inc. logo. In Fig. 20.21, we create a BML document that describes this particular JavaBean.

Notice that we added a package statement (line 3) to the file for the LogoAni-
mator class. Normally, classes that represent a bean are first placed into a package. You
must compile your packaged classes using the -d option with the Java compiler as in

javac -d . LogoAnimator.java

1 // Fig. 20.20 : LogoAnimator.java
2 // Animation bean
3 package logobml;
4
5 import java.awt.*;
6 import java.awt.event.*;
7 import java.io.*;
8 import java.net.*;
9 import javax.swing.*;

10
11 public class LogoAnimator extends JPanel
12 implements ActionListener, Serializable {
13 protected ImageIcon images[];
14 protected int totalImages = 30,
15 currentImage = 0,
16 animationDelay = 50; // 50 millisecond delay
17 protected Timer animationTimer;
18
19 public LogoAnimator()
20 {
21 setSize(getPreferredSize());
22
23 images = new ImageIcon[totalImages];
24
25 URL url;
26
27 for (int i = 0; i < images.length; ++i) {
28 url = getClass().getResource(
29 "deitel" + i + ".gif");
30 images[i] = new ImageIcon(url);
31 }
32
33 startAnimation();
34 }
35
36 public void paintComponent(Graphics g)
37 {
38 super.paintComponent(g);
39
40 if (images[currentImage].getImageLoadStatus() ==
41 MediaTracker.COMPLETE) {
42 images[currentImage].paintIcon(this, g, 50, 25);
43 currentImage = (currentImage + 1) % totalImages;
44 }
45 }

Fig. 20.20 Animator bean (part 1 of 2).

564 Custom Markup Languages: Part I Chapter 20

46
47 public void actionPerformed(ActionEvent e)
48 {
49 repaint();
50 }
51
52 public void startAnimation()
53 {
54 if (animationTimer == null) {
55 currentImage = 0;
56 animationTimer = new Timer(animationDelay, this);
57 animationTimer.start();
58 }
59 else // continue from last image displayed
60 if (! animationTimer.isRunning())
61 animationTimer.restart();
62 }
63
64 public void stopAnimation()
65 {
66 animationTimer.stop();
67 }
68
69 public Dimension getMinimumSize()
70 {
71 return getPreferredSize();
72 }
73
74 public Dimension getPreferredSize()
75 {
76 return new Dimension(200, 140);
77 }
78
79 public static void main(String args[])
80 {
81 LogoAnimator anim = new LogoAnimator();
82
83 JFrame app = new JFrame("Animator test");
84 app.getContentPane().add(anim, BorderLayout.CENTER);
85
86 app.addWindowListener(
87 new WindowAdapter() {
88 public void windowClosing(WindowEvent e)
89 {
90 System.exit(0);
91 }
92 }
93);
94
95 app.setSize(anim.getPreferredSize().width + 10,
96 anim.getPreferredSize().height + 20);
97 app.show();
98 }
99 }

Fig. 20.20 Animator bean (part 2 of 2).

Chapter 20 Custom Markup Languages: Part I 565

The first “.” represents the directory in which the logobml package should be placed
(“.” represents the current directory, which we use here for simplicity).

Line 12 specifies that the class implements interface Serializable to support
persistence—saving a bean object in its current state for future use. Objects of our Logo-
Animator class can be serialized with ObjectOutputStreams and ObjectIn-
putStreams. Implementing interface Serializable allows programmers using a
builder tool to save their customized bean by serializing the bean to a file.

Class LogoAnimator maintains an array of ImageIcons that are loaded in the
constructor. As each ImageIcon object is instantiated in the for structure at line 30, the
ImageIcon constructor loads one image for the animation (there are 30 total images) with
the statement

images[i] = new ImageIcon(url);

The argument url contains a URL assembled from the pieces "deitel", i and
".gif". Each of the images in the animation is in one of the files “deitel0.gif”
through “deitel29.gif.” The value of the control variable in the for structure is used
to select one of the 30 images.

After loading the images, the constructor calls startAnimation (defined at line
52) to begin the animation. The animation is driven by an instance of class Timer (package
javax.swing). An object of class Timer generates ActionEvents at a fixed interval
in milliseconds (normally specified as an argument to the Timer’s constructor) and noti-
fies all of its registered ActionListeners that the event occurred. Lines 54–58

if (animationTimer == null) {
 currentImage = 0;
 animationTimer = new Timer(animationDelay, this);
 animationTimer.start();
}

determine if the Timer reference animationTimer is null. If so, currentImage
is set to 0 to indicate that the animation should begin with the image in the first element of
array images. Line 56 assigns a new Timer object to animationTimer. The Timer
constructor receives two arguments—the delay in milliseconds (animationDelay is 50
in this example) and the ActionListener that will respond to the Timer’s Action-
Events (this LogoAnimator implements ActionListener at line 12). Line 57
starts the Timer object. Once started, animationTimer generates an ActionEvent
every 50 milliseconds. Lines 59–61

else // continue from last image displayed
if (! animationTimer.isRunning())

 animationTimer.restart();

are for programs that may stop the animation and restart it. For example, to make an ani-
mation “browser friendly” in an applet, the animation should be stopped when the user
switches Web pages. If the user returns to the Web page with the animation, method
startAnimation can be called to restart the animation. The if condition at line 60 uses
Timer method isRunning to determine if the Timer is currently running (i.e., gener-
ating events). If it is not running, line 61 calls Timer method restart to indicate that
the Timer should start generating events again.

566 Custom Markup Languages: Part I Chapter 20

In response to every Timer event in this example, method actionPerformed
(line 47) calls method repaint. This results in a call to the LogoAnimator’s paint-
Component method (line 36). The first statement in any paintComponent method
should be a call to the superclass’s paintComponent method to ensure that Swing com-
ponents are displayed correctly. The if condition at lines 40 and 41

if (images[currentImage].getImageLoadStatus() ==
 MediaTracker.COMPLETE) {

uses ImageIcon method getImageLoadStatus to determine if the image to display
is completely loaded into memory. Only complete images should be displayed to make the
animation as smooth as possible. When the image is fully loaded, the method returns Me-
diaTracker.COMPLETE. An object of class MediaTracker (package java.awt)
is used by class ImageIcon to track the loading of an image.

When loading images into a program, the images can be registered with an object of
class MediaTracker to enable the program to determine when an image is loaded com-
pletely. Class MediaTracker also provides the ability to wait for an image or several
images to load before allowing a program to continue and to determine if an error occurred
while loading an image. We do not need to create a MediaTracker directly in this
example because class ImageIcon does this already. However, when using class Image,
you may want to create your own MediaTracker.

If the image is fully loaded, lines 42 and 43

images[currentImage].paintIcon(this, g, 50, 25);
currentImage = (currentImage + 1) % totalImages;

paint the ImageIcon at element currentImage in the array and prepare for the next
image to be displayed by incrementing currentImage by 1. Notice the modulus calcu-
lation to ensure that the value of currentImage is set to 0 when it is incremented past
29 (the last element subscript in the array).

Method stopAnimation (line 64), stops the animation with line 66

animationTimer.stop();

which uses Timer method stop to indicate that the Timer should stop generating
events. This, in turn, prevents actionPerformed from calling repaint to initiate the
painting of the next image in the array.

Methods getMinimumSize (line 69) and getPreferredSize (line 74) are
overridden to help a layout manager determine the appropriate size of a LogoAnimator
in a layout. In this example, the images are 200 pixels wide and 140 pixels tall, so method
getPreferredSize returns a Dimension object containing the values 200 and 140.
Method getMinimumSize simply calls getPreferredSize (a common program-
ming practice). Notice in main (line 79) that the size of the application window is set (lines
95 and 96) to the preferred width of the animation plus 10 pixels and the preferred height
of the animation plus 20 pixels. This is because a window’s width and height specify the
outer bounds of the window, not the window’s client area (the area in which GUI compo-
nents can be attached).

We are now ready to describe the JavaBean (Fig. 20.20) using BML in Fig. 20.21.

Chapter 20 Custom Markup Languages: Part I 567

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 20.21 : logo.bml -->
4 <!-- logo animator bean -->
5
6 <bean class = "javax.swing.JFrame" id = "mainFrame">
7 <property name = "title" value = "Logo Animator"/>
8
9 <call-method name = "setContentPane">

10
11 <bean class = "javax.swing.JPanel" id = "containerPanel">
12 <property name = "layout">
13 <bean class = "java.awt.BorderLayout"/>
14 </property>
15
16 <add>
17
18 <!-- registering LogoAnimator bean -->
19 <bean class = "logobml.LogoAnimator" id = "Deitel">
20 <call-method name = "startAnimation"/>
21 </bean>
22 <string value = "Center"/>
23 </add>
24
25 <add>
26
27 <!-- adding a panel -->
28 <bean class = "javax.swing.JPanel">
29 <property name = "background" value = "0xff9999"/>
30
31 <add>
32
33 <!-- adding a button to start animation -->
34 <bean class = "javax.swing.JButton">
35 <property name = "label"
36 value = "Start Animation"/>
37
38 <event-binding name = "action">
39 <script>
40 <call-method target = "Deitel"
41 name = "startAnimation"/>
42 </script>
43 </event-binding>
44
45 </bean>
46 </add>
47
48 <add>
49
50 <!-- adding a button to stop animation -->
51 <bean class = "javax.swing.JButton">
52 <property name = "label" value = "Stop Animation"/>
53

Fig. 20.21 BML markup for Logo Animator (part 1 of 2).

568 Custom Markup Languages: Part I Chapter 20

Line 6

<bean class = "javax.swing.JFrame" id = "mainFrame">

creates a bean of class javax.swing.JFrame for the application’s user interface. Each
bean is marked up using element bean. Attribute class specifies the bean’s type, and at-
tribute id specifies the bean’s name. In this particular case, the bean is a JFrame object
identified by the name mainFrame.

Line 7

<property name = "title" value = "Logo Animator"/>

sets the JFrame’s title using element property. Attribute name specifies which prop-
erty or characteristic is to be set, and attribute value specifies the value that property will
have. In this particular case, the title property is assigned Logo Animator—which
specifies the text displayed in the JFrame’s title bar.

54 <event-binding name = "action">
55 <script>
56 <call-method target = "Deitel"
57 name = "stopAnimation"/>
58 </script>
59 </event-binding>
60
61 </bean>
62 </add>
63
64 </bean>
65
66 <string value = "South"/>
67 </add>
68
69 </bean>
70
71 </call-method>
72
73 </bean>

Fig. 20.21 BML markup for Logo Animator (part 2 of 2).

Chapter 20 Custom Markup Languages: Part I 569

Line 9

<call-method name = "setContentPane">

marks up a call to JFrame method setContentPane. A method call is marked up using
element call-method. Attribute name is assigned the name of the method to invoke.

Lines 11–14

<bean class = "javax.swing.JPanel" id = "containerPanel">
<property name = "layout">
 <bean class = "java.awt.BorderLayout"/>
</property>

mark up a JPanel bean named containerPanel. This bean’s layout manager is set
to BorderLayout. Notice that each Java class, including BorderLayout, is represent-
ed as a bean element.

Lines 16–23 use element add to add a bean to the content pane. Lines 19–21

<bean class = "logobml.LogoAnimator" id = "Deitel">
 <call-method name = "startAnimation"/>
</bean>

create a logobml.LogoAnimator bean, the same as the animation bean we created in
Fig. 20.20. Element call-method calls the method specified in attribute name. There-
fore, upon instantiation of the LogoAnimator, method startAnimation is called.

Line 22

<string value = "Center"/>

is an additional argument to the JFrame bean. Element string provides a string value
of Center, placing the LogoAnimator bean in the center region of the JFrame bean.

Lines 28–69 add a JPanel bean. Within the JPanel bean, two JButton beans are
added.

The first JButton bean (lines 34–45) has a label of Start Animation. Lines 38–43

<event-binding name = "action">
 <script>
 <call-method target = "Deitel"
 name = "startAnimation"/>
 </script>
</event-binding>

bind an event to the bean. In this case, when an action event occurs, the elements in el-
ement script are performed. Method startAnimation is called on the bean with an
id of Deitel (the logobml.LogoAnimator bean in line 19).

The second JButton bean (lines 51–61) has a label of Stop Animation, which calls
method stopAnimation on an action event.

To execute the BML document, a BML player is used. IBM provides a BML player
with the BML distribution. To execute this example, follow these instructions:

1. Download and install the Java 2 Platform Standard Edition from
java.sun.com.

570 Custom Markup Languages: Part I Chapter 20

2. Download and install the Bean Markup Language tool kit from
www.alphaworks.ibm.com.

3. In a command window, modify the CLASSPATH to contain bmlall.jar,
xml4j_2_0_11.jar, the BML distribution directory (e.g., C:\bml-2.4)
and the current directory (i.e., .). The JAR files are provided in the BML distri-
bution’s lib directory.

4. Copy the 20_20 directory from the Chapter 20 examples directory provided on
the CD-ROM that accompanies this book onto your computer (e.g., C:\20_20).

5. In the 20_20 directory, execute logo.bml by typing

java demos.driver.PlayerDriver logo.bml

Although BML allows the generation of JavaBeans, it does not permit JavaBeans to be
saved as serialized objects. Koala Bean Markup Language (KBML) was developed to
remedy this deficiency. With KBML, which is similar to BML, a JavaBean can be saved
as a serialized Java object. KBML determines all of the properties for a JavaBean and saves
them to an KBML document. The JavaBean can then be recreated from this KBML docu-
ment. Figure 20.22 provides a list of BML and KBML resources.

20.10 Extensible 3D Language (X3D)
In 1997, the Web3D Consortium recommended the Virtual Reality Modeling Language
(VRML97) for use on the Internet as a file format for describing interactive 3D objects and
worlds. VRML was created with the goal of providing a way to share “virtual worlds” (i.e.,
three-dimensional objects grouped together in some common way). Fig. 20.23 shows a
sample 3D world.

The Extensible 3D (X3D) language is the result of the combined efforts of the World
Wide Web Consortium and the Web3D Consortium to extend VRML with XML. X3D is
the next generation of VRML, and the current version is backwards compatible with
VRML97. X3D’s XML base enables wide use and extensibility of the VRML standard.

Figure 20.24 contains an X3D document that describes a 3D rocket. The DOCTYPE
declaration (lines 2–3) specifies the X3D DTD. The root element of an X3D document is
the X3D element (line 8).

URL / Description

www.alphaworks.ibm.com/aw.nsf/techmain/bml
Home page of BML located at IBM.

www.oasis-open.org/cover/beanML.html
This site contains an extensive list of BML articles and a list of some BML resources.

www-sop.inria.fr/koala/kbml
This is the official site for Koala BML, a variation of BML

Fig. 20.22 BML resources.

Chapter 20 Custom Markup Languages: Part I 571

Fig. 20.23 Sample X3D world containing a road under a bridge. [Courtesy of Don
Brutzman, Naval Postgraduate School and Web3D Consortium]

1 <?xml version = "1.0" encoding = "UTF-8"?>
2 <!DOCTYPE X3D PUBLIC
3 "C:/www.web3D.org/TaskGroups/x3d/translation/x3d-compromise.dtd">
4
5 <!-- Fig. 20.24: rocket.xml -->
6 <!-- Simple example of X3D -->
7
8 <X3D>
9 <Header>

10 <meta name = 'myrocket' content = 'rocket.xml'/>
11 <meta name = 'description' content = 'simple example'/>
12 </Header>
13
14 <Scene>
15 <NavigationInfo type = '"EXAMINE" "ANY"'/>
16
17 <!-- declare view points for viewing the rocket -->
18 <Viewpoint description = 'Main view' position = '0 0 6'/>
19 <Viewpoint description = '150 Angular' fieldOfView = '2.61'
20 position = '0 3 2'/>
21
22 <Group>
23 <children>
24

Fig. 20.24 X3D markup for a rocket (part 1 of 3).

572 Custom Markup Languages: Part I Chapter 20

25 <!-- draw a cylinder -->
26 <Shape>
27 <appearance>
28 <Appearance>
29 <material>
30 <Material
31 diffuseColor = '0 0.75 1'/>
32 </material>
33 </Appearance>
34 </appearance>
35
36 <geometry>
37 <Cylinder radius = '0.4' height = '2'/>
38 </geometry>
39 </Shape>
40
41 <Transform translation = '0 -0.5 0'>
42 <children>
43
44 <!-- draw the lower part of rocket as cone -->
45 <Shape>
46
47 <appearance>
48 <Appearance>
49 <material>
50
51 <!-- set the color -->
52 <Material
53 diffuseColor = '1 1 0'/>
54 </material>
55 </Appearance>
56 </appearance>
57
58 <geometry>
59 <Cone bottomRadius = '0.6'
60 height = '1.3'/>
61 </geometry>
62 </Shape>
63
64 <Transform translation = '-3.2 -1.5 0'>
65 <children>
66 <Shape>
67 <geometry>
68 <Text string = 'Welcome to X3D!'/>
69 </geometry>
70 </Shape>
71 </children>
72 </Transform>
73 </children>
74 </Transform>
75
76 <Transform translation = '0 1.5 0'>
77 <children>

Fig. 20.24 X3D markup for a rocket (part 2 of 3).

Chapter 20 Custom Markup Languages: Part I 573

78
79 <!-- draw the head of rocket -->
80 <Shape>
81
82 <appearance>
83 <Appearance>
84 <material>
85 <Material
86 diffuseColor = '0.9 0.9 1'/>
87 </material>
88 </Appearance>
89 </appearance>
90
91 <geometry>
92 <Cone bottomRadius = '0.4'
93 height = '1'/>
94 </geometry>
95 </Shape>
96 </children>
97 </Transform>
98
99 </children>
100 </Group>
101 </Scene>
102 </X3D>

Fig. 20.24 X3D markup for a rocket (part 3 of 3).

574 Custom Markup Languages: Part I Chapter 20

The Header element (lines 9–12) contains two meta elements that describe the 3D
world contained in this document. The Scene element (line 14) contains the elements that
will be used to describe the 3D elements in this world.

Lines 18 and 19 declare two different Viewpoint elements. A Viewpoint indi-
cates the position from which a user views a scene. The first Viewpoint (line 18) uses
the position attribute with the value 0 0 6 to place the viewer at x-coordinate 0, y-coor-
dinate 0 and z-coordinate 6. The second Viewpoint (lines 19 and 20) has a fieldOfView
attribute with a value of 2.61 radians (i.e., a unit of measurement for angles). The
fieldOfView specifies how much of a scene is visible from a particular viewpoint. The
position attribute (line 20) places this viewpoint at the coordinate (0, 3, 2). The rendered
output in Fig. 20.24 shows the scene from the Viewpoint on line 18.

Element Group (lines 22–100) groups a collection of 3D objects. The children
element (line 23) specifies a sub-group of 3D objects. The Shape element (lines 26–39) is
used to create a Cylinder that will form the body of a rocket. The appearance ele-
ment (lines 27–34) contains Appearance elements that specify the visual properties of
the Shape (e.g., its coloring). The material element contains Material elements that
describe the surface of the Shape. Attribute diffuseColor (line 31) specifies the red,
green and blue values used to create the color of the Material. The geometry element
(lines 36–38) creates the cylinder based on the values of the radius and height
attributes.

The Transform element (line 41) changes the position at which the next Shape will
be rendered based on the value of the translation attribute. In this case, on line 41 we
move down 0.5 units on the y-axis for the base of the rocket. The Shape element on lines
45–62 creates a Cone (line 59) for the base of the rocket. Another Transform element
(line 64) is used to position the Text element with the string attribute Welcome to
X3D! (line 68).

The Transform element (line 76) is used to position the remaining Shape element
for the top of the rocket. The Cone element (line 92) is used to create the top of the rocket.

In order to view the example in Fig. 20.24, the following software is required:

1. Java 2 SDK from java.sun.com.

2. Virtual Reality Modeling Language (VRML) plug-in from www.cosmosoft-
ware.com/download or www.parallelgraphics.com/cortona.

3. Xeena (version 1.2EA only) www.alphaWorks.ibm.com/tech/xeena.
For Windows, download the executable, which is self extracting. For UNIX,
download the Xeena 1.2EA for UNIX and follow installation instructions in the
downloaded package.

4. WEB3D's X3D-Edit from www.web3D.org/TaskGroups/x3d/trans-
lation/X3D-Edit.zip.

Figure 20.25 provides a list of X3D Web resources.

20.11 Additional Internet and World Wide Web Resources
In this chapter, we chose to put most of these resources inline in the sections in which their
topics were introduced. Here are a few extras.

Chapter 20 Custom Markup Languages: Part I 575

www.xml.org/xmlorg_registry
A list of links to custom XML specifications grouped by industry, located on the XML.orgWeb site.

www.oasis-open.org/cover/xml.html#applications
A list of links to proposed XML applications and industry initiatives.

www.xml.com/pub/resourceguide
XML resource guide run by XML.com. This page is a great place to start your search into all areas of
XML-custom languages.

SUMMARY
• XML is a metalanguage—a language for creating other languages.

• Until recently, mathematical expressions have typically been displayed using images or special-
ized software packages such as TeX and LaTeX. MathML was developed by the W3C for describ-
ing mathematical notations and expressions in an XML-like manner. It enables document authors
to describe mathematical expressions that can be processed by different applications for different
purposes.

• The W3C provides a browser/editor called Amaya to edit, parse and render MathML.

• MathML content is embedded directly into an HTML document using the HTML math element.

• Element mrow is a container element that groups related elements.

• Element msubsup marks up a subscript and a superscript. Element msubsup requires three child
elements: the expression to which the subscript and superscript are applied, the subscript and the
superscript.

• The integral symbol is represented by the entity ∫. Element mo marks up an operator.
Element mn marks up a number. Element mi marks up an identifier or variable.

• Element msqrt represents a square root expression. Entity ⁢ specifies a
multiplication operation without a symbolic representation (i.e., a multiplication symbol is not dis-
played. Element msup marks up an expression containing a base and an exponent. This element
contains two child elements: the base and the exponent (i.e., the superscript). Element msub marks
up an expression that contains a subscript.

• Entity δ represents a delta symbol, which is marked up using element mo.

• OpenMath is an emerging standard for describing mathematical content. Although MathML does
provide a set of semantic elements, it is mostly limited to describing the presentation of mathemat-

URL / Description

www.web3d.org/x3d.html
Home page of the Extensible 3D Task Group located on the Web3D Consortium Web site.

www.web3d.org/TaskGroups/x3d/faq
The X3D Frequently Asked Questions page.

www.web3d.org/news/x3d
Links to documents summarizing the X3D standardization process.

www.shout3d.com/x3d/contents.html
The Core X3D Specification.

Fig. 20.25 Extensible 3D Language resources.

576 Custom Markup Languages: Part I Chapter 20

ical expressions. OpenMath content can be embedded in MathML, synthesizing the description of
mathematical content and presentation.

• OpenMath represents mathematical expressions with objects that can be exchanged between dif-
ferent software systems, manipulated in databases, displayed by different applications including
Internet browsers, used in different contexts and even checked for mathematical correctness. The
standard itself includes specifications of binary and XML encoding of OpenMath, extensible li-
braries of OpenMath objects and libraries defining semantic content.

• An OpenMath object has three layers of representation: as an application-specific entity, as an ab-
stract OpenMath object and as a byte stream for communication purposes. The content dictionaries
define the meaning of an object so that an application can convert it to an internal representation.

• The Chemical Markup Language (CML) is an XML-based language for representing molecular
and chemical information. CML takes advantage of XML’s portability to enable document authors
to use and reuse molecular information without corrupting important data in the process. Docu-
ment authors can edit and view CML using the Jumbo browser.

• The Wireless Markup Language (WML) is an XML-based language that allows text portions of
Web pages to be displayed on wireless devices such as cellular phones and personal digital assis-
tants (PDA). WML also has a companion scripting language, WMLScript, which is based on the
ECMAScript standard. WML works with the Wireless Application Protocol (WAP) to deliver
content.

• WML is similar to HTML but does not require input devices such as a keyboard or mouse for nav-
igation. A WML document is called a deck and contains static parts called cards. Each card con-
sists of one user interaction, providing the WML browser with a small, self-contained document
for browsing.

• WML documents have root element wml, which contains card elements. Text is marked up using
element p.

• Element do sets the action for a document. Element go hyperlinks to an object in attribute href.

• The Geography Markup Language (GML) was developed by the OpenGIS Consortium (OGC) to
describe geographic information. In GML, geographic information is described in terms of fea-
tures. A feature is composed of properties and geometries. GML properties contain the name,
type and value elements common to all XML tags; features are geometric entities (e.g., lines,
polygons, etc.). Geometries contain the bulk of geographic data, and properties augment that data
to provide a more precise description. As a recent markup language, GML is in the early stages of
development.

• The Synchronized Multimedia Integration Language (SMIL, pronounced “smile”) enables Web
document authors to coordinate the presentation of a wide range of multimedia elements. A SMIL
document specifies the source (i.e., the URL) of multimedia elements and how these elements are
presented. One way to render SMIL documents is with RealPlayer, a multimedia player from Real
Networks.

• A region for displaying objects (e.g., images) is specified using element region. Attribute id
uniquely identifies a region. Attributes width and height specify the size of the region, and
attributes top and left provide the position. Attribute background-color sets the color of
the region’s background.

• Element body encloses the contents of the document. Element seq sets child elements to execute
sequentially (i.e., in chronological order). A par element sets its child elements to execute in par-
allel (i.e., at the same time).

• Element img references an image. Attribute src contains the location of the image, and attribute
alt provides a description of the image. Attribute region specifies the region in which the im-

Chapter 20 Custom Markup Languages: Part I 577

age is to be displayed. Attribute dur describes how long the image appears on the screen. Element
audio references an audio file.

• SMIL documents can also be embedded in Web pages using the Soja applet.

• The Scalable Vector Graphics (SVG) markup language describes graphics. SVG provides consid-
erable advantages over current methods (e.g., the .jpg, .gif and .png formats) for distributing
graphics on the Web. Vector graphics describe graphical information in terms of lines, curves, etc.
Not only do images rendered in vector graphics require less bandwidth, but these images also can
be easily scaled and printed. In addition, SVG’s XML base enables SVG documents to be scripted,
searched and dynamically created.

• Attribute viewBox sets the viewing area for the document. Attribute width specifies the width
of the image, and attribute height specifies the height of the image.

• The Bean Markup Language (BML) facilitates the use of JavaBeans. JavaBeans (often called
beans) are predefined software components that can be combined to create Java applications and
applets. BML defines how various beans are interconnected. To use a BML document, a BML
player is required.

• Although BML allows the generation of JavaBeans, it does not permit JavaBeans to be saved. Ko-
ala Bean Markup Language (KBML) was developed to remedy this deficiency. With KBML,
which is similar to BML, a JavaBean can be saved as a class name. KBML also provides a means
to serialize JavaBeans in XML.

• The Extensible 3D (X3D) language is the result of the combined efforts of the World Wide Web
Consortium and the Web 3D Consortium to extend VRML with XML. X3D is the next generation
of VRML, and the current version is backwards compatible. X3D’s XML base enables wide use
and extensibility of the VRML standard.

TERMINOLOGY
&delta element audio
&Integral element body
&InvisibleTimes element circle
*N element g
.gif element go
.jpg images element head
.png element img
<mo> element input
accept element layout
W3C Amaya Web browser element path
amount element rectangle
animateTransform element element region
attribute alt element root-layout
attribute attributeName element text
attribute background-color elsym
attribute cx Extensible 3D (X3D) language
attribute cy features in GML
attribute d fill
attribute height fit
attribute id float
attribute r Geography Markup Language (GML)
attribute region geometries in GML
attribute repeatCount GML (Geography Markup Language)

578 Custom Markup Languages: Part I Chapter 20

SELF-REVIEW EXERCISES
20.1 State whether each of the following are true or false. If false, explain why.

a) Custom XML languages can only be produced for industries that are involved with com-
merce or multimedia.

attribute src group element
attribute style href attribute
attribute transform HTML math element
attribute translates id
attribute type integral symbol
attribute viewBox integer
attribute width interactive 3D objects
attribute x Jumbo browser
attribute y LaTeX
attributes from MATH element
attributes to Mathematical markup language
backwards compatible MathML
Bean Markup Language (BML) mi
bondArray mn
card elements of WML document mo
Chemical Markup Language (CML) mrow
child elements msqrt
CML msubsup
container element msup
CSS property fill multimedia elements
deck (WML document) Nokia WAP Developer Toolkit
delta symbol OGC
dereferencing the text box identifier OpenGIS Consortium (OGC)
do element OpenMath
element <par> properties in GML
element <seq> property H
property h
property M

Synchronized Multimedia Integration Language
(SMIL)

property v TeX
property V vector graphics
property z Virtual Reality Modeling Language (VRML)
Real Networks VRML (Virtual Reality Modeling Language)
RealPlayer (from RealNetworks) VRML97
Scalable Vector Graphics (SVG) markup
language

W3C (World Wide Web Consortium)
WAP (Wireless Application Protocol)

SMIL (Synchronized Multimedia Integration
Language)

WAP gateway
Web3D consortium

Soja applet
square-root symbol

Wireless Application Protocol (WAP)
Wireless Markup Language (WML)

SVG (Scalable Vector Graphics Markup
Language)

WML (Wireless Markup Language)
WML browser and server

SVG documents wml root element
SVG image
SVG specification

World Wide Web Consortium (W3C)
X3D

symbolic representation

Chapter 20 Custom Markup Languages: Part I 579

b) The Amaya browser is able to render roughly 50% of all custom XML languages.
c) MathML can be embedded directly into HTML using the math element.
d) Before CML, many previous methods for storing molecular information inhibited docu-

ment reuse.
e) WML requires an input device such as a keyboard or a mouse for navigation.
f) A small, self-contained document for browsing is a requirement for WML because since

a wireless device has limited memory resources, it can only load one document at a time.
g) Images rendered in vector graphics require less bandwidth.
h) GML stands for the Grammar Markup Language and is used to dynamically edit gram-

mar in text documents according to specific guidelines.
i) In SMIL, multimedia elements can work together to produce a better looking and more

efficient multimedia document.
j) Scalable Vector Graphics (SVG) appear the same when rendered with different dimen-

sions because they are not bitmap images.

20.2 Fill in the blanks in each of the following statements.
a) The browser is provided by the W3C to edit, parse and render MathML.
b) The two sets of elements defined by MathML are and .
c) The XML-based language used for representing molecular and chemical information is

known as the .
d) CML can be edited and viewed using the browser.
e) WML, which stands for uses the Application Protocol (WAP)

to deliver its content.
f) A WML document is called a , with static parts called .
g) In GML, geographic information is described in terms of , which are com-

posed of and .
h) The Synchronized Language enables Web document authors to coordinate

the presentation of a wide range of multimedia elements.
i) graphics describe graphical information in terms of lines, curves and other

vector shapes, saving space and allowing complete scalability.
j) Produced by the Web3D Consortium, is an attempt to make VRML 97 more

Web capable through the use of XML.

ANSWERS TO SELF-REVIEW EXERCISES
20.1 a) False. Custom XML languages can be produced for any industry. b) False. The Amaya
browser, provided by the W3C, is capable of rendering several custom XML languages, including
MathML. c) True. d) True. e) False. WML does not require input devices like keyboard or mice for
navigation. f) True. g) True. h) False. GML stands for the Geography Markup Language and is used
to describe geographic information for use and reuse by different applications. i) True. j) True.

20.2 a) Amaya. b) mathematical content, mathematical presentation. c) Chemical Markup Lan-
guage (CML). d) Jumbo. e) Wireless Markup Language, Wireless. f) deck, cards. g) features, proper-
ties, geometries. h) Multimedia Integration. i) Vector. j) Extensible 3D (X3D).

EXERCISES
20.3 Write a MathML document for the following equations. Use Amaya to render the resulting
documents.

a) 5yδx
1---

1∫

580 Custom Markup Languages: Part I Chapter 20

b)

20.4 Write a MathML document that represents Schrodinger’s wave equation as shown in Fig.
20.26. [Hint: Symbol psi can be represented by Ψ, and delta by ∇]

20.5 Write a CML document that displays 2-CycloHexeneCarbonitrile (C6N). Figure 20.27 shows

an example output.

20.6 Write a simple WML document that displays the available books at a bookstore for the user
to select. After the user selects a book, the device should accept the user’s identification number or
code. It should then display both the selected book as well as the ID for confirmation.

20.7 Create an SVG document that simulates a clock with a pendulum (i.e., hour hand, minute
hand, pendulum). An example image is shown in Fig. 20.28.

Fig. 20.26 Schrodinger’s wave equation.

Fig. 20.27 2-CycloHexeneCarbonitrile.

Fig. 20.28 Clock simulation with SVG.

x 2y
3–

8y– y
3

-------+=

psi

N

21
Custom Markup

Languages: Part II

Objectives
• To become familiar with the Extensible Business

Reporting Language (XBRL).
• To become familiar with the Bank Internet Payment

System (BIPS).
• To become familiar with Electronic Business XML

(ebXML).
• To become familiar with Visa XML Invoice

Specification.
• To become familiar with Commerce XML (cXML).
• To become familiar with LegalXML and NewsML.
• To become familiar with the Open eBook Publication

Structure.
• To become familiar with Extensible User Interface

Language (XUL).
Be a little careful about your library. Do you foresee what
you will do with it?...
Ralph Waldo Emerson

It is the huge buildings of commerce and trade which now
align the people to attention.
Sean O’Casey

You will come here and get books that will open your eyes,
and your ears, and your curiosity...
Ralph Waldo Emerson

582 Custom Markup Languages: Part II Chapter 21

21.1 Introduction
XML languages are being developed for many areas of e-commerce. This chapter discusses
some of the prominent e-business languages emerging on the Web. We also present brief
introductions and links to a few other, miscellaneous custom markup languages.

21.2 Extensible Business Reporting Language (XBRL)
Development of the Extensible Business Reporting Language (XBRL) began in 1998, ini-
tially under the direction of the American Institute of Certified Public Accountants (AIC-
PA). XBRL captures existing financial and accounting information standards in XML,
providing significant advantages over current methods of business information representa-
tion and transfer (Fig. 21.1). XBRL’s XML origin permits financial information to be re-
used in a variety of situations (e.g., publishing reports, extracting data for applications,
submitting regulatory forms, etc.), thus increasing efficiency and reducing costs and redun-
dancy. Future versions of XBRL will expand to encompass descriptions of information in
other areas of business.

Figure 21.2 is a financial statement marked up as XBRL for a fictitious company
named ExComp. An XBRL document contains three elements: group, item and label.

Outline
21.1 Introduction
21.2 Extensible Business Reporting Language (XBRL)
21.3 Bank Internet Payment System (BIPS)
21.4 Electronic Business XML (ebXML)
21.5 Visa XML Invoice Specification
21.6 Commerce XML (cXML)
21.7 LegalXML
21.8 NewsML
21.9 Open eBook Publication Structure
21.10 Extensible User Interface Language (XUL)
21.11 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

Business Process Relevant Financial Applications

Internal Financial Reporting Business Event Reporting

External Financial Reporting Audit Schedules, G/L Journal Entry Reporting

Investment and Lending Analysis EDGAR Filings, Tax Filings

Fig. 21.1 Business processes to which XBRL applies.

Chapter 21 Custom Markup Languages: Part II 583

A group element groups item, label and other group elements. XBRL docu-
ments usually have group as the root element. An item element represents a single state-
ment. Element label provides a caption for group and item elements.

1 <?xml version = "1.0" encoding = "utf-8"?>
2 <!DOCTYPE group SYSTEM "xbrl-core-00-04-04.dtd">
3
4 <!-- Fig. 21.2 : financialHighlights.xml -->
5 <!-- XBRL example -->
6
7 <group
8 xmlns = "http://www.xbrl.org/us/aicpa-us-gaap-ci-00-04-04"
9 xmlns:ExComp = "http://www.example-ExComp.org/fHighlights.xml"

10 id = "XXXXXX-X-X-X"
11 entity = "NASDAQ:EXCOMP"
12 period = "2000-12-31"
13 scaleFactor = "3"
14 precision = "3"
15 type = "ExComp:statement.financialHighlights"
16 unit = "ISO4217:USD"
17 decimalPattern = "#,###.###">
18
19 <group id = "1" type = "ExComp:financialHighlights.introduction">
20 <item type = "ExComp:statement.declaration"
21 period = "2000-12-31">
22 ExComp has adopted all standard procedures for accounting.
23 This statement gives a financial highlight summary for the
24 last 4 years.
25 It also gives an account of percentage change in profit
26 for each year, which is useful in measuring the company’s
27 performance.
28 </item>
29 </group>
30
31 <group id = "2" type = "ExComp:financialHighlights.statistics">
32 <group id = "21" type = "ExComp:sales.revenue">
33 <item period = "P1Y/2000-12-30">2961.5</item>
34 <item period = "P1Y/1999-12-30">3294.97</item>
35 <item period = "P1Y/1998-12-30">3593.78</item>
36 <item period = "P1Y/1997-12-30">4301.55</item>
37 </group>
38
39 <group id = "22" type = "ExComp:cost.production">
40 <item period = "P1Y/2000-12-30">1834.126</item>
41 <item period = "P1Y/1999-12-30">1923.226</item>
42 <item period = "P1Y/1998-12-30">2872.10</item>
43 <item period = "P1Y/1997-12-30">3101.11</item>
44 </group>
45
46 <group id = "23"
47 type = "ExComp:cost.transportAndMaintenance">
48 <item period = "P1Y/2000-12-30">134.07</item>

Fig. 21.2 XBRL example that marks up a company’s financial highlights (part 1 of 2).

584 Custom Markup Languages: Part II Chapter 21

49 <item period = "P1Y/1999-12-30">334.47</item>
50 <item period = "P1Y/1998-12-30">821.59</item>
51 <item period = "P1Y/1997-12-30">1007.12</item>
52 </group>
53
54 <group id = "24" type = "ExComp:net.profit">
55 <item period = "P1Y/2000-12-30">1335.5</item>
56 <item period = "P1Y/1999-12-30">1135.52</item>
57 <item period = "P1Y/1998-12-30">1142.03</item>
58 <item period = "P1Y/1997-12-30">1312.62</item>
59 </group>
60
61 <group id = "25" type = "ExComp:percentageChange.profit">
62 <item period = "P1Y/2000-12-30">18.35</item>
63 <item period = "P1Y/1999-12-30">11.11</item>
64 <item period = "P1Y/1998-12-30">10.25</item>
65 <item period = "P1Y/1997-12-30">24.98</item>
66 </group>
67
68 <!-- Labels -->
69 <label href = "#21">Revenue</label>
70 <label href = "#22">Production cost</label>
71 <label href = "#23">Transport and Maintenance</label>
72 <label href = "#24">Profit</label>
73 <label href = "#25">Percentage Change in profit</label>
74
75 </group>
76
77 </group>

Fig. 21.2 XBRL example that marks up a company’s financial highlights (part 2 of 2).

Chapter 21 Custom Markup Languages: Part II 585

Line 2 in Fig. 21.2 is the DOCTYPE declaration that specifies the DTD used by XBRL
documents (i.e., xbrl-core-00-04-04.dtd). Line 7’s root element (group) contains
six other group elements and five label elements that describe the financial statement.
Root element group specifies a set of attributes (or properties) that apply to all of its child
elements. If a child group element specifies an attribute that is the same as the parent’s
attribute, the child’s attribute overrides the parent’s attribute within the child element.

Line 8

xmlns = "http://www.xbrl.org/us/aicpa-us-gaap-ci-00-04-04"

declares a default namespace for the XBRL document through the use of keyword xmlns
and assigns it a URI.

Line 9 declares a namespace prefix (ExComp) for elements specific to the company
ExComp. Attribute id (line 10) specifies a unique identity for the company. Attribute
entity (line 11) identifies business entities. For example, entity value
URI:www.deitel.com indicates that the company is associated with the URI
www.deitel.com. Line 11 indicates that ExComp’s NASDAQ symbol is EXCOMP.
Attribute period (line 12) is used to specify the creation date of the document. Attribute
scalefactor (line 13) specifies the power of 10 by which a numeric value appearing in
the group should be multiplied to calculate the actual value; for example, a value of 3
indicates the value should be multiplied by 1000. Attribute precision (line 14) indicates
the numeric precision of measurement that should be used for calculations; for example, a
value of 3 indicates an accuracy of 3 decimal places.

Attribute type (line 15) specifies the category of the group. It also differentiates one
group element from another. Values of the type attribute use the “parent.child” naming
convention, where parent represents a category and child is its property.

Attribute unit (line 16) specifies the unit of currency adopted by the document, and
attribute decimalPattern (line 17) specifies the format for displaying numeric values,
using pound (#) symbols as placeholders.

The root element group (line 7) contains two group child elements. The first
group element (line 19) gives a brief introduction to the financial highlights statement. Its
child element, item (line 20), contains the actual description. The period attribute (line
21) marks up the declaration date of the statement.

The second group element (line 31) contains ExComp’s financial statistics (i.e., rev-
enue, cost, profit, etc.,) grouped by their respective categories. This group element also
contains captions for each of the categories, using label elements (lines 69–73). The id
attribute uniquely identifies a group or item element. Lines 31–66 declare group ele-
ments for revenue, cost of production, cost of transportation and maintenance, net profit
and percentage change in profit. Each group element contains item elements that hold
values until the time specified by the group element’s attribute period. The period P1Y/
2000-12-30 indicates a year that ends on the 30th of December 2000.

The label elements (lines 69–73) give each group element a caption. Their
attribute href contains a reference to the group element that they label. The output of
Fig. 21.2 shows how this document might be rendered. For example, an XML application
may choose to use XSL Formatting Objects to render this XML document. XSL formatting
objects are discussed in Chapter 13. Figure 21.3 provides several XBRL Web resources.

586 Custom Markup Languages: Part II Chapter 21

21.3 Bank Internet Payment System (BIPS)
Bank Internet Payment System (BIPS) facilitates secure electronic transactions over the In-
ternet. Client-server applications can use BIPS to communicate payment instructions over
the Internet. This freely distributed XML specification enables BIPS users (e.g., banks,
small businesses, etc.) to implement e-business services affordably for their customers. The
decision to build the BIPS specification using XML also enables BIPS-formatted data to be
easily converted into other business-related XML standards. BIPS transactions can be ini-
tiated by either the payer or the payee, and transactions are secured using digital certificate
technology. Figure 21.4 lists several BIPS Web resources.

21.4 Electronic Business XML (ebXML)
In September 1999, the United Nations’s Center for Trade Facilitation and Electronic Busi-
ness (UN/CEFACT) and the Organization for the Advancement of Structured Information
Standards (OASIS) began a 15- to 18-month project to standardize the global exchange of
business information. The result of this project is Electronic Business XML (ebXML). Cur-
rently in draft specification form, ebXML provides a standard infrastructure for global elec-
tronic business that enables medium to large businesses to exchange business information.

URL / Description

www.xbrl.org
This is the Web site for XBRL that contains technical and business information on XBRL.

www.xbrl.org/TR/2000-07-31/default.htm
The site contains the XBRL specification.

www.xbrl.org/Core/2000-07-31/default.htm
XBRL DTDs can be obtained from this site.

www.xbrl.org/Overview.htm
An brief introduction to, and highlights of, XBRL can be found at this site.

www.xbrl.org/BriefingRoom.htm
This site posts links to several PowerPoint™ presentations on XBRL.

www.oasis-open.org/cover/xbrl.html
This site contains an introduction to XBRL and several links to XBRL resources and articles.

www.xbrl.org/Faq.htm
This site contains xbrl.org FAQs.

www.xbrl.org/Demos/demos.htm
This site contains links to practical XBRL applications.

www.oasis-open.org/cover/xfrml.html
This site contains information on XFRML, the predecessor of XBRL.

www.xbrl.org/Tools.htm
This site lists a few XBRL tools.

www.aicpa.org
This is the home page for the AICPA, the initiators of the XBRL initiative.

Fig. 21.3 XBRL reference Web sites.

Chapter 21 Custom Markup Languages: Part II 587

The wide reach of two international organizations, coupled with the open nature in which
this standard is being developed, ensures a strong user foundation for a single, XML-based,
global business framework. The Global Commerce Initiative, a coalition of 40 major busi-
ness, including Kraft Foods and Home Depot, has adopted ebXML as an integral part of its
e-commerce framework.

Rather than emphasizing business documents, ebXML emphasizes business processes
that describe a series of actions, such as “procure materials.” A process contains details of
the data exchange and the sequences, or choreographies, of messages. Reusable objects
called core components can be used in messages to represent information such as telephone
numbers. Core components give businesses a mechanism to use industry-specific vocabu-
laries, but are semantically neutral themselves, thus forming a common set of data items
that can be used across all industries. The connections that identify industry-specific
semantics with core components will be stored in distributed data repositories, along with
the other models, data and objects that will enable businesses to communicate. Repositories
will be accessed with APIs provided by ebXML registries. Businesses can also make con-
tracts electronically with ebXML by using the trading partner agreement feature. Figure
21.5 provides links to several ebXML Web resources.

21.5 Visa XML Invoice Specification
VISA International has developed the VISA XML Invoice Specification to enable its busi-
ness customers to exchange credit-card purchase information between businesses over the
Internet in a secure and standardized form. The VISA Invoice Specification enables com-
mercial credit-card users to maintain and leverage more detailed information on credit-card
purchases. Currently, the specification provides a framework that describes credit-card pur-
chases in the areas of procurement (i.e., business-to-business purchasing) and travel-and-
entertainment (T&E) expenses. Future versions of the specification will be expanded to in-
clude purchases in the areas of health care, government, temporary services and others. Fig-
ure 21.6 provides Visa XML Invoice Specification Web resources.

21.6 Commerce XML (cXML)
Commerce XML (cXML) is an XML-based framework for describing catalog data and per-
forming business-to-business electronic transactions that use the data. Developed by a

URL / Description

www.fstc.org/projects/bips
The BIPS official Web site.

www.fstc.org/projects/bips/spec/license.html
The BIPS specification can be downloaded or viewed from this site.

www.fstc.org/projects/bips/spec/summary.html
This site posts a brief introduction to BIPS.

www.fstc.org/projects/bips/public/BIPSFAQ21a.htm
This site contains BIPS FAQs.

Fig. 21.4 BIPS reference Web sites.

588 Custom Markup Languages: Part II Chapter 21

group of 40 e-commerce companies led by Ariba, Inc., cXML enables businesses and sup-
pliers to conduct transactions over the Internet more efficiently. cXML provides several
DTDs that describe data for catalogs, interactive catalogs (“punchouts”) and purchase or-
ders. The language also specifies ways in which cXML documents may be requested and
posted over the Web.

Figure 21.7 illustrates a sample purchase order a company might use to transact with
another business, and Fig. 21.8 lists a cXML document that corresponds to this purchase
order. Figure 21.9 lists a sample cXML response.

Lines 6 and 7

<!DOCTYPE cXML SYSTEM
"http://xml.cXML.org/schemas/cXML/1.1.008/cXML.dtd">

specify the external DTD to which this cXML document conforms.
Lines 9–11

<cXML payloadID = "200.989.2991@myhostname"
 timestamp = "2000-08-14T12:42:19-05:00"
 version = "1.1" xml:lang = "en-US">

URL / Description

www.ebxml.org
This is the official ebXML Web site.

www.oasis-open.org/cover/ebXML.html
This site provides the ebXML cover page, which features an understandable overview of the tech-
nology, along with references and links.

www.ebxml.org/specindex2.htm
This site contains a list of links to ebXML specifications.

www.ebxml.org/news/pr_20000515.htm
This site is a press release describing developments in the ebXML project.

Fig. 21.5 ebXML reference Web sites.

URL/Description

www.visa.com/xml
This is VISA’s Web site for the VISA XML Invoice Specification.

www.visa.com/ut/dnld/spec.ghtml
This site contains information on the Invoice Specification’s documentation. Readers must register
before downloading or viewing the documentation.

www.oasis-open.org/cover/visaXMLInvoice.html
This site contains an introduction to the Invoice Specification and links to resources and articles.

Fig. 21.6 VISA XML Invoice Specification reference Web sites.

Chapter 21 Custom Markup Languages: Part II 589

form the cXML envelope—the root element of a cXML document. Attribute timestamp
provides the time of creation of the document in ISO 8601 format—a standard format for
representing a timestamp. Attribute payloadID provides a unique ID for the logging of
documents.

Lines 12–35 are the header of the document, contained in element Header. This sec-
tion contains the information used to authenticate the document and also provides informa-
tion about the sender and receiver of the document.

Lines 14–18 show element From, which specifies the source from which the docu-
ment was sent. Lines 15–17 use element Credential to set identification and authenti-
cation information. Lines 20–24 show element To, which specifies where the document
was sent.

Fig. 21.7 Simple purchase order.

1 <?xml version = "1.0"?>
2
3 <!-- Figure 21.8 : cxmlorder.xml -->
4 <!-- An order request -->
5
6 <!DOCTYPE cXML SYSTEM
7 "http://xml.cXML.org/schemas/cXML/1.1.008/cXML.dtd">
8

Fig. 21.8 Order request using cXML (part 1 of 4).

590 Custom Markup Languages: Part II Chapter 21

9 <cXML payloadID = "200.989.2991@myhostname"
10 timestamp = "2000-08-14T12:42:19-05:00"
11 version = "1.1" xml:lang = "en-US">
12 <Header>
13
14 <From>
15 <Credential domain = "DeitelNetworkUserID">
16 <Identity>xyz@deitel.com</Identity>
17 </Credential>
18 </From>
19
20 <To>
21 <Credential domain = "WarehouseNetworkID">
22 <Identity>xyz@somewarehouse.com</Identity>
23 </Credential>
24 </To>
25
26 <Sender>
27
28 <Credential domain = "DeitelNetworkUserID">
29 <Identity>deitel@deitel.com</Identity>
30 </Credential>
31
32 <UserAgent>Deitel cXML v1.0</UserAgent>
33
34 </Sender>
35 </Header>
36
37 <Request deploymentMode = "production">
38 <OrderRequest>
39 <OrderRequestHeader orderID = "xyz-2121"
40 orderDate = "2000-07-19">
41 <Total>
42 <Money currency = "USD">500</Money>
43 </Total>
44
45 <ShipTo>
46 <Address>
47
48 <Name xml:lang = "en">
49 Deitel and Associates
50 </Name>
51
52 <PostalAddress>
53 <DeliverTo>Mr. Xyz</DeliverTo>
54 <Street>490B Boston Post road</Street>
55 <City>Sudbury</City>
56 <State>MA</State>
57 <PostalCode>01776</PostalCode>
58
59 <Country isoCountryCode = "US">
60 United States
61 </Country>

Fig. 21.8 Order request using cXML (part 2 of 4).

Chapter 21 Custom Markup Languages: Part II 591

62 </PostalAddress>
63
64 </Address>
65 </ShipTo>
66
67 <BillTo>
68 <Address>
69
70 <Name xml:lang = "en">
71 Deitel and Associates
72 </Name>
73
74 <PostalAddress>
75 <Street>490B Boston Post road</Street>
76 <City>Sudbury</City>
77 <State>MA</State>
78 <PostalCode>01776</PostalCode>
79 <Country isoCountryCode = "US">
80 United States
81 </Country>
82 </PostalAddress>
83
84 </Address>
85 </BillTo>
86
87 <Shipping>
88 <Money currency = "USD">50</Money>
89
90 <Description xml:lang = "en-us">
91 US post
92 </Description>
93 </Shipping>
94
95 <Payment>
96 <PCard number = "222211113333"
97 expiration = "2001-08-01"/>
98 </Payment>
99 </OrderRequestHeader>
100
101 <!-- Products ordered -->
102 <ItemOut quantity = "4"
103 requestedDeliveryDate = "2000-12-31">
104
105 <ItemID>
106 <SupplierPartID>zay-2156</SupplierPartID>
107 </ItemID>
108
109
110
111 "USD" 100
112
113

Fig. 21.8 Order request using cXML (part 3 of 4).

592 Custom Markup Languages: Part II Chapter 21

Lines 26–34 show element Sender, which specifies the sender of the document.
Lines 37–139 are the request portion of the document, contained in element Request. For
a purchase-order submission, element OrderRequest (lines 38–138) is used.

Lines 39–99 make up the header of the purchase order (element OrderRequest-
Header), providing information about the billing address (element BillTo, lines 67–
85), shipping address (element ShipTo, lines 45–65), shipping method (element Ship-
ping, lines 87–93), payment method (element Payment) and total amount due (element
Total, lines 41–43). In addition, the cXML specification defines elements for the amount
of tax due, contact information, comments, attachments and more.

Lines 102–108 and lines 120–137 define the items in the purchase order using element
ItemOut. Each ItemOut element describes an item in an order.

Figure 21.9 shows a purchase-order response for the cXML document of Fig. 21.8.
The response from the warehouse consists of element Response, with child element
Status announcing that the request was accepted. Figure 21.10 lists some Web sites that
provide more information on cXML.

21.7 LegalXML
Currently, all court documents must be filed with a clerk, and information in the documents
often must be entered into different document management systems multiple times. Le-
galXML hopes to reduce the redundancy of such management systems. With LegalXML,

114 <Description xml:lang = "en">
115 Z Keyboard
116
117 </ItemDetail>
118 </ItemOut>
119
120 <ItemOut quantity = "2"
121 requestedDeliveryDate = "2000-08-05">
122
123 <ItemID>
124 <SupplierPartID>abc-u9981</SupplierPartID>
125 </ItemID>
126
127
128
129 "USD">25
130 </UnitPrice>
131
132 <Description xml:lang = "en">
133 abc-Mouse
134
135
136
137 </ItemOut>
138 </OrderRequest>
139 </Request>
140 </cXML>

Fig. 21.8 Order request using cXML (part 4 of 4).

Chapter 21 Custom Markup Languages: Part II 593

the information in court documents can be described to enable more efficient processing.
Currently, the LegalXML draft proposal contains only elements that mark up data for elec-
tronic court filing, and not other legal content. A number of law firms are working to ex-
pand LegalXML so it may be used more widely. Figure 21.11 provides some LegalXML
Web resources.

21.8 NewsML
News items exist in many different formats and are presented and received through differ-
ent means. The International Press Telecommunications Council (IPTC) has coordinated
the development of NewsML to provide news content creators and consumers with a means
to maximize news-content potential. NewsML is designed to be media independent, so that
all news-content formats (e.g., text, photo, video, etc.) can be described. XML formatting
enables news content to be reused and customized for a specific consumer base or platform.
Custom news items can be created by excluding or including certain parts of a news item.
For example, the content of a television news story can be reused to create audio for a radio
news show. Internal relationships between parts of a news item, such as supporting pictures
or audio for a text article, can be described. Other relationships, such as “see also” or “re-
lated news,” can also be specified. NewsML enables tracking and revision of documents
over time. It supports different representations and encodings of data as well as different
methods of attaching various types of metadata. NewsML can also take advantage of XML
communication over the Web to permit various media to be separately stored in remote lo-
cations that can be accessed by many clients for use in news content. Because NewsML is
an XML language, it can be processed and delivered to many different types of clients, such
as Web browsers, cellular phones, pagers, etc. To aid in the management of news data,
NewsML provides an envelope structure for transmitting, processing and routing informa-
tion with news content. Figure 21.12 lists several NewsML Web resources.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 21.9 : cxmlorderResponse.xml -->
4 <!-- Order response document -->
5
6 <!DOCTYPE cXML SYSTEM
7 "http://xml.cXML.org/schemas/cXML/1.1.008/cXML.dtd">
8
9 <cXML payloadID = "xyz4@somewarehouse.com"

10 timestamp = "2000-08-15T15:45:19-05:00"
11 version = "1.1" xml:lang = "en-US">
12
13 <Response>
14 <Status code = "201" text = "Accepted"/>
15 </Response>
16
17 </cXML>

Fig. 21.9 Response cXML document to an order.

594 Custom Markup Languages: Part II Chapter 21

21.9 Open eBook Publication Structure
In early 2000, several companies dedicated to electronic text publication founded the Open
eBook Forum with the goal of developing a standard for describing publishable electronic
content. The result of this collaboration is the Open eBook Publication Structure, an XML-
based language that specifies a file format and describes content elements. The language is
designed to be platform independent, but maintains flexibility and permits document au-
thors to embed platform-specific content as long as a platform-independent alternative is
provided. The Open eBook Forum hopes that wide adoption of the Open eBook Publication
Structure will spur growth in the electronic-publications market. Figure 21.13 lists some
Open eBook Publication Structure Web resources.

URL / Description

www.cxml.org
This is the official Web site for cXML.

www.cxml.org/files/cxml.zip
This site links to the cXML documentation download.

www.oasis-open.org/cover/cxml.html
This site maintains a brief introduction to cXML and links to resources and articles.

ecommerce.internet.com/outlook/article/
0,1467,7761_124921_1,00.html
This page is an older article that provides an introduction to and explains the motivation for cXML.

ecommerce.internet.com/outlook/article/0,1467,7761_128341,00.html
This page begins a detailed summary of the cXML 0.91 specification document.

www.oasis-open.org/cover/aribaCXML.html
This site contains Ariba’s press release announcing its adoption of cXML.

Fig. 21.10 cXML reference Web sites.

URL/Description

www.legalxml.org
This is the Web page for the organization devoted to creating and maintaining LegalXML.

www.legalxml.org/DocumentRepository/ProposedStandards/Clear/
PS_10001/PS_10001_2000_07_24.htm
This site contains the LegalXML proposed standard. It also contains links to the LegalXML DTDs.

www.legalxml.org/Information/LegalXMLOverview.asp
This site describes the history of LegalXML.

www.legalxml.org/DocumentRepository/UnofficialNotes
This site contains links to several LegalXML issues.

Fig. 21.11 LegalXML reference Web sites (part 1 of 2).

Chapter 21 Custom Markup Languages: Part II 595

21.10 Extensible User Interface Language (XUL)
XML has proved a valuable catalyst to the field of cross-platform (XP) application devel-
opment. Projects such as Mozilla (www.mozilla.org) work to provide cross-platform
development platforms and services for use in a variety of purposes. One challenge facing
cross-platform application developers is that each operating system has a unique graphical
user interface (GUI). XUL (Extensible User Interface Language) is an XML-based lan-
guage created by the Mozilla project for describing user interfaces. Cross-platform appli-
cations can load the information from an XUL (pronounced “zool”) document to create the
appropriate user interface. Figure 21.14 lists several Mozilla and XUL Web resources.

21.11 Internet and World Wide Web Resources
In this chapter, we have listed resources within the sections in which their associated topics
were introduced. Here are a few extras:

www.wsba.org/c/ec2/xml/1999/eficourt.htm
This page is an article on the topic of electronic court filings.

www.legalxml.org/transcripts/NCRA_Article.pdf
This page is an article on LegalXML in .pdf format (requires Adobe Acrobat Reader, which can
be downloaded free of charge from www.adobe.com).

URL / Description

www.iptc.org/NMLIntro.htm
This site posts the IPTC’s NewsML Web page.

www.karben14.com/newsml
This site contains links to the NewsML DTDs.

www.iptc.org/whatisnewsml.htm
This page contains an overview of NewsML.

www.oasis-open.org/cover/newsML.html
This site provides a brief introduction to NewsML and links to resources and articles.

www.iptc.org/NMLIntro.htm
This page is the press release from IPTC that announces its plan to create NewsML.

www.iptc.org
This is the home page for the IPTC, the organization behind NewsML.

Fig. 21.12 NewsML reference Web sites.

URL/Description

Fig. 21.11 LegalXML reference Web sites (part 2 of 2).

596 Custom Markup Languages: Part II Chapter 21

www.oasis-open.org/cover/xml.html#applications
This page links to summaries of many XML-based applications.

www.xml.org/xmlorg_registry/index.shtml
This page provides a list of links to XML-based applications, sorted by category.

www.xml.com/pub/resourceguide/index.html
This page contains a list of XML resources.

SUMMARY
• Development of the Extensible Business Reporting Language (XBRL) began in 1998, initially un-

der the direction of the American Institute of Certified Public Accountants (AICPA). XBRL cap-
tures existing financial and accounting information standards in XML, providing significant
advantages over current methods of business information representation and transfer.

• An XBRL document contains three elements: group, item and label. A group element
groups item, label and other group elements. XBRL documents usually have group as the
root element. An item element represents a single statement. Element label provides a caption
for group and item elements.

• Attribute entity identifies business entities. Attribute period specifies the creation date of the
document. Attribute scalefactor specifies the power of 10 by which a numeric value appear-
ing in the group should be multiplied to arrive at the actual value. Attribute precision indi-
cates the numeric precision of measurement that should be used for calculations.

• Attribute type specifies the category of the group. It also differentiates one group element from
another. Values of the type attribute use the “parent.child” naming convention, where parent rep-
resents a category and child is its property. Attribute unit specifies the unit of currency adopted
by the document and attribute decimalPattern specifies the format for displaying numeric
values, using pound (#) symbols as placeholders. The period attribute marks up the declaration
date of the statement.

URL / Description

www.openebook.org
This is the home page for the Open eBook Forum, the organization that oversees development and
maintenance of the Open eBook Publication Structure.

www.openebook.org/oebpsdownload.htm
The Open eBook specification can be obtained from this page in a variety of formats.

www.oasis-open.org/cover/openEbook.html
This page contains an introduction to the Open eBook Publication Structure and links to relevant
resources and articles.

www.openebook.org/faq.htm
This is the Open eBook Forum’s FAQ page.

www.openebook.org/release011300.htm
This page contains the Open eBook Forum’s initial press release.

Fig. 21.13 Open eBook Publication Structure reference Web sites.

Chapter 21 Custom Markup Languages: Part II 597

• The DTD used by XBRL documents is xbrl-core-00-04-04.dtd.

• Bank Internet Payment System (BIPS) facilitates secure electronic transactions over the Internet.
It is used by client-server applications to communicate payment instructions. This freely distrib-
uted XML specification enables BIPS users (e.g., banks, small businesses, etc.) to implement e-
business services affordably for their customers.

• BIPS transactions can be initiated by either the payer or payee, and transactions are secured using
digital certificate technology.

• In September 1999, the United Nations’s Center for Trade Facilitation and Electronic Business
(UN/CEFACT) and the Organization for the Advancement of Structured Information Standards
(OASIS) began a project to standardize the global exchange of business information. The result of
this project is Electronic Business XML (ebXML).

• ebXML provides a standard infrastructure for global electronic business that enables medium to
large businesses to exchange business information. The Global Commerce Initiative, a coalition
of 40 major business, including Kraft Foods and Home Depot, has adopted ebXML as an integral
part of its e-commerce framework.

• ebXML emphasizes business processes that describe a series of actions, such as “procure materi-
als.” A process contains details of the data exchange and the sequences, or choreographies, of mes-
sages. Reusable objects called core components can be used in messages to represent information
such as telephone numbers. Core components give businesses a mechanism with which to use in-
dustry-specific vocabularies, but are semantically neutral themselves.

• VISA International has developed the VISA XML Invoice Specification to enable its business cus-
tomers to exchange credit-card purchase information over the Internet in a secure and standardized
form. The VISA Invoice Specification enables commercial credit-card users to maintain and le-
verage more detailed information on credit-card purchases.

URL / Description

www.mozilla.org
This is the Mozilla project home page. XUL was created by Mozilla to manage the user interface
for its browser.

www.mozilla.org/xpfe
This site is the home page for Mozilla’s cross-platform toolkit project, which includes XUL.

www.mozilla.org/xpfe/languageSpec.html
This site posts the XUL specification document.

www.oasis-open.org/cover/xul.html
This site contains an introduction to XUL and links to relevant resources and articles.

www.webtechniques.com/news/2000/07/powers
This page is an article on developing cross-platform applications with XUL.

www.mozilla.org/xpfe/xptoolkit/xulintro.html
This site contains an introduction to XUL.

www.xulplanet.com/tutorials/xultu/index.html
This site contains a XUL tutorial.

Fig. 21.14 XUL reference Web sites.

598 Custom Markup Languages: Part II Chapter 21

• Commerce XML (cXML) is an XML-based framework for describing catalog data and performing
business-to-business electronic transactions that use the data. cXML enables customers and sup-
pliers to conduct transactions over the Internet.

• Attribute timestamp provides the time of creation of the document in ISO 8601 format, and at-
tribute payloadID provides a unique ID for the logging of documents.

• Element Header contains the information used to authenticate the document and also provides
information about the sender and receiver of the document.

• Element From specifies the source from which the document was sent and element Credential
sets identification and authentication information. Element To specifies where the document was
sent.

• Element Sender specifies the sender of the document. Element Request contains the request
portion of the document. Element OrderRequest is used for submission of purchase orders.

• Currently, all court documents must be filed with a clerk, and information in these documents of-
ten must be entered into different document management systems multiple times. LegalXML
hopes to reduce the redundancy of such management systems. With LegalXML, the information
in court documents can be described to enable more efficient use.

• News items exist in many different formats and are presented and received through different
means. The International Press Telecommunications Council (IPTC) has coordinated the develop-
ment of NewsML to provide news-content creators and consumers with a means to maximize news
content potential. NewsML is designed to be media independent, so that all news-content formats
(e.g., text, photo, video, etc.) can be described.

• NewsML enables tracking and revision of documents over time. It supports different representa-
tions and encodings of data, as well as different methods of attaching various types of metadata.
NewsML can also take advantage of XML communication over the Web to permit various media
to be separately stored in remote locations that can be accessed by many clients for use in news
content. To aid in the management of news data, NewsML provides an envelope structure for
transmitting, processing and routing information with news content.

• In early 2000, several companies dedicated to electronic text publication founded the Open eBook
Forum with the goal of developing a standard for describing publishable electronic content. The
result of this collaboration is the Open eBook Publication Structure, an XML-based language that
specifies a file format and describes content elements. The language is designed to be platform in-
dependent, but maintains flexibility and permits document authors to embed platform-specific
content as long as a platform-independent alternative is provided.

• XUL (Extensible User Interface Language) is an XML-based language created by the Mozilla
project for describing user interfaces. Cross-platform applications can load the information from
an XUL document to create the user interface.

TERMINOLOGY
AICPA (American Institute of Certified Public
Accountants)

item element
label element

American Institute of Certified Public Accoun-
tants (AICPA)

LegalXML
locationID

Bank Internet Payment System (BIPS) locationType
BIPS (Bank Internet Payment System) Mozilla
BIPS-formatted data NewsML
Body
Commerce XML (cXML)

OASIS (Organization for the Advancement of
Structured Information Standards)

Chapter 21 Custom Markup Languages: Part II 599

SELF-REVIEW EXERCISES
21.1 State whether each of the following are true or false. If false, explain why.

a) XBRL documents usually have xbrl as the root element.
b) XUL is an XML-based language for describing user interfaces.
c) BIPS facilitates unsecure electronic transactions over the Internet.
d) cXML enables customers and suppliers to more efficiently conduct transactions over the

Internet.
e) The Open eBook Publication Structure is an XML-based language that specifies a file

format and describes content elements.

21.2 Fill in the blanks in each of the following statements.
a) provides an envelope structure for transmitting processing and routing infor-

mation with news content.
b) is an XML-based framework for describing catalog data and performing

business-to-business electronic transactions.
c) XUL is an acronym for .
d) With , the information in court documents can be described.
e) BIPS is an acronym for .

ANSWERS TO SELF-REVIEW EXERCISES
21.1 a) False. XBRL documents usually have group as the root element. b) True. c) False. BIPS
facilitates secure electronic transactions over the Internet. d) True. e) True.

21.2 a) NewsML. b) cXML. c) Extensible User Interface Language. d) LegalXML. e) Bank Inter-
net Payment System.

EXERCISES
21.3 State whether each of the following are true or false. If false, explain why.

a) The VISA Invoice Specification enables commercial credit-card users to maintain and
leverage more detailed information on credit-card purchases.

cross-platform Offers element
custom markup languages Open eBook Forum
cXML (Commerce XML) Open eBook Publication Structure
digital certificate technology
DOCTYPE declaration

Organization for the Advancement of Structured
Information Standards (OASIS)

ebXML (Electronic Business XML) platform independent
Electronic Business XML (ebXML) Route
Extensible Business Reporting Language (XBRL)routing information
Extensible User Interface Language (XUL) To
From
graphical user interface (GUI)

UN/CEFACT (United Nations’ Center for Trade
Facilitation and Electronic Business)

group element
GUI (graphical user interface)

United Nations’ Center for Trade Facilitation and
Electronic Business (UN/CEFACT)

handle VISA International
id attribute VISA XML Invoice Specification
International Press Telecommunications Council
(IPTC)

XBRL (Extensible Business Reporting Language)
xbrl XBRL root element

IPTC (International Press Telecommunications
Council)

XP
XUL (Extensible User Interface Language)

600 Custom Markup Languages: Part II Chapter 21

b) Client and server applications can use BIPS to communicate payment instructions over
the Internet.

c) cXML is an acronym for Cash XML.
d) An XBRL document contains three elements: group, items and label.
e) XUL was created by Microsoft.

21.4 Fill in the blanks in each of the following statements.
a) XML Invoice Specification enables business customers to exchange credit-

card purchase information over the Internet in a secure standardized form.
b) ebXML is an acronym for .
c) provides a standard infrastructure for global electronic business.
d) captures existing financial and accounting information standards in XML.
e) developed the Open eBook Publication Structure.

22
XML Technologies and

Applications

Objectives
• To become familiar with the XML Query Language

(XML Query).
• To understand and use the Resource Definition

Framework (RDF).
• To understand and use the Channel Definition Format

(CDF).
• To become familiar with Rich Site Summary (RSS).
• To become familiar with the Platform for Privacy

Preferences (P3P).
• To learn about the Blocks Extensible Exchange

Protocol (BXXP).
If there is but little water in the stream, it is the fault, not of
the channel, but of the source.
St. Jerome

Private faces in public places
Are wiser and nicer
Than public faces in private places.
W. H. Auden

But what, to serve our private ends,
Forbids the cheating of our friends?
Charles Churchill

602 XML Technologies and Applications Chapter 22

22.1 Introduction
Every day, individuals and organizations are discovering new and exciting ways to enhance
existing technologies and create entirely new ones with XML. This chapter introduces sev-
eral emerging XML-related technologies that cover a broad range of industries. In the first
half of the chapter, we introduce the XML Query Language (XML Query), for searching and
retrieving data from XML documents; Directory Services Markup Language (DSML), for
describing relational data and metadata (i.e., information about information; elements are
examples of metadata) so that they can be managed by directory services (e.g., software
used to manage a company’s personnel resources, etc.); Resource Definition Framework
(RDF), which enables document authors to describe the data in an XML document; an in-
formation-mapping technology called XML Topic Maps (XTM); Channel Definition For-
mat (CDF) and Rich Site Summary (RSS), which provide dynamic content to subscribers;
and the Information and Content Exchange (ICE) Protocol, which manages content syndi-
cation over networks.

In the second half of this chapter, we introduce a specification for describing a Web
site’s privacy policy called the Platform for Privacy Preferences (P3P); a technology for
transferring data over the Internet called the Blocks Extensible Exchange Protocol (BXXP);
a W3C recommendation for XML implementation of security and authentication technol-
ogies called XML Digital Signatures; the Extensible Rights Markup Language (XrML), for
licensing proprietary digital content and the XML Metadata Interchange (XMI), for
exchanging program-modeling data.

Outline
22.1 Introduction
22.2 XML Query Language (XML Query)
22.3 Directory Services Markup Language (DSML)
22.4 Resource Definition Framework (RDF)
22.5 XML Topic Maps (XTM)
22.6 Virtual HyperGlossary (VHG)
22.7 Channel Definition Format (CDF)
22.8 Information and Content Exchange (ICE) Protocol
22.9 Rich Site Summary (RSS)
22.10 Platform for Privacy Preferences (P3P)
22.11 Blocks Extensible Exchange Protocol (BXXP)
22.12 XML Digital Signatures
22.13 Extensible Rights Markup Language (XrML)
22.14 XML Metadata Interchange (XMI)
22.15 W3C’s XML Protocol
22.16 XAML

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

Chapter 22 XML Technologies and Applications 603

Although many of our readers will not know the technical details required to fully
understand all the technologies presented in this chapter, we feel that this chapter nicely
illustrates the wide varieties of applications of XML. Each section introduces an XML
technology and provides a list of Web resources for finding additional information about
that technology.

22.2 XML Query Language (XML Query)
XML Query (XML Query Language) uses the power of XSL patterns to search XML doc-
uments for specific data. Just as SQL (Structured Query Language) searches for data stored
in relational databases, XML Query searches for data stored in an XML document. XML
Query syntax resembles the path specification in a UNIX environment (e.g., root/di-
rectory/subdirectory). XML Query was submitted to W3C as a proposal in 1998,
and development on the language is ongoing. Figure 22.1 provides XML Query resources.

22.3 Directory Services Markup Language (DSML)
Directory services provide a method for managing relational resources and metadata. Aside
from their usual usage for storing records of organizational assets, directory services can be
used with XML to dynamically match data across networks. The Directory Services Mark-
up Language (DSML) is the bridge between directory services and XML. A standard vo-
cabulary and schema provide the means for directory services information to be described
in an XML document. With DSML, directories gain the ability to handle distributed Web-
based applications, such as those used in e-business, network and supply chain manage-
ment. DSML is platform independent, requiring only that the data be structured so that they
can be manipulated with DSML. Figure 22.2 provides DSML Web resources.

URL / Description

www.w3.org/TandS/QL/QL98/pp/xql.html
This page contains the original XML Query proposal.

www.xml.com/pub/1999/03/quest/index2.html
This site contains a series of articles that summarize the results of the QL’98 conference, which re-
sulted in the submission of XML Query to the W3C.

metalab.unc.edu/xql
This site contains XML Query FAQs.

metalab.unc.edu/xql/xql-tutorial.html
This site contains a brief XML Query tutorial.

www.cuesoft.com/docs/cuexsl_activex/xql_users_guide.htm
This site contains a detailed description of XML Query syntax.

www.w3.org/TR/xmlquery-req
This site contains the W3C requirements for XML Query.

www.w3.org/TR/query-datamodel
This site defines the data model for XML Query.

Fig. 22.1 XML Query reference Web sites.

604 XML Technologies and Applications Chapter 22

22.4 Resource Definition Framework (RDF)
The availability of the Web and the relative ease of creating documents has led to a wealth
of information on the Web. Unfortunately, finding information on a specific topic can often
be difficult and time consuming. The Resource Definition Framework (RDF) is an XML-
based language for describing information contained in a resource. A resource can be a
Web page, an entire Web site or any item on the Web that contains information in some
form. RDF’s “information about information” (or metadata) can be used by search engines
or intelligent software agents to list or catalog information on the Web. RDF can also be
used to evaluate a Web site for rating purposes or to create digital signatures (i.e., the digital
equivalent of a written signature). The Resource Definition Framework Model and Syntax
is a W3C Recommendation. The RDF Schema Specification Version 1.0 is currently a
W3C Candidate Recommendation. Figure 22.3 presents a simple RDF document that de-
scribes the Deitel & Associates, Inc., Web site.

URL / Description

www.dsml.org
This is the official Web site of the DSML standard.

www.oasis-open.org/cover/dsml.html
This site contains an introduction to DSML and links to relevant resources and articles.

Fig. 22.2 DSML reference Web sites.

1 <?xml version = "1.0"?>
2
3 <!-- Fig 22.3 : simple.rdf -->
4 <!-- Using RDF -->
5
6 <rdf:RDF
7 xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
8 xmlns:dc = "http://purl.org/dc/elements/1.1/">
9

10 <rdf:Description about = "http://www.deitel.com">
11 <dc:Title>Deitel and Associates, Inc.</dc:Title>
12 <dc:Description>
13 This is the home page of
14 Deitel and Associates, Inc.
15 </dc:Description>
16 <dc:Date>2000-5-24</dc:Date>
17 <dc:Format>text/html</dc:Format>
18 <dc:Language>en</dc:Language>
19 <dc:Creator>Deitel and Associates, Inc.</dc:Creator>
20 </rdf:Description>
21
22 </rdf:RDF>

Fig. 22.3 Simple RDF document describing a Web page.

Chapter 22 XML Technologies and Applications 605

Lines 6–8

<rdf:RDF
 xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc = "http://purl.org/dc/elements/1.1/">

define root element rdf:RDF. We declare the namespace prefixes rdf and dc.
Namespace prefix rdf is used for RDF elements, and namespace prefix dc is used for
metadata elements that are defined by the Dublin Core’s Dublin Core Metadata Initiative.
Dublin Core is an organization that is primarily concerned with metadata standards.

Line 10

<rdf:Description about = "http://www.deitel.com">

uses element rdf:Description to describe the resource specified in attribute about.
In our case, we use the URL http://www.deitel.com.

Line 11

<dc:Title>Deitel and Associates Inc.</dc:Title>

uses element Title to mark up the resource’s name. Lines 12–20 use other metadata ele-
ments to provide further information about the resource.

Figure 22.4 uses a visualization tool for RDF—located at www.w3.org/RDF/
Implementations/SiRPAC—to parse RDF documents into the RDF data model.

Figure 22.5 presents a more substantial RDF document for describing the entire Deitel
& Associates, Inc., Web site.

Fig. 22.4 Visualization tool showing simple.rdf. [Courtesy of World Wide Web
Consortium]

606 XML Technologies and Applications Chapter 22

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 22.5 : links.rdf -->
4 <!-- Describing entire Web site -->
5
6 <rdf:RDF xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
7 xmlns:dc = "http://purl.org/dc/elements/1.1/">
8
9 <rdf:Description about = "www.deitel.com">

10 <dc:Title>Home page of Deitel products</dc:Title>
11 <dc:Creator>Deitel and Associates, Inc.</dc:Creator>
12
13 <dc:Subject>
14
15 <rdf:Bag ID = "links_1">
16 <rdf:li resource = "http://www.deitel.com/books/index.htm"/>
17 <rdf:li resource =
18 "http://www.deitel.com/services/training/index.htm"/>
19 </rdf:Bag>
20
21 <rdf:Bag ID = "links_2">
22 <rdf:li resource =
23 "http://www.deitel.com/announcements/contractors.htm"/>
24 <rdf:li resource =
25 "http://www.deitel.com/announcements/internships.htm"/>
26 </rdf:Bag>
27
28 <rdf:Seq ID = "links_3">
29 <rdf:li resource = "http://www.deitel.com/intro.htm"/>
30 <rdf:li resource = "http://www.deitel.com/directions.htm"/>
31 </rdf:Seq>
32
33 </dc:Subject>
34
35 </rdf:Description>
36
37 <!-- description of the common feature of the Bag links_1-->
38 <rdf:Description aboutEach = "#links_1">
39 <dc:Description>About our Products</dc:Description>
40 </rdf:Description>
41
42 <rdf:Description aboutEach = "#links_2">
43
44 <dc:Description>
45 Announcements, Opportunities
46 and Internships at Deitel and Associates, Inc.
47 </dc:Description>
48
49 </rdf:Description>
50
51 <rdf:Description aboutEach = "#links_3">
52 <dc:Description>All about us</dc:Description>
53 </rdf:Description>

Fig. 22.5 RDF document describing an entire Web site (part 1 of 2).

Chapter 22 XML Technologies and Applications 607

Lines 15 and 21 use element rdf:Bag, which is a container element for an unordered
list of resources. Element Bag contains li elements, which represent individual resources.
Element Seq is used (line 28) to represent an ordered list of resources.

By using attribute aboutEach with element Description, we provide a descrip-
tion of each resource. For example, lines 38–40 provide a description of each resource in
the unordered list on lines 15–19. Figure 22.6 lists some RDF resources.

54
55 <!-- further description of each link -->
56 <rdf:Description about = "http://www.deitel.com/books/index.htm">
57
58
59 <!-- description of page title -->
60 <rdf:Title>
61 Books, Multimedia Cyber Classrooms
62 and Complete Training Courses
63 </rdf:Title>
64
65 </rdf:Description>
66
67 <rdf:Description about =
68 "http://www.deitel.com/services/training/index.htm">
69 <rdf:Title>Corporate Training Courses</rdf:Title>
70 </rdf:Description>
71
72 <rdf:Description about =
73 "http://www.deitel.com/announcements/contractors.htm">
74 <rdf:Title>Looking for Training Contractors</rdf:Title>
75 </rdf:Description>
76
77 <rdf:Description about =
78 "http://www.deitel.com/announcements/internships.htm">
79
80 <rdf:Title>
81 Internships at Deitel and Associates, Inc.
82 </rdf:Title>
83
84 </rdf:Description>
85
86 <rdf:Description about = "http://www.deitel.com/intro.htm">
87
88 <rdf:Title>
89 Introduction to Deitel and Associates, Inc.
90 </rdf:Title>
91
92 </rdf:Description>
93
94 <rdf:Description about = "http://www.deitel.com/directions.htm">
95 <rdf:Title>Our location and how to get there</rdf:Title>
96 </rdf:Description>
97
98 </rdf:RDF>

Fig. 22.5 RDF document describing an entire Web site (part 2 of 2).

608 XML Technologies and Applications Chapter 22

22.5 XML Topic Maps (XTM)
Topic maps, an International Standards Organization (ISO) standard, are a new model for
navigating and linking resources. They can be thought of as a melding of an index, glossary,
thesaurus and concept map (i.e., a graphical representation of data). Much as XML sepa-
rates content from presentation, topic maps separate content from links. Topic maps, like
XLink, exist as hypertext layers above, rather than within, an information set. They have
many similar linking capabilities, including the ability to independently reference resourc-
es.

The topic, the basic unit of a topic map, is used to represent a subject and to reference
data pertaining to that subject. Each topic is described by other topics that detail its names,
occurrences and associations. The occurrences of a topic are the various information
resources that relate to it. Each occurrence has a certain role, such as “chart” or “article,”
and a type that provides further information on the role. The various relationships between
topics are described by using associations of different types as well as the role that each
topic plays within the association. In addition, topic maps incorporate mechanisms that
define the identity and scope of a topic, as well as the facets, or properties, of the informa-
tion it references. Almost every component of a topic map is a topic, enabling the topic map
to be self-documenting and self-describing. Indeed, processing instructions, queries and
schemas for topic maps can themselves be expressed as topic maps. Depending on its appli-
cation, a topic map may consider different subjects to be topics and deal with them in dif-

URL / Description

www.w3.org/RDF
This is the W3C’s RDF information site.

www.w3.org/TR/1999/REC-rdf-syntax-19990222
This is the RDF specification document.

www.oasis-open.org/cover/rdf.html
This site contains an introduction to RDF and links to resources and articles.

www.ilrt.bris.ac.uk/discovery/rdf/resources
This site contains an extensive list of RDF resources.

www.w3.org/RDF/FAQ
This site contains RDF FAQs.

www.wdvl.com/Internet/Future/rdf.html
This site contains a brief article on RDF, including an example.

www.wdvl.com/Authoring/Languages/RDF.html
This site contains a brief article on RDF, and includes links to other resources.

www.w3.org/DesignIssues/RDF-XML.html
This site is an article on the differences between RDF and XML.

purl.oclc.org/dc
Home page of the Dublin Core Metadata Initiative.

Fig. 22.6 RDF reference Web sites.

Chapter 22 XML Technologies and Applications 609

ferent ways. It logically follows that multiple topic maps may be applied to one information
set and one topic map can be applied to multiple information sets.

Figure 22.7 lists an example of a topic map. The example lists various topics, their
associations (if any) and their occurrences (if any). The listing at the end of code shows an
output of the application for some of the commands.Topic map documents contain element
topicmap (line 6) as the root element. Each topic in a topic map is described by element
topic. Lines 9–72 list six such topics: light-vehicle (lines 9–17), heavy-
vehicle (lines 19–27), car (lines 29–45), earth-mover (lines 47–60), make (lines
62–66) and product (lines 68–72). Each topic is identified by the id attribute, which
must be unique. Line 9 declares the identifier light-vehicle for one such topic. Lines
11–15 contain a topname element that describe the characteristics of its parent topic
element. A basename element (line 12) gives the topic a name to be used by applications.
Every topic must have a basename element. The dispname element (line 13) is used to
display the name of the topic (e.g., to a human reader). The sortname element (line 14)
describes a name that is used for sorting purposes by applications. In the absence of dis-
pname or sortname elements, the basename element is used.

Lines 29–35 describe the car topic. Attribute types (line 29) indicates that a car is
a type of light-vehicle. The car topic element also contains a topname element
that further describes car.

Occurrences of a topic are described by element occurs (lines 38–44 and 56–58).
The role of the occurrence is specified by the attribute occurl (line 38) and the attribute
loctype (line 38) specifies the type of the location at which the topic occurs, which in
this case is a URL. The occurs element on lines 38–44 indicates that the URL http:/
/www.abcsportscar.com/new is a webpage that has information relating to the
topic of cars.

Associations in topic maps are represented by element assoc (line 75–78). In our case
the association between car and the company ABC, Inc., can be expressed as—car is a
make of ABC, Inc. The association is therefore declared as type make (line 75). Line 76
declares the topics involved in the association using the element assocrl. The role of
car in this association would be that of a product. We therefore declare the type as
product (line 76).

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 22.7: vehicles.xml -->
4 <!-- simple topic map -->
5
6 <topicmap>
7
8 <!-- topics -->
9 <topic id = "light-vehicle">

10
11 <topname>
12 <basename>Light weight vehicles</basename>
13 <dispname>Passenger vehicles</dispname>
14 <sortname>Light weight vehicles</sortname>
15 </topname>

Fig. 22.7 Topic map for types of motor vehicles (part 1 of 3).

610 XML Technologies and Applications Chapter 22

16
17 </topic>
18
19 <topic id = "heavy-vehicle">
20
21 <topname>
22 <basename>Heavy weight vehicles</basename>
23 <dispname>Construction vehicles</dispname>
24 <sortname>Heavy weight vehicles</sortname>
25 </topname>
26
27 </topic>
28
29 <topic id = "car" types = "light-vehicle">
30
31 <topname>
32 <basename>ABC's car</basename>
33 <dispname>Sports car</dispname>
34 <sortname>car</sortname>
35 </topname>
36
37 <!-- occurrences of topic car -->
38 <occurs occrl = "webpage" loctype = "URL">
39 http://www.abcsportscar.com/new
40 </occurs>
41
42 <occurs occrl = "order-online" loctype = "URL">
43 http://www.abcsportscar.com/outlet
44 </occurs>
45 </topic>
46
47 <topic id = "earth-mover" types = "heavy-vehicle">
48
49 <topname>
50 <basename>ABC's heavy duty mover</basename>
51 <dispname>Earth movers</dispname>
52 <sortname>Earth mover</sortname>
53 </topname>
54
55 <!-- occurrences of topic earth-mover -->
56 <occurs occrl = "webpage" loctype = "URL">
57 http://www.abcsportscar.com/heavy-vehicles
58 </occurs>
59
60 </topic>
61
62 <topic id = "make">
63 <topname>
64 <basename>ABC, Inc.</basename>
65 </topname>
66 </topic>
67

Fig. 22.7 Topic map for types of motor vehicles (part 2 of 3).

Chapter 22 XML Technologies and Applications 611

68 <topic id = "product">
69 <topname>
70 <basename>Product</basename>
71 </topname>
72 </topic>
73
74 <!-- associations -->
75 <assoc type = "make">
76 <assocrl type = "product">car</assocrl>
77 <assocrl type = "product">earth-mover</assocrl>
78 </assoc>
79
80 </topicmap>

C:\tmproc>c:\Python\python -i tmproc.py vehicles.xml
Starting topic map processing...
Parsing vehicles.xml with xmlproc 0.62
Finished topic map processing...

>>> tm.get_topics()
[<tm.Topic light-vehicle>, <tm.Topic make>, <tm.Topic earth-mover>,
<tm.Topic car>, <tm.Topic product>, <tm.Topic heavy-vehicle>]

>>> tm.get_types_list(tm["car"])
[<tm.Topic light-vehicle>]

>>> tm.is_type(tm["earth-mover"], tm["heavy-vehicle"])
1

>>> tm.get_topics_of_type(tm["heavy-vehicle"])
[<tm.Topic earth-mover>]

>>> topic = tm["car"]
>>> topicname = topic.get_names()[0]
>>> n = topicname.get_basenames()[0]
>>> n.get_name()
"ABC's car"

>>> dispname = topicname.get_dispnames()[0]
>>> dispname.get_name()
'Sports car'

>>> firstOccur = topic.get_occurrences()[0]
>>> firstOccur.get_rolename()
'webpage'
>>> secondOccur = topic.get_occurrences()[1]
>>> secondOccur.get_rolename()
'order-online'

>>> association = tm.get_associations()[0]
>>> association.get_type()
<tm.Topic make>

Fig. 22.7 Topic map for types of motor vehicles (part 3 of 3).

612 XML Technologies and Applications Chapter 22

Currently, there are several preliminary XML topic-map implementations. For the
example in this section, we use an implementation written in the Python programming lan-
guage. To execute the example in Fig. 22.7, the following software must be installed:

1. Download Python version 1.5.2 from www.python.org/1.5 and follow the
installation instructions.

2. Download saxlib Version 1.0 (a Python version of SAX), driver package
Version 1.01 and xmlproc (a validating XML parser) from the links in
www.stud.ifi.uio.no/~lmariusg/download/python/xml.

3. Unpack all three packages into Lib subdirectory, e.g., c:\Python\Lib.

4. Download the topic-map implementation tmproc from www.ontopia.net/
software/tmproc/index.html.

5. Decompress tmproc to a local directory (e.g., c:\tmproc).

The Python implementation for topic maps can used to query the topic map. To run the
application, at the command prompt (in tmproc subdirectory) enter the command

c:\tmproc> c:\Python\python -i tmproc.py <file.xml>

This would start an interactive session with the user. Various commands (Fig. 22.8) in
the tmproc library can be used to query the topic map.

As an ISO standard, topic maps have an SGML specification with a corresponding
DTD, which has been translated into several XML DTDs and schema. A standards com-
mittee is currently developing a specification for XML Topic Maps (XTM). Figure 22.9
lists Web resources for topic maps.

22.6 Virtual HyperGlossary (VHG)
VHG is a platform-independent specification for terminology. It provides a method of
knowledge management that attaches extensive semantic information to structured data,
enabling, for instance, human-understandable definitions to be attached to tags. VHG spec-
ifies a framework of hyperlinked glossaries, dictionaries and thesauri that provide docu-
ments with a terminological environment. Documents can be linked to a glossary, which
has an extensive network of internal hyperlinks. VHG takes advantage of the XML DOM
to give its glossaries a hierarchical structure that can be easily searched and indexed. In ad-
dition, VHG has software tools that give it advanced capabilities, including automatic lex-
ical markup of documents, advanced indexing, concept-map generation, taxonomic
manipulation of glossaries and support for multilingual glossaries using translation algo-
rithms. Figure 22.9 provides VHG Web resources.

22.7 Channel Definition Format (CDF)
CDF (Channel Definition Format) is a Microsoft XML application that implements a tech-
nology—called push technology—that automatically sends contents to users. Using CDF,
Web authors can define channels that automatically deliver content to subscribed users. For
example, a user can subscribe to a financial-information Web site’s channel to receive in-
formation about certain stocks at a regular interval. Additionally, several related Web sites
can use channels to refer users between sites.

Chapter 22 XML Technologies and Applications 613

Methods Description

get_topics Returns all the topics found in the document.

get_types_list Lists the types of a given topic.

is_type Determines if a topic is of given type or not.

get_topics_of_type Returns all the topics for a given type.

get_names Returns all the names for a topic.

get_basenames Returns the base names for a given topic.

get_dispnames Returns the display names for a given topic.

get_occurrences Returns the occurrence for a topic.

get_rolename Returns the role an occurrence.

get_associations Returns all the associations in the document.

get_type Returns the type of association or occurrence.

Fig. 22.8 Some tmproc topic-map processor commands.

URL / Description

www.infoloom.com
Infoloom is developing topic map implementations and is also a member of the XTM authoring
group. This site contains XTM resources and topic-map links.

www.oasis-open.org/cover/topicMaps.html
This site provides a brief introduction to topic maps and links to relevant resources and articles.

www.ontopia.com
Ontopia is another topic-map developer. Its site contains extensive articles and papers on topic maps
and their relation to XML technologies.

www.topicmaps.com
This site, run by STEP, a topic-map developer, contains an introduction to and background informa-
tion on topic maps.

Fig. 22.9 XTM Web resources.

URL / Description

www.vhg.org.uk
This is the official VHG site, providing extensive information on VHG.

www.oasis-open.org/cover/vhg.html
This site provides a brief introduction to VHG and links to relevant resources and articles.

Fig. 22.10VHG Web resources.

614 XML Technologies and Applications Chapter 22

Software Engineering Observation 22.1
Because CDF documents are external documents that are linked, Web sites are easily mod-
ified to incorporate them. 22.1

Figure 22.11 lists an HTML document that links to a CDF document. When a user
clicks on the hyperlink, the browser (i.e., Internet Explorer) processes the CDF document
and sets up the Web sites listed within for information retrieval. A screen capture of Internet
Explorer using CDF is shown in Fig. 22.12. Figure 22.13 lists the CDF document.

Root element channel (line 8) describes the channel for the Web site. Attribute
href references the Web page that will be displayed when the channel is selected. In this
particular case, clicking the Deitel Products link (Fig. 22.12) directs the user to the home
page for Deitel & Associates, Inc. (i.e., www.deitel.com).

Elements title and abstract (lines 10 and 11, respectively) provide a title name
for the channel and a description for the channel, respectively. Lines 13 and 14

<logo href = "http://www.deitel.com/images/logotiny.gif"
 style = "ICON"/>

Fig. 22.12 Internet Explorer and CDF.

1 <!-- Fig. 22.11 : simple.html -->
2 <!-- Simple example of CDF -->
3 <!doctype html public "-//w3c//dtd html 4.0 transitional//en">
4 <html>
5
6 <body>
7 Get a simple channel!!
8 </body>
9

10 </html>

Fig. 22.11 HTML document referencing a CDF document.

logo icon

Chapter 22 XML Technologies and Applications 615

define a logo for the channel. Attribute href references the image, and attribute style
has value ICON—indicating that the resource referenced by href is to be used as the icon
for the channel.

Each item element provides a Web page by using attribute href. Element item can
also contain elements title, abstract and logo.

For more information on Microsoft’s CDF implementation, including additional ele-
ments and attributes, visit msdn.microsoft.com/workshop/delivery or the
Web site listed in Fig. 22.14.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 22.13 : simple.cdf -->
4 <!-- Simple example of CDF -->
5
6 <!DOCTYPE channel SYSTEM "cdf.dtd">
7
8 <channel href = "http://www.deitel.com">
9

10 <title>Deitel Products</title>
11 <abstract>An example of CDF</abstract>
12
13 <logo href = "http://www.deitel.com/images/logotiny.gif"
14 style = "ICON"/>
15
16 <item href =
17 "http://www.deitel.com/books/1999/jhtp3/jhtp3toc.htm">
18 <title>Java How to Program 3rd Edition</title>
19 <logo href =
20 "http://www.deitel.com/images/0130125075_small.jpg"
21 style = "ICON"/>
22 </item>
23
24 <item href =
25 "http://www.deitel.com/books/1999/iw3htp/iw3htp_toc.htm">
26 <title>Internet and World Wide Web How to Program</title>
27 <logo href =
28 "http://www.deitel.com/images/0130161438_small.jpg"
29 style = "ICON"/>
30 </item>
31
32 </channel>

Fig. 22.13 CDF document for Deitel products.

URL / Description

www.w3.org/TR/NOTE-CDFsubmit.html
This site contains the CDF document submitted to the W3C.

Fig. 22.14 CDF reference Web sites (part 1 of 2).

616 XML Technologies and Applications Chapter 22

22.8 Information and Content Exchange (ICE) Protocol
The Information and Content Exchange Protocol (ICE) was designed to facilitate the re-
distribution and reuse of Web content. It automates the syndication, transfer and analysis
of data, supporting a broad array of software systems and data formats. ICE governs the
interaction between a media syndicator and a subscriber after they have entered into a busi-
ness relationship. Communication with the protocol is based on the request/response mod-
el. The subscriber is sent a catalog of subscription offers, and ICE is used to establish and
manage any subscriptions that are made. Data is contained in generic packages, which are
transferred to the subscriber by one of several delivery models defined by ICE. A se-
quenced package model is available for both incremental and full updates, and there are
also push and pull models. In addition to data transfer, ICE also provides a structure for ex-
changing and examining the event logs that keep track of the subscription. ICE also in-
cludes functionality for modifying the parameters of the protocol, unsolicited text
messaging and querying between the two systems. ICE has been submitted to the W3C for
recommendation consideration. For additional information on ICE, consult the Web sites
listed in Fig. 22.15.

www.oasis-open.org/cover/gen-apps.html#CDF
This site provides a brief introduction to CDF and links to relevant resources and articles.

www.wdvl.com/Authoring/Languages/CDF.html
This site contains a brief article on CDF, with links to other resources.

msdn.microsoft.com/workshop/delivery/channel/cdf1/
cdf1.asp?RLD=363
This site contains a tutorial on creating channel content for the Web using CDF.

msdn.microsoft.com/library/periodic/period97/cutting1297.htm
This is a Microsoft technology article on channel content.

www.techweb.com/se/directlink.cgi?NTG19970601S0049
This article is a reflection on push technology and CDF.

URL / Description

www.icestandard.org
This is the official site of the ICE standard.

www.w3.org/TR/1998/NOTE-ice-19981026
This site contains the ICE document submitted to the W3C.

www.oasis-open.org/cover/ice.html
This site provides a brief introduction to ICE and provides links to resources and articles.

Fig. 22.15ICE reference Web sites.

URL / Description

Fig. 22.14 CDF reference Web sites (part 2 of 2).

Chapter 22 XML Technologies and Applications 617

22.9 Rich Site Summary (RSS)
Rich Site Summary (RSS) is a Netscape technology that implements push technology. Like
CDF, RSS can be used to create channels that automatically distribute information to sub-
scribed users. RSS enables Web authors to create a link that visitors can select to receive a
specified channel. Figure 22.16 provides several RSS Web resources.

22.10 Platform for Privacy Preferences (P3P)
As Internet and e-commerce use continue to increase, users are becoming more aware of
privacy issues. Many Web sites require visitors to divulge personal information in order to
receive certain services. More ominously, companies such as DoubleClick have the poten-
tial to combine a user’s personal information with the user’s surfing and shopping prefer-
ences. In the last few years, federal and state governments and independent organizations
have raised several concerns about privacy.

The W3C is developing the Platform for Privacy Preferences (P3P) recommendation
to help Web users manage how their personal information is collected and used on the
Internet. A Web site that uses P3P specifies what information the site requests and how the
site uses that information. The user’s browser then interprets this information and compares
the information with user-defined privacy settings. For example, the site may collect visitor
information in order to send third-party information to the visitor’s home address. If the vis-
itor has specified that personal information should not be used for third-party offers, the
visitor’s browser could simply prevent access to the Web site or could display a message
informing the visitor of the Web site’s privacy policy and prompt the user for further action.

URL / Description

my.netscape.com/publish/help/mnn20/quickstart.html
This is a Netscape documentation/tutorial site for RSS.

webreference.com/xml/column13
This site contains a how-to article on creating RSS content for a Web site.

www.webreference.com/authoring/languages/xml/rss/intro/index.html
This site contains a technical introduction to RSS.

webreview.com/pub/1999/10/29/feature/index2a.html
This site is an article that discusses the semantics and prospects of RSS.

webreview.com/pub/1999/10/29/feature/index2b.html
This site contains an article that examines the benefits of RSS.

www.webreference.com/authoring/languages/xml/rss
This site contains an extensive list of RSS resources.

my.netscape.com/publish/help/validate.tmpl
Users can validate their RSS documents at this site.

www.webreference.com/perl/tools
This site lists available RSS tools for Perl.

Fig. 22.16 RSS reference Web sites.

618 XML Technologies and Applications Chapter 22

Some privacy advocates contest P3P’s viability as a privacy protocol. They assert that
the current problem with on-line security arises because users are compelled to settle for
less restrictive privacy protection in order to receive the services they desire, or because
changing default privacy preferences is too complicated or time consuming. Web compa-
nies and users will continue to debate privacy issues as more e-business companies and
consumers come on-line. For more information on P3P, visit the Web sites provided in Fig.
22.17.

22.11 Blocks Extensible Exchange Protocol (BXXP)
Blocks Extensible Exchange Protocol (BXXP) is an alternative to HTTP for transferring
data over the Internet. BXXP was developed by Marshall Rose as a general application pro-
tocol on which users can develop more specific protocols. For example, BXXP can be used
to develop reusable protocols for instant-messaging, chat or file-transfer applications.
BXXP sends “blocks” of XML data over TCP and has the capability to send multiple si-
multaneous blocks of data. Currently, BXXP is still in development. For more information,
refer to the resources in Fig. 22.18.

URL / Description

www.w3.org/TR/P3P
This site provides the W3C’s P3P specification.

www.w3.org/P3P
This site posts an overview of P3P and provides links to resources and previous P3P events.

www.oasis-open.org/cover/p3p.html
This site contains an introduction to P3P and provides links to relevant resources and articles.

www.research.att.com/projects/p3p/p3p-www9.ppt
This site contains a PowerPoint presentation on privacy and P3P.

www.xml.com/pub/1999/05/p3pdraft.html
This site is an article that discusses the development of privacy standards on the Web.

www.w3.org/TR/P3P-for-ecommerce
This site contains an article that discusses using P3P in e-commerce.

Fig. 22.17 P3P reference Web sites.

URL/Description

mappa.mundi.net/Internet-Drafts/blocks-protocol.html
This site contains the BXXP draft.

mappa.mundi.net/Internet-Drafts/blocks-architecture.html
This document describes the architecture of BXXP.

Fig. 22.18 BXXP reference Web sites (part 1 of 2).

Chapter 22 XML Technologies and Applications 619

22.12 XML Digital Signatures
Because of XML’s open nature, there are significant security concerns for an XML-based
Web. Externally referenced DTDs and stylesheets could be modified to omit, mangle or
otherwise alter information and, even worse, leave large security holes that would enable
anybody to access information. Digital signature technology can solve this problem by pro-
viding a way to verify documents.

Many security technologies use XML. Most of them are designed specifically for
financial transactions, but the most important is the W3C’s XML Signature, a general spec-
ification for digital signatures. The algorithms used in the specification include the DSS
(Digital Signature Standard) public-key algorithm and the SHA-1 (Secure Hash) hash
authentication code algorithm (view csrc.nist.gov/fips/fip180-1.pdf for
information on this algorithm), which is based on the secret-key model. In addition, users
can extend XML Signature with their own algorithms and security models. An XML sig-
nature can be applied to any type of data, either inside or outside of the XML document
containing the signature. The data object is digested and placed, along with other informa-
tion, inside an XML element that is, in turn, digested and cryptographically signed. The
data are canonicalized to avoid any processing-incurred changes from breaking the signa-
ture between the signer and verifier. URIs link signatures to data objects. Signed data are
either enveloped by the signature, enveloping the signature or detached from the signature.

IBM’s XML Security Suite is a program on which the W3C has drawn for its XML
Signature specification. It is designed specifically for business-to-business transactions and
provides a variety of different technologies, including digital signatures, elementwise
encryption and access control, in addition to public-key cryptography and hash authentica-
tion. The XML Security Suite is being developed through a joint effort with the Internet
Engineering Task Force (IETF). Figure 22.19 provides XML Signature Web resources.

22.13 Extensible Rights Markup Language (XrML)
The Extensible rights Markup Language (XrML) is a proprietary application of XML, re-
leased by ContentGuard, Inc., on a royalty-free basis, for Digital Rights Management
(DRM). Using XrML, providers of electronic content can specify the rights, fees and con-
ditions of usage in a manner that can be both displayed to people and implemented by com-
puters in an invisible manner. XrML licenses, which the user must possess in order to
access e-content, are embedded into the content they protect, making tampering more dif-
ficult. A different XrML license applies to each right, allowing customizable and extensible
combinations. The flexibility of XrML leads to many different usage arrangements for each

www.nwfusion.com/news/2000/0626bxxp.html?nf
This site contains an article that discusses BXXP.

mappa.mundi.net/features/mtr/bxxp.html
This site contains a brief article that discusses protocol design.

URL/Description

Fig. 22.18 BXXP reference Web sites (part 2 of 2).

620 XML Technologies and Applications Chapter 22

type of e-content, giving a greater choice to customers. Using DRM with XrML, an e-con-
tent provider can specify subscription, rental and even transfer of e-content from one con-
sumer to another. Transactions are made according to these terms of usage and can be
triggered by content-specific events such as pressing the play button on a media player. Un-
like copyright contracts for physical media, which can often be ignored, digital rights man-
agement ensures protection of e-content through automatic enforcement by software. Even
if digital content is transferred to physical media, such as CD or print, it can be regulated
through watermarking and the exclusive use of trusted delivery systems for printing. How-
ever, the terms of a digital contract can be renegotiated if the e-content user desires addi-
tional functionality. XrML also provides a framework for professional and legal
agreements, certification, risk management and emergency responses to cyberattacks.
XrML supports several different server platforms and all of the major operating systems,
ensuring that content can be delivered portably. Figure 22.20 provides XrML resources.

22.14 XML Metadata Interchange (XMI)
In a world of heterogeneous applications, it is often difficult for developers to communicate
and collaborate with each other. The Object Management Group (OMG) standardized the
Unified Modeling Language (UML™), giving developers a common language for design-
ing object, distributed and business models for computing. UML is, in turn, part of a larger
model, the Meta Object Facility (MOF), which describes all software modeling environ-
ments including itself. The MOF provides a rigorous definition of object-oriented models,
technologies, semantics and data interchange formats. To enable the exchange of program-
ming information across a network, UML and MOF were integrated with XML, creating
XMI, the OMG standard for sharing and storing object-oriented information. With XMI,
developers using different tools and programming in different development environments
can collaborate and create compatible distributed applications. XMI is also a Stream-based
Model Interchange Format (SMIF), which enables the streaming of object data from re-
mote databases as well as from traditional file storage. There are standard XMI DTDs for
many widely used object models, and it is possible to automatically generate DTDs for any
meta-information model. Figure 22.21 provides a couple of XMI Web resources.

URL/Description

www.w3.org/Signature
This is W3C’s main page for its XML Signature initiative.

www.xml.com/pub/Guide/Digital_Signatures
This site contains a listing of links related to digital signature technologies.

www.alphaworks.ibm.com/tech/xmlsecuritysuite
This is the Web site for IBM’s XML Security Suite.

Fig. 22.19 XML Signature reference Web sites.

Chapter 22 XML Technologies and Applications 621

22.15 W3C’s XML Protocol
Responding to a widespread demand for technologies that allow communication between
peers in a distributed computing environment, the W3C has begun work on a framework
for XML-based messaging. The aim is to design an envelope for interoperable XML en-
capsulation and transfer, a convention for making remote procedure calls (RPC), a mecha-
nism for serializing nonsyntactic data, such as object graphs, and a method to bind HTTP
to XML. The encapsulation language will enable applications to independently, automati-
cally and dynamically introduce new features, as well as support interaction with network
intermediaries. Ideas from SOAP (i.e., the Simple Object Access Protocol, which is an
XML-based messaging system discussed in Chapter 23) will shape the envelope and seri-
alization technologies, potentially making the new protocols supersets of SOAP. The focus
of the entire project is on simplicity, extensibility, modularity and interoperability, as the
protocols must operate across all types of software models, platforms and applications. To
enable maximum extensibility and flexibility, the protocols will be implemented as a lay-
ered system designed to support further, more robust layers of technologies on top of it. As
of the time of this writing, XML Protocol is in its planning phase, and more information
should be forthcoming as the project moves along. For more information on the XML Pro-
tocol, visit www.w3.org/2000/xp.

22.16 XAML
As this book was going to press, Sun Microsystems, IBM, Hewlett-Packard and Oracle an-
nounced plans to develop a new XML-based specification—named XAML—for automat-
ing transactions. We expect that this initiative will be significant.

URL/Description

www.xrml.org
This is the official XrML page run by ContentGuard, Inc., which contains the white paper, specifi-
cation and other resources.

www.oasis-open.org/cover/xrml.html
OASIS provides a listing of links and articles related to XrML on this Web site.

Fig. 22.20 XrML reference Web sites.

URL/Description

www.omg.org/technology/xml/index.htm
This is the OMG’s XML and XMI Web site. It provides links to XMI specifications and articles.

www-4.ibm.com/software/ad/standards/xmi.html
This is IBM’s XMI Web site, which provides links to various XMI resources, as well as an explana-
tion of XMI and related technologies.

Fig. 22.21XMI Web resources.

622 XML Technologies and Applications Chapter 22

SUMMARY
• XML Query Language (XML Query) uses the power of XSL patterns to search XML documents

for specific data. XML Query syntax resembles the path specification in a UNIX environment.
XML Query was submitted to W3C as a proposal in 1998, and development on the language is
ongoing.

• Directory services provide a method for managing relational resources and metadata. The Direc-
tory Services Markup Language (DSML) is the bridge between directory services and XML. A
standard vocabulary and schema provide the means for directory services information to be de-
scribed in an XML document. DSML is platform independent, requiring only that the data be
structured so that they can be manipulated with DSML.

• The Resource Definition Framework (RDF) is an XML-based language for describing information
contained in a resource. A resource can be a Web page, an entire Web site or any item on the Web
that contains information in some form. RDF’s metadata can be used by search engines or intelli-
gent software agents to list or catalog information on the Web. The Resource Definition Frame-
work is a W3C recommendation.

• RDF documents have root element rdf:RDF. Namespace prefix rdf is used for RDF elements,
and namespace prefix dc is used for metadata elements. Element rdf:Description describes
the resource specified in attribute about.

• Element Title marks up a resource’s name. Element rdf:Bag is a container element for an un-
ordered list of resources. Within Bag elements are li elements, which represent individual re-
sources. Element Seq is used to represent an ordered list of resources.

• Topic maps, an International Standards Organization (ISO) standard, are a new model for navigat-
ing and linking resources. Just as XML separates content from presentation, topic maps separate
content from links. Topic maps, like XLink, exist as hypertext layers above, rather than within, an
information set.

• Virtual HyperGlossary (VHG) is a platform-independent specification for terminology. It provides
a method of knowledge management that attaches extensive semantic information to structured da-
ta, enabling, for instance, human-understandable definitions to be attached to tags. VHG specifies
a framework of hyperlinked glossaries, dictionaries and thesauri that provide documents with a ter-
minological environment.

• CDF (Channel Definition Format) is a Microsoft XML application that implements a technolo-
gy—called push technology—that automatically sends contents to users. Using CDF, Web authors
can define channels that automatically deliver content to subscribed users.

• CDF documents have root element channel, which describes the channel for the Web site. At-
tribute href references the Web page that will be displayed when the channel is selected. Ele-
ments title and abstract provide a title name for the channel and a description for the
channel, respectively. Element logo’s attribute href references an image when attribute style
has the value ICON.

• The Information and Content Exchange Protocol (ICE) was designed to facilitate the redistribution
and reuse of Web content. It automates the syndication, transfer and analysis of data, supporting a
broad array of software systems and data formats. ICE governs the interaction between a media
syndicator and a subscriber after they have entered into a business relationship. Communication
with the protocol is based on the request/response model. ICE has been submitted to the W3C for
recommendation consideration.

• Rich Site Summary (RSS) is a Netscape technology that implements push technology. Like CDF,
RSS can be used to create channels that automatically distribute information to subscribers. RSS
enables Web authors to create a link that visitors can click to receive a specified channel.

Chapter 22 XML Technologies and Applications 623

• The W3C is developing the Platform for Privacy Preferences (P3P) recommendation to help Web
users manage how their personal information is collected and used on the Internet. A Web site that
uses P3P specifies what information the site requests and how the site uses that information.

• Blocks Extensible Exchange Protocol (BXXP) is an alternative to HTTP for transferring data over
the Internet. BXXP was developed by Marshall Rose as a general application protocol on which
users can develop more specific protocols.

• Many security technologies use XML. Most of them are designed specifically for financial trans-
actions, but the most important is the W3C’s XML Signature, a general specification for digital
signatures.

• IBM’s XML Security Suite is a program on which the W3C has drawn for its XML Signature spec-
ification. It is designed specifically for business-to-business transactions and provides a variety of
different technologies, including digital signatures, elementwise encryption and access control, in
addition to public-key cryptography and hash authentication.

• The Extensible rights Markup Language (XrML) is a proprietary application of XML, released by
ContentGuard, Inc., on a royalty-free basis, for Digital Rights Management (DRM). Using XrML,
providers of electronic content can specify the rights, fees and conditions of usage in a manner that
can be both displayed to people and implemented by computers in an invisible manner. XrML li-
censes, which the user must possess in order to access e-content, are embedded into the content
they protect, making tampering more difficult.

• XrML also provides a framework for professional and legal agreements, certification, risk man-
agement and emergency responses to cyberattacks. XrML supports several different server plat-
forms and all of the major operating systems, ensuring that content can be delivered portably.

• The Meta Object Facility (MOF) describes all software modeling environments, including itself.
The MOF provides a rigorous definition of object-oriented models, technologies, semantics and
data interchange formats. To enable the exchange of programming information across a network,
the Unified Modeling Language (UML) and MOF were integrated with XML, creating XML
Metadata Interchange (XMI), the OMG standard for sharing and storing object-oriented informa-
tion.

• With XMI, developers using different tools and programming in different development environ-
ments can collaborate and create compatible distributed applications. XMI is also a Stream-based
Model Interchange Format (SMIF), which enables the streaming of object data from remote data-
bases as well as from traditional file storage.

• The W3C has begun work on a framework for XML-based messaging. The aim is to design an
envelope for interoperable XML encapsulation and transfer, a convention for making remote pro-
cedure calls (RPC), a mechanism for serializing nonsyntactic data, such as object graphs, and a
method to bind HTTP to XML. The encapsulation language will enable applications to indepen-
dently, automatically and dynamically introduce new features, as well as support interaction with
network intermediaries.

TERMINOLOGY
Blocks Extensible Exchange Protocol (BXXP) push technology
BXXP (Blocks Extensible Exchange Protocol) RDF (Resource Definition Framework)
CDF (Channel Definition Framework) Remote Procedure Call (RPC)
channel Resource Definition Framework (RDF)
Channel Definition Framework (CDF) Rich Site Summary (RSS)
channel subscriber RPC (Remote Procedure Call)
digital signature RSS (Rich Site Summary)
distributed application Simple Object Access Protocol (SOAP)

624 XML Technologies and Applications Chapter 22

SELF-REVIEW EXERCISES
22.1 State whether the following are true or false. If false, explain why.

a) XML Query searches for data stored in a tree format.
b) The W3C is currently developing a technology for XML digital signatures.
c) XMI is an acronym for XML Metadata Interchange.
d) Due to the large amount of information available over the Internet, finding information

on a specific topic can often be difficult and time consuming.
e) The Resource Definition Framework can be used to validate a document’s markup or for

digitally signing documents.
f) A person using the Channel Definition Format can define channels that automatically de-

liver content to subscribed users.
g) Unlike CDF, Rich Site Summary (RSS) cannot be used to create channels that automat-

ically distribute information to subscribed users. This task must be done manually with
RSS.

h) Many Web sites require visitors to divulge personal information in order to receive cer-
tain services.

i) BXXP sends “blocks” of data encoded in scripting languages over TCP.
j) P3P is an encryption algorithm used with digital signatures.

22.2 Fill in the blanks in each of the following statements.
a) BXXP is an acronym for .
b) XML Language uses the power of XSL patterns to search XML documents

for specific data.
c) is “information about information.”
d) The Framework is an XML-based language for describing information con-

tained in a resource.
e) Search engines use RDF’s to list or catalog information on the Web.
f) Channel Definition Format is an XML application that implements technol-

ogy.
g) A Web site that uses specifies what information the site requests and how the

site uses that information.
h) A CDF document has root element .
i) BXXP is an alternative to for transferring data over the Internet.
j) Rich is a Netscape technology that implements push technology.

ANSWERS TO SELF-REVIEW EXERCISES
22.1 a) True. b.) True. c) True. d) True. e) False. The Resource Definition Framework can be
used to evaluate a Web site for ratings purposes or to create digital signatures. f) True. g) False. Like
CDF, Rich Site Summary can be used to create channels that automatically distribute information to

dynamic content SOAP (Simple Object Access Protocol)
envelope SQL (Structured Query Language)
metadata Structured Query Language (SQL)
Netscape technology tree format
P3P (Platform for Privacy Preferences) XMI (XML Metadata Interchange)
path specification XML Metadata Interchange (XMI)
Platform for Privacy Preferences (P3P) XML Query Language (XML Query)
proprietary data specification XML Query (XML Query Language)

Chapter 22 XML Technologies and Applications 625

subscribers. h) True. i) False. BXXP sends “blocks” of XML data over TCP. j) False. P3P is a W3C
initiative to address privacy issues on the Internet.

22.2 a) Blocks Extensible Exchange Protocol. b) Query. c) Metadata. d) Resource Definition. e)
metadata. f) push. g) P3P, or Platform for Privacy Preferences. h) channel. i) HTTP. j) Site Sum-
mary.

EXERCISES
22.3 Write a simple RDF document for www.deitel.com. The RDF document should point to
http://www.deitel.com/toc.html for a description of www.deitel.com. The RDF
document should also give a brief description of toc.html. Parse the RDF document using SiR-
PAC’s RDF parser and compiler.

22.4 Consider the fictitious HTML page www.deitel.com/books/index.html, which
describes books in the How to Program series and allows on-line shopping. Write an RDF document
that describes this page using a Description element. The RDF statement should give a brief de-
scription of each book using a Bag element with li elements—for example, Java How to Program,
C How to Program, etc.

22.5 Consider a fictitious entertainment company, ExComp. ExComp broadcasts two audio chan-
nels over the Internet: an oldies and a pop-music channel. It also has a photo gallery, which is updated
on a daily basis. Write a CDF document that, when downloaded, provides access to all of ExComp’s
services. Create fictitious URLs as needed.

23
Simple Object Access
Protocol (SOAP) and
Microsoft BizTalk™

Objectives
• To understand the Simple Object Access Protocol and

how it uses XML.
• To understand the structure of a SOAP message.
• To be able to write Java to applications that send

SOAP messages.
• To understand what BizTalk is and how it works.
Nothing happens until something is sold.
Arthur H. Motley

Men are going to have to learn to be managers in a world
where the organization will come close to consisting of all
chiefs and one Indian. The Indian, of course, is the computer.
Thomas L. Whisler

Chapter 23 Simple Object Access Protocol (SOAP) and Microsoft BizTalk™ 627

23.1 Introduction
Interoperability, or seamless communication and interaction between different software
systems, is a primary goal of many businesses and organizations that rely heavily on com-
puters and electronic networks. Many applications use the Internet to transfer data. Some
of these applications are run on client systems with little processing power, so they invoke
a method call on a different machine to process their data. Many of the applications use pro-
prietary data specifications, which makes communication between other applications diffi-
cult. The majority of these applications also reside behind different firewalls, security
barriers that restrict data communication to and from applications. The Simple Object Ac-
cess Protocol (SOAP) is a protocol that addresses these problems. Combining the powers
of HTTP and XML, it provides a fully extensible mode of communication between soft-
ware systems.

Microsoft BizTalk, a framework for business messaging and transactions, is designed
to overcome barriers to Enterprise Application Integration (EAI)—the networking of
diverse software systems both within and between organizations—and business-to-busi-
ness (B2B) integration. It relies on the BizTalk Library of standardized schema, the BizTalk
Framework of protocols and the BizTalk Server, which is implemented in Microsoft Biz-
Talk Server 2000 for handling communication between different software systems. SOAP
processing capabilities are supported by BizTalk and built into its Framework.

23.2 Simple Object Access Protocol (SOAP)
SOAP was developed and drafted by IBM, Lotus Development Corporation, Microsoft,
DevelopMentor and Userland Software, and it is supported by Sun Microsystems. SOAP
is an HTTP–XML-based protocol that allows applications to communicate easily over the
Internet, by using XML documents called SOAP messages. It is compatible with any object
model, for it includes only functions and capabilities that are absolutely necessary for de-
fining a communication framework. Thus, SOAP is both platform and software indepen-
dent, and it can be implemented in any language. SOAP supports transport using almost
any conceivable protocol. For example, it can be bound to HTTP and follow the HTTP re-
quest–response model. SOAP also supports any method of encoding data.

Outline

23.1 Introduction
23.2 Simple Object Access Protocol (SOAP)
23.3 Microsoft BizTalk

23.3.1 BizTalk Framework
23.3.2 BizTalk Server
23.3.3 BizTalk Schema Library
23.3.4 Microsoft BizTalk Server 2000

23.4 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

628 Simple Object Access Protocol (SOAP) and Microsoft BizTalk™ Chapter 23

A SOAP message contains an envelope, which describes the content, intended recip-
ient and processing requirements of a message. The optional header element of a SOAP
message provides a means for additional processing in transit from the sender to the recip-
ient. It can also incorporate routing information. Through the header, more complex proto-
cols can be built onto SOAP. The message can be extended modularly through header
entries for purposes such as authentication, transaction management and payment. The
body of a SOAP message contains application-specific data for the final intended recipient
of the message.

SOAP can be used to make a Remote Procedure Call (RPC), which is a request made
to another machine to run a task. The RPC uses an XML vocabulary to specify the method
to be invoked, any parameters the method takes and the URI of the target object. An RPC
call naturally maps to an HTTP request, so the message is sent through an HTTP POST. A
SOAP-response message is an HTTP response document that contains the results of the
method call (e.g., returned values, error messages, etc.). SOAP also supports asynchronous
RPC, in which the data follow different encoding rules and do not map to the parameters
of a specific RPC.

As of the time of publication of this book, SOAP is still under development, and many
of the technologies that will build on it are in their planning stages. Before the benefits of
SOAP can be realized fully, higher level specifications and standards that use this tech-
nology must be established. Nevertheless, SOAP is the leading industry standard for an
XML-distributed computing infrastructure, providing previously nonexistent extensibility
and interoperability.

Figures 23.1–23.4 show a SOAP example that uses Apache’s SOAP implementation
API, version 2.0; it can be downloaded from xml.apache.org/soap. To run the
SOAP RPC, a servlet engine, such as Jakarta-Tomcat (jakarta.apache.org), is
required. Apache’s SOAP API also requires Apache’s Xerces parser for Java, which is
available at xml.apache.org/xerces-j/index.html. Installation instructions
for both the server and the client are included in the SOAP documentation (docs/
install/index.html).

Figure 23.1 shows class SimpleService, which resides on the server and contains
method getWelcome. The Java application presented in Fig. 23.4 will invoke this method
using an RPC.

1 // Fig. 23.1 : SimpleService.java
2 // implementation for the requested method on the server
3
4 public class SimpleService {
5
6 public String getWelcome(String message) throws Exception
7 {
8 String text =
9 "Welcome to SOAP!\nHere is your message: " + message;

10
11 return text; // return text to the request
12 }
13 }

Fig. 23.1 Class SimpleService.

Chapter 23 Simple Object Access Protocol (SOAP) and Microsoft BizTalk™ 629

Method getWelcome (lines 6–13) returns a String when invoked. To make this
method available to clients (i.e., to facilitate RPC), we need to provide the server with the
name of the method that must be invoked to process the request. This procedure is called
deploying a service.

To deploy the service, first copy the SimpleService.class file into the jakarta-
tomcat/classes directory, or, if you have created a Java Archive (JAR) file, copy the
JAR file into the jakarta-tomcat/lib directory. Create the classes or lib directories if
they do not already exist. Files in these directories are included automatically in the
CLASSPATH of Jakarta-Tomcat.

The service can be deployed using the XML-SOAP administration tool included in the
SOAP package (located in the directory webapps/soap). To run this application, type the
URL localhost:8080/soap/admin into a Web browser. Figures 23.2 and 23.3 show the
administration tool that allows you to deploy, remove and list services. The ID field in Fig.
23.2 contains a URI (urn:xml-simple-message) that we created to identify the ser-
vice to the client. If one service has the same URI as another, the client cannot differentiate
between them, and consequently, errors may occur. The Scope field specifies the lifetime
of the object created (on the server) for serving the SOAP request. The object can exist for
the duration of the Request, Session or Application. Request denotes that the object
will be deleted after the response is sent, Session indicates that the object persists for a
short time after the end of the server interaction with the client and Application signifies
that the object is available for successive sessions. The Methods field (Fig. 23.2) stipu-
lates the methods that can be invoked upon a SOAP request—in this case, method
getWelcome. The Provider Type field specifies the language in which the service is
implemented. Languages supported include Java, JavaScript, Perl and Bean Markup Lan-
guage (BML). In our case, we use Java. We describe the class providing the service, Sim-
pleService, in the Provider Class field. There are also other fields, but we do not use
them, they and are not shown in Fig. 23.2. Because we are using Java, we do not fill in the
Script Provider field, which designates the scripting language and the script code. The
Type Mapping field allows manual type mapping of the objects. When the form is com-
pleted, click on the Deploy button on the left to deploy the service. In Fig. 23.3, we con-
firm that the service has been deployed by clicking on the List button, which lists the
services.

Instructions for other methods of deployment (such as using the command line) are
located in docs\guide\index.html.

Figure 23.4 lists the client-side code that we use for the RPC. When executed, the pro-
gram sends a SOAP request to the server, which in our case is the same machine, the local
host. The client sends a message as a parameter to the remote method. (This message can
be supplied by the user at the command line; by default, the message Thanks! is used.)
When the method is invoked on the server, it sends back the message

Welcome to SOAP!
Here is your message: Thanks!

Line 7 imports the SOAP package that provides the API for SOAP implementation.
The package org.apache.soap.rpc in line 8 provides the implementation for RPC over
SOAP. Line 13 specifies the encoding style used for the message. SOAP, which has no
default encoding style, supports many encoding styles, including XMI, but we use the stan-

630 Simple Object Access Protocol (SOAP) and Microsoft BizTalk™ Chapter 23

dard RPC encoding. The if statement in lines 16–19 assigns message either the String
input at the command line or the String “Thanks!”. Lines 22 and 23 specify the server-
side URL to which message’s value is sent, rpcrouter.jsp. This document, a Jav-
aServer Page, receives the SOAP envelope through the HTTP POST method. Using the
URI specified in the SOAP message, it looks up the services deployed on the server in order
to instantiate the appropriate object, in this case a SimpleService object.

Line 7 imports the SOAP package that provides the API for SOAP implementation.
The package org.apache.soap.rpc in line 8 provides the implementation for RPC over
SOAP. Line 13 specifies the encoding style used for the message. SOAP, which has no
default encoding style, supports many encoding styles, including XMI, but we use the stan-
dard RPC encoding. The if statement in lines 16–19 assigns message either the String
input at the command line or the String “Thanks!”. Lines 22 and 23 specify the server-
side URL to which message’s value is sent, rpcrouter.jsp. This document, a Jav-
aServer Page, receives the SOAP envelope through the HTTP POST method. Using the
URI specified in the SOAP message, it looks up the services deployed on the server in order
to instantiate the appropriate object, in this case a SimpleService object.

Objects of class Call invoke remote methods. Line 26 instantiates a Call object that
is assigned to reference remoteMethod, and lines 27 and 28 set the URI of the remote
method. Line 31 specifies the name of the method to be invoked, getWelcome. We then
set the encoding style for the message on line 32. Lines 35–37 build the parameters that will
be passed to the remote method for processing. Each parameter must be contained in its
own object, and the parameters must be contained in a vector.

Fig. 23.2 SOAP Package administration tool.

Courtesy of XML project of the Apache Software Foundation; xml.apache.org

Chapter 23 Simple Object Access Protocol (SOAP) and Microsoft BizTalk™ 631

Fig. 23.3 Description of deployed service.

1 // Fig. 23.4 : GetMessage.java
2 // Program that makes a SOAP RPC
3
4 import java.io.*;
5 import java.net.*;
6 import java.util.*;
7 import org.apache.soap.*;
8 import org.apache.soap.rpc.*;
9

10 public class GetMessage {
11
12 public static void main(String args[]) {
13 String encodingStyleURI = Constants.NS_URI_SOAP_ENC;
14 String message;
15
16 if (args.length != 0)
17 message = args[0];
18 else
19 message = "Thanks!";
20
21 try {
22 URL url = new URL(
23 "http://localhost:8080/soap/servlet/rpcrouter");

Fig. 23.4 Client making a SOAP request (part 1 of 3).

Courtesy of XML project of the Apache Software Foundation; xml.apache.org

632 Simple Object Access Protocol (SOAP) and Microsoft BizTalk™ Chapter 23

24
25 // build the call
26 Call remoteMethod = new Call();
27 remoteMethod.setTargetObjectURI(
28 "urn:xml-simple-message");
29
30 // set the name of the remote method to be invoked
31 remoteMethod.setMethodName("getWelcome");
32 remoteMethod.setEncodingStyleURI(encodingStyleURI);
33
34 // set the parameters for the remote method
35 Vector parameters = new Vector();
36 parameters.addElement(new Parameter("message",
37 String.class, message, null));
38 remoteMethod.setParams(parameters);
39 Response response;
40
41 // invoke the remote method
42 response = remoteMethod.invoke(url, "");
43
44 // get the response
45 if (response.generatedFault()) {
46 Fault fault = response.getFault();
47
48 System.out.println("CALL FAILED:\nFault Code = "
49 + fault.getFaultCode()+ "\nFault String = "
50 + fault.getFaultString());
51 }
52 else {
53 Parameter result = response.getReturnValue();
54
55 // display the result of call
56 System.out.println(result.getValue());
57 }
58 }
59 catch (MalformedURLException me) {
60 me.printStackTrace();
61 System.exit(1);
62 }
63 catch (SOAPException se) {
64 System.err.println("Error message: " + se.getMessage());
65 System.exit(1);
66 }
67 }
68 }

java GetMessage
Welcome to SOAP!
Here is your message: Thanks!

Fig. 23.4 Client making a SOAP request (part 2 of 3).

Chapter 23 Simple Object Access Protocol (SOAP) and Microsoft BizTalk™ 633

On lines 36 and 37,

parameters.addElement(new Parameter("message",
 String.class, message, null));

we build a new parameter for the method by constructing a Parameter object. The first
constructor argument is the name of the variable or reference (message), the second ar-
gument is the class to which the Parameter object belongs (String), the third argu-
ment is the value of the parameter (the object message) and the fourth argument specifies
the parameter’s encoding (null specifies the application’s default encoding). Method
setParams in line 38 sets the parameters of the remoteMethod object.

We invoke the remote method by calling method invoke in line 42. It takes two argu-
ments: the server URL to which the SOAP message is being sent and the value of the SOA-
PAction Header, which specifies the intent of the request. The second argument can take a
null string if a SOAPAction Header is not being used. Method invoke throws a SOAPEx-
ception (lines 63–66) if any network error occurs while the SOAP request is being sent.
Once the method is invoked on the server, the result is sent back to the client and stored in
the response object (line 42). The response object receives an error message if a
server error, such as a failure to locate the appropriate services or an error in the invoked
method, occurs. Lines 45–51 determine whether or not the received message is an error
message. Lines 53–56 print the output if no error has been received.

23.3 Microsoft BizTalk1

Increasingly, companies are using the Internet to exchange data with their business partners
in what are called Business to Business (B2B) transactions. Because businesses use differ-
ent platforms, applications and data specifications, exchanging data can be difficult. Busi-
ness partners therefore establish protocols and data formats to engage in electronic
commerce. While electronic commerce allows for more efficient exchange of data among
businesses, standards for data formats and protocols have not been implemented widely in
industry.

Sharing data electronically can reduce costs and improve efficiency in many indus-
tries. The portable and descriptive nature of XML simplifies the packaging of data for
sharing among business partners. However, for XML to be useful across industries there
must be a common vocabulary of XML schemas. Standards are also needed for transmit-
ting and translating XML documents between business partners. Microsoft developed Biz-
Talk for the purpose of creating and integrating business processes that may be applied

java GetMessage "my message"
Welcome to SOAP!
Here is your message: my message

Fig. 23.4 Client making a SOAP request (part 3 of 3).

1. At the time of this writing, Microsoft had released only a beta version of Microsoft BizTalk Server 2000. Given
the high likelihood of changes in this product, we felt it best to present an overview of BizTalk in this chapter.
We will discuss BizTalk extensively in XML How to Program: Second Edition. We will also prepare live-code
case studies on BizTalk and make them available free for download at www.deitel.com.

634 Simple Object Access Protocol (SOAP) and Microsoft BizTalk™ Chapter 23

across existing applications and businesses. The BizTalk Framework, which is based on
platform-independent messaging protocols, consists of three parts: the BizTalk Frame-
work, the BizTalk Server and the BizTalk Schema Library.

23.3.1 BizTalk Framework
The BizTalk Framework is a set of guidelines for publishing schemas and using XML mes-
sages to integrate software systems. The XML messages in the BizTalk framework are
based on SOAP. Anyone can download the framework specifications and implement Biz-
Talk schemas, which can then be submitted to the BizTalk.org Web site for validation.
BizTalk.org provides a common repository of XML schemas necessary to enable e-
commerce and B2B transactions using XML.

BizTalk schemas follow the XML Data Reduced (XDR) format. XDR is a simplified
version of XML Data, which provides a vocabulary of XML elements for defining schemas.
The BizTalk Framework specifies a standard set of tags for use in XML messaging between
applications, including an optional set of routing tags. In the BizTalk Framework, the only
thing two applications must have in common to communicate is the ability to format,
transmit, receive and process an XML message that uses a schema from the Biz-
Talk.org repository. The BizTalk Framework also allows these XML documents to
traverse a network as SOAP messages. Communication can be conducted with a simple
HTTP POST or through other protocols.

One of the more powerful methods for exchanging documents is using a message
queuing technology, such as Microsoft Message Queuing (MSMQ). This loosely coupled
approach to distributed computing increases efficiency and scalability by freeing client
applications from the “lock-up” of waiting for the server to complete a transaction. A client
posts a message to the queue for processing and may be notified when the processing is
complete. The BizTalk Framework also enables applications to be more flexible since the
client interacts with a messaging system or other standard protocol, rather than a specific,
proprietary server application.

23.3.2 BizTalk Server
Although Microsoft started the BizTalk initiative, Microsoft’s BizTalk Server is not re-
quired by the BizTalk Framework. Because XML and the protocols used by BizTalk are
platform and application independent, any BizTalk-Framework-compliant server may be
used. A BizTalk Server must be able to parse, translate and route all inbound and outbound
XML messages to and from a business or between applications.

As of the time of publication of this book, Microsoft BizTalk Server 2000 is in beta
form and is the only implementation of a BizTalk-Framework-compliant server. Biztalk
Server 2000 supports a number of protocols, including HTTP, some existing EDI protocols,
Simple Mail Transport Protocol (SMTP) and Microsoft Message Queuing (MSMQ). Both
synchronous and asynchronous communication is possible using BizTalk Server 2000.

Microsoft BizTalk Server 2000 manages XML messages using a rules-based routing
system in which BizTalk examines queued documents in MSMQ and prioritizes them
according to routing data contained in the documents. Microsoft BizTalk Server 2000 man-
ages the flow of XML messages through the application. As XML messages flow, transfor-
mations are performed using XSLT. These transformations correspond to the business

Chapter 23 Simple Object Access Protocol (SOAP) and Microsoft BizTalk™ 635

rules of the application. For example, an application may require that a telephone number
is in a certain format (e.g., (800) 555-1212). This telephone number formatting is a business
rule of the application. If an XML message contains a telephone number in some other
format (e.g., 800-555-1212), the business rule is applied by transforming the message with
XSLT to produce the proper telephone number format. For developers who are not familiar
with XSLT, the BizTalk Mapper—a translation tool that maps records and fields between
data formats—can be used to graphically define the transformations for manipulating the
data. These transformations allow applications to receive XML messages in a standard
format and then convert the messages to an application-specific format for processing. A
tracking utility allows advanced monitoring of documents as they flow through the server.
Figure 23.5 illustrates a sample B2B exchange using BizTalk.

In Fig. 23.5, a store sends a purchase order as an XML document to its supplier. This
purchase order may be generated by an inventory management system at the store that auto-
matically orders new stock of a certain item when current inventory runs low. Because Biz-
Talk uses standard protocols, an HTTP POST can be used to transmit the XML purchase
order to the supplier. The XML purchase order is then passed to a messaging queue for pro-
cessing. From the messaging queue, the message is delivered to a mapping channel. As the
message passes through the channel, XSLT transformations are applied to enforce the busi-
ness rules of the application. From the mapping channel, the XML message enters one of
two ports. In this example, one port is used to deliver the XML message to a warehouse’s
Web server to check for available stock of items in the purchase order. Another port is used
to deliver a confirmation of the order to the originating store. Alternatively, the XML mes-
sage could be passed through another mapping channel to undergo further transformations,
depending on the business rules of the application. Note that each of the business partners
in this application may not, in fact, be using BizTalk. However, because the standard HTTP
protocol is used for communicating XML messages, the business partners are able to com-
plete the business processes necessary for the transaction to complete.

To manage business relationships, BizTalk Server 2000 includes Microsoft BizTalk
Messaging Manager. The Messaging Manager provides a Web-based graphical user inter-
face (GUI) for tracking data exchange. BizTalk Orchestration Designer is a visual tool for
designing business processes. A business analyst can create a chart that describes a partic-
ular business process, such as the submission of a purchase order to a supplier for a store.
A developer can then use the chart to build the software components that implement the
business process in the application. The BizTalk Editor tool is provided for editing/creating
specifications, including most of the XML schemas in the BizTalk.org repository.

BizTalk Orchestration automates the implementation of business processes for gener-
ating and processing messages. It facilitates the definition of a process, the subsequent con-
nection of the software components necessary to implement the process, and any
modifications or upgrades that need to be made in the future. An XML language called
XLANG is used to define business processes that can operate dynamically. These business
processes may be modified using the Orchestration Designer. Each process is completely
separate from its implementation, making the process easier to build, modify and scale. The
semantic definition of a process, like the implementation, can be spread across its constit-
uent units, allowing modifications to a unit to be dynamically integrated into the process.
BizTalk Orchestration also provides fault tolerance for applications, which enables appli-
cations to handle failures in business processes.

636 Simple Object Access Protocol (SOAP) and Microsoft BizTalk™ Chapter 23

Fig. 23.5 Sample BizTalk interaction between a store, a supplier and a warehouse.

23.3.3 BizTalk Schema Library
The BizTalk Schema Library is a collection of BizTalk Framework schemas that have been
validated and agreed upon by organizations using BizTalk. The Library provides a common
repository for XML schemas that will be used to validate and standardize documents for
exchange through the BizTalk Framework. Businesses can choose among the schemas in
the BizTalk Schema Library or design their own schemas and submit them for inclusion in
the Library. The Biztalk Schema Library is housed on the BizTalk.org Web site.

23.3.4 Microsoft BizTalk Server 2000
To encourage developers to adopt the BizTalk Framework, Microsoft has provided a ver-
sion of BizTalk Server 2000 for download at www.microsoft.com/biztalk. Includ-
ed in the download is a tutorial on building a BizTalk application using MSMQ and Internet
Information Services with ASP.

23.4 Internet and World Wide Web Resources
msdn.microsoft.com/xml/general/soaptemplate.asp
This site provides an introduction to SOAP. It also contains links to examples and other information.

XML
Purchase
Order

Web Server

Inventory
Application

Web ServerHTTP
POST

Web Server

Store Supplier

Warehouse

Message
Queue

Mapping
Channel

Port Port

Chapter 23 Simple Object Access Protocol (SOAP) and Microsoft BizTalk™ 637

www.oasis-open.org/cover/soap.html
This site provides information on SOAP and XML.

www.develop.com/soap
This site provides downloads and FAQs.

www.whatis.com/soap.htm
This site provides background information about SOAP and links for further information on it.

www.biztalk.org/BizTalk
This site provides an introduction to Biztalk and contains many BizTalk resources.

www.microsoft.com/biztalk
Microsoft’s BizTalk Server 2000 site. Provides a beta download of BizTalk Server 2000 as well as
documentation and product information.

www.xmlglobal.com/biztalk
This site provides a BizTalk toolkit for Perl.

xml.apache.org/soap
Apache’s SOAP implementation can be downloaded from this site, which also provides information
and documentation on it.

xml.apache.org/xerces-j/index.html
Apache’s Xerces parser for Java can be downloaded from this site, along with documentation.

jakarta.apache.org
This page is the Web site of Apache’s Jakarta-Tomcat servlet engine.

SUMMARY
• SOAP is an HTTP–XML-based protocol that allows applications to communicate easily over the

Internet, using XML documents called SOAP messages.

• SOAP is both platform and software independent, and can be implemented in any language. SOAP
supports transport using almost any conceivable protocol. For example, it can be bound to HTTP
and follow the HTTP request–response model.

• A SOAP message contains an envelope, which describes the content, intended recipient and pro-
cessing requirements of a message. The optional header element of a SOAP message provides
a means for additional processing in transit from the sender to the recipient.

• Through the header, more complex protocols can be built onto SOAP. The body of a SOAP mes-
sage contains application-specific data for the final intended recipient of the message.

• SOAP can be used to make a Remote Procedure Call (RPC), which is a request made to another
machine to run a task. The RPC uses an XML vocabulary to specify the method to be invoked, any
parameters the method takes and the URI of the target object.

• Because businesses use different platforms, applications and data specifications, exchanging data
can be difficult. Business partners therefore establish protocols and data formats to engage in elec-
tronic commerce.

• For XML to be useful across industries, there must be a common vocabulary of XML schemas.
Standards are also needed for transmitting and translating XML documents between business part-
ners.

• The BizTalk Framework, which is based on platform-independent messaging protocols, consists
of three parts: the BizTalk Framework, the BizTalk Server and the BizTalk Schema Library.

• The BizTalk Framework is a set of guidelines for publishing schemas and using XML messages
to integrate software systems. BizTalk.org provides a common repository of XML schemas
necessary to enable e-commerce and B2B transactions using XML.

638 Simple Object Access Protocol (SOAP) and Microsoft BizTalk™ Chapter 23

• BizTalk schemas follow the XML Data Reduced (XDR) format. XDR is a simplified version of
XML Data, which provides a vocabulary of XML elements for defining schemas. The BizTalk
Framework specifies a standard set of tags for use in XML messaging between applications, in-
cluding an optional set of routing tags.

• One of the more powerful methods for exchanging documents is using a message queuing tech-
nology, such as Microsoft Message Queuing (MSMQ). This loosely coupled approach to distrib-
uted computing increases efficiency and scalability by freeing client applications from the “lock-
up” of waiting for the server to complete a transaction.

• A BizTalk Server must be able to parse, translate and route all inbound and outbound XML mes-
sages to and from a business or between applications.

• Microsoft BizTalk Server 2000 manages XML messages using a rules-based routing system in
which BizTalk examines queued documents in MSMQ and prioritizes them according to routing
data contained in the documents.

• The BizTalk Mapper—a translation tool that maps records and fields between data formats—can
be used to graphically define the transformations for manipulating XML Messages. These trans-
formations allow applications to receive XML messages in a standard format and then convert the
messages to an application-specific format for processing.

• Microsoft BizTalk Messaging Manager provides a Web-based graphical user interface (GUI) for
tracking data exchange. BizTalk Orchestration Designer is a visual tool for designing business pro-
cesses.

• An XML language called XLANG is used to define business processes that can operate dynami-
cally. These business processes may be modified using the Orchestration Designer. Each process
is completely separate from its implementation, making the process easier to build, modify and
scale.

• The BizTalk Schema Library a common repository for XML schemas that will be used to validate
and standardize documents for exchange through the BizTalk Framework. Businesses can choose
among the schemas in the BizTalk Schema Library or design their own schemas and submit them
for inclusion in the Library.

• To encourage developers to adopt the BizTalk Framework, Microsoft has provided a version of
BizTalk Server 2000 for download at www.microsoft.com/biztalk.

TERMINOLOGY

SELF-REVIEW EXERCISES
23.1 State whether each of the following is true or false. If false, explain why.

a) SOAP is a technology for facilitating data transfer across a network.

application-to-application (A2A) integration loosely-coupled messaging
asynchronous RPC messaging
BizTalk Framework Microsoft Host Integration Server
BizTalk Orchestration org.apache.soap.rpc
BizTalk Schema Library Remote Procedure Call (RPC)
BizTalk Server request–response
deploying a service schema
distributed object architecture Simple Object Access Protocol (SOAP)
Enterprise Application Integration (EAI) synchronous RPC
firewall throwing an exception
Hypertext Transfer Protocol (HTTP)

Chapter 23 Simple Object Access Protocol (SOAP) and Microsoft BizTalk™ 639

b) SOAP must be bound to HTTP in order to work.
c) In order to communicate with SOAP, software systems must have the same distributed

object architecture.
d) The body of a SOAP message can contain a Remote Procedure Call.
e) Anybody can publish a BizTalk Schema.
f) BizTalk does not support SOAP.
g) The body element in a SOAP document must be a child of the header element.
h) When an intermediary program receives a header element, it must forward it to the next

recipient.
i) A BizTalk Server can process incoming and outgoing BizTalk messages.
j) The BizTalk Framework specifies a standard tag set for its messages.

23.2 Fill in the blanks in each of the following statements:
a) A SOAP RPC requires the name of the method being called, its parameters and

.
b) The element describes the content, recipient and processing requirements of

a SOAP message.
c) SOAP can pass through most firewalls because is its transport mechanism.
d) SOAP RPCs use the HTTP model.
e) The provides a standard tag set for BizTalk messages.
f) The filters and processes BizTalk messages.
g) Business processes can be automated using .
h) BizTalk messages can be sent in the form of objects.
i) The BizTalk Library stores .

ANSWERS TO SELF-REVIEW EXERCISES
23.1 a) True. b) False. SOAP can be bound to another protocol, and it does not have to be bound
to any protocol. c) False. SOAP is platform independent. d) True. e) True. f) False. g) False. It must
be the child of the envelope element. h) False. It must not forward it. i) True. j) True.

23.2 a) the processing requirements of the message. b) envelope. c) HTTP. d) request–re-
sponse. e) BizTalk Framework. f) BizTalk Server. g) BizTalk Orchestration. h) SOAP. i) schema.

EXERCISES
23.3 Write a server-side class with two methods that can determine if a number is prime or not and
if two given numbers are twin primes or not. Deploy a service that would enable clients to use these
methods over SOAP. For the client side, write a Java program that can make SOAP RPC invoke these
methods. The user should be able to find out if a given number is prime or not and also if two given
numbers are twin primes or not. (Hint: To deploy two methods, separate them with a space in the
SOAP administration tool.)

23.4 Write a server-side class with a sort method that can sort given numbers. Write a client-
side program that can make SOAP RPC invoke the sort method by sending a set of unsorted num-
bers. Display the results of sorting on the client side.

23.5 Visit schemas.biztalk.org/intelisys_com/scf6lunl.xml to find a BizTalk
schema specific to manufacturing firms (developed by Intelisys Electronic Commerce, LLC). The
schema can be used to place an order to a supplier. Write an XML document that places an order for
a multimedia kit. Validate the document with the BizTalk schema.

24
Bonus Chapter:

Introduction to Scripting
with VBScript®

Objectives
• To become familiar with the VBScript language.
• To use VBScript keywords, operators and functions to

write client-side scripts.
• To be able to write Sub and Function procedures.
• To be able to create and use arrays and dynamic

arrays.
• To be able to use VBScript’s string-processing

functions.
When they call the roll in the Senate, the senators do not
know whether to answer “present” or “not guilty.”
Theodore Roosevelt

While I nodded, nearly napping,
suddenly there came a tapping,
As of someone gently rapping, rapping at my chamber door.
Edgar Allan Poe, The Raven

Basic research is what I am doing when I don’t know what I
am doing.
Wernher von Braun

A problem is a chance for you to do your best.
Duke Ellington

Everything comes to him who hustles while he waits.
Thomas Alva Edison

Chapter 24 Bonus Chapter: Introduction to Scripting with VBScript® 641

24.1 Introduction
[Note: This Chapter is a bonus chapter that is intended to support the discussion of Active
Server Pages in Chapters 15 and 25. We anticipate that a large number of readers are al-
ready familiar with HTML and JavaScript, but not with VBScript. In this chapter, we intro-
duce client-side VBScript for use in HTML documents. When possible, we compare
VBScript features with JavaScript features. By design, this chapter does not use XML.]

Visual Basic Script (VBScript) is a subset of Microsoft Visual Basic® used in World
Wide Web HTML documents to enhance the functionality of a Web page displayed in a
Web browser. Microsoft’s Internet Explorer Web browser contains a VBScript scripting
engine (i.e., an interpreter) that executes VBScript code.

VBScript is particularly valuable when used with Microsoft Web servers to create
Active Server Pages (ASPs), a technology that allows a server-side script to create dynamic
content that is sent to the client’s browser. Although other scripting languages can be used,
VBScript is the de facto language for ASP. You will learn about ASP in Chapter 25.

24.2 Operators
VBScript is a case-insensitive language that provides arithmetic operators, logical opera-
tors, concatenation operators, comparison operators and relational operators. VBScript’s
arithmetic operators (Fig. 24.1) are similar to the JavaScript arithmetic operators. Two ma-
jor differences between them are the division operator, \, which returns an integer result,
and the exponentiation operator, ^, which raises a value to a power. [Note: See the Appen-
dix, “Operator Precedence Charts,” for a list of VBScript operators and their precedences.]

Figure 24.2 lists VBScript’s comparison operators. Only the symbols for the equality
operator and the inequality operator are different in JavaScript. In VBScript, these compar-
ison operators may also be used to compare strings.

The VBScript logical operators are And (logical AND), Or (logical OR), Not (logical
negation), Imp (logical implication), Xor (exclusive OR) and Eqv (logical equivalence).
Figure 24.3 shows truth tables for these logical operators. [Note: Despite the mixture of

Outline

24.1 Introduction
24.2 Operators
24.3 Data Types and Control Structures
24.4 VBScript Functions
24.5 VBScript Example Programs
24.6 Arrays
24.7 String Manipulation
24.8 Internet and World Wide Web Resources

Summary • Terminology

642 Bonus Chapter: Introduction to Scripting with VBScript® Chapter 24

case in keywords, functions, etc., VBScript is not case sensitive: Uppercase and lowercase
letters are treated the same, except, as we will see, in character string constants (also called
character string literals).]

VBScript provides the plus sign, +, and ampersand, &, operators for string concatena-
tion as follows:

s1 = "Pro"
s2 = "gram"
s3 = s1 & s2

or

s3 = s1 + s2

VBScript operation
Arithmetic
operator Algebraic expression VBScript expression

Addition + x + y x + y

Subtraction - z – 8 z – 8

Multiplication * yb y * b

Division (floating point) /
v ÷ u or

v / u

Division (integer) \ none v \ u

Exponentiation ^ q p q ^ p

Negation - –e —e

Modulus Mod q mod r q Mod r

Fig. 24.1 Arithmetic operators.

Standard algebraic
equality operator or
relational operator

VBScript
comparison
operator

Example of
VBScript
condition

Meaning of VBScript
condition

= = d = g d is equal to g

≠ <> s <> r s is not equal to r

> > y > x y is greater than x

< < p < m p is less than m

≥ >= c >= z c is greater than or equal to z

≤ <= m <= s m is less than or equal to s

Fig. 24.2 Comparison operators.

v
u

Chapter 24 Bonus Chapter: Introduction to Scripting with VBScript® 643

Performance Tip 24.1
VBScript logical operators do not use “short-circuit” evaluation. Both conditions are always
evaluated. 24.1

The ampersand is more formally called the string concatenation operator. The above state-
ments would concatenate (or append) s2 to the right of s1 to create an entirely new string,
s3, containing "Program".

If both operands of the concatenation operator are strings, these two operators can be
used interchangeably; however, if the + operator is used in an expression consisting of
varying data types, there can be a problem. For example, consider the statement

s1 = "hello" + 22

VBScript first tries to convert the string "hello" to a number and then add 22 to it. The
string "hello" cannot be converted to a number, so a type-mismatch error occurs at run-
time. For this reason, the & operator should be used for string concatenation.

Testing and Debugging Tip 24.1
Always use the ampersand (&) operator for string concatenation. 24.1

24.3 Data Types and Control Structures
VBScript has only one data type—variant—that is capable of storing different types of data
(e.g., strings, integers, floating-point numbers, etc.). The data types (or variant subtypes) a
variant stores are listed in Fig. 24.4. VBScript interprets a variant in a manner that is suit-
able to the type of data it contains. For example, if a variant contains numeric information,
it will be treated as a number; if it contains string information, it will be treated as a string.

Truth tables for VBScript Logical Operators

Logical And:
True And True = True
True And False = False
False And True = False
False And False = False

Logical Or:
True Or True = True
True Or False = True
False Or True = True
False Or False = False

Logical Imp:
True Imp True = True
True Imp False = False
False Imp True = True
False Imp False = True

Logical Eqv:
True Eqv True = True
True Eqv False = False
False Eqv True = False
False Eqv False = True

Logical Xor:
True Xor True = False
True Xor False = True
False Xor True = True
False Xor False = False

Logical Not:
Not True = False

Not False = True

Fig. 24.3 Truth tables for VBScript logical operators.

644 Bonus Chapter: Introduction to Scripting with VBScript® Chapter 24

Software Engineering Observation 24.1
Because all variables are of type variant, the programmer does not specify a data type when
declaring a variable in VBScript. 24.1

Variable names cannot be keywords and must begin with a letter. The maximum length
of a variable name is 255 characters, and the name must contain only letters, digits (0–9)
and underscores. Variables can be declared simply by using their name in the VBScript
code. The statement Option Explicit can be used to force all variables to be declared
before they are used.

Common Programming Error 24.1
Attempting to declare a variable name that does not begin with a letter is an error. 24.1

Testing and Debugging Tip 24.2
Forcing all variables to be declared, by using Option Explicit, can help eliminate var-
ious kinds of subtle errors. 24.2

Common Programming Error 24.2
If a variable name is misspelled (when Option Explicit is not used), a new variable is
declared, usually resulting in an error. 24.2

VBScript provides control structures (Fig. 24.5) for controlling program execution.
Many of the control structures provide the same capabilities as their JavaScript counter-
parts. Syntactically, every VBScript control structure ends with one or more keywords
(e.g., End If, Loop, etc.). Keywords, not curly braces (i.e., {}, as in JavaScript), delimit
a control structure’s body.

Subtype Range/Description

Boolean True or False

Byte Integer in the range 0 to 255

Currency –922337203685477.5808 to 922337203685477.5807

Date/Time 1 January 100 to 31 December 9999
0:00:00 to 23:59:59

Double –1.79769313486232E308 to –4.94065645841247E–324 (negative)
1.79769313486232E308 to 4.94065645841247E–324 (positive)

Empty Uninitialized. This value is 0 for numeric types (e.g., double), False for
booleans and the empty string (i.e., "") for strings.

Integer –32768 to 32767

Long –2147483648 to 2147483647

Object Any object type

Single –3.402823E38 to –1.401298E–45 (negative)
3.402823E38 to 1.401298E–45 (positive)

String 0 to ~2000000000 characters.

Fig. 24.4 Some VBScript variant subtypes.

Chapter 24 Bonus Chapter: Introduction to Scripting with VBScript® 645

The If/Then/End If and If/Then/Else/End If behave identically to their Java-
Script counterparts. VBScript’s If/Then/Else/End If uses a different syntax than Java-
Script’s version, because it includes keyword ElseIf (Fig. 24.6).

Common Programming Error 24.3
Writing an If control structure that does not contain keyword Then is an error. 24.3

Notice that VBScript does not use a statement terminator like the semicolon (;) in
JavaScript. Unlike in JavaScript, placing parentheses around conditions is optional in
VBScript. A condition evaluates to True if the variant subtype is boolean True or if the
variant subtype is considered to be nonzero. A condition evaluates to False if the variant
subtype is boolean False or if the variant subtype is considered to be zero.

VBScript’s Select Case/End Select structure provides all the functionality of
JavaScript’s switch structure, and more (Fig. 24.7).

Notice that the Select Case/End Select structure does not require the use of a
statement like break. One Case cannot accidentally run into another. The VBScript
Select Case/End Select structure is equivalent to VBScript’s If/Then/Else/End
If multiple-selection structure. The only difference is syntax: Any variant subtype can be
used with the Select Case/End Select structure.

JavaScript Control Structure VBScript Control Structure Equivalent

sequence sequence

if If/Then/End If

if/else If/Then/Else/End If

while While/Wend or Do While/Loop

for For/Next

do/while Do/Loop While

switch Select Case/End Select

none Do Until/Loop

none Do/Loop Until

Fig. 24.5 Comparing VBScript control structures with JavaScript control structures.

JavaScript VBScript

1 if (s == t)
2 u = s + t;
3 else if (s > t)
4 u = r;
5 else
6 u = n;

1 If s = t Then
2 u = s + t
3 ElseIf s > t Then
4 u = r
5 Else
6 u = n
7 End If

Fig. 24.6 Comparing JavaScript’s if structure with VBScript’s If structure.

646 Bonus Chapter: Introduction to Scripting with VBScript® Chapter 24

VBScript’s While/Wend repetition structure and Do While/Loop behave identi-
cally to JavaScript’s while repetition structure. VBScript’s Do/Loop While structure
behaves identically to JavaScript’s do/while repetition structure.

VBScript contains two additional repetition structures, Do Until/Loop and Do/
Loop Until, that do not have direct JavaScript equivalents. Figure 24.8 shows the closest
equivalent to VBScript’s Do Until/Loop structure: JavaScript’s while structure. The
Do Until/Loop structure loops until its condition becomes True. In this example, the
loop terminates when x becomes 10. We used the condition !(x == 10) in JavaScript
here, so both control structures have a test to determine whether x is 10. The JavaScript
while structure loops while x is not equal to 10 (i.e., until x becomes 10).

Figure 24.9 shows the closest equivalent to VBScript’s Do/Loop Until structure:
JavaScript’s do/while structure. The Do/Loop Until structure loops until its condition
becomes True. In this example, the loop terminates when x becomes 10. Once again, we
used the condition !(x == 10) in JavaScript here, so both control structures have a test
to determine if x is 10. The JavaScript do/while structure loops while x is not equal to
10 (i.e., until x becomes 10).

Notice that these Do Until repetition structures iterate until the condition becomes
True. VBScript’s For repetition structure behaves differently than JavaScript’s for rep-
etition structure. Consider the side-by-side comparison in Fig. 24.10.

Unlike JavaScript’s for repetition structure’s condition, VBScript’s For repetition
structure’s condition cannot be changed during the loop’s iteration. In Fig.24.1, the Java-
Script for loop would iterate exactly two times, because the condition is evaluated on each
iteration. The VBScript For loop would iterate exactly eight times, because the condition
is fixed as 1 To 8—even though the value of x is changing in the body. VBScript For
loops may also use the optional Step keyword to indicate an increment or decrement. By
default, For loops increment in units of 1. Figure 24.11 shows a For loop that begins at 2
and counts to 20 in Steps of 2.

The Exit Do statement, when executed in a Do While/Loop, Do/Loop While, Do
Until/Loop or Do/Loop Until, causes immediate exit from that structure. The fact that
a Do While/Loop may contain Exit Do is the only difference, other than syntax,
between Do While/Loop and While/Wend. Statement Exit For causes immediate exit

JavaScript VBScript

1 switch (x) {
2 case 1:
3 alert("1");
4 break;
5 case 2:
6 alert("2");
7 break;
8 default:
9 alert("?");

10 }

1 Select Case x
2 Case 1
3 Call MsgBox("1")
4 Case 2
5 Call MsgBox("2")
6 Case Else
7 Call MsgBox("?")
8 End Select

Fig. 24.7 Comparing JavaScript’s switch with VBScript’s Select Case.

Chapter 24 Bonus Chapter: Introduction to Scripting with VBScript® 647

from the For/Next structure. With Exit Do and Exit For, program execution con-
tinues with the first statement after the exited repetition structure.

Common Programming Error 24.4
Attempting to use Exit Do or Exit For to exit a While/Wend repetition structure is an
error. 24.4

Common Programming Error 24.5
Attempting to use a relational operator in a For/Next loop (e.g., For x = 1 < 10) is an
error. 24.5

Common Programming Error 24.6
Attempting to place the name of a For repetition structures’s control variable after Next is
an error. 24.6

.

JavaScript VBScript

1 while (!(x == 10))
2 ++x;

1 Do Until x = 10
2 x = x + 1
3 Loop

Fig. 24.8 Comparing JavaScript’s while with VBScript’s Do Until.

JavaScript VBScript

1 do {
2 ++x;
3 } while (!(x == 10));

1 Do
2 x = x + 1
3 Loop Until x = 10

Fig. 24.9 Comparing JavaScript’s do/while with VBScript’s Do Loop/Until.

JavaScript VBScript

1 x = 8;
2 for (y = 1; y < x; y++)
3 x /= 2;

1 x = 8
2 For y = 1 To x
3 x = x \ 2
4 Next

Fig. 24.10 Comparing JavaScript’s for with VBScript’s For.

1 ’ VBScript
2 For y = 2 To 20 Step 2
3 Call MsgBox("y = " & y)
4 Next

Fig. 24.11 Using keyword Step in VBScript’s For repetition structure.

648 Bonus Chapter: Introduction to Scripting with VBScript® Chapter 24

24.4 VBScript Functions
VBScript provides several functions, many of which are summarized in this section. We
provide an overview of variant functions, math functions, functions for interacting with the
user, formatting functions and functions for obtaining information about the interpreter.

Figure 24.12 summarizes several functions that allow the programmer to determine
which subtype is currently stored in a variant. VBScript provides function IsEmpty to
determine if the variant has ever been initialized by the programmer. If IsEmpty returns
True, the variant has not been initialized by the programmer.

VBScript math functions allow the programmer to perform common mathematical cal-
culations. Figure 24.13 summarizes some VBScript math functions. Note that trigono-
metric functions, such as Cos, Sin, etc., take arguments expressed in radians. To convert
from degrees to radians, use the formula radians = (degrees × π) / 180.

VBScript provides two functions, InputBox and MsgBox, for interacting with the
user. Function InputBox displays a dialog in which the user can input data. For example,
the statement

intValue = InputBox("Enter an integer", "Input Box", , _
 1000, 1000)

displays an input dialog (as shown in Fig. 24.15) containing the prompt "Enter an in-
teger" and the caption "Input Box" at position (1000, 1000) on the screen. VBScript
coordinates are measured in units of twips (1440 twips equal 1 inch). Position (1000, 1000)
is relative to the upper-left corner of the screen, which is position (0, 0). On the screen, x
coordinates increase from left to right, and y coordinates increase from top to bottom.

VBScript functions often take optional arguments (i.e., arguments that programmers
can pass if they wish or that can be omitted). Notice, in the preceding call to InputBox,
the consecutive commas (between "Input Box" and 1000). These commas indicate that
an optional argument is being omitted. In this particular case, the optional argument corre-
sponds to a filename for a help file—a feature we do not wish to use in this particular call
to InputBox. Before using a VBScript function, check the VBScript documentation:

Function

Variant
subtype
returned Description

IsArray Boolean Returns True if the variant subtype is an array, and False
otherwise.

IsDate Boolean Returns True if the variant subtype is a date or time, and
False otherwise.

IsEmpty Boolean Returns True if the variant subtype is Empty (i.e., the
variant has not been explicitly initialized by the programmer),
and False otherwise.

IsNumeric Boolean Returns True if the variant subtype is numeric, and False
otherwise.

Fig. 24.12 Some variant functions (part 1 of 2).

Chapter 24 Bonus Chapter: Introduction to Scripting with VBScript® 649

IsObject Boolean Returns True if the variant subtype is an object, and False
otherwise.

TypeName String Returns a string that provides subtype information. Some
strings returned are "Byte", "Integer", "Long",
"Single", "Double", "Date", "Currency",
"String", "Boolean" and "Empty".

VarType Integer Returns a value indicating the subtype (e.g., 0 for Empty, 2
for integer, 3 for long, 4 for single, 5 for double, 6 for
currency, 7 for date/time, 8 for string, 9 for object, etc.).

Function Description Example

Abs(x) Absolute value of x Abs(-7) is 7
Abs(0) is 0
Abs(76) is 76

Atn(x) Trigonometric arctangent of x
(in radians)

Atn(1)*4 is
3.14159265358979

Cos(x) Trigonometric cosine of x (in radians) Cos(0) is 1

Exp(x) Exponential function ex Exp(1.0) is 2.71828
Exp(2.0) is 7.38906

Int(x) Returns the whole-number part of x. Int
rounds to the next smallest number.

Int(-5.3) is –6
Int(0.893) is 0
Int(76.45) is 76

Fix(x) Returns the whole-number part of x.
(Note: Fix and Int are different. When x is
negative, Int rounds to the next-smallest
number, while Fix rounds to the next-larg-
est number.)

Fix(-5.3) is –5
Fix(0.893) is 0
Fix(76.45) is 76

Log(x) Natural logarithm of x (base e) Log(2.718282) is 1.0
Log(7.389056) is 2.0

Rnd() Returns a pseudorandom floating-point
number in the range 0 ≤ Rnd < 1. Call func-
tion Randomize once before calling Rnd
to get a different sequence of random num-
bers each time the program is run.

Call Randomize
...
z = Rnd()

Fig. 24.13 VBScript math functions (part 1 of 2).

Function

Variant
subtype
returned Description

Fig. 24.12 Some variant functions (part 2 of 2).

650 Bonus Chapter: Introduction to Scripting with VBScript® Chapter 24

msdn.microsoft.com/scripting/default.htm?/scripting/vbscript

to determine whether the function allows for optional arguments.
The underscore character, _, is VBScript’s line-continuation character. A statement

cannot extend beyond the current line without using this character. A statement may use as
many line-continuation characters as necessary.

Common Programming Error 24.7
Splitting a statement over several lines without the line-continuation character is an error. 24.7

Common Programming Error 24.8
Placing anything, including comments, after a line-continuation character is an error. 24.8

When called, function MsgBox displays a message dialog (a sample of which is
shown in Fig. 24.15). For example, the statement

Call MsgBox("VBScript is fun!", , "Results")

displays a message dialog containing the string "VBScript is fun!", with "Re-
sults" in the title bar. Although not used here, the optional argument allows the program-
mer to customize the MsgBox’s buttons (e.g., OK, Yes, etc.) and icon (e.g., question mark,
exclamation point, etc.); see the VBScript documentation for more information on these
features. The preceding statement could also have been written as

MsgBox "VBScript is fun!", , "Results"

which behaves identically to the version of the statement that explicitly uses Call. In VB-
Script, function calls that wrap arguments in parentheses must be preceded with keyword
Call, unless the function call is assigning a value to a variable, as in

a = Abs(z)

We prefer the more formal syntax that uses Call and parentheses to clearly indicate a
function call.

Round(x, y) Rounds x to y decimal places. If y is omit-
ted, x is returned as an Integer.

Round(4.844) is 5
Round(5.7839, 2) is 5.78

Sgn(x) Sign of x Sgn(-1988) is –1
Sgn(0) is 0
Sgn(3.3) is 1

Sin(x) Trigonometric sine of x (in radians) Sin(0) is 0

Sqr(x) Square root of x Sqr(900.0) is 30.0
Sqr(9.0) is 3.0

Tan(x) Trigonometric tangent of x (in radians) Tan(0) is 0

Function Description Example

Fig. 24.13 VBScript math functions (part 2 of 2).

Chapter 24 Bonus Chapter: Introduction to Scripting with VBScript® 651

VBScript provides formatting functions for currency values, dates, times, numbers and
percentages. Figure 24.14 summarizes these formatting functions.

Although they are not discussed in this chapter, VBScript provides many functions for
manipulating dates and times. Such manipulations include adding dates, subtracting dates
and parsing dates. Consult the VBScript documentation for a list of these functions.

VBScript also provides functions for getting information about the scripting engine
(i.e., the VBScript interpreter). These functions are ScriptEngine (which returns
“JScript”, “VBScript” or “VBA”), ScriptEngineBuildVersion (which
returns the current build version—i.e., the identification number for the current release),
ScriptEngineMajorVersion (which returns the major version number for the script
engine) and ScriptEngineMinorVersion (which returns the minor release number).
For example, the expression

ScriptEngine() & ", " & ScriptEngineBuildVersion() & ", " _
& ScriptEngineMajorVersion() & ", " & _
ScriptEngineMajorVersion()

evaluates to "VBScript, 5207, 5, 5" (where the numbers are the build version, major
version and minor version, respectively, of the script engine at the time of this writing).

Testing and Debugging Tip 24.3
VBScript functions ScriptEngine, ScriptEngineBuildVersion,
ScriptEngineMajorVersion and ScriptEngineMinorVersion are useful if you are
experiencing difficulty with the scripting engine and need to report information about the
scripting engine to Microsoft. 24.3

Portability Tip 24.1
VBScript functions ScriptEngine, ScriptEngineBuildVersion,
ScriptEngineMajorVersion and ScriptEngineMinorVersion can be used to
determine whether the browser’s version of the script engine is different from the version of
the script engine you used to develop the page. Older script engines do not support the latest
VBScript features. 24.1

24.5 VBScript Example Programs
In this section, we present several complete VBScript “live-code” programs and show the
screen inputs and outputs produced as the programs execute. The HTML document of Fig.
24.15 includes VBScript code that enables users to click on a button to display an input di-
alog in which they can type an integer to be added into a running total. When the input di-
alog’s OK button is clicked on, a message dialog is displayed with a message indicating the
number that was entered and the total of all the numbers entered so far.

In Line 8, the HTML tag script sets the language attribute to VBScript. This
tag tells the browser to use its built-in VBScript interpreter to interpret the script code.
Notice the HTML comment tags on lines 9, and 22 which appear to “comment out” the
VBScript code.

If the browser understands VBScript, these HTML comments are ignored, and the
VBScript is interpreted. If the browser does not understand VBScript, the HTML com-
ments prevent the VBScript code from being displayed as text.

652 Bonus Chapter: Introduction to Scripting with VBScript® Chapter 24

Function Description

FormatCurrency Returns a string formatted according to the local machine’s currency
Regional Settings (in the Control Panel). For example, the call
FormatCurrency("-1234.789") returns "($1,234.79)", and
the call FormatCurrency(123456.789) returns
"$123,456.79". Note the rounding to the right of the decimal place.

FormatDateTime Returns a string formatted according to the local machine’s date/time
Regional Settings (in the Control Panel). For example, the call
FormatDateTime(Now, vbLongDate) returns the current date in
the format "Wednesday, September 01, 1999", and the call
FormatDateTime(Now,vbShortTime) returns the current time in
the format "17:26". Function Now returns the local machine’s time and
date. Constant vbLongDate indicates that the day of the week, month,
day and year is displayed. Constant vbShortTime indicates that the
time is displayed in 24-hour format. Consult the VBScript documentation
for additional constants that specify other date and time formats.

FormatNumber Returns a string formatted according to the number Regional Settings
(in the Control Panel) on the local machine. For example, the call
FormatNumber("3472435") returns "3,472,435.00", and the
call FormatNumber(-123456.789) returns
"-123,456.79". Note the rounding to the right of the decimal place.

FormatPercent Returns a string formatted as a percentage. For example, the call
FormatPercent(".789") returns "78.90%", and the call
FormatPercent(0.45) returns "45.00%".

Fig. 24.14 Some VBScript formatting functions.

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
2 <html>
3 <!--Fig. 24.15: addition.html -->
4
5 <head>
6 <title>Our first VBScript</title>
7
8 <script language = "VBScript">
9 <!--

10 Option Explicit
11 Dim intTotal
12
13 Sub cmdAdd_OnClick()
14 Dim intValue
15
16 intValue = InputBox("Enter an integer", "Input Box", , _
17 1000, 1000)

Fig. 24.15 Adding integers on a Web page using VBScript (part 1 of 2).

Chapter 24 Bonus Chapter: Introduction to Scripting with VBScript® 653

18 intTotal = CInt(intTotal) + CInt(intValue)
19 Call MsgBox("You entered " & intValue & _
20 "; total so far is " & intTotal, , "Results")
21 End Sub
22 -->
23 </script>
24 </head>
25
26 <body>
27 Click the button to add an integer to the total.
28 <hr />
29 <form>
30 <input name = "cmdAdd" type = "BUTTON"
31 value = "Click Here to Add to the Total">
32 </form>
33 </body>
34 </html>

Fig. 24.15 Adding integers on a Web page using VBScript (part 2 of 2).

input dialog

message dialog

654 Bonus Chapter: Introduction to Scripting with VBScript® Chapter 24

Portability Tip 24.2
Always place client-side VBScript code inside HTML comments to prevent the code from be-
ing displayed as text in browsers that do not understand VBScript. 24.2

Line 10 uses the Option Explicit statement to force all variables in the VBScript
code to be declared. Statement Option Explicit, if present, must be the first statement
in the VBScript code. Line 11 declares variant variable intTotal, which is visible to all
procedures within the script. Variables declared outside of procedures are called script
variables.

Common Programming Error 24.9
Placing VBScript code before the Option Explicit statement is an error. 24.9

Lines 13–21 define a procedure (i.e., VBScript’s equivalent of a function in Java-
Script) called OnClick for the cmdAdd button. VBScript procedures that do not return a
value begin with the keyword Sub (line 13) and end with the keywords End Sub (line 21).
We will discuss VBScript procedures that return values later in this chapter. Line 14
declares the local variable intValue. Variables declared within a VBScript procedure
are visible only within that procedure’s body. Procedures that perform event handling (such
as the cmdAdd_OnClick procedure in lines 13–21) are more properly called event pro-
cedures.

Line 16 calls the function InputBox to display an input dialog. The value entered
into the input dialog is assigned to the intValue variable and is treated by VBScript as a
string subtype. When using variants, conversion functions are often necessary to ensure
that you are using the proper type. Line 18 calls VBScript function CInt twice to convert
from the string subtype to the integer subtype. VBScript also provides conversion functions
CBool, for converting to the boolean subtype; CByte, for converting to the byte subtype;
CCur, for converting to the currency subtype; CDate, for converting to the date/time sub-
type; CDbl, for converting to the double subtype; CLng, for converting to the long sub-
type; CSng, for converting to the single subtype, and CStr, for converting to the string
subtype. Lines 19 and 20 display a message dialog indicating the last value input and the
running total.

VBScript provides many predefined constants for use in your VBScript code. The con-
stant categories include color constants, comparison constants (to specify how values are
compared), date/time constants, date format constants, drive type constants, file attribute
constants, file I/O constants, MsgBox constants, special folder constants, string constants,
VarType constants (to help determine the type stored in a variable) and miscellaneous,
other constants. VBScript constants usually begin with the prefix vb. For a list of VBScript
constants, see the VBScript documentation. You can also create your own constants by
using keyword Const, as in

Const PI = 3.14159

Figure 24.16 provides another VBScript example. The HTML form provides a
SELECT component, to allow the user to select a Web site from a list of sites. When the
selection is made, the new Web site is displayed in the browser. Lines 30–35

Chapter 24 Bonus Chapter: Introduction to Scripting with VBScript® 655

<script for = "SiteSelector" event = "ONCHANGE"
language = "VBScript">

<!--
Document.Location = Document.Forms(0).SiteSelector.Value

-->
</script>

specify a VBScript. In such code, the <script> tag’s for attribute indicates the HTML
component on which the script operates (SiteSelector), attribute event indicates the
event to which the script responds (OnChange, which occurs when the user makes a se-
lection) and attribute language specifies the scripting language (VBScript). Line 33

Document.Location = Document.Forms(0).SiteSelector.Value

causes the browser to change to the selected location. This line uses Internet Explorer’s
Document object to change the location. The Document object’s Location property
specifies the URL of the page to display. The expression SiteSelector.Value gets
the value of the selected option in the select. When the assignment is performed,
Internet Explorer automatically loads and displays the Web page for the selected location.

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
2 <html>
3 <!-- Fig. 24.16: site.html -->
4
5 <head>
6 <title>Select a site to browse</title>
7 </head>
8
9 <body>

10 Select a site to browse<P>
11 <hr />
12 <form>
13 <select name = "SiteSelector" size = "1">
14
15 <option value = "http://www.deitel.com">
16 Deitel & Associates, Inc.
17 </option>
18
19 <option value = "http://www.prenhall.com">
20 Prentice Hall
21 </option>
22
23 <option value = "http://www.phptr.com/phptrinteractive">
24 Prentice Hall Interactive
25 </option>
26
27 </select>
28
29 <!-- VBScript code -->
30 <script for = "SiteSelector" event = "ONCHANGE"
31 language = "VBScript">

Fig. 24.16 Using VBScript code to respond to an event (part 1 of 2).

656 Bonus Chapter: Introduction to Scripting with VBScript® Chapter 24

Fig. 24.17 uses two procedures: Minimum, to determine the smallest of three num-
bers; and OddEven, to determine if the smallest number is odd or even.

Lines 12–13 are VBScript single-line comments. Comments are placed in VBScript
code by using either a single quote (') or the keyword Rem (for remark) before the com-
ment. [Note: Keyword Rem can be used only at the beginning of a line of VBScript code.]

32 <!--
33 Document.Location = Document.Forms(0).SiteSelector.Value
34 -->
35 </script>
36 </form>
37 </body>
38 </html>

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
2 <html>
3 <!--Fig. 24.17: minimum.html -->
4
5 <head>
6 <title>Using VBScript Procedures</title>
7
8 <script language = "VBScript">

Fig. 24.17 Program that determines the smallest of three numbers (part 1 of 3).

Fig. 24.16 Using VBScript code to respond to an event (part 2 of 2).

Chapter 24 Bonus Chapter: Introduction to Scripting with VBScript® 657

9 <!--
10 Option Explicit
11
12 ' Find the minimum value. Assume that first value is
13 ' the smallest.
14 Function Minimum(min, a, b)
15
16 If a < min Then
17 min = a
18 End If
19
20 If b < min Then
21 min = b
22 End If
23
24 Minimum = min ' Return value
25 End Function
26
27 Sub OddEven(n)
28 If n Mod 2 = 0 Then
29 Call MsgBox(n & " is the smallest and is even")
30 Else
31 Call MsgBox(n & " is the smallest and is odd")
32 End If
33 End Sub
34
35 Sub cmdButton_OnClick()
36 Dim number1, number2, number3, smallest
37
38 ' Convert each input to Long subtype
39 number1 = CLng(Document.Forms(0).txtBox1.Value)
40 number2 = CLng(Document.Forms(0).txtBox2.Value)
41 number3 = CLng(Document.Forms(0).txtBox3.Value)
42
43 smallest = Minimum(number1, number2, number3)
44 Call OddEven(smallest)
45 End Sub
46 -->
47 </script>
48 </head>
49
50 <body>
51 <form><p>Enter a number
52 <input type = "text" name = "txtBox1" size = "5" value = "0"></p>
53 <p>Enter a number
54 <input type = "text" name = "txtBox2" size = "5" value = "0"></p>
55 <p>Enter a number
56 <input type = "text" name = "txtBox3" size = "5" value = "0"></p>
57
<input type = "BUTTON" name = "cmdButton" value = "Enter">
58
59 </form>
60 </body>
61 </html>

Fig. 24.17 Program that determines the smallest of three numbers (part 2 of 3).

658 Bonus Chapter: Introduction to Scripting with VBScript® Chapter 24

Good Programming Practice 24.1
VBScript programmers use the single-quote character for comments. The use of Rem is con-
sidered archaic. 24.1

Lines 14–25 define the programmer-defined procedure Minimum. VBScript proce-
dures that return a value are delimited with the keywords Function (line 14) and End
Function (line 25). Minimum determines the smallest of its three arguments by using
If/Then/Else structures. A value is returned from a Function procedure by assigning
a value to the Function procedure name (line 24). A Function procedure can return
only one value.

Procedure OddEven (lines 27–33) takes one argument and displays a message dialog
indicating the smallest value and whether or not it is odd or even. The modulus operator
Mod is used to determine whether the number is odd or even. Because the data stored in the
variant variable can be viewed as a number, VBScript performs any conversions between
subtypes implicitly before performing the modulus operation. The advantage of placing
these procedures in the HEAD is that other VBScripts can call them.

Lines 35–45 define an event procedure for handling cmdButton’s OnClick event.
The statement

smallest = Minimum(number1, number2, number3)

calls Minimum, passing number1, number2 and number3 to it as arguments. Param-
eters min, a and b are declared in Minimum to receive the values of number1, number2
and number3, respectively. Procedure OddEven is passed the smallest number, on line
44.

Common Programming Error 24.10
Declaring a variable in a procedure body with the same name as a parameter variable is an
error. 24.10

One last word about procedures: VBScript provides statements Exit Sub and Exit
Function for exiting Sub procedures and Function procedures, respectively. Control
is returned to the caller, and the next statement in sequence after the call is executed.

Fig. 24.17 Program that determines the smallest of three numbers (part 3 of 3).

Chapter 24 Bonus Chapter: Introduction to Scripting with VBScript® 659

24.6 Arrays
Arrays are data structures consisting of related data items of the same type. A fixed-size ar-
ray’s size does not change during program execution; a dynamic array’s size can change
during execution. A dynamic array is also called a redimmable array (short for a “redimen-
sionable” array). Individual array elements are referred to by giving the array name fol-
lowed by the element’s position number in parentheses, (). The first array element is at
position zero.

The position number contained within parentheses is more formally called an index.
An index must be in the range 0 to 2,147,483,648. (Any floating-point number is rounded
to the nearest whole number.)

The declaration

Dim numbers(2)

instructs the interpreter to reserve three elements for array numbers. The value 2 defines
the upper bound (i.e., the highest valid index) of numbers. The lower bound (the lowest
valid index) of numbers is 0. When an upper bound is specified in the declaration, a
fixed-size array is created.

Common Programming Error 24.11
Attempting to access an index that is less than the lower bound or greater than the upper
bound is an error. 24.11

The programmer can explicitly initialize an array with assignment statements. For
example, the lines

numbers(0) = 77
numbers(1) = 68
numbers(2) = 55

initialize numbers. Repetition statements can also be used to initialize arrays. For exam-
ple, the statements

Dim h(11), x, i
For x = 0 To 30 Step 3
 h(i) = CInt(x)
 i = CInt(i) + 1
Next

initialize the elements of h to the values 0, 3, 6, 9, …, 30.
The program in Fig. 24.18 declares, initializes and prints three arrays. Two of the

arrays are fixed-size arrays, and one of the arrays is a dynamic array. The program intro-
duces function UBound, which returns the upper bound of the array (i.e., the highest num-
bered index). [Note: VBScript does provide function LBound, for determining the lowest
numbered index. However, the current version of VBScript does not permit the lowest
numbered index to be nonzero.]

Testing and Debugging Tip 24.4
Arrays’ upper bounds can vary. Use function UBound to ensure that each index is in range
(i.e., within the bounds of the array). 24.4

660 Bonus Chapter: Introduction to Scripting with VBScript® Chapter 24

Lines 12–21 define Sub procedure DisplayArray. VBScript procedures are
Public by default; therefore, they are accessible to scripts on other Web pages. Keyword
Public can be used explicitly to indicate that a procedure is public. A procedure can be
marked as Private to indicate that the procedure can be called only from the HTML doc-
ument in which it is defined.

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
2 <html>
3 <!--Fig. 24.18: arrays.html -->
4
5 <head>
6 <title>Using VBScript Arrays</title>
7
8 <script language = "VBScript">
9 <!--

10 Option Explicit
11
12 Public Sub DisplayArray(x, s)
13 Dim j
14
15 Document.Write(s & ": ")
16 For j = 0 To UBound(x)
17 Document.Write(x(j) & " ")
18 Next
19
20 Document.Write("
")
21 End Sub
22
23 Dim fixedSize(3), fixedArray, dynamic(), k
24
25 ReDim dynamic(3) ' Dynamically size array
26 fixedArray = Array("A", "B", "C")
27
28 ' Populate arrays with values
29 For k = 0 to UBound(fixedSize)
30 fixedSize(k) = 50 - k
31 dynamic(k) = Chr(75 + k)
32 Next
33
34 ' Display contents of arrays
35 Call DisplayArray(fixedSize, "fixedSize")
36 Call DisplayArray(fixedArray, "fixedArray")
37 Call DisplayArray(dynamic, "dynamic")
38
39 ' Resize dynamic, preserve current values
40 ReDim Preserve dynamic(5)
41 dynamic(3) = 3.343
42 dynamic(4) = 77.37443
43
44 Call DisplayArray(dynamic, _
45 "dynamic after ReDim Preserve")
46 -->

Fig. 24.18 Using VBScript arrays (part 1 of 2).

Chapter 24 Bonus Chapter: Introduction to Scripting with VBScript® 661

Procedure DisplayArray receives arguments x and s and declares local variable
j. Parameter x receives an array, and parameter s receives a string. The For header (line
16) calls function UBound to get the upper bound of x. The Document object’s Write
method is used to print each element of x.

The declaration at line 23

Dim fixedSize(3), fixedArray, dynamic(), k

declares a four-element fixed-sized array named fixedSize (the value in parentheses in-
dicates the highest index in the array, and the array has a starting index of 0), variants
fixedArray and k and dynamic array dynamic.

Statement ReDim (line 25) allocates memory for array dynamic (four elements, in
this example). All dynamic-array memory must be allocated via ReDim. Dynamic arrays
are more flexible than fixed-sized arrays, because they can be resized anytime, by using
ReDim, to accommodate new data.

Performance Tip 24.2
Dynamic arrays allow the programmer to manage memory more efficiently than do fixed-size
arrays. 24.2

Performance Tip 24.3
Resizing dynamic arrays consumes processor time and can slow a program’s execution
speed. 24.3

Common Programming Error 24.12
Attempting to use ReDim on a fixed-size array is an error. 24.12

47 </script>
48 </head>
49 </html>

Fig. 24.18 Using VBScript arrays (part 2 of 2).

662 Bonus Chapter: Introduction to Scripting with VBScript® Chapter 24

Line 26

fixedArray = Array("A", "B", "C")

creates an array containing three elements and assigns it to fixedArray. VBScript func-
tion Array takes any number of arguments and returns an array containing those argu-
ments. Lines 35–37 pass the three arrays and three strings to DisplayArray. Line 40

ReDim Preserve dynamic(5)

reallocates dynamic’s memory to five elements. When keyword Preserve is used with
ReDim, VBScript maintains the current values in the array; otherwise, all values in the ar-
ray are lost when the ReDim operation occurs.

Common Programming Error 24.13
Using ReDim without Preserve and assuming that the array still contains previous values
is a logic error. 24.13

Testing and Debugging Tip 24.5
Failure to Preserve array data can result in unexpected loss of data at runtime. Always
double check every array ReDim statement to determine whether Preserve is needed. 24.5

If ReDim Preserve creates a larger array, every element in the original array is pre-
served. If ReDim Preserve creates a smaller array, every element up to (and including)
the new upper bound is preserved (e.g., if there were 10 elements in the original array and
the new array contains 5 elements, the first 5 elements of the original array are preserved).
Lines 41 and 42 assign values to the new elements. Procedure DisplayArray is called
to display array dynamic.

Arrays can have multiple dimensions. VBScript supports at least 60 array dimensions,
but most programmers will need to use only two- or three-dimensional arrays.

Common Programming Error 24.14
Referencing a two-dimensional array element u(x, y) as u(x)(y) is an error. 24.14

A multidimensional array is declared much like a one-dimensional array. For example,
consider the declarations

Dim b(2, 2), tripleArray(100, 8, 15)

which declare b as a two-dimensional array and tripleArray as a three-dimensional ar-
ray. Functions UBound and LBound can also be used with multidimensional arrays. When
calling UBound or LBound, the dimension to which the function should be applied is
passed as the second argument. Array dimensions always begin at 1. If a dimension is not
provided, the default dimension, 1, is used. For example, the For header

For x = 0 To UBound(tripleArray, 3)

would increment x from the third dimension’s lower bound, 0, to the third dimension’s up-
per bound, 15.

Chapter 24 Bonus Chapter: Introduction to Scripting with VBScript® 663

Multidimensional arrays can also be created dynamically. Consider the declaration

Dim threeD()

which declares a dynamic array threeD. The number of dimensions is not set until the
first time ReDim is used. Once the number of dimensions is set, the number of dimensions
cannot be changed by ReDim (e.g., if the array is a two-dimensional array, it cannot be-
come a three-dimensional array). The statement

ReDim threeD(11, 8, 1)

allocates memory for threeD and sets the number of dimensions at 3.

Common Programming Error 24.15
Attempting to change the total number of dimensions in an array using ReDim is an error. 24.15

Common Programming Error 24.16
Attempting to change the upper bound for any dimension except the last dimension in a dy-
namic multidimensional array (when using ReDim Preserve) is an error. 24.16

Memory allocated for dynamic arrays can be deallocated (released) at runtime by
using the keyword Erase. A dynamic array that has been deallocated must be redimen-
sioned with ReDim before it can be used again. Erase can also be used with fixed-sized
arrays to initialize all the array elements to the empty string. For example, the statement

Erase mDynamic

releases mDynamic’s memory.

Common Programming Error 24.17
Accessing a dynamic array that has been deallocated is an error. 24.17

24.7 String Manipulation
One of VBScript’s most powerful features is its string-manipulation functions, some of
which are summarized in Fig. 24.19. For a complete list, consult the VBScript documenta-
tion. VBScript strings are case sensitive. The first character in a string has index 1 (as op-
posed to arrays, which begin at index 0). [Note: Almost all VBScript string-manipulation
functions do not modify their string argument(s); rather, they return new strings containing
the results. Most VBScript string-manipulation functions take optional arguments.]

We now present a VBScript program that converts a line of text into its pig Latin
equivalent (Fig. 24.20). Pig Latin is a form of coded language often used for amusement.
Many variations exist in the methods used to form pig Latin phrases. For simplicity, we use
the following algorithm:

To form a pig Latin phrase from an English language phrase, the translation proceeds one
word at a time. To translate an English word into a pig Latin word, place the first letter of
the English word (if it is not a vowel) at the end of the English word and add the letters
“ay.” If the first letter of the English word is a vowel, place it at the end of the word and add
“y.” Thus, the word “jump” becomes “umpjay,” the word “the” becomes “hetay,”

664 Bonus Chapter: Introduction to Scripting with VBScript® Chapter 24

and the word “ace” becomes “ceay.” Blanks between words remain as blanks. Make the
following assumptions: The English phrase consists of words separated by blanks, there are
no punctuation marks and all words have two or more letters.

Function Description

Asc Returns the ASCII numeric value of a character. For example, Asc("x")
returns 120.

Chr Returns the character representation for an ASCII value. For example, the call
Chr(120) returns “x.” The argument passed must be in the range 0 to 255,
inclusive; otherwise, an error occurs.

InStr Searches a string (i.e., the first argument) for a substring (i.e., the second argu-
ment). Searching is performed from left to right. If the substring is found, the
index of the found substring in the search string is returned. For example, the
call Instr("sparrow","arrow") returns 3, and the call
Instr("japan","wax") returns 0.

Len Returns the number of characters in a string. For example, the call
Len("hello") returns 5.

LCase Returns a lowercase string. For example, the call LCase("HELLO@97[")
returns “hello@97[.”

UCase Returns an uppercase string. For example, the call UCase("hello@97[")
returns “HELLO@97[.”

Left Returns a string containing characters from the left side of a string argument.
For example, the call Left("Web",2) returns “We.”

Mid Function Mid returns a string containing a range of characters from a string.
For example, the call Mid("abcd",2,3)returns “bcd.”

Right Returns a string containing characters from the right side of a string argument.
For example, the call Right("Web",2) returns “eb.”

Space Returns a string of spaces. For example, the call Space(4)returns a string
containing four spaces.

StrComp Compares two strings for equality. Returns 1 if the first string is greater than the
second string, returns -1 if the first string is less than the second string and
returns 0 if the strings are equivalent. The default is a binary comparison (i.e.,
case sensitive). An optional third argument of vbTextCompare indicates a
case-insensitive comparison. For example the call StrComp("bcd",
"BCD") returns 1, the call StrComp("BCD", "bcd") returns -1, the call
StrComp("bcd", "bcd") returns 0 and the call
StrComp("bcd", "BCD", vbTextCompare) returns 0.

String Returns a string containing a repeated character. For example, the call
String(4,"u")returns “uuuu.”

Trim Returns a string that does not contain leading or trailing space characters. For
example the call Trim(" hi ") returns “hi.”

LTrim Returns a string that does not contain any leading space characters. For exam-
ple, the call LTrim(" yes") returns “yes.”

Fig. 24.19 Some string-manipulation functions (part 1 of 2).

Chapter 24 Bonus Chapter: Introduction to Scripting with VBScript® 665

Lines 12–38 define the Function procedure TranslateToPigLatin, which
translates the string input by the user from English to pig Latin. Line 18 calls function
Split to extract each word in the sentence. By default, Split uses spaces as delimiters.
The condition (line 22)

InStr(1, "aeiou", _
 LCase(Left(words(k), 1)))

RTrim Returns a string that does not contain any trailing space characters. For exam-
ple, the call RTrim("no ") returns “no”.

Filter Returns an array of strings containing the result of the Filter operation. For
example, the call
Filter(Array("A","S","D","F","G","D"),"D")
returns a two-element array containing "D" and "D", and the call
Filter(Array("A","S","D","F","G","D"),"D",False) returns
an array containing "A" , "S", "F" and "G".

Join Returns a string containing the concatenation of array elements separated by a
delimiter. For example, the call Join(Array("one","two","three"))
returns “one two three.” The default delimiter is a space, which can be
changed by passing a delimiter string as the second argument. For example, the
call Join(Array("one","two","three"),"$^") returns
“onetwo^three.”

Replace Returns a string containing the results of a Replace operation. Function
Replace requires three string arguments: the string in which characters will
be replaced, the substring to search for and the replacement string. For example,
Replace("It’s Sunday and the sun is out","sun","moon")
returns “It’s Sunday and the moon is out.” Note the case-sensitive
replacement.

Split Returns an array containing substrings. The default delimiter for Split is a
space character. For example, the call Split("I met a traveller")
returns an array containing elements "I", "met", "a" and "traveller",
and Split("red,white,and blue", ",") returns an array containing
elements "red", "white" and "and blue". The optional second argument
changes the delimiter.

StrReverse Returns a string in reverse order. For example, the call StrRe-
verse("deer") returns “reed.”

InStrRev Searches a string (i.e., the first argument) for a substring (i.e., the second argu-
ment). Searching is performed from right to left. If the substring is found, the
index of the found substring in the search string is returned. For example, the
call InstrRev("sparrow","arrow") returns 3, the call
InstrRev("japan","wax") returns 0 and the call
InstrRev("to be or not to be","to be") returns 14.

Function Description

Fig. 24.19 Some string-manipulation functions (part 2 of 2).

666 Bonus Chapter: Introduction to Scripting with VBScript® Chapter 24

calls functions InStr, LCase and Left to determine whether the first letter of a word is
a vowel. Function Left is called to retrieve the first letter in words(k), which is then
converted to lowercase using LCase. Function InStr is called to search the string
"aeiou" for the string returned by LCase. The starting index in every string is 1, and
this position is where Instr begins searching.

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
2 <html>
3 <!--Fig. 24.20: piglatin.html -->
4
5 <head>
6 <title>Using VBScript String Functions</title>
7
8 <script language = "VBScript">
9 <!--

10 Option Explicit
11
12 Public Function TranslateToPigLatin(englishPhrase)
13 Dim words ' Stores each individual word
14 Dim k, suffix
15
16 ' Get each word and store in words the
17 ' default delimiter for Split is a space
18 words = Split(englishPhrase)
19
20 For k = 0 to UBound(words)
21 ' Check if first letter is a vowel
22 If InStr(1, "aeiou", _
23 LCase(Left(words(k), 1))) Then
24 suffix = "y"
25 Else
26 suffix = "ay"
27 End If
28
29 ' Convert the word to pig Latin
30 words(k) = Right(words(k), _
31 Len(words(k)) - 1) & _
32 Left(words(k), 1) & suffix
33 Next
34
35 ' Return translated phrase, each word
36 ' is separated by spaces
37 TranslateToPigLatin = Join(words)
38 End Function
39
40 Sub cmdButton_OnClick()
41 Dim phrase
42
43 phrase = Document.Forms(0).txtInput.Value
44
45 Document.forms(0).txtPigLatin.Value = _
46 TranslateToPigLatin(phrase)
47 End Sub

Fig. 24.20 Using VBScript string-processing functions (part 1 of 2).

Chapter 24 Bonus Chapter: Introduction to Scripting with VBScript® 667

Lines 30–33

words(k) = Right(words(k), _
 Len(words(k)) - 1) & _
 Left(words(k), 1) & suffix

translate an individual word to pig Latin. Function Len is called to get the number of char-
acters in words(k). The value returned by Len is decreased by 1, to ensure that the first
letter in words(k) is not included in the string returned by Right. Function Left is
called to get the first letter of words(k), which is then concatenated to the string re-
turned by Right. Finally, the contents of suffix (either "ay" or "y") and a space are
concatenated.

Lines 40–47 define an event procedure for cmdButton’s OnClick event. Line 46
calls function TranslateToPigLatin, passing the string input by the user. The pig
Latin sentence returned by TranslateToPigLatin is displayed in a text box (line 45).

24.8 Internet and World Wide Web Resources
Although the VBScript language contains far more features than can be presented in one
chapter, there are many Web resources available that are related to VBScript. Visit the fol-
lowing sites for additional information:

48 -->
49 </script>
50 </head>
51
52 <body>
53 <form><p>Enter a sentence
54 <input type = "text" name = "txtInput" size = "50"></p>
55 <p>Pig Latin
56 <input type = "text" name = "txtPigLatin" size = "70"></p><p>
57 <input type = "button" name = "cmdButton" value = "Translate"></p>
58 </script>
59 </form>
60 </body>
61 </html>

Fig. 24.20 Using VBScript string-processing functions (part 2 of 2).

668 Bonus Chapter: Introduction to Scripting with VBScript® Chapter 24

msdn.microsoft.com/scripting/VBScript/doc/vbstutor.htm
The VBScript tutorial contains a short tutorial on VBScript.

msdn.microsoft.com/scripting/VBScript/doc/vbstoc.htm
The VBScript language reference contains links for constants, keywords, functions, etc.

www.msdn.microsoft.com/vbasic/technical/Documentation.asp
Visual Basic 6 documentation. Use the Visual Basic 6 documentation to get additional information on
functions, constants, etc. VBScript is a subset of Visual Basic.

SUMMARY
• Visual Basic Script (VBScript) is a case-insensitive subset of Microsoft Visual Basic® used in

World Wide Web HTML documents to enhance the functionality of a Web page displayed in a
Web browser (such as Microsoft’s Internet Explorer) that contains a VBScript scripting engine
(i.e., interpreter). It is also used on servers to enhance the functionality of server-side applications.

• VBScript’s arithmetic operators are similar to JavaScript’s arithmetic operators. Two major dif-
ferences between them are the division operator, \, which returns an integer result, and the expo-
nentiation operator, ̂ , which raises a value to a power. VBScript operator precedence differs from
that of JavaScript.

• VBScript’s symbols for the equality operator and inequality operators are different from Java-
Script’s symbols. VBScript comparison operators may also be used to compare strings.

• VBScript provides the following logical operators: And (logical AND), Or (logical Or), Not (log-
ical negation), Imp (logical implication), Xor (exclusive Or) and Eqv (logical equivalence).

• Despite the mixture of case in keywords, functions, etc., VBScript is not case sensitive: Uppercase
and lowercase letters are treated the same.

• VBScript provides the plus sign, +, the and ampersand, &, operators for string concatenation. The
ampersand is more formally called the string concatenation operator. If both operands of the con-
catenation operator are strings, the two operators can be used interchangeably. However, if the +
operator is used in an expression consisting of varying data types, there can be a problem.

• Comments are placed in VBScript code by using either a single quote (’) or the keyword Rem be-
fore the comment. As with JavaScript’s two forward slashes, //, VBScript comments are single-
line comments.

• Like JavaScript, VBScript has only one data type—variant—and it is capable of storing different
types of data (e.g., strings, integers, floating-point numbers, etc.). A variant is interpreted by VB-
Script in a manner that is suitable to the type of data it contains.

• Variable names cannot be keywords and must begin with a letter. The maximum length of a vari-
able name is 255 characters, and the name may contain only letters, numbers and under-
scores.Variables can be declared simply by using their name in the VBScript code. Statement
Option Explicit can be used to force all variables to be declared before they are used.

• VBScript provides nine control structures for controlling program execution. Many of the control
structures provide the same capabilities as their JavaScript counterparts. Syntactically, every VB-
Script control structure ends with one or more keywords (e.g., End If, Loop, etc.). Keywords,
not curly braces (i.e., {}), delimit a control structure’s body.

• The If/Then/End If and If/Then/Else/End If control structures behave identically to
their JavaScript counterparts. VBScript’s multiple-selection version of If/Then/Else/End
If uses a different syntax from JavaScript’s version, because it includes keyword ElseIf.

• VBScript does not use a statement terminator (e.g., a semicolon, ;). Unlike in JavaScript, placing
parentheses around conditions in VBScript is optional. A condition evaluates to True if the vari-

Chapter 24 Bonus Chapter: Introduction to Scripting with VBScript® 669

ant subtype is boolean True or if the variant subtype is considered to be nonzero. A condition
evaluates to False if the variant subtype is boolean False or if the variant subtype is considered
to be zero.

• VBScript’s Select Case/End Select structure provides the same functionality as Java-
Script’s switch structure, and more. The Select Case/End Select structure does not re-
quire the use of a statement such as break. One Case cannot accidently run into another. The
VBScript Select Case/End Select structure is equivalent to VBScript’s If/Then/
Else/End If multiple-selection structure. The only difference between them is syntactical.
Any variant subtype can be used with the Select Case/End Select structure.

• VBScript’s While/Wend repetition structure and Do While/Loop behave identically to Java-
Script’s while repetition structure. VBScript’s Do/Loop While structure behaves identically
to JavaScript’s do/while repetition structure. VBScript contains two additional repetition struc-
tures, Do Until/Loop and Do/Loop Until, that do not have direct JavaScript equivalents.
These Do Until repetition structures iterate until the condition becomes True.

• The Exit Do statement, when executed in a Do While/Loop, Do/Loop While, Do Until/
Loop or Do/Loop Until, causes immediate exit from that structure, and execution continues
with the next statement in sequence. The fact that a Do While/Loop may contain Exit Do is
the only difference, other than syntax, between Do While/Loop and While/Wend. Statement
Exit For causes immediate exit from the For/Next structure.

• Function IsEmpty determines whether the variant has ever been initialized by the programmer.
If IsEmpty returns True, the variant has not been initialized by the programmer.

• VBScript’s math functions allow the programmer to perform common mathematical calculations.
Trigonometric functions, such as Cos, Sin, etc., take arguments that are expressed in radians. To
convert from degrees to radians, use the formula radians = (degrees × π) / 180.

• Function InputBox displays a dialog in which the user can input data.

• VBScript coordinates are measured in units of twips (1440 twips equals 1 inch). Coordinates are
relative to the upper-left corner of the screen, which is position (0, 0). x coordinates increase from
left to right, and y coordinates increase from top to bottom.

• Many VBScript functions often take optional arguments.

• The underscore character, _, is VBScript’s line-continuation character. A statement cannot extend
beyond the current line without using this character. A statement may use as many line-continua-
tion characters as necessary.

• Function MsgBox displays a message dialog.

• In VBScript, function calls that wrap arguments in parentheses must be preceded with keyword
Call, unless the function call is assigning a value to a variable.

• VBScript provides functions for getting information about the scripting engine (i.e., the interpret-
er). These functions are ScriptEngine, which returns either "JScript", "VBScript" or
"VBA"; ScriptEngineBuildVersion, which returns the current build version; Script-
EngineMajorVersion, which returns the major version number for the script engine, and
ScriptEngineMinorVersion, which returns the minor release number.

• HTML comment tags comment out the VBScript code. If the browser understands VBScript, these
tags are ignored and the VBScript is interpreted. If the browser does not understand VBScript, the
HTML comment prevents the VBScript code from being displayed as text.

• Procedures that do not return a value begin with keyword Sub and end with keywords End Sub.

• Variables declared within a VBScript procedure are visible only within the procedure body. Pro-
cedures that perform event handling are more properly called event procedures.

670 Bonus Chapter: Introduction to Scripting with VBScript® Chapter 24

• VBScript provides functions CBool, CByte, CCur, CDate, CDbl, CInt, CLng, CSng and
CStr for converting between variant subtypes.

• Programmer-defined constants are created by using keyword Const.

• Because the HEAD section of an HTML document is decoded first by the browser, VBScript code
is normally placed there, so it can be decoded before it is invoked in the document.

• VBScript procedures that return a value are delimited with keywords Function and End
Function. A value is returned from a Function procedure by assigning a value to the proce-
dure name. As in JavaScript, a Function procedure can return only one value at a time.

• VBScript provides statements Exit Sub and Exit Function for exiting Sub procedures and
Function procedures, respectively. Control is returned to the caller, and the next statement in
sequence after the call is executed.

• A fixed-size array’s size does not change during program execution; a dynamic array’s size can
change during execution. A dynamic array is also called a redimmable array. Array elements may
be referred to by giving the array name followed by the element’s position number in parentheses,
(). The first array element is at index 0.

• Function UBound returns the upper bound (i.e., the highest numbered index), and function
LBound returns the lowest numbered index (i.e., 0).

• Keyword Public explicitly indicates that a procedure is public. A procedure may also be marked
as Private, to indicate that only scripts on the same Web page may call the procedure.

• Statement ReDim allocates memory for a dynamic array. All dynamic arrays must receive mem-
ory via ReDim. Dynamic arrays are more flexible than fixed-sized arrays, because they can be re-
sized anytime, using ReDim, to accommodate new data.

• Function Array takes any number of arguments and returns an array containing those arguments.

• Keyword Preserve may be used with ReDim to maintain the current values in the array. When
ReDim is executed without Preserve, all values contained in the array are lost.

• Arrays can have multiple dimensions. VBScript supports at least 60 array dimensions, but most
programmers will need to use only two- or three-dimensional arrays. Multidimensional arrays can
also be created dynamically.

• Memory allocated for dynamic arrays can be deallocated (released) at runtime by using keyword
Erase. A dynamic array that has been deallocated must be redimensioned with ReDim before it
can be used again. Erase can also be used with fixed-sized arrays to initialize all the array ele-
ments to the empty string.

• VBScript strings are case sensitive and begin with an index of 1.

TERMINOLOGY
Abs function byte subtype
Active Server Pages (ASPs) CBool function
addition operator, + CByte function
And logical operator CCur function
Array function CDate function
Asc function CDbl function
Atn function Chr function
attribute CInt function
behavior client
boolean subtype CLng function
build version comment character, ’

Chapter 24 Bonus Chapter: Introduction to Scripting with VBScript® 671

comparison operator integer division operator, \
Const keyword integer subtype
Cos function Intranet
CStr function IsArray function
currency subtype IsDate function
date/time subtype IsEmpty function
Dim keyword IsNumeric function
Do Loop/Until control structure IsObject function
Do Loop/While control structure Join function
Do Until/Loop control structure LBound function
Do While/Loop control structure LCase function
double subtype Left function
dynamic array Len function
ElseIf keyword less-than operator, <
empty subtype less-than-or-equal-to operator, <=
encapsulation lexicographical comparison
End Function line-continuation character, _
End If Log function
End Property long subtype
End Select Loop keyword
End Sub lower bound
End With LTrim function
equality operator, = MFC (Microsoft Foundation Classes)
Eqv logical operator Mid function
Erase statement modulus operator, Mod
event procedure MsgBox function
Exit Do statement multidimensional array
Exit For statement multiplication operator, *
Exit Property statement mutator method
Exp function negation operator, -
exponentiation operator, ^ Next keyword
False keyword Not logical operator
Filter function noun
Fix function Now function
floating-point division operator, / object
For/Next control structure object subtype
FormatCurrency function Option Explicit
FormateDateTime function optional argument
FormatNumber function Or logical operator
FormatPercent function parentheses, ()
greater-than operator, > Preserve keyword
greater-than-or-equal-to operator, >= procedure
If/Then/End If control structure Public keyword
Imp logical operator query method
inequality operator, <> Randomize function
input dialog rapid application development (RAD)
InputBox function read-only property
InStr function ReDim statement
InStrRev function redimmable array
Int function Rem keyword

672 Bonus Chapter: Introduction to Scripting with VBScript® Chapter 24

Replace function subtype of a variant
Right function Tan function
Rnd function Test function
Round function To keyword
RTrim function Trim function
ScriptEngine function True keyword
ScriptEngineBuildVersion function twip
ScriptEngineMajorVersion function UBound function
ScriptEngineMinorVersion function UCase function
Set keyword upper bound
Sgn function variant data type
Sin function variant subtype
single subtype VarType function
software reusability vbLongDate constant
Space function VBScript (Visual Basic Scripting Edition)
Split function VBScript language attribute
Sqr function VBScript scripting engine
Step keyword vbShortTime constant
StrComp function vbTextCompare constant
string concatenation operator, & verb
String function Wend keyword
string subtype While/Wend control structure
StrReverse function With keyword
subtraction operator, - XOr logical operator

25
Bonus Chapter:

Introduction to Active
Server Pages (ASP)

Objectives
• To be able to program Active Server Pages using

VBScript.
• To understand how Active Server Pages work.
• To understand the differences between client-side

scripting and server-side scripting.
• To be able to pass data between Web pages.
• To be able to use server-side include statements.
• To be able to use server-side ActiveX components.
• To be able to create sessions.
• To be able to use cookies.
• To be able to use ActiveX Data Objects (ADO) to

access a database.
A client is to me a mere unit, a factor in a problem.
Sir Arthur Conan Doyle

Rule One: Our client is always right.
Rule Two: If you think our client is wrong, see Rule One.
Anonymous

Protocol is everything.
Françoise Giuliani

674 Bonus Chapter: Introduction to Active Server Pages (ASP) Chapter 25

25.1 Introduction
[Note: This Chapter is a bonus chapter that is intended to support the discussion of Active
Server Pages in Chapters 15. By design, this chapter does not use XML.]
In this chapter, we discuss server-side scripting, which is essential to e-commerce applica-
tions. We use server-side text files called Active Server Pages (ASP) that are processed in
response to a client (e.g., browser) request. These pages are processed by an ActiveX com-
ponent (i.e., a server-side ActiveX control) called a scripting engine. An ASP file has the
file extension .asp and contains HTML tags and scripting code. Although other languag-
es, like JavaScript, can be used for ASP scripting, VBScript is the most widely used lan-
guage for ASP scripting. If you are not familiar with VBScript, please read Chapter 24,
“VBScript,” before reading this chapter.

Software Engineering Observation 25.1
Some independent software vendors (ISVs) provide scripting engines for use with ASP that
support languages other than VBScript and JavaScript. 25.1

 Server-side scripting uses information sent by clients, information stored on the
server, information stored in the server’s memory and information from the Internet to
dynamically create Web pages. The examples in this chapter illustrate how Active Server
Pages use server and client information to send dynamic Web pages to clients. We present
a clock, advertisement rotator, guest book, Web-page creator and user verification system.

25.2 How Active Server Pages Work
The Active Server Pages in this chapter demonstrate communication between clients and
servers via the HTTP of the World Wide Web. When a server receives a client’s HTTP re-
quest, the server loads the document (or page) requested by the client. HTML documents

Outline

25.1 Introduction
25.2 How Active Server Pages Work
25.3 Client-side Scripting versus Server-side Scripting
25.4 Using Personal Web Server and Internet Information Server
25.5 Active Server Page Objects
25.6 A Simple ASP Example
25.7 Server-side ActiveX Components
25.8 File System Objects
25.9 Session Tracking and Cookies
25.10 Databases, SQL, Microsoft UDA and ADO
25.11 Accessing a Database from an Active Server Page
25.12 Internet and World Wide Web Resources

Summary • Terminology

Chapter 25 Bonus Chapter: Introduction to Active Server Pages (ASP) 675

are static documents—that is, all clients see the same content when requesting an HTML
document. ASP is a Microsoft technology for sending to the client dynamic Web content,
which includes HTML, Dynamic HTML, ActiveX controls, client-side scripts and Java ap-
plets (i.e., client-side Java programs that are embedded in a Web page). The Active Server
Page processes the request (which often includes interacting with a database) and returns
the results to the client. The results are normally returned in the form of an HTML docu-
ment, but other data formats (e.g., images, binary data, etc.) can also be returned.

The two most common HTTP request types (also known as request methods) are GET
and POST. These requests are frequently used to send client form data to a Web server.
Although GET and POST both send information to the server, their methods of sending the
information are different. A GET request sends form content as part of the URL (e.g.,
www.searchsomething.com/search?query=userquery). A POST request
posts form contents to the end of an HTTP request. An HTTP request contains information
about the server, client, connection, authorization, etc.

Software Engineering Observation 25.2
The data sent in a POST request are not part of the URL and cannot be seen by the user.
Forms that contain many fields are most often submitted by a POST request. Sensitive form
fields, such as passwords, are usually sent using this request type. 25.2

An HTTP request is often used to post data to a server-side form handler that processes
the data. For example, when the user responds to a Web-based survey, a request sends the
Web server the information specified in the HTML form.

Browsers often cache (i.e., save on disk) Web pages for quick reloading. This speeds
up the user’s browsing experience by reducing the amount of data downloaded to view a
Web page. Browsers typically do not cache the server’s response to a POST request,
because the next POST request may not contain the same information. For example, several
users might request the same Web page to participate in a survey. Each user’s response
changes the overall results of the survey.

When a Web-based search engine is used, a GET request normally supplies the search
engine with the information specified in the HTML form. The search engine then performs
the search and returns the results as a Web page. These pages are often cached in the event
that the user performs the same search again.

When a client requests an ASP document, it is loaded into memory and parsed (top to
bottom) by a scripting engine named asp.dll. Script code is interpreted as it is encoun-
tered.

Portability Tip 25.1
Because browsers are capable of rendering HTML, an ASP page that generates pure HTML
can be rendered on any client browser, regardless of the fact that the page requested ends in
.asp. 25.1

Software Engineering Observation 25.3
To take advantage of Active Server Page technology, a Web server must provide a component
such as asp.dll to support ASP. 25.3

Software Engineering Observation 25.4
Server-side scripts are not visible to the client; only HTML (plus any client-side scripts) is
sent to the client. 25.4

676 Bonus Chapter: Introduction to Active Server Pages (ASP) Chapter 25

25.3 Client-side Scripting versus Server-side Scripting
In previous chapters, we focused on client-side scripting with JavaScript and VBScript.
Client-side scripting is often used for validation, interactivity, accessing the browser and
enhancing a Web page with ActiveX controls, Dynamic HTML and Java applets. Client-
side validation reduces the number of requests the server receives and therefore reduces the
amount of work the server must perform. Interactivity allows the user to make decisions,
click on buttons, play games, etc., activities that are often more interesting than just reading
text. ActiveX controls, Dynamic HTML and Java applets enhance a Web page’s appear-
ance by providing richer functionality than that provided by HTML. Client-side scripts can
access the browser, use features specific to that browser and manipulate browser docu-
ments.

Client-side scripting does have limitations, however, such as browser dependency,
where the browser or scripting host must support the scripting language. Another limitation
is that client-side scripts are viewable (e.g., using the View menu’s Source command in
Internet Explorer) to the client. Some Web developers do not like this feature, because
people can easily steal their scripting code.

Software Engineering Observation 25.5
JavaScript is the most popular client-side scripting language and is supported by both Mi-
crosoft Internet Explorer and Netscape Communicator. 25.5

Performance Tip 25.1
To conserve server resources, perform as much processing as possible on the client side. 25.1

Because server-side scripts reside on the server, programmers have greater flexi-
bility—especially when accessing databases. Scripts executed on the server usually gen-
erate custom responses for clients. For example, a client might connect to an airline’s Web
server and request a list of all flights from Boston to Dallas between September 18th and
November 5th. The script queries the database, dynamically generates HTML content con-
taining the flight list and sends the HTML to the client. A client who connects to the air-
line’s Web server always gets the most current database information.

Server-side scripts also have access to server-side ActiveX components that extend
scripting language functionality. We discuss some of these components later in this
chapter.

An HTML document can contain both client-side script (e.g., JavaScript) and server-
side script (e.g., VBScript).

Portability Tip 25.2
Server-side scripts run exclusively on the server; therefore, cross-platform issues are not a
concern. 25.2

25.4 Using Personal Web Server and Internet Information Server
This chapter contains several examples that require Personal Web Server (PWS) 4.0 or In-
ternet Information Server (IIS) 4.0 or higher to execute. Before attempting to execute any
example, you should make sure that PWS or IIS is running. For help installing and running

Chapter 25 Bonus Chapter: Introduction to Active Server Pages (ASP) 677

PWS, see the “Web Server Installation” document on the CD that accompanies this book
for instructions on how to install and set up a Web server.

[Note: Do not confuse Internet Information Server 4.0 (IIS 4.0) with Internet Informa-
tion Services 5.0 (IIS 5.0). IIS 5.0 is integrated into Windows 2000 and is similar to PWS.
For more information on Internet Information Services 5.0, visit the following Web site:
www.microsoft.com/windows2000/guide/server/features/web.asp.]

If you are going to execute the chapter examples, we recommend that you create a sub-
directory beneath C:\Webshare\Wwwroot or C:\Inetpub\Wwwroot named
Deitel. Copy all the .asp files from the Chapter 25 examples directory (included on the
book’s CD) to this directory. Create two other directories beneath C:\Web-
share\Wwwroot named includes and images. Copy all .shtml files from the CD
to includes and all .gif (or any other graphic file extension) files to images. [Note:
you will need to modify some of the paths in the .asp files to reflect these directories.]

To execute a particular example, type http://machineName/Deitel/
name.asp into the Web browser’s Address field and press the Enter key. For example,
to execute clock.asp on a machine named viper, type

http://viper/Deitel/clock.asp

into the Web browser’s Address field and press the Enter key. To determine the name of
the machine, in Windows 98, right-click Network Neighborhood and select Proper-
ties from the context menu to display the Network dialog. In the Network dialog, click
on the Identification tab. The computer name is displayed in the Computer name:
field. Click on Cancel to close the Network dialog.

In Windows 2000, right click on My Network Places and select Properties from
the context menu to display the Network and Dialup Connections explorer. In the
explorer, click on Network Identification. The computer name is displayed in the Full
Computer Name: field in the System Properties window. Click Cancel to close the
System Properties window.

Several examples access a database. The database files (e.g., .mdb files) can be copied
into any directory on your system. Before executing these examples, you must set up a
System Data Source Name (DSN). See the “Setting up a System Data Source Name” doc-
ument on the CD that accompanies this book for instructions on how to create a DSN.

25.5 Active Server Page Objects
Active Server Pages provide several built-in objects to offer programmers straightforward
methods for communicating with a Web browser, gathering data sent by an HTTP request
and distinguishing between users. Figure 25.1 provides a short description of the most com-
monly used ASP objects.

The Request object is commonly used to access the information passed by a GET or
POST request. This information usually consists of data provided by the user in an HTML
form. The Request object provides access to information, such as “cookies,” that are
stored on a client’s machine. This object can also access binary information (e.g., a file
upload) as well. The Response object sends information (e.g., HTML/text) to the client.

678 Bonus Chapter: Introduction to Active Server Pages (ASP) Chapter 25

The Server object provides access to methods and properties on the server. The
Server object provides a method (CreateObject) to instantiate other objects. We can
create instances of built-in objects, ActiveX components, etc.

25.6 A Simple ASP Example
In this section, we present a simple ASP example (Fig. 25.2) that represents a clock. Every
60 seconds, the page is updated with the server’s time.

Notice the scripting delimiters, <% and %>, wrapped around the VBScript code. These
characters indicate that the scripting code is executed on the server, not the client. Nothing
enclosed in scripting delimiters is sent to the client; the code inside the delimiters is pro-
cessed by the scripting engine. However, the scripting code inside the delimiters can gen-
erate information that is sent to the client. Everything outside of <% and %> is simply
written to the client. The client’s browser then interprets and renders the Web page (e.g.,
HTML sent to the client).

Object Name Description

Request Used to access information passed by an HTTP request.

Response Used to control the information sent to the user.

Server Used to access methods and properties on the server.

Fig. 25.1 Some built-in ASP objects.

1 <% @LANGUAGE = VBScript %>
2 <% Option Explicit %>
3 <% ' Fig. 25.2 : clock.asp %>
4
5 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
6 <HTML>
7 <HEAD>
8 <TITLE>A Simple ASP Example</TITLE>
9 <META HTTP-EQUIV = "REFRESH" CONTENT = "60; URL=CLOCK.ASP">

10 </HEAD>
11 <BODY>
12
13 Simple ASP Example
14 <P>
15 <TABLE BORDER = "6">
16 <TR>
17 <TD BGCOLOR = "#000000">
18
19 <% =Time() %>
20
21 </TD>
22 </TR>
23 </TABLE>

Fig. 25.2 A simple Active Server Page (part 1 of 2).

Chapter 25 Bonus Chapter: Introduction to Active Server Pages (ASP) 679

Common Programming Error 25.1
Leaving out the opening delimiter, <%, or the closing delimiter, %>, or both for a server-side
scripting statement is an error. 25.1

Line 1

<% @LANGUAGE = "VBScript" %>

uses the optional @LANGUAGE processing directive to specify VBScript as the scripting
language. This code indicates that the scripting engine needed to interpret the scripting
code. In this chapter, we use VBScript exclusively to develop our Active Server Pages, al-
though other scripting languages, such as JavaScript, may be used as well. If the @LAN-
GUAGE processing directive is not used, VBScript is the default.

Good Programming Practice 25.1
When using VBScript code in an Active Server Page, use the @LANGUAGE statement for clar-
ity. 25.1

Common Programming Error 25.2
When using the @LANGUAGE tag, not placing it inside the first statement in an ASP file is an
error. 25.2

Line 2 uses Option Explicit to indicate that the programmer must explicitly
declare all VBScript variables. Remember that by simply mentioning a new name,
VBScript variables are implicitly declared. This can lead to subtle errors. When used, the
Option Explicit statement must be the first VBScript scripting statement after the
@LANGUAGE statement. In this particular example, we do not declare any variables, but we
include the Option Explicit statement as an example of good programming practice.

Testing and Debugging Tip 25.1
Always include Option Explicit, even if you are not declaring any VBScript variables.
As a script evolves over time, you may need to declare variables, and the presence of the
Option Explicit statement can help eliminate subtle errors. 25.1

24 </BODY>
25 </HTML>

Fig. 25.2 A simple Active Server Page (part 2 of 2).

680 Bonus Chapter: Introduction to Active Server Pages (ASP) Chapter 25

We use the META tag on line 9 to set the refresh interval for the page. The CONTENT
attribute specifies the number of seconds (60) until the URL attribute’s value
(clock.asp) is requested. Refreshing occurs every minute.

Line 19

<% =Time() %>

calls VBScript function Time to get the current time on the server. Function Time returns
the time in the format hh:mm:ss. This statement is short for

<% Call Response.Write(Time()) %>

which calls the Response method Write to send the time as text to the client. One of the
key points of this example is that the ASP indirectly requests itself. The URL attribute re-
quests that the page reload itself every 60 seconds. This procedure is perfectly valid and is
often done in ASP programming.

25.7 Server-side ActiveX Components
Server-side script functionality is extended with server-side ActiveX components—Ac-
tiveX controls that typically reside on the Web server and do not have a graphical user in-
terface. These components make powerful features accessible to the ASP author. Figure
25.3 summarizes some of the ActiveX components included with Internet Information
Server (IIS), Internet Information Services and Personal Web Server (PWS).

Component Name Description

 MSWC.BrowserType ActiveX component for gathering information about
the client’s browser (e.g., type, version, etc.).

MSWC.AdRotator ActiveX component for rotating advertisements on a

Web page.

MSWC.NextLink ActiveX component for linking Web pages together.

MSWC.ContentRotator ActiveX component for rotating HTML content on a

Web page.

MSWC.PageCounter ActiveX component for storing the number of times
a Web page has been requested.

MSWC.Counters ActiveX components that provide general-purpose

persistent counters.

MSWC.MyInfo ActiveX component that provides information about
a Web site (e.g., owner name, owner address, etc.).

Fig. 25.3 Some server-side ActiveX components included with IIS and PWS
 (part 1 of 2).

Chapter 25 Bonus Chapter: Introduction to Active Server Pages (ASP) 681

Software Engineering Observation 25.6
If the scripting language you are using in an Active Server Page does not support a certain
feature, an ActiveX server component can be created using Visual C++, Visual Basic, Del-
phi, etc., to provide that feature. 25.6

Performance Tip 25.2
Server-side ActiveX components usually execute faster than their scripting language equiv-
alents. 25.2

Many Web sites sell advertising space, especially Web sites with large numbers of hits.
In Fig. 25.4, we demonstrate the AdRotator ActiveX component for rotating advertisements
on a Web page. Each time a client requests this Active Server Page, the AdRotator compo-
nent randomly displays one of several advertisements—in this example, one of five flag
images. When the user clicks on a country’s flag image, the country’s corresponding Cen-
tral Intelligence Agency (CIA) Factbook Web page is displayed. [Note: This is the first of
several examples that consist of multiple files. When a file is part of the same example, we
continue the line numbering from the last line number in the previous listing. We do this
for discussion purposes and to connect all of the example parts.] Line 20

Set flagChanger = Server.CreateObject("MSWC.AdRotator")

Scripting.FileSystemObject
ActiveX component that provides an object library for
accessing files on the server or on the server’s network.

ActiveX Data Objects (ADO) Data
Access Components

ActiveX components that provide an object library

for accessing databases.

Component Name Description

Fig. 25.3 Some server-side ActiveX components included with IIS and PWS
 (part 2 of 2).

1 <% @LANGUAGE = VBScript %>
2 <% Option Explicit %>
3 <% ' Fig. 25.4 : rotate.asp %>
4
5 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
6 <HTML>
7 <HEAD>
8 <TITLE>AdRotator Example</TITLE>
9 </HEAD>

10
11 <BODY>
12
13 AdRotator Example
14 <P>

Fig. 25.4 Demonstrating AdRotator ActiveX component (part 1 of 2).

682 Bonus Chapter: Introduction to Active Server Pages (ASP) Chapter 25

creates an instance of an AdRotator component and assigns it to reference flagChanger.
Server-side ActiveX components are instantiated by passing the name of the component as
a string to the Server object’s method CreateObject.

15 <%
16 ' Declare flagChanger
17 Dim flagChanger
18
19 ' Create an AdRotator object
20 Set flagChanger = Server.CreateObject("MSWC.AdRotator")
21
22 ' Use config.txt to send an advertisement to the client
23 Call Response.Write(_
24 flagChanger.GetAdvertisement("config.txt"))
25 %>
26 </BODY>
27 </HTML>

Fig. 25.4 Demonstrating AdRotator ActiveX component (part 2 of 2).

Chapter 25 Bonus Chapter: Introduction to Active Server Pages (ASP) 683

Lines 23 and 24

Call Response.Write(_
 flagChanger.GetAdvertisement("config.txt"))

call the Response object’s Write method to send the advertisement as HTML to the cli-
ent. Method GetAdvertisement is called using reference flagChanger to get the
advertisements from the file config.txt (Fig. 25.5).

Software Engineering Observation 25.7
The AdRotator ActiveX component allows the page author to minimize the amount of space
on a Web page committed to advertisements, while at the same time to maximize the number
of advertisements to be displayed. 25.7

Portability Tip 25.3
Because the AdRotator ActiveX component is executed on the server, clients do not directly
interact with the component and therefore do not have to support ActiveX technologies 25.3

The file’s header (lines 28–31) includes the URL of the REDIRECT file, redi-
rect.asp (discussed momentarily), the image HEIGHT, the image WIDTH and the
image BORDER width. The asterisk (line 32) separates the header from the advertisements.
Lines 33–36

/images/us.gif
http://www.odci.gov/cia/publications/factbook/us.html
United States Information
20

describe the first advertisement by providing the image’s URL, the destination URL for
redirection upon clicking the ad, a value for the ALT tag (browsers that cannot display
graphics display the specified text) and a number (between 0 and 1000) representing the
ratio of time this particular image appears. The ratios must be numbers between 0 and
10,000. For example, if four ads have the ratios 6, 9, 12 and 3, then the time ratios are
calculated as 20% (6/30), 30% (9/30), 40% (12/30) and 10% (3/30), respectively. Lines
37–52 list the other four advertisements. [Note: If you are executing this example, copy
config.txt to the Deitel directory you created in Section 25.4.]

28 REDIRECT redirect.asp
29 WIDTH 54
30 HEIGHT 36
31 BORDER 1
32 *
33 /images/us.gif
34 http://www.odci.gov/cia/publications/factbook/us.html
35 United States Information
36 20
37 /images/france.gif
38 http://www.odci.gov/cia/publications/factbook/fr.html
39 France Information

Fig. 25.5 File config.txt that describes the advertisements (part 1 of 2).

684 Bonus Chapter: Introduction to Active Server Pages (ASP) Chapter 25

File redirect.asp contains exactly one line:

<% Call Response.Redirect(Request("url")) %>

This line redirects the user to the country page when the ad is clicked on. Each time the ad
is clicked on, the document redirect.asp is requested and a query string is sent with
the request. The query string contains an attribute url that is equal to the destination URL
found in config.txt for this ad. For example, if you click on the U.S. flag, the result is
the same as that of typing

http://localhost/Deitel/redirect.asp?url=http://www.odci.gov/
cia/publications/factbook/us.html

in the browser’s Address field.
We arbitrarily chose the names config.txt and redirect.asp. You may

choose any name you prefer. The redirect file loads (into the browser) the page referenced
by the ad’s URL. These files can be placed anywhere in the publishing directory (i.e., they
do not have to be under the same directory as rotate.asp). For example, if you put
config.txt under directory X in the publishing directory, then lines 23 and 24 would
read

Call Response.Write(_
 flagChanger.GetAdvertisement("/X/config.txt"))

Note that GetAdvertisement is passed a URL, not a physical disk path, hence the use
of the forward slash. Also note that /X/config.txt is short for http://local-
host/X/config.txt. (The server is localhost, and the publishing directory is
C:\Webshare\Wwwroot.) You can replace localhost by the IP address
127.0.0.1, which also refers to the local machine.

Figure 25.6 shows the HTML sent by rotate.asp. [Note: This file has been edited
for presentation (e.g., the HTML HEAD and BODY tags have been omitted).]

40 20
41 /images/germany.gif
42 http://www.odci.gov/cia/publications/factbook/gm.html
43 Germany Information
44 20
45 /images/italy.gif
46 http://www.odci.gov/cia/publications/factbook/it.html
47 Italy Information
48 20
49 /images/spain.gif
50 http://www.odci.gov/cia/publications/factbook/sp.html
51 Spain Information
52 20

Fig. 25.5 File config.txt that describes the advertisements (part 2 of 2).

Chapter 25 Bonus Chapter: Introduction to Active Server Pages (ASP) 685

25.8 File System Objects
File System Objects (FSOs) provide the programmer with the ability to manipulate files,
directories and drives. FSOs also allow the programmer to read and write text and are an
essential element for Active Server Pages that persist data. We first provide an overview of
FSO features and then provide a “live-code” example that uses FSOs.

FSOs are objects in the Microsoft Scripting Runtime Library. Five types of FSO exist:
FileSystemObject, File, Folder, Drive and TextStream. Each type is sum-
marized in Fig. 25.7.

The programmer can use FileSystemObjects to create directories, move files,
determine whether a Drive exists, etc. Figure 25.8 summarizes some common methods
of FileSystemObject.

The File object allows the programmer to gather information about files, manipulate
files and open files. Figure 25.9 lists some common File properties and methods.

53 <A HREF = "redirect.asp?url=http://www.odci.gov/cia/publications/
54 factbook/us.html&image=/images/us.gif">
55 <IMG SRC = "/images/us.gif" ALT = "United States Information"
56 WIDTH = "54" HEIGHT = "36" BORDER = "1">

Fig. 25.6 HTML sent to the client by rotate.asp for the USA advertisement.

Object type Description

FileSystemObject Allows the programmer to interact with Files, Folders and Drives.

File Allows the programmer to manipulate Files of any type.

Folder Allows the programmer to manipulate Folders (i.e., directories).

Drive Allows the programmer to gather information about Drives (hard
disks; RAM disks, which are computer memory used as a substitute for
hard disks to allow high-speed file operations; CD-ROMs, etc.).
Drives can be local or remote.

TextStream Allows the programmer to read and write text files.

Fig. 25.7 File System Objects (FSOs).

Methods Description

CopyFile Copies an existing File.

CopyFolder Copies an existing Folder.

CreateFolder Creates and returns a Folder.

Fig. 25.8 FileSystemObject methods (part 1 of 2).

686 Bonus Chapter: Introduction to Active Server Pages (ASP) Chapter 25

CreateTextFile Creates and returns a text File.

DeleteFile Deletes a File.

DeleteFolder Deletes a Folder.

DriveExists Tests whether or not a Drive exists. Returns a boolean.

FileExists Tests whether or not a File exists. Returns a boolean.

FolderExists Tests whether or not a Folder exists. Returns a boolean.

GetAbsolutePathName Returns the absolute path as a string.

GetDrive Returns the specified Drive.

GetDriveName Returns the Drive drive name.

GetFile Returns the specified File.

GetFileName Returns the File filename.

GetFolder Returns the specified Folder.

GetParentFolderName Returns a string representing the parent folder name.

GetTempName Creates and returns a string representing a filename.

MoveFile Moves a File.

MoveFolder Moves a Folder.

OpenTextFile Opens an existing text File. Returns a TextStream.

Property/method Description

Properties

DateCreated Date. The date the File was created.

DateLastAccessed Date. The date the File was last accessed.

DateLastModified Date. The date the File was last modified.

Drive Drive object. The Drive where the file is located.

Name String. The File name.

ParentFolder String. The File’s parent folder name.

Path String. The File’s path.

ShortName String. The File’s name expressed as a short name.

Size Variant. The size of the File, in bytes.

Methods

Copy Copy the File. Same as CopyFile of FileSystemObject.

Delete Delete the File. Same as DeleteFile of FileSystemObject.

Fig. 25.9 Some common File properties and methods (part 1 of 2).

Methods Description

Fig. 25.8 FileSystemObject methods (part 2 of 2).

Chapter 25 Bonus Chapter: Introduction to Active Server Pages (ASP) 687

Property Path contains the File’s path in long-name format. (The operating system
does not abbreviate the name when it exceeds the 8.3 format.) Property ShortName con-
tains, if applicable, the filename in short-name format. (A filename exceeding the 8.3
format is abbreviated.) For example, a filename in long-name format might be “ABCD EFG
HIJ.doc.” That same filename in short-name format might be abbreviated as
“ABCDEF~1.doc.”

The Folder object allows the programmer to manipulate and gather information
about directories. Figure 25.10 lists some common Folder properties and methods.

Property IsRootFolder indicates whether the folder is the root folder for the
Drive (i.e., the folder that contains everything on the drive). If the folder is not the root
folder, method ParentFolder may be called to get the folder’s parent folder (i.e., the
folder in which the selected folder is contained). Method Size returns the total number of
bytes the folder contains. The size includes the size of subfolders (i.e., folders inside the
selected folder) and files.

Move Move the File. Same as MoveFile of FileSystemObject.

OpenAsTextStream Opens an existing File as a text File. Returns TextStream.

Property/method Description

Properties

Attributes Integer. Value indicating Folder’s attributes (read only, hidden, etc.).

DateCreated Date. The date the folder was created.

DateLastAccessed Date. The date the folder was last accessed.

DateLastModified Date. The date the folder was last modified.

Drive Drive object. The Drive where the folder is located.

IsRootFolder Boolean. Indicates whether or not a Folder is the root folder.

Name String. The Folder’s name.

ParentFolder Folder object. The Folder’s parent folder.

Path String. The Folder’s path.

ShortName String. The Folder’s name expressed as a short name.

ShortPath String. The Folder’s path expressed as a short path.

Size Variant. The total size in bytes of all subfolders and files.

Type String. The Folder type.

Methods

Fig. 25.10 Some Folder properties and methods (part 1 of 2).

Property/method Description

Fig. 25.9 Some common File properties and methods (part 2 of 2).

688 Bonus Chapter: Introduction to Active Server Pages (ASP) Chapter 25

The Drive object allows the programmer to gather information about drives. Figure
25.11 lists some common Drive properties. Property DriveLetter contains the
Drive’s letter. Property SerialNumber contains the Drive’s serial number. Property
FreeSpace contains the number of bytes available.

Figure 25.12 is an Active Server Page for a guest book that allows the visitors to the
site to enter their name, e-mail address and comments. We use file system objects to write
the visitor information to a file on the server.

Delete Delete the Folder. Same as DeleteFolder of
FileSystemObject.

Move Move the Folder. Same as MoveFolder of
FileSystemObject.

Copy Copy the Folder. Same as CopyFolder of
FileSystemObject.

Property Description

AvailableSpace Variant. The amount of available Drive space in bytes.

DriveLetter String. The letter assigned to the Drive (e.g., “C”).

DriveType Integer. The Drive type. Constants Unknown, Removable, Fixed,
Remote, CDRom and RamDisk represent Drive types and have the
values 0–5, respectively.

FileSystem String. The file system Drive description (FAT, FAT32, NTFS, etc.).

FreeSpace Variant. Same as AvailableSpace.

IsReady Boolean. Indicates whether or not a Drive is ready for use.

Path String. The Drive’s path.

RootFolder Folder object. The Drive’s root Folder.

SerialNumber Long. The Drive serial number.

TotalSize Variant. The total Drive size, in bytes.

VolumeName String. The Drive volume name.

Fig. 25.11 Drive properties.

1 <% @LANGUAGE = VBScript %>
2 <% Option Explicit %>
3

Fig. 25.12 Guest book Active Server Page (part 1 of 4).

Property/method Description

Fig. 25.10 Some Folder properties and methods (part 2 of 2).

Chapter 25 Bonus Chapter: Introduction to Active Server Pages (ASP) 689

4 <% ' Fig. 25.12 : guestbook.asp %>
5
6 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
7 <HTML>
8 <HEAD>
9 <TITLE>GuestBook Example</TITLE>

10 <BODY>
11
12
13 <%
14 Dim fileObject, textFile, guestBook, mailtoUrl
15
16 ' If user has made an entry and thus the page is
17 ' reloading, then process this entry
18 If Request("entry") = "true" Then
19
20 ' Print a thank you
21 Call Response.Write("Thanks for your entry, ")
22 Call Response.Write(Request("name") & "!")
23 %>
24 <HR COLOR = "blue" SIZE = "1">
25 <% ' Instantiate a FileSystemObject
26 Set fileObject = Server.CreateObject(_
27 "Scripting.FileSystemObject")
28
29 ' Guestbook path must be modified to reflect the file
30 ' structure of the server.
31 guestBook = "c:\Inetpub\Wwwroot\Deitel\" & "guestbook.txt"
32
33 ' Check if the file exists. If not, create it.
34 If fileObject.FileExists(guestbook) <> True Then
35 Call fileObject.CreateTextFile(guestBook)
36 End If
37
38 ' Guestbook must be open for writing.
39 ' Open the guestbook, 8 is for appending
40 Set textFile = fileObject.OpenTextFile(guestbook, 8, True)
41
42 ' Build the mailtoUrl
43 mailtoUrl = Date() & " <A HREF = " & Chr(34) _
44 & "mailto:" & Request("email") & Chr(34) _
45 & ">" & Request("name") & ": "
46
47 ' Write data to guestbook.txt
48 Call textFile.WriteLine("<HR COLOR = " & Chr(34) _
49 & "blue" & Chr(34) & " SIZE = " & Chr(34) _
50 & "1" & Chr(34) & ">")
51 Call textFile.WriteLine(mailtoUrl)
52 Call textFile.WriteLine(Request("comment"))
53 Call textFile.Close()
54 End If
55 %>
56

Fig. 25.12 Guest book Active Server Page (part 2 of 4).

690 Bonus Chapter: Introduction to Active Server Pages (ASP) Chapter 25

57 Please leave a message in our guestbook.
58
59
60 <FORM ACTION = "guestbook.asp?entry=true" METHOD = "POST">
61 <CENTER>
62 <TABLE>
63 <TR>
64 <TD>Your Name: </TD>
65 <TD><INPUT TYPE = "text" FACE = "Arial"
66 SIZE = "60" NAME = "name"></TD>
67 </TR>
68 <TR>
69 <TD>Your email address:
70 </TD>
71 <TD><INPUT TYPE = "text" FACE = "Arial" SIZE = "60"
72 NAME = "email" VALUE = "user@isp.com"></TD>
73 </TR>
74 <TR>
75 <TD>Tell the world:
76 </TD>
77 <TD><TEXTAREA NAME = "comment" ROWS = "3" COLS = "50">
78 Replace this text with the information
79 you would like to post.
80 </TEXTAREA></TD>
81 </TR>
82 </TABLE>
83 <INPUT TYPE = "submit" VALUE = "SUBMIT">
84 <INPUT TYPE = "reset" VALUE = "CLEAR">
85 </CENTER>
86 </FORM>
87
88 <%
89 Dim fileObject2, textFile2
90
91 ' Instantiate a FileSystemObject
92 Set fileObject2 = Server.CreateObject(_
93 "Scripting.FileSystemObject")
94
95 ' Guestbook path must be modified to reflect
96 ' the file structure of the server.
97 guestBook = "c:\Inetpub\wwwroot\Deitel\" & "guestbook.txt"
98
99 ' Check if the file exists. If not, create it.
100 If fileObject2.FileExists(guestBook) = True Then
101
102 ' Guestbook must be open for writing.
103 ' Open the guestbook, "1" is for reading.
104 Set textFile2 = fileObject2.OpenTextFile(guestbook, 1)
105
106 ' Read the entries from the file and write them to
107 ' the client.
108 Call Response.Write("Guestbook Entries:
")
109 Call Response.Write(textFile2.ReadAll())

Fig. 25.12 Guest book Active Server Page (part 3 of 4).

Chapter 25 Bonus Chapter: Introduction to Active Server Pages (ASP) 691

The guest book page displayed in the browser consists of a form (to be filled in by the
user) and a list of guest book entries (initially, there are no entries in this list). We begin by

110 Call textFile2.Close()
111 End If
112 %>
113
114 </BODY>
115 </HTML>

Fig. 25.12 Guest book Active Server Page (part 4 of 4).

692 Bonus Chapter: Introduction to Active Server Pages (ASP) Chapter 25

discussing the form (lines 60–86). The form contains three text fields used to input the
name, e-mail account and user comments.

Line 60

<FORM ACTION = "guestbook.asp?entry=true" METHOD = "POST">

indicates that a POST request occurs upon form submission. The action for the form re-
quests the same ASP page in which the form is contained—guestbook.asp. As we
demonstrated earlier, this is perfectly valid; a form’s action is not required to request a dif-
ferent document. When the form is submitted, guestbook.asp is requested from the
server. Notice that the form passes guestbook.asp a parameter in the URL. Passing pa-
rameters in a page’s name simulates an HTTP GET request. We send the parameters in the
page’s name by appending a question mark to the page’s URL, followed by a list of param-
eters and values, separated by ampersands:

SomeURL?param1=value1¶m2=value2& ... paramN=valueN

Our form passes one parameter named entry:

guestbook.asp?entry=true

This URL is a “virtual path” for

http://localhost/Deitel/guestbook.asp?entry=true

Upon submission, guestbook.asp is requested and passed parameter entry, which is
assigned "true". [Note: "true" is a string, and not a boolean value.] The name entry
is programmer defined; you, of course, may choose any name you prefer. We use this tech-
nique to determine whether this ASP page is being requested by a form submitted from
guestbook.asp.

We want only lines 21–53 to execute when the page is loaded with a POST request.
Line 18

If Request("entry") = "true" Then

uses the Request object to get entry’s value and test it against the string "true".
When this page is requested by a client for the first time, entry has the value "" (an empty
string), and lines 21–53 are not executed. Variable entry is passed "true" only during
the POST operation (line 60). When entry is "true", lines 21–53 are executed.

Lines 21 and 22

Call Response.Write("Thanks for your entry, ")
Call Response.Write(Request("name") & "!")

print Thanks for your entry, followed by the user’s name. Notice that the Request
object is used to get the value posted in the name text field of the submitted form.

Lines 26 and 27

Set fileObject = Server.CreateObject(_
 "Scripting.FileSystemObject")

Chapter 25 Bonus Chapter: Introduction to Active Server Pages (ASP) 693

create an FSO instance (i.e., an object) and assign it to reference fileObject. When as-
signing an object to a reference in VBScript, keyword Set is required. We specify the lo-
cation of the file that stores guest book information in line 31. You may need to modify this
path to conform to the directory structure on your machine.

Before writing data to the guest book, we call FileExists in line 34 to determine
if guestbook.txt exists. If it does not, method CreateTextFile is called to create
the file.

Line 40

Set textFile = fileObject.OpenTextFile(guestbook, 8, True)

calls method OpenTextFile to get a TextStream object for accessing the text file
guestbook.txt. The constant value 8 indicates append mode (writing to the end of the
file), and True indicates that the file will be created if it does not already exist. Opening
for read or write is specified with constant values 1 and 2, respectively. The user's submit-
ted name and e-mail address are combined with HTML tags and assigned to string mail-
toUrl (lines 43–45). This string, when displayed in the browser, shows the submitted
name as a mailto link. Clicking on this link opens an e-mail message editor with the per-
son’s name in the To: field. Line 43 calls VBScript function Date to assign the current
server date to the beginning of mailtoUrl. The Request object is used to retrieve the
values from the email field (line 44) and the name field (line 45). We pass the value 34
to the VBScript function Chr to get a double-quote (") character. We store HTML tags in
mailtoUrl. We choose to be formal and include quotations around HTML values. For
example, we use instead of . Because
the interpreter would treat a double quote as the end of the mailtoUrl string, we use
function Chr to return a double quote.

Lines 48–52 write text to guestbook.txt using the TextStream method
WriteLine. After writing the text to the file, TextStream method Close is called in
line 53 to close the file.

Every time a client requests this Active Server Page, lines 89–111 execute. This
VBScript code displays a list of all the users who have made guest book entries. If the
guestbook.txt file exists, it is opened for reading in line 104. Lines 108 and 109 write
HTML/text to the client. The entire contents of guestbook.txt are read by calling
TextStream method ReadAll. The text is written to the client using
Response.Write. Because the text contains HTML markup, it is rendered in the client
browser.

25.9 Session Tracking and Cookies
HTTP does not support persistent information that could help a Web server distinguish be-
tween clients. In this section, we will introduce two related technologies that enable a Web
server to distinguish between clients: session tracking and cookies.

Many Web sites provide custom Web pages and/or functionality on a client-by-client
basis. For example, some Web sites allow you to customize their home page to suit your
needs. An excellent example of this type of site is the Yahoo! Web site (my.yahoo.com),
which allows you to customize how the Yahoo! site appears. [Note: You need to get a free
Yahoo! ID first.]

694 Bonus Chapter: Introduction to Active Server Pages (ASP) Chapter 25

Another example of a service that is customized on a client-by-client basis is a shop-
ping cart for shopping on the Web. Obviously, the server must distinguish between clients
so the business can assign the proper items and charge each client the proper amount.

A third example of customizing on a client-by-client basis lies in marketing. Compa-
nies often track the pages you visit so they can display advertisements based upon your
browsing trends. Many people consider tracking to be an invasion of their privacy, and thus
tracking is an increasingly sensitive issue in our information-based society.

There are a number of popular techniques for uniquely identifying clients. For the pur-
poses of this chapter, we introduce two techniques to track clients individually: session
tracking and cookies.

The server handles session tracking. The first time a client connects to the server, the
server assigns the user a unique session ID. When the client makes additional requests, the
client’s session ID is compared with the session IDs stored in the server’s memory. Active
Server Pages use the Session object to manage sessions. The Session object’s Tim-
eout property specifies the number of minutes that a session exists before it expires. The
default value for property Timeout is 20 minutes. Calling Session method Abandon
can also terminate an individual session.

We are now ready to present an example that uses session tracking. Figure 25.13 is an
ASP page generator. Users who are not familiar with ASP can input their information in a
form and submit the form, and the ASP page generator does all the work of creating the
user’s ASP page. This example consists of two Active Server Pages linked to each other
through HTTP POST requests. We use session variables in this example to maintain a state
between the two ASP pages. Multiple Active Server Pages connected in this manner are
sometimes called an ASP application.

The first page, instantpage.asp (Fig. 25.13), consists of a form that requests
information from the user. When submitted, the form is POSTed to process.asp (Fig.
25.17). If there are no errors, process.asp creates the user’s ASP page. Otherwise,
process.asp redirects the user back to instantpage.asp, passing it parameter
error=yes. Also, process.asp stores a “welcome back” message in a session vari-
able. Each time a user submits the form, process.asp stores a new “welcome back”
message in the session variable. If a filename is not provided, process.asp returns an
error to instantpage.asp (Fig. 25.14).

Line 15

<!-- #include virtual = "/includes/mgtheader.shtml" -->

is a server-side include (SSI) statement that incorporates the contents of mgthead-
er.shtml (Fig. 25.15) into the ASP file. Server-side includes are commands embedded
in HTML documents that add dynamic content. The SSI statement in line 15 is replaced
with the contents of the file mgtheader.shtml. Not all Web servers support the avail-
able SSI commands. Therefore, SSI commands are written as HTML comments. SSI state-
ments always execute before any scripting code executes.

We also use an SSI in line 69 to include mgtfooter.shtml (Fig. 25.16). The word
virtual in the SSI refers to the include file’s path as it appears below the server’s root
directory. This path is often referred to as a virtual path. SSIs can also use file, instead
of virtual, to indicate a physical path on the server. For example, line 15 could be
rewritten as

Chapter 25 Bonus Chapter: Introduction to Active Server Pages (ASP) 695

<!-- #include file = "C:\Webshare\Wwwroot\includes\
mgtheader.shtml"-->

which assumes that mgtheader.shtml is in the directory C:\Webshare\Wwwroot
\includes on the server.

Software Engineering Observation 25.8
Virtual paths hide the server’s internal file structure. 25.8

1 <% @LANGUAGE = VBScript %>
2 <% Option Explicit %>
3
4 <% ' Fig. 25.13 : instantpage.asp %>
5
6 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
7 <HTML>
8 <HEAD>
9 <TITLE>Instant Page Content Builder</TITLE>

10 </HEAD>
11
12 <BODY>
13
14 <% ' Include the header %>
15 <!-- #include virtual = "/includes/mgtheader.shtml" -->
16
17 <H2>Instant Page Content Builder</H2>
18
19 <% ' If process.asp signaled an error, print the error
20 ' message.
21 If Request("error") = "yes" Then
22 Call Response.Write(Session("errorMessage"))
23 ' Otherwise, print the welcome back message, if any.
24 Else
25 Call Response.Write(Session("welcomeBack"))
26 End If
27
28 ' A form to get the information from the user.
29 %>
30 <FORM ACTION = "process.asp" METHOD = "POST">
31
32 <CENTER>
33
34 <TABLE>
35 <TR>
36 <TD>Your Name:
37
</TD>
38 <TD><INPUT TYPE = "text" FACE = "Arial" SIZE = "60"
39 NAME = "name">
</TD>
40 </TR>
41 <TR>
42 <TD>Enter the Filename:
43
</TD>

Fig. 25.13 Listing for instantpage.asp (part 1 of 2).

696 Bonus Chapter: Introduction to Active Server Pages (ASP) Chapter 25

44 <TD><INPUT TYPE = "text" FACE = "Arial" SIZE = "60"
45 NAME = "filename" VALUE = "YourFileName.asp">

46 </TD>
47 </TR>
48 <TR>
49 <TD>Enter the Title:
50
</TD>
51 <TD><INPUT TYPE = "text" FACE = "Arial" SIZE = "60"
52 NAME = "doctitle" VALUE = "Document Title">

53 </TD>
54 </TR>
55 <TR>
56 <TD>Enter the Content:
57
</TD>
58 <TD><TEXTAREA NAME = "content" ROWS = "3" COLS = "50">
59 Replace this text with the
60 information you would like to post.
61 </TEXTAREA>
</TD>
62 </TR>
63 </TABLE>
64 <INPUT TYPE = "submit" VALUE = "SUBMIT">
65 <INPUT TYPE = "reset" VALUE = "CLEAR">
66 </CENTER>
67 </FORM>
68
69 <!-- #include virtual = "/includes/mgtfooter.shtml" -->
70
71 </BODY>
72 </HTML>

Fig. 25.13 Listing for instantpage.asp (part 2 of 2).

Chapter 25 Bonus Chapter: Introduction to Active Server Pages (ASP) 697

Fig. 25.14 Error message returned by instantpage.asp.

The session variables used in this example are errorMessage, for the error mes-
sage, and welcomeBack, for the user’s “welcome back” message. The If statement on
lines 21–26

If Request("error") = "yes" Then
Call Response.Write(Session("errorMessage"))

' Otherwise, print the welcome back message, if any.
Else
Call Response.Write(Session("welcomeBack"))

End If

73 <HR SIZE = "1" COLOR = "blue">
74
75 <HR SIZE = "1" COLOR = "blue">

Fig. 25.15 File listing for mgtheader.shtml.

76 <HR COLOR = "blue" SIZE = "1">
77 <CENTER>
78 Ordering Information -
79 Contact the Editor

80 <HR COLOR = "blue" SIZE = "1">
81 </CENTER>

Fig. 25.16 File listing for mgtfooter.shtml.

698 Bonus Chapter: Introduction to Active Server Pages (ASP) Chapter 25

test if the value of error is "yes". If the If statement returns a value of true, the value
of session variable errorMessage is written to the client. Otherwise, welcomeBack’s
value is written to the client. A session variable’s value is set and retrieved using the Ses-
sion object. Note that Request("error") never equals "yes" unless pro-
cess.asp passes error=yes as a parameter to instantpage.asp. Otherwise,
Request("error") contains an empty string. A session variable that has not been ex-
plicitly given a value contains an empty string. When instantpage.asp is requested
for the first time, Request("error") is equal to an empty string and the “welcome
back” message is not written.

Line 30

<FORM ACTION = "process.asp" METHOD = "POST">

requests Active Server Page process.asp when the form is posted. The remainder of
instantpage.asp is HTML that defines the form input items and the page footer.

Software Engineering Observation 25.9
Server-side includes may include any type of information. Text files and HTML files are two
of the most common server-side include files. 25.9

Software Engineering Observation 25.10
Server-side includes are performed before any scripting code is interpreted. An Active Server
Page cannot dynamically decide which server-side includes are used and which are not.
Through scripting, an ASP can determine which SSI block is sent to the client. 25.10

Testing and Debugging Tip 25.2
Server-side includes that contain scripting code should enclose the scripting code in
<SCRIPT> tags or in <% %> delimiters to prevent one block of scripting code from running
into another block of scripting code. 25.2

Software Engineering Observation 25.11
By convention, server-side include (SSI) files end with the .shtml extension. 25.11

Software Engineering Observation 25.12
Server-side includes are an excellent technique for reusing HTML, Dynamic HTML, scripts
and other programming elements. 25.12

The document process.asp (Fig. 25.17) creates the user’s ASP document and pre-
sents a link to the user’s page. This page is requested by instantpage.asp (line 30).

The If statement in line 91 validates the contents of field Enter the Filename. If the
text box is empty or contains the default string YourFileName.asp, HTML text con-
taining an error message is assigned to the session variable errorMessage:

Session("errorMessage") = "<FONT COLOR = " & q _
 & "red" & q & " SIZE = " & q & "4" & q & ">" _
 & "Please enter a filename." & "" & "
"

Then, line 96

Call Response.Redirect("instantpage.asp?error=yes")

Chapter 25 Bonus Chapter: Introduction to Active Server Pages (ASP) 699

calls Response method Redirect to request instantpage.asp and pass it er-
ror=yes. ASP instantpage.asp was presented in Fig. 25.13.

82 <% @LANGUAGE = VBScript %>
83 <% Option Explicit %>
84
85 <% ' Fig. 25.17 : process.asp %>
86
87 <% Dim q
88 q = Chr(34)
89
90 ' Check to make sure that they have entered a filename
91 If Request("filename") = "YourFileName.asp" Or _
92 Request("filename") = "" Then
93 Session("errorMessage") = "<FONT COLOR = " & q _
94 & "red" & q & " SIZE = " & q & "4" & q & ">" _
95 & "Please enter a filename." & "" & "
"
96 Call Response.Redirect("instantpage.asp?error=yes")
97 End If
98
99 Dim directoryPath, filePath, fileObject
100
101 ' Create a FileSystem Object
102 Set fileObject = Server.CreateObject(_
103 "Scripting.FileSystemObject")
104
105 ' directoryPath must be modified to reflect the file
106 ' structure of your server
107 directoryPath = "c:\Inetpub\Wwwroot\userpages\"
108
109 ' See if the directory exists. If not, create it.
110 If Not fileObject.FolderExists(directoryPath) Then
111 Call fileObject.CreateFolder(directoryPath)
112 End If
113
114 ' Build path for text file.
115 filePath = directoryPath & Request("filename")
116
117 ' Check if the file already exists
118 If fileObject.FileExists(filePath) Then
119 Session("errorMessage") = "<FONT COLOR = " & q _
120 & "red" & q & " SIZE = " & q & "4" & q & ">" _
121 & "This filename is in use. " _
122 & "Please enter another filename." & "" _
123 & "
"
124 Call Response.Redirect("instantpage.asp?error=yes")
125 End If
126
127 ' Save HTML for the welcome back message
128 ' in a session variable
129 Session("welcomeBack")= "<FONT COLOR = " _
130 & q & "blue" & q & " SIZE = " _
131 & q & "4" & q & ">" _

Fig. 25.17 Listing for process.asp (part 1 of 3).

700 Bonus Chapter: Introduction to Active Server Pages (ASP) Chapter 25

132 & "Welcome Back, " & Request("name") & "!" _
133 & "
"
134
135 Dim header, footer, textFile, openMark, closeMark
136 openMark = "<" & "%"
137 closeMark = "%" & ">"
138
139 ' Build the header.
140 ' vbCrLf inserts a carriage return/linefeed into the text
141 ' string which makes the HTML code more readable
142 header = openMark & " @LANGUAGE = VBScript " & closeMark _
143 & vbCrLf & openMark & " ' " & Request("filename") _
144 & " " & closeMark & vbCrLf & vbCrLf _
145 & "<!DOCTYPE HTML PUBLIC " & q _
146 & "-//W3C//DTD HTML 4.0 Transitional//EN" & q & ">" _
147 & vbCrLf & "<HTML>" & vbCrLf & "<HEAD>" & vbCrLf _
148 & "<META NAME = " & q & "author" & q & " CONTENT = " _
149 & q & Request("name") & q & ">" & vbCrLf _
150 & "<META NAME = " & q & "pubdate" & q _
151 & " CONTENT = " & q & Date() & q & ">" & vbCrLf _
152 & "<TITLE>" & Request("doctitle") & "</TITLE>" _
153 & vbCrLf & "</HEAD>" & vbCrLf & "<BODY>" & vbCrLf _
154 & "<FONT FACE = " & q & "arial" & q & " SIZE = " & q _
155 & "3" & q & " >" & vbCrLf _
156 & "<!-- #include virtual = " & q _
157 & "/includes/mgtheader.shtml" & q & " -->" & vbCrLf _
158 & "<CENTER><U><H2>" & Request("doctitle") _
159 & "</H2></U>" & vbCrLf & "
" & vbCrLf
160
161 ' Build the footer using a different style for
162 ' building the string
163 footer = vbCrLf & "</CENTER>

" & vbCrLf
164 footer = footer & "You have requested this page on "
165 footer = footer & openMark & " =Date() " & closeMark & ","
166 footer = footer & vbCrLf & "at " & openMark & " =Time() "
167 footer = footer & closeMark & "." & vbCrLf
168 footer = footer & "<!-- #include virtual = " & q
169 footer = footer & "/includes/mgtfooter.shtml" & q
170 footer = footer & " -->" & vbCrLf & ""
171 footer = footer & vbCrLf & "</BODY>" & vbCrLf & "</HTML>"
172
173 ' Create the html file
174 Set textFile = fileObject.CreateTextFile(filePath, False)
175 Call textFile.WriteLine(header)
176 Call textFile.WriteLine(Request("content"))
177 Call textFile.Write(footer)
178 Call textFile.Close
179 %>
180 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
181 <HTML>
182 <HEAD>
183
184 <% ' Use the title given by the user %>

Fig. 25.17 Listing for process.asp (part 2 of 3).

Chapter 25 Bonus Chapter: Introduction to Active Server Pages (ASP) 701

If the user has entered a valid filename, an FSO object is created in lines 102 and 103
and assigned to reference fileObject. Line 107 specifies the path on the server where
the ASP file will eventually be written. We have chosen to store all the user pages in a direc-
tory that we created called userpages (beneath the publishing directory,
C:\Inetpub\Wwwroot). You will need to either create this directory or modify this
path on your machine.

The If statement in line 110 tests for the existence of the
C:\Inetpub\Wwwroot\userpages folder by calling FSO method FolderEx-

185 <TITLE>File Generated: <% =Request("filename") %></TITLE>
186 </HEAD>
187
188 <BODY>
189
190 <!-- #include virtual = "/includes/mgtheader.shtml" -->
191
192
193 <CENTER><U><H2>
194 File Generated: <% =Request("filename") %>
195 </H2></U></CENTER>

196 <% ' Provide a link to the generated page %>
197 Your file is ready:
198 <A HREF = "/userpages/<% =Request("filename") %>">
199 <% =Request("doctitle") %>
200
201 <!-- #include virtual = "/includes/mgtfooter.shtml" -->
202
203
204 </BODY>
205 </HTML>

Fig. 25.17 Listing for process.asp (part 3 of 3).

702 Bonus Chapter: Introduction to Active Server Pages (ASP) Chapter 25

ists to determine if the directory specified in line 107 exists. If the folder does not exist,
FSO method CreateFolder is called to create it in line 111.

Line 115 builds the file path by concatenating the filename to the directory path. This
filePath is passed to FSO method FileExists, which is called in line 118 to deter-
mine if the file exists. If it does exist, another user has already created an ASP document
with the same filename. In this case, HTML containing an error message is saved to the
session variable errorMessage. On line 124, error=yes is passed to
instantpage.asp, indicating that an error has occurred.

Lines 129–133 assign HTML for the “welcome back” message to session variable
welcomeBack. The format of the message is

Welcome back, X!

where X is the current user’s name, obtained from the form’s name field.
Lines 136 and 137 assign the ASP scripting delimiters to string variables openMark

and closeMark. We use two strings instead of one to represent the opening and closing
delimiters (i.e., "<" & "%") because the interpreter treats the single string "<%" as a
scripting delimiter.

Next, we build the user’s ASP file. For clarity, we divide the file into three parts: a
header, a footer and the content (provided by the user in the form’s content field).

Lines 142–159 construct HTML for the header and assign it to string header.
VBScript constant vbCrLf is used to insert a carriage-return line-feed combination. The
form’s values are retrieved using the Request object. Note that character variable q is
assigned the value Chr(34) in line 88, where 34 is the decimal ASCII code for the
double-quote character. For more on ASCII characters, see Appendix C. Lines 163–171
create the page’s footer and assign it to variable footer.

Lines 174–178 write header, text area content’s text and footer to the text file
before closing it. Lines 180–205 send HTML to the client that contains a link to the created
page. Figure 25.18 lists a sample ASP file—named test.asp—created by Active Server
Page process.asp. [Note: We added line 2 for presentation purposes.] The first screen
capture in Fig. 25.19 contains shows the message that is displayed when the user returns
back to instantpage.asp. The second screen capture shows the error message gener-
ated when the user does not change the default filename in the Enter the Filename tex-
tfield.

1 <% @LANGUAGE = VBScript %>
2 <% ' Fig. 25.18 : test.asp %>
3
4 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
5 <HTML>
6 <HEAD>
7 <META NAME = "author" CONTENT = "Test User">
8 <META NAME = "pubdate" CONTENT = "5/29/2000">
9 <TITLE>My Personal Page</TITLE>

10 </HEAD>
11 <BODY>

Fig. 25.18 Listing for test.asp (part 1 of 2).

Chapter 25 Bonus Chapter: Introduction to Active Server Pages (ASP) 703

Another popular way to customize Web pages is via cookies. Cookies can store infor-
mation on the client’s computer for retrieval later in the same browsing session or in future
browsing sessions. For example, cookies could be used in a shopping application to keep
track of the client’s shopping-cart items.

Cookies are small files sent by an ASP (or similar technology, such as Perl, discussed
in Chapter 26) as part of a response to a client. Every HTTP-based interaction between a
client and a server includes a header that contains information about either the request
(when the communication is from the client to the server) or the response (when the com-
munication is from the server to the client). When an Active Server Page receives a request,
the header includes information such as the request type (e.g., GET or POST) and cookies
stored on the client machine by the server. When the server formulates its response, the
header information includes any cookies the server wants to store on the client computer.

12
13 <!-- #include virtual = "/includes/mgtheader.shtml" -->
14 <CENTER><U><H2>My Personal Page</H2></U>
15

16
17 My personal page is under construction. Come again soon.
18
19 </CENTER>

20 You have requested this page on <% =Date() %>,
21 at <% =Time() %>.
22 <!-- #include virtual = "/includes/mgtfooter.shtml" -->
23
24 </BODY>
25 </HTML>

Fig. 25.18 Listing for test.asp (part 2 of 2).

704 Bonus Chapter: Introduction to Active Server Pages (ASP) Chapter 25

Software Engineering Observation 25.13
Some clients do not allow cookies to be written on their machine. A refusal to accept cookies
may prevent the client from being able to properly use the Web site that attempted to write
the cookies. 25.13

Depending on the maximum age of a cookie, the Web browser either maintains the
cookie for the duration of the browsing session (i.e., until the user closes the Web browser)
or stores the cookie on the client computer for future use. When the browser makes a
request to a server, cookies previously sent to the client by that server are returned to the
server (if the cookies have not expired) as part of the request formulated by the browser.
Cookies are automatically deleted when they expire (i.e., reach their maximum age). We
use cookies in Section 25.11 to store user IDs.

25.10 Databases, SQL, Microsoft UDA and ADO
A database is an integrated collection of data. A database management system (DBMS) in-
volves the data itself and the software that controls the storage and retrieval of data. Data-
base management systems provide mechanisms for storing and organizing data in a manner
that facilitates satisfying sophisticated queries and manipulations of the data.

The most popular database systems in use today are relational databases. A language
called Structured Query Language (SQL—pronounced “sequel”) is almost universally
used with relational database systems to make queries (i.e., to request information that sat-
isfies given criteria) and manipulate data. Some popular enterprise-level relational database
systems include Microsoft SQL Server, Oracle, Sybase, DB2 and Informix. Enterprise-
level database systems are used for large-scale database access. A popular personal rela-
tional database is Microsoft Access, which we use for simplicity in our examples. Uni-
versal Data Access (UDA) is a Microsoft architecture that provides data access to many
data sources. We first discuss database structure and how to query a database using SQL
and then briefly discuss the UDA architecture.

A relational database is composed of tables, which in turn are composed of columns
(or fields). Figure 25.20 shows the table relationships in a database named catalog.mdb.
The database contains four tables: products, authorlist, authors and tech-
nologies. Within each of these tables are multiple fields. For example, the technol-
ogies table has technologyID and technology fields. The records (or rows) of the
technologies table are also shown in Fig. 25.20. The technologyID field is the pri-
mary key. A primary key is a unique field that is used to identify a record. The records of
the technologies table are ordered by a primary key. The first record has technol-
ogyID “1” and technology “C”.

A line between two tables in Fig. 25.20 represents a relationship between those tables.
Consider the line between the products and technologies tables. On the tech-
nologies end of the line, there is a 1; on the products end, there is an infinity symbol.
This indicates that every technology in the technologies table corresponds to an arbi-
trary number of products in the products table—a one-to-many relationship. The
products and technologies tables are linked by their technologyID fields.

Different database users are often interested in different data and different relation-
ships between those data. SQL statements are commonly used to specify which data to
select from a table. SQL provides a complete set of keywords (including SELECT) that

Chapter 25 Bonus Chapter: Introduction to Active Server Pages (ASP) 705

enable programmers to define complex queries for retrieving data from a table. Query
results are commonly called result sets (or record sets).

Fig. 25.19 Output from instantpage.asp.

706 Bonus Chapter: Introduction to Active Server Pages (ASP) Chapter 25

Figure 25.21 lists some SQL keywords for querying a database, inserting records into
a database and updating existing records in a database. For more information on SQL key-
words, visit www.aspin.com/home/references/database/sql.

A typical SQL query selects information from one or more tables in a database. Such
selections are performed by SELECT queries. The simplest form of a SELECT query is

SELECT * FROM TableName

In the preceding query, the asterisk (*) indicates that all rows and columns (fields) from
table TableName should be selected. To select specific fields from a table, replace the as-
terisk (*) with a comma-separated list of the field names to select. For example,

SELECT FieldName1, FieldName2, FROM TableName

selects all the FieldName1 and FieldName2 fields from the records in the TableName table.

Software Engineering Observation 25.14
For most SQL statements, the asterisk (*) should not be used to specify field names to select
from a table (or several tables). In general, programmers process result sets by knowing in
advance the order of the fields in the result set. 25.14

Fig. 25.20 Table relationships in catalog.mbd.

SQL keyword Description

SELECT Select (retrieve) fields from one or more tables.

Fig. 25.21 Some SQL query keywords (part 1 of 2).

Chapter 25 Bonus Chapter: Introduction to Active Server Pages (ASP) 707

Software Engineering Observation 25.15
Specifying the actual field names to select from a table (or several tables) guarantees that the
fields are always returned in the same order, even if the actual order of the fields in the da-
tabase table(s) changes. 25.15

Common Programming Error 25.3
When composing an SQL statement using the asterisk (*) to select fields, assuming that the
fields in the result set of the query are always returned in the same order may result in incorrect
processing of the data in the application receiving the result set. If the order of the fields in the
database table(s) changes, the order of the fields in the result set changes accordingly. 25.15

Common Programming Error 25.4
In a query, forgetting to enclose a field name containing spaces in square brackets ([]) is
an error. 25.4

Often it is necessary to identify records in a database that satisfy only certain selection
criteria. SQL provides the optional WHERE clause in a SELECT query to specify the selec-
tion criteria for a query. The simplest form of a SELECT query with selection criteria is

SELECT fieldName1, fieldName2, … FROM TableName WHERE criteria

The WHERE clause condition can contain operators such as <, >, <=, >=, =, <> and LIKE.
Operator LIKE is used for pattern matching with wildcard characters asterisk (*) and ques-
tion mark (?). Pattern matching allows SQL to search for similar strings to the pattern pro-
vided.” An asterisk (*) in the pattern indicates any number of (i.e., zero or more) characters
in a row at the asterisk’s location in the pattern. [Note: Many databases use the % character
in place of the * character in a LIKE expression.]

It may be necessary to merge data from multiple tables into a single report for analysis
purposes. This is accomplished using a join condition—a condition that joins, merges or
extracts data from more than one table. For example, to extract all of the Visual Basic prod-
ucts from the database in Fig. 25.20, we would use

SELECT * FROM products, technologies WHERE technologyID = 3

This command returns the technologyID, technology name and all of the prod-
ucts associated with the technologyID for Visual Basic (“3”) in a record set.

FROM Tables from which to get fields. Required in every SELECT.

WHERE Criteria for selection that determine the rows to be retrieved.

ORDER BY Criteria for ordering (sorting) of records.

INSERT INTO Insert values into one or more tables. [Note: Some databases do not
require the SQL keyword INTO.]

UPDATE Update existing data in one or more tables.

SQL keyword Description

Fig. 25.21 Some SQL query keywords (part 2 of 2).

708 Bonus Chapter: Introduction to Active Server Pages (ASP) Chapter 25

The query results can be sorted into ascending or descending order by using the
optional ORDER BY clause. The simplest forms of an ORDER BY clause are

SELECT field1, field2, … FROM TableName ORDER BY fieldName ASC
SELECT field1, field2, … FROM TableName ORDER BY fieldName DESC

where ASC specifies ascending (lowest to highest) order, DESC specifies descending (high-
est to lowest) order and fieldName represents the field (the column of the table) that is used
for sorting purposes.

Often, it is necessary to insert data into a table (i.e., add a new record). This task is
accomplished by using the INSERT INTO keywords. The simplest form for an INSERT
INTO statement is

INSERT INTO TableName (fieldName1, fieldName2, …, fieldNameN)
 VALUES (value1, value2, …, valueN)

where TableName is the table into which the record will be inserted. The TableName is fol-
lowed by a comma-separated list of field names in parentheses. (This list is not required if
the INSERT INTO operation fills a complete row in the table.) The list of field names is
followed by the SQL keyword VALUES and a comma-separated list of values in parenthe-
ses.

It is also often necessary to modify data in a table (i.e., update a record). This is accom-
plished by using an UPDATE operation. The simplest form for an UPDATE statement is

UPDATE TableName
 SET fieldName1 = value1, fieldName2 = value2, …, fieldNameN = valueN
 WHERE criteria

where TableName is the table in which the record will be updated. The TableName is fol-
lowed by the SET keyword and a comma-separated list of field name/value pairs in the for-
mat fieldName = value. The WHERE clause specifies the criteria used to determine which
record(s) to update.

To execute an SQL query, a program must be able to access a database. Many different
database vendors exist, each one potentially providing different database manipulation
methods. Microsoft developed the Open Database Connectivity (ODBC) Application Pro-
gramming Interface (API) to allow Windows applications to communicate in a uniform
manner with disparate relational databases. Database vendors write a piece of software,
called an ODBC driver, using the ODBC API to provide uniform access to the database
(i.e., database programmers do not have to learn vendor-specific database implementa-
tions).

Microsoft Universal Data Access (UDA) is an architecture that is designed for high-
performance data access to relational data sources, nonrelational data sources and main-
frame/legacy data sources. The UDA architecture (Fig. 25.22) consists of three primary
components: OLE DB, the core of the UDA architecture that provides low-level access to
any data source; Open Database Connectivity (ODBC), a C programming-language library
that uses SQL to access data, and ActiveX Data Objects (ADO), a simple object model that
provides uniform access to any data source by interacting with OLE DB. [Note: OLE DB
is required to implement a minimum set of data access services that can be used by ADO.]

Chapter 25 Bonus Chapter: Introduction to Active Server Pages (ASP) 709

More specifically, the ADO object model provides objects and collections (i.e., con-
tainers that hold one or more objects of a specific type). Figure 25.23 briefly describes some
ADO objects and collections. Visit

www.microsoft.com/data/ado/adords15

to access the ADO documentation and view a complete list of methods, properties and
events for these ADO objects.

25.11 Accessing a Database from an Active Server Page
As discussed in the previous section, Active Server Pages can communicate with databases
through ADO (ActiveX Data Objects). ADO provides a uniform way for a program to con-
nect with a variety of databases in a general manner without having to deal with the specif-
ics of those database systems.

Web applications are typically three-tier distributed applications, consisting of a user
interface, business logic and database access. The user interface in such an application is
often created using HTML, Dynamic HTML or XML. The user interface, can of course,
contain ActiveX controls and client-side scripts. In some cases, Java applets are also used
for this tier. HTML is the preferred mechanism for representing the user interface in sys-
tems for which portability is a concern. Because all browsers support HTML, designing the
user interface to be accessed through a Web browser guarantees portability across all
browser platforms. The user interface can communicate directly with the middle-tier busi-
ness logic by using the networking provided automatically by the browser. The middle tier
can then access the database to manipulate the data. All three tiers may reside on separate
computers that are connected to a network or on a single machine.

In multitier architectures, Web servers are increasingly used to build the middle tier.
They provide the business logic that manipulates data from databases and that communi-
cates with client Web browsers. Active Server Pages, through ADO, can interact with pop-
ular database systems. Developers do not need to be familiar with the specifics of each
database system. Rather, developers use SQL-based queries, and ADO handles the spe-
cifics of interacting with each database system through OLE DB.

Fig. 25.22 Microsoft’s UDA architecture.

Application or Browser

OLE DB

ODBC

Relational data sources Non-relational data sources Mainframe/legacy data sources

ADO

710 Bonus Chapter: Introduction to Active Server Pages (ASP) Chapter 25

Databases can enhance applications by providing a data source that can be used to
dynamically generate Web pages. Figure 25.13 (instantpage.asp) puts the power of
Web page creation into the hands of individuals who are not familiar with HTML and ASP.
However, we may want only a certain subset of preapproved users to be able to access
instantpage.asp. We can use password protection to restrict access. In Fig. 25.24, we
provide an Active Server Page named login.asp that prompts the user for a login name
and password. The login names and passwords are stored in an Access database.

This example uses cookies to identify users, which must be enabled by the browser
before executing this example. If cookies are disabled, the browser will not permit the
example to write a cookie to the client machine, and the example will not be able to prop-
erly identify the user. To enable cookies in Internet Explorer 5, select Internet Options from
the Tools menu to display the Internet Options dialog. Click on the Security tab at the top
of the dialog to view the current security settings. Click on the Custom Level... button,
scroll down and find Cookies. Click on Enable for both cookie options.

The Active Server Page login.asp prompts the user for a login ID and a password,
while submitlogin.asp is responsible for validating the user’s login. Both submit-
login.asp and login.asp use session variable loginFailure. If login is suc-
cessful, loginFailure is set to False and the client is redirected to
instantpage.asp. If login is unsuccessful, the variable is set to True and the client is
redirected back to login.asp. Because login.asp has access to session variable
loginFailure, the page recognizes that there was an error in submitlogin.asp
and displays the error message.

Object/Collection Description

Connection object The connection to the data source.

Command object Contains the query that interacts with the database (the data source) to
manipulate data.

Parameter object Contains information needed by a Command object to query the data
source.

Parameters collection Contains one or more Parameter objects.

Error object Created when an error occurs while data is being accessed.

Errors collection Contains one or more Error objects.

Recordset object Contains zero or more records that match the database query. Collec-
tively, this group of records is called a record set.

Field object Contains the value (and other attributes) of one data source field.

Fields collection Contains one or more Field objects.

Fig. 25.23 Some ADO object and collection types.

1 <% @LANGUAGE = VBScript %>
2 <% Option Explicit %>
3

Fig. 25.24 Listing for login.asp (part 1 of 5).

Chapter 25 Bonus Chapter: Introduction to Active Server Pages (ASP) 711

4 <% ' Fig. 25.24 : login.asp %>
5
6 <% Dim connection, query, loginData
7
8 Set connection = Server.CreateObject("ADODB.Connection")
9 Call connection.Open("login")

10
11 ' Create the SQL query
12 query = "SELECT loginID FROM Users"
13
14 ' Create the record set
15 Set loginData = Server.CreateObject("ADODB.Recordset")
16 Call loginData.Open(query, connection)
17
18 ' If an error occurs, ignore it
19 On Error Resume Next
20 %>
21
22 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
23 <HTML>
24 <HEAD><TITLE>Login Page</TITLE></HEAD>
25
26 <BODY>
27
28 <!-- #include virtual="/includes/mgtheader.shtml" -->
29
30 <%
31 ' If this is a return after a failed attempt,
32 ' print an error
33 If Session("loginFailure") = True Then %>
34 Login attempt failed,
35 please try again <P>
36 <% End If
37
38 ' Begin the form %>
39
40 Please select your name and enter
41 your password to login:

42
43 <FORM ACTION = "submitlogin.asp" METHOD = "POST">
44
45 <% ' Format the form using a table %>
46 <TABLE BORDER = "0">
47 <TR>
48 <TD>Name:</TD>
49 <TD><SELECT NAME = "loginID">
50 <OPTION VALUE = "noSelection">Select your name
51
52 <% ' If the loginID cookie is an empty string then there is
53 ' no need to consider the returning case
54 If Request.Cookies("loginID") <> "" Then
55 Call BuildReturning()

Fig. 25.24 Listing for login.asp (part 2 of 5).

712 Bonus Chapter: Introduction to Active Server Pages (ASP) Chapter 25

56 Else
57 Call BuildNewUser()
58 End If
59 %>
60
61 </SELECT>
62 </TD>
63 </TR>
64
65 <TR>
66 <TD>Password:</TD>
67 <TD><INPUT TYPE = "password" NAME = "password"></TD>
68 </TR>
69 <TR>
70 <TD> </TD>
71 <TD ALIGN = "left">
72 <INPUT TYPE = "submit" VALUE = "Log Me In">
73 </TD>
74 </TR>
75 </TABLE>
76 </FORM>
77
78
79 <!-- #include virtual="/includes/mgtfooter.shtml" -->
80
81 </BODY>
82 </HTML>
83
84 <% ' Builds the OPTION items for loginIDs and writes
85 ' selected for the loginID of the returning user
86 Sub BuildReturning()
87 Dim found
88
89 ' Pull user names from the record set to populate the
90 ' dropdown list
91 found = False
92 While Not loginData.EOF
93 ' Create this record's dropdown entry
94 %> <OPTION
95 <% ' If we did not write SELECTED for any OPTION
96 ' before
97 If (Not found) Then
98
99 ' If the current record's loginID is equal to
100 ' the loginID cookie, then it is the loginID of
101 ' the returning user, and thus we need to write
102 ' SELECTED for this option; in this case we also
103 ' need to signal that we have written SELECTED
104 ' for an OPTION by setting found to True.
105 If Request.Cookies("loginID") _
106 = loginData("loginID") _
107 Then
108 Call Response.Write("SELECTED")

Fig. 25.24 Listing for login.asp (part 3 of 5).

Chapter 25 Bonus Chapter: Introduction to Active Server Pages (ASP) 713

109 found = True
110 End If
111 End If
112 %> VALUE = "<% =loginData("loginID") %>">
113 <% =loginData("loginID") %>
114 <% Call loginData.MoveNext()
115 Wend
116 End Sub
117
118 ' Builds the OPTION items for loginIDs without writing
119 ' SELECTED for any loginID
120 Sub BuildNewUser()
121
122 ' Pull user names from the record set to populate the
123 ' dropdown list
124 While Not loginData.EOF
125 ' Create this record's dropdown entry
126 %> <OPTION VALUE = "<% =loginData("loginID") %>">
127 <% =loginData("loginID") %>
128 <% Call loginData.MoveNext()
129 Wend
130 End Sub
131 %>

Fig. 25.24 Listing for login.asp (part 4 of 5).

714 Bonus Chapter: Introduction to Active Server Pages (ASP) Chapter 25

The loginID and password fields are stored in table Users inside an Access
database named login.mdb. For this particular example, all users have the same pass-
word (i.e., password). Before executing this example, an ODBC System DSN for this
database must be created. See the “Setting up a System Data Source Name” document on
the CD that accompanies this book for instructions on how to create a DSN.

Users select their loginID from a drop-down list populated from the Users table.
Note that submitlogin.asp also accesses the database to verify login information.

To recognize returning users and have their loginID displayed in the drop-down list,
submitlogin.asp writes a cookie (named loginID) to the client containing the
user’s loginID string. When the user returns, login.asp reads the cookie and selects
the user’s login name from the drop-down list.

Line 8

Set connection = Server.CreateObject("ADODB.Connection")

calls Server method CreateObject to create an ADODB.Connection object and
Sets it to reference connection. An ADODB.Connection object encapsulates the
functionality necessary to connect to a data source.

Line 9

Call connection.Open("login")

calls method Open to open the database referred to by the specified ODBC System DSN
(i.e., login).

Fig. 25.24 Listing for login.asp (part 5 of 5).

Chapter 25 Bonus Chapter: Introduction to Active Server Pages (ASP) 715

Line 12

query = "SELECT loginID FROM Users"

assigns the SQL query that SELECTs all the loginIDs FROM the Users table.
Lines 15 and 16

Set loginData = Server.CreateObject("ADODB.Recordset")
Call loginData.Open(query, connection)

Set reference loginData to an ADODB.Recordset object and call method Open to
execute the query (from line 12) against the database referenced by connection. Method
Open is passed a string containing the SQL query and the ADODB.Connection object
that connection references. When Open finishes executing, the ADODB.Recordset
object referenced by loginData contains all records that match the SQL query and points
to either the first record or end of file (EOF) if no records were found.

For simplicity, if an error occurs while the records are being retrieved, we choose to
ignore it. Line 19

On Error Resume Next

specifies that any error caused by a statement from this point onward is ignored, and control
is transferred to the statement immediately following the statement that caused the error.

Lines 33–36 determine whether or not the session variable loginFailure is True,
indicating that submitlogin.asp has detected an invalid login. If it is True, a message
is displayed informing the client that the login attempt failed and prompting for another
login.

Next, we use the HTML SELECT structure to build the drop-down list of loginIDs.
Line 50 writes the first OPTION that displays Select your name. If no other OPTION
is marked as SELECTED, this OPTION is displayed when the page is loaded. The next
OPTIONs are the loginIDs retrieved from the database. If the user is a returning user, we
want to display the user’s loginID as SELECTED.

Line 54 requests the loginID cookie. If it is the user’s first visit, or if the cookie has
expired, Cookie returns an empty string. [Note: It is possible for a cookie to store an
empty string. If this is the case, Cookie returns the contents of the cookie, which is an
empty string.] Otherwise, the user’s loginID is returned. Lines 54–58

If Request.Cookies("loginID") <> "" Then
Call BuildReturning()

Else
Call BuildNewUser()

End If

call procedure BuildReturning if loginID contains a login ID, and call procedure
BuildNewUser otherwise. Both BuildReturning and BuildNewUser build the
login ID OPTIONs. However, BuildReturning selects the returning user’s login ID
OPTION, while BuildNewUser does not.

BuildReturning’s While loop (lines 92–115) iterates through loginData’s
records. Recall that loginData contains the loginID column (field) of the Users
table and points either to the first record or to EOF. Line 92

716 Bonus Chapter: Introduction to Active Server Pages (ASP) Chapter 25

While Not loginData.EOF

tests for the end of the record set, indicating that there are no further records. Line 114

Call loginData.MoveNext()

increments the record set pointer to the next record.
Each iteration of the While loop builds an OPTION item for the current record. Line

94 simply writes the opening of the OPTION item. Next, we test whether or not this
OPTION needs to be SELECTED with the If statement in lines 105–110. Note that once
we have written SELECTED for an OPTION, there is no need to perform this check in fur-
ther iterations; SELECTED is written for one and only one OPTION. The code that writes
SELECTED for an option is thus wrapped in another If statement (lines 97–111). Variable
found is set to False before the loop, in line 91. Once SELECTED is written for an
OPTION, found is assigned the value True. Line 97 prevents the code that writes
SELECTED for an option from being executed unnecessarily after an OPTION is already
selected. Lines 105 and 106

If Request.Cookies("loginID") _
 = loginData("loginID") _

determine whether or not the current record’s loginID field is equal to the value of the
loginID cookie. If so, lines 108 and 109 write SELECTED and set found to True.

Line 112 sets the VALUE for the OPTION to the current loginID. Finally, line 113
writes the display of this OPTION as the current loginID.

Active Server Page submitlogin.asp (Fig. 25.25) takes the values passed to it by
login.asp and checks the values against the Users table in the database. If a match is
found, the user is redirected to instantpage.asp. If no match is found, the user is redi-
rected back to login.asp. The user never sees or knows about submitlogin.asp,
because the page is pure scripting code (i.e., its entire contents are enclosed in scripting
delimiters).

132 <% @LANGUAGE = VBScript %>
133 <% Option Explicit %>
134
135 <% ' Fig. 25.25 : submitlogin.asp %>
136
137 <% ' First, make sure that a user name and a password were
138 ' entered. If not, redirect back to the login page.
139
140 If Request("password") = "" Or _
141 Request("loginID") = "noSelection" _
142 Then
143 Session("loginFailure") = True
144 Call Response.Redirect("login.asp")
145 End If
146
147 Dim connection, query, loginData
148

Fig. 25.24 Listing for submitlogin.asp.

Chapter 25 Bonus Chapter: Introduction to Active Server Pages (ASP) 717

Lines 140–145 check whether the form’s password field is empty or if the log-
inID field was submitted with the default value. If so, session variable loginFailure
is set to True and the client is redirected to login.asp.

Lines 153 and 154

query = "SELECT * FROM Users WHERE loginID = '" _
 & Request("loginID") & "'"

select all the fields from the table. The WHERE clause in this SQL statement specifies a con-
dition on which records are selected: Only the record(s) whose loginID field has the
same value as the form’s loginID field is (are) selected. Also, note that this SQL state-
ment always finds a record, because the form’s loginID values are retrieved from the
Users’s loginID field. For example, if loginID jdoe is selected, then query con-
tains

SELECT * FROM Users WHERE loginID = 'jdoe'

149 Set connection = Server.CreateObject("ADODB.Connection")
150 Call connection.Open("login")
151
152 ' Create the SQL query
153 query = "SELECT * FROM Users WHERE loginID = '" _
154 & Request("loginID") & "'"
155
156 ' Create the record set
157 Set loginData = Server.CreateObject("ADODB.Recordset")
158 Call loginData.Open(query, connection)
159
160 ' If an error occurs, ignore it
161 On Error Resume Next
162
163 If Request("password") = loginData("password") Then
164
165 ' Password is OK, adjust loginFailure
166 Session("loginFailure") = False
167
168 ' Write a cookie to recognize them the next time they
169 ' go to login.asp
170 Response.Cookies("loginID") = Request("loginID")
171
172 ' Give it three days to expire
173 Response.Cookies("loginID").Expires = Date() + 3
174
175 ' Send them on to the next page
176 Call Response.Redirect("instantpage.asp")
177 Else
178 Session("loginFailure") = True
179 Call Response.Redirect("login.asp")
180 End If
181 %>

Fig. 25.24 Listing for submitlogin.asp.

718 Bonus Chapter: Introduction to Active Server Pages (ASP) Chapter 25

Line 163 checks the password against the password from the record set. Note that the
submitted loginID is a valid login ID that was selected from the drop-down list. Thus,
we only need to check the password here to validate a login. If the password is correct, then
line 170

Response.Cookies("loginID") = Request("loginID")

writes the form’s loginID value as a cookie named loginID.
Line 173

Response.Cookies("loginID").Expires = Date() + 3

sets the expiration date of this cookie to the current date plus three days. If we do not set an
expiration date for the cookie when we create it, it is treated as a session cookie (i.e., it is
destroyed when the browser is closed). [Note: If an existing cookie’s content is updated,
then the expiration date needs to be set again. Otherwise, the cookie is destroyed at the end
of the session regardless of the expiration date it had before the update.] The cookie remains
on the client’s machine until it expires, at which time the browser deletes it.

 Next, line 176 calls method Redirect to redirect the client to
instantpage.asp. Otherwise, the session variable loginFailure is set to True,
and the client is redirected back to login.asp (lines 178 and 179).

25.12 Internet and World Wide Web Resources
www.microsoft.com
Microsoft’s home page. This site provides a link to search Microsoft’s entire Web-based information
structure. Check this site first for answers. Some information is provided on a subscribers-only basis.

www.tcp-ip.com
The ASP Toolbox home page is an excellent source for ASP information and resources. The site con-
tains numerous links to free components and other resources helpful in Web development using Ac-
tive Server Pages. The site tutorials include an overview of Active Server technology, as well as
helpful hints and demos with source code provided. Other features of this page include ASP discus-
sion forums and resources.

www.4guysfromrolla.com/webtech/index_asp.shtml
Contains FAQs, ASP-related articles, coding tips, message boards, etc.

www.aspin.com/index
Contains ASP resources, including applications, books, forums, references, examples and tutorials,
links, etc.

www.kamath.com/default.asp
Contains downloads, FAQs, tutorials, book excerpts, columns, etc.

www.aspwatch.com/
Contains ASP-related articles and examples of code.

www.developer.com
Great source of information for developers. The ASP section contains working code, troubleshooting
techniques and advice.

www.paessler.com/tools/ASPBeautify
Home of a tool that formats ASP pages for readability.

Chapter 25 Bonus Chapter: Introduction to Active Server Pages (ASP) 719

SUMMARY
• Active Server Pages (ASP) are processed in response to a client (e.g., browser) request. An ASP

file—which has file extension .asp—contains HTML and scripting code. Although other lan-
guages, such as JavaScript, can be used for ASP scripting, VBScript is the de facto language for
ASP scripting.

• ASP is a Microsoft-developed technology for generating dynamic Web content—which includes
HTML, Dynamic HTML, ActiveX controls, client-side scripts and Java applets (i.e., client-side
Java programs that are embedded in a Web page).

• The two most common HTTP request types (also known as request methods) are GET and POST.
These requests are frequently used to send client form data to a Web server.

• A GET request sends form content as part of the URL. A POST request posts form content inside
the HTTP request. The post data are appended to the end of an HTTP request.

• Browsers often cache (save on disk) Web pages so they can quickly reload the pages. There are no
changes between the last version stored in the cache and the current version on the Web. Browsers
typically do not cache the server’s response to a POST request, because the next POST may not
return the same result.

• When a client requests an ASP file, the ASP file is parsed (top to bottom) by an ActiveX compo-
nent named asp.dll. Scripting code is executed as it is encountered.

• The @LANGUAGE statement is used by the programmer to specify which scripting engine is needed
to interpret the scripting code. If @LANGUAGE is not used, VBScript is assumed to be the default.
As the script is interpreted, HTML (plus any client-side scripts) is sent to the client.

• Client-side scripting is often used for validation; interactivity, enhancing a Web page with Ac-
tiveX controls, Dynamic HTML and Java applets and accessing the browser.

• Client-side scripting is browser dependent—that is, the scripting language must be supported by
the browser or scripting host. Because Microsoft Internet Explorer and Netscape Communicator
both support JavaScript, JavaScript has become the de facto scripting language on the client side.

• Because server-side scripts reside on the server, programmers have greater flexibility, especially
with respect to database access. Scripts executed on the server usually generate custom responses
for clients.

• Server-side scripts have access to ActiveX server components, which extend scripting language
functionality. Server-side ActiveX components typically do not have a GUI. Many ActiveX com-
ponents are included with Internet Information Server (IIS) and Personal Web Server (PWS).

• Scripting delimiters <% and %> indicate that the scripting code is to be executed on the server—
not the client. Scripting code enclosed in a scripting delimiter is never sent to the client.

• Function Time returns the server’s current time in the format hh:mm:ss.

• The Response object provides functionality for sending information to the client.

• The AdRotator ActiveX component rotates advertisements on a Web page.

• Server-side ActiveX components are instantiated by passing the name of the component as a string
to Server object method CreateObject. The Server object represents the Web server.

• Response object method Write writes text to the client.

• File System Objects (FSOs) provide the programmer with the ability to manipulate files, directo-
ries and drives. FSOs also allow the programmer to read and write text to sequential files. FSOs
are an essential element for Active Server Pages with persistent data.

• FSOs are objects in the Microsoft Scripting Runtime Library. Five FSO types exist: FileSys-
temObject, File, Folder, Drive and TextStream.

720 Bonus Chapter: Introduction to Active Server Pages (ASP) Chapter 25

• Type FileSystemObject allows the programmer to interact with Files, Folders and
Drives. The programmer can use FileSystemObjects to create directories, move files, de-
termine whether or not a Drive exists, etc. Files allow the programmer to gather information
about files, manipulate files and open files. Folder objects allow the programmer to gather in-
formation about directories and to manipulate directories. Drive objects allow the programmer
to gather information about drives.

• Many Web sites today provide custom Web pages and/or functionality on a client-by-client basis.
HTTP does not support persistent information that could help a Web server determine that a re-
quest is from a particular client. As far as a Web server is concerned, every request could be from
the same client, or every request could be from a different client.

• Session tracking is handled by the server. The first time a client connects to the server, it is as-
signed a unique session ID by the server. When the client makes additional requests, the client’s
session ID is compared with the session IDs stored in the server’s memory. Active Server Pages
use the Session object to manage sessions. The Session object’s Timeout property speci-
fies the number of minutes for which a session exists before it expires. The default value for prop-
erty Timeout is 20 minutes. An individual session can also be terminated, by calling Session
method Abandon.

• Cookies can store information on the client’s computer for retrieval later in the same browsing ses-
sion or in future browsing sessions. Cookies are files that are sent by an Active Server Page as part
of a response to a client. Every HTTP-based interaction between a client and a server includes a
header that contains information about the request or information about the response. When an Ac-
tive Server Page receives a request, the header includes information such as the request type and
cookies stored on the client machine by the server. When the server formulates its response, the
header information includes any cookies the server wants to store on the client computer.

• Server-side include (SSI) statements are always executed before any scripting code is executed.
The word virtual in the SSI refers to the include file’s path as it appears below the server root
directory. This path is often referred to as a virtual path. SSIs can also use file, instead of vir-
tual, to indicate a physical path on the server.

• VBScript constant vbCrLf is used to insert a carriage-return line-feed combination.

• Method Redirect redirects the client to another Web page.

• A database is an integrated collection of data. A database management system (DBMS) involves
the data themselves and the software that controls the storage and retrieval of data.

• Database management systems provide mechanisms for storing and organizing data in a manner
that facilitates satisfying sophisticated queries and manipulations of the data.

• A language called Structured Query Language (SQL) is almost universally used with relational da-
tabase systems to make queries (i.e., to request information that satisfies given criteria) and ma-
nipulate data.

• Universal Data Access (UDA) is a Microsoft architecture that provides data access to many data
sources.

• A relational database is composed of tables, which in turn are composed of columns (or fields).

• A primary key is a unique field that is used to identify a record.

• SQL provides a complete set of keywords that enable programmers to define complex queries for
retrieving data from a table.

• Query results are commonly called result sets (or record sets).

• SELECT queries select information from one or more tables in a database.

• An asterisk (*) indicates that all rows and columns (fields) from a table should be selected.

Chapter 25 Bonus Chapter: Introduction to Active Server Pages (ASP) 721

• SQL provides the optional WHERE clause in a SELECT query to specify the selection criteria for
a query. The WHERE clause condition can contain operators such as <, >, <=, >=, =, <> and LIKE.

• Operator LIKE is used for pattern matching with wildcard characters asterisk (*) and question
mark (?).

• An asterisk (*) in a pattern indicates any number of (i.e., zero or more) characters in a row at the
asterisk’s location in the pattern.

• Query results can be sorted into ascending (ASC) or descending (DESC) order using the optional
ORDER BY clause.

• The INSERT INTO keywords insert data into a table.

• The UPDATE/SET keywords modify data in a table.

• Microsoft developed the Open Database Connectivity (ODBC) Application Programming Inter-
face (API) to allow Windows applications to communicate in a uniform manner with disparate re-
lational databases.

• Web applications are three-tier distributed applications, consisting of a user interface (UI), busi-
ness logic and database access. The UI in such an application is often created using HTML, Dy-
namic HTML or XML. All three tiers may reside on separate computers that are connected to a
network, or all three tiers may reside on a single machine.

• In multitier architectures, Web servers are increasingly used to build the middle tier. They provide
the business logic that manipulates data from databases and that communicates with client Web
browsers.

• Method Open opens a connection to the data source.

• Method Execute executes a query against the data source.

• ADODB.Recordset method MoveFirst moves to the first record in a record set.

• ADODB.RecordSet constant EOF represents a record set’s end-of-file marker.

TERMINOLOGY
#include Close method
%> closing scripting delimiter columns
.asp file CommandText property
.mdb file CommandType property
.shtml file configuration file
@LANGUAGE directive cookie
<% opening script delimiter cookie expiration
Abandon method of Session CreateObject method
ActiveConnection property CreateTextFile method
ActiveX Data Objects (ADO) database
ADODB.Command object database access
ADODB.Connection object database management system (DBMS)
ADODB.RecordSet object Drive
AdRotator ActiveX Control EOF constant
appending to a file Execute method
asp.dll expiration of a cookie
business logic fields
cache Web pages File
Chr method file system object
client-side scripting FileExists method

722 Bonus Chapter: Introduction to Active Server Pages (ASP) Chapter 25

FileSystemObject script engine
Folder script host
GET HTTP request SELECT query
GetAdvertisement method selection criteria
guest book application Server object
header server-side ActiveX component
join condition server-side include (SSI)
mailto link server-side scripting
maximum age of a cookie session
MoveFirst method session ID
MoveNext method Session object
On Error Resume Next statement session tracking
one-to-many relationship Set keyword
Open Database Connectivity (ODBC) Application
Programming Interface (API)

shopping-cart application

Open method short-name format
OpenTextFile method Structured Query Language (SQL)
Option Explicit statement table
physical path TextStream
POST HTTP request three-tier distributed application
primary key Timeout property of Session
ReadAll method Universal Data Access (UDA)
record user interface
record set vbCrLf constant
Redirect method of Response VBScript
relational database virtual path
Request object Write method
Response object WriteLine method
result set

26
Bonus Chapter:

Introduction to Perl
Programming

Objectives
• To understand the Common Gateway Interface.
• To understand string processing and regular

expressions in Perl.
• To be able to read and write client data using cookies.
• To construct programs that interact with databases.
This is the common air that bathes the globe.
Walt Whitman

The longest part of the journey is said to be the passing of the
gate.
Marcus Terentius Varro

Railway termini... are our gates to the glorious and
unknown. Through them we pass out into adventure and
sunshine, to them, alas! we return.
E.M. Forster

There comes a time in a man’s life when to get where he has
to go—if there are no doors or windows—he walks through
a wall.
Bernard Malamud

You ought to be able to show that you can do it a good deal
better than anyone else with the regular tools before you
have a license to bring in your own improvements.
Ernest Hemingway

724 Bonus Chapter: Introduction to Perl Programming Chapter 26

26.1 Introduction
In this chapter, we provide a concise introduction to the Practical Extraction and Report
Language (Perl)—one of the most widely used languages for Web programming. This
chapter is included for our readers who do not know Perl or who would like a basic review
of Perl before studying Chapter 17. We do not present any XML in this chapter.

Larry Wall began developing this high-level programming language in 1987 while
working at Unisys. His initial intent was to create a programming language to monitor large
software projects and generate reports. Wall wanted to create a language that would be
more powerful than shell scripting and more flexible than C, a language with rich text-pro-
cessing capabilities and, most of all, a language that would make common programming
tasks straightforward and easy. In this chapter, we discuss Perl 5 and examine several prac-
tical examples using Perl for electronic commerce on the Internet.

Common Gateway Interface (CGI) is a standard protocol through which applications
interact with Web servers. Thus, CGI provides a way for clients (e.g., Web browsers) to
indirectly interface with applications on the Web server. Because CGI is an interface, it
cannot be directly programmed—a script or executable program (commonly called a CGI
script) must be executed to interact with it. While CGI scripts can be written in many dif-
ferent programming languages, Perl is commonly used due to its power and flexibility.

Figure 26.1 illustrates the interaction between client and server when the client
requests a document that references a CGI script. Often CGI scripts utilize and process
information (e.g., a search-engine query, a credit-card number, etc.) gathered from a form.
For example, a CGI script could verify credit-card information and notify the client of the
results (i.e., accepted or rejected). Permission is granted within the Web server (usually by
the Webmaster or the author of the Web site) to allow specific programs on the server to be
executed. These programs are typically either designated with a certain filename extension
(such as .cgi or .pl) or located within a special directory (such as /cgi-bin). After
the application output is sent to the server through CGI, the results may be sent to the client.
Information received by the client is usually an HTML document, but may contain images,
streaming audio, Macromedia Flash files, etc.

Outline

26.1 Introduction
26.2 Perl
26.3 String Processing and Regular Expressions
26.4 Viewing Client/Server Environment Variables
26.5 Form Processing and Business Logic
26.6 Server-Side Includes
26.7 Verifying a Username and Password
26.8 Using ODBC to Connect to a Database
26.9 Cookies and Perl
26.10 Internet and World Wide Web Resources

Summary • Terminology

Chapter 26 Bonus Chapter: Introduction to Perl Programming 725

Fig. 26.1 Data path of a typical CGI-based application.

Applications typically interact with the user through standard input and standard
output. Standard input is the stream of information received by a program from a user, typ-
ically through the keyboard, but also possibly from a file or another input device. Standard
output is the information stream presented to the user by an application; it is typically dis-
played on the screen but may be printed by a printer, written to a file, etc.

For CGI scripts, the standard output is redirected (or piped) through the Common
Gateway Interface to the server and then sent over the Internet to a Web browser for ren-
dering. If the server-side script is correctly programmed, output will be readable to the
client. Usually, that means that the output is a HTML document which can be viewed using
a Web browser.

26.2 Perl
With the advent of the World Wide Web and Web browsers, the Internet gained tremen-
dous popularity. This greatly increased the volume of requests users made for information
from Web servers. It became evident that the degree of interactivity between the user and
the server would be crucial. The power of the Web resides not only in serving content to
users, but also in responding to requests from users and generating dynamic content. The
framework for such communication already existed through CGI. Because most of the in-
formation users send to servers is text, Perl was a logical choice for programming the server
side of interactive Web-based applications, due to its simple, yet powerful, text processing
capabilities. It is arguably the most popular CGI scripting language. The Perl community,
headed by Wall (who currently works for O’Reilly & Associates as a Perl developer and
researcher) continuously works to evolve the language, keeping it competitive with newer
server-side technologies such as Microsoft’s Active Server Pages (see Chapter 25).

Figure 26.2 presents a simple Perl program that writes the text "Welcome to
Perl!" to the screen. Because the program does not interact with the Common Gateway
Interface, it is not a CGI script. Our first examples in Perl will be command-line programs
to help explain the basics of the language. See Fig. 26.11 for our first CGI example.

726 Bonus Chapter: Introduction to Perl Programming Chapter 26

Lines 2–3 use the Perl comment character (#) to instruct the interpreter to ignore
everything on the current line following the #. This syntax allows programmers to write
descriptive comments inside their programs. The exception to this rule is the “shebang”
construct (#!) in line 1. On Unix systems, it indicates the path to the Perl interpreter (such
as #!/usr/bin/perl). On other systems (e.g., Windows), the line may be ignored or it
may indicate to the server (e.g., Apache) that a Perl program follows the statement.

The comment on line 2 indicates that the filename of the program is first.pl. Perl
scripts file names typically end with the .pl extension. The program can be executed by
running the Perl interpreter from the command-line prompt (e.g., DOS prompt in Win-
dows).

In order to run the Perl script, Perl must first be installed on the system. Windows
users, see the “ActiveState Perl Installation” document on the CD that accompanies this
book for instructions on how to install ActivePerl, the standard Perl implementation for
Windows. For installation on other platforms visit www.perl.com.

To run first.pl type

perl first.pl

where perl is the interpreter and first.pl is the perl script. Alternatively, we could
type

perl -w first.pl

which instructs the Perl interpreter to output warnings to the screen if it finds possible bugs
in your code.

Testing and Debugging Tip 26.1
When running a Perl script from the command line, always use the -w option. The program
may seem to execute correctly when there is actually something wrong with the source code.
The -w option displays warnings encountered while executing a Perl program. 26.0

On Windows systems, a Perl script may also be executed by double-clicking its pro-
grams icon. The program window closes automatically once the script terminates and any
screen output is lost. For this reason, it is usually better to run a script from the DOS
prompt.

Line 5 calls function print to write text to the screen. Note that since Perl is case-
sensitive, writing Print or PRINT instead of print would yield an error. The text,
"Welcome to Perl!\n", is surrounded in quotes and called a string. The last portion
of the string—the newline escape sequence \n—moves the cursor to the next line. The
semicolon (;) at the end of line 5 is always used to terminate Perl statements.

1 #!perl
2 # Fig. 26.2: first.pl
3 # A first program in Perl.
4
5 print "Welcome to Perl!\n";

Welcome to Perl!

Fig. 26.2 A simple program in Perl.

Chapter 26 Bonus Chapter: Introduction to Perl Programming 727

Common Programming Error 26.1
Forgetting to terminate a statement with a ; is a syntax error. 26.1

Good Programming Practice 26.1
While not all servers require the “shebang” construct (#!) it is good practice to include it
for program portability. 26.1

Like other programming languages, Perl has built-in data types (Fig. 26.3) that repre-
sent the different kinds of data. Notice that each variable name has a specific character (i.e.,
$, @ and %) preceding it. For example, the $ character specifies that the variable contains a
scalar value (i.e., strings, integer numbers and floating-point numbers). The script vari-
able.pl (Fig. 26.4) demonstrates manipulation of scalar variables.

Common Programming Error 26.2
Failure to place a preceding $ character before a scalar variable name is a syntax error. 26.2

Data type
Format for variable
names of this type Description

Scalar $scalarname Can be a string, an integer number or a floating-
point number.

Array @arrayname An ordered list of scalar variables which can be
accessed using integer indices.

Hash %hashname An unordered set of scalar variables whose val-
ues are accessed using unique scalar values (i.e.,
strings) called keys.

Fig. 26.3 Perl data types.

1 #!perl
2 # Fig. 26.4: variable.pl
3 # Program to illustrate the use of scalar variables.
4
5 $a = 5;
6 print "The value of variable a is: $a\n";
7
8 $a = $a + 5;
9 print "Variable a after adding 5 is: $a\n";

10
11 $a *= 2;
12 print "Variable a after multiplying by 2 is: $a\n";
13
14 # using an uninitialized variable in the context of a string
15 print "Using a variable before initializing: $var\n";
16

Fig. 26.4 Using scalar variables (part 1 of 2).

728 Bonus Chapter: Introduction to Perl Programming Chapter 26

In Perl, a variable is created automatically the first time it is encountered by the inter-
preter. Line 5 creates a variable with name $a and sets its value to 5. Line 8 adds the integer
5 to $a. Line 9 calls function print to write text followed by the value of $a. Notice that
the actual value of $a is printed, not “$a”. When a variable is encountered inside a double
quoted ("") string, Perl uses a process called interpolation to replace the variable with its
associated data. Line 11 uses an assignment operator *= to yield an expression equivalent
to $a = $a * 2 (thus assigning $a the value 20). These assignment operators (i.e., +=, -
=, *= and /=) are syntactical shortcuts.

Testing and Debugging Tip 26.2
Function print can be used to display the value of a variable at a particular point during
a program’s execution. This is often helpful in debugging a program. 26.2

In Perl, uninitialized variables have the value undef, which can evaluate to different
things depending on context. When undef is found in a numeric context (e.g., $num in
line 18), it evaluates to 0. In contrast, when it is interpreted in a string context (such as
$var in line 15), undef evaluates to the empty string ("").

Lines 22–28 show the results of evaluating strings in numeric context. Unless a string
begins with a digit it is evaluated as undef in a numeric context. If it does begin with a
digit, every character up to (but not including) the first non-digit character is evaluated as
a number and the remaining characters are ignored. For example, the string "A string

value" (line 23) does not begin with a digit and therefore evaluates to undef. Because
undef evaluates to 0, variable $a’s value is unchanged. The string
"15charactersand1" (line 27) begins with a digit and is therefore interpolated as 15.
The character 1 on the end is ignored because there are non-digit characters preceding it.
Evaluating a string in numeric context does not actually change the value of the string. This
is shown by line 28’s output, which prints the "15charactersand1".

17 # using an uninitialized variable in a numeric context
18 $test = $num + 5;
19 print "Adding uninitialized variable \$num to 5 yields: $test.\n";
20
21 # using strings in numeric contexts
22 $str = "A string value";
23 $a = $a + $str;
24 print "Adding a string to an integer yields: $a\n";
25
26 $strnum = "15charactersand1";
27 $c = $a + $strnum;
28 print "Adding $a to string \"$strnum\" yields: $c\n";

The value of variable a is: 5
Variable a after adding 5 is: 10
Variable a after multiplying by 2 is: 20
Using a variable before initializing:
Adding uninitialized variable $num to 5 yields: 5.
Adding a string to an integer yields: 20
Adding 20 to string "15charactersand1" yields: 35

Fig. 26.4 Using scalar variables (part 2 of 2).

Chapter 26 Bonus Chapter: Introduction to Perl Programming 729

Notice that the programmer does not need to differentiate between numeric and string
data types because the interpreter evaluates scalar variables depending on the context in
which they are used.

Common Programming Error 26.3
Using an uninitialized variable might make a numerical calculation incorrect. For example,
multiplying a number by an uninitialized variable results in0. 26.3

Testing and Debugging Tip 26.3
While it is not always necessary to initialize variables before using them, errors can be avoid-
ed by doing so. 26.3

Perl provides the capability to store data in arrays. Arrays are divided into elements that
each contain a scalar value. The script arrays.pl (Fig. 26.5) demonstrates some tech-
niques for array initialization and manipulation.

Line 5 initializes array @array to contain the strings "Bill", "Bobby", "Sue"
and "Michelle". Note that in Perl, all array variable names must be preceded by the @
symbol. Parentheses are necessary to group the strings in the array assignment; this group
of elements surrounded by parentheses is called a list in Perl. In assigning the list to
@array, each person’s name is stored in an individual array element with a unique integer
index value starting at 0.

When printing an array inside double quotes (line 7), the array element values are
printed with only one space separating them. If the array name is not enclosed in double
quotes when it is printed (line 8), the interpreter prints the element values without sepa-
rating them with spaces.

1 #!perl
2 # Fig. 26.5: arrays.pl
3 # Program to demonstrate arrays in Perl
4
5 @array = ("Bill", "Bobby", "Sue", "Michelle");
6
7 print "The array contains: @array\n";
8 print "Printing array outside of quotes: ", @array, "\n\n";
9

10 print "Third element: $array[2]\n";
11
12 $number = 3;
13 print "Fourth element: $array[$number]\n\n";
14
15 @array2 = (A..Z);
16 print "The range operator is used to create a list of\n";
17 print "all letters from capital A to Z:\n";
18 print "@array2 \n\n";
19
20 $array3[3] = "4th";
21 print "@array3 \n\n";
22
23 print 'Printing literal using single quotes: @array and \n', "\n";
24 print "Printing literal using backslashes: \@array and \\n\n";

Fig. 26.5 Using arrays (part 1 of 2).

730 Bonus Chapter: Introduction to Perl Programming Chapter 26

Line 10 demonstrates how individual array elements are accessed using braces ([]).
As mentioned above, if we use the @ character followed by the array name we reference the
array as a whole. But if the array name is prefaced by the $ character and followed by an
index number in square brackets (as in line 10), it refers instead to an individual array ele-
ment, which is a scalar value. Line 13 demonstrates how a scalar variable can be used as an
index. The value of $number (3) is used to get the value of the fourth array element.

Line 15 initializes array @array2 to contain the capital letters from A to Z inclusive.
The range operator (..), specifies that all values between uppercase A and uppercase Z be
placed in the array. The range operator (..) can be used to create any consecutive series of
values such as 1 through 15 or a through z.

The Perl interpreter handles memory management automatically. Therefore, it is not
necessary to specify an array’s size. If a value is assigned to a position outside the range of
the array or to an uninitialized array, the interpreter automatically extends the array range
to include the new element. Elements that are added by the interpreter during an adjustment
of the range are initialized to the undef value. Lines 20 and 21 assign a value to the fourth
element in the uninitialized array @array3. The interpreter recognizes that memory has
not been allocated for this array and creates new memory for the array. The interpreter then
sets the value of first three elements to undef and the value of the fourth element to the
string "4th". When the array is printed, the first three undef values are treated as empty
strings and printed with a space between each one. This accounts for the three extra spaces
in the output before the string "4th".

In order to print special characters like \ and @ and " and not have the interpreter treat
them as an escape sequence or array, Perl provides two choices. The first is to print (line
23) the characters as a literal string (i.e., a string enclosed in single quotes). When strings
are inside single quotes, the interpreter treats the string literally and does not attempt to
interpret any escape sequence or variable substitution. The second choice is to use the back-
slash character (line 24) to escape special characters.

26.3 String Processing and Regular Expressions
One of Perl’s most powerful capabilities is its ability to process textual data easily and ef-
ficiently, allowing for straightforward searching, substitution, extraction and concatenation

The array contains: Bill Bobby Sue Michelle
Printing array outside of quotes: BillBobbySueMichelle

Third element: Sue
Fourth element: Michelle

The range operator is used to create a list of
all letters from capital A to Z:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 4th

Printing literal using single quotes: @array and \n
Printing literal using backslashes: @array and \n

Fig. 26.5 Using arrays (part 2 of 2).

Chapter 26 Bonus Chapter: Introduction to Perl Programming 731

of strings. Text manipulation in Perl is usually done with regular expressions—a series of
characters that serve as pattern-matching templates (or search criteria) in strings, text files
and databases. This feature allows complicated searching and string processing to be per-
formed using relatively simple expressions.

Many string processing tasks can be accomplished by using Perl’s equality and compar-
ison operators (Fig. 26.6, equals.pl). Line 5 declares and initializes array @fruits.
Operator qw (“quote word”) takes the contents inside the parentheses and creates a comma-
separated list with each element wrapped in double quotes. In this example, qw(apple
orange banana) is equivalent to ("apple", "orange", "banana").

Lines 7–28 demonstrate our first examples of Perl control structures. The foreach
loop beginning in line 7 iterates sequentially through the elements in the @fruits array.
The value of each element is assigned in turn to variable $item and the body of the
foreach is executed once for each array element. Notice that a semicolon does not ter-
minate the foreach.

Line 9 introduces another control structure—the if statement. Parentheses surround
the condition being tested and required curly braces surround the block of code that is exe-
cuted when the condition is true. In Perl, anything except the number 0 and the empty string
is defined as true. In our example, when the $item’s content is tested against "banana"
(line 9) for equality, the condition evaluates to true, and the print command (line 11) is
executed.

1 #!perl
2 # Fig. 26.6: equals.pl
3 # Program to demonstrate the eq, ne, lt, gt operators
4
5 @fruits = qw(apple orange banana);
6
7 foreach $item (@fruits)
8 {
9 if ($item eq "banana")

10 {
11 print "String '$item' matches string 'banana'\n";
12 }
13
14 if ($item ne "banana")
15 {
16 print "String '$item' does not match string 'banana'\n";
17 }
18
19 if ($item lt "banana")
20 {
21 print "String '$item' is less than string 'banana'\n";
22 }
23
24 if ($item gt "banana")
25 {
26 print "String '$item' is greater than string 'banana'\n";
27 }
28 }

Fig. 26.6 Using the eq, ne, lt, gt, operators (part 1 of 2).

732 Bonus Chapter: Introduction to Perl Programming Chapter 26

The remaining if statements (lines 14, 19 and 24) demonstrate the other string com-
parison operators. Operators ne, lt, and gt test strings for equality, less than, and greater
than, respectively. These operators are only used with strings. When comparing numeric
values, operators ==, !=, <, <=, > and >= are used.

For more powerful string comparisons, Perl provides the match operator (m//), which
uses regular expressions to search a string for a specified pattern. Figure 26.7 uses the
match operator to perform a variety of regular expression tests.

String ’apple’ does not match string ’banana’
String ’apple’ is less than string ’banana’
String ’orange’ does not match string ’banana’
String ’orange’ is greater than string ’banana’
String ’banana’ matches string ’banana’

1 #!perl
2 # Fig 26.7: expression.pl
3 # searches using the matching operator and regular expressions
4
5 $search = "Now is is the time";
6 print "Test string is: '$search'\n\n";
7
8 if ($search =~ /Now/)
9 {

10 print "String 'Now' was found.\n";
11 }
12
13 if ($search =~ /^Now/)
14 {
15 print "String 'Now' was found at the beginning of the line.\n";
16 }
17
18 if ($search =~ /Now$/)
19 {
20 print "String 'Now' was found at the end of the line.\n";
21 }
22
23 if ($search =~ /\b (\w+ ow) \b/x)
24 {
25 print "Word found ending in 'ow': $1 \n";
26 }
27
28 if ($search =~ /\b (\w+) \s (\1) \b/x)
29 {
30 print "Repeated words found: $1 $2\n";
31 }
32
33 @matches = ($search =~ / \b (t \w+) \b /gx);
34 print "Words beginning with 't' found: @matches\n";

Fig. 26.7 Using the match operator. (part 1 of 2)

Fig. 26.6 Using the eq, ne, lt, gt, operators (part 2 of 2).

Chapter 26 Bonus Chapter: Introduction to Perl Programming 733

Common Programming Error 26.4
Using == for string comparisons and ne for numerical comparisons can result in errors in
the program. 26.4

Common Programming Error 26.5
While the number 0 and even the string "0" evaluate to false in Perl if statements, other
string values that may look like zero (such as "0.0") evaluate to true. 26.5

We begin by assigning the string "Now is is the time" to variable $search (line
5). The expression

$search =~ /Now/

(line 8) uses the m// match operator to search for the literal characters Now inside variable
$search. Note that the m character preceding the slashes of the m// operator is optional
in most cases, and is thus omitted here.

The match operator takes two operands. The first of these is the regular expression pat-
tern to search for (Now), which is placed between the slashes of the m// operator. The
second operand is the string to search within, which is assigned to the match operator using
the =~ operator. This =~ operator is sometimes called a binding operator, since it binds
whatever is on its left side to a regular expression operator on the right.

In our example, the pattern Now is found in the string "Now is is the time", the
match operator returns true, and the body of the if statement is executed. In addition to
literal characters like Now which match only themselves, regular expressions can include
special characters called metacharacters which can specify patterns or contexts that cannot
be defined using literal characters. For example, the caret metacharacter (^) matches the
beginning of a string. The next regular expression (Line 13)

$search =~ /^Now/

uses this metacharacter to search the beginning of $search for the pattern Now.
The $ metacharacter searches the end of a string for a pattern (line 18). Because the

pattern Now is not found at the end of $search, the body of the if statement (line 20) is
not executed. Note that Now$ is not a variable, it is a search pattern that uses $ to search
specifically for Now at the end of a string.

The next condition (line 23),

$search =~ /\b (\w+ ow) \b/x

searches (from left to right) for the first word ending with the letters ow. As is in strings,
backslashes are used in regular expressions to escape characters with special significance.

String ’Now’ was found.
String ’Now’ was found at the beginning of the line.
Word found ending in ’ow’: Now
Repeated words found: is is
Words beginning with ’t’ found: the time

Fig. 26.7 Using the match operator. (part 2 of 2)

734 Bonus Chapter: Introduction to Perl Programming Chapter 26

For example, the \b expression does not match the literal characters “\b”. Instead, the ex-
pression matches any word boundary (generally, a boundary between an alphanumeric
character—0–9, a–z, A–Z and the underscore character—and something that is not an al-
phanumeric character). Between the \b characters is a set of parentheses; these will be ex-
plained momentarily.

The expression inside the parentheses, \w+ ow, indicates that we are looking for pat-
terns ending in ow. The first part, \w+, is a combination of \w (an escape sequence which
matches a single alphanumeric character) and the + modifier, which is a quantifier that
instructs Perl to match the preceding character one or more times. Thus, \w+ matches one
or more alphanumeric characters. The characters ow are taken literally. Collectively, the
whole expression /\b (\w+ ow) \b/ matches one or more alphanumeric characters
ending with ow, with word boundaries at the beginning and end. See Fig. 26.8 for a descrip-
tion of several other Perl regular expression quantifiers and Fig. 26.9 for a list of some reg-
ular expression metacharacters.

Parentheses indicate that the text matching the pattern is to be saved in a special Perl
variable (e.g., $1, etc.). The parentheses in line 23 result in Now being stored in variable
$1. Multiple sets of parentheses may be used in regular expressions, where each match
results in a new Perl variable ($1, $2, $3, etc.) being created.

Quantifier Matches

{n} Exactly n times

{m,n} Between m and n times inclusive

{n,} n or more times

+ One or more times (same as {1,})

* Zero or more times (same as {0,})

? One or zero times (same as {0,1})

Fig. 26.8 Some of Perl’s quantifiers.

Symbol Matches Symbol Matches

^ Beginning of line \d Digit (i.e., 0 to 9)

$ End of line \D Non-digit

\b Word boundary \s Whitespace

\B Non-word boundary \S Non-whitespace

\w Word (alphanumeric) character \n Newline

\W Non-word character \t Tab

Fig. 26.9 Some of Perl’s metacharacters.

Chapter 26 Bonus Chapter: Introduction to Perl Programming 735

Adding modifying characters after a regular expression refines the pattern matching
process. Modifying characters (Fig. 26.10) placed to the right of the forward slash that
delimits the regular expression instruct the interpreter to treat the preceding expression in
different ways. For example, the i after the regular expression

/computer/i

tells the interpreter to ignore case when searching, thus matching computer, COMPUTER,
Computer and CoMputER.

When added to the end of a regular expression, the x modifying character indicates that
whitespace characters are to be ignored. This allows programmers to add space characters
to their regular expressions for readability without affecting the search. If the expression
was written

$search =~ /\b (\w+ ow) \b/

without the x modifying character, then the script would be searching for a word boundary,
two spaces, one or more alphanumeric characters, one space, the characters ow, two spaces
and a word boundary. The expression would not match $search’s value.

The condition (line 28)

$search =~ /\b (\w+) \s (\1) \b/x

shows how the memory function of parentheses can be used in the regular expression itself.
The first parenthetical expression matches any string containing one or more alphanumeric
characters. The expression \1 then evaluates to the word that was matched in the first par-
enthetical expression. The regular expression searches for two identical, consecutive
words, separated by a whitespace character (\s)—in this case “is is”.

Line 33’s condition

$search =~ / \b (t \w+) \b /gx

searches for words beginning with the letter t in the string $search. Modifying character
g indicates a global search—one which does not stop after the first match is found. The ar-
ray @matches is then assigned the value of a list of all matching words (line 33).

26.4 Viewing Client/Server Environment Variables
Knowing information about a client’s execution environment can be useful to system ad-
ministrators by allowing them to provide client-specific information. Environment vari-
ables contain information about the execution environment a script is being run in, such as
the type of Web browser being used, the HTTP host and the HTTP connection. This infor-
mation might be used by a server to send one Web page to a client using Microsoft Internet
Explorer and a different Web page to a client using Netscape Communicator.

Until now, we have written simple Perl applications which output to the local user’s
screen. Through the use of CGI we can communicate with the Web server and its clients,
allowing us to utilize the Internet as a method of input and output for our Perl applications.
Note that in order to run Perl scripts as CGI applications, a Web server must first be
installed and configured appropriately for your system. See the “Web Server Installation”
document on the CD that accompanies this book for detailed information on how to install
and set up a Web server.

736 Bonus Chapter: Introduction to Perl Programming Chapter 26

Figure 26.11 generates an HTML table that displays the values of the clients’ environ-
ment variables. The use statement (line 5) directs Perl programs to include the contents
(e.g., functions, etc.) of predefined packages called modules. The CGI module, for
example, contains many useful functions for CGI scripting in Perl, including functions that
return strings representing HTML tags and HTTP headers. With the use statement we can
specify which functions we would like to import from a particular module. In line 5, we use
the import tag :standard to import a predefined set of standard functions.

Modifying Character Purpose

g Perform a global search; find and return all matches, not just the first
one found.

i Ignores the case of the search string (case insensitive).

m The string is evaluated as if it had multiple lines of text (i.e., newline
characters are not ignored).

s Ignore the newline character and treat it as whitespace. The text is seen
as a single line.

x All whitespace characters are ignored when searching the string.

Fig. 26.10 Some of Perl’s modifying characters.

1 #!perl
2 # Fig. 26.11: environment.pl
3 # Program to display CGI environment variables
4
5 use CGI qw(:standard);
6
7 print header;
8 print <<End_Begin;
9 <HTML>

10 <HEAD>
11 <TITLE>Environment Variables...</TITLE>
12 </HEAD>
13 <BODY TEXT = "BLACK" BGCOLOR = "WHITE">
14 <TABLE BORDER = "0" CELLPADDING = "2" CELLSPACING = "0"
15 WIDTH = 100%>
16 End_Begin
17
18 foreach $variable (sort(keys(%ENV)))
19 {
20 print <<End_Row;
21 <TR>
22 <TD BGCOLOR = "#11BBFF">$variable</TD>
23 <TD>$ENV{$variable}
24 </TD>
25 </TR>
26 End_Row
27 }

Fig. 26.11 Displaying CGI environment variables (part 1 of 2).

Chapter 26 Bonus Chapter: Introduction to Perl Programming 737

Line 7 directs the Perl program to print a valid HTTP header using function
header from the CGI library. Browsers use HTTP headers to determine how to handle
incoming data. The header function returns the string “Content-type: text/
html\n\n”, indicating to the client that what follows is HTML. The text/html portion
of the header indicates that the browser must display the returned information as an HTML
document. Because standard output is redirected when a CGI script is run, the function
print outputs to the user’s Web browser.

Lines 8–16 write HTML to the client. Line 8

print <<End_Begin;

28
29 print <<End_Finish;
30 </TABLE>
31 </BODY>
32 </HTML>
33 End_Finish
34 # Must include newline after End_Finish!

\

Fig. 26.11 Displaying CGI environment variables (part 2 of 2).

738 Bonus Chapter: Introduction to Perl Programming Chapter 26

instructs the Perl interpreter to print the subsequent lines verbatim (after variable interpo-
lation) until it reaches the End_Begin label. This label consists simply of the identifier
End_Begin, placed at the beginning of a line by itself, with no whitespace characters pre-
ceding it, and followed immediately with a newline. This syntax is called a here document,
and is often used in CGI programs to eliminate the need to repeatedly call function print.

The %ENV hash is a built-in table in Perl that contains the names and values of all the
environment variables. The hash data type is designated by the % character, and basically
represents an unordered set of scalar-value pairs. Unlike an array, which accesses elements
through integer subscripts (e.g., $array[2]), each element in a hash is accessed using a
unique string key which is associated with that element’s value. For this reason, hashes are
also known as associative arrays, since the keys and values are associated in pairs. Hash
values are accessed using the syntax $hashName{keyName}. In this example, each key
in hash %ENV is the name of an environment variable (such as HTTP_HOST) which can be
used to access the value of each environment variable ($ENV{"HTTP_HOST"}).

Function keys returns an array of all the keys in the %ENV hash (line 18) in no specific
order, because hash elements have no defined order. We use function sort to order the
array of keys alphabetically. Finally, the foreach loop iterates sequentially through the
array returned by sort, repeatedly assigning the current key’s value to scalar $vari-
able. Lines 20 to 26 are executed for each element in the array of key values. Line 22
prints the key $variable (the name of the environment variable) in one column of the
HTML table. Line 23 prints $ENV{$variable} in the other column, thus displaying the
environment variable values associated with each key in hash %ENV.

26.5 Form Processing and Business Logic
HTML forms enable Web pages to collect data from users and send it to a Web server for
processing by server-side programs and scripts, thus enabling users to purchase products,
send and receive Web-based email, participate in a political poll, perform online paging or
any number of other tasks. This type of Web communication allows users to interact with
the server and is vital to electronic commerce.

Figure 26.12 uses an HTML FORM to collect information about users before adding
them to a mailing list. This type of registration form could be used (for example) by a soft-
ware company to get profile information for a company database before allowing the user
to download software.

Except for line 16, the HTML code in Fig. 26.12 should look familiar. The FORM ele-
ment (line 16) indicates that, when the user clicks Register, the form information is
POSTed to the server. The statement ACTION = "cgi-bin/form.pl" directs the
server to execute the form.pl Perl script (located in the cgi-bin directory) to process
the posted form data. We assign a unique name (e.g., EMAIL) to each of the form’s input
fields. When Register is clicked, each field’s NAME and VALUE is sent to the form.pl
script, which can then access the submitted value for each specific field.

1 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
2 <!-- Fig. 26.12: form.html -->
3

Fig. 26.12 User entering a valid phone number (part 1 of 3).

Chapter 26 Bonus Chapter: Introduction to Perl Programming 739

4 <HTML>
5 <HEAD>
6 <TITLE>Sample FORM to take user input in HTML</TITLE>
7 </HEAD>
8
9

10
11
12 This is a sample registration form.
13

14 Please fill in all fields and click Register.
15
16 <FORM METHOD = "POST" ACTION = "/cgi-bin/form.pl">
17

18
19 Please fill out the fields below.

20
21
22
23 <INPUT TYPE = "TEXT" NAME = "FNAME">

24
25 <INPUT TYPE = "TEXT" NAME = "LNAME">

26
27 <INPUT TYPE = "TEXT" NAME = "EMAIL">

28
29 <INPUT TYPE = "TEXT" NAME = "PHONE">

30
31
32 Must be in the form (555)555-5555

33
34
35

36
37 Which book would you like information about?

38
39
40 <SELECT NAME = "BOOK">
41 <OPTION>Internet and WWW How to Program 1e
42 <OPTION>C++ How to Program 2e
43 <OPTION>Java How to Program 3e
44 <OPTION>Visual Basic How to Program 1e
45 </SELECT>
46

47
48

49
50 Which operating system are you
51 currently using?

52
53
54 <INPUT TYPE = "RADIO" NAME = "OS" VALUE = "Windows NT"
55 CHECKED>
56 Windows NT

Fig. 26.12 User entering a valid phone number (part 2 of 3).

740 Bonus Chapter: Introduction to Perl Programming Chapter 26

Good Programming Practice 26.2
Use meaningful HTML object names for input fields. This makes Perl programs easier to un-
derstand when retrieving FORM data. 26.2

Figure 26.13 (form.pl) processes the data posted by form.html and sends a Web
page response back to the client. Function param (lines 8–13) is part of the Perl CGI module
and is used to retrieve values for the form field elements and assign them to scalar variables.
For example, in line 27 of Fig. 26.12, an HTML form text field is created with the name
EMAIL; later, in line 11 of form.pl, we access the value that the user entered for that field
by calling param("EMAIL"), and assign the value returned to scalar $email.

57 <INPUT TYPE = "RADIO" NAME = "OS" VALUE = "Windows 2000">
58 Windows 2000
59 <INPUT TYPE = "RADIO" NAME = "OS" VALUE = "Windows 98">
60 Windows 98

61 <INPUT TYPE = "RADIO" NAME = "OS" VALUE = "Linux">
62 Linux
63 <INPUT TYPE = "RADIO" NAME = "OS" VALUE = "Other">
64 Other

65 <INPUT TYPE = "SUBMIT" VALUE = "Register">
66 </FORM>
67 </BODY>
68 </HTML>

M

Fig. 26.12 User entering a valid phone number (part 3 of 3).

Chapter 26 Bonus Chapter: Introduction to Perl Programming 741

1 #!perl
2 # Fig. 26.13: form.pl
3 # Program to read information sent to the server
4 # from the FORM in the form.html document.
5
6 use CGI qw(:standard);
7
8 $os = param("OS");
9 $firstName = param("FNAME");

10 $lastName = param("LNAME");
11 $email = param("EMAIL");
12 $phone = param("PHONE");
13 $book = param("BOOK");
14
15 print header;
16 print "<BODY BACKGROUND = \"images/back.gif\">";
17 print "<BASEFONT FACE = \"ARIAL,SANS-SERIF\" SIZE = \"3\">";
18
19 if ($phone =~ / ^ \(\d{3} \) \d{3} - \d{4} $ /x)
20 {
21 print <<End_Success;
22 Hi $firstName.
23 Thank you for completing the survey.

24 You have been added to the
25 $book
26 mailing list.

27 The following information has been saved
28 in our database:

29 <TABLE BORDER = "0" CELLPADDING = "0"
30 CELLSPACING = "10">
31 <TR><TD BGCOLOR = #FFFFAA>Name </TD>
32 <TD BGCOLOR = #FFFFBB>Email</TD>
33 <TD BGCOLOR = #FFFFCC>Phone</TD>
34 <TD BGCOLOR = #FFFFDD>OS</TD></TR>
35 <TR><TD>$firstName $lastName</TD><TD>$email</TD>
36 <TD>$phone</TD><TD>$os</TD></TR>
37 </TABLE>
38

39 <CENTER>
40 This is only a sample form.
41 You have not been added to a mailing list.
42 </CENTER>
43 End_Success
44 }
45 else
46 {
47 print <<End_Failure;
48
49 INVALID PHONE NUMBER

50 A valid phone number must be in the form
51 (555)555-5555
52 Click the Back button,
53 enter a valid phone number and resubmit.

Fig. 26.13 Script to process user data from form.html (part 1 of 2).

742 Bonus Chapter: Introduction to Perl Programming Chapter 26

In line 19, we determine whether the phone number entered by the user is valid. In this
case, the format (555)555-5555 is the only acceptable format. Validating information is
crucial when you are maintaining a database or mailing list. For example, validation
ensures that data is stored in the proper format in a database, that credit card numbers con-
tain the proper number of digits before encrypting them for submission to a merchant, etc.
The design of verifying information is called business logic (also called business rules).

Good Programming Practice 26.3
Use business logic to ensure that invalid information is not stored in databases. 26.3

54 Thank You.
55 End_Failure
56 }

Fig. 26.13 Script to process user data from form.html (part 2 of 2).

Chapter 26 Bonus Chapter: Introduction to Perl Programming 743

Line 19’s if condition

($phone =~ / ^ \(\d{3} \) \d{3} - \d{4} $ /x)

uses a regular expression to validate the phone number. The expression \(matches the
opening parenthesis of the phone number. Because we want to match the literal character
(, we must escape its normal meaning by using the \ character. This must be followed by
three digits (\d{3}), a closing parenthesis, three digits, a literal hyphen, and finally four
more digits. Note that we use the ^ and $ symbols to ensure that there are no extra charac-
ters at either end of the string.

If the regular expression is matched, then the phone number is valid and a Web page
is sent to the client thanking the user for completing the form. If the user posts an invalid
phone number, the else clause (lines 46–56) is executed, instructing the user to enter a
valid phone number.

26.6 Server-Side Includes
Dynamic content greatly improves the look and feel of a Web page. Pages that include the
current date or time, rotating banners or advertisements, a daily message or special offer,
or the latest company news will always look new. Clients see new information upon every
visit and thus will likely revisit the site in the future.

Server-side includes (SSIs) are commands embedded in HTML documents to allow
simple dynamic content creation. SSI commands like ECHO and INCLUDE allow Web
pages to include content that is constantly changing (like the current time) or information
stored in a database. The command EXEC can be used to run CGI scripts and embed their
output directly into a Web page.

Not all Web servers support the available SSI commands. Therefore, SSI commands
are written as HTML comments (e.g., <!--#ECHO VAR="DOCUMENT_NAME" -->).
Servers that do not recognize these commands will simply treat them as comments.

 A document containing SSI commands is typically given the .SHTML file extension
(the extra S at the front of the extension stands for server). The .SHTML files are parsed by
the server. The server executes the SSI commands and writes any output to the client.

Figure 26.14 implements a Web page hit counter. Each time a client requests the doc-
ument, the counter is incremented by one. Perl script counter.pl (Fig. 26.15) manipu-
lates the counter.

Performance Tip 26.1
Parsing HTML documents on a server can dramatically increase the load on that server. To
increase the performance of a heavily loaded server try to limit the use of Server Side In-
cludes. 26.1

1 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
2 <!-- Fig. 26.14: counter.shtml -->
3

Fig. 26.14 Incorporating a Web-page hit counter and displaying environment
variables (part 1 of 3).

744 Bonus Chapter: Introduction to Perl Programming Chapter 26

4 <HTML>
5 <HEAD>
6 <TITLE>Using Server Side Includes</TITLE>
7 </HEAD>
8
9 <BODY>

10 <CENTER>
11 <H3>Using Server Side Includes</H3>
12 </CENTER>
13
14 <!--#EXEC CGI="/cgi-bin/counter.pl" -->

15
16 The Greenwich Mean Time is
17
18 <!--#ECHO VAR="DATE_GMT" -->.
19

20
21 The name of this document is
22
23 <!--#ECHO VAR="DOCUMENT_NAME" -->
24

25
26 The local date is
27
28 <!--#ECHO VAR="DATE_LOCAL" -->
29

30
31 This document was last modified on
32
33 <!--#ECHO VAR="LAST_MODIFIED" -->
34

35
36 Your current IP Address is
37
38 <!--#ECHO VAR="REMOTE_ADDR" -->
39

40
41 My server name is
42
43 <!--#ECHO VAR="SERVER_NAME" -->
44

45
46 And I am using the
47
48 <!--#ECHO VAR="SERVER_SOFTWARE" -->
49 Web Server.

50
51 You are using
52
53 <!--#ECHO VAR="HTTP_USER_AGENT" -->.
54

55

Fig. 26.14 Incorporating a Web-page hit counter and displaying environment
variables (part 2 of 3).

Chapter 26 Bonus Chapter: Introduction to Perl Programming 745

Line 14 of the counter.shtml script executes the counter.pl script using the
EXEC command. Before the HTML document is sent to the client, the SSI command is exe-
cuted and any script output is sent to the client. This technique can increase the load on the
server tremendously, depending on how many times the script has to be parsed and the size
and work load of the scripts.

Line 18 uses the ECHO command to display variable information. The ECHO command
is followed by the keyword VAR and the variable’s name. For example, variable
DATE_GMT contains the current date and time in Greenwich Mean Time (GMT). In line
23, the name of the current document is included in the HTML page with the
DOCUMENT_NAME variable. The DATE_LOCAL variable inserts the date in line 28 (in
local format—different formats are used around the world).

56 This server is using
57
58 <!--#ECHO VAR="GATEWAY_INTERFACE" -->.
59

60
61

62 <CENTER>
63 <HR>
64 This document was last modified on
65 <!--#ECHO VAR="LAST_MODIFIED" -->
66 </CENTER>
67 </BODY>
68 </HTML>

Fig. 26.14 Incorporating a Web-page hit counter and displaying environment
variables (part 3 of 3).

746 Bonus Chapter: Introduction to Perl Programming Chapter 26

Figure 26.15 (counter.pl) introduces file input and output in Perl. Line 7 opens
(for input) the file counter.dat, which contains the number of hits to date for the
counter.shtml Web page. Function open is called to create a filehandle to refer to the
file during the execution of the script. In this example, the file opened is assigned a file-
handle named COUNTREAD (line 7). Line 8

$data = <COUNTREAD>;

uses the diamond operator <> to read one line of the file referred to by filehandle COUN-
TREAD and assign it to the variable $data. When the diamond operator is used in a scalar
context, only one line is read. If assigned to an array, each line from the file is assigned to
a successive array element. Because the file counter.dat contains only one line (in this
case only one number), the variable $data is assigned the value of that number in line 8.
Line 9 then increments $data by one.

Now that the counter has been incremented for this hit, we write the counter back to
the counter.dat file. In line 12

open(COUNTWRITE, ">counter.dat");

we open the counter.dat file for writing by preceding the file name with a > character.
This immediately truncates (i.e., discards) any data in that file. If the file does not exist, Perl
creates a new file with the specified name. Perl also provides an append mode (>>) for ap-
pending to the end of a file.

1 #!perl
2 # Fig. 26.15: counter.pl
3 # Program to track the number of times a web page has been accessed.
4
5 use CGI qw(:standard);
6
7 open(COUNTREAD, "counter.dat");
8 $data = <COUNTREAD>;
9 $data++;

10 close(COUNTREAD);
11
12 open(COUNTWRITE, ">counter.dat");
13 print COUNTWRITE $data;
14 close(COUNTWRITE);
15
16 print header;
17 print "<CENTER>";
18 print "You are visitor number
";
19
20 for ($count = 0; $count < length($data); $count++)
21 {
22 $number = substr($data, $count, 1);
23 print "";
24 }
25
26 print "</CENTER>";

Fig. 26.15 Perl script for counting Web page hits

Chapter 26 Bonus Chapter: Introduction to Perl Programming 747

After line 12 is executed, data can be written to the file counter.dat. Line 13

print COUNTWRITE $data;

writes the counter number back to the file counter.dat. The first argument to print
(COUNTWRITE) simply specifies the filehandle that refers to the file where data is written.
If no filehandle is specified, print writes to standard out (STDOUT). In line 14, the con-
nection to counter.dat is terminated by calling function close.

Good Programming Practice 26.4
When opening a text file to read its contents, open the file in read-only mode. Opening the
file in other modes makes it possible to accidentally overwrite the data. 26.4

Good Programming Practice 26.5
Always close files as soon as you are finished with them. 26.5

Lines 20–24

for ($count = 0; $count < length($data); $count++)
{
 $number = substr($data, $count, 1) ;
 print "";
}

use a for loop to iterate through each digit of the number scalar $data. The for loop
syntax consists of three semicolon-separated statements in parentheses followed by a body
delimited by curly braces. In our example, we loop until $count is equal to
length($data). Because function length returns the length of a character string, the
for iterates once for each digit in $data.

For each iteration, we obtain the current digit by calling function substr. The first
parameter passed to function substr specifies the string from which to obtain a substring.
The second parameter specifies the offset, in characters, from the beginning of the string,
so an offset of 0 returns the first character, 1 returns the second, and so forth. The third argu-
ment specifies the length of the substring to be obtained (just one character in this case).
The for loop, then, assigns each digit (possibly from a multiple-digit number) to the scalar
variable $number in turn. Each digit’s corresponding image is displayed using an HTML
IMG tag (line 23).

26.7 Verifying a Username and Password
It is often desirable to have a private Web site—one that is visible only to certain people.
Implementing privacy generally involves username and password verification. Figure
26.16 presents an example of an HTML form which queries the user for a username and a
password to be verified. It posts the fields USERNAME and PASSWORD to the Perl script
password.pl upon submission of the form. Note that for simplicity, this example does
not encrypt the data before sending it to the server.

748 Bonus Chapter: Introduction to Perl Programming Chapter 26

1 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
2 <!-- Fig. 26.16: password.html -->
3
4 <HTML>
5 <HEAD>
6 <TITLE>Verifying a username and a password.</TITLE>
7 </HEAD>
8
9 <BODY>

10 <P>
11
12 Type in your username and password below.
13

14
15
16 Note that password will be sent as plain text
17
18
19 </P>
20
21 <FORM ACTION = "/cgi-bin/password.pl" METHOD = "POST">
22

23
24 <TABLE BORDER = "0" CELLSPACING = "0" STYLE = "HEIGHT: 90px;
25 WIDTH: 123px" CELLPADING = "0">
26 <TR>
27 <TD BGCOLOR = "#DDDDDD" COLSPAN = "3">
28
29 Username:
30
31 </TD>
32 </TR>
33 <TR>
34 <TD BGCOLOR = "#DDDDDD" COLSPAN = "3">
35 <INPUT SIZE = "40" NAME = "USERNAME"
36 STYLE = "HEIGHT: 22px; WIDTH: 115px">
37 </TD>
38 </TR>
39 <TR>
40 <TD BGCOLOR = "#DDDDDD" COLSPAN = "3">
41
42 Password:
43 </TD>
44 </TR>
45 <TR>
46 <TD BGCOLOR = "#DDDDDD" COLSPAN = "3">
47 <INPUT SIZE = "40" NAME = "PASSWORD"
48 STYLE = "HEIGHT: 22px; WIDTH: 115px"
49 TYPE = "PASSWORD">
50
</TD>
51 </TR>
52 <TR>
53 <TD COLSPAN = "3">

Fig. 26.16 Entering a username and password (part 1 of 3)

Chapter 26 Bonus Chapter: Introduction to Perl Programming 749

54 <INPUT TYPE = "SUBMIT" VALUE = "Enter"
55 STYLE = "HEIGHT: 23px; WIDTH: 47px">
56 </TD>
57 </TR>
58 </TABLE>
59 </FORM>
60 </BODY>
61 </HTML>

Fig. 26.16 Entering a username and password (part 2 of 3)

750 Bonus Chapter: Introduction to Perl Programming Chapter 26

The script password.pl (Fig. 26.17) is responsible for verifying the username and
password of the client by crosschecking against values from a database. The database list
of valid users and their passwords is a simple text file: password.txt (Fig. 26.18).

1 #!perl
2 # Fig. 26.17: password.pl
3 # Program to search a database for usernames and passwords.
4
5 use CGI qw(:standard);
6
7 $testUsername = param("USERNAME");
8 $testPassword = param("PASSWORD");
9

10 open (FILE, "password.txt") ||
11 die "The database could not be opened";
12
13 while ($line = <FILE>)
14 {
15 chomp $line;
16 ($username, $password) = split(",", $line);
17
18 if ($testUsername eq $username)
19 {
20 $userVerified = 1;
21 if ($testPassword eq $password)
22 {
23 $passwordVerified = 1;
24 last;
25 }
26 }
27 }
28
29 close(FILE);
30 print header;
31

Fig. 26.17 Contents of password.pl Perl script (part 1 of 2).

Fig. 26.16 Entering a username and password (part 3 of 3)

Chapter 26 Bonus Chapter: Introduction to Perl Programming 751

32 if ($userVerified && $passwordVerified)
33 {
34 accessGranted();
35 }
36 elsif ($userVerified && !$passwordVerified)
37 {
38 wrongPassword();
39 }
40 else
41 {
42 accessDenied();
43 }
44
45 sub accessGranted
46 {
47 print "<TITLE>Thank You</TITLE>";
48 print "";
49 print "Permission has been granted, $username.";
50 print "
Enjoy the site.";
51 }
52
53 sub wrongPassword
54 {
55 print "<TITLE>Access Denied</TITLE>";
56 print "";
57 print "You entered an invalid password.
";
58 print "Access has been denied.";
59 }
60
61 sub accessDenied
62 {
63 print "<TITLE>Access Denied</TITLE>";
64 print "";
65 print "You were denied access to this server.";
66 print "";
67 }

1 account1,password1
2 account2,password2
3 account3,password3
4 account4,password4
5 account5,password5
6 account6,password6
7 account7,password7
8 account8,password8
9 account9,password9

10 account10,password10

Fig. 26.18 Database password.txt containing user names and passwords.

Fig. 26.17 Contents of password.pl Perl script (part 2 of 2).

752 Bonus Chapter: Introduction to Perl Programming Chapter 26

Line 10 opens the file password.txt for reading, assigning it the filehandle FILE.
To verify that the file was opened successfully, a test is performed using the logical OR
operator (||). Operator OR returns true if either the left condition or the right condition.
If the condition on the left evaluates to true, then the condition on the right is not evaluated.
In this case the die executes only if open returns false, indicating that the file did not open
properly. If this happens, die displays an error message and the program terminates.

The while loop in line 13 is another control structure which repeatedly executes the
code enclosed in curly braces (lines 14–27) until the test condition in parentheses returns
false. In this case, the test condition assigns the next unread line of password.txt to
$line, and evaluates to true as long as a line from the file was successfully read. When
the end of the file is reached, <FILE> returns false and the loop terminates.

Each line in password.txt consists of an account name and password pair, sepa-
rated by a comma, and followed with a newline character. For each line read, function
chomp is called (line 15) to remove the newline character at the end of the line. Then,
split is called to divide the string into substrings at the specified separator or delimiter
(in this case, a comma). For example, the split of the first line in password.txt
returns the list ("account1", "password1"). The syntax

($username, $password) = split(",", $line);

sets $username and $password to the first and second elements returned by split
(account1 and password1), respectively.

If the username is equivalent to the one we have read from the text file, the conditional
in line 18 returns true. The $userVerified variable is then set to 1. Next, the value of
$testPassword is tested against the value in the $password variable. If the password
matches, the $passwordVerified variable is set to 1. In this case, because a successful
username-password match has been found, the last statement is used in line 24 to imme-
diately exit the while loop. The last statement is often used to short-circuit a loop struc-
ture once a desired condition has been satisfied. Because we are now finished reading from
password.txt we close it on line 29. Line 32 checks if both the username and pass-
word were verified. Using, the Perl logical AND operator, && . If both conditions are true
(that is, if both variables evaluate to nonzero values), then the function accessGranted
is called, which sends a Web page to the client indicating a successful login.

If the if statement returns false, the condition in the following elsif statement is
then tested. Line 36, tests if the user was verified, but the password was not. In this case,
the function wrongPassword is called. The unary logical negation operator ! is used in
line 36 to negate the value of $passwordVerified and thus test if it is false. If the user
was not recognized at all, function accessDenied is called, and a message indicating
that permission has been denied is sent to the client (line 42).

Perl allows programmers to define their own functions or subroutines. Keyword sub
begins a function definition and curly braces delimit the function body (lines 45, 53 and
61). To call a function, use the function name followed by parentheses (line 34, 38 and 42).

26.8 Using ODBC to Connect to a Database
Database connectivity allows system administrators to maintain information on things such
as user accounts, passwords, credit card information, mailing lists and product inventory.

Chapter 26 Bonus Chapter: Introduction to Perl Programming 753

Databases allow companies to enter the world of electronic commerce and maintain crucial
data. The Perl module Win32::ODBC installed with Perl 5.6 (or higher) provides an in-
terface for Perl programs to connect to Windows ODBC (Open Database Connec-
tivity) data sources. To do interact with a database, a data source must first be defined with
the Data Source Administrator in Microsoft Windows (see the “Setting up a System Data
Source Name” document on the CD that accompanies this book). From a Web browser, the
client enters an SQL query string that is sent to the Web server. The Perl script is then ex-
ecuted, querying the database and sending a record set in the form of an HTML document
back to the client. This SQL query string is written following the rules and syntax discussed
earlier in Chapter 25.

Figure 26.19 (data.html) is a Web page that POSTs a form containing an SQL
query to the server. Perl script data.pl (Fig. 26.20) processes the form data.

1 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
2 <!-- Fig. 26.19: data.html -->
3
4 <HTML>
5 <HEAD>
6 <TITLE>Sample Database Query</TITLE>
7 </HEAD>
8
9 <BODY>

10
11
12
13 Querying an ODBC database.
14

15
16 <FORM METHOD = "POST" ACTION = "cgi-bin/data.pl">
17 <INPUT TYPE = "TEXT" NAME = "QUERY" SIZE = "40"
18 VALUE = "SELECT * FROM Authors">

19 <INPUT TYPE = "SUBMIT" VALUE = "Send Query">
20 </FORM>
21 </BODY>
22 </HTML>

Fig. 26.19 Source code and output of the data.html document.

754 Bonus Chapter: Introduction to Perl Programming Chapter 26

Line 16 creates an HTML FORM, indicating that the data submitted from the FORM will
be sent to the Web server via the POST METHOD and the ACTION is to execute data.pl
(Fig. 26.20). Line 17 adds a text field to the FORM, setting its name to QUERY and its
VALUE to a default SQL query string. This query specifies that all records (SELECT *) are
to be retrieved FROM the Authors table inside the perl.mdb database (for this example,
we gave it the DSN Products. See the “Setting up a ODBC System Data Source Name”
document on the CD that accompanies this book for instructions on how to create a DSN.

1 #!perl
2 # Fig. 26.20: data.pl
3 # Program to query a database and send results to the client.
4
5 use Win32::ODBC;
6 use CGI qw(:standard);
7
8 $queryString = param("QUERY");
9 $dataSourceName = "Products";

10
11 print header, start_html("Search Results");
12
13 if (!($data = new Win32::ODBC($dataSourceName)))
14 {
15 print "Error connecting to $dataSourceName: ";
16 print Win32::ODBC::Error();
17 exit;
18 }
19
20 if ($data->Sql($queryString))
21 {
22 print "SQL failed. Error: ", $data->Error();
23 $data->Close();
24 exit;
25 }
26
27 print "";
28 print "Search Results";
29 print "<TABLE BORDER = 0 CELLPADDING = 5 CELLSPACING = 0>";
30
31 for ($counter = 0; $data->FetchRow(); $counter++)
32 {
33 %rowHash = $data->DataHash();
34
35 print <<End_Row;
36 <TR BGCOLOR = "#9999CC">
37 <TD>$rowHash{'ID'}</TD>
38 <TD>$rowHash{'FirstName'}</TD>
39 <TD>$rowHash{'LastName'}</TD>
40 <TD>$rowHash{'Phone'}</TD>
41 </TR>
42 End_Row
43 }

Fig. 26.20 Contents of data.pl Perl script (part 1 of 2).

Chapter 26 Bonus Chapter: Introduction to Perl Programming 755

Look-and-Feel Observation 26.1
Using tables to output fields in a database organizes information neatly into rows and col-
umns 26.1

The data.pl script is responsible for taking the SQL query string and sending it on
to the database management system. Line 5 imports the Win32::ODBC package to allow
interaction with ODBC databases. In line 8, function param accesses the user input from
the text field QUERY, and assigns the returned value to variable $queryString. Line 9
creates scalar variable $dataSourceName and assigns it the string "Products".

Function start_html (line 11) from the CGI module prints the opening HTML
tags, including the page’s title, Search Results. Line 13 connects to the ODBC data
source by passing the Data Source Name to the new constructor function for the
Win32::ODBC object, which creates a new instance of the object. Specifically, the pro-
gram uses Windows ODBC to look for and connect to the database named Products, and
the variable $data becomes a reference to the object representing the Perl connection to
that database. If the database cannot be accessed for any reason, the condition in line 13 is

44
45 print <<End_Results;
46 </TABLE>
47
Your search yielded $counter results.

48
49 Please email comments to
50
51 Deitel and Associates, Inc..
52 End_Results
53
54 print end_html;
55 $data->Close();

Fig. 26.20 Contents of data.pl Perl script (part 2 of 2).

756 Bonus Chapter: Introduction to Perl Programming Chapter 26

false and lines 14–18 are executed, reporting the error and terminating the script with func-
tion exit. Function Win32::ODBC::Error is called to return a string describing why
the database could not be accessed.

Method Sql in line 20 executes the SQL query on the database, as specified by $que-
ryString. The database object referenced by $data now contains the record set gener-
ated by the query on the database. If the query is successful, Sql returns an undefined value
which is interpreted as false by the if statement in line 20. Otherwise, SQL returns a
number representing an error code (which evaluates to true) and lines 21–25 are executed.
The connection to the database is Closed on line 23.

Line 31 uses a for loop to iterate through each record in the record set. The loop con-
dition uses function FetchRow, which either returns true and sets $data to return the
next record in the set, or returns undef (false) indicating that the end of the record set has
been reached. For each record retrieved, variable $counter is incremented by one.

Line 33 retrieves the fields from the current record using function DataHash and
places this data into the hash %rowHash. The data can then be accessed using the field
names (as specified in the perl.mdb database file) as keys. For example,
$rowHash{‘Phone’} yields the phone number of the current record.

In lines 37–40, the document accesses the values of certain fields for the current record
using their keys and prints these values into table cells and rows. If a key is not contained
in %rowHash, the corresponding table cell is simply left empty.

After all rows of the record set have been displayed, the for loop condition fails and
the table’s closing tag is written (line 46). The number of results contained in $counter
is printed in line 47. Line 54 uses the CGI module’s end_html in place of the closing
HTML tag, and line 55 closes the connection to the database.

26.9 Cookies and Perl
Cookies maintain state information for a particular client that uses a Web browser. Preserv-
ing this information allows data and settings to be retained even after execution of a CGI
script has ended. Cookies are often used to record user preferences (or other information)
for the next time a client visits a Web site. For example, many Web sites use cookies to
store a client’s postal zip code. The zip code is used when the client requests a Web page
to send current weather information or news updates for the client’s region. On the server
side, cookies may be used to help track information about client activity, to determine, for
example, which sites are visited most frequently or how effective certain advertisements
and products are.

Microsoft Internet Explorer stores cookies as small text files saved on the client’s hard
drive. The data stored in the cookie is sent back to the Web server that placed it there when-
ever the user requests a Web page from that particular server. The server can then serve up
HTML content to the client that is specific to the information stored in the cookie.

 Figure 26.21 uses a script to write a cookie to the client’s machine. The
cookies.html file is used to display an HTML FORM that allows a user to enter a name,
height and favorite color. When the user clicks the Write Cookie button, the
cookies.pl script (Fig. 26.22) is executed.

Chapter 26 Bonus Chapter: Introduction to Perl Programming 757

1 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
2 <!-- Fig. 26.21: cookies.html -->
3
4 <HTML>
5 <HEAD>
6 <TITLE>Writing a cookie to the client computer</TITLE>
7 </HEAD>
8
9 <BODY>

10
11
12
13 Click Write Cookie to save your cookie data.
14

15
16 <FORM METHOD = "POST" ACTION = "cgi-bin/cookies.pl">
17 Name:

18 <INPUT TYPE = "TEXT" NAME = "NAME">

19 Height:

20 <INPUT TYPE = "TEXT" NAME = "HEIGHT">

21 Favorite Color

22 <INPUT TYPE = "TEXT" NAME = "COLOR">

23 <INPUT TYPE = "SUBMIT" VALUE = "Write Cookie">
24 </FORM>
25 </BODY>
26 </HTML>

Fig. 26.21 Source for cookies.html Web page.

1 #!perl
2 # Fig. 26.22: cookies.pl
3 # Program to write a cookie to a client’s machine
4

Fig. 26.22 Writing a cookie to the client (part 1 of 2).

758 Bonus Chapter: Introduction to Perl Programming Chapter 26

Good Programming Practice 26.6
Critical information such as credit card or password information should not be stored using
cookies. Cookies cannot be used to retrieve information such as email addresses or data on
the hard drive from a client’s computer. 26.6

The cookies.pl script reads the data sent from the client on lines 7–9. Line 11
declares and initializes variable $expires to contain the expiration date of the cookie.
The browser deletes a cookie after it expires. Lines 13–15 call function print to output
the cookie information. They use the Set-Cookie: header to indicate that the browser
should store the incoming data in a cookie. They set three attributes for each cookie: a

5 use CGI qw(:standard);
6
7 $name = param(NAME);
8 $height = param(HEIGHT);
9 $color = param(COLOR);

10
11 $expires = "Tuesday, 05-JUL-05 16:00:00 GMT";
12
13 print "Set-Cookie: Name=$name; expires=$expires; path=\n";
14 print "Set-Cookie: Height=$height; expires=$expires; path=\n";
15 print "Set-Cookie: Color=$color; expires=$expires; path=\n";
16
17 print header, start_html("Cookie Saved");
18
19 print <<End_Data;
20
21 The cookie has been set with the folowing data:

22 Name: $name

23 Height: $height

24 Favorite Color:
25 $color

26
Click here to read saved cookie.
27 End_Data
28
29 print end_html;

Fig. 26.22 Writing a cookie to the client (part 2 of 2).

Chapter 26 Bonus Chapter: Introduction to Perl Programming 759

name-value pair containing the data to be stored, the expiration date and the URL path of
the server domain over which the cookie is valid. For this example, no path is given,
making the cookie readable from anywhere within the server’s domain. Lines 17–29 send
a Web page indicating that the cookie has been written to the client.

If the client is Internet Explorer, cookies are stored in the Temporary Internet Files
directory on the client’s machine. Figure 26.23 shows the contents of this directory prior to
the execution of cookies.pl. After the cookie is written, a text file is added to this list.
The file Cookie:justin@196.168.0.6 can be seen in the Temporary Internet
Files directory in Fig. 26.24. The IP address 196.168.0.6 is the domain for which the
cookie is valid. The username justin, however, is just part of the filename Internet
Explorer uses for cookies and is not actually a part of the cookie itself. A remote server,
therefore, cannot access the username.

Figure 26.25 (readCookies.pl) reads the cookie written in Fig. 26.22 and displays
the information in a table.

Environment variable ’HTTP_COOKIE’ contains the client’s cookies. Line 12 calls
subroutine readCookies and places the returned value into hash %cookies. The user-
defined subroutine readCookies splits the environment variable containing the cookie
information into separate cookies (using split) and stores these as distinct elements in
@cookieArray (line 29). For each cookie in @cookieArray, we call split again to
obtain the original name-value pair, which in turn is stored in %cookieHash in line 33.

Note that the split function in line 32 makes reference to a variable named $_. The
special Perl variable $_ is used as a default for many Perl functions. In this case, because
no variable was provided in the foreach loop (line 30), so $_ is used by default. Thus,
in this example, $_ is assigned the value of the current element of @cookieArray as
foreach loops though it.

Once %cookieHash has been created, it is returned in line 36, and %cookies is
assigned its value (line 12). The foreach (line 17) then iterates through the hash with the
given key names, printing the key and value for the data from the cookie in an HTML table.

Fig. 26.23 Temporary Internet Files directory before a cookie is written.

760 Bonus Chapter: Introduction to Perl Programming Chapter 26

Fig. 26.24 Temporary Internet Files directory after a cookie is written.

1 #!perl
2 # Fig. 26.25: readCookies.pl
3 # Program to read cookies from the client's computer
4
5 use CGI qw(:standard);
6
7 print header, start_html("Read cookies");
8 print "";
9 print "The folowing data is saved in a cookie on your ";

10 print "computer.

";
11
12 %cookies = readCookies();
13
14 print "<TABLE BORDER = \"5\" CELLSPACING = \"0\" ";
15 print "CELLPADDING = \"10\">";
16
17 foreach $cookieName ("Name", "Height", "Color")
18 {
19 print "<TR>";
20 print " <TD BGCOLOR=#AAAAFF>$cookieName</TD>";
21 print " <TD BGCOLOR=#AAAAAA>$cookies{ $cookieName }</TD>";
22 print "</TR>";
23 }
24 print "</TABLE>";
25 print end_html;
26
27 sub readCookies
28 {
29 @cookieArray = split("; ", $ENV{ 'HTTP_COOKIE' });

Fig. 26.25 Output displaying the cookie’s content (part 1 of 2).

Chapter 26 Bonus Chapter: Introduction to Perl Programming 761

26.10 Internet and World Wide Web Resources
There is a strong established Perl community online that has made available a wealth of in-
formation on the Perl language, Perl modules, CGI scripting, etc.

www.perl.com
Perl.com is the first place to look for information about Perl. The homepage provides up-to-date
news on Perl, answers to common questions about Perl, and an impressive collection of links to Perl
resources of all kinds on the Internet. It includes sites for Perl software, tutorials, user groups and
demos.

www.activestate.com
From this site you can download ActivePerl—the Perl 5 implementation for Windows.

www.perl.com/CPAN/README.html
The “Comprehensive Perl Archive Network” is exactly what the name suggests. Here you will find an
extensive listing of Perl related information.

www.perl.com/CPAN/scripts/index.html
This is the scripts index from the CPAN archive. Here you will find a wealth of scripts written in Perl.

www.pm.org
This is the homepage of Perl Mongers, a group dedicated to supporting the Perl community. This site
is helpful in finding others in the Perl community to converse with; Perl Mongers has established Perl
user groups around the globe.

30 foreach (@cookieArray)
31 {
32 ($cookieName, $cookieValue) = split ("=", $_);
33 $cookieHash{ $cookieName } = $cookieValue;
34 }
35
36 return %cookieHash;
37 }

Fig. 26.25 Output displaying the cookie’s content (part 2 of 2).

762 Bonus Chapter: Introduction to Perl Programming Chapter 26

www.speakeasy.org/~cgires
This is a collection of tutorials and scripts that can provide a thorough understanding of CGI and of
how it is used.

www.cgi101.com
CGI 101 is a site for those looking to improve their programming ability through familiarity with CGI.
The site contains a six-chapter class outlining techniques for CGI programming in the Perl language.
The class includes both basics and more sophisticated scripts, with working examples. Also included
in the site are script libraries and links to other helpful sources.

www.jmarshall.com/easy/cgi
A good, brief explanation of CGI for those with programming experience.

wdvl.internet.com/Authoring/Languages/Perl/Resources.html
This site contains many links to Perl resources.

wdvl.internet.com/Authoring/CGI
The Web Developer's Virtual Library provides tutorials for learning both CGI and Perl, the language
most commonly used in developing CGI applications.

www.perlmonth.com
Perlmonth is a monthly online periodical devoted to Perl, with featured articles from professional pro-
grammers. This is a good source for those who use Perl frequently and wish to keep up on the latest
developments involving Perl.

www.itknowledge.com/tpj
The Perl Journal is a large magazine dedicated to Perl. Subscribers are provided with up-to-date Perl
news and articles, on the Internet as well as in printed form.

home.t-online.de/home/wahls/perlnet.html
This page provides a brief tutorial on Perl network programming for those who already know the lan-
guage. The tutorial uses code examples to explain the basics of network communication.

www.w3.org/CGI
The World Wide Web Consortium page on CGI is concerned with security issues involving the Com-
mon Gateway Interface. This page provides links concerning CGI specifications, as indicated by the
National Center for Super computing Applications (NCSA).

SUMMARY
• Practical Extraction and Report Language (Perl), developed by Larry Wall, is one of the most

widely-used languages for Web programming today.

• Common Gateway Interface (CGI) is a standard protocol through which applications interact with
Web servers.

• Permission is granted within the Web server to allow CGI scripts to be executed. They are typical-
ly either designated by filename extension (such as .cgi or .pl) or located within a special di-
rectory (such as /cgi-bin).

• For CGI scripts, standard output is redirected through the Common Gateway Interface to the server
and then sent over the Internet to a Web browser for rendering.

• The Perl comment character (#) instructs the interpreter to ignore everything on the current line
following the #.

• The “shebang” syntax (#!) indicates the path to the Perl interpreter or may indicate to the server
(e.g., Apache) that a Perl program follows the statement.

Chapter 26 Bonus Chapter: Introduction to Perl Programming 763

• The $ character specifies that the variable contains a scalar value (i.e., strings, integer numbers and
floating-point numbers).

• In Perl, variables are created automatically the first time they are encountered by the interpreter.

• When a variable is encountered inside a double-quoted ("") string, Perl uses a process called in-
terpolation to replace the variable with its associated data.

• In Perl, uninitialized variables have the value undef, which evaluates to 0 or the empty string
(""), depending on context.

• Perl does not need to differentiate between numeric and string data types because the interpreter
evaluates scalar variables depending on the context in which they are used.

• Perl arrays are named lists of elements, indexed by integer.

• Perl array variable names must be preceded by the @ symbol.

• An array name prefixed by the $ character and followed by an index number in square brackets
accesses individual array elements.

• The range operator (..) creates a consecutive series of values in a list or array.

• The Perl interpreter automatically handles memory management.

• The backslash character (\) is used in Perl to escape special characters.

• One of Perl’s most powerful capabilities is its ability to process textual data easily and efficiently,
allowing for straightforward searching, substitution, extraction and concatenation of strings.

• Text manipulation in Perl is usually done with a regular expression—a series of characters that
serves as a pattern-matching template (or search criteria) in strings, text files and databases.

• Perl has a collection of string operators used to compare and test strings for equality.

• A foreach loop iterates sequentially through the elements in a list or array.

• The match operator (m//) uses a regular expression to search a string for a specified pattern.

• The =~ operator (or binding operator) assigns to the match operator a string to search.

• Regular expressions can include special characters called metacharacters which specify patterns
or contexts that cannot be defined using literal characters.

• Parentheses in a regular expression indicate that the text matching the pattern is to be saved in spe-
cial Perl variables $1, $2, $3, etc.

• Modifying characters following the match operator indicate additional search options.

• Environment variables contain information about the script’s execution environment.

• In order to run Perl scripts as CGI applications, a Web server must first be installed and configured
appropriately.

• The use statement directs Perl programs to include the contents (e.g., functions, etc.) of pre-
defined packages called modules.

• The CGI module contains many functions for CGI scripting in Perl.

• Functions header, start_html and end_html in the CGI module return strings representing
certain HTTP headers and HTML tags.

• The here document syntax is often used in CGI programs to eliminate the need to repeatedly call
function print.

• The hash data type (or associative array), designated by the % character, represents an unordered
set of scalar-value pairs.

• Elements in a hash are accessed using unique string keys which are associated with the elements’
values: $hashName{keyName}.

764 Bonus Chapter: Introduction to Perl Programming Chapter 26

• The %ENV hash is a built-in hash in Perl that contains the names and values of all environment
variables.

• Function keys returns a list of all keys in a hash.

• Function sort orders an array of elements alphabetically.

• The design of verifying information entered into a database is called business logic or business
rules.

• Server-side includes (SSIs) are commands embedded in HTML documents for simple dynamic
content creation.

• Function open creates filehandles through which Perl scripts can read and write to files.

• The diamond operator <> reads information from a filehandle line by line.

• Function print writes to a filehandle.

• Function die displays an error message and terminates program execution.

• Function chomp removes the newline character at the end of a string.

• Function split divides a string into substrings at the specified separator or delimiter.

• The last statement short-circuits a loop structure once a desired condition is satisfied.

• Keyword sub begins a definition for a user-defined subroutine or function.

• Perl module Win32::ODBC provides an interface for Perl programs to connect to Windows
ODBC (Open Database Connectivity) data sources.

• Cookies are used to maintain state information for a particular client that uses a Web browser.

• The Set-Cookie: HTTP header indicates that the browser should store the incoming data in a
cookie.

TERMINOLOGY
! logical negation operator client
comment character command-line switches in Perl
$_ variable in Perl Common Gateway Interface (CGI)
%ENV hash in Perl cookies
&& logical AND operator CPAN (Comprehensive Perl Archive Network)
.pl extension for Perl programs Data Source Name (DSN)
.SHTML file extension DATE_GMT variable
@_ variable in Perl DATE_LOCAL variable
\n newline character delimiter
{} braces denoting a block of code diamond operator (<>)
|| logical OR operator DOCUMENT_NAME variable
=~ operator ECHO SSI command
== numerical equality operator elements (of an array)
ActivePerl end_html function from CGI module
alphanumeric character environment variables
assignment operators eq operator in Perl
associative array escape character
business logic EXEC SSI command
business rules exit function
CGI environment variables expiration date of a cookie
CGI module FLASTMOD SSI command
cgi-bin directory for statement in Perl
chomp function foreach statement in Perl

Chapter 26 Bonus Chapter: Introduction to Perl Programming 765

FSIZE command perl.exe
GATEWAY_INTERFACE variable POST command in HTTP
GET command for HTTP Practical Extraction and Report Language (Perl)
hash print function
here document push function
hidden fields quantifier
hit counter (for a Web page) range operator (..)
HTML redirect function
HTTP header regular expression
HTTP_USER_AGENT variable REMOTE_ADDR variable
HyperText Transfer Protocol (HTTP) scalar variable
if statement in Perl script
import tag server
Internet SERVER_NAME variable
interpolation SERVER_SOFTWARE variable
interpreter server-side include (SSI) in Perl
keys for a hash sort function in Perl
LAST_MODIFIED split function
length function SSI (Server-Side Include)
literal characters standard input
logical AND operator, && standard output
logical negation operator, ! start_html function
logical OR operator, || string processing
m// match operator subroutines
metacharacters in regular expressions substr function
modifying characters undef
modules use statement in Perl
new constructor function Wall, Larry
packages in Perl Web client
param function Web server
param function of Perl CGI module while statement in Perl
Perl Win32-ODBC Perl module
Perl interpreter word boundary
Perl Package Manager (ppm)

27
Bonus Chapter:

Introduction to Java 2
Programming

Objectives
• To create command-line and windowed applications.
• To be able to process graphical user interface (GUI)

events for a variety of GUI components.
• To be able to arrange GUI components with layout

managers.
• To be able to manipulate collections of data with

arrays and Vectors.
• To understand how to create, manage and destroy

threads.
• To implement Java networking applications using

streams-based sockets.
• To be able to enhance Web server functionality with a

servlet that connects to a database.
Classes struggle, some classes triumph, others are
eliminated.
Mao Zedong

I never forget a face, but in your case I’ll make an exception.
Groucho (Julius Henry) Marx

The most general definition of beauty...Multeity in Unity.
Samuel Taylor Coleridge

The spider’s touch, how exquisitely fine!
Feels at each thread, and lives along the line.
Alexander Pope

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 767

Outline
27.1 Introduction
27.2 Java Keywords, Primitive Data Types and Class Libraries
27.3 Command-Line Java Applications

27.3.1 Printing a Line of Text at the Command Line
27.3.2 Using a Dialog Box from a Command-Line Application
27.3.3 Another Java Application: Adding Integers

27.4 Arrays
27.5 Class Vector
27.6 Graphical User Interfaces: A Windowed Application with JFrames

and Event Handling
27.7 Graphical User Interfaces: Event Handling with Inner Classes
27.8 Graphical User Interfaces: Miscellaneous Components

27.8.1 Class JComboBox
27.8.2 JList

27.9 Graphical User Interfaces: Layout Managers
27.9.1 BorderLayout

27.9.2 GridLayout

27.10 Graphical User Interfaces: Customizing a Component and
Introducing Graphics

27.11 Multithreading
27.11.1 Class Thread: An Overview of the Thread Methods
27.11.2 Thread States: Life Cycle of a Thread
27.11.3 Thread Priorities and Thread Scheduling
27.11.4 Creating Threads in an Application

27.12 Networking with Sockets and Streams
27.12.1 Establishing a Simple Server (Using Stream Sockets)
27.12.2 Establishing a Simple Client (Using Stream Sockets)
27.12.3 Client/Server Interaction with Stream Socket Connections

27.13 Enhancing a Web Server with Servlets
27.13.1 Overview of Servlet Technology
27.13.2 The Servlet API
27.13.3 HttpServlet Class
27.13.4 HttpServletRequest Interface
27.13.5 HttpServletResponse Interface
27.13.6 Multi-tier Client/Server Application with Servlets

27.14 Internet and World Wide Web Resources

Summary • Terminology

768 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

27.1 Introduction
This bonus chapter on Java programming is provided to support the earlier chapters in this
book that use Java programming. Our intent here is not to present complete coverage of the
Java programming language, which is much too large to be covered in a small amount of
space. Rather, this chapter provides examples that are targeted to the areas of Java used
throughout this text. This chapter assumes that you are already a programmer familiar with
object-oriented programming concepts. If you are interested in pursuing a more in-depth
Java learning experience, please consider our textbook Java How to Program, Third Edi-
tion and our forthcoming textbook Advanced Java How to Program.

Java is a powerful object-oriented language that is fun to use for novices but also
appropriate for experienced programmers building substantial information systems. Java
provides procedural, object-based and object-oriented programming capabilities. The
object-based programming paradigm (with classes, encapsulation and objects) and the
object-oriented programming paradigm (with inheritance and polymorphism) are crucial
for developing elegant, robust and maintainable software systems.

Java is certain to become the language of choice in the new millennium for imple-
menting Internet-based and Intranet-based applications as well as software for devices that
communicate over networks (such as cellular phones, pagers and personal digital assis-
tants). Do not be surprised when your new stereo and other devices in your home will be
networked together using Java technology!

An implementation of Java and the Java documentation are available for free down-
load from the Sun Microsystems Web site

java.sun.com/j2se/1.3

This chapter is based on Sun’s most recent Java release—the Java 2 Platform. Sun provides
an implementation of the Java 2 Platform called the Java 2 Software Development Kit
(J2SDK) that includes the tools you need to write software in Java. Because of Java’s ex-
traordinary portability, the programs in this book should work correctly with any version
of the J2SDK. We tested these programs using the most recent release of the J2SDK at the
time of this publication—Version 1.3. The J2SDK is a command-line environment—you
compile and run your programs from a Command Prompt on Windows (or a shell in
UNIX). If you prefer to use a complete development environment, Sun also provides Forté
for Java Community Edition free for download at

www.sun.com/forte/ffj/ce/index.html

This robust environment requires that the J2SDK be installed first. Please read the down-
load and installation instructions Sun provides for both the J2SDK and Forté carefully be-
fore installing the products.

27.2 Java Keywords, Primitive Data Types and Class Libraries
This section presents several tables introducing Java’s keywords, primitive data types, al-
lowed primitive type promotions and a small portion of Java’s library of reusable data types.

The table of Fig. 27.1 contains the keywords of the Java programming language. Key-
words (or reserved words) are reserved for use by Java and are always spelled with all low-
ercase letters. These keywords should not be used as identifiers in Java programs.

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 769

The table of Fig. 27.2 shows Java’s eight primitive data types—the fundamental
building blocks of all types in Java. Each type is shown with its size in bytes and its value
ranges.

Java Keywords

abstract boolean break byte case

catch char class continue default

do double else extends false

final finally float for if

implements import instanceof int interface

long native new null package

private protected public return short

static super switch synchronized this

throw throws transient true try

void volatile while

Keywords that are reserved but not used by Java

const goto

Fig. 27.1 Java keywords.

Type Size in bits Values Standard

boolean
8 true or false

char 16 '\u0000' to '\uFFFF'
(i.e., 0 through 65,535)

(ISO Unicode character set)

byte 8 –128 to +127

short 16 –32,768 to +32,767

int 32 –2,147,483,648 to
+2,147,483,647

long 64 –9,223,372,036,854,775,808 to
+9,223,372,036,854,775,807

float 32 Negative range:
-3.4028234663852886E+38 to
-1.1754943508222875E-38
Positive range:
1.1754943508222875E-38 to
3.4028234663852886E+38

(IEEE 754 floating point)

Fig. 27.2 The Java primitive data types (part 1 of 2).

770 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

When writing Java applications, there will be cases where a method (i.e., a function)
expects to receive one primitive type, but it passed a different primitive type. Some pro-
gramming languages are flexible in performing type promotions and demotions. For
example, in C++ a method that expects to receive an int can be passed a double and
C++ will truncate the floating-point part of the double value (i.e., demote the double to
an int). Similarly, C++ allows a method that expects to receive a double to be passed
an int and C++ will promote the int value to a double. Java is more strict when pro-
cessing type conversions of primitive types—it allows only type promotions, not type
demotions. Fig. 27.3 shows the allowed type promotions for Java primitive types.

Java programmers rely heavily on class libraries (sets of reusable software compo-
nents) to build programs rapidly and reliably. Java’s preexisting class libraries are orga-
nized into packages of related reusable types known as classes and interfaces. The table of
Fig. 27.4 describes some of the Java packages used in the Java programs from this book.
For a complete list of Java packages and their contents, please refer to the online HTML-
based Java documentation, which is downloadable from the Sun Microsystems Java Web
site java.sun.com.

double
64 Negative range:

-1.7976931348623157E+308 to
-2.2250738585072014E-308
Positive range:
2.2250738585072014E-308 to
1.7976931348623157E+308

(IEEE 754 floating point)

Type Allowed promotions

double None

float double

long float or double

int long, float or double

char int, long, float or double

short int, long, float or double

byte short, int, long, float or double

boolean None (boolean values are not considered to be numbers in Java)

Fig. 27.3 Allowed promotions for primitive data types.

Type Size in bits Values Standard

Fig. 27.2 The Java primitive data types (part 2 of 2).

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 771

Package Description

java.awt The Java Abstract Windowing Toolkit Package.
This package contains the classes and interfaces required to
create and manipulate graphical user interfaces (GUIs) in Java
1.0 and 1.1. In Java 2, these classes can still be used, but the
Swing GUI components of the javax.swing packages are
often used instead. There are several classes and interfaces in
this package which are frequently used in Swing GUI pro-
gramming.

java.awt.event The Java Abstract Windowing Toolkit Event Package.
This package contains classes and interfaces that enable event
handling for GUI components in both the java.awt and
javax.swing packages.

java.io The Java Input/Output Package.
This package contains classes that enable programs to input
and output data using streams. The classes of this package can
be used with file processing and networking, as well as with
other types of I/O.

java.lang The Java Language Package.
This package contains classes and interfaces required by many
Java programs and is automatically imported by the Java com-
piler into all programs. These classes and interfaces are consid-
ered to be fundamental to Java programming.

java.net The Java Networking Package.
This package contains classes that enable programs to commu-
nicate via networks using streams of bytes or packets of data.
The classes in this package provide the foundation for other
higher-level networking capabilities in Java.

java.sql The Java Database Connectivity Package.
This package contain classes and interfaces that enable a Java
program to interact with a database.

java.text The Java Text Package.
This package contains classes and interfaces that enable a Java
program to manipulate numbers, dates, characters and strings.
This package provides many of Java’s internationalization
capabilities—features that enable a program to be customized
to a specific locale (e.g., an application used around the world
may display strings in many languages).

java.util The Java Utilities Package.
This package contains utility classes and interfaces including:
date and time manipulations, random number processing capa-
bilities (Random), breaking strings into smaller pieces called
tokens (StringTokenizer) and other capabilities. All of
Java’s predefined data structures are defined in this package.

Fig. 27.4 Some packages of the Java API (part 1 of 2).

772 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

27.3 Command-Line Java Applications
This section provides an introduction to command-line applications in Java. The applica-
tions shown here are executed from a command prompt on Windows or a shell on UNIX/
Linux.

27.3.1 Printing a Line of Text at the Command Line
We begin by considering a simple Java application that displays a line of text in your com-
mand prompt/shell. An application is a program that executes using the java interpreter.
We will first discuss the program, then discuss how to compile and execute the program.
The program (Welcome1.java) and its output are shown in Fig. 27.5.

This program illustrates several important features of the Java language. We consider
each line of the program in detail. Each program has line numbers for the reader’s conve-
nience; those line numbers are not part of Java programs. Line 7 does the “real work” of
the program, namely displaying the phrase Welcome to Java Programming! on the
screen. But let us consider each line in order. Line 1

javax.swing The Java Swing GUI Components Package.
This package contains classes and interfaces for Java’s Swing
GUI components that provide support for portable GUIs.

javax.swing.event The Java Swing Event Package.
This package contains classes and interfaces that enable event
handling for GUI components in the javax.swing package.

javax.swing.table The Java Swing Table Package.
This package contains classes and interfaces for creating and
manipulating spreadsheet-like tables.

1 // Fig. 27.5: Welcome1.java
2 // A first program in Java
3
4 public class Welcome1 {
5 public static void main(String args[])
6 {
7 System.out.println("Welcome to Java Programming!");
8 }
9 }

Welcome to Java Programming!

Fig. 27.5 A first program in Java.

Package Description

Fig. 27.4 Some packages of the Java API (part 2 of 2).

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 773

// Fig. 27.2: Welcome1.java

begins with //, indicating that the remainder of the line is a comment. To help you locate
the programs on the CD, we begin every program with a comment indicating figure number
and file name. A comment that begins with // is called a single-line comment because the
comment terminates at the end of the current line. Java also supports multiple-line com-
ments (delimited with /* and */). A similar form of comment called a documentation
comment is delimited with /** and */.

Common Programming Error 27.1
Forgetting one of the delimiters of a multiple-line comment is a syntax error. 27.1

Java programmers generally use single-line comments in preference to multiple-line
comments. We use single-line comments. Java introduced the documentation comment
syntax to enable programmers to highlight portions of programs that the javadoc utility
program (provided by Sun Microsystems with the Java 2 Software Development Kit) can
read and use to prepare documentation for your program automatically. There are subtle
issues to using javadoc-style comments properly in a program. We do not use jav-
adoc-style comments in-line in this chapter.

Line 4

public class Welcome1 {

begins a class definition for class Welcome1. Every program in Java consists of at least
one class definition that is defined by you—the programmer. These classes are known as
programmer-defined classes or user-defined classes. In Section 27.7, we discuss a program
that contains two programmer-defined classes. The class keyword introduces a class def-
inition in Java and is immediately followed by the class name (Welcome1 in this pro-
gram). By convention, all class names in Java begin with a capital first letter and have a
capital first letter for every word in the class name (e.g., SampleClassName). The name
of the class is called an identifier. An identifier is a series of characters consisting of letters,
digits, underscores (_) and dollar signs ($) that does not begin with a digit and does not
contain any spaces. Some valid identifiers are Welcome1, $value, _value,
m_inputField1 and button7. The name 7button is not a valid identifier because it
begins with a digit, and the name input field is not a valid identifier because it contains
a space. Java is case sensitive—uppercase and lowercase letters are different, so a1 and A1
are different identifiers.

Common Programming Error 27.2
Java is case sensitive. Not using the proper uppercase and lowercase letters for an identifier
is normally a syntax error. 27.2

Good Programming Practice 27.1
By convention, you should always begin a class name with a capital first letter. 27.1

Good Programming Practice 27.2
When reading a Java program, look for identifiers that start with capital first letters. These
normally represent Java classes. 27.2

774 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

Software Engineering Observation 27.1
Avoid using identifiers containing dollar signs ($) as these are often used by the compiler to
create indentifier names. 27.1

Most classes we define begin with the public keyword to indicate that the class is
potentially a reusable class. When you save a public class definition in a file, the class
name must be used as the base part of the file name. For our application, the file name is
Welcome1.java. All Java class definitions are stored in files ending with the “.java”
file name extension.

Common Programming Error 27.3
For a public class, it is an error if the file name is not identical to the class name in both
spelling and capitalization. Therefore, it is also an error for a file to contain two or more
public classes. 27.3

Common Programming Error 27.4
It is an error not to end a file name with the .java extension for a file containing a class
definition. The Java compiler will not be able to compile the class definition. 27.4

A left brace (at the end of line 4 in this program), {, begins the body of every class
definition. A corresponding right brace (at line 9 in this program), }, must end each class
definition. Notice that lines 5–8 are indented. This is a spacing convention used to make
programs more readable. We define each spacing convention as a Good Programming
Practice.

Common Programming Error 27.5
If braces do not occur in matching pairs, the compiler indicates an error. 27.5

Good Programming Practice 27.3
Whenever you type an opening left brace, {, in your program, immediately type the closing
right brace, }, then reposition the cursor between the braces to begin typing the body. This
helps prevent missing braces. 27.3

Good Programming Practice 27.4
Indent the entire body of each class definition one “level” of indentation between the left
brace, {, and the right brace, }, that define the body of the class. This emphasizes the struc-
ture of the class definition and helps make the class definition easier to read. 27.4

Good Programming Practice 27.5
Set a convention for the indent size you prefer and then uniformly apply that convention. The
Tab key may be used to create indents, but tab stops may vary between editors. We recom-
mend using either 1/4-inch tab stops or (preferably) three spaces to form a level of indent. 27.5

Line 5

public static void main(String args[])

is a part of every Java application. Java applications automatically begin executing at
main. The parentheses after main indicate that main is a method, or what a C or C++ pro-
grammer would call a function. Java class definitions normally contain one or more meth-

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 775

ods. For a Java application class, exactly one of those methods must be called main and
must be defined as shown on line 5; otherwise, the java interpreter will not execute the
application. Methods are able to perform tasks and return information when they complete
their tasks. The void keyword indicates that this method will perform a task (displaying a
line of text in this program), but will not return any information when it completes its task.
We will see that many methods return information when they complete their task. The key-
word static specifies that main is a class method. Class methods are special in that they
are available to be called as soon as the class is loaded into memory at execution time. We
will discuss this issue further at the end of this discussion when we show you how to exe-
cute the program.

The left brace, {, on line 6 begins the body of the method definition. A corresponding
right brace, }, must end the method definition’s body (line 8 of the program).

Line 7

System.out.println("Welcome to Java Programming!");

instructs the computer to print the string of characters contained between the double quo-
tation marks. Although the Java compiler normally ignores whites-pace characters used to
format a program, white-space characters in strings are not ignored by the compiler.

System.out is known as the standard output object. System.out allows Java
applications to display strings and other types of information in the command window from
which the Java application is executed. On Microsoft Windows 95/98, the command
window is the MS-DOS prompt. On Microsoft Windows NT/2000, the command window
is the Command Prompt. On UNIX, the command window is normally called a command
window, a command tool, a shell tool or a shell. On computers running an operating system
that does not have a command window (such as a Macintosh), the java interpreter nor-
mally displays a window containing the information displayed by the program.

Method System.out.println displays (or prints) a line of text in the command
window. When System.out.println completes its task, it automatically positions the
output cursor (the location where the next character will be displayed) to the beginning of the
next line in the command window (this is similar to you pressing the Enter key when typing
in a text editor—the cursor is repositioned at the beginning of the next line in your file).

The entire line, including System.out.println, its argument in the parentheses
(the string) and the semicolon (;), is called a statement. Every statement must end with a
semicolon (also known as the statement terminator). When this statement executes, it dis-
plays the message Welcome to Java Programming! in the command window.

Common Programming Error 27.6
Omitting the semicolon at the end of a statement is a syntax error. 27.6

Testing and Debugging Tip 27.1
When the compiler reports a syntax error, the error may not be on the line indicated by the
error messages. First, check the line where the error was reported. If that line does not con-
tain syntax errors, check the preceding several lines in the program. 27.1

We are now ready to compile and execute our program. You can copy the
Welcome1.java file from the CD that accompanies this book to your hard drive or you
can simply input the program into a text editor and save it as Welcome1.java.

776 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

Testing and Debugging Tip 27.2
Some text editors automatically add file name extensions such as .txt to the end of a file
name. Be sure that the name of the file ends with .java after you save it. 27.2

To compile the program, we open a command window, change to the directory where
the program is stored and type

javac Welcome1.java

The javac command above translates the Java source code stored in Welcome1.java
into Java bytecodes. If the program contains no syntax errors, the preceding command cre-
ates a new file called Welcome1.class containing the Java bytecodes that represent our
application. These bytecodes will be interpreted by the java interpreter when we tell it to
execute the program by typing the command

java Welcome1

which launches the java interpreter. The interpreter automatically looks for a file ending
with a “.class” extension (in this case, Welcome1.class) in the current directory.
Note that the “.class” file name extension is omitted from the preceding command; oth-
erwise the interpreter will not execute the program. After the preceding command loads
Welcome.class into memory, the interpreter calls method main to begin program ex-
ecution. The only methods that are available to be called at the time the class is loaded are
the static methods of the class. To start the program’s execution, the interpreter must be
able to call method main. This is the reason that main was declared static on line 5 of
the program. Next, the statement at line 7 of main displays “Welcome to Java Pro-
gramming!” Figure 27.6 shows the execution of the application in a Microsoft Windows
2000 Command Prompt window.

27.3.2 Using a Dialog Box from a Command-Line Application
Although the program of Fig. 27.5 displays output in the command window, most Java ap-
plications that display output use windows or dialog boxes to display output. For example,
World Wide Web browsers such as Netscape Communicator or Microsoft Internet Explorer
display Web pages in their own windows. Email programs typically allow you to type mes-
sages in a window provided by the email program or read messages you receive in a win-
dow provided by the email program.

Fig. 27.6 Executing the Welcome1 application in a Microsoft Windows 2000
Command Prompt.

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 777

Dialog boxes are windows that typically are used to display important messages to the
user of an application. Java 2 already includes class JOptionPane that allows you to
easily display a dialog box containing information. The program of Fig. 27.7 is a com-
mand-line application, which displays a similar string to the one shown in Fig. 27.5 in a
predefined dialog box called a message dialog. Notice that this new version of the program
also makes use of the C-style “\n” escape sequence to insert newline characters into the
string.

One of the great strengths of Java is its rich set of predefined classes that programmers
can reuse rather than “reinventing the wheel.” We use a variety of these classes in this book.
Java’s many predefined classes are grouped into categories of related classes called pack-
ages. The packages are referred to collectively as the Java class library or the Java appli-
cations programming interface (Java API). Class JOptionPane is defined for us in a
package called javax.swing.

Line 3

import javax.swing.JOptionPane;

is an import statement. The compiler uses import statements to identify and load class-
es required to compile a Java program. When you use classes from the Java API, the com-
piler attempts to ensure that you use them correctly. The import statements help the
compiler locate the classes you intend to use. Each piece of the package name is a directory
(or folder) on disk. All the packages in the Java API are stored in the directory java or
javax that contain many subdirectories including swing (a subdirectory of javax).

1 // Fig. 27.7: Welcome2.java
2 // Printing multiple lines in a dialog box
3 import javax.swing.JOptionPane; // import class JOptionPane
4
5 public class Welcome2 {
6 public static void main(String args[])
7 {
8 JOptionPane.showMessageDialog(
9 null, "Welcome\nto\nJava\nProgramming!");

10
11 System.exit(0); // terminate the program
12 }
13 }

Fig. 27.7 Displaying multiple lines in a dialog box .

778 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

The preceding line tells the compiler to load the JOptionPane class from the
javax.swing package. This package contains many classes that help Java programmers
define graphical user interfaces (GUIs) for their application. GUI components facilitate
data entry by the user of your program, and formatting or presenting data outputs to the
user. For example, Fig. 27.8 contains a Microsoft Internet Explorer browser window. In the
window, there is a bar containing menus (File, Edit, View, etc.). Below the menu bar there
is a set of buttons that each have a defined task in Internet Explorer. Below the buttons there
is a text field in which the user can type the name of the World Wide Web site to visit. To
the left of the text field is a label that indicates the purpose of the text field. The menus,
buttons, text fields and labels are part of Internet Explorer’s GUI. They enable you to
interact with the Web browser program. Java contains classes that implement the GUI com-
ponents described here and many others.

In main, lines 8 and 9

JOptionPane.showMessageDialog(
null, "Welcome\nto\nJava\nProgramming!");

Fig. 27.8 A sample Internet Explorer window with GUI components.

menu menu barbuttonlabel text field

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 779

indicate a call to method showMessageDialog of class JOptionPane. The method
requires two arguments. When a method requires multiple arguments, the arguments are
separated with commas (,). Until we discuss JOptionPane in a windowed application
(rather than a command-line application), the first argument will be the keyword null.
The second argument is the string to display.

Method JOptionPane.showMessageDialog is a special method of the class
JOptionPane called a static method. Such methods are always called using their
class name followed by a dot operator (.) and the method name. Remember that static
methods are special in that they are available to be called as soon as the class is loaded at
execution time. When a program uses multiple classes, the Java interpreter is responsible
for loading each of those classes.

Executing the statement on lines 8 and 9 displays the dialog box in Fig. 27.9. The title
bar of the dialog contains the string Message to indicate that the dialog is presenting a mes-
sage to the user. The dialog box automatically includes an OK button that allows the user to
dismiss (hide) the dialog by pressing the button. This is accomplished by positioning the
mouse cursor (also called the mouse pointer) over the OK button and clicking the mouse.

Note that Java allows large statements to be split over many lines. However, you
cannot split a statement in the middle of an identifier or in the middle of a string.

Common Programming Error 27.7
Splitting a statement in the middle of an identifier or a string is a syntax error. 27.7

Line 11

System.exit(0); // terminate the program

uses static method exit of class System to terminate the application. This line is re-
quired in any application that displays a graphical user interface to terminate the applica-
tion. Notice once again the syntax used to call the method—the class name (System), a
dot (.) and the method name (exit). Remember that identifiers starting with capital first
letters normally represent class names. So, you can assume that System is a class. The ar-
gument 0 to method exit indicates that the application terminated successfully (a non-
zero value normally indicates that an error occurred). This value is passed to the command
window that executed the program. This is useful if the program is executed from a batch
file (on Windows 95/98/NT systems) or a shell script (on UNIX systems). Batch files and
shell scripts are typically used to execute several programs in sequence such that when the
first program ends, the next program begins execution automatically. For more information
on batch files or shell scripts, see your operating system’s documentation.

Fig. 27.9 Dialog box produced by the program of Fig. 27.7.

The OK button
allows the user
to dismiss the
dialog box.

The dialog box is
automatically sized
to accommodate
the string.

Title bar

Mouse cursor

780 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

Class System is part of the package java.lang. Notice that class System is not
imported with an import statement at the beginning of the program. Package
java.lang is imported automatically in every Java program.

Common Programming Error 27.8
Forgetting to call System.exit in an application that displays a graphical user interface
prevents the program from terminating properly. This normally results in the command win-
dow preventing you from typing any other commands. 27.8

27.3.3 Another Java Application: Adding Integers
Our next application inputs two integers (whole numbers) typed by a user at the keyboard,
computes the sum of these values and displays the result. As the user types each integer and
presses the Enter key, the integer is read into the program and added to the total.

This program uses another predefined dialog box from class JOptionPane called an
input dialog that allows the user to input a value for use in the program. The program also
uses a message dialog to display the results of the addition. Figure 27.10 shows the appli-
cation and sample screen captures.

Line 4

import javax.swing.JOptionPane; // import class JOptionPane

specifies to the compiler where to locate class JOptionPane for use in this application.

1 // Fig. 27.10: Addition.java
2 // An addition program
3
4 import javax.swing.JOptionPane; // import class JOptionPane
5
6 public class Addition {
7 public static void main(String args[])
8 {
9 String firstNumber, // first string entered by user

10 secondNumber; // second string entered by user
11 int number1, // first number to add
12 number2, // second number to add
13 sum; // sum of number1 and number2
14
15 // read in first number from user as a string
16 firstNumber =
17 JOptionPane.showInputDialog("Enter first integer");
18
19 // read in second number from user as a string
20 secondNumber =
21 JOptionPane.showInputDialog("Enter second integer");
22
23 // convert numbers from type String to type int
24 number1 = Integer.parseInt(firstNumber);
25 number2 = Integer.parseInt(secondNumber);
26

Fig. 27.10 An addition program “in action" (part 1 of 2).

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 781

As stated earlier, every Java program consists of at least one class definition. Line 6

public class Addition {

begins the definitions of class Addition. The file name for this public class must be
Addition.java. Remember that all class definitions start with an opening left brace
(end of line 6), {, and end with a closing right brace, } (line 37).

Every application begins execution with method main (line 7). The left brace (line 8)
marks the beginning of main's body and the corresponding right brace (line 36) marks the
end of main.

Lines 9 and 10

String firstNumber, // first string entered by user
 secondNumber; // second string entered by user

are a declaration. The words firstNumber and secondNumber are the names of vari-
ables. All variables must be declared with a name and a data type before they can be used
in a program. This declaration specifies that the variables firstNumber and second-
Number are data of type String (from package java.lang), which means that these
variables will hold strings. A variable name can be any valid identifier. Declarations end
with a semicolon (;) and can be split over several lines with each variable in the declaration
separated by a comma (i.e., a comma-separated list of variable names). Several variables
of the same type may be declared in one declaration or in multiple declarations. We could
have written two declarations, one for each variable, but the preceding declaration is more
concise. Notice the single-line comments at the end of each line. This is a common syntax
used by programmers to indicate the purpose of each variable in the program.

27 // add the numbers
28 sum = number1 + number2;
29
30 // display the results
31 JOptionPane.showMessageDialog(
32 null, "The sum is " + sum, "Results",
33 JOptionPane.PLAIN_MESSAGE);
34
35 System.exit(0); // terminate the program
36 }
37 }

Fig. 27.10 An addition program “in action" (part 2 of 2).

782 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

Good Programming Practice 27.6
Choosing meaningful variable names helps a program to be “self-documenting” (i.e., it be-
comes easier to understand a program simply by reading it rather than having to read man-
uals or use excessive comments). 27.6

Good Programming Practice 27.7
By convention, variable name identifiers begin with a lowercase first letter. As with class
names every word in the name after the first word should begin with a capital first letter. For
example, identifier firstNumber has a capital N in its second word Number. 27.7

Good Programming Practice 27.8
Some programmers prefer to declare each variable on a separate line. This format allows for
easy insertion of a descriptive comment next to each declaration. 27.8

Lines 11–13

int number1, // first number to add
 number2, // second number to add
 sum; // sum of number1 and number2

declare that variables number1, number2 and sum are data of type int. As an important
aside, there are actually two types of variables in Java—primitive data type variables (nor-
mally called variables) and reference variables (normally called references). The identifi-
ers firstNumber and secondNumber are actually references—names that are used to
refer to objects in the program. Such references actually contain the location in the com-
puter’s memory of an object such as a String in this program.

Lines 15–17

// read in first number from user as a string
firstNumber =

JOptionPane.showInputDialog("Enter first integer");

read from the user a String representing the first of the two integers that will be added.
Method JOptionPane.showInputDialog displays the input dialog in Fig. 27.11.
The argument to showInputDialog tells the user what to do in the text field. This mes-
sage is called a prompt because it directs the user to take a specific action. The user types
characters in the text field, then clicks the OK button to return the string to the program.
[Note: Unfortunately, Java does not provide a simple form of input that is analogous to dis-
playing output with System.out.println. For this reason, we normally receive input
from a user through a GUI component such as the input dialog in this program].

Fig. 27.11 Input dialog displayed to input a value from the user of Fig. 27.10.

When the user clicks
OK, the 45 typed by
the user is returned to
the program as a
String. The program
must convert the
String to a number.

This is the text field in
which the user types
the value.

This is the prompt to the user.

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 783

Technically, the user can type anything in the text field of the input. For this program,
if the user either types a non-integer value or clicks the Cancel button, a run-time logic
error will occur.

The result of the call to JOptionPane.showInputDialog (a String con-
taining the characters typed by the user) is given to variable firstNumber with the
assignment operator =. The statement is read as, “firstNumber gets the value of JOp-
tionPane.showInputDialog("Enter first integer").” The = operator is
a binary operator because it has two operands—firstNumber and the result of the
expression JOptionPane.showInputDialog("Enter first integer").
This whole statement is called an assignment statement because it assigns a value to a vari-
able. The expression to the right side of the assignment operator = is always evaluated first.

Lines 19–21

// read in second number from user as a string
secondNumber =
 JOptionPane.showInputDialog("Enter second integer");

displays an input dialog in which the user types a String representing the second of the
two integers that will be added.

Lines 23–25

// convert numbers from type String to type int
number1 = Integer.parseInt(firstNumber);
number2 = Integer.parseInt(secondNumber);

convert the two strings input by the user to int values that can be used in a calculation.
Method Integer.parseInt (a static method of class Integer) converts its
String argument to an integer. Class Integer is part of the package java.lang. The
integer returned by Integer.parseInt in line 24 is assigned to variable number1.
Any subsequent references to number1 in the program use this same integer value. The
integer returned by Integer.parseInt in line 25 is assigned to variable number2.
Any subsequent references to number2 in the program use this same integer value.

The assignment statement at line 28

sum = number1 + number2;

calculates the sum of the variables number1 and number2, and assigns the result to vari-
able sum using the assignment operator =. The statement is read as, “sum gets the value of
number1 + number2.” Most calculations are performed in assignment statements.

Good Programming Practice 27.9
Place spaces on either side of a binary operator. This makes the operator stand out and
makes the program more readable. 27.9

After performing the calculation, lines 31–33

JOptionPane.showMessageDialog(
null, "The sum is " + sum, "Results",

 JOptionPane.PLAIN_MESSAGE);

use another version of method JOptionPane.showMessageDialog to display the
result of the addition. The expression

784 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

"The sum is " + sum

from the preceding statement uses the operator + to “add” a string (the literal "The sum
is ") and sum (the int variable containing the result of the addition on line 28). Java has
a version of the + operator for string concatenation that enables a string and a value of an-
other data type (including another string) to be concatenated—the result of this operation
is a new string. If we assume sum contains the value 117, the expression evaluates as fol-
lows: Java determines that the two operands of the + operator (the string "The sum is "
and the integer sum) are different types and one of them is a string. Next, Java converts
sum to a string and concatenates it with "The sum is ", which results in the string "The
sum is 117". This string is displayed in the dialog box. Note that the automatic conver-
sion of integer sum only occurs because it is concatenated with the string literal "The sum
is ". Also note that the space between is and 117 is part of the string "The sum is ".

Common Programming Error 27.9
Confusing the + operator used for string concatenation with the + operator used for addition
can lead to strange results. For example, assuming integer variable y has the value 5, the
expression "y + 2 = " + y + 2 results in the string "y + 2 = 52", not "y + 2 = 7", because
first the value of y is concatenated with the string "y + 2 = ", then the value 2 is concate-
nated with the new larger string "y + 2 = 5". The expression "y + 2 = " + (y + 2) pro-
duces the desired result. 27.9

The version of method showMessageDialog used in Fig. 27.10 is different from the
one discussed in Fig. 27.7 in that it requires four arguments. The message dialog box in
Fig. 27.12 illustrates two of the four arguments. As with the first version, the first argument
will be null until we discuss using class JOptionPane in a windowed application. The
second argument is the message to display. The third argument is the string to display in
the title bar of the dialog. The fourth argument (JOptionPane.PLAIN_MESSAGE) is a
value indicating the type of message dialog to display—this ‘type of message dialog does
not display an icon to the left of the message.

The message dialog types are shown in Fig. 27.13. All message dialog types except
PLAIN_MESSAGE dialogs display an icon to the user indicating the type of message.

27.4 Arrays
This section serves as an introduction to the important topic of data structures. Arrays are
data structures consisting of related data items of the same type. Arrays are “static” entities
in that they remain the same size once they are created, although an array reference may be
reassigned to a new array of a different size. Section 27.5 discusses class Vector, which
is an array-like class whose objects can grow and shrink in response to a Java program’s
changing storage requirements.

Fig. 27.12 Message dialog displayed by the program of Fig. 27.10

The user clicks OK to
dismiss the dialog.

Argument 2: The
message to display

Argument 3: The title
bar string

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 785

An array is a group of contiguous memory locations that all have the same name and
the same type. To refer to a particular location or element in the array, we specify the name
of the array and the position number of the particular element in the array.

Consider a 12-element integer array called c. Any one of these elements may be
referred to by giving the name of the array followed by the position number of the particular
element in square brackets ([]). The first element in every array is the zeroth element.
Thus, the first element of array c is referred to as c[0], the second element of array c is
referred to as c[1], the seventh element of array c is referred to as c[6], and, in gen-
eral, the ith element of array c is referred to as c[i - 1]. The array c’s 12 elements are
referred to as c[0], c[1], c[2], …, c[11]. Array names follow the same conven-
tions as other variable names.

The position number in square brackets is more formally called a subscript (or an
index). A subscript must be an integer or an integer expression. If a program uses an expres-
sion as a subscript, the expression is evaluated first to determine the subscript. For example,
if we assume that variable a is equal to 5 and that variable b is equal to 6, then the statement

c[a + b] += 2;

adds 2 to array element c[11]. Note that a subscripted array name is an lvalue—it can
be used on the left side of an assignment to place a new value into an array element. The
preceding statement is equivalent to

c[11] = c[11] + 2;

Java provides several assignment operators for abbreviating assignment expressions. For
example, the statement

number = number + 3;

can be abbreviated with the addition assignment operator += as

Message dialog type Icon Description

JOptionPane.ERROR_MESSAGE Displays a dialog that indicates an error
to the application user.

JOptionPane.INFORMATION_MESSAGE Displays a dialog with an informational
message to the application user—the
user can simply dismiss the dialog.

JOptionPane.WARNING_MESSAGE Displays a dialog that warns the appli-
cation user of a potential problem.

JOptionPane.QUESTION_MESSAGE Displays a dialog that poses a question
to the application user. This normally
requires a response such as clicking a
Yes or No button.

JOptionPane.PLAIN_MESSAGE no icon Displays a dialog that simply contains a
message with no icon.

Fig. 27.13 JOptionPane constants for message dialogs.

786 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

number += 3;

The += operator adds the value of the expression on the right of the operator to the value of
the variable on the left of the operator and stores the result in the variable on the left of the
operator. Any arithmetic statement of the form

variable = variable operator expression;

where operator is one of the binary operators +, -, *, / or %, can be written in the form

variable operator= expression;

Thus the assignment number += 3 adds 3 to number.
Every array in Java knows its own length. The length of the array is determined by the

following expression:

c.length

Common Programming Error 27.10
It is important to note the difference between the “seventh element of the array” and “array
element seven.” Because array subscripts begin at 0, the “seventh element of the array” has
a subscript of 6, while “array element seven” has a subscript of 7 and is actually the eighth
element of the array. This confusion is a source of “off-by-one” errors. 27.10

The brackets used to enclose the subscript of an array are an operator in Java.
Brackets have the same level of precedence as parentheses. The operator precedence
chart for Java in Appendix D shows the precedence and associativity of the Java opera-
tors. They are shown top to bottom in decreasing order of precedence with their associa-
tivity and type.

Arrays occupy space in memory. The programmer specifies the type of the elements and
uses operator new to dynamically allocate the number of elements required by each array.
Arrays are allocated with new because arrays are considered to be objects and all objects must
be created with new. To allocate 12 elements for integer array c, the declaration

int c[] = new int[12];

is used. The preceding statement can also be performed in two steps as follows:

int c[]; // declares the array
c = new int[12]; // allocates the array

When arrays are allocated, the elements are automatically initialized to zero for the numeric
primitive-data-type variables, to false for boolean variables or to null for references
(any nonprimitive type).

Common Programming Error 27.11
Unlike C or C++ the number of elements in the array is never specified in the square brack-
ets after the array name in a declaration. The declaration int c[12]; causes a syntax
error. 27.11

Memory may be reserved for several arrays with a single declaration. The following
String declaration reserves 100 elements for array b and 27 elements for array x:

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 787

String b[] = new String[100],
 x[] = new String[27];

When declaring an array, the type of the array and the square brackets can be combined
at the beginning of the declaration to indicate that all identifiers in the declaration represent
arrays, as in

double[] array1, array2;

which declares both array1 and array2 as arrays of double values. As shown previ-
ously, the declaration and initialization of the array can be combined in the declaration. The
following declaration reserves 10 elements for array1 and 20 elements for array2:

double[] array1 = new double[10],
 array2 = new double[20];

Arrays may be declared to contain any data type. It is important to remember that in an
array of primitive data type elements, every element of the array contains one value of the
declared data type of the array. For example, every element of an int array is an int
value. However, in an array of a nonprimitive type, every element of the array is a reference
to an object of the data type of the array. For example, every element of a String array
is a reference to a String that has the value null by default.

The application of Fig. 27.14 uses the new operator to dynamically allocate an array
of 10 elements which are initially zero, then it prints the array in tabular format.

1 // Fig. 27.14: InitArray.java
2 // initializing an array
3 import javax.swing.*;
4
5 public class InitArray {
6 public static void main(String args[])
7 {
8 String output = "";
9 int n[]; // declare reference to an array

10
11 n = new int[10]; // dynamically allocate array
12
13 output += "Subscript\tValue\n";
14
15 for (int i = 0; i < n.length; i++)
16 output += i + "\t" + n[i] + "\n";
17
18 JTextArea outputArea = new JTextArea(11, 10);
19 outputArea.setText(output);
20
21 JOptionPane.showMessageDialog(null, outputArea,
22 "Initializing an Array of int Values",
23 JOptionPane.INFORMATION_MESSAGE);
24
25 System.exit(0);
26 }
27 }

Fig. 27.14 Initializing the elements of an array to zeros (part 1 of 2).

788 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

Line 9 declares n as a reference capable of referring to array of integers. Line 11 allo-
cates the 10 elements of the array with new and initializes the reference. Line 13 appends
to the String output the headings for the columns of output displayed by the program.

Lines 15 and 16

for (int i = 0; i < n.length; i++)
 output += i + "\t" + n[i] + "\n";

uses a for repetition structure to build the output string that will be displayed in a new
GUI component called a JTextArea, which we will use as the “message” in a message
dialog. The for repetition structure is frequently used to perform counter-controlled rep-
etition. When the for structure begins executing, the control variable i is initialized to 0.
Control variable i is known only in the for structure’s body because it is declared inside
the for. Next, the loop-continuation condition i < n.length is checked—while this
condition remains true, the loop continues executing. In this example, if the value of i is
less than n.length (i.e., 10), the loop performs the body statement

output += i + "\t" + n[i] + "\n";

Variable i is then incremented in the expression i++, and the loop continues its execution
with the loop-continuation test. This process continues until the control variable i is incre-
mented to n.length (10)—this causes the loop-continuation test to fail and repetition ter-
minates. The program continues by performing the first statement after the for structure
(in this case, line 18).

Note the use of zero-based counting (remember, array subscripts start at 0) so the loop
can access every element of the array. Also, note the expression n.length in the for struc-
ture condition to determine the length of the array. In this example, the length of the array is
10, so the loop continues executing as long as the value of control variable i is less than 10.
For a 10-element array, the subscript values are 0 through 9, so using the less than operator <
guarantees that the loop does not attempt to access an element beyond the end of the array.

Line 18

JTextArea outputArea = new JTextArea();

Fig. 27.14 Initializing the elements of an array to zeros (part 2 of 2).

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 789

declares JTextArea reference outputArea and initializes it with a new object of class
JTextArea (from package javax.swing). A JTextArea is a GUI component that
is capable of displaying many rows and columns of text. One of the many methods for plac-
ing text in a JTextArea is setText. Line 19

outputArea.setText(output);

uses JTextArea method setText to specify the String the JTextArea will dis-
play. Initially, a JTextArea contains an empty String (a String with no characters
in it). The preceding statement specifies the String to which output refers as the
String to display. Note in the message dialog displayed by this program that each \t
character in output tabs to the next column in the JTextArea and each \n in output
creates a new line of text in the JTextArea.

The JOptionPane.showMessageDialog method call at lines 21–23 uses the
reference outputArea as its second argument (i.e., the message to be displayed). Method
showMessageDialog is flexible in that it can be used to display a String or a GUI
component such as a JTextArea. When the JTextArea is displayed on the message
dialog, the current text in the JTextArea automatically appears in the white area that rep-
resents the JTextArea.

The elements of an array can be allocated and initialized in the array declaration by fol-
lowing the declaration with an equal sign and a comma-separated initializer list enclosed
in braces ({ and }). In this case, the array size is determined by the number of elements in
the initializer list. For example, the statement

int n[] = { 10, 20, 30, 40, 50 };

creates a five-element array with subscripts of 0, 1, 2, 3 and 4. Note that the preceding dec-
laration does not require the new operator to create the array object—this is provided au-
tomatically by the compiler when it encounters an array declaration that includes an
initializer list.

The application of Fig. 27.15 initializes an integer array with 10 values (line 12) and
displays the array in tabular format in a JTextArea on a message dialog.

1 // Fig. 27.15: InitArray2.java
2 // initializing an array with a declaration
3 import javax.swing.*;
4
5 public class InitArray2 {
6 public static void main(String args[])
7 {
8 String output = "";
9

10 // Initializer list specifies number of elements and
11 // value for each element.
12 int n[] = { 32, 27, 64, 18, 95, 14, 90, 70, 60, 37 };
13
14 output += "Subscript\tValue\n";
15

Fig. 27.15 Initializing the elements of an array with a declaration (part 1 of 2).

790 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

Testing and Debugging Tip 27.3
When a Java program is executed, the Java interpreter checks array element subscripts to be
sure they are valid (i.e., all subscripts must be greater than or equal to 0 and less than the
length of the array). If there is an invalid subscript, Java generates an exception. 27.3

Testing and Debugging Tip 27.4
Exceptions are used to indicate that an error occurred in a program. They enable the pro-
grammer to recover from an error and continue execution of the program instead of abnor-
mally terminating the program. When an invalid array reference is made, an
ArrayIndexOutOfBoundsException is generated. We discuss exception handling in
the example of Section 27.11. 27.4

Common Programming Error 27.12
Referring to an element outside the array bounds is a logic error. 27.12

Testing and Debugging Tip 27.5
When looping through an array, the array subscript should never go below 0 and should al-
ways be less than the total number of elements in the array (one less than the size of the ar-
ray). Make sure the loop terminating condition prevents accessing elements outside this
range. 27.5

16 for (int i = 0; i < n.length; i++)
17 output += i + "\t" + n[i] + "\n";
18
19 JTextArea outputArea = new JTextArea();
20 outputArea.setText(output);
21
22 JOptionPane.showMessageDialog(null, outputArea,
23 "Initializing an Array with a Declaration",
24 JOptionPane.INFORMATION_MESSAGE);
25
26 System.exit(0);
27 }
28 }

Fig. 27.15 Initializing the elements of an array with a declaration (part 2 of 2).

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 791

Testing and Debugging Tip 27.6
Programs should validate the correctness of all input values to prevent erroneous infor-
mation from affecting a program’s calculations. 27.6

27.5 Class Vector
In the previous section we discussed Java’s array data structure. Arrays work well when
you know in advance exactly the number of elements your program is required to store. For
cases in which your program requires more flexibility, Java provides class Vector (from
package java.util)—a dynamically resizable array-like data structure. Figure 27.16
demonstrates class Vector.

Line 9 creates an object of type Vector. Lines 10 and 11 create references of type
Object and String, respectively. Each refers to a String object. Class Object is the
fundamental data type on which all other classes in Java are based. A reference of type
Object is special in that it can refer to any type of object in Java. We discuss class
Object more in Section 27.7.

1 // Fig. 27.16: VectorDemo.java
2 // This program demonstrates class Vector.
3 import javax.swing.*;
4 import java.util.*;
5
6 public class VectorDemo {
7 public static void main(String args[])
8 {
9 Vector v = new Vector();

10 Object o = "hello!";
11 String s = "good bye";
12
13 v.addElement(o);
14 v.addElement(s);
15 v.addElement(new Boolean(true));
16 v.addElement(new Character('Z'));
17 v.addElement(new Integer(7));
18 v.addElement(new Long(10000000));
19 v.addElement(new Float(2.5f));
20 v.addElement(new Double(3.333));
21
22 System.out.println("Vector v contains:");
23
24 for (int j = 0; j < v.size(); j++)
25 System.out.print(v.elementAt(j));
26 }
27 }

Welcome to Java Programming!

Fig. 27.16 Class Vector.

792 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

Software Engineering Observation 27.2
Instances of the primitive types such as int and double are not considered to be objects.
However, the java.lang package provides classes (such as Integer and Double) that
can be used to create objects which contain values of the primitive data types. 27.2

Lines 13–20 add various objects to Vector v using the method addElement. Each
element in a Vector is actually a reference of type Object. The for loop (lines 24 and
25) iterates over the elements in the Vector. Method size (line 26) returns the size of
the Vector. The program outputs the string value of each object on the command line with
System.out.print. The primary difference between print and println is that
println outputs a newline character automatically and print does not. Note that every
object in Java has a string representation. Methods print and println can output any
object using that object’s own string representation.

27.6 Graphical User Interfaces: A Windowed Application with
JFrames and Event Handling
The application of Section 27.17 is our first windowed application. We use class JFrame
from package javax.swing to create our own type of window in which we will place
GUI components with which the user can interact to drive the program.

This program also introduces class StringTokenizer (package java.util).
When you read a sentence, your mind breaks the sentence into individual words, or tokens,
each of which conveys meaning to you. Compilers also perform tokenization. They break
up statements into individual pieces like keywords, identifiers, operators and other ele-
ments of a programming language. Class StringTokenizer breaks a string into its
component tokens. Tokens are separated from one another by delimiters, typically white-
space characters such as blank, tab, newline and carriage return. Other characters may also
be used as delimiters to separate tokens.

1 // Fig. 27.17: TokenTest.java
2 // Testing the StringTokenizer class of the java.util package.
3 import javax.swing.*;
4 import java.util.*;
5 import java.awt.*;
6 import java.awt.event.*;
7
8 public class TokenTest extends JFrame
9 implements ActionListener {

10 private JLabel prompt;
11 private JTextField input;
12 private JTextArea output;
13
14 public TokenTest()
15 {
16 super("Testing Class StringTokenizer");
17
18 Container c = getContentPane();
19 c.setLayout(new FlowLayout());

Fig. 27.17 A JFrame-based windowed application with event handling (part 1 of 2).

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 793

20
21 prompt = new JLabel("Enter a sentence and press Enter");
22 c.add(prompt);
23
24 input = new JTextField(25);
25 c.add(input);
26 input.addActionListener(this);
27
28 output = new JTextArea(10, 25);
29 output.setEditable(false);
30 c.add(new JScrollPane(output));
31
32 setSize(300, 260); // set the window size
33 show(); // show the window
34 }
35
36 public void actionPerformed(ActionEvent e)
37 {
38 String stringToTokenize = e.getActionCommand();
39 StringTokenizer tokens =
40 new StringTokenizer(stringToTokenize);
41
42 output.setText("Number of elements: " +
43 tokens.countTokens() + "\nThe tokens are:\n");
44
45 while (tokens.hasMoreTokens())
46 output.append(tokens.nextToken() + "\n");
47 }
48
49 // Method main to begin program execution by creating an
50 // object of class TokenTest.
51 public static void main(String args[])
52 {
53 TokenTest app = new TokenTest();
54
55 app.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
56 }
57 }

Fig. 27.17 A JFrame-based windowed application with event handling (part 2 of 2).

794 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

Until now, all user interactions with applications have been through either an input
dialog (in which the user could type an input value for the program) or a message dialog
(in which a message was displayed to the user and the user could click OK to dismiss the
dialog). Although these are valid ways to receive input from a user and display output in a
Java program, they are fairly limited in their capabilities—an input dialog can obtain only
one value at a time from the user and a message dialog can display only one message. It is
much more common to receive multiple inputs from the user at once (such as the user
entering name and address information) or display many pieces of data at once. To begin
our introduction to more elaborate user interfaces, this program illustrates two new graph-
ical user interface concepts—attaching several GUI components to an application window
and graphical user interface event handling.

Lines 3 through 6

import javax.swing.*;
import java.util.*;
import java.awt.*;
import java.awt.event.*;

specify to the compiler where to locate the classes used in this application. The first im-
port statement specifies that the program uses classes from package javax.swing
(specifically, classes JFrame, JLabel, JScrollPane, JTextField and JText-
Area). The second import statement specifies that the program uses classes from pack-
age java.util (specifically, class StringTokenizer). The third import specifies
that the program uses classes from package java.awt (specifically, classes Container
and FlowLayout). The last import specifies that the program uses classes from pack-
age java.awt.event. This package contains many data types that enable a program to
process a user’s interactions with a program’s GUI. In this program, we use the Action-
Listener and ActionEvent data types from package java.awt.event.

Every Java program is based on at least one class definition that extends and enhances
an existing class definition via inheritance. Lines 8 and 9

public class TokenTest extends JFrame
implements ActionListener {

indicates that class TokenTest inherits from (extends) class JFrame and imple-
ments ActionListener. A class can inherit existing attributes and behaviors (data
and methods) from another class specified to the right of keyword extends in the class
definition. By extending class JFrame, we create class TokenTest as a new type of win-
dow. In the extends relationship, JFrame is known as the superclass (or base class) and
TokenTest is known as the subclass (or derived class). Using inheritance here results in
a new class definition that has the attributes (data) and behaviors (methods) of the JFrame
class as well as the new features we are adding in our TokenTest class definition (spe-
cifically, the ability break a sentence input by the user into tokens).

A key benefit of extending class JFrame is that someone else has already defined
“what it means to be a window.” Programmers do not need to define all these capabilities
on their own (again programmers do not need to “reinvent the wheel”). In fact, windows
require hundreds of different methods to be defined. In our programs to this point, we have
defined one method in every program. If we had to define hundreds of methods just to per-

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 795

form a simple task, we would probably never create a window! By simply using extends
to inherit from class JFrame, all the methods of JFrame are now part of our
TokenTest class.

The inheritance mechanism is easy to use; the programmer does not need to know
every detail of class JFrame or any other class from which new classes are inherited. The
programmer needs to know only that class JFrame has already defined the capabilities
required to create the minimum window. To make the best use of any class, however, the
programmer should study all the capabilities of the class that is extended.

Good Programming Practice 27.10
Investigate the capabilities of any class in the Java API documentation carefully before in-
heriting a subclass from it. This helps ensure that the programmer does not unintentionally
redefine a capability that is already provided. 27.10

Classes are used as “templates” or “blueprints” to instantiate (or create) objects for use
in a program. An object (or instance) resides in the computer’s memory and contains infor-
mation used by the program. The term object normally implies that attributes (data) and
behaviors (methods) are associated with the object. The object’s methods use the attributes to
provide useful services to the client of the object (i.e., the code that calls the methods). We
create an object of class TokenTest to control this program from main (discussed later).

In addition to extending one class, a class can implement one or more interfaces. An
interface specifies one or more behaviors (i.e., methods) that you must define in your class
definition. The interface ActionListener specifies that this class must define a method
with the first line

public void actionPerformed(ActionEvent e)

This method’s task is to process a user’s interaction with the JTextField in this exam-
ple. When the user types a sentence and presses the Enter key, this method will be called
automatically in response to the user interaction. This process is called event handling. The
event is the user interaction (pressing the Enter key). The event handler is the action-
Performed method, which is called automatically in response to the event. We discuss
the details of this interaction and method actionPerformed shortly.

Lines 10–12

private JLabel prompt;
private JTextField input;
private JTextArea output;

declare references to the GUI components used in this application’s graphical user inter-
face. Reference prompt will refer to a JLabel object. A JLabel contains a string of
characters to display on the screen. Normally, a JLabel indicates the purpose of another
graphical user interface element on the screen. In the screen capture of Fig. 27.17, the
JLabel object appears at the top of the user interface as the prompt that tells the user what
to do. Reference input will refer to the JTextField in which the user will input a sen-
tence. JTextFields are used to get a single line of information from the user at the key-
board or to display information on the screen. In the screen capture of Fig. 27.17, the
JTextField object is the rectangle below the JLabel. Reference output will refer to
the JTextArea in which the results will be displayed.

796 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

Note that the three references declared in lines 10–12 are also instance variable decla-
rations—every instance (object) of class TokenTest contains its own copy of each
instance variable. An important benefit of instance variables is that their identifiers can be
used throughout the class definition (i.e., in all methods of the class). Until now, we
declared all variables in an application’s main method. Variables defined in the body of a
method are known as local variables and can only be used in the body of the method in
which they are defined. Another distinction between instance variables and local variables
is that instance variables are always assigned a default value by the compiler and local vari-
ables are not. The default value for these references is null (i.e., the GUI components do
not exist yet).

Lines 14–34 define the constructor method for class TokenTest. This method is
called automatically when an object (instance) of class TokenTest is created with oper-
ator new. Line 16

super("Testing Class StringTokenizer");

calls the constructor of class JFrame and passes it a string. This string becomes the text
that will be displayed in the window’s title bar when the TokenTest window is displayed
on the screen.

The TokenTest constructor also creates the GUI component objects and attaches
them to the user interface. Line 18

Container c = getContentPane();

declares Container reference c and assigns it the result of a call to method getCon-
tentPane. Method getContentPane returns a reference to the window’s content
pane—the object to which we must attach the GUI components so they appear properly in
the user interface.

Line 19

c.setLayout(new FlowLayout());

uses Container method setLayout to define the layout manager for the TokenTest
window’s user interface. Layout managers are provided to arrange GUI components on a
Container (package java.awt) for presentation purposes. The layout managers deter-
mine the position and size of every GUI component attached to the container. This enables
the programmer to concentrate on the basic “look and feel” and lets the layout managers pro-
cess most of the layout details. FlowLayout (package java.awt) is the most basic layout
manager. GUI components are placed on a Container from left to right in the order in
which they are attached to the Container with method add. When the edge of the contain-
er is reached, components are continued on the next line. The preceding statement creates a
new object of class FlowLayout and passes it immediately to method setLayout. Nor-
mally, the layout is set before any GUI components are added to a Container.

[Note: Each Container can have only one layout manager at a time (separate Con-
tainers in the same program can have different layout managers). Most Java programming
environments provide GUI design tools that help a programmer graphically design a GUI,
then automatically write Java code to create the GUI. Some of these GUI designers also allow
the programmer to use the layout managers. Section 27.9 discusses two additional layout
managers that allow more precise control over the layout of the GUI components.]

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 797

Line 21

prompt = new JLabel("Enter a sentence and press Enter");

create a new JLabel object, initialize it (i.e., call its constructor) with the string "Enter
a sentence and press Enter" and assign the object to reference prompt. This la-
bels the JTextField input in the user interface so the user can determine the purpose
of that text field. Line 22 attaches the JLabel to which prompt refers to the content pane
of the window with method add.

Line 24

input = new JTextField(25);

creates a new JTextField object, initializes it to be 25 characters wide and assigns the
object to reference input. This JTextField receive the input from the user of the pro-
gram. Line 25 attaches the JTextField to which input refers to the content pane of the
window. We revisit line 26 shortly.

Lines 28 through 30 create a JTextArea and add it to the content pane. The JText-
Area in this case has 10 rows and 25 columns of text. Line 29 specifies that the JText-
Area should be uneditable (i.e., the user cannot type in this text area). Line 30

c.add(new JScrollPane(output));

attaches the text area to a JScrollPane object, which is added to the user interface.
Class JScrollPane provides scrollbars that can be used to scroll through the text in a
text area. The scrollbars are not visible until the text in the text area is too wide or too tall
to fit entirely in the text area. At that point, the scrollbars are displayed automatically.

Lines 32 and 33 set the size of the window and display the window. If you do not call
methods setSize and show, the window will not be displayed on the screen.

Line 53

input.addActionListener(this);

specifies that this application should listen for events from the JTextField called in-
put. The this keyword enables an object of class TokenTest to refer to itself. When
the user interacts with the input text field an event is sent to the application. The event is
a message indicating that the user of the program pressed the Enter key in the text field.
This indicates to the application that an action was performed by the user on the JText-
Field and automatically calls method actionPerformed to process the user’s inter-
action.

This style of programming is known as event-driven programming—the user interacts
with a GUI component, the program is notified of the event and the program processes the
event. The user’s interaction with the GUI “drives” the program. The methods that are
called when an event occurs are also known as event handling methods. When a GUI event
occurs in a program, Java creates an object containing information about the event that
occurred and automatically calls an appropriate event handling method. Before any event
can be processed, each GUI component must know which object in the program defines the
event handling method that will be called when an event occurs. In line 25, JTextField
method addActionListener is used to tell input that the TokenTest application

798 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

(this) can listen for action events and defines method actionPerformed. This is
called registering the event handler with the GUI component (we also like to call it the start
listening line because the application is now listening for events from the text field). To
respond to an action event, we must define a class that implements ActionListener
(this requires that the class also define method actionPerformed) and we must register
the event handler with the GUI component.

Method actionPerformed (line 36–47) is one of several methods that process
interactions between the user and GUI components. The first line of the method

public void actionPerformed(ActionEvent e)

indicates that actionPerformed is a public method that returns nothing (void)
when it completes its task. Method actionPerformed receives one argument—an Ac-
tionEvent—when it is called automatically in response to an action performed on a GUI
component by the user. The ActionEvent argument contains information about the ac-
tion that occurred.

When the user types a sentence in a JTextField and presses the Enter key, the
actionPerformed method (line 36) is invoked. Line 38 uses the argument to
actionPerformed to obtain the string the user typed in the text field with method
getActionCommand. Lines 39 and 40 create a StringTokenizer object (tokens)
and pass its constructor the string obtained on line 38.

Lines 33 through 35

output.setText("Number of elements: " +
 tokens.countTokens() + "\nThe tokens are:\n");

use the JTextArea method setText to display the concatenated String specified as
its argument in the JTextArea. In the preceding statement, the expression

tokens.countTokens()

uses the StringTokenizer method countTokens to determine the number of tokens
in the String to be tokenized.

The while structure at lines 45 and 46

while (tokens.hasMoreTokens())
 output.append(tokens.nextToken() + "\n");

uses the condition tokens.hasMoreTokens() to determine if there are more tokens
in the String being tokenized. If so, the append method is invoked for the JTextArea
called output to append the next token to the String currently in the JTextArea. The
next token is obtained with a call to tokens.nextToken() that returns a String ob-
ject. The token is output followed by a newline character so subsequent tokens appear on
separate lines.

If you would like to change the delimiter String while tokenizing a String, you
may do so by specifying a new delimiter string in a nextToken call as follows:

tokens.nextToken(newDelimiterString);

This feature is not demonstrated in the program.

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 799

Method main (lines 51–55) launches the program’s execution by creating an instance
of class TokenTest. This object acts as the main application window. When line 53 exe-
cutes, it calls the constructor at line 14 to create the window and display it. Line 55 uses the
JFrame method setDefaultCloseOperation to specify that the program should
exit when the window is closed (i.e., the program should be terminated). You can close the
window by clicking its close box in the upper-right corner of the window.

27.7 Graphical User Interfaces: Event Handling with Inner
Classes
All the class definitions discussed to this point were defined one class per file. Java pro-
vides a facility called inner classes in which classes can be defined inside other classes.
Such classes can be complete class definitions or anonymous inner class definitions (class-
es without a name).

Our next example (Fig. 27.18) creates a user-defined type Time and uses it in a win-
dowed application that allows the user of the program to set the time by specifying values
individually for the hour, minute and second. As the time is modified through the GUI, the
current value of the time is displayed in a separate GUI component. After discussing class
Time, we demonstrate inner class definitions and discuss the application windowing class
called TimeTestWindow.

The application of Fig. 27.18 consists of classes Time and TimeTestWindow.
Class Time is defined in file Time.java (specified in the comment at line 1). Class
TimeTestWindow is defined in file TimeTestWindow.java (specified in the com-
ment at line 59). [Normally, each program in this book that contains more than one file
begins the file with a comment indicating the figure number and file name.] Although these
two classes are defined in separate files, we number the lines in the program consecutively
across both files for discussion purposes in the text. It is important to note that these classes
must be defined in separate files.

Common Programming Error 27.13
Defining more than one public class in the same file is a syntax error. 27.13

1 // Fig. 27.18: Time.java
2 // Time class definition
3 import java.text.DecimalFormat; // used for number formatting
4
5 // This class maintains the time in 24-hour format
6 public class Time extends Object {
7 private int hour; // 0 - 23
8 private int minute; // 0 - 59
9 private int second; // 0 - 59

10
11 // Time constructor initializes each instance variable
12 // to zero. Ensures that Time object starts in a
13 // consistent state.
14 public Time() { setTime(0, 0, 0); }
15

Fig. 27.18 GUI event handling with inner classes—Time.java (part 1 of 2).

800 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

16 // Set a new time value using universal time. Perform
17 // validity checks on the data. Set invalid values to zero.
18 public void setTime(int h, int m, int s)
19 {
20 setHour(h); // set the hour
21 setMinute(m); // set the minute
22 setSecond(s); // set the second
23 }
24
25 // set the hour
26 public void setHour(int h)
27 { hour = ((h >= 0 && h < 24) ? h : 0); }
28
29 // set the minute
30 public void setMinute(int m)
31 { minute = ((m >= 0 && m < 60) ? m : 0); }
32
33 // set the second
34 public void setSecond(int s)
35 { second = ((s >= 0 && s < 60) ? s : 0); }
36
37 // get the hour
38 public int getHour() { return hour; }
39
40 // get the minute
41 public int getMinute() { return minute; }
42
43 // get the second
44 public int getSecond() { return second; }
45
46 // Convert to String in standard-time format
47 public String toString()
48 {
49 DecimalFormat twoDigits = new DecimalFormat("00");
50
51 int h = getHour();
52
53 return ((h == 12 || h == 0) ? 12 : h % 12) + ":" +
54 twoDigits.format(getMinute()) + ":" +
55 twoDigits.format(getSecond()) +
56 (h < 12 ? " AM" : " PM");
57 }
58 }

59 // Fig. 27.18: TimeTestWindow.java
60 // Demonstrating the Time class set and get methods
61 import java.awt.*;
62 import java.awt.event.*;
63 import javax.swing.*;

Fig. 27.18 GUI event handling with inner classes—TimeTestWindow.java (part 1
of 4).

Fig. 27.18 GUI event handling with inner classes—Time.java (part 2 of 2).

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 801

64
65 public class TimeTestWindow extends JFrame {
66 private Time t;
67 private JLabel hourLabel, minuteLabel, secondLabel;
68 private JTextField hourField, minuteField,
69 secondField, display;
70
71 public TimeTestWindow()
72 {
73 super("Inner Class Demonstration");
74
75 t = new Time();
76
77 Container c = getContentPane();
78 c.setLayout(new FlowLayout());
79
80 hourLabel = new JLabel("Set Hour");
81 hourField = new JTextField(10);
82 hourField.addActionListener(
83 new ActionListener() { // anonymous inner class
84 public void actionPerformed(ActionEvent e)
85 {
86 t.setHour(
87 Integer.parseInt(e.getActionCommand()));
88 hourField.setText("");
89 displayTime();
90 }
91 }
92);
93 c.add(hourLabel);
94 c.add(hourField);
95
96 minuteLabel = new JLabel("Set minute");
97 minuteField = new JTextField(10);
98 minuteField.addActionListener(
99 new ActionListener() { // anonymous inner class
100 public void actionPerformed(ActionEvent e)
101 {
102 t.setMinute(
103 Integer.parseInt(e.getActionCommand()));
104 minuteField.setText("");
105 displayTime();
106 }
107 }
108);
109 c.add(minuteLabel);
110 c.add(minuteField);
111
112 secondLabel = new JLabel("Set Second");
113 secondField = new JTextField(10);

Fig. 27.18 GUI event handling with inner classes—TimeTestWindow.java (part 2
of 4).

802 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

114 secondField.addActionListener(
115 new ActionListener() { // anonymous inner class
116 public void actionPerformed(ActionEvent e)
117 {
118 t.setSecond(
119 Integer.parseInt(e.getActionCommand()));
120 secondField.setText("");
121 displayTime();
122 }
123 }
124);
125 c.add(secondLabel);
126 c.add(secondField);
127
128 display = new JTextField(30);
129 display.setEditable(false);
130 c.add(display);
131 }
132
133 public void displayTime()
134 {
135 display.setText("The time is: " + t);
136 }
137
138 public static void main(String args[])
139 {
140 TimeTestWindow window = new TimeTestWindow();
141
142 window.addWindowListener(
143 new WindowAdapter() {
144 public void windowClosing(WindowEvent e)
145 {
146 System.exit(0);
147 }
148 }
149);
150
151 window.setSize(400, 120);
152 window.show();
153 }
154 }

Fig. 27.18 GUI event handling with inner classes—TimeTestWindow.java (part 3
of 4).

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 803

Figure 27.18 contains a simple definition for class Time. Our Time class definition
begins with line 6

public class Time extends Object {

indicating that class Time extends class Object (from package java.lang). In Ja-
va, you never really create a class definition “from scratch.” In fact, when you create a class
definition, you always use pieces of an existing class definition. Java uses inheritance to
create new classes from existing class definitions. In this inheritance relationship, Object
is called the superclass or base class and Time is called the subclass or derived class. Using
inheritance results in a new class definition that has the attributes and behaviors of class
Object as well as new features we add in our Time class definition. Every class in Java
is a subclass of Object. Therefore, every class inherits the 11 methods defined by class
Object. One important Object method is toString, discussed later in this section.
Other methods of class Object are discussed as they are needed throughout the text.

Software Engineering Observation 27.3
Every class defined in Java must extend another class. If a class does not explicitly use key-
word extends in its definition, the class implicitly extends Object. See the online
HTML-based Java documentation for a detailed description of class Object. 27.3

Class Time contains three integer instance variables—hour, minute and
second—that represent the time in universal-time format (24-hour clock format).

Keywords public and private are member access modifiers. Instance variables
or methods declared with member access modifier public are accessible wherever the
program has a reference to a Time object. Instance variables or methods declared with
member access modifier private are accessible only to methods of the class. Every
instance variable or method definition should be preceded by a member access modifier.
Member access modifiers can appear multiple times and in any order in a class definition.

Good Programming Practice 27.11
Group members by member access modifier in a class definition for clarity and readability. 27.11

The three integer instance variables hour, minute and second are each declared
(lines 7 through 9) with member access modifier private. This indicates that these
instance variables of the class are only accessible to methods of the class. When an object
of the class is instantiated (created), such instance variables are encapsulated in the object
and can be accessed only through methods of that object’s class (normally through the
class’s public methods). Instance variables are normally declared private and
methods are normally declared public. It is possible to have private methods and

Fig. 27.18 GUI event handling with inner classes—TimeTestWindow.java (part 4
of 4).

804 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

public data, as we will see later. The private methods are often called utility methods
or helper methods because they can only be called by other methods of that class and are
used to support the operation of those methods. Using public data is uncommon and is a
dangerous programming practice.

Software Engineering Observation 27.4
Methods tend to fall into a number of different categories: methods that get the values of
private instance variables; methods that set the values of private instance variables;
methods that implement the services of the class; and methods that perform various mechan-
ical chores for the class, such as initializing class objects, assigning class objects, and con-
verting between classes and built-in types or between classes and other classes. 27.4

Class Time contains the following public methods—Time (line 14), setTime
(line 18), setHour (line 26), setMinute (line 30), setSecond (line 34), getHour
(line 38), getMinute (line 41), getSecond (line 44) and toString (line 47). These
are the public methods, public services or public interface of the class. These
methods are used by clients (i.e., portions of a program that are users of a class) of the class
to manipulate the data stored in objects of the class.

The clients of a class use references to interact with an object of the class. For example,
in the program of Fig. 27.16 we used a Vector reference to interact with a Vector
object.

Notice the method with the same name as the class (line 14); it is the constructor
method of that class. A constructor is a special method that initializes the instance variables
of a class object. A class’s constructor method is called automatically when an object of
that class is instantiated with operator new. This constructor simply calls the class’s
method setTime with hour, minute and second values specified as 0.

Common Programming Error 27.14
Attempting to declare a return type for a constructor and/or attempting to return a value
from a constructor is a logic error. Java allows other methods of the class to have the same
name as the class and to specify return types. Such methods are not constructors and will not
be called when an object of the class is instantiated. 27.14

Classes often provide public methods to allow clients of the class to set (i.e., assign
values to) or get (i.e., obtain the values of) private instance variables. These methods
need not be called set and get, but they often are. Get methods are also commonly called
accessor methods or query methods. Set methods are also commonly called mutator
methods (because they typically change a value).

Method setTime (line 18) is a public method that receives three integer arguments
and uses them to set the time. Each argument is passed to a corresponding set method (lines
26, 30 and 34). The set method tests the value it receives in a conditional expression and
determines if the value is in range. For example, the hour value must be greater than or
equal to 0 and less than 24 (tested on line 27) because we represent the time in universal
time format (0–23 for the hour, 0–59 for the minute and 0–59 for the second). Any value
outside this range is an invalid value and is set to zero—ensuring that a Time object always
contains valid data. This is also known as keeping the object in a consistent state.

Good Programming Practice 27.12
Always define a class so its instance variables are maintained in a consistent state. 27.12

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 805

Each get method (lines 38, 41 and 44) simply returns a copy of one of class Time’s
instance variables. It would seem that providing set and get capabilities is essentially the
same as making the instance variables public. However, if an instance variable is
public, the instance variable may be read or written at will by any method in the program.
If an instance variable is private, a public get method certainly seems to allow other
methods to read the data at will but the get method controls the formatting and display of
the data. A public set method can carefully scrutinize attempts to modify the instance
variable’s value. This ensures that the new value is appropriate for that data item. So,
although set and get methods may provide access to private data, the access is restricted
by the programmer’s implementation of the methods.

Method toString (line 47) takes no arguments and returns a String. This method
produces a standard-time-format string consisting of the hour, minute and second
values separated by colons and an AM or PM indicator as in 1:27:06 PM. Line 49

DecimalFormat twoDigits = new DecimalFormat("00");

creates an instance of class DecimalFormat (from package java.text imported at
line 3) to help format the time. Object twoDigits is initialized with the format control
string "00", which indicates that the number format should consist of two digits—each 0
is a placeholder for a digit. If the number being formatted is a single digit, it is automatically
preceded by a leading 0 (i.e., 8 is formatted as 08). The return statement at lines 53–56

return ((h == 12 || h == 0) ? 12 : h % 12) + ":" +
 twoDigits.format(getMinute()) + ":" +
 twoDigits.format(getSecond()) +
 (h < 12 ? " AM" : " PM");

uses method format (that returns a formatted String containing the number) from ob-
ject twoDigits to format the minute and second values into two-digit strings. Those
strings are concatenated with the + operator (separated by colons) and returned from meth-
od toString.

Method toString is special in that we inherited from class Object a toString
method with exactly the same first line as our toString on line 47. The original
toString method of class Object is a generic version that is used mainly as a place-
holder that can be redefined by a subclass. Our version replaces the version we inherited to
provide a toString method that is more appropriate for our class. This is known as over-
riding the original method definition.

We now discuss class TimeTestWindow (lines 59–154). Line 65

public class TimeTestWindow extends JFrame {

indicates that class TimeTestWindow extends class JFrame. Superclass JFrame pro-
vides the basic attributes and behaviors of a window—a title bar and buttons to minimize,
maximize and close the window (all labeled in the first screen capture). The user can set the
hour, minute or second value by typing a value in the appropriate JTextField and press-
ing the Enter key.

The constructor (line 71–131) creates the window’s GUI components as the applica-
tion begins executing. Method main (line 138) creates a new object of class Time-
TestWindow that results in a call to the constructor. As we build the GUI in the
constructor we define anonymous inner classes that will handle the events in the GUI.

806 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

Because an anonymous inner class has no name, one object of the anonymous inner class
must be created at the point where the class is defined in the program. We demonstrate
anonymous inner classes two ways in this example. First, we use separate anonymous inner
classes that implement an interface (ActionListener) to create event handlers for each
of the three JTextFields hourField, minuteField and secondField. We also
demonstrate how to define your own event handling that responds when the user clicks the
close box on the window. The event handler is defined as an anonymous inner class that
extends a class (WindowAdapter).

Each of the three JTextFields that generate events in this program has a similar
anonymous inner class to handle its events, so we discuss only the anonymous inner class
for hourField here. Lines 82–92

hourField.addActionListener(
new ActionListener() { // anonymous inner class

public void actionPerformed(ActionEvent e)
 {
 t.setHour(
 Integer.parseInt(e.getActionCommand()));
 hourField.setText("");
 displayTime();
 }
 }
);

are a call to hourField’s addActionListener method. The argument to this meth-
od must be an object that is an ActionListener (i.e., any object of a class that imple-
ments the ActionListener interface). Lines 83–91 use special Java syntax to define an
anonymous inner class and create one object of that class that is passed as the argument to
addActionListener. Line 83

new ActionListener() { // anonymous inner class

uses operator new to create an object. The syntax ActionListener() begins the defi-
nition of an anonymous inner class that implements interface ActionListener. This is
similar to beginning a class definition with

public class MyHandler implements ActionListener {

The parentheses after ActionListener indicate a call to the default constructor of the
anonymous inner class. Because the anonymous class implements ActionListener,
every object of this class is an ActionListener. The requirement that addAction-
Listener be passed an object of type ActionListener is satisfied! The is a relation-
ship is used extensively in the GUI event handling mechanism.

The opening left brace ({) at the end of line 83 and the closing right brace (}) at line
91 define the body of the class. Lines 84–90 define the one method—actionPer-
formed—that is required in any class that implements ActionListener. Method
actionPerformed is called when the user presses Enter while typing in hourField.
In response to the event, actionPerformed calls the Time object t’s setHour func-
tion and passes it the int value of the String the user input. Next, the text field is cleared
by setting its text to the empty string. Then, the time is displayed with a call to method
displayTime.

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 807

An inner class object has a special relationship with the outer class object that creates
it. The inner class object is allowed to access directly all the instance variables and methods
of the outer class object. The actionPerformed method (line 84) does just that. In the
method, instance variables t and hourField, and method displayTime are used.

Software Engineering Observation 27.5
An inner class object is allowed to access directly all the instance variables and methods of
the outer class object that defined it. 27.5

Software Engineering Observation 27.6
When an anonymous inner class implements an interface, the class must define every method
in the interface. 27.6

Method main creates one instance of class TimeTestWindow (line 140), sizes the
window (line 151) and displays the window (line 152).

Windows generate a variety of events. For this example we discuss the one event gener-
ated when the user clicks the window’s close box—a window closing event. Lines 142–149

window.addWindowListener(
new WindowAdapter() {

public void windowClosing(WindowEvent e)
 {
 System.exit(0);
 }
 }
);

enable the user to terminate the application by clicking the window’s close box (labeled in
the first screen capture. Method addWindowListener registers a window event listen-
er. The argument to addWindowListener must be a reference to an object that is a
WindowListener (package java.awt.event) (i.e., any object of a class that imple-
ments WindowListener). However, there are seven different methods that must be de-
fined in every class that implements WindowListener and we only need one in this
example—windowClosing. For event handling interfaces with more than one method,
Java provides a corresponding class (called an adapter class) that already implements all
the methods in the interface for you. All you need to do is extend the adapter class and over-
ride the methods you require in your program.

Common Programming Error 27.15
Extending an adapter class and misspelling the name of the method you are overriding is a
logic error and will not generate a compiler error. 27.15

Lines 143–148 use special Java syntax to define an anonymous inner class and create
one object of that class that is passed as the argument to addWindowListener. Line 143

new WindowAdapter() {

uses operator new to create an object. The syntax WindowAdapter() begins the defini-
tion of an anonymous inner class that extends class WindowAdapter. This is similar to
beginning a class definition with

public class MyHandler extends WindowAdapter {

808 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

The parentheses after WindowAdapter indicate a call to the default constructor of the
anonymous inner class. Class WindowAdapter implements interface WindowLis-
tener, so every WindowAdapter object is a WindowListener—the exact type re-
quired for the argument to addWindowListener.

The opening left brace ({) at the end of line 143 and the closing right brace (}) at line
148 define the body of the class. Lines 144–147 override the one method of Window-
Adapter—windowClosing—that is called when the user clicks the window’s close
box. In this example, windowClosing terminates the application with a call to
System.exit(0).

27.8 Graphical User Interfaces: Miscellaneous Components
In the next two subsections, we present the JComboBox and JList GUI components and
demonstrate how to handle their events.

27.8.1 Class JComboBox
A combo box (sometimes called a drop-down list) provides a list of items from which the
user can make a selection. Combo boxes are implemented with class JComboBox, which
inherits from class JComponent. JComboBoxes generate ActionEvents in response
to user interactions.

 The application of Fig. 27.19 uses a JComboBox to provide a list of four image file
names. When an image file name is selected, the corresponding image is displayed as an
Icon on a JLabel. The screen captures for this program show the JComboBox list after
the selection was made to illustrate which image file name was selected.

1 // Fig. 27.19: ComboBoxTest.java
2 // Using a JComboBox to select an image to display.
3 import java.awt.*;
4 import java.awt.event.*;
5 import javax.swing.*;
6
7 public class ComboBoxTest extends JFrame {
8 private JComboBox images;
9 private JLabel label;

10 private String names[] =
11 { "bug1.gif", "bug2.gif",
12 "travelbug.gif", "buganim.gif" };
13 private Icon icons[] =
14 { new ImageIcon(names[0]),
15 new ImageIcon(names[1]),
16 new ImageIcon(names[2]),
17 new ImageIcon(names[3]) };
18
19 public ComboBoxTest()
20 {
21 super("Testing JComboBox");
22
23 Container c = getContentPane();

Fig. 27.19 Program that uses a JComboBox to select an icon (part 1 of 2).

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 809

Lines 13–17

private Icon icons[] =
 { new ImageIcon(names[0]),

new ImageIcon(names[1]),
new ImageIcon(names[2]),
new ImageIcon(names[3]) };

declare and initialize array icons with four new ImageIcon objects. String array
names (defined on lines 10–12) contains the names of the four image files that are stored
in the same directory as the application.

24 c.setLayout(new FlowLayout());
25
26 images = new JComboBox(names);
27 images.setMaximumRowCount(3);
28
29 images.addActionListener(
30 new ActionListener() {
31 public void actionPerformed(ActionEvent e)
32 {
33 label.setIcon(
34 icons[images.getSelectedIndex()]);
35 }
36 }
37);
38
39 c.add(images);
40
41 label = new JLabel(icons[0]);
42 c.add(label);
43
44 setSize(350, 100);
45 show();
46 }
47
48 public static void main(String args[])
49 {
50 ComboBoxTest app = new ComboBoxTest();
51
52 app.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
53 }
54 }

Fig. 27.19 Program that uses a JComboBox to select an icon (part 2 of 2).

A scrollbar to scroll through
the items in the list.

scroll arrows scroll thumb

810 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

Line 26

images = new JComboBox(names);

creates a JComboBox object using the Strings in array names as the elements in the
list. A numeric index keeps track of the ordering of items in the JComboBox. The first item
is added at index 0; the next item is added at index 1, and so forth. The first item added to
a JComboBox appears as the currently selected item when the JComboBox is displayed.
Other items are selected by clicking the JComboBox. When clicked, the JComboBox ex-
pands into a list from which the user can make a selection. Line 27

images.setMaximumRowCount(3);

uses JComboBox method setMaximumRowCount to set the maximum number of ele-
ments that are displayed when the user clicks the JComboBox. If there are more items in
the JComboBox than the maximum number of elements that are displayed, the JCombo-
Box automatically provides a scrollbar (see the first screen capture) that allows the user to
view all the elements in the list. The user can click the scroll arrows at the top and bottom
of the scrollbar to move up and down through the list one element at a time, or the user can
drag the scroll thumb in the middle of the scrollbar up and down to move through the list.
To drag the scroll thumb, hold the mouse button down with the mouse cursor on the scroll
box and move the mouse.

Look-and-Feel Observation 27.1
Set the maximum row count for a JComboBox to a number of rows that prevents the list from
expanding outside the bounds of the window in which it is used. This will ensure that the list
displays correctly when it is expanded by the user. 27.1

Lines 29–37

images.addActionListener(
new ActionListener() {

public void actionPerformed(ActionEvent e)
 {
 label.setIcon(
 icons[images.getSelectedIndex()]);
 }
 }
);

register an instance of an anonymous inner class that implements ActionListener as
the listener for JComboBox images. When the user makes a selection from images,
method actionPerformed (line 31) sets the Icon for label. The Icon is selected
from array icons by determining the index number of the selected item in the JCombo-
Box with method getSelectedIndex in line 34.

27.8.2 JList
A list displays a series of items from which the user may select one or more items. Lists are
created with class JList, which inherits from class JComponent. Class JList sup-
ports single-selection lists (i.e., lists that allow only one item to be selected at a time) and
multiple-selection lists (lists that allow any number of items to be selected). In this section,
we discuss single-selection lists.

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 811

The application of Fig. 27.20 creates a JList of 13 colors. When a color name is
clicked in the JList, a ListSelectionEvent occurs and the application window
content pane’s background color changes.

1 // Fig. 27.20: ListTest.java
2 // Selecting colors from a JList.
3 import java.awt.*;
4 import java.awt.event.*;
5 import javax.swing.*;
6 import javax.swing.event.*;
7
8 public class ListTest extends JFrame {
9 private JList colorList;

10 private Container c;
11
12 private String colorNames[] =
13 { "Black", "Blue", "Cyan", "Dark Gray", "Gray", "Green",
14 "Light Gray", "Magenta", "Orange", "Pink", "Red",
15 "White", "Yellow" };
16
17 private Color colors[] =
18 { Color.black, Color.blue, Color.cyan, Color.darkGray,
19 Color.gray, Color.green, Color.lightGray,
20 Color.magenta, Color.orange, Color.pink, Color.red,
21 Color.white, Color.yellow };
22
23 public ListTest()
24 {
25 super("List Test");
26
27 c = getContentPane();
28 c.setLayout(new FlowLayout());
29
30 // create a list with the items in the colorNames array
31 colorList = new JList(colorNames);
32 colorList.setVisibleRowCount(5);
33
34 // do not allow multiple selections
35 colorList.setSelectionMode(
36 ListSelectionModel.SINGLE_SELECTION);
37
38 // add a JScrollPane containing the JList
39 // to the content pane
40 c.add(new JScrollPane(colorList));
41
42 // set up event handler
43 colorList.addListSelectionListener(
44 new ListSelectionListener() {
45 public void valueChanged(ListSelectionEvent e)
46 {
47 c.setBackground(
48 colors[colorList.getSelectedIndex()]);

Fig. 27.20 Selecting colors from a JList (part 1 of 2).

812 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

A JList object is instantiated at line 31

colorList = new JList(colorNames);

and assigned to reference colorList in the constructor. The argument to the JList
constructor is the array of Objects (in this case Strings) to display in the list. Line 32

colorList.setVisibleRowCount(5);

uses JList method setVisibleRowCount to determine the number of items that are
visible in the list. Lines 35 and 36

colorList.setSelectionMode(
ListSelectionModel.SINGLE_SELECTION);

use JList method setSelectionMode to specify the selection mode for the list. Class
ListSelectionModel (package javax.swing) defines three constants to specify a
JList’s selection mode—SINGLE_SELECTION, SINGLE_INTERVAL_SELECTION
and MULTIPLE_INTERVAL_SELECTION. A SINGLE_SELECTION list allows only
one item to be selected at a time. A SINGLE_INTERVAL_SELECTION list is a multiple-
selection list that allows several items in a contiguous range in the list to be selected. A
MULTIPLE_INTERVAL_SELECTION list is a multiple-selection list that does not re-
strict the items that can be selected.

Class JList does not automatically provide a scrollbar if there are more items in the
list than the number of visible rows. In this case, a JScrollPane object is used to provide
the automatic scrolling capability for the JList. Line 40

c.add(new JScrollPane(colorList));

49 }
50 }
51);
52
53 setSize(350, 150);
54 show();
55 }
56
57 public static void main(String args[])
58 {
59 ListTest app = new ListTest();
60
61 app.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
62 }
63 }

Fig. 27.20 Selecting colors from a JList (part 2 of 2).

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 813

adds a new instance of class JScrollPane to the content pane. The JScrollPane
constructor receives as its argument the JComponent for which it will provide automatic
scrolling functionality (in this case JList colorList). Notice in the screen captures
that a scrollbar created by the JScrollPane appears at the right side of the JList. The
scrollbar only appears when the number of items in the JList exceeds the number of vis-
ible items.

Lines 43–51

colorList.addListSelectionListener(
new ListSelectionListener() {

public void valueChanged(ListSelectionEvent e)
 {
 c.setBackground(
 colors[colorList.getSelectedIndex()]);
 }
 }
);

use JList method addListSelectionListener to register an instance of an anon-
ymous inner class that implements ListSelectionListener (defined in package
javax.swing.event) as the listener for JList colorList. When the user makes
a selection from colorList, method valueChanged (line 45) executes and sets the
background color of the content pane with method setBackground (inherited from
class Component into class Container). The color is selected from the array colors
with the selected item’s index in the list that is returned by JList method
getSelectedIndex.

27.9 Graphical User Interfaces: Layout Managers
Layout managers are provided to arrange GUI components on a container for presentation
purposes. The layout managers provide basic layout capabilities that are easier to use than
determining the exact position and size of every GUI component. This enables the pro-
grammer to concentrate on the basic “look and feel” and lets the layout managers process
most of the layout details. Some GUI designer tools also allow the programmer to use the
layout managers described here.

Look-and-Feel Observation 27.2
Most Java programming environments provide GUI design tools that help a programmer
graphically design a GUI, then automatically write Java code to create the GUI. 27.2

Most previous application examples in which we created our own GUI used layout
manager FlowLayout. Class FlowLayout inherits from class Object and imple-
ments interface LayoutManager, which defines the methods a layout manager uses to
arrange and size GUI components on a container.

27.9.1 BorderLayout
The BorderLayout layout manager (the default layout manager for the content pane) ar-
ranges components into five regions: North, South, East, West and Center (North corre-
sponds to the top of the container). Class BorderLayout inherits from Object and
implements interface LayoutManager2.

814 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

Up to five components can be added directly to a BorderLayout—one for each
region. The components placed in the North and South regions extend horizontally to the
sides of the container and are as tall as the components placed in those regions. The East
and West regions expand vertically between the North and South regions and are as wide
as the components placed in those regions. The component placed in the Center region
expands to take all remaining space in the layout (this is the reason the JTextArea in
Figure 27.21 occupies the entire window). If all five regions are occupied, the entire con-
tainer’s space is covered by GUI components. If the North or South region is not occupied,
the GUI components in the East, Center and West regions expand vertically to fill the
remaining space. If the East or West region is not occupied, the GUI component in the
Center region expands horizontally to fill the remaining space. If the Center region is not
occupied, the area is left empty—the other GUI components do not expand to fill the
remaining space.

The application of Fig. 27.21 demonstrates the BorderLayout layout manager
using five JButtons, which produce ActionEvents.

1 // Fig. 27.21: BorderLayoutDemo.java
2 // Demonstrating BorderLayout.
3 import java.awt.*;
4 import java.awt.event.*;
5 import javax.swing.*;
6
7 public class BorderLayoutDemo extends JFrame
8 implements ActionListener {
9 private JButton b[];

10 private String names[] =
11 { "Hide North", "Hide South", "Hide East",
12 "Hide West", "Hide Center" };
13 private BorderLayout layout;
14
15 public BorderLayoutDemo()
16 {
17 super("BorderLayout Demo");
18
19 layout = new BorderLayout(5, 5);
20
21 Container c = getContentPane();
22 c.setLayout(layout);
23
24 // instantiate button objects
25 b = new JButton[names.length];
26
27 for (int i = 0; i < names.length; i++) {
28 b[i] = new JButton(names[i]);
29 b[i].addActionListener(this);
30 }
31
32 // order not important
33 c.add(b[0], BorderLayout.NORTH); // North position
34 c.add(b[1], BorderLayout.SOUTH); // South position

Fig. 27.21 Demonstrating components in BorderLayout (part 1 of 3).

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 815

35 c.add(b[2], BorderLayout.EAST); // East position
36 c.add(b[3], BorderLayout.WEST); // West position
37 c.add(b[4], BorderLayout.CENTER); // Center position
38
39 setSize(300, 200);
40 show();
41 }
42
43 public void actionPerformed(ActionEvent e)
44 {
45 for (int i = 0; i < b.length; i++)
46 if (e.getSource() == b[i])
47 b[i].setVisible(false);
48 else
49 b[i].setVisible(true);
50
51 // re-layout the content pane
52 layout.layoutContainer(getContentPane());
53 }
54
55 public static void main(String args[])
56 {
57 BorderLayoutDemo app = new BorderLayoutDemo();
58
59 app.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
60 }
61 }

Fig. 27.21 Demonstrating components in BorderLayout (part 2 of 3).

816 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

Line 19 in the constructor

layout = new BorderLayout(5, 5);

defines a BorderLayout. The arguments specify the number of pixels between compo-
nents that are arranged horizontally (horizontal gap space) and the number of pixels be-
tween components that are arranged vertically (vertical gap space), respectively. The
default BorderLayout constructor supplies 0 pixels of gap space horizontally and ver-
tically. Line 22 uses method setLayout to set the content pane’s layout to layout.

Adding Components to a BorderLayout requires a different add method from
class Container, which takes two arguments—the Component to add and the region
in which the Component will be placed. For example, line 33

add(b[0], BorderLayout.NORTH); // North position

specifies that the b[0] is to be placed in the NORTH position. The components can be add-
ed in any order, but only one component can be added to each region.

Look-and-Feel Observation 27.3
If no region is specified when adding a Component to a BorderLayout, it is assumed
that the Component should be added to region BorderLayout.CENTER. 27.3

Common Programming Error 27.16
Adding more than one component to a particular region in a BorderLayout results in
only the last component added being displayed. There is no error message to indicate this
problem. 27.16

When the user clicks a particular JButton in the layout, method actionPer-
formed (line 43) is called. The for loop at line 46 uses the following if/else structure:

if (e.getSource() == b[i])
 b[i].setVisible(false);
else
 b[i].setVisible(true);

to hide the particular JButton that generated the event. Method setVisible (inherited
into JButton from class Component) is called with a false argument to hide the
JButton. If the current JButton in the array is not the one that generated the event,
method setVisible is called with a true argument to ensure that the JButton is dis-
played on the screen. Line 52

Fig. 27.21 Demonstrating components in BorderLayout (part 3 of 3).

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 817

layout.layoutContainer(getContentPane());

uses LayoutManager method layoutContainer to recalculate the layout of the
content pane. Notice in the screen captures of Fig. 27.21 that certain regions in the Bor-
derLayout change shape as JButtons are hidden and displayed in other regions. Try
resizing the application window to see how the various regions resize based on the width
and height of the window.

27.9.2 GridLayout
The GridLayout layout manager divides the container into a grid so that components can
be placed in rows and columns. Class GridLayout inherits directly from class Object
and implements interface LayoutManager. Every Component in a GridLayout has
the same width and height. Components are added to a GridLayout starting at the top-
left cell of the grid and proceeding left-to-right until the row is full. Then the process con-
tinues left-to-right on the next row of the grid, etc. Figure 27.23 demonstrates the Grid-
Layout layout manager using six JButtons.

1 // Fig. 27.22: GridLayoutDemo.java
2 // Demonstrating GridLayout.
3 import java.awt.*;
4 import java.awt.event.*;
5 import javax.swing.*;
6
7 public class GridLayoutDemo extends JFrame
8 implements ActionListener {
9 private JButton b[];

10 private String names[] =
11 { "one", "two", "three", "four", "five", "six" };
12 private boolean toggle = true;
13 private Container c;
14 private GridLayout grid1, grid2;
15
16 public GridLayoutDemo()
17 {
18 super("GridLayout Demo");
19
20 grid1 = new GridLayout(2, 3, 5, 5);
21 grid2 = new GridLayout(3, 2);
22
23 c = getContentPane();
24 c.setLayout(grid1);
25
26 // create and add buttons
27 b = new JButton[names.length];
28
29 for (int i = 0; i < names.length; i++) {
30 b[i] = new JButton(names[i]);
31 b[i].addActionListener(this);
32 c.add(b[i]);
33 }

Fig. 27.22 Program that demonstrates components in GridLayout (part 1 of 2).

818 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

Lines 20 and 21 in the constructor

grid1 = new GridLayout(2, 3, 5, 5);
grid2 = new GridLayout(3, 2);

define two GridLayout objects. The GridLayout constructor used at line 20 specifies
a GridLayout with 2 rows, 3 columns, 5 pixels of horizontal-gap space between Com-
ponents in the grid and 5 pixels of vertical-gap space between Components in the grid.
The GridLayout constructor used at line 21 specifies a GridLayout with 3 rows, 2
columns and no gap space.

The JButton objects in this example initially are arranged using grid1 (set for the
content pane at line 24 with method setLayout). The first component is added to the first
column of the first row. The next component is added to the second column of the first row,
etc. When a JButton is pressed, method actionPerformed (line 39) is called. Every
call to actionPerformed toggles the layout between grid2 and grid1.

Line 47

c.validate();

34
35 setSize(300, 150);
36 show();
37 }
38
39 public void actionPerformed(ActionEvent e)
40 {
41 if (toggle)
42 c.setLayout(grid2);
43 else
44 c.setLayout(grid1);
45
46 toggle = !toggle;
47 c.validate();
48 }
49
50 public static void main(String args[])
51 {
52 GridLayoutDemo app = new GridLayoutDemo();
53
54 app.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
55 }
56 }

Fig. 27.22 Program that demonstrates components in GridLayout (part 2 of 2).

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 819

illustrates another way to re-layout a container for which the layout has changed. Con-
tainer method validate recomputes the container’s layout based on the current lay-
out manager for the Container and the current set of displayed GUI components.

27.10 Graphical User Interfaces: Customizing a Component
and Introducing Graphics
Complex GUIs require that each component be placed in an exact location. They often con-
sist of multiple panels with each panel’s components arranged in a specific layout. Panels
are created with class JPanel—a subclass of JComponent. Class JComponent inher-
its from class java.awt.Container, so every JPanel is a Container. Thus
JPanels may have components, including other panels, added to them.

A JPanel can be used as a dedicated drawing area that can receive mouse events and
is often extended to create new components. In earlier exercises you may have noticed that
combining Swing GUI components and drawing in one window often leads to improper
display of the GUI components or the graphics. This is because Swing GUI components
are displayed using the same graphics techniques as the drawings and are displayed in the
same area as the drawings. The order in which the GUI components are displayed and the
drawing is performed may result in drawing over the GUI components or GUI components
obscuring the graphics. To fix this problem, we can separate the GUI and the graphics by
creating dedicated drawing areas as subclasses of JPanel.

Look-and-Feel Observation 27.4
Combining graphics and Swing GUI components may lead to incorrect display of the graph-
ics, the GUI components or both. Using JPanels for drawing can eliminate this problem by
providing a dedicated area for graphics. 27.4

Swing components that inherit from class JComponent contain method paint-
Component that helps them draw properly in the context of a Swing GUI. When custom-
izing a JPanel for use as a dedicated drawing area, method paintComponent should
be overridden as follows:

public void paintComponent(Graphics g)
{

super.paintComponent(g);

// your additional drawing code
}

Notice the call to the superclass version of paintComponent appears as the first state-
ment in the body of the overridden method. This ensures that painting occurs in the proper
order and that Swing’s painting mechanism remains intact. If the superclass version of
paintComponent is not called, typically the customized GUI component (the subclass
of JPanel in this case) will not be displayed properly on the user interface. Also, if the
superclass version is called after performing the customized drawing statements, the results
will typically be erased.

Look-and-Feel Observation 27.5
When overriding a JComponent’s paintComponent method, the first statement in the
body should always be a call to the superclass’s original version of the method. 27.5

820 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

Common Programming Error 27.17
When overriding a JComponent’s paintComponent method, not calling the super-
class’s original version of paintComponent prevents the GUI component from display-
ing properly on the GUI. 27.17

Common Programming Error 27.18
When overriding a JComponent’s paintComponent method, calling the superclass’s
version of paintComponent after other drawing is performed erases the other drawings. 27.18

Class JFrame is not a subclass of JComponent; so, it does not contain method
paintComponent. To draw directly on a subclass of JFrame, override method paint.

Look-and-Feel Observation 27.6
Calling repaint for a Swing GUI component indicates that the component should be paint-
ed as soon as possible. The background of the GUI component is cleared only if the compo-
nent is opaque. Most Swing components are transparent by default. JComponent method
setOpaque can be passed a boolean argument indicating if the component is opaque
(true) or transparent (false). The GUI components of package java.awt are different
from Swing components in that repaint results in a call to Component method update
(which clears the component’s background) and update calls method paint (rather than
paintComponent). 27.6

Figure 27.23 demonstrates a customized subclass of JPanel. Class CustomPanel
has its own paintComponent method that draws a circle or a square depending on the
value passed to its draw method.

1 // Fig. 27.23: CustomPanel.java
2 // A customized JPanel class.
3 import java.awt.*;
4 import javax.swing.*;
5
6 public class CustomPanel extends JPanel {
7 public final static int CIRCLE = 1, SQUARE = 2;
8 private int shape;
9

10 public void paintComponent(Graphics g)
11 {
12 super.paintComponent(g);
13
14 if (shape == CIRCLE)
15 g.fillOval(50, 10, 60, 60);
16 else if (shape == SQUARE)
17 g.fillRect(50, 10, 60, 60);
18 }
19
20 public void draw(int s)
21 {
22 shape = s;
23 repaint();
24 }
25 }

Fig. 27.23 Extending class JPanel—CustomPanel.java.

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 821

1 // Fig. 27.23: CustomPanelTest.java
2 // Using a customized Panel object.
3 import java.awt.*;
4 import java.awt.event.*;
5 import javax.swing.*;
6
7 public class CustomPanelTest extends JFrame {
8 private JPanel buttonPanel;
9 private CustomPanel myPanel;

10 private JButton circle, square;
11
12 public CustomPanelTest()
13 {
14 super("CustomPanel Test");
15
16 myPanel = new CustomPanel(); // instantiate canvas
17 myPanel.setBackground(Color.green);
18
19 square = new JButton("Square");
20 square.addActionListener(
21 new ActionListener() {
22 public void actionPerformed(ActionEvent e)
23 {
24 myPanel.draw(CustomPanel.SQUARE);
25 }
26 }
27);
28
29 circle = new JButton("Circle");
30 circle.addActionListener(
31 new ActionListener() {
32 public void actionPerformed(ActionEvent e)
33 {
34 myPanel.draw(CustomPanel.CIRCLE);
35 }
36 }
37);
38
39 buttonPanel = new JPanel();
40 buttonPanel.setLayout(new GridLayout(1, 2));
41 buttonPanel.add(circle);
42 buttonPanel.add(square);
43
44 Container c = getContentPane();
45 c.add(myPanel, BorderLayout.CENTER);
46 c.add(buttonPanel, BorderLayout.SOUTH);
47
48 setSize(300, 150);
49 show();
50 }
51
52 public static void main(String args[])
53 {

Fig. 27.23 Extending class JPanel—CustomPanelTest.java (part 1 of 2).

822 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

For this purpose, CustomPanel line 7

public final static int CIRCLE = 1, SQUARE = 2;

defines constants that are used to specify the shape a CustomPanel draws on itself with
each call to its paintComponent method. The application consists of two classes—Cus-
tomPanel to draw the chosen shape and CustomPanelTest to run the application. Vari-
ables CIRCLE and SQUARE are declared final so they cannot be modified. Also, these
variables are declared static so that only one copy of each variable exists in memory. Such
static variables are shared by all objects of a given class.

Class CustomPanel (lines 6–25) contains one instance variable shape that keeps
track of the shape to be drawn. Method paintComponent (line 10) is overridden in class
CustomPanel to draw a shape on the panel. If shape is CIRCLE, Graphics method
fillOval draws a solid circle. If shape is SQUARE, Graphics method fillRect
draws a solid square. Method draw (line 20) sets instance variable shape and calls
repaint to refresh the CustomPanel object. Note that calling repaint (which is
really this.repaint()) for the CustomPanel schedules a repaint operation for the
CustomPanel. Method paintComponent will be called to repaint the Custom-
Panel. When paintComponent is called, the appropriate shape is drawn on the panel.

The constructor (line 37) of class CustomPanelTest instantiates a Custom-
Panel object and sets its background color to green so the CustomPanel area is visible
on the application. Next, JButton objects circle and square are instantiated. Lines
45–52 define an anonymous inner class to handle the square’s ActionEvent. Lines
55–62 define an anonymous inner class to handle the circle’s ActionEvent. Lines 49
and 59 each call method draw of CustomPanel myPanel. In each case, the appropriate
constant (CustomPanel.CIRCLE or CustomPanel.SQUARE) is passed as an argu-
ment to indicate which shape to draw.

For layout of the buttons, JPanel buttonPanel is created with a GridLayout
of one row and two columns and the buttons are added to buttonPanel with lines 39–42

buttonPanel = new JPanel();
buttonPanel.setLayout(new GridLayout(1, 2));
buttonPanel.add(circle);
buttonPanel.add(square);

54 CustomPanelTest app = new CustomPanelTest();
55
56 app.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
57 }
58 }

Fig. 27.23 Extending class JPanel—CustomPanelTest.java (part 2 of 2).

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 823

Note the use of setLayout to set buttonPanel’s layout. Each container can have its
own layout manager. Finally, myPanel is added to the center region and buttonPanel
is added to the south region of the content pane’s BorderLayout. Note that the Bor-
derLayout automatically expands the myPanel to fill the center region.

27.11 Multithreading
It would be nice if we could “do one thing at a time” and “do it well,” but that is simply not
how the world works. The human body performs a great variety of operations in parallel,
or as we will say throughout this chapter, concurrently. Respiration, blood circulation and
digestion, for example, can occur concurrently. All of the senses—seeing, touching, smell-
ing, tasting and hearing—can occur concurrently. An automobile can be accelerating, turn-
ing, air conditioning and playing music concurrently. Computers, too, perform operations
concurrently. It is common today for desktop personal computers to be compiling a pro-
gram, printing a file and receiving electronic mail messages over a network concurrently.

Java is unique among popular general-purpose programming languages in that it
makes concurrency primitives available to the applications programmer. The programmer
specifies that applications contain threads of execution, each thread designating a portion
of a program that may execute concurrently with other threads. This capability, called mul-
tithreading, gives the Java programmer powerful capabilities not available in C and C++,
the languages on which Java is based. C and C++ are called single-threaded languages.

An example of multithreading is Java’s automatic garbage collection. C and C++ place
with the programmer the responsibility for reclaiming dynamically allocated memory. Java
provides a garbage collector thread that automatically reclaims dynamically allocated
memory that is no longer needed. Java’s garbage collector runs as a low-priority thread.
When Java determines that there are no longer any references to an object, it marks the
object for eventual garbage collection. The garbage collector thread runs when processor
time is available and when there are no higher-priority runnable threads. The garbage col-
lector will, however, run immediately when the system is out of memory.

Performance Tip 27.1
Java’s garbage collection is not as efficient as the dynamic memory management code C and
C++ programmers write, but it is relatively efficient and much safer for the programmer. 27.1

Performance Tip 27.2
Setting an object reference to null marks that object for eventual garbage collection (if
there are no other references to the object). This can help conserve memory in a system in
which an automatic object is not going out of scope because the method it is in will execute
for a lengthy period. 27.2

27.11.1 Class Thread: An Overview of the Thread Methods
In this section we overview the various thread-related methods in the Java API. We use
many of these methods in live-code examples throughout the chapter. The reader should
refer to the Java API directly for more details on using each method, especially the excep-
tions thrown by each method.

Class Thread (package java.lang) has several constructors. The constructor

public Thread(String threadName)

824 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

constructs a Thread object whose name is threadName. The constructor

public Thread()

constructs a Thread whose name is "Thread-" concatenated with a number, like
Thread-1, Thread-2, and so on.

The code that “does the real work” of a thread is placed in its run method. The run
method can be overridden in a subclass of Thread or it may be overridden in an object
that implements the Runnable interface.

A program launches a thread’s execution by calling the thread’s start method,
which, in turn, calls the run method. After start launches the thread, start returns to
its caller immediately. The caller then executes concurrently with the launched thread. The
start method throws an IllegalThreadStateException if the thread it is trying
to start has already been started.

The static method sleep is called with an argument specifying how long the cur-
rently executing thread should sleep (in milliseconds); while a thread sleeps, it does not
contend for the processor, so other threads can execute. This can give lower-priority threads
a chance to run.

The interrupt method is called to interrupt a thread. The static method
interrupted returns true if the current thread has been interrupted and false other-
wise. Method call isInterrupted (a non-static method) is sent to some other thread
to determine if that thread has been interrupted.

Method isAlive returns true if start has been called for a given thread and the
thread is not dead (i.e., its controlling run method has not completed execution).

We will discuss the yield method in detail after we have considered thread priorities
and thread scheduling.

Method setName sets a Thread’s name. Method getName returns the name of the
Thread. Method toString returns a String consisting of the name of the thread, the
priority of the thread and the thread’s ThreadGroup.

The static method currentThread returns a reference to the currently exe-
cuting Thread.

Method join waits for the Thread to which the message is sent to die before the
calling Thread can proceed; no argument or an argument of 0 milliseconds this method
indicates that the current Thread will wait forever for the target Thread to die before
proceeding. Such waiting can be dangerous; it can lead to two particularly serious problems
called deadlock and indefinite postponement. We will discuss these momentarily.

Testing and Debugging Tip 27.7
Method dumpStack is useful for debugging multithreaded applications. A program calls
static method dumpStack to print a method-call stack trace for the current Thread. 27.7

27.11.2 Thread States: Life Cycle of a Thread
At any time, a thread is said to be in one of several thread states (illustrated in Fig. 27.24).
Let us say that a thread that was just created is in the born state. The thread remains in this
state until the thread’s start method is called; this causes the thread to enter the ready
state (also known as the runnable state). The highest-priority ready thread enters the run-
ning state when the system assigns a processor to the thread (i.e., the thread begins execut-

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 825

ing). A thread enters the dead state when its run method completes or terminates for any
reason—a dead thread will eventually be disposed of by the system.

One common way for a running thread to enter the blocked state is when the thread
issues an input/output (I/O) request. In this case, a blocked thread becomes ready when
the I/O it is waiting for completes. A blocked thread cannot use a processor even if one
is available.

When a sleep method is called in a running thread, that thread enters the sleeping
state. A sleeping thread becomes ready after the designated sleep time expires. A sleeping
thread cannot use a processor even if one is available.

When a running thread calls wait the thread enters a waiting state for the particular
object on which wait was called. One thread in the waiting state for a particular object
becomes ready on a call to notify issued by another thread associated with that object.
Every thread in the waiting state for a given object becomes ready on a call to notifyAll
by another thread associated with that object.

A thread enters the dead state when its run method either completes or throws an
uncaught exception.

Fig. 27.24 Life cycle of a thread.

ready

running

waiting sleeping dead blocked

born

start

dispatch
(assign a

processor)

quantum
expiration

issue I/O request

sl
ee
pwai

t

sleep interval
expires

I/O
 com

p
letionn

o
t
i
f
y

com
plete

o
r n
o
t
i
f
y
A
l
l yield

interrupt

826 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

27.11.3 Thread Priorities and Thread Scheduling
Every Java application is multithreaded. Every Java thread has a priority in the range
Thread.MIN_PRIORITY (a constant of 1) and Thread.MAX_PRIORITY (a constant
of 10). By default, each thread is given priority Thread.NORM_PRIORITY (a constant
of 5). Each new thread inherits the priority of the thread that creates it.

Some Java platforms support a concept called timeslicing and some do not. Without
timeslicing, each thread in a set of equal-priority threads runs to completion (unless the
thread leaves the running state) before that thread’s peers get a chance to execute. With
timeslicing, each thread receives a brief burst of processor time called a quantum during
which that thread can execute. At quantum completion, even if that thread has not com-
pleted, the processor is taken away from that thread and given to the next thread of equal
priority if one is available.

The job of the Java scheduler is to keep a highest-priority thread running at all times,
and if timeslicing is available, to ensure that several equally high-priority threads each exe-
cute for a quantum in round-robin fashion. Figure 27.25 illustrates Java’s multilevel pri-
ority queue for threads. In the figure, threads A and B each execute for a quantum in round-
robin fashion until both threads complete execution. Next, thread C runs to completion.
Then, threads D, E and F each execute in round-robin fashion until they all complete exe-
cution. This process continues until all threads run to completion. Note that new higher-pri-
ority threads could postpone—possibly indefinitely—the execution of lower-priority
threads. Such indefinite postponement is often referred to more colorfully as starvation.

A thread’s priority can be adjusted with method setPriority which takes an int
argument. If the argument is not in the range 1 through 10, setPriority throws an
IllegalArgumentException. Method getPriority returns the thread’s priority.

A thread can call the yield method to give other threads a chance to execute. Actu-
ally, whenever a higher-priority thread becomes ready, the current thread is preempted.
Thus, a thread cannot yield to a higher-priority thread because the first thread will have
been preempted when the higher-priority thread became ready. Similarly, yield always
allows the highest-priority ready thread to run, so if only lower-priority threads are ready
at the time of a yield call, the current thread will be the highest-priority thread and will
continue executing. Therefore, a thread yields to give threads of an equal priority a
chance to run. On a timesliced system this is unnecessary because threads of equal priority
will each execute for their quantum (or until they lose the processor for some other reason)
and other threads of equal priority will execute in round-robin fashion. Thus yield is
appropriate for non-timesliced systems in which a thread would ordinarily run to comple-
tion before another thread of equal priority would have an opportunity to run.

Performance Tip 27.3
On non-timesliced systems, cooperating threads of equal priority should periodically call
yield to enable their peers to proceed smoothly. 27.3

A thread executes unless it dies, it becomes blocked for input/output (or some other
reason), it calls sleep, it calls wait, it calls yield, it is preempted by a thread of higher
priority or its quantum expires. A thread with a higher priority than the running thread can
become ready (and hence preempt the running thread) if a sleeping thread finishes sleeping,
if I/O completes for a thread waiting for that I/O or if either notify or notifyAll is
called on a thread that called wait.

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 827

27.11.4 Creating Threads in an Application
The application of Fig. 27.26 demonstrates basic threading techniques, including creation
of a class derived from Thread, construction of a Thread and using the Thread class
sleep method. Each thread of execution we create in the program displays its name after
sleeping for a random amount of time between 0 and 5 seconds. The program consists of
two classes—ThreadTester and PrintThread.

Fig. 27.25 Java thread priority scheduling.

1 // Fig. 27.26: ThreadTester.java
2 // Show multiple threads printing at different intervals.
3

Fig. 27.26 Multiple threads printing at random intervals (part 1 of 3).

Priority 9

Priority 8

Priority 7

Priority 10

Priority 6

Priority 5

Priority 4

Priority 3

Priority 2

Priority 1

A B

D

C

E F

G

H I

J K

Ready threads

828 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

4 public class ThreadTester {
5 public static void main(String args[])
6 {
7 PrintThread thread1, thread2, thread3, thread4;
8
9 thread1 = new PrintThread("thread1");

10 thread2 = new PrintThread("thread2");
11 thread3 = new PrintThread("thread3");
12 thread4 = new PrintThread("thread4");
13
14 System.err.println("\nStarting threads");
15
16 thread1.start();
17 thread2.start();
18 thread3.start();
19 thread4.start();
20
21 System.err.println("Threads started\n");
22 }
23 }
24
25 class PrintThread extends Thread {
26 private int sleepTime;
27
28 // PrintThread constructor assigns name to thread
29 // by calling Thread constructor
30 public PrintThread(String name)
31 {
32 super(name);
33
34 // sleep between 0 and 5 seconds
35 sleepTime = (int) (Math.random() * 5000);
36
37 System.err.println("Name: " + getName() +
38 "; sleep: " + sleepTime);
39 }
40
41 // execute the thread
42 public void run()
43 {
44 // put thread to sleep for a random interval
45 try {
46 System.err.println(getName() + " going to sleep");
47 Thread.sleep(sleepTime);
48 }
49 catch (InterruptedException exception) {
50 System.err.println(exception.toString());
51 }
52
53 // print thread name
54 System.err.println(getName() + " done sleeping");
55 }
56 }

Fig. 27.26 Multiple threads printing at random intervals (part 2 of 3).

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 829

Class PrintThread—which inherits from Thread so each object of the class can
execute in parallel—consists of instance variable sleepTime, a constructor and a run
method. Variable sleepTime stores a random integer value chosen when a Print-
Thread object is constructed. Each PrintThread object sleeps for the amount of time
specified by sleepTime then outputs its name.

The PrintThread constructor (line 30) initializes sleepTime to a random integer
between 0 and 4999 (0 to 4.999 seconds). Then, the name of the thread and the value of
sleepTime are output to show the values for the particular PrintThread being con-
structed. The name of each thread is specified as a String argument to the Print-
Thread constructor and is passed to the superclass constructor at line 32. Note: It is
possible to allow class Thread to choose a name for your thread by using the Thread
class’s default constructor.

When a PrintThread’s start method (inherited from Thread) is invoked, the
PrintThread object enters the ready state. When the system assigns a processor to the

Name: thread1; sleep: 1653
Name: thread2; sleep: 2910
Name: thread3; sleep: 4436
Name: thread4; sleep: 201

Starting threads
Threads started

thread1 going to sleep
thread2 going to sleep
thread3 going to sleep
thread4 going to sleep
thread4 done sleeping
thread1 done sleeping
thread2 done sleeping
thread3 done sleeping

Name: thread1; sleep: 3876
Name: thread2; sleep: 64
Name: thread3; sleep: 1752
Name: thread4; sleep: 3120

Starting threads
Threads started

thread2 going to sleep
thread4 going to sleep
thread1 going to sleep
thread3 going to sleep
thread2 done sleeping
thread3 done sleeping
thread4 done sleeping
thread1 done sleeping

Fig. 27.26 Multiple threads printing at random intervals (part 3 of 3).

830 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

PrintThread object, it enters the running state and its run method begins execution.
Method run prints a String in the command window indicating that the thread is going
to sleep then invokes the sleep method (line 47) to immediately put the thread into a
sleeping state. When the thread awakens, it is placed into a ready state again until it is
assigned a processor. When the PrintThread object enters the running state again, it
outputs its name (indicating that the thread is done sleeping), its run method terminates
and the thread object enters the dead state. Note that the sleep method can throw a
checked InterruptedException (if another thread invokes the sleeping thread’s
interrupt method), therefore sleep must be called in a try block (in this example,
we simply output the String representation of the exception if one occurs). Exception
handling enables us to make this program more robust.

Lines 45–51 use try and catch blocks to test for the possibility of an exception. In the
try block, we place any code that might cause a problem at execution time. If the code in the
try block executes properly, the corresponding catch block is ignored. If the code in the
try block causes an exception, the try block terminates immediately. Then, the exception-
handling mechanism jumps to the first catch block (there may be several following a try)
and attempts to locate a catch block that handles the type of exception that occurred. If the
type of exception thrown matches the type of exception specified in the catch block’s
parentheses, that catch block’s body executes to handle the exception. Note that in this pro-
gram, the try/catch mechanism is required because an InterruptedException is a
checked exception—the compiler checks that we catch this problem if it occurs. Java also has
unchecked exceptions, which are ignored by the compiler. You can distinguish between
exception types with class RuntimeException. If the type of the exception is a subclass
of RuntimeException, the exception is an unchecked exception.

Class ThreadTester’s main method (line 5) instantiates four PrintThread
objects and invokes the Thread class start method on each one to place all four
PrintThread objects in a ready state. Note that the program terminates execution when
the last PrintThread awakens and prints its name. Also note that the main method ter-
minates after starting the four PrintThreads, but the application does not terminate until
the last thread dies.

27.12 Networking with Sockets and Streams
There is much excitement over the Internet and the World Wide Web. The Internet ties the
“information world” together. The World Wide Web makes the Internet easy to use and
gives it the flair and sizzle of multimedia. Organizations see the Internet and the Web as
crucial to their information systems strategies. Java provides a number of built-in network-
ing capabilities that make it easy to develop Internet-based and Web-based applications.
Not only can Java specify parallelism through multithreading, but it can enable programs
to search the world for information and to collaborate with programs running on other com-
puters internationally, nationally or just within an organization. Java can even enable ap-
plets and applications running on the same computer to communicate with one another,
subject to security constraints.

Java’s networking capabilities are grouped into several packages. The fundamental
networking capabilities are defined by classes and interfaces of package java.net,
through which Java offers socket-based communications that enable applications to view

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 831

networking as streams of data—a program can read from a socket or write to a socket as
simply as reading from a file or writing to a file.

This section introduces Java’s socket-based communications. We show how to create
and manipulate sockets. Java’s stream sockets enable a process to establish a connection to
another process. While the connection is in place, data flows between the processes in con-
tinuous streams. Stream sockets are said to provide a connection-oriented service. The pro-
tocol used for transmission is the popular TCP (Transmission Control Protocol).

27.12.1 Establishing a Simple Server (Using Stream Sockets)
Establishing a simple server in Java requires five steps. Step 1 is to create a Server-
Socket object. A call to the ServerSocket constructor such as

ServerSocket s = new ServerSocket(port, queueLength);

registers an available port number and specifies a maximum number of clients that can
request connections to the server (i.e., the queueLength). If the queue is full, client connec-
tions are automatically refused. The preceding statement establishes the port where the
server waits for connections from clients (also known as binding the server to the port).
Each client will ask to connect to the server on this port.

Each client connection is managed with a Socket object. Once the ServerSocket
is established (Step 2), the server listens indefinitely (or blocks) for an attempt by a client
to connect. This is accomplished with a call to the ServerSocket accept method as in

Socket connection = s.accept();

which returns a Socket object when a connection is established.
Step 3 is to get the OutputStream and InputStream objects that enable the

server to communicate with the client. The server sends information to the client via an
OutputStream object. The server receives information from the client via an Input-
Stream object. To obtain the streams, the server invokes method getOutputStream
on the Socket to get a reference to the OutputStream associated with the Socket and
invokes method getInputStream on the Socket to get a reference to the Input-
Stream associated with the Socket.

The OutputStream and InputStream objects can be used to send or receive indi-
vidual bytes or sets of bytes with the OutputStream method write and the Input-
Stream method read, respectively. Often it is useful to send or receive values of primitive
data types (such as int and double) or class data types (such as String and Employee)
rather than sending bytes. In our example, we will use a common technique to chain other
stream types (such as ObjectOutputStream and ObjectInputStream) to the Out-
putStream and InputStream associated with the Socket. For example,

ObjectInputStream input =
new ObjectInputStream(connection.getInputStream());

ObjectOutputStream output =
new ObjectOutputStream(connection.getOutputStream());

The beauty of establishing these relationships is that whatever the server writes to the Ob-
jectOutputStream is sent via the OutputStream and is available at the client’s

832 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

InputStream and whatever the client writes to its OutputStream (with a correspond-
ing ObjectOutputStream) is available via the server’s InputStream.

Step 4 is the processing phase in which the server and the client communicate via the
InputStream and OutputStream objects. In Step 5, when the transmission is com-
plete, the server closes the connection by invoking the close method on the Socket.

Software Engineering Observation 27.7
With sockets, network I/O appears to Java programs to be identical to sequential file I/O.
Sockets hide much of the complexity of network programming from the programmer. 27.7

Software Engineering Observation 27.8
With Java’s multithreading, we can easily create multithreaded servers that can manage
many simultaneous connections with many clients; this multithreaded-server architecture is
precisely what is used in popular UNIX, Windows NT and OS/2 network servers. 27.8

Software Engineering Observation 27.9
A multithreaded server can be implemented to take the Socket returned by each call to ac-
cept and create a new thread that would manage network I/O across that Socket, or a
multithreaded server can be implemented to maintain a pool of threads ready to manage net-
work I/O across the new Sockets as they are created. 27.9

Performance Tip 27.4
In high-performance systems in which memory is abundant, a multithreaded server can be
implemented to create a pool of threads that can be assigned quickly to handle network I/O
across each new Socket as it is created. Thus, when a connection is received, the server
need not incur the overhead of thread creation. 27.4

27.12.2 Establishing a Simple Client (Using Stream Sockets)
Establishing a simple client in Java requires four steps. In Step 1, we create a Socket to
connect to the server. The connection to the server is established using a call to the Socket
constructor with two arguments—the server’s Internet address and the port number—as in

Socket connection = new Socket(serverAddress, port);

If the connection attempt is successful, this statement returns a Socket. A connection at-
tempt that fails throws an instance of a subclass of IOException, so many programs
simply catch IOException.

Common Programming Error 27.19
An UnknownHostException is thrown when a server address indicated by a client can-
not be resolved. A ConnectException is thrown when an error occurs while attempting
to connect to a server. 27.19

In Step 2, Socket methods getInputStream and getOutputStream are used
to get references to the Socket’s associated InputStream and OutputStream,
respectively. InputStream method read can be used to input individual bytes or sets
of bytes from the server. OutputStream method write can be used to output individual
bytes or sets of bytes to the server. As we mentioned in the preceding section, often it is
useful to send or receive values of primitive data types (such as int and double) or class
data types (such as String and Employee) rather than sending bytes. If the server is

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 833

sending information in the form of actual data types, the client should receive the informa-
tion in the same format. Thus, if the server sends values with an ObjectOutput-
Stream, the client should read those values with an ObjectInputStream.

Step 3 is the processing phase in which the client and the server communicate via the
InputStream and OutputStream objects. In Step 4 when the transmission is com-
plete, the client closes the connection by invoking the close method on the Socket.
When processing information sent by a server, the client must determine when the server
is done sending information so the client can call close to close the Socket connection.
For example, the InputStream method read returns –1 when end-of-stream (also
called EOF—end-of-file) is detected. If an ObjectInputStream is used to read infor-
mation from the server, an EOFException is generated when the client attempts to read
a value from a stream on which end-of-stream is detected.

When the client closes the Socket, an IOException may be thrown. The get-
InputStream and getOutputStream methods may also throw IOExceptions.

27.12.3 Client/Server Interaction with Stream Socket Connections
The applications of Fig. 27.27 and Fig. 27.28 use stream sockets to demonstrate a simple
client/server chat application. The server waits for a client connection attempt. When a cli-
ent application connects to the server, the server application sends a String object indi-
cating that the connection was successful to the client and the client displays the message.
Both the client and the server applications contain JTextFields, which allow the user to
type a message and send it to the other application. When the client or the server sends the
String “TERMINATE”, the connection between the client and the server terminates.
Then, the server waits for the next client to connect. The definition of class Server is giv-
en in Fig. 27.27. The definition of class Client is given in Fig. 27.28. The screen captures
showing the execution between the client and the server are shown as part of Fig. 27.28.

Class Server’s constructor creates the GUI of the application (a JTextField and
a JTextArea). The Server object displays its output in a JTextArea. When the
main method (line 121) executes, it creates an instance of class Server, registers a Win-
dowListener to terminate the program when the user clicks the window’s close box and
calls method runServer (defined at line 43).

1 // Fig. 27.27: Server.java
2 // Set up a Server that will receive a connection
3 // from a client, send a string to the client,
4 // and close the connection.
5 import java.io.*;
6 import java.net.*;
7 import java.awt.*;
8 import java.awt.event.*;
9 import javax.swing.*;

10
11 public class Server extends JFrame {
12 private JTextField enter;
13 private JTextArea display;
14 private ObjectOutputStream output;

Fig. 27.27 Server portion of a client/server stream socket connection (part 1 of 4).

834 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

15 private ObjectInputStream input;
16
17 public Server()
18 {
19 super("Server");
20
21 Container c = getContentPane();
22
23 enter = new JTextField();
24 enter.setEnabled(false);
25 enter.addActionListener(
26 new ActionListener() {
27 public void actionPerformed(ActionEvent e)
28 {
29 sendData(e.getActionCommand());
30 }
31 }
32);
33 c.add(enter, BorderLayout.NORTH);
34
35 display = new JTextArea();
36 c.add(new JScrollPane(display),
37 BorderLayout.CENTER);
38
39 setSize(300, 150);
40 show();
41 }
42
43 public void runServer()
44 {
45 ServerSocket server;
46 Socket connection;
47 int counter = 1;
48
49 try {
50 // Step 1: Create a ServerSocket.
51 server = new ServerSocket(5000, 100);
52
53 while (true) {
54 // Step 2: Wait for a connection.
55 display.setText("Waiting for connection\n");
56 connection = server.accept();
57
58 display.append("Connection " + counter +
59 " received from: " +
60 connection.getInetAddress().getHostName());
61
62 // Step 3: Get input and output streams.
63 output = new ObjectOutputStream(
64 connection.getOutputStream());
65 output.flush();
66 input = new ObjectInputStream(
67 connection.getInputStream());

Fig. 27.27 Server portion of a client/server stream socket connection (part 2 of 4).

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 835

68 display.append("\nGot I/O streams\n");
69
70 // Step 4: Process connection.
71 String message =
72 "SERVER>>> Connection successful";
73 output.writeObject(message);
74 output.flush();
75 enter.setEnabled(true);
76
77 do {
78 try {
79 message = (String) input.readObject();
80 display.append("\n" + message);
81 display.setCaretPosition(
82 display.getText().length());
83 }
84 catch (ClassNotFoundException cnfex) {
85 display.append(
86 "\nUnknown object type received");
87 }
88 } while (!message.equals("CLIENT>>> TERMINATE"));
89
90 // Step 5: Close connection.
91 display.append("\nUser terminated connection");
92 enter.setEnabled(false);
93 output.close();
94 input.close();
95 connection.close();
96
97 ++counter;
98 }
99 }
100 catch (EOFException eof) {
101 System.out.println("Client terminated connection");
102 }
103 catch (IOException io) {
104 io.printStackTrace();
105 }
106 }
107
108 private void sendData(String s)
109 {
110 try {
111 output.writeObject("SERVER>>> " + s);
112 output.flush();
113 display.append("\nSERVER>>>" + s);
114 }
115 catch (IOException cnfex) {
116 display.append(
117 "\nError writing object");
118 }
119 }
120

Fig. 27.27 Server portion of a client/server stream socket connection (part 3 of 4).

836 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

Method runServer does the work of setting up the server to receive a connection
and processing the connection when it is received. The method declares a Server-
Socket called server (line 45) to wait for connections, a Socket called connec-
tion (line 46) to process the connection from a client and an integer counter to keep
track of the total number of connections processed.

In the try block (line 49), the ServerSocket is set up (line 51) to listen for a con-
nection from a client at port 5000. The second argument to the constructor is the number
of connections that can wait in a queue to connect to the server (100 in this example). If
the queue is full when a connection is attempted, the connection is refused.

Software Engineering Observation 27.10
Port numbers can be between 0 and 65535. Many operating systems reserve port numbers
below 1024 for system services (such as email and World Wide Web servers). Generally,
these ports should not be specified as connection ports in user programs. In fact, some oper-
ating systems require special access privileges to use port numbers below 1024. 27.10

In the infinite while loop (line 53), line 56

connection = server.accept();

uses ServerSocket method accept to listen for a connection from a client. This meth-
od blocks until a connection is received (i.e., the thread in which accept is called stops
executing until a connection is received). Once a connection is received, connection is
assigned a Socket object that will be used to manage the connection. Lines 58–60 append
text to the JTextArea, indicating that a connection was received. The expression

connection.getInetAddress().getHostName()

uses Socket method getInetAddress to obtain the Internet address of the client com-
puter that connected to this server. This method returns an InetAddress reference,
which is used in a chained method call to invoke InetAddress method getHostName,
which returns the client computer’s host name. For example, if the Internet address of the
computer is 127.0.0.1, the corresponding host name would be localhost.

Lines 63–67

output = new ObjectOutputStream(
 connection.getOutputStream());
output.flush();
input = new ObjectInputStream(
 connection.getInputStream());

121 public static void main(String args[])
122 {
123 Server app = new Server();
124
125 app.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
126 app.runServer();
127 }
128 }

Fig. 27.27 Server portion of a client/server stream socket connection (part 4 of 4).

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 837

create the ObjectOutputStream and ObjectInputStream objects that send and
receive Objects between the server and the client. These objects are connected to the
OutputStream returned by Socket method getOutputStream and the Input-
Stream returned by Socket method getInputStream, respectively. Notice the call
to ObjectOutputStream method flush at line 65. This statement causes the Ob-
jectOutputStream on the server to send a stream header to the corresponding client’s
ObjectInputStream. The stream header contains information such as the version of
object serialization being used to send objects. This information is required by the Ob-
jectInputStream so it can prepare to receive those objects correctly.

Software Engineering Observation 27.11
When using an ObjectOutputStream and ObjectInputStream to send and receive
objects over a network connection, always create the ObjectOutputStream first and
flush the stream so the client’s ObjectInputStream can prepare to receive the data. 27.11

Line 73

output.writeObject(message);

uses ObjectOutputStream method writeObject to send the string “SERVER>>>
Connection successful” to the client. Line 74 flushes the output stream to ensure
that the object is sent immediately; otherwise, the object may be held in an output buffer
until more information is available to send.

Performance Tip 27.5
Output buffers are typically used to increase the efficiency of an application by sending larg-
er amounts of data fewer times. The input and output components of a computer are typically
much slower than the memory of the computer. 27.5

The do/while structure at lines 77–88 loops until the server receives the message
“CLIENT>>> TERMINATE”. Line 79

message = (String) input.readObject();

uses ObjectInputStream method readObject to read a String from the client.
Line 80 displays the message in the JTextArea. Lines 81 and 82 use JTextCompo-
nent method setCaretPosition to position the input cursor in the JTextArea af-
ter the last character in the JTextArea. This allows the JTextArea to scroll as text is
appended to it.

 When the transmission is complete, the streams and the Socket are closed with lines
93–95

output.close();
input.close();
connection.close();

Next, the server awaits the next connection attempt from a client by continuing with line
56 at the beginning of the while loop.

When the user of the server application enters a String in the JTextField and
presses the Enter key, method actionPerformed (line 27) reads the String from the
JTextField and calls utility method sendData (defined at line 108). Method send-

838 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

Data sends the String object to the client, flushes the output buffer and appends the
same String to the JTextArea in the server window.

Notice that the Server receives a connection, processes the connection, closes the con-
nection and waits for the next connection. A more likely scenario would be a Server that
receives a connection, sets up that connection to be processed as a separate thread of execu-
tion, then waits for new connections. The separate threads that process existing connections
can continue to execute while the Server concentrates on new connection requests.

Like class Server, class Client’s (Fig. 27.28) constructor creates the GUI of the
application (a JTextField and a JTextArea). The Client object displays its output
in a JTextArea. When the main method (line 108) executes, it creates an instance of
class Client, registers a WindowListener to terminate the program when the user
clicks the window’s close box and calls method runClient (defined at line 43).

1 // Fig. 27.28: Client.java
2 // Set up a Client that will read information sent
3 // from a Server and display the information.
4 import java.io.*;
5 import java.net.*;
6 import java.awt.*;
7 import java.awt.event.*;
8 import javax.swing.*;
9

10 public class Client extends JFrame {
11 private JTextField enter;
12 private JTextArea display;
13 private ObjectOutputStream output;
14 private ObjectInputStream input;
15 private String message = "";
16
17 public Client()
18 {
19 super("Client");
20
21 Container c = getContentPane();
22
23 enter = new JTextField();
24 enter.setEnabled(false);
25 enter.addActionListener(
26 new ActionListener() {
27 public void actionPerformed(ActionEvent e)
28 {
29 sendData(e.getActionCommand());
30 }
31 }
32);
33 c.add(enter, BorderLayout.NORTH);
34
35 display = new JTextArea();
36 c.add(new JScrollPane(display),
37 BorderLayout.CENTER);

Fig. 27.28 Demonstrating the client portion of a stream socket connection between a
client and a server (part 1 of 4).

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 839

38
39 setSize(300, 150);
40 show();
41 }
42
43 public void runClient()
44 {
45 Socket client;
46
47 try {
48 // Step 1: Create a Socket to make connection.
49 display.setText("Attempting connection\n");
50 client = new Socket(
51 InetAddress.getByName("127.0.0.1"), 5000);
52
53 display.append("Connected to: " +
54 client.getInetAddress().getHostName());
55
56 // Step 2: Get the input and output streams.
57 output = new ObjectOutputStream(
58 client.getOutputStream());
59 output.flush();
60 input = new ObjectInputStream(
61 client.getInputStream());
62 display.append("\nGot I/O streams\n");
63
64 // Step 3: Process connection.
65 enter.setEnabled(true);
66
67 do {
68 try {
69 message = (String) input.readObject();
70 display.append("\n" + message);
71 display.setCaretPosition(
72 display.getText().length());
73 }
74 catch (ClassNotFoundException cnfex) {
75 display.append(
76 "\nUnknown object type received");
77 }
78 } while (!message.equals("SERVER>>> TERMINATE"));
79
80 // Step 4: Close connection.
81 display.append("Closing connection.\n");
82 input.close();
83 output.close();
84 client.close();
85 }
86 catch (EOFException eof) {
87 System.out.println("Server terminated connection");
88 }

Fig. 27.28 Demonstrating the client portion of a stream socket connection between a
client and a server (part 2 of 4).

840 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

89 catch (IOException e) {
90 e.printStackTrace();
91 }
92 }
93
94 private void sendData(String s)
95 {
96 try {
97 message = s;
98 output.writeObject("CLIENT>>> " + s);
99 output.flush();
100 display.append("\nCLIENT>>>" + s);
101 }
102 catch (IOException cnfex) {
103 display.append(
104 "\nError writing object");
105 }
106 }
107
108 public static void main(String args[])
109 {
110 Client app = new Client();
111
112 app.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
113 app.runClient();
114 }
115 }

Fig. 27.28 Demonstrating the client portion of a stream socket connection between a
client and a server (part 3 of 4).

The Server
and Client
windows after
the Client
connects to
the Server

The Server
and Client
windows after
the Client
sends a
message to
the Server

The Server
and Client
windows after
the Server
sends a
message to
the Client

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 841

Client method runClient performs the work necessary to connect to the
Server, to receive data from the Server and to send data to the Server. The method
declares a Socket called client (line 45) to establish a connection. The Client will
use an ObjectOutputStream to send data to the server and an ObjectInput-
Stream to receive data from the server. In the try block, lines 50 and 51

client = new Socket(
 InetAddress.getByName("127.0.0.1"), 5000);

create a Socket with two arguments to the constructor—the Internet address of the server
computer and the port number (5000) where that computer is awaiting client connections.
The call to InetAddress method getByName in the first argument returns an Inet-
Address object containing the Internet address 127.0.0.1 (i.e., localhost). Meth-
od getByName can receive a String containing either the actual Internet address or the
host name of the server. The first argument also could have been written other ways:

InetAddress.getByName("localhost")

or

InetAddress.getLocalHost()

Also, there are versions of the Socket constructor that receive a String for the Internet
address or host name. The first argument could have been specified as "127.0.0.1" or
"localhost". [Note: We chose to demonstrate the client/server relationship by con-
necting between programs executing on the same computer (localhost). Normally, this
first argument would be the Internet address of another computer. The InetAddress ob-
ject for another computer can be obtained by specifying the Internet address or host name
of the other computer as the String argument to InetAddress.getByName.]

The Socket constructor’s second argument is the server port number. This number
must match the port number at which the server is waiting for connections (called the hand-
shake point). Once the connection is made, a message is displayed in the JTextArea
(lines 53 and 54) indicating the name of the server computer to which the client connected.

Lines 57–61

output = new ObjectOutputStream(
 client.getOutputStream());
output.flush();
input = new ObjectInputStream(
 client.getInputStream());

Fig. 27.28 Demonstrating the client portion of a stream socket connection between a
client and a server (part 4 of 4).

The Server
and Client
windows after
the Client
terminates the
connection

842 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

create the ObjectOutputStream and ObjectInputStream objects that are con-
nected to the OutputStream and InputStream objects associated with client.

The do/while structure at lines 67–78 loops until the client receives the message
“SERVER>>> TERMINATE”. Line 69

message = (String) input.readObject();

uses ObjectInputStream method readObject to read a String from the server.
Line 70 displays the message in the JTextArea. Lines 71 and 72 use JTextCompo-
nent method setCaretPosition to position the input cursor in the JTextArea af-
ter the last character in the JTextArea.

 When the transmission is complete, the streams and the Socket are closed with lines
82–84

output.close();
input.close();
connection.close();

When the user of the client application enters a String in the JTextField and
presses the Enter key, method actionPerformed (line 27) reads the String from the
JTextField and calls utility method sendData (defined at line 94). Method send-
Data sends the String object to server client, flushes the output buffer and appends the
same String to the JTextArea in the client window.

27.13 Enhancing a Web Server with Servlets
We now continue our discussion of networking. Here focus on both sides of a client-server
relationship. The client requests that some action be performed and the server performs the
action and responds to the client. This request-response model of communication is the
foundation for the highest-level view of networking in Java—servlets. A servlet extends the
functionality of a server. The javax.servlet package and the javax.serv-
let.http package provide the classes and interfaces to define servlets.

A common implementation of the request-response model is between World Wide
Web browsers and World Wide Web servers. When a user selects a Web site to browse
through their browser (the client application), a request is sent to the appropriate Web
server (the server application). The server normally responds to the client by sending the
appropriate HTML Web page.

Servlet technology today is primarily designed for use with the HTTP protocol of the
Web, but servlets are being developed for other technologies. Servlets are effective for
developing Web-based solutions that help provide secure access to a Web site, that interact
with databases on behalf of a client, that dynamically generate custom HTML documents
to be displayed by browsers and that maintain unique session information for each client.

Many developers feel that servlets are the right solution for database-intensive appli-
cations that communicate with so-called thin clients—applications that require minimal
client-side support. The server is responsible for the database access. Clients connect to the
server using standard protocols available on all client platforms. Thus, the logic code can
be written once and reside on the server for access by clients.

Our servlet example will make use of JDBC (Java Database Connectivity) database
facilities to build a multi-tier client-server application that access a database.

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 843

The Servlet APIs are now developed by the Apache group (www.apache.org).
Before you can program with servlets, you must download and install the Apache group’s
implementation of servlets called Tomcat. You may download Tomcat at no charge from
Sun Microsystems at the Web site

java.sun.com/products/jsp/tomcat

After downloading Tomcat, install it on your system and carefully read the readme
file supplied in the doc directory. It explains how to set up Tomcat and discusses how to
start the server that can be used to test servlets if you do not have a Web server that supports
servlets. To develop servlets, you also need to copy the servlet.jar file containing the
servlet class files from the installation directory to your JDK extensions directory (the
directory c:\jdk1.3\jre\lib\ext on Windows or the directory ~/jdk1.3/jre/
lib/ext on UNIX).

The World Wide Web Consortium (W3C) is a multinational organization dedicated to
developing common protocols for the World Wide Web that “promote its evolution and
ensure its interoperability.” To that end, W3C provides Open Source software—a main
benefit of such software is that it is free for anyone to use. W3C provides through their
Open Source license a Web server called Jigsaw that is written completely in Java and fully
supports servlets. Jigsaw and its documentation can be downloaded from

www.w3.org/Jigsaw

For more information on the Open Source license, visit the site

www.opensource.org

27.13.1 Overview of Servlet Technology
The Internet offers many protocols. The HTTP protocol (HyperText Transfer Protocol)
that forms the basis of the World Wide Web uses URLs (Uniform Resource Locators, also
called Universal Resource Locators) to locate data on the Internet. Common URLs repre-
sent files or directories and can represent complex tasks such as database lookups and In-
ternet searches. For more information on URL formats visit

www.ncsa.uiuc.edu/demoweb/url-primer.html

For more information on the HTTP protocol visit

www.w3.org/Protocols/HTTP/

For general information on a variety of World Wide Web topics visit

www.w3.org

Servlets are the analog on the server side to applets on the client side. Servlets are nor-
mally executed as part of a Web server. In fact, servlets have become so popular that they
are now supported by most major Web servers, including the Netscape Web servers,
Microsoft’s Internet Information Server (IIS), the World Wide Web Consortium’s Jigsaw
Web server and the popular Apache Web server.

The servlets in this chapter demonstrate communication between clients and servers
via the HTTP protocol of the World Wide Web. A client sends an HTTP request to the

844 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

server. The server receives the request and directs it to be processed by appropriate servlets.
The servlets do their processing (which often includes interacting with a database), then
return their results to the client—normally in the form of HTML documents to display in a
browser, but other data formats, such as images and binary data, can be returned.

27.13.2 The Servlet API
In this section we discuss at a high level the servlet-related classes, methods and exceptions.
Architecturally, all servlets must implement the Servlet interface. The methods of inter-
face Servlet are invoked automatically (by the server on which the servlet is installed).
This interface defines five methods described in Fig. 27.29.

Software Engineering Observation 27.12
All servlets must implement the javax.servlet.Servlet interface. 27.12

The servlet packages define two abstract classes that implement the interface
Servlet—class GenericServlet (from the package javax.servlet) and class
HttpServlet (from the package javax.servlet.http). These classes provide
default implementations of all the Servlet methods. Most servlets extend either
GenericServlet or HttpServlet and override some or all of their methods with
appropriate customized behaviors.

Method Description

void init(ServletConfig config)

This method is automatically called once during a servlet’s execution cycle
to initialize the servlet. The ServletConfig argument is supplied auto-
matically by the server that executes the servlet.

ServletConfig getServletConfig()

This method returns a reference to an object that implements interface
ServletConfig. This object provides access to the servlet’s configuration
information such as initialization parameters and the servlet’s Servlet-
Context, which provides the servlet with access to its environment (i.e.,
the server in which the servlet is executing).

void service(ServletRequest request, ServletResponse response)

This is the first method called on every servlet to respond to a client request.

String getServletInfo()

This method is defined by a servlet programmer to return a String contain-
ing servlet information such as the servlet’s author and version.

void destroy()

This “cleanup” method is called when a servlet is terminated by the server on
which it is executing. This is a good method to use to deallocate a resource
used by the servlet (such as an open file or an open database connection).

Fig. 27.29 Methods of interface Servlet.

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 845

The example we present extends class HttpServlet, which defines enhanced pro-
cessing capabilities for servlets that extend the functionality of a Web server. The key
method in every servlet is method service, which receives both a ServletRequest
object and a ServletResponse object. These objects provide access to input and output
streams that allow the servlet to read data from the client and send data to the client. These
streams can be either byte-based streams or character-based streams. If problems occur
during the execution of a servlet, either ServletExceptions or IOExceptions are
thrown to indicate the problem.

27.13.3 HttpServlet Class
Web-based servlets typically extend class HttpServlet. Class HttpServlet over-
rides method service to distinguish between the typical requests received from a client
Web browser. The two most common HTTP request types (also known as request methods)
are get and post. A get request gets (or retrieves) information from the server. Com-
mon uses of get requests are to retrieve an HTML document or an image. A post request
posts (or sends) data to the server. Common uses of post requests are to send the server
information from an HTML form in which the client enters data, to send the server infor-
mation so it can search the Internet or query a database for the client, to send authentication
information to the server, etc.

Class HttpServlet defines methods doGet and doPost to respond to get and
post requests from a client, respectively. These methods are called by the Http-
Servlet class’s service method, which is called when a request arrives at the server.
Method service first determines the request type, then calls the appropriate method.
Other less common request types are available, but these are beyond the scope of this book.
For more information on the HTTP protocol visit the site

www.w3.org/Protocols

Methods doGet and doPost receive as arguments an HttpServletRequest
object and an HttpServletResponse object that enable interaction between the client
and the server. The methods of HttpServletRequest make it easy to access the data
supplied as part of the request. The HttpServletResponse methods make it easy to
return the servlet’s results in HTML format to the Web client. Interfaces HttpServlet-
Request and HttpServletResponse are discussed in the next two sections.

27.13.4 HttpServletRequest Interface
Every call to doGet or doPost for an HttpServlet receives an object that imple-
ments interface HttpServletRequest. The Web server that executes the servlet cre-
ates an HttpServletRequest object and passes this to the servlet’s service method
(which, in turn, passes it to doGet or doPost). This object contains the request from the
client. A variety of methods are provided to enable the servlet to process the client’s re-
quest. Some of these methods are from interface ServletRequest—the interface that
HttpServletRequest extends. A few key methods used in this chapter are presented
in Fig. 27.30.

846 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

27.13.5 HttpServletResponse Interface
Every call to doGet or doPost for an HttpServlet receives an object that imple-
ments interface HttpServletResponse. The Web server that executes the servlet cre-
ates an HttpServletResponse object and passes this to the servlet’s service
method (which, in turn, passes it to doGet or doPost). This object contains the response
to the client. A variety of methods are provided to enable the servlet to formulate the re-
sponse to the client. Some of these methods are from interface ServletResponse—the
interface that HttpServletResponse extends. A few key methods used in this chapter
are presented in Fig. 27.31.

Method Description

String getParameter(String name)

Returns the value associated with a parameter sent to the servlet as part of a GET
or POST request. The name argument represents the parameter name.

Enumeration getParameterNames()

Returns the names of all the parameters sent to the servlet as part of a POST
request.

String[] getParameterValues(String name)

Returns a String array containing the values for a specified servlet parameter.

Cookie[] getCookies()

Returns an array of Cookie objects stored on the client by the server. Cookies
can be used to uniquely identify clients to the servlet.

HttpSession getSession(boolean create)

Returns an HttpSession object associated with the client’s current browsing
session. An HttpSession object can be created by this method (true argu-
ment) if an HttpSession object does not already exist for the client.
HttpSession objects can be used in similar ways to Cookies for uniquely
identifying clients.

Fig. 27.30 Important methods of interface HttpServletRequest.

Method Description

void addCookie(Cookie cookie)

Used to add a Cookie to the header of the response to the client. The Cookie’s
maximum age and whether the client allows Cookies to be saved determine
whether or not Cookies will be stored on the client.

ServletOutputStream getOutputStream()

Obtains a byte-based output stream enabling binary data to be sent to the client.

Fig. 27.31 Important methods of HttpServletResponse (part 1 of 2).

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 847

27.13.6 Multi-tier Client/Server Application with Servlets
Servlets can communicate with databases via JDBC (Java Database Connectivity). JDBC
provides a uniform way for a Java program to connect with a variety of databases in a gen-
eral manner without having to deal with the specifics of those database systems.

Many of today’s applications are three-tier distributed applications, consisting of a
user interface, business logic and database access. The user interface in such an application
is often created using HTML (as shown in this chapter) or Dynamic HTML. In some cases,
Java applets are also used for this tier. HTML is the preferred mechanism for representing
the user interface in systems where portability is a concern. Because HTML is supported
by all browsers, designing the user interface to be accessed through a Web browser guar-
antees portability across all platforms that have browsers. Using the networking provided
automatically by the browser, the user interface can communicate with the middle-tier busi-
ness logic. The middle tier can then access the database to manipulate the data. All three
tiers may reside on separate computers that are connected to a network.

In multi-tier architectures, Web servers are increasingly used to build the middle tier.
They provide the business logic that manipulates data from databases and that communi-
cates with client Web browsers. Servlets, through JDBC, can interact with popular database
systems. Developers do not need to be familiar with the specifics of each database system.
Rather, developers use SQL-based queries and the JDBC driver handles the specifics of
interacting with each database system.

The servlet of Fig. 27.32 and the HTML document of Fig. 27.33 demonstrate a three-
tier distributed application that displays the user interface in a browser using HTML. The
middle tier is a Java servlet that handles requests from the client browser and provides
access to the third tier—a Microsoft Access database (set up as an ODBC data source)
accessed via JDBC. The servlet in this example is a guest book servlet that allows the user
to register for several different mailing lists. When the servlet receives a post request from
the HTML document of Fig. 27.33, it ensures that the required data fields are present, then
stores the data in the database and sends a confirmation page to the client.

Class GuestBookServlet extends class HttpServlet (line 9) so it is capable
of responding to GET and POST requests. Servlets are initialized by overriding method
init (line 14). Method init is called exactly once in a servlet’s lifetime and is guaran-
teed to complete before any client requests are accepted. Method init takes a Servlet-

PrintWriter getWriter()

Obtains a character-based output stream enabling text data to be sent to the client.

void setContentType(String type)

Specifies the MIME type of the response to the browser. The MIME type helps
the browser determine how to display the data (or possibly what other application
to execute to process the data). For example, MIME type "text/html" indi-
cates that the response is an HTML document, so the browser displays the
HTML page.

Method Description

Fig. 27.31 Important methods of HttpServletResponse (part 2 of 2).

848 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

Config argument and throws a ServletException. The argument provides the
servlet with information about its initialization parameters (i.e., parameters not associated
with a request, but passed to the servlet for initializing servlet variables).

1 // Fig. 27.32: GuestBookServlet.java
2 // Three-Tier Example
3 import java.io.*;
4 import javax.servlet.*;
5 import javax.servlet.http.*;
6 import java.util.*;
7 import java.sql.*;
8
9 public class GuestBookServlet extends HttpServlet {

10 private PreparedStatement statement = null;
11 private Connection connection = null;
12 private String URL = "jdbc:odbc:Guests";
13
14 public void init(ServletConfig config)
15 throws ServletException
16 {
17 super.init(config);
18
19 try {
20 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
21 connection =
22 DriverManager.getConnection(URL, "", "");
23 statement = connection.prepareStatement(
24 "INSERT INTO Guests values (" +
25 "?, ?, ?, ?, ?, ?, ?, ?);");
26 }
27 catch (Exception e) {
28 e.printStackTrace();
29 connection = null;
30 }
31 }
32
33 public void doPost(HttpServletRequest req,
34 HttpServletResponse res)
35 throws ServletException, IOException
36 {
37 String email = req.getParameter("Email"),
38 firstName = req.getParameter("FirstName"),
39 lastName = req.getParameter("LastName");
40
41 PrintWriter output = res.getWriter();
42 res.setContentType("text/html");
43
44 if (email.equals("") || firstName.equals("") ||
45 lastName.equals("")) {
46 output.println("<H3> Please click the back " +
47 "button and fill in all fields.</H3>");

Fig. 27.32 GuestBookServlet, which allows client to register for mailing lists (part
1 of 2).

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 849

In this example, the servlet’s init method performs the connection to the Microsoft
Access database. The method loads the JdbcOdbcDriver at line 20 with

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

48 output.close();
49 return;
50 }
51
52 // set parameters before performing insert
53 try {
54 statement.setString(1, email);
55 statement.setString(2, firstName);
56 statement.setString(3, lastName);
57 statement.setString(4, req.getParameter("Company"));
58 statement.setString(5,
59 req.getParameter("c_cpp") != null ? "yes":"no");
60 statement.setString(6,
61 req.getParameter("java") != null ? "yes":"no");
62 statement.setString(7,
63 req.getParameter("vb") != null ? "yes":"no");
64 statement.setString(8,
65 req.getParameter("iwww") != null ? "yes":"no");
66 statement.executeUpdate();
67 statement.close();
68 output.print("<H2>Thank you " + firstName +
69 " for registering.</H2>");
70 }
71 catch (Exception e) {
72 System.err.println(
73 "ERROR: Problems with adding new entry");
74 e.printStackTrace();
75 output.print("<H2>An error occurred. " +
76 "Please try again later.</H2>");
77 }
78 finally {
79 output.close();
80 }
81 }
82
83 public void destroy()
84 {
85 try {
86 connection.close();
87 }
88 catch(Exception e) {
89 System.err.println("Problem closing the database");
90 }
91 }
92 }

Fig. 27.32 GuestBookServlet, which allows client to register for mailing lists (part
2 of 2).

850 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

Lines 21 and 22

connection =
 DriverManager.getConnection(URL, "", "");

attempt to open a connection to the Guests database. The string jdbc:odbc:Guests
stored in URL specifies the database URL (Uniform Resource Locator) that helps the pro-
gram locate the database (possibly on a network or in the local file system of the computer).
The URL specifies the protocol for communication (jdbc), the subprotocol for communi-
cation (odbc) and the name of the database (Guests). The subprotocol odbc indicates
that the program will be using jdbc to connect to a Microsoft ODBC data source (see ap-
pendix H for information on setting up an ODBC data source). ODBC is a technology de-
veloped by Microsoft to allow generic access to disparate database systems on the
Windows platform (and some UNIX platforms). The Java 2 Software Development Kit
(J2SDK) comes with the JDBC-to-ODBC-bridge database driver to allow any Java pro-
gram to access any ODBC data source. The driver is defined by class JdbcOdbcDriver
in package sun.jdbc.odbc. The second and third arguments to getConnection rep-
resent the username and password (in this example the database does not have a username
and password).

Lines 23–25

statement = connection.prepareStatement(
 "INSERT INTO Guests values (" +
 "?, ?, ?, ?, ?, ?, ?, ?);");

create a PreparedStatement that will be used to insert a record into the database. The
question mark characters in the string represent the placeholders for values that will be in-
serted. These values are specified with PreparedStatement set method calls before
executing the insert operation. The eight placeholders in this example represent the user’s
email address, first name, last name, company and the four mailing lists the user would like
to register to receive.

When a post request is received from the HTML document in Fig. 27.33, method
doPost (line 33) responds by reading the HTML form field values from the post
request, setting the parameters for the INSERT INTO operation on the database (lines 54–
65) and executing the insert operation (line 66). Line 67 closes the statement to ensure
that the insert operation is committed to the database

The if structure at lines 44–50 determines if the email, first name or last name param-
eters are empty Strings. If so, the servlet response asks the user to return to the HTML
form and enter those fields.

Line 83 defines method destroy to ensure that the database connection is closed
before the servlet terminates.

Figure 27.33 defines the HTML document that presents the guest book form to the user
and POSTs the information to the servlet of Fig. 27.32.

1 <!-- Fig. 27.33: GuestBookForm.html -->
2 <html>
3 <head><title>Deitel Guest Book Form</title></head>

Fig. 27.33 HTML that invokes the GuestBookServlet (part 1 of 3).

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 851

4
5 <body>
6 <h1>Guest Book</h1>
7 <form action = http://localhost:8080/servlet/GuestBookServlet
8 method = "post"><pre>
9 * Email address: <input type = "text" name = "Email">

10 * First Name: <input type = "text" name = "FirstName">
11 * Last name: <input type = "text" name = "LastName">
12 Company: <input type = "text" name = "Company">
13 * fields are required</pre>
14 <p>Select mailing lists from which you want
15 to receive information

16 <input type = "checkbox" name = "c_cpp" name = "c_cpp">
17 C++ How to Program & C How to Program

18 <input type = "checkbox" name = "java" name = "java">
19 Java How to Program

20 <input type = "checkbox" name = "vb" name = "vb">
21 Visual Basic How to Program

22 <input type = "checkbox" name = "iwww" name = "iwww">
23 Internet and World Wide Web How to Program

24 </p>
25 <input type = "submit" value = "Submit">
26 </form>
27 </body>
28 </html>

Fig. 27.33 HTML that invokes the GuestBookServlet (part 2 of 3).

852 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

Lines 9–11 specify that the form’s action is to post information to the Guest-
BookServlet. The screen captures show the form filled with one set of information (the
first screen) and the confirmation Web page that was sent back to the client as the response
to the post request.

27.14 Internet and World Wide Web Resources
There is a bounty of Java information on the World Wide Web. Many people are experi-
menting with Java and sharing their thoughts, discoveries, ideas and source code with each
other via the Internet.

General Resources

java.sun.com
The Sun Microsystems, Inc. Java Web site is an essential stop when searching the web for Java
information. Go to this site to download the Java 2 Software Development Kit. This site is also
a complete resource with news, information, on-line support, code samples and more.

developer.earthweb.com
Visit EarthWeb’s Developer.com Web site for a wide variety of information on Java and Internet-
related topics. The Java directory page contains links to thousands of Java applets and other Java
resources.

www.jars.com
JARS—originally called the Java Applet Rating Service calls itself the “#1 Java Review Service.”
This site originally was a large Java repository for applets. Its benefit was that it rated every ap-
plet registered at the site as top 1%, top 5% and top 25%, so you could immediately view the best
applets on the Web. Early in the development of the Java language, having your applet rated here
was a great way to demonstrate your Java programming abilities. JARS is now another all-
around resource for Java programmers. Many of the resources for this site and Developer.com,
are now shared as these sites are both owned by EarthWeb.

developer.java.sun.com/developer/
On the Sun Microsystems Java Web site, visit the Java Developer Connection. This free site has
close to one million members. The site includes technical support, discussion forums, on-line
training courses, technical articles, resources, announcements of new Java features, early access
to new Java technologies, and links to other important Java Web sites. Even though the site is
free, you must register to use it.

Fig. 27.33 HTML that invokes the GuestBookServlet (part 3 of 3).

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 853

www.jguru.com
The jGuru Web site is an all around Java resource for Java professionals. The site also contains
FAQs on most Java topics.

www.java-zone.com/
The Development Exchange Java Zone site includes Java discussion groups, and “ask the Java
Pro” section and some recent Java news.

dir.yahoo.com/Computers_and_Internet/Programming_Languages/Java/
Yahoo, a popular World Wide Web search engine, provides a complete Java resource. You can
initiate a search using key words or explore the categories listed at the site including games, con-
tests, events, tutorials and documentation, mailing lists, security and more.

www.ibm.com/developer/java/
The IBM Developers Java Technology Zone site lists the latest news, tools, code, case studies and
events related to IBM and Java.

FAQs

java.sun.com/products/jdbc/faq.html
This is the Sun JDBC FAQ.

www.nikos.com/javatoys/
The Java Toys web site includes links to the latest Java news, Java User Groups (JUGs), FAQs,
tools, Java-related mailing lists, books and white papers.

www.java-zone.com/
The Development Exchange Java Zone site includes Java discussion groups, and “ask the Java
Pro” section and some recent Java news.

www.sunsite.unc.edu/javafaq
This site provides the latest Java news. It also has some helpful Java resources including the fol-
lowing: the Java FAQ List, a tutorial called Brewing Java, Java User Groups, Java Links, the Java
Book List, Java Trade Shows, Java Training and Exercises.

Tutorial

java.sun.com/docs/books/tutorial/
The Java Tutorial Site has a number of tutorials, including sections on JavaBeans, JDBC, RMI,
Servlets, Collections and Java Native Interface.

Magazines

www.javaworld.com
The JavaWorld on-line magazine is an excellent resource for current Java information. You will
find news clips, conference information and links to Java-related web sites.

www.sys-con.com/java/
Catch up with the latest Java news at the Java Developer’s Journal site. This magazine is one of
the premier resources for Java news.

www.javareport.com/
The Java Report is a great resource for Java Developers. You will find the latest industry news,
sample code, event listings, products and jobs.

www.Sun.COM/sunworldonline/
SunWorld is the on-line magazine “for the Sun community.” You will find some news and infor-
mation related to Java.

854 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

www.intelligence.com/java/default.asp
Intelligence.com is a great resource for Java news and information. You will find a collection of
the latest articles, book reviews, interviews and case studies from various trade publications.

Servlets and Server-Side Java Programming

java.sun.com/products/servlet/index.html
The servlet page at the Sun Microsystems, Inc. Java Web site provides access to the latest servlet
information, servlet resources and the Java Servlet Development Kit (JSDK).

theserverside.com/home/index.jsp
This Web site is an excellent resource for anyone doing server-side Java development and devel-
opment with the Java 2 Enterprise Edition.

www.servlets.com
This is the Web site for the book Java Servlet Programming published by O’Reilly. The book
provides a variety of resources. This book is an excellent resource for programmers who are
learning servlets.

www.servletcentral.com
Servlet Central is an online magazine for server-side Java programmers. This includes technical
articles and columns, news and “Ask the Experts.” Resources include: books, servlet documen-
tation links on the Web, a servlet archive, a list of servlet-enabled applications and servers and
servlet development tools.

www.servletsource.com
ServletSource.com is a general servlet resource site containing code, tips, tutorials and links to
many other Web sites with information on servlets.

www.cookiecentral.com
A good all-around resource site for cookies.

www.purpletech.com/java/servlet-faq/
The Purple Servlet FAQ is a great resource with dozens of links to tutorials, other servlet FAQs,
mailing lists and newsgroups, articles, web servers, whitepapers and Java e-mail resources.

www.servletforum.com/
Servletforum.com is an on-line newsgroup dedicated to Java Servlets. Post your own questions
or check out the archived list of previously asked questions.

www.enhydra.org/
Enhydra is an open source Java/XML application server and development environment available
for free download.

www.locomotive.org/locolink/disp?home
The Locomotive Project is an open source, servlet-compatible, web application server available
for free download.

www.servlet.com/srvpages/srvdev.html
The Servlet, Inc. Servlet Developer’s Forum has links to numerous web resources, examples,
products that use servlets and server-enabled web servers.

Newsgroups
news:comp.lamg.java

news:comp.lang.java.advocacy

news:comp.lang.java.announce

news:comp.lang.java.databases

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 855

news:comp.lang.java.gui

news:comp.lang.java.help

news:comp.lang.java.programmer

SUMMARY
• Java provides procedural, object-based and object-oriented programming capabilities. The object-

based programming paradigm (with classes, encapsulation and objects) and the object-oriented
programming paradigm (with inheritance and polymorphism) are crucial for developing elegant,
robust and maintainable software systems.

• Keywords (or reserved words) are reserved for use by Java and are always spelled with all lower-
case letters. These keywords should not be used as identifiers in Java programs.

• Java’s eight primitive data types are the fundamental building blocks of all types in Java.

• Java allows only primitive type promotions, not type demotions.

• Java programmers rely on class libraries to build programs rapidly and reliably. Java’s preexisting
libraries are organized into packages of related reusable types known as classes and interfaces.

• A line that begins with // indicates that the remainder of the line is a comment. A comment that
begins with // is called a single-line comment because the comment terminates at the end of the
current line. Java also supports multiple-line comment (delimited with /* and */). A similar form
of comment called a documentation comment is delimited with /** and */.

• Every program in Java consists of at least one class definition that is defined by you—the program-
mer. These classes are known as programmer-defined classes or user-defined classes.

• The class keyword introduces a class definition in Java and is immediately followed by the class
name. By convention, all class names in Java begin with a capital first letter and have a capital first
letter for every word in the class name.

• The name of the class is called an identifier. An identifier is a series of characters consisting of
letters, digits, underscores (_) and dollar signs ($) that does not begin with a digit and does not
contain any spaces.

• Java is case sensitive—uppercase and lowercase letters are different.

• Most classes we define begin with the public keyword to indicate that the class is potentially a
reusable class. When you save a public class definition in a file, the class name must be used as
the base part of the file name.

• A left brace, {, begins the body of every class definition. A corresponding right brace, }, must end
each class definition.

• Java applications automatically begin executing at main.

• Java class definitions normally contain one or more methods. For a Java application class, exactly
one of those methods must be called main.

• The void keyword indicates that a method will perform a task, but will not return any information
when it completes its task.

• Class methods (static methods) are special in that they are available to be called as soon as the
class to which they belong is loaded into memory at execution time.

• A left brace, {, begins the body of a method definition. A corresponding right brace, }, must end
the method definition’s body.

• System.out is known as the standard output object. System.out allows Java applications to
display strings and other types of information in the command window from which the Java appli-
cation is executed.

856 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

• Method System.out.println displays (or prints) a line of text in the command window.
When System.out.println completes its task, it automatically positions the output cursor
to the beginning of the next line in the command window.

• Use the javac command to compile a program. The javac command translates Java source
code into Java bytecodes.

• Bytecodes are interpreted by the java interpreter. The interpreter calls method main to begin
program execution.

• Most Java applications that display output use windows or dialog boxes. Dialog boxes are win-
dows that typically are used to display important messages to the user of an application.

• Class JOptionPane allows you to display a dialog box containing information.

• One of the great strengths of Java is its rich set of predefined classes that programmers can reuse
rather than “reinventing the wheel.” Java’s many predefined classes are grouped into categories of
related classes called packages. The packages are referred to collectively as the Java class library
or the Java applications programming interface (Java API).

• The compiler uses import statements to identify and load classes required to compile a program.

• GUI components facilitate data entry by the user of your program and formatting or presenting
data outputs to the user of your program.

• Method JOptionPane.showMessageDialog is a special method of the class JOption-
Pane called a static method. Such methods are always called using their class name followed
by a dot operator (.) and the method name.

• The static method exit of class System terminates an application. This line is required in
any application that displays a graphical user interface to terminate the application.

• Class System is part of the package java.lang. Package java.lang is imported automati-
cally in every Java program.

• All variables must be declared with a name and a data type before they can be used in a program.

• There are two types of variables in Java—primitive data type variables (normally called variables)
and reference variables (normally called references). References are used to refer to objects in the
program. Such references actually contain the location in the computer’s memory of an object.

• Method JOptionPane.showInputDialog displays an input dialog.

• Integer.parseInt (a static method of class Integer) converts its String argument
to an integer. Class Integer is part of the package java.lang.

• Java has a version of the + operator for string concatenation that enables a string and a value of
any other data type to be concatenated—the result of this operation is a new string.

• An array is a group of contiguous memory locations that all have the same name and the same type.
To refer to a particular location or element in the array, we specify the name of the array and the
position number of the particular element in the array.

• The position number in square brackets is more formally called a subscript (or an index). A sub-
script must be an integer or an integer expression.

• The += operator adds the value of the expression on the right of the operator to the value of the
variable on the left of the operator and stores the result in the variable on the left of the operator.
Any arithmetic statement of the form

variable = variable operator expression;

where operator is one of the binary operators +, -, *, / or %, can be written in the form

variable operator= expression;

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 857

• Every array in Java knows its own length via its length instance variable.

• Arrays occupy space in memory. The programmer specifies the type of the elements and uses op-
erator new to allocate the number of elements required by each array. Arrays are allocated with
new because arrays are considered to be objects and all objects must be created with new.

• When arrays are allocated, the elements are automatically initialized to zero for the numeric prim-
itive-data-type variables, to false for boolean variables or to null for references (any non-
primitive type).

• The for repetition structure is frequently used to perform counter-controlled repetition.

• A JTextArea is a GUI component that is capable of displaying many rows and columns of text.

• JTextArea method setText specifies the String the JTextArea will display.

• Class Vector is a dynamically resizable array-like data structure.

• Class Object is the fundamental data type on which all other classes in Java are based. A refer-
ence of type Object is special in that it can refer to any type of object in Java.

• Vector method size returns the size of the Vector.

• Class StringTokenizer breaks a string into its component tokens. Tokens are separated from
one another by delimiters, typically white-space characters.

• Every Java program is based on at least one class definition that extends and enhances an existing
class definition via inheritance.

• A class (the subclass) can inherit existing attributes and behaviors (data and methods) from another
class (the superclass) specified to the right of keyword extends in the class definition.

• Using inheritance results in a new class definition that has the attributes (data) and behaviors
(methods) of the superclass.

• Classes are used as “templates” or “blueprints” to instantiate objects for use in a program. An ob-
ject (or instance) resides in the computer’s memory and contains information used by the program.

• The term object normally implies that attributes and behaviors are associated with the object. The
object’s methods use the attributes to provide useful services to the client of the object.

• In addition to extending one class, a class can implement one or more interfaces. An interface spec-
ifies one or more behaviors (i.e., methods) that you must define in your class definition.

• When a user interacts with a GUI component and the program responds, this process is called event
handling. The event is the user interaction (pressing the button). An event handler is called auto-
matically in response to the event.

• Every instance (object) of a class contains one copy of each of its instance variables. An important
benefit of instance variables is that their identifiers can be used throughout the class definition.

• Variables defined in the body of a method are known as local variables and can be used only in the
body of the method in which they are defined.

• Instance variables are always assigned a default value and local variables are not.

• The constructor method of a class is called automatically when an object (instance) of the class is
created with operator new.

• Container method getContentPane returns a reference to the window’s content pane—the
object to which we must attach the GUI components so they appear properly in the user interface.

• Container method setLayout sets the layout manager for a window’s user interface. Layout
managers are provided to arrange GUI components on a Container for presentation purposes.

• The layout managers determine the position and size of every GUI component attached to the con-
tainer. This enables the programmer to concentrate on the basic “look and feel” and lets the layout
managers process most of the layout details.

858 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

• Each Container can have only one layout manager at a time.

• In event-driven programming, the user interacts with a GUI component, the program is notified of
the event and the program processes the event. The user’s interaction “drives” the program.

• The methods that are called when an event occurs are also known as event handling methods.
When a GUI event occurs in a program, Java creates an object containing information about the
event that occurred and automatically calls an appropriate event handling method.

• Before any event can be processed, each GUI component must know which object in the program
defines the event handling method that will be called when an event occurs. The is accomplished
by registering the event handler.

• JFrame method setDefaultCloseOperation specifies the default action to take when a
window is closed.

• Java provides a facility called inner classes in which classes can be defined inside other classes.
Such classes can be complete class definitions or anonymous inner class definitions.

• Every class in Java is a subclass of Object. Therefore, every class inherits the 11 methods de-
fined by class Object. One important Object method is toString.

• Keywords public and private are member access modifiers. Class members declared with
member access modifier public are accessible to clients of the code. Class members declared
with member access modifier private are accessible only to methods of the class.

• The public methods of a class are often called the class’s public services or public inter-
face. These methods are used by clients of the class to manipulate objects of the class.

• The method with the same name as the class is the constructor method of that class. A constructor
is a special method that initializes the instance variables of a class object. A class’s constructor
method is called automatically when an object of that class is instantiated with operator new.

• Classes often provide public methods to allow clients of the class to set or get private in-
stance variables. These methods need not be called set and get, but they often are. Get methods are
also commonly called accessor methods or query methods. Set methods are also commonly called
mutator methods (because they typically change a value).

• Creating a new version of an inherited method is known as method overriding.

• Because an anonymous inner class has no name, one object of the anonymous inner class must be
created at the point where the class is defined in the program.

• An object of a class that implements ActionListener is an ActionListener.

• An inner class object has a special relationship with the outer class object that creates it. The inner
class object is allowed to access directly all the members of the outer class object.

• For event handling interfaces with more than one method, Java provides a corresponding adapter
class that implements all the methods in the interface for you. All you need to do is extend the
adapter class and override the methods you require in your program.

• A JComboBox provides a list of items from which the user can make a selection. A numeric index
keeps track of the ordering of items in the JComboBox. The first item is added at index 0; the next
item is added at index 1, and so forth.

• A JList displays a series of items from which the user may select one or more items. Class
JList supports single-selection lists and multiple-selection lists.

• JList method setSelectionMode specifies the selection mode for the list.

• Class JList does not automatically provide a scrollbar if there are more items in the list than the
number of visible rows. A JScrollPane is used to provide scrolling capability for the JList.

• The BorderLayout layout manager (the default layout manager for the content pane) arranges
components into five regions: North, South, East, West and Center.

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 859

• Up to five components can be added directly to a BorderLayout—one for each region.

• GridLayout divides the container into a grid so that components can be placed in rows and col-
umns. Every Component in a GridLayout has the same width and height. Components are
added to a GridLayout starting at the top-left cell of the grid and proceeding left-to-right until
the row is full. Then the process continues left-to-right on the next row of the grid, etc.

• Panels are created with class JPanel—a subclass of JComponent. Class JComponent inher-
its from class java.awt.Container, so every JPanel is a Container. Thus JPanels
may have components, including other panels, added to them.

• A JPanel can be used as a dedicated drawing area that can receive mouse events and is often
extended to create new components.

• Swing components that inherit from class JComponent contain method paintComponent
that helps them draw properly in the context of a Swing GUI.

• Java is unique among popular general-purpose programming languages in that it makes concur-
rency primitives available to the applications programmer. The programmer specifies that appli-
cations contain threads of execution, each thread designating a portion of a program that may
execute concurrently with other threads. This capability is called multithreading.

• The highest-priority ready thread enters the running state when the system assigns a processor to
the thread. A thread enters the dead state when its run method completes or terminates for any
reason—a dead thread will eventually be disposed of by the system.

• A sleeping thread becomes ready after the designated sleep time expires. A sleeping thread cannot
use a processor even if one is available.

• Every Java application is multithreaded.

• When a thread’s start method is invoked, the thread enters the ready state.

• When the system assigns a processor to a thread for the first time, the thread enters the running
state and its run method begins execution.

• Java’s stream sockets enable a process to establish a connection to another process. While the con-
nection is in place, data flows between the processes in continuous streams. Stream sockets are
said to provide a connection-oriented service. The protocol used for transmission is the popular
TCP (Transmission Control Protocol).

• The request-response model of communication is the foundation for the highest-level view of net-
working in Java—servlets. A servlet extends the functionality of a server.

• The javax.servlet package and the javax.servlet.http package provide the classes
and interfaces to define servlets.

• A common implementation of the request-response model is between World Wide Web browsers
and World Wide Web servers. When a user selects a Web site to browse through their browser (the
client application), a request is sent to the appropriate Web server (the server application). The
server normally responds to the client by sending the appropriate HTML Web page.

• All servlets must implement the Servlet interface. The methods of interface Servlet are in-
voked automatically (by the server on which the servlet is installed).

• An HttpServlet defines enhanced processing capabilities for servlets that extend the function-
ality of a Web server.

• Class HttpServlet overrides method service to distinguish between the typical requests re-
ceived from a client Web browser. The two most common HTTP request types (also known as re-
quest methods) are get and post.

• Class HttpServlet defines methods doGet and doPost to respond to get and post re-
quests from a client, respectively.

860 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

• Servlets can communicate with databases via JDBC (Java Database Connectivity). JDBC provides
a uniform way for a Java program to connect with a variety of databases in a general manner with-
out having to deal with the specifics of those database systems.

• To connect to a database, you must first load the database driver, then connect to the database with
class DriverManager’s getConnection method.

• The URL to connect to a database specifies the protocol for communication, the subprotocol for
communication and the name of the database.

• The subprotocol odbc indicates that the program will be using jdbc to connect to a Microsoft
ODBC data source. ODBC is a technology developed by Microsoft to allow generic access to dis-
parate database systems on the Windows platform (and some UNIX platforms).

• A PreparedStatement creates an SQL statement that will be executed at a later time. The pa-
rameters to the PreparedStatement are specified with set method calls before executing the
PreparedStatement.

TERMINOLOGY
accessor method compile a program
ActionListener concatenation
ActionListener interface connect to a server
actionPerformed method consistent state
adapter class Container
addActionListener content pane
addElement method of class Vector control variable
addListSelectionListener convert numbers from String to int
addWindowListener converting between classes and built-in types
anonymous inner class, database
array bounds DecimalFormat class
array declaration dedicated drawing area
arrays as objects derived class
assignment statement dialog box
associativity of operators event-driven programming
attributes (data) event handling
automatic garbage collection extends keyword
base class fillOval method of Graphics
binding the server to the port fillRect method of Graphics
body of the method definition FlowLayout class
BorderLayout layout manager format
bytecodes garbage collector
case sensitive get method
checked exception getContentPane method of JFrame
class definition graphical user interface (GUI)
.class file GridLayout class
class keyword GUI component
class name GUI event-handling mechanism
class Object HTTP request
class System HttpServlet class
classes defined inside other classes HttpServletRequest interface
client/server HyperText Transfer Protocol (HTTP)
command window identifier
comment (//) implements keyword

Chapter 27 Bonus Chapter: Introduction to Java 2 Programming 861

import keyword main method
inheritance method
initializer list Microsoft Access database
initializing an array with a declaration middle-tier business logic
initializing class objects multithreading
inner class multitier client-server application
input dialog new keyword
instance variable nextToken method
instantiate (or create) objects null keyword
interpreter object
Java Software Development Kit (J2SDK) Object class
Java applications programming interface (API) ODBC data source
Java bytecode operator (+) to add strings
Java class library operator (=)
Java Database Connectivity (JDBC) operator new
.java file name extension overriding a method definition
java interpreter paintComponent method
java.awt package parseInt method of class Integer
java.awt.event package primitive data type variable
java.io package private data
java.lang package private keyword
java.net package private method
java.sql package programmer-defined class
java.text package public class
java.util package public data
javac command public interface
javax.servlet package public keyword
javax.servlet.http package public method
javax.swing package reference
javax.swing.event package register an event handler
JButton class “reinventing the wheel”
JComboBox class repaint
JComponent class request method
JDBC (Java Database Connectivity) return keyword
JDBC-to-ODBC-bridge database driver run method
JdbcOdbcDriver class Runnable interface
JFrame class, ServerSocket class
JLabel class service method
JList class servlet
JOptionPane class Servlet interface
JPanel class set method
JScrollPane class setContentType method
JTextArea class setDefaultCloseOperation method
JTextArea method append setLayout method of Container
JTextField class showInputDialog method
listen for connection from client showMessageDialog method
listen for events single-line comment
local variable socket-based communications
loop-continuation condition statement
lvalue (left value) stream socket

862 Bonus Chapter: Introduction to Java 2 Programming Chapter 27

StringTokenizer class token
subclass toString method
subclass of Object try block
super keyword unchecked exceptions
superclass user-defined class
Swing’s painting mechanism user interface
System.exit(0) validate method of Container
System.out.println variable declaration
TCP (Transmission Control Protocol) Vector class
this keyword while keyword
Thread class white-space characters
thread of execution WindowAdapter
three-tier distributed applications

A
HTML Special

Characters

The table of A.1 shows many commonly used HTML special characters—called character
entity references by the World Wide Web Consortium. For a complete list of character en-
tity references, see the site

http://www.w3.org/TR/REC-html40/sgml/entities.html

Character HTML encoding Character HTML encoding

non-breaking space ê ê

§ § ì ì

© © í í

® ® î î

¼ ñ ñ

½ ò ò

¾ ó ó

à à ô ô

á á õ õ

â â ÷ ÷

ã ã ù ù

å å ú ú

ç ç û û

è è • •

é é ™ ™

Fig. A.1 HTML special characters.

1 4⁄
1 2⁄
3 4⁄

	Introduction to the Internet and World Wide Web
	Outline
	1.1 Introduction
	1.2 World Wide Web Consortium (W3C)
	1.3 History of the Internet
	1.4 History of the World Wide Web
	1.5 Future of Computing
	1.6 History of SGML
	1.7 XML and XML How to Program
	1.8 A Tour of the Book
	1.9 W3C XML Resources
	1.10 Internet and World Wide Web Resources

	Introduction to HyperText Markup Language 4: Part I
	Outline
	2.1 Introduction
	2.2 Markup Languages
	2.3 Editing HTML
	2.4 Common Elements
	2.5 Headers
	2.6 Linking
	2.7 Images
	2.8 Special Characters and More Line Breaks
	2.9 Unordered Lists
	2.10 Nested and Ordered Lists
	2.11 Internet and World Wide Web Resources

	Introduction to HyperText Markup Language 4: Part II
	Outline
	3.1 Introduction
	3.2 Basic HTML Tables
	3.3 Intermediate HTML Tables and Formatting
	3.4 Basic HTML Forms
	3.5 More Complex HTML Forms
	3.6 Internal Linking
	3.7 Creating and Using Image Maps
	3.8 Tags
	3.9 Element
	3.10 Nested
	3.11 Internet and World Wide Web Resources

	Cascading Style Sheets (CSS)
	Outline
	4.1 Introduction
	4.2 Inline Styles
	4.3 Creating Style Sheets with the Element
	4.4 Conflicting Styles
	4.5 Linking External Style Sheets
	4.6 Positioning Elements
	4.7 Backgrounds
	4.8 Element Dimensions
	4.9 Text Flow and the Box Model
	Content
	4.10 User Style Sheets
	4.11 Internet and World Wide Web Resources

	Creating Markup with XML
	5.1 Introduction
	5.2 Introduction to XML Markup
	5.3 Parsers and Well- formed XML Documents
	5.4 Parsing an XML Document with msxml
	5.5 Characters
	5.6 Markup
	5.7 CDATA Sections
	5.8 XML Namespaces
	5.9 Case Study: A Day Planner Application
	5.10 Internet and World Wide Web Resources

	Document Type Definition (DTD)
	6.1 Introduction
	6.2 Parsers, Well- formed and Valid XML Documents
	6.3 Document Type Declaration
	6.4 Element Type Declarations
	6.5 Attribute Declarations
	6.6 Attribute Types
	6.7 Conditional Sections
	6.8 Whitespace Characters
	6.9 Case Study: Writing a DTD for the Day Planner Application
	6.10 Internet and World Wide Web Resources

	Schemas
	7.1 Introduction
	7.2 Schema vs. DTDs
	7.3 Microsoft XML Schema: Describing Elements
	7.4 Microsoft XML Schema: Describing Attributes
	7.5 Microsoft XML Schema: Data Types
	7.6 W3C XML Schema
	7.7 Case Study: Writing a Microsoft XML Schema for the Day
	Planner Application
	7.8 Internet and World Wide Web Resources

	Document Object Model (DOM)
	8.1 Introduction
	8.2 DOM Implementations
	8.3 DOM with JavaScript
	8.4 Setup
	8.5 DOM Components
	8.6 Creating Nodes
	8.7 Traversing the DOM
	8.8 Case Study: Modifying the Day Planner Application to Use
	the DOM
	8.9 Internet and World Wide Web Resources

	Simple API for XML (SAX)
	9.1 Introduction
	9.2 DOM vs. SAX
	9.3 SAX- based Parsers
	9.4 Setup
	9.5 Events
	9.6 Example: Tree Diagram
	9.7 Case Study: Using SAX with the Day Planner Application
	9.8 SAX 2.0
	9.9 Internet and World Wide Web Resources

	Case Study: XmlMessenger Program
	10.1 Introduction
	10.2 Setup
	10.3 Overview: Server Side of XmlMessenger
	10.4 Implementation: Server Side of XmlMessenger
	10.5 Overview: Client Side of XmlMessenger
	10.6 Implementation: Client Side of XmlMessenger

	XML Path Language (XPath)
	11.1 Introduction
	11.2 Nodes
	11.3 Location Paths
	11.4 Node- set Operators and Functions
	11.5 Internet and World Wide Web Resources

	XSL: Extensible Stylesheet Language Transformations (XSLT)
	12.1 Introduction
	12.2 Setup
	12.3 Templates
	12.4 Creating Elements and Attributes
	12.5 Iteration and Sorting
	12.6 Conditional Processing
	12.7 Copying Nodes
	12.8 Combining Stylesheets
	12.9 Variables
	12.10 Case Study: XSLT and XPath
	12.11 Internet and World Wide Web Resources

	XSL: Extensible Stylesheet Language Formatting Objects
	13.1 Introduction
	13.2 Setup
	13.3 Examples of XSL Formatting- object Documents
	13.4 Lists
	13.5 Internet and World Wide Web Resources

	XLink, XPointer, XInclude and XBase
	14.1 Introduction
	14.2 XML Linking Language (XLink)
	14.3 XLink and DTDs
	14.4 XML Pointer Language (XPointer)
	14.5 XML Inclusions (XInclude)
	14.6 XML Base (XBase)
	14.7 Internet and World Wide Web Resources

	Case Study: Message Forum with Active Server Pages
	15.1 Introduction
	15.2 Setup and Message Forum Documents
	15.3 Forum Navigation
	15.4 Adding Forums
	15.5 Forum XML Documents
	15.6 Posting Messages
	15.7 Other HTML Documents
	15.8 Internet and World Wide Web Resources

	Server- side Java Programming
	16.1 Introduction
	16.2 Cocoon
	16.3 Extensible Server Pages (XSP)
	16.4 Case Study: A Wireless Online Bookstore
	16.5 Jakarta Tomcat Setup
	16.6 WAP and WML: Client- side Documents
	16.7 Java Servlets
	16.8 Internet and World Wide Web Resources

	Perl and XML: A Web- based Message Forums Application
	Outline
	17.1 Introduction
	17.2 Perl and XML
	17.3 Setup
	17.4 Displaying the Forums using XML:: Parser
	17.5 Using XML:: DOM to Add Forums and Messages
	17.6 Alterations for Non- XSL Browsers
	17.7 Internet and World Wide Web Resources

	Accessibility
	Outline
	18.1 Introduction
	18.2 Providing Alternatives for Multimedia Content
	18.3 Maximizing Readability by Focusing on Structure
	18.4 Accessibility in HTML Tables
	18.5 Accessibility in HTML Frames
	18.6 Accessibility in XML
	18.7 Using Voice Synthesis and Recognition with VoiceXML™
	18.8 JAWS for Windows
	18.9 Other Accessibility Tools
	18.10 Internet and World Wide Web Resources

	XHTML and XForms
	19.1 Introduction
	19.2 XHTML
	19.3 XForms
	19.4 Extended Forms Architecture (XFA)
	19.5 Internet and World Wide Web Resources

	Custom Markup Languages: Part I
	20.1 Introduction
	20.2 Mathematical Markup Language (MathML)
	20.3 OpenMath
	20.4 Chemical Markup Language (CML)
	20.5 Wireless Markup Language (WML)
	20.6 Geography Markup Language (GML)
	20.7 Synchronized Multimedia Integration Language (SMIL)
	20.8 Scalable Vector Graphics (SVG)
	20.9 Bean Markup Language (BML)
	20.10 Extensible 3D Language (X3D)
	20.11 Additional Internet and World Wide Web Resources

	Custom Markup Languages: Part II
	21.1 Introduction
	21.2 Extensible Business Reporting Language (XBRL)
	21.3 Bank Internet Payment System (BIPS)
	21.4 Electronic Business XML (ebXML)
	21.5 Visa XML Invoice Specification
	21.6 Commerce XML (cXML)
	21.7 LegalXML
	21.8 NewsML
	21.9 Open eBook Publication Structure
	21.10 Extensible User Interface Language (XUL)
	21.11 Internet and World Wide Web Resources

	XML Technologies and Applications
	22.1 Introduction
	22.2 XML Query Language (XML Query)
	22.3 Directory Services Markup Language (DSML)
	22.4 Resource Definition Framework (RDF)
	22.5 XML Topic Maps (XTM)
	22.6 Virtual HyperGlossary (VHG)
	22.7 Channel Definition Format (CDF)
	22.8 Information and Content Exchange (ICE) Protocol
	22.9 Rich Site Summary (RSS)
	22.10 Platform for Privacy Preferences (P3P)
	22.11 Blocks Extensible Exchange Protocol (BXXP)
	22.12 XML Digital Signatures
	22.13 Extensible Rights Markup Language (XrML)
	22.14 XML Metadata Interchange (XMI)
	22.15 W3C’s XML Protocol
	22.16 XAML

	Simple Object Access Protocol (SOAP) and Microsoft BizTalk™
	Outline
	23.1 Introduction
	23.2 Simple Object Access Protocol (SOAP)
	23.3 Microsoft BizTalk
	23.4 Internet and World Wide Web Resources

	Bonus Chapter: Introduction to Scripting with VBScript
	Outline
	24.1 Introduction
	24.2 Operators
	¹
	³
	£
	24.3 Data Types and Control Structures
	24.4 VBScript Functions
	24.5 VBScript Example Programs
	24.6 Arrays
	24.7 String Manipulation
	24.8 Internet and World Wide Web Resources

	Bonus Chapter: Introduction to Active Server Pages (ASP)
	Outline
	25.1 Introduction
	25.2 How Active Server Pages Work
	25.3 Client- side Scripting versus Server- side Scripting
	25.4 Using Personal Web Server and Internet Information Server
	25.5 Active Server Page Objects
	25.6 A Simple ASP Example
	25.7 Server- side ActiveX Components
	25.8 File System Objects
	25.9 Session Tracking and Cookies
	25.10 Databases, SQL, Microsoft UDA and ADO
	25.11 Accessing a Database from an Active Server Page
	25.12 Internet and World Wide Web Resources

	Bonus Chapter: Introduction to Perl Programming
	Outline
	26.1 Introduction
	26.2 Perl
	26.3 String Processing and Regular Expressions
	26.4 Viewing Client/ Server Environment Variables
	26.5 Form Processing and Business Logic
	26.6 Server- Side Includes
	26.7 Verifying a Username and Password
	26.8 Using ODBC to Connect to a Database
	26.9 Cookies and Perl
	26.10 Internet and World Wide Web Resources

	Bonus Chapter: Introduction to Java 2 Programming
	Outline
	27.1 Introduction
	27.2 Java Keywords, Primitive Data Types and Class Libraries
	27.3 Command- Line Java Applications
	27.4 Arrays
	27.5 Class Vector
	27.6 Graphical User Interfaces: A Windowed Application with
	27.7 Graphical User Interfaces: Event Handling with Inner
	Classes
	27.8 Graphical User Interfaces: Miscellaneous Components
	27.9 Graphical User Interfaces: Layout Managers
	27.10 Graphical User Interfaces: Customizing a Component
	and Introducing Graphics
	27.11 Multithreading
	27.12 Networking with Sockets and Streams
	27.13 Enhancing a Web Server with Servlets
	27.14 Internet and World Wide Web Resources

	HTML Special
	Characters

