100%

COMPREHENSIVE
AUTHORITATIVE
WHAT YOU NEED

Harness new XML 1.1
power to structure
data for spread-
sheets, configuration
parameters, and
financial transactions

Build data-driven
applications with
Microsoft” .NET and
J2EE™ Web services

Empower your
information
architecture with
XML programming
techniques, both on
and off the Web

COMPANION
WEB SITE
Contains all code samples found
in the book, and more

Brian Benz with John R. Durant

XML Programming
Bible

Brian Benz
with John R. Durant

WILEY

Wiley Publishing, Inc.

XML Programming
Bible

XML Programming
Bible

Brian Benz
with John R. Durant

WILEY

Wiley Publishing, Inc.

XML Programming Bible

Published by

Wiley Publishing, Inc.
909 Third Avenue

New York, NY 10022
www.wiley.com

Copyright (¢) 2003 by Wiley Publishing, Inc., Indianapolis, Indiana
Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

Library of Congress Cataloging-in-Publication Data: 2003101925
ISBN: 0-7645-3829-2

Manufactured in the United States of America

10987654321

10/QT/QZ/QT/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978)
750-8400, fax (978) 646-8700. Requests to the Publisher for permission should be addressed to the Legal Department, Wiley
Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, E-Mail:
permcoordinator@wiley.com.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE THE PUBLISHER AND AUTHOR HAVE USED THEIR BEST
EFFORTS IN PREPARING THIS BOOK, THEY MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS BOOK AND SPECIFICALLY DISCLAIM ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED
OR EXTENDED BY SALES REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR YOUR SITUATION. YOU SHOULD CONSULT WITH A
PROFESSIONAL WHERE APPROPRIATE. NEITHER THE PUBLISHER NOR AUTHOR SHALL BE LIABLE FOR ANY LOSS
OF PROFIT OR ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL,
CONSEQUENTIAL, OR OTHER DAMAGES.

For general information on our other products and services or to obtain technical support, please contact our Customer
Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

Trademarks: Wiley, the Wiley logo, and related trade dress are trademarks or registered trademarks of John Wiley & Sons,
Inc. and/or its affiliates, in the United States and other countries, and may not be used without written permission. All
other trademarks are the property of their respective owners. Wiley Publishing, Inc. is not associated with any product or
vendor mentioned in this book.

WILEY is a trademark of Wiley Publishing, Inc.

About the Authors

Brian Benz (bbenz@benztech.com) has more than 15 years experience designing
and deploying systems infrastructures, designing and developing applications,
migrating messaging systems and applications, and managing projects. He has
established his expertise and reputation in the XML and Web service marketplace
since 1998 through hands-on experience in various projects. Brian also makes
frequent contributions as a writer for industry publications, including the IBM
Redbook XML: Powered by Domino, The Notes and Domino 6 Programmer’s Bible,
Lotus Advisor magazine, e-Business Advisor magazine, WebSphere Advisor maga-
zine, and e-Pro magazine. He is also a frequent presenter of highly rated technical
seminars for IBM, Lotus Software, and Advisor Media at venues worldwide. Brian
is CEO of Benz Technologies (http://www.benztech.com).

John R. Durant (jdurant@microsoft.com) is the site manager for Microsoft’s
Office Developer Center (http://msdn.microsoft.com/office). Heis a noted
author and speaker on Microsoft Office, Microsoft .NET, XML, Microsoft SharePoint,
COM technologies, and enterprise development. He has authored magazine articles,
courseware, and other materials on these same topics, and has traveled the world
speaking to developers and other professionals about how these technologies work.
Before joining Microsoft, he was employed independently, delivering customer
solutions. He lives in the Seattle area with his beautiful wife and four boys.

Contributor Tod Golding has been a professional programmer since 1986 working
in a variety of roles ranging from Software Engineer to Lead Architect for organiza-
tions of all shapes and sizes, including Microsoft and Borland. His programming
skills span the spectrum of technologies and programming languages and include
designing and constructing large-scale systems using both the Microsoft and

Java (J2EE) platforms. His language experience has focused primarily on C++, Java,
and C#. His chapters in this book cover Java Web Services, the details of Apache’s
Axis, JAX-RPC, and JAXM. He started his writing career as a journalist, writing sports
for 2 years at the Sacramento Bee daily newspaper, and he has authored a number
of white papers assessing the relative strengths of competing technologies.

Credits

Executive Editor Project Coordinator
Chris Webb Kristie Rees
Senior Acquisitions Editor Graphics and Production Specialists
Sharon Cox Amanda Carter
Jennifer Click
Acquisitions Editor Sean Decker
Jim Minatel Michael Kruzil
Lynsey Osborn
Project Editor
Kenyon Brown Quality Control Technicians
JohnTyler Connoley
Technical Editor John Greenough
Sundar Rajan Carl William Pierce
Kathy Simpson
Copy Editor Brian H. Walls

Anne L. Owen

Proofreading and Indexing
Editorial Manager TECHBOOKS Production Services
Mary Beth Wakefield

Vice President & Executive Group
Publisher
Richard Swadley

Vice President and Executive
Publisher
Bob Ipsen

Executive Editorial Director
Mary Bednarek

Dedicated to Hans Benz (1941-2003),
father, son, brother, and storyteller

—Brian Benz

Dedicated to Jack T. and
Teresa E. Durant

—John R. Durant

Preface

The XML Programming Bible provides a single source for developers who need to
implement XML and Web service solutions on an MS or J2EE platform, or both.

A recent Amazon.com search returned 393 book titles that contain the keyword
“XML.” However, most of them are introductory books that are heavy on XML
theory and light on practical examples. After reading them, you could explain to
your boss and colleagues what XML is, but you would be hard-pressed to be able
to develop a practical XML solution. In addition, very few books provide practical
examples of both XML and Web service solutions on both the J2EE and MS plat-
forms. Programmers would most likely have to buy a minimum of four other books
to match the same content that is found in the XML Programming Bible.

The XML Programming Bible is a comprehensive guide to architectural concepts
and programming techniques for XML. We cover the mainstream industry XML and
Web service technologies as well as tools and techniques for developing real-world
XML solutions. The examples and techniques are designed to be useful for all skill
levels of XML programmers, from beginner to advanced. We have endeavored to
make the material understandable for beginners at the same time that specific top-
ics are “shedding new light” on XML for experienced professionals. The intention is
that a developer could use the information in the book to go from zero knowledge
of XML and related technologies to designing and developing industrial-strength
XML and Web service applications.

Being programmers, we know that theory can be tedious, and you probably want
to get straight to work developing XML and Web service solutions. You are in luck,
because this book is full of working examples, tips, and techniques to enable you
to do that. We have distilled the theory down to the essentials and scattered it
through the book, between the practical examples. The examples are constructed
incrementally when possible. By following the examples, programmers will actually
follow several applications that are developed from scratch using several different
XML technologies.

X

XML Programming Bible

Part I: Introducing XML

This section starts with an XML concepts chapter that gives an overview and his-
tory of XML, its purposes, and comparisons against previous and alternative data
integration technologies. We then proceed to describe XML basic formats, XML
well-formedness, and XML validation against DTDs and schemas. The chapters
on XSL transformations and XSL formatting objects illustrate the transformation
and formatting of XML data using XML via working examples. Part [ends with
examples of parsing XML documents, including examples of XML parsing using
SAX and DOM.

Chapter 1: XML Concepts provides readers who are new to XML with an overview
and history of XML, its purposes, and comparisons against previous and alternative
integration technologies. We end the chapter with an introduction to the next XML
version, XML 1.1.

Chapter 2: XML Documents applies the theory from Chapter 1 to real-world, practi-
cal examples. This chapter expands on the theory and concepts introduced in the
previous chapter. We introduce you to two example documents that contain many
of the issues that confront an XML programmer. The first document is a compila-
tion of XML from three sources. The second document separates and identifies the
three parts of the document using XML namespaces. Along the way, we introduce
you to some predefined XML attributes. We show you how to specify languages
using the xml:lang attribute, and how to preserve space and linefeed settings in
text data using the xml:space attribute.

Chapter 3: XML Data Format and Validation builds on the example XML docu-
ments introduced in Chapter 2. Chapter 3 explains ways to make sure that XML
documents are not just well-formed, but also contain data in a predefined format
as well as follow the rules that make up the predefined format. XML is an excellent
transport medium for sharing data across systems and platforms. However, well-
formed XML documents that adhere only to the basic XML syntax rules are very
easy to generate at the source, but usually very hard to read at their destination
without some kind of a description of the structure represented in the XML docu-
ment. In addition to basic XML syntax rules, XML document formatting rules are
described and enforced through a process called XML validation.

Chapter 4: XML Parsing Concepts covers techniques for integrating XML data with
existing applications. XML document parsing identifies and converts XML elements
contained in an XML document into either nested nodes in a tree structure or docu-
ment events, depending on the type of XML parser that is being used. This chapter
will focus on the concepts and theory behind XML document parsing and manipula-
tion using node tree-based parsers and event-based parsers. After an introduction
to the concepts, Chapters 5 and 6 provide practical examples of parsing an XML
document using DOM and SAX.

Preface

Chapter 5: Parsing XML with DOM extends Chapter 4’s basic concepts and pro-
vides a deep dive into XML Document Object Model (DOM) parsing. DOM parsing
can initially appear to be a larger topic than it really is, because of the sheer volume
of sources for DOM information. The number of DOM versions, the volume of
related W3C Recommendation documents, and the addition of Microsoft’s MSXML
classes and methods that are not part of the W3C DOM Recommendation all com-
plicate the DOM picture. In this chapter, we pull everything together into a single
reference with a focus on what is important to XML programmers. For the most
part, the DOM interfaces and nodes in MXSML and the W3C DOM are the same,
except for the way that they are named. The real differences begin when you get
into the properties and methods of nodes. For each interface, node, property, and
method, we list the supporting DOM versions (W3C 1.0, 2.0, 3.0, and MSXML).

Chapter 6: Parsing XML with SAX extends Chapter 4’s basic concepts and provides
a deep dive into the Simple API for XML (SAX) parsing. SAX parsing takes a little
more of a learning curve to master when compared to DOM parsing. While DOM
nodes can be directly mapped to corresponding XML source document objects,
SAX events do not provide the same level of direct comparison. Once you get
around the theory of the event model concepts, SAX parsing solutions can actually
be much easier to implement than DOM solutions. This is because there is only one
official source for SAX event specifications and documentation: the SAX project.
There is also an MSXML SAX implementation, which is based on SAX, but rewritten
as Microsoft XML core nodes. These two sources are relatively simple to keep on
top of when compared to the exponential growth of W3C DOM Working Drafts that
appear with each new DOM version, and DOM node property and method variants
that appear with every new version of the MXSML DOM parser. For each event in
this chapter, we list the supporting SAX versions (SAX 1 and 2, and MSXML). We
also point out the subtle differences in each event between the platforms.

Chapter 7: XSL Concepts discusses the syntax, structure, and theory of Extensible
Stylesheet Language (XSL) and XSL Transformations (XSLT), with some basic exam-
ples for illustration.

Chapter 8: XSL Transformations applies the theory from Chapter 7 to real-world
examples that use XSLT elements, functions, and XPath expressions to transform
XML documents to other formats of XML, text documents, and HTML pages. All of
the examples in this chapter use the same source XML file. We convert the source
XML document into HTML, delimited text, and HTML to show advanced XSLT tips
and tricks.

Chapter 9: XSL Formatting Objects provides the capability to format XML docu-
ments dynamically as “camera-ready” artwork or printable pages. With XSL:FO,

an XML document can be the basis for a print version of XML data. This chapter
extends the HTML example from Chapter 8 by using XSL:FO to gain more control
over the output format. The example in this chapter produces a Portable Document
format (PDF) file from a source XML document using the Apache FOP (Formatting
Objects Processor) engine.

X|| XML Programming Bible

Part II: Microsoft Office and XML

This section provides examples of generating XML from MS access data as well as
creating an Excel spreadsheet from an XML data source. These examples illustrate
MS-specific techniques for parsing and generating MS-derived XML. We review the
sample code in the chapters line-by line so that previous VBA/VB code knowledge
is not necessary to understand and work with the examples.

Chapter 10: Microsoft XML Core Services covers the services Microsoft has pro-
vided for working with XML on Windows. The focus here is on Microsoft’s pre-NET
software development environment, COM. The .NET XML toolset is extensive
enough to require a separate discussion in later chapters of this book. In this chap-
ter you will learn about how to install MSXML and get started using its core fea-
tures. You will also learn about how MSXML is versioned and how to keep things
straight when side-by-side versions are installed.

Chapter 11: Working with the MSXML DOM covers how to work with the DOM in
applications. You will also learn the most commonly used methods and properties
of the DOM.

Chapter 12: Generating XML from MS Access Data looks at the XML features in
Access and shows you how they can be used to create more flexible and more
full-featured applications. You will learn about how XML data can be imported and
exported from access using the user interface as well as through code. You will
learn how XML schemas can be used to ensure data integrity for imports and
exports. You will also learn more about leveraging XSL to convert XML into a format
that can be directly consumed by Access.

Chapter 13: Creating an Excel Spreadsheet from an XML Data Source covers the
release of Excel 2002 with Office XP. This version of Excel has built-in native sup-
port for XML. Microsoft Excel 2002 now recognizes and opens XML documents
including XSL processing instructions. In addition, Microsoft Excel spreadsheets
can be converted to XML files while preserving the format, structure, and data
through the XML spreadsheet file format. In this chapter, you will learn about how
Excel can consume and produce XML. You will learn about the XML spreadsheet file
format and the XML Spreadsheet Schema (XML-SS). You will see how to use Excel
programmatically to export data to XML and how XML-SS can work with scripts or
Web pages to produce alternate displays of Excel.

Part 11l: XML Web Applications Using J2EE

This section builds on the basic concepts that were introduced in Parts I and II,
showing readers how to create XML Web Applications using J2EE. We review

Preface

sample code line-by-line, so previous Java/J2EE knowledge is not necessary to
understand and work with the examples. Open source libraries for working with
Java tools are referenced and specific code examples are provided for working with
Xalan and Xerces. We also provide examples for the XML APIs in the Sun Java Web
services Developer Pack (WSDP), including the Java API for XML Processing (JAXP),
Java Architecture for XML Binding (JAXB), and Java Server Pages Standard Tag
Library (JSTL) APIs.

Chapter 14: XML Tools for J2EE: IBM, Apache, Sun, and Others covers J2EE

API support for XML. There are several J2EE tools and code libraries that an XML
developer can take advantage of to help develop and deploy J2EE XML applications
in a timely and efficient manner. In this chapter, we review the most popular code
libraries and introduce readers to the two most prominent J2EE developer tools:
the IBM WebSphere Studio Application Developer and the Sun ONE Studio.

Chapter 15: Xerces introduces readers to Apache Xerces, what it is, where it came
from, and how to integrate Xerces functionality into your applications. Xerces is a
set of Java classes, properties, and methods that supports XML document parsing.
Xerces is also an implementation and reference code library for the W3C XML DOM
(Level 1 and 2) standards. It also provides classes, properties, and methods that
keep up with the current Working Draft of the W3C DOM Level 3 standards, in
preparation for the day that DOM Level 3 attains W3C Recommendation status.
Xerces also supports SAX version 2.

Chapter 16: Xalan introduces readers to the Apache Xalan API, which facilitates
XSL Transformations in J2EE applications. Xalan contains Apache’s J2EE implemen-
tation classes for the W3C XSL Transformations (XSLT) Version 1.0 Recommendation
and the XML Path Language (XPath) Version 1.0 Recommendation. Xalan accepts

a stream of SAX or DOM input, and produces output formatted as a stream, SAX
events, or a DOM node tree. Transformation output can be accepted from the
results of a DOM or SAX parse and sent to another SAX or DOM parsing process.
Output can also be sent to another transformation process that accepts stream,
SAX, or DOM input.

Chapter 17: XML APIs from Sun provides examples for the Java API for XML
Processing (JAXP), Java Architecture for XML Binding (JAXB), and the Java Server
Pages Standard Tag Library (JSTL). We dive into the details of each API and provide
Java code examples (and JSP page examples for the JSTL). In addition, we use these
APIs in examples in the rest of the J2EE XML parts of this book. We also introduce
you to the Web service APIs in the Java Web services Developer Pack. These are the
Java API for XML Messaging (JAXM), the Java API for XML Registries (JAXR), Java
WSDP Registry Server, Java API for XML-Based RPC (JAX-RPC), and the SOAP with
Attachments API for Java (SAAJ). We cover the Web service APIs in more detail and
provide Web service API code examples in Chapter 33.

Xl

XV

XML Programming Bible

Part IV: Relational Data and XML

Part IV provides examples of Web applications that use relational XML data. There
are many relational XML formats, but most developers work with either SQL Server,
DB2, or Oracle, each of which has its own XML output and interactive XML features.
We provide an overview of each RDBMS XML access method, output options, asso-
ciated unique features, and quirks. After we explain each format, we provide work-
ing examples for transforming data from one RDBMS XML format to another.

Chapter 18: Accessing and Formatting XML from SQL Server Data covers the FOR
XML T-SQL extension, adding XML documents to a database, handling the data from
the document as relational data set using OPENXML, and using XPath expressions
to retrieve that data as XML documents.

Chapter 19: Accessing and Formatting XML from Oracle Data covers working with
SQL/XML and Oracle XML functions using Oracle XML DB. We also introduce you

to the XMLType data type and show you how to store data as XMLType and how to
map relational data as XMLType data using W3C Schemas. We also show you how
to store XML documents as relational data using W3C Schemas. PL/SQL developers
will see how to use DBMS_XMLGEN() as part of a PL/SQL solution. We also show
you how to use the XDK, XSQL, and the XML SQL Utility (XSU) in Java.

Chapter 20: Accessing and Formatting XML from DB2 Data shows you how to
retrieve XML documents from DB2 as whole documents. We also show you tech-
niques for extracting XML documents and document fragments from relational and
CLOB data. We also show you how to use the DB2 XML Extender to store and
retrieve XML documents in their original formats and as relational data.

Chapter 21: Building XML-Based Web Applications with JDBC applies many of the
tools and techniques that have been reviewed so far in the book. First, we show you
how to create a J2EE application that accesses relational data via JDBC. Next, we
show you how to adapt the J2EE application into a multi-tier application. The multi-
tier application uses servlets and JDBC to serve relational data via XML to Web
browsers and/or J2EE applications, depending on parameters that are sent to the
servlet. These examples are a great way to show you how to create applications
that generate XML, parse XML, and transport XML between servers and client
applications. Examples also include formatting considerations for displaying XML
on the Web, how to call servlets from Web browsers and custom applications, and
how to parse XML documents in a Web browser and client application.

Chapter 22: Transforming Relational XML Output into Other Formats reviews XSL
transformation of XML relational data formats from MS SQL Server, Oracle, and
DB2. We start with a comparison of each vendor’s approach to transforming XML,
then provide examples of transforming XML data from each RDBMS platform. We
include examples of stylesheets for transforming XML output from MS SQL Server,

Preface

Oracle, and DB2. We also show you a way to transform a generalized XML format
created by the JDBC-based J2EE application covered in Chapter 21. The result is a
framework for transforming relational data formats, including tips for converting
relational XML output to HTML. We finish up the chapter with an XML “data island”
example that transforms relational data and manipulates the data in a Web browser
client using Microsoft XML Core Services (MSXML).

Part V: Introduction to Web Services

This section introduces Web services that are based on XML formats and technolo-
gies. Web service concepts are introduced, and the three key components of Web
services, SOAP, WSDL, and UDDI are discussed in detail, with illustrative examples
of each technology. Part V ends with a comparison of J2EE and Microsoft Web ser-
vices, which both use the same underlying technologies but implement them in
subtly different ways.

Chapter 23: Web Service Concepts introduces readers to the concepts of Web ser-
vices and how they relate to application development, whether the applications
leverage XML or not. The chapter starts with the basic concepts of Web services
architectures, SOAP, WSDL, and UDDI. These examples provide an introduction for
the next chapters, which cover SOAP, WSDL, UDDI MS Web services, and J2EE Web
services in deeper detail.

Chapter 24: SOAP introduces the protocol for packaging Web service requests
and responses. SOAP makes it possible to communicate between applications run-
ning on different operating systems, with different technologies and programming
languages all in play. This chapter covers the nuts and bolts of SOAP. The specific
structure of SOAP messages, how to send and receive messages, and what is con-
tained in the full payload of a SOAP message are described and examples are
provided.

Chapter 25: WSDL covers the other moving part of a Web services architecture,
which defines what SOAP calls and responses should look like, and helps Web ser-
vice calling agents define what an interface should be to a specific Web service.

Chapter 26: UDDI introduces Universal Description, Discovery, and Integration
(UDDI). UDDI is an industry effort started in September of 2000 by Ariba, IBM,
Microsoft, and 33 other companies. Today, UDDI has over 200 community members.
This chapter describes UDDI, the final piece of the Web service puzzle, in detail. It
explains how UDDI links together consumers of Web services with providers and
how it works.

Chapter 27: Microsoft Web Services introduces Microsoft’s technology toolkit for
creating and consuming Web services using its COM-based technologies. Without

XVI

XML Programming Bible

question, Microsoft’s primary focus for Web services development is with .NET.
However, Microsoft recognizes that not all companies can or will migrate to .NET

at the drop of a hat. Adoption cycles for some organizations can take years. On the
other hand, organizations that have a large body of COM-based applications do not
want the Web services train to pass them by. Therefore, there must be a non-.NET
way for Windows applications to take advantage of Web services technologies. The
primary COM-based vehicle for Web services is contained in the MS SOAP Toolkit.
This chapter describes how Microsoft has implemented its strategy in technologies
that do not fall directly within the .NET initiative. This chapter covers version 3.0 of
the MS SOAP Toolkit, a COM-based collection of code, and documentation for work-
ing with SOAP in COM-based applications. The Office XP Web services toolkit is also
covered. It’s a clever add-in that lets Office applications consume Web services, all
using MS SOAP under the hood.

Chapter 28: J2EE Web Services introduces an example of a basic J2EE Web service
architecture. We use the example to describe some of the advantages of working
with Web services in J2EE. We also introduce readers to vendor platforms that sup-
port the architecture.

Part VI: Microsoft.NET and Web Services

This section covers the techniques and tools for building Web services for MS .NET.
These include using ASP.NET for creating and deploying .NET Web services, access-
ing .NET Web services from Web applications, and building a Windows-based .NET
Web services Client application using Visual Studio.Net and Visual Basic.NET.

Chapter 29: Creating and Deploying .NET Web Services introduces the .NET
Framework. The .NET Framework comes with all of the building blocks for Web
services built right in. Essentially, any server with the .NET Framework and IIS
installed is ready to provide Web services. Furthermore, .NET carefully balances
the need for making Web services easier to create, deploy, and maintain with the
requirement that developers still be able to go under the hood and do more
advanced techniques. This chapter shows readers how to build Web services using
the .NET Framework and its associated APIs. The chapter also covers what is
needed to deploy a Web service into a production scenario, and how Web services
can be further customized. Most importantly, readers will see how XML is used
throughout the .NET Framework support for Web services, which classes use XML,
how the configuration files use XML, and how other Framework XML classes can
be used when creating Web services.

Chapter 30: Accessing .NET Web Services takes a step back to look at some of the
issues that encompass more than the simple client-server relationship. Security,
performance, and deployment for .NET Web services, and upgrading MS applica-
tions to .NET Web services, are covered.

Preface X\/i |

Chapter 31: Building a .NET Web Services Client provides examples of the many
different forms of .NET Web service clients. They can be Windows Forms applica-
tions, Web applications, and custom components in a class library, a control, a
Windows service, or even another Web service. The main difference between all
of these approaches is that the Web service is simply being called from a different
container, but the way it is called is largely the same. In this chapter, a couple of
client applications are developed to call a Web service. Tips and techniques for
getting a client application off the ground are explained in detail.

Part VII: Web Services and J2EE

This part of the book illustrates techniques and tools for building Web services
using J2EE. Examples are illustrated using open-source Web service Tools for J2EE
from IBM, Apache, Sun, and others. We specifically illustrate Web service develop-
ment with the Sun Java Web services Developer Pack, which includes all of the
tools in the Sun Java XML Pack, plus a Java Server Pages Standard Tag Library
(JSTL), the Java WSDP Registry Server, a Web Application Deployment Tool, the Ant
Build Tool, and the Apache Tomcat container. We also provide examples of working
with the Apache SOAP toolkit and the IBM Web services Toolkit. We finish this part
of the book with examples for deploying J2EE Web services and techniques for
accessing J2EE Web services.

Chapter 32: Web Service Tools for J2EE: IBM, Apache, Sun, and Others shows
readers some of the tools that can help build that architecture. Fortunately, for
today’s developers, Java development environments have evolved into rock-solid
code tools that generate J2EE code, compile it, and let you test it on the J2EE appli-
cation server of your choice. Tools for developing Web services have evolved as
well. Today there are several excellent J2EE code libraries available for free that
support Web service functions such as building SOAP envelopes and generating
J2EE client proxy classes from WSDL files. You can also generate WSDL from Java
classes, as we show you in Chapter 35. Most libraries even ship with the source
code if you need to customize them for a particular application. In this chapter,
we review developer tool offerings from IBM, Eclipse, Sun, and Apache. There are
literally hundreds of other offerings that come and go over the years, but these
providers offer consistency and reliability in their offerings, which are good things
if you want to base your applications on them.

Chapter 33: Web Services with the Sun Java Web Services Developer Pack
focuses on the APIs related to Web service development. This chapter explores the
Java API for XML Messaging (JAXM), which provides developers with standard API
for developing message-based solutions that use Web services and SOAP as their
messaging infrastructure. The Soap with Attachments API for Java (SAAJ) presents
developers and vendors with a standard API for assembling the SOAP messages
that are at the heart of all Web service interactions. The chapter also covers the

XVII

XML Programming Bible

Java API for XML-based RPC (JAX-RPC). This specification provides developers with
a powerful, standard framework for consuming and developing Web services.

Chapter 34: Apache AXIS introduces readers to AXIS, the open-source tool that
contains all the basic elements a developer needs to rapidly consume, build,
deploy, and host a Web service. Axis strikes a nice balance between power and
complexity, allowing developers to quickly build Web services with a relatively
short learning curve while still allowing more advanced customization of message
processing, type mapping, and so on. In this chapter, the fundamentals of the Axis
architecture are covered, taking an in-depth look at how the Axis engine processes
requests and responses. The chapter also examines some of the goals of the archi-
tecture and how these goals influenced the solution that was ultimately imple-
mented. It also discusses each of the deployment models that are supported by
Axis. Specifically, the chapter looks into how developers can customize their Web
service configuration via deployment descriptors. Additionally, this chapter covers
some of the tools that are provided with Axis. It provides an overview of how the
Java2WSDL and WSDL2Java tools can be used to generate the client and Web ser-
vice implementation files. Examples of the contents of these generated files are
introduced and explained. Additionally, the chapter looks at the TCPMON utility
and discuss how it can be used to monitor the flow of messages to and from your
Web service.

Chapter 35: Accessing Web Services from Java Applications rewrites the servlet
code that we developed for Chapter 21 for a Web service application. It’'s a common
task for a developer these days to upgrade a servlet-based application to a Web ser-
vice application. By showing you how to adapt the code from Chapter 21, you get to
see how to set up a Web service, and also how to convert servlets to Web services.
Instead of a servlet-to-J2EE client connection this time, we use Apache AXIS on the
client side to create a SOAP envelope that is sent to the server. On the “server”
(really just the local workstation), we show you how to use the Apache AXIS Simple
Server, which is a very handy tool for developing and testing Web services.

Part VIlI: Advanced Web Services

This final section covers RDBMS support for Web services. We also delve into the
developing standards associated with Web service security. Standards-based
options for Web service encryption, signatures, and authentication are discussed in
detail in Chapter 37.

Chapter 36: Accessing Relational XML Data via Web Services covers the features
that RDBMS vendors have added to their database products that handle WSDL and
SOAP. In most cases, the Web service features are an extension of XML features in

the same product. In this chapter, we cover the ways that MS SQL Server, IBM DB2,
and Oracle databases support Web services. We outline each vendor’s methods for

Preface XiX

Web service support. We show examples of setting up a SQL Server Web service
using IIS and SQLXML. We discuss implementation of Web services on Oracle9iAs
Application Server. We also introduce you to DB2 Web service features, including
the Web services Object Runtime Framework (WORF), and Document Access
Definition Extension (DADX) files. We finish off the chapter by showing you an
example that uses DB2 Web service functionality in a multi-tier J2EE Web service
application.

Chapter 37: Authentication and Security for Web Services introduces readers to
several projects that are under way to meet the needs of industry strength solu-
tions. For Web services, this means security and authentication. There are several
groups working alone and together to form standards around Web service security.
Web services also need a way to interact with other Web services as a single, seam-
less process. Efforts are being made to develop standards that manage groupings of
Web services as a single transaction, with commit and rollback functionality, among
other features. The individuals and groups that are organizing these projects come
from many different backgrounds. The W3C, the WS-I, and OASIS all have their
hands in one or more of these projects. Some standards are competing, and some
are complementary. In this chapter, we sort through the options and help you
define the current projects, the problem that a project is trying to solve, and where
overlap between projects occurs.

Companion Web Site

You can download the code examples that are listed in the XML Programming Bible
from the book’s companion Web site. Go to www.wiley.com/compbooks/benz to
find the code examples that are used in the book, in addition to other valuable
information.

Acknowledgments

While most technical books of this size are not a light undertaking, this
particular book involved more than the usual difficulties. Most of these

difficulties were, sadly, due to my own personal situation. During the writing of

this book, my father was in the last stages of cancer, and passed away while [was
working on the final few chapters. I'd like to thank the editors for their patience
and professionalism during this difficult time. Especially I'd like to thank Senior
Acquisitions Editor Jim Minatel for finding additional authors to keep us on (slip-
ping) deadlines without sacrificing the quality of the content. I'd also like to thank
my coauthor, John Durant, and contributor, Tod Golding, for providing excellent
content that fits very well with the rest of the book. I'd also like to thank the project
editor, Kenyon Brown, the copy editor, Anne Owen, and the technical editor, Sundar
Rajan, for their flexibility. They all did a superb job.

—Brian Benz

A project like this is requires the genuine commitment of many people, and the for-
giveness of still more. [must thank Brian for the main thought behind this work. He
is a fine writer, and decent fellow. I must also thank Senior Acquisitions Editor Jim
Minatel, the editors, Kenyon Brown, Anne Owen, and Sundar Rajan, as well as the
rest of the production staff for limiting their complaints about my email habits.
Moving from self-employment to working for Microsoft was not easy while engaged
in this lengthy initiative. Primarily, | thank my sweet wife, Carolyn, and my boys,
Andrew, James, John, and Paul, for being excited about the project and letting me
work on it with impunity! [must also thank Lisa L. Graber for picking up all of the
details of my life as [was obligated to let them fall. I thank Maikeli Wolfgramm for
giving me the faith to improve, and I thank my dear parents for teaching me how to
work, work, and work. It is a lesson best learned when young.

—John R. Durant

Contents at a Glance

Preface e ix
Acknowledgments xxi
Partl:Introducing XML iiinnnnnnnn 1
Chapter 1: XML Concepts e e 3
Chapter 2: XML Documents 29
Chapter 3: XML Data Format and Validation 47
Chapter 4: XML Parsing Concepts 79
Chapter 5: Parsing XML withDOM 91
Chapter 6: Parsing XML with SAX 123
Chapter 7: XSLT Concepts ittt 173
Chapter 8: XSL Transformations 191
Chapter 9: XSL Formatting Objects 217
Part II: Microsoft Officeand XML. 233
Chapter 10: Microsoft XML Core Services 235
Chapter 11: Working with the MSXMLDOM 251
Chapter 12: Generating XML from MS AccessData 271
Chapter 13: Creating an Excel Spreadsheet from an XML Data Source 291
Part 111: XML Web Applications Using J2EE 309
Chapter 14: XML Tools for J2EE: IBM, Apache, Sun, and Others 311
Chapter 15:Xerces 323
Chapter 16:Xalan e 341
Chapter 17: XML APIs fromSun 361
Part IV: Relational Dataand XML 429
Chapter 18: Accessing and Formatting XML from SQL Server Data 431
Chapter 19: Accessing and Formatting XML from Oracle Data 473
Chapter 20: Accessing and Formatting XML fromDB2 509
Chapter 21: Building XML-Based Web Applications with JDBC 539

Chapter 22: Transforming Relational XML Output into Other Formats 591

Part V: Introducing Web Services 623

Chapter 23: Web Service Concepts 625
Chapter 24: SOAP 635
Chapter 25: WSDL 645
Chapter 26: UDDI 655
Chapter 27: Microsoft Web Services 665
Chapter 28: J2EE Web Services, 683
Part VI: Microsoft.NET and Web Services 697
Chapter 29: Creating and Deploying .NET Web Services 699
Chapter 30: Accessing .NET Web Services 711
Chapter 31: Building a .NET Web Services Client 719
Part VII: Web Servicesand J2EE 735
Chapter 32: Web Service Tools for J2EE: IBM, Apache, Sun, and Others 737
Chapter 33: Web Services with the Sun Java Web Services Developer Pack . . . 747
Chapter 34: Apache Axis 773
Chapter 35: Accessing Web Services from Java Applications 801
Part VIII: Advanced Web Services 833
Chapter 36: Accessing Relational Data via Web Services 835
Chapter 37: Authentication and Security for Web Services 871

Contents

Part I: Introducing XML 1

Chapter 1: XML Conceptscivevuenuena.3

WhatIs XML? e 3
Extensibility 5
Structure e 5
Validity 6

WhatIs XML Not? 6

XML Standards and the World Wide Web Consortium 7

XML Elements and Attributes o oL, 7
Elements 7
Attributes 8
Text . . o 8
Emptyelements 8

XML Document Structure 9

Data SourceEncoding 9

Element and Attribute Structure L. 10

XML Document Syntax. 12

XML Namespaces ittt 13
When touse namespaces oi it 14

XML Data Validation 14
Validating XML documents withDTDs 16
Validating XML documents with Schemas 18

Special Characters and Entity References 22
Using entity references as variables 23
Reserved character references 24

XML 1.1 . e 24
XML 1.1newfeatures 25

SUMMAry o oo 27

Chapter 2: XMLDocumentscvuvuu.n..29

An Example XML Document 29

XML Document Structure and Syntax 32
Emptyelements 36
XML housekeeping 36

Entity references and special characters 37

XXV| XML Programming Bible

International XML withxml:lang 37
Keeping Your Space with xml:space 39
XML Namespaces i i ittt 40
When to use namespaces oo e i e e e 44
Element Name Tips 45
SUMmMAaryo o 46
Chapter 3: XML Data Format and Validation 47
XML Parsers for Data Validation 49
Document Type Definitions 49
ApplyingDTDs 51

DTD structure i 53
W3CXMLSchemas 62
W3C Schema datatypes 62

W3C Schemaelements 65

W3C Schema element and data type restrictions 67
Namespaces and W3C Schemas 68

An example W3C Schema document 68
ApplyingSchemas L o o 71
Schema structure and syntax 72
SUMMAry . . . oo o 76
Chapter 4: XML Parsing Concepts 79
Document Object Model (DOM) 80
What is DOM? e 80
About DOM 1,DOM 2,andDOM 3 82
Simple APl for XML (SAX) 83
What is SAX? e 83
SAXTand SAX2 e 83
About XML Parsers 86
Apache’sXerces 87
IBM’s XMLAJ o 87
Sun’s JAXP 87
Microsoft’s XML parser (MSXML) 88

DOM or SAX: Which ParsertoUse? 88
SUMMAry . . . o o o e e 90
Chapter 5: Parsing XML withDOM 91
Understandingthe DOM 92
The W3C DOM 1 Recommendation 92

The W3C DOM 2 Recommendation 93

The W3C DOM 3 Recommendation 93
Microsoft MSXML DOM enhancements 95

DOM InterfacesandNodes 95
Understanding DOMnodes 98

W3C DOM nodeTypes, constants, nodeNames, and nodeValues . . . 100

Contents

The MSXML DOM nodeTypeString property 100

DOM node properties 101
W3CDOMnodemethods 104
Other DOM node properties and methods 105
Summary e e 121
Chapter 6: Parsing XML with SAX 123
Understanding SAX 124
Where SAX comesfrom 124
SAX1and SAX2 e 125
Microsoft MSXML SAX extensions 125
Interfaces for SAXand MSXML, 126
SAX coreinterfaces 127

SAX extension interfaces 128
MSXML SAX extension interfaces 129

SAX Methods and Properties 130
SAXinterfaces 130
SAXhelperclasses 143

SAX extension interfaces 160

SAX extension helperclasses 163
MSXML Extension Interfaces 167
Summary e e 171
Chapter 7: XSLT Conceptso vvnnunnnn. 173
Introducing the XSL Transformation Recommendation 173
How an XSL TransformationWorks 175
XSLstylesheets 175

XSL for attributes and elements 175
XSETElements oo o e e e e 179
XSLandXPath 183
XSLT Extensions with EXSLT.org 189
Summary e e 190
Chapter 8: XSL Transformations 191
ToBegin... e 191
XMLtoXML 194
XMLtotext e 209
XMLtoHTML 212
Summary 216
Chapter 9: XSL Formatting Objects 217
Understanding XSL. Formatting Objects 217
Understanding FOP Servers 219
Converting XMLtoPDF 219

Summary e e e 232

XXVII

XXVIIl XML Programming Bible

Part 1I: Microsoft Office and XML 233
Chapter 10: Microsoft XML Core Services 235
Getting Started 235
System requirements and installation 236
Corefilesand versions 238
Parsing and Features Overview 241
Parsing 241
Fundamentalclasses 242
Otherobjects 246
Newobjects 247
Summary 249
Chapter 11: Working with the MSXMLDOM 251
Introduction 252
DOMmembers 252
Building XML-Based Applications 263
Summary 269
Chapter 12: Generating XML from MS AccessData 271
Introduction 272
Exporting and ImportingData 272
Exporting 272
Importing 284
Summary e 289
Chapter 13: Creating an Excel Spreadsheet
froman XML DataSourcet iinnn.. 291
Introduction 292
Importing XML e 292
Exporting XML e 304
Summary e e 307

Part I1l: XML Web Applications Using J2EE

Chapter 14: XML Tools for J2EE: IBM, Apache,

Sun,andOthers0t rnnnnn 311
IBMTools 312
WebSphere Studio Application Developer and Workbench 312

IBM AlphaWorks 313

Eclipse Tools e 315

Contents
SunTools 316
SunONE 317
The Java Web Services Developer Pack 317
ApacheTools 318
XML Parsing Code: XMLA4J, Xerces, and JAXP: What Is What? 320
Summary e e 321
Chapter 15:Xerces i iriirninnnnnnnns 323
Downloading and Installing Xerces 324
Parsing XML Documents in J2EE 0oL, 325
Parsing XML documents withDOM 325
Parsing XML documents with SAX 334
Summary 340
Chapteri6:Xalan iiiirnnnn. 341
Downloading and Installing Xalan 342
Transforming XML DocumentsinJ2EE 343
Using Xalan to transform XML documents 343
Sending transformation output to the screen and using
an XML stylesheet reference 349
Passing transformation output to DOMand SAX 351
Summary 359
Chapter 17: XML APIsfromSun 361
About the Java Community Process 362
Introduction to the Sun Java
Web Services Developer Pack 363
JAXP (Java API for XML Processing) 363
JAXB (Java Architecture for XML Binding) 363
JAXM (Java APl for XML Messaging) 364
JSTL (Java Server Pages Standard Tag Library) 364
JAX-RPC (Java APl for XML-BasedRPC) 364
JAXR (Java API for XML Registries) 364
Java WSDP Registry Server 364
SAAJ (SOAP with Attachments APl for Java) 364
Developing with JAXP (Java API for XML Processing) 365
Swapping processors and parsers with JAXP 367
Working with JAXP and Xalan JAXP examples 370
Developing with JAXB (Java Architecture for XML Binding) 371
Developing with JSTL (JavaServer Pages Standard
Tag Library) e 389
Downloading and installing the JSTL 397
Working with the JSTL XML Processing Library 400

Summary 428

XXIX

XXX

XML Programming Bible

Part IV: Relational Data and XML 429

Chapter 18: Accessing and Formatting
XMLfromSQLServerDatac0uoueuuuuennn

The XML Programming Bible Example Tables
Installing and Configuring SQLXML
Viewing XML Results in Query Analyzer
Accessing SQL Server Using HTTP
Retrieving XML Data Using FORXML
UsingRAWmode
Using AUTOmode,
Using Explicitmode
Updating SQL Server Datawith XML
Updating relational data using OPENXML
Creating an annotated W3C schema for SQL Server data
Using schemas to specify SQL Server table relationships
Using XML BulkLoad
Updategrams
Summary e

Chapter 19: Accessing and Formatting XML from Oracle Data

The XML Programming Bible Example Tables
Installing and Configuring the Oracle Database and the Oracle XDK . . .
About Oracle XMLDB
AbouttheOracleXDK,
Developing Oracle XML Solutions with XML DB
Working with XMLDB
Working with multiple data rows using XMLDB
Working with the XMLTYPE datatype
Creating relational data from XML documents
Formatting XML documents with XMLFormat
XML resources for PL/SQL developers
ADBMS_XMLGEN example
Working with the Oracle XDK
Oracle and Java integration: JDBCand SQLJ
Summary e

Chapter 20: Accessing and Formatting XML fromDB2

Installing DB2 and the DB2 XML Extender
The XML Programming Bible Example Tables
DB2ZXMLFunctions
Adding an XML document declaration
Grouping and ordering XML with XMLAGG()

Contents
Developing XML Solutions with the DB2 XML Extender 521
Binding and enabling databases for XML Extender 521
Working with Document Access Definitions (DAD) 523
Working with XML columns 523
XML column mapping example, 524
XML collection SQL mapping DAD example 529
XML Collection RDB Node example 531
Checking your RDB Node DAD with the DAD Checker 535
Adding DADS and DTDs to the database 536
SuMmary e 537
Chapter 21: Building XML-Based Web Applications with JDBC . . . 539
About Java Database Connectivity JDBC) 539
Introduction to the Sample Java Application - XMLPBXMLApp.java 542
How the applicationworks 542
About the example SQL Server database 543
Creating the Java Application User Interface 543
Defining public variables and the application window 544
Setting objects in the Window and implementing
ActionListeners 545
Defining the action for the sourcelist 547
Defining the action for the quotelist 547
Retrieving a list of authors from the Authors table viaJDBC 548
Retrieving a list of quotes from a selected author 550
Generating Custom XML Output 551
XML Servlets 558
Example: A Three-Tier System Combining Java Applications,
Servlets, and SQL Servero 559
Prerequisites for Servlet Development 560
Introducing the XML example servlets and client application 560
Running the Web Example Application. 561
Under the Hood of the Web Application Servlets 564
The XMLPBWebServletGetAuthorList Servlet 564
The XMLPBWebServletAppGetSingleAuthorList Servlet 566
The XMLPBWebServletBuildElementXML Servlet 569
The XMLPBWebServletBuildAttributeXML Servlet 572
A Multi-Tier Java Application 575
Installing the XMLPBServletApp Java Application 575
Under the Hood of the Multi-Tier Application Servlets 576
The XMLPBAppServletGetAuthorList Servlet 576
The XMLPBAppServletGetSingleAuthorList Servlet 578
The XMLPBAppServletBuildElementXML Servlet 580
The XMLPBAppServletBuildAttributeXML Servlet 583
Under the Hood of the XML Quote Generator — Servlet
Edition Application 586
Summary e 590

XXXI

XXX|| XML Programming Bible

Chapter 22: Transforming Relational XML

Output into OtherFormats 591
Transformation Functions in Oracle,

DB2,and MSSQL Server 592
MSSQLServerand XSL 592
Oracleand XSL e 596
DB2and XSL 601

Transforming JDBC Result Sets toHTML 606
Building Data Islands with the Microsoft XML Core

Services (MSXML) 611
Introduction to XML dataislands 611
The Microsoft XML Core Services (MSXML) 612
The Data Islands ExamplePage 612
Creating a data island using JavaScript and MSXML 614
Transforming an XML document to an XML dataisland 616
Parsing data island dataintoatable. 618
Linking XSL with HTML page design elements 619
Sorting data islands using JavaScriptand XSL 619

Summary 621

Part V: Introducing Web Services

Chapter 23: Web ServiceConcepts 625
Introduction to Web Services L. 625

Web Service Building Blocks 626
SOAP (Simple Object Access Protocol) 627

WSDL (Web Services Description Language) 628

UDDI (Universal Description, Discovery and Integration) 628

Web Services Architecture L. 629
Basic Web service architecture 629

Extended Web service architectures 629

Web Service Models 631

The calland responsemodel 631

The brokered callsmodel 632
Thechainedmodel 633

Serving Web Services 633
Consuming Web Services 634
SumMmary e e e 634
Chapter24:SOAPttt ninarnnnnns 635
Introduction 635
SOAP format 636

ASOAPrequest 637

Contents

TheHTTPheader 637

The SOAP request envelope 639
ASOAPresponse 642
Summary e 643
Chapter25:WSDLottt i e e e e 645
WSDL Format e 645
Using WSDL e 649
Definitions 649
Parts, types,and messages 649
Operations and portTypes 649
Bindings 650
Servicesandports 650
Updating WSDL e 651
Editing WSDL e 652
Summary 653
Chapter26:UDDIcuiiinirnnnnnnnnn 655
UDDI Structure e 655
Finding Web services withUDDI 656
UDDIAPIs e 661
The Microsoft UDDISDK 663
Summary e e 664
Chapter 27: Microsoft Web Services 665
The Microsoft SOAP Toolkit 666
What'sintheSDK 666
Overview of the MS SOAP component library 667
Server-Side Programming with MSSOAP 668
Client-Side Programming with MSSOAP 675
Office XP Web Services Toolkit 676
Utilities in the MS SOAP Toolkit 680
Summary 682
Chapter 28: J2EE Web Services 683
Web Services: NETor J2EE? 683
Yeah, blah, blah, blah, Brian: Which one do I pick? 684
Don’t overlook smart clients! 684
Aboutportals 685

J2EE Web Service Architecture o L. 687
Software Support for J2EE Web Services 690
Apache Offerings 691
Apache AXIS 691

Web Services Invocation Framework (WSIF) 691

Web Services Inspection Language (WSIL) 691

XXX

XXXi\/ XML Programming Bible

XML security e 692
JakartaTomcat 692

IBM Offerings 692
WebSphere Application Server 692
WebSphere Portal Server 692

IBM AlphaWorks 693
Eclipse Tools for J2EE Web Service Developers 693
BEA Offerings 694
Sun Offerings 694
Sun ONE Application Server 694

The Sun Java Web Services Developer Pack 694
Summary 695
Part VI: Microsoft.NET and Web Services 697

Chapter 29: Creating and Deploying .NET Web Services 699

Introduction 700

Brief overviewof NET 700
Web Services Class and Attributes 703
Visual Studio .NET and Language Support 705
XML Support for Web Services 707
Summary e e e 709

Chapter 30: Accessing .NET Web Services m
Web Services Security 711
Deploying .NET Web Services 715
Upgrading Existing Applications 716
Summary 717

Chapter 31: Building a .NET Web Services Client 719
Introduction 719
Browser-Based Client 721
Windows-Based Client (PocketPC) 730
Summary 734

Part VII: Web Services and J2EE 735

Chapter 32: Web Service Tools for J2EE: IBM, Apache,

Sun,andOthersc0i i nnnnn 737
Tools for Building J2EE Web Services 738
Apache Offerings 738

Web Services Invocation Framework (WSIF) 739

Web Services Inspection Language (WSIL) 739

Contents XXXV

XML Security 740
JakartaTomecat L L 740

IBM Offerings e 740
WebSphere Studio Application Developer and Workbench 740
IBM AlphaWorks 741
Eclipse Tools e 742
Sun Offerings 743
SunONE Studio L 743

The Sun Java Web Services Developer Pack 743
JAXP (Java API for XML Processing) 744
JAXB (Java Architecture for XML Binding) 744
JAXM (Java APl for XML Messaging) 744

JSTL (Java Server Pages Standard Tag Library) 744
JAX-RPC (Java APl for XML-BasedRPC) 745

Java WSDP Registry Server 745

SAAJ (SOAP with Attachments APl for Java) 745
AndOthers... 746
Summary e 746

Chapter 33: Web Services with the Sun Java Web Services

DeveloperPack iininnnnnn. 747
JWSDP Overview 748
The APIPuzzle 748
Java APl for XML Messaging (JAXM) 749
The JAXM providermodel 750
JAXMclients 751
SOAP messagesand SAAJ 751
Connections 752
JAXM package structure, 753
Profiles 754
JAXMversus JMS 754
Buildingaclient, 755
Handling a SOAPFault 759

The Provider Admin Tool 759

Java API for XML-Based RPC (JAX-RPC) 759
WSDLatwork 761
Developingclients, 762
Developing services (endpoints) 765
Mapping datatypes 766
Message handlers 767
Using wscompile and wsdeploy 767

Java API for XML Registries (JAXR) 767
Capability profiles 768
JAXR architecture 768
Afewregistryscenarios L. 769

Summary 772

XXXV| XML Programming Bible

Chapter 34: Apache Axis iinnnnnnnn 773
The Axis Evolution 773
Performance enhancements 774
Flexibility and extensibility 774
Supporting the SOAP specification 775
Improved interoperability o L. 775
Transport independence 775
JAX-RPC and SAAJ compliance 775
WSDL support e 775
Architecture Overview 776
Message handlers and message chains 777
Subsystem overview 778
Type mappings o v it e 780
Installing and Running Axis, 781
Axis distributionfiles 781
Copying WEBAPPS and LIBfiles 782
Startingtheserver 782
Building and Consuming a Simple Web Service 784
Setting up your environment 785
Creatingaservice 785
Building theclient, 786
Deployment 788
Dynamic deployment (JWS) 788
WSDD deployment 789
WSDL Tools e 794
WSDL2Java e 794
Java2ZWSDL 797
Monitor SOAP Message with TCPMON 798
TCPMONSEtup o oo o e e e e e e e e e e e e e 798
Monitoring messages 798
Summary e 800

Chapter 35: Accessing Web Services from Java Applications 801

When NOT to Use J2EE Web Services 802
Example: A Three-Tier System Combining Java Applications,
Web Services, and Relational Data 802
Separating the user interface from the data access processes 803
Prerequisites for Developing J2EE Web Services 803
Downloading and installing AXIS 803
Deploying Web service class, WSDL, and WSDD files 804
Running Web services on a J2EE application server 804
Running the Web services without a J2EE server 804
Installing the WSDLfiles 806
Developing Web Services o 807
Inside the XMLPBWSServletGetAuthorList Web service 807

The XMLPBWSServletGetSingleAuthorList Web service 813

Contents XXXV| |

The XMLPBWSServletBuildElementXML Web service 815
The XMLPBWSServletBuildAttributeXML Web service 818
Inside the XMLPBWSApp J2EE Client Application 820
How the applicationworks 821
Creating the Java Application User Interface 822
Defining public variables and the application window 822
Setting objects in the window and implementing
ActionListeners 823
Defining the action for the Authorlist 825
Defining the action for the Quotelist 826
Retrieving a list of authors by calling a Web service 827
Retrieving a list of quotes from a selected author 828
Generating Custom XML OQutput 829
SumMmary e e 832
Part VIII: Advanced Web Services 833
Chapter 36: Accessing Relational Data via Web Services 835
MS SQL Server and Web services 835
Installing and configuring SQLXML 836
Configuring IIS Virtual Directory Management Web Services 836
Handling Microsoft Web service data
inother platforms 839
Oracleand Web services 842
DB2 and Web services 843
Example: A Multi-Tier Web Service Using J2EEandDB2 844
Prerequisites for Developing J2EE and DB2 Web Services 845
Downloading and installing the DB2 JDBC driver 845
Downloading and installingWORF 846
Deploying Web service class, WSDL, and WSDD files 847
Running Web services on a J2EE application server 848
Running the Web services without a J2EE server 848
Installing the WSDLfiles 850
Developing Web Services 850
Inside the XMLPBWSMTServletGetAuthorList Web service 850
The XMLPBWSMTServletGetSingleAuthorList Web service 856
The XMLPBMTWSServletDB2Format Web service 858
Inside the XMLPBWSMTApp J2EE Client Application 859
How the applicationworks 860
Creating the Java Application User Interface 860
Defining public variables and the application window 860
Setting objects in the window and implementing
ActionListeners 862
Defining the action for the authorlist 864

Defining the action for the quotelist 864

XXXVIII XML Programming Bible

Retrieving a list of authors by calling a Web service 865
Retrieving a list of quotes from a selected author 866
Generating DB2 XML Output 867
Summary e 869
Chapter 37: Authentication and Security for Web Services 871
Secure, Reliable Web Service Requirements 872
Current Web Service Standards for Security and Authentication 873
Transport-Layer Security 873
Public key infrastructure (PKI) 874
Kerberos 874
W3C Recommendations 874
OASIS Security and Authentication Specifications 875
WS-Security 875
WS-Policy framework, 876

Web Services Policy Assertions Language
(WS-PolicyAssertions) 876
Web Services Policy Attachment (WS-PolicyAttachment) 877
Web Services Security Policy Language (WS-SecurityPolicy) 877
WS-Trusto 877
WS-SecureConversation 877
Secure Assertion Markup Language (SAML) 878
XML Access Control Markup Language (XACML) 878
Web Service Security and AuthenticationinJava 878
Java community process initiatives for Web service security 879
Apache XML Security 879
IBM XML Security Suite o oL 879
Web Service Security and Authentication in Microsoft NET 880
Web Service Transactions: BPELAWS and WSCI 880
Web Services Choreography Interface (WSC) 881
BPELAWS 881
BPEL4WS, BPML, and WSCI working together 882
Tools for transactional Web services 882
Summary e e 883

Introducing XML

Part [starts with an XML Concepts chapter that gives

an overview and History of XML, its purposes, and
comparisons against previous and alternative data integration
technologies. We then proceed to describe XML basic formats,
XML well-formedness and XML Validation against DTDs and
Schemas. The chapters on XSL Transformations and XSL
Formatting objects illustrate the transformation and format-
ting of XML data using XML via working examples. Part I ends
with examples of parsing XML documents, including examples
of XML parsing using SAX and DOM.

+ 4+ o+
In This Part

Chapter 1
XML Concepts

Chapter 2
XML Documents

Chapter 3
XML Data Format
and Validation

Chapter 4
XSL Parsing Concepts

Chapter 5
Parsing XML with
DOM

Chapter 6
Parsing XML with
SAX

Chapter 7
XSIT Concepts

Chapter 8

XSL Transformations
Chapter 9

XSL Formatting
Obijects

+ o+ e

XML Concepts

This book is targeted at programmers who need to
develop solutions using XML. Being a programmer
myself, [know that theory without practical examples and
applications can be tedious, and you probably want to get
straight to real-world examples. You're in luck, because this
book is full of working examples —but not in this chapter.
Some theory is necessary so that you have a fundamental
understanding of XML. I'll keep the theory of XML and related
technologies to a minimum as I progress through the chap-
ters, but we do need to cover some of the basics up front.

This chapter provides readers who are new to XML with an
overview and history of XML, its purposes, and comparisons
against previous and alternative integration technologies, and
ends with an overview of the next XML version, XML 1.1. The
rest of the chapters in this part of the book will use real-world
examples to describe XML basic formats, the structure of well-
formed XML documents, and XML validation against DTDs and
Schemas. The chapters on XSL Transformations and XSL
Formatting Objects will illustrate the transformation and for-
matting of XML data using XSLT via working examples. This
part of the book will be finished with examples of parsing XML
documents, as well as specific examples of XML parsing using
Simple API for XML (SAX) and Document Object Model (DOM).

What Is XML?

XML stands for Extensible Markup Language, and it is used to
describe documents and data in a standardized, text-based for-
mat that can be easily transported via standard Internet proto-
cols. XML, like HTML, is based on the granddaddy of all markup
languages, Standard Generalized Markup Language (SGML).

SGML is remarkable not just because it’s the inspiration and
basis for all modern markup languages, but also because of
the fact that SGML was created in 1974 as part of an IBM
document-sharing project, and officially became an

CHAPITER

s
In This Chapter
What is XML2

What is XML not2
XML standards and
the World Wide Web
Consortium (W3C)

Elements and
attributes

Document structure

Data source
encoding

Document syntax
XML namespaces
XML data validation

Special characters
and entity references

XML 1.1

¢+ s+

4

Part | 4+ Introducing XML

International Organization for Standardization (ISO) standard in 1986, long before
the Internet or anything like it was operational. The ISO standard documentation
for SGML (ISO 8879:1986) can be purchased online at http: //www.1iso.org.

The first popular adaptation of SGML was HTML, which was developed as part of a
project to provide a common language for sharing technical documents. The advent
of the Internet facilitated the document exchange method, but not the display of
the document. The markup language that was developed to standardize the display
format of the documents was called Hypertext Markup Language, or HTML, which
provides a standardized way of describing document layout and display, and is an
integral part of every Web browser and Website.

Although SGML was a good format for document sharing, and HTML was a good
language for describing the layout of the documents in a standardized way, there
was no standardized way to describe and share data that was stored in the docu-
ment. For example, an HTML page might have a body that contains a listing of
today’s closing prices of a share of every company in the Fortune 500. This data can
be displayed using HTML in a myriad of ways. Prices can be bold if they have
moved up or down by 10 percent, and prices that are up from yesterday’s closing
price can be displayed in green, with prices that are down displayed in red. The
information can be formatted in a table, and alternating rows of the table can be in
different colors.

However, once the data is taken from its original source and rendered as HTML in a
browser, the values of the data only have value as part of the markup language on
that page. They are no longer individual pieces of data, but are now simply pieces
of “content” wedged between elements and attributes that specify how to display
that content. For example, if a Web developer wanted to extract the top ten price
movers from the daily closing prices displayed on the Web page, there was no stan-
dardized way to locate the top ten values and isolate them from the others, and
relate the prices to the associated Fortune 500 Company.

Note that | say that there was no standardized way to do this; this did not stop
developers from trying. Many a Web developer in the mid- to late-1990s, including
myself, devised very elaborate and clever ways of scraping the data they needed
from between HTML tags, mostly by eyeballing the page and the HTML source
code, then coding routines in various languages to read, parse, and locate the
required values in the page. For example, a developer may read the HTML source
code of the stock price page and discover that the prices were located in the only
table on the HTML page. With this knowledge, code could be developed in the
developer’s choice of language to locate the table in the page, extract the values
nested in the table, calculate the top price movers for the day based on values in
the third column in the table, and relate the company name in the first column of
the table with the top ten values.

Chapter 1 4 XML Concepts

However, it’s fair to say that this approach represented a maintenance nightmare
for developers. For example, if the original Web page developers suddenly decided
to add a table before the stock price table on the page, or add an additional column
to the table, or nest one table in another, it was back to the drawing board for the
developer who was scraping the data from the HTML page, starting over to find the
values in the page, extract the values into meaningful data, and so on. Most devel-
opers who struggled with this inefficient method of data exchange on the Web were
looking for better ways to share data while still using the Web as a data delivery
mechanism.

But this is only one example of many to explain the need for a tag-based markup
language that could describe data more effectively than HTML. With the explosion
of the Web, the need for a universal format that could function as a lowest common
denominator for data exchange while still using the very popular and standardized
HTTP delivery methods of the Internet was growing.

In 1998 the World Wide Web Consortium (W3C) met this need by combining the
basic features that separate data from format in SGML with extension of the HTML
tag formats that were adapted for the Web and came up with the first Extensible
Markup Language (XML) Recommendation. The three pillars of XML are
Extensibility, Structure, and Validity.

Extensibility

XML does a great job of describing structured data as text, and the format is open
to extension. This means that any data that can be described as text and that can
be nested in XML tags will be generally accepted as XML. Extensions to the lan-
guage need only follow the basic XML syntax and can otherwise take XML wherever
the developer would like to go. The only limits are imposed on the data by the data
itself, via syntax rules and self-imposed format directives via data validation, which
[will get into in the next chapter.

Structure

The structure of XML is usually complex and hard for human eyes to follow, but it’s
important to remember that it’s not designed for us to read. XML parsers and other
types of tools that are designed to work with XML easily digest XML, even in its
most complex forms. Also, XML was designed to be an open data exchange format,
not a compact one— XML representations of data are usually much larger than
their original formats. In other words, XML was not designed to solve disk space or
bandwidth issues, even though text-based XML formats do compress very well
using regular data compression and transport tools.

5

6

Part | 4+ Introducing XML

It’s also important to remember that XML data syntax, while extensible, is rigidly
enforced compared to HTML formats. I will get into the specifics of formatting rules
a little later in this chapter, and will show examples in the next chapter.

Validity

Aside from the mandatory syntax requirements that make up an XML document,
data represented by XML can optionally be validated for structure and content,
based on two separate data validation standards. The original XML data validation
standard is called Data Type Definition (DTD), and the more recent evolution of
XML data validation is the XML Schema standard. I will be covering data validation
using DTDs and Schemas a little later in this chapter, and showing working exam-
ples of data validation in the next chapter.

What Is XML Not?

With all the hype that continues to surround XML and derivative technologies such
as XSL and Web Services, it’s probably as important to review what XML is not as it
is to review what XML is.

While XML facilitates data integration by providing a transport with which to send
and receive data in a common format, XML is not data integration. It’s simply the
glue that holds data integration solutions together with a multi-platform “lowest
common denominator” for data transportation. XML cannot make queries against a
data source or read data into a repository by itself. Similarly, data cannot be format-
ted as XML without additional tools or programming languages that specifically
generate XML data from other types of data. Also, data cannot be parsed into desti-
nation data formats without a parser or other type of application that converts data
from XML to a compatible destination format.

It’s also important to point out that XML is not HTML. XML may look like HTML,
based on the similarities of the tags and the general format of the data, but that’s
where the similarity ends. While HTML is designed to describe display characteris-
tics of data on a Web page to browsers, XML is designed to represent data struc-
tures. XML data can be transformed into HTML using Extensible Style Sheet
Transformations (XSLT). XML can also be parsed and formatted as HTML in an
application. XML can also be part of an XML page using XML data islands. I'll dis-
cuss XSLT transformations, XML parsing, and data islands in much more detail later
in the book.

Chapter 1 4+ XML Concepts 7

XML Standards and the World Wide Web
Consortium

The World Wide Web Consortium (W3C) is where developers will find most of the
specifications for standards that are used in the XML world. W3C specifications are
referred to as “Recommendations” because the final stage in the W3C development
process may not necessarily produce a specification, depending on the nature of
the W3C Working Group that is producing the final product, but for all intents and
purposes, most of the final products are specifications.

W3C specifications on the Recommendation track progress through five stages:
Working Draft, Last Call Working Draft, Candidate Recommendation, Proposed
Recommendation, and Recommendation, which is the final stop for a specific ver-
sion of a specification such as XML.

W3C Working Groups produce Recommendations, and anyone can join the W3C
and a Working Group. More information on joining the W3C can be found at
http://www.w3.org/Consortium/Prospectus/Joining. Currently, W3C
Working Groups are working hard at producing the latest recommendations for
XML and related technologies such as XHTML, Xlink, XML Base, XML Encryption,
XML Key Management, XML Query, XML Schema, XML Signature, Xpath, Xpointer,
XSL, and XSLT.

XML Elements and Attributes

Because XML is designed to describe data and documents, the W3C XML
Recommendation, which can be found buried in the links at http://www.w3 .org/
XML, is very strict about a small core of format requirements that make the differ-
ence between a text document containing a bunch of tags and an actual XML docu-
ment. XML documents that meet W3C XML document formatting recommendations
are described as being well-formed XML documents. Well-formed XML documents
can contain elements, attributes, and text.

Elements

Elements look like this and always have an opening and closing tag:
<element></element>
There are a few basic rules for XML document elements. Element names can con-

tain letters, numbers, hyphens, underscores, periods, and colons when namespaces
are used (more on namespaces later). Element names cannot contain spaces;

8

Part | 4+ Introducing XML

underscores are usually used to replace spaces. Element names can start with a let-
ter, underscore, or colon, but cannot start with other non-alphabetic characters or
a number, or the letters xml.

Aside from the basic rules, it’s important to think about using hyphens or periods
in element names. They may be considered part of well-formed XML documents,
but other systems that will use the data in the element name such as relational
database systems often have trouble working with hyphens or periods in data iden-
tifiers, often mistaking them for something other than part of the name.

Attributes

Attributes contain values that are associated with an element and are always part
of an element’s opening tag:

<element attribute="value"></element>

The basic rules and guidelines for elements apply to attributes as well, with a few
additions. The attribute name must follow an element name, then an equals sign (=),
then the attribute value, in single or double quotes. The attribute value can contain
quotes, and if it does, one type of quote must be used in the value, and another
around the value.

Text

Text is located between the opening and closing tags of an element, and usually rep-
resents the actual data associated with the elements and attributes that surround
the text:

<element attribute="value">text</element>

Text is not constrained by the same syntax rules of elements and attributes, so vir-
tually any text can be stored between XML document elements. Note that while the
value is limited to text, the format of the text can be specified as another type of
data by the elements and attributes in the XML document.

Empty elements

Last but not least, elements with no attributes or text can also be represented in an
XML document like this:

<element/>
This format is usually added to XML documents to accommodate a predefined data

structure. I'll be covering ways to specify an XML data structure a little later in this
chapter.

Chapter 1 4 XML Concepts

XML Document Structure

Although elements, attributes, and text are very important for XML documents,
these design objects alone do not make up a well-formed XML document without
being arranged under certain structural and syntax rules. Let’s examine the struc-
ture of the very simple well-formed XML 1.0 document in Listing 1-1.

Listing 1-1: A Very Simple XML Document

<?xml version="1.0" encoding="UTF-8"?>
<rootelement>
<firstelement position="1">
<levell children="0">This is level 1 of the nested
elements</levell>
</firstelement>
<secondelement position="2">
<levell children="1">
<level2>This is level 2 of the nested
elements</level2>
</levell>
</secondelement>
</rootelement>

Most XML documents start with an <?xml?> element at the top of the page. This is
called an XML document declaration. An XML document declaration is an optional
element that is useful to determine the version of XML and the encoding type of the
source data. It is not a required element for an XML document to be well formed in
the W3C XML 1.0 specification. This is the most common XML document declara-
tion:

<?xml version="1.0" encoding="UTF-8"7?>

There are two attributes contained in this XML declaration that are commonly seen
but not often explained. The XML version is used to determine what version of the
W3C XML recommendation that the document adheres to. XML parsers use this
information to apply version-specific syntax rules to the XML document.

Data Source Encoding

Data source encoding is one of the most important features for XML documents.
Most developers based in the United States or other English-speaking countries are
familiar with ASCII text only, and have not commonly tested the capacity of ASCII's
128-member character set. However, with the advent of the Internet, HTML and

9

10

Part | 4+ Introducing XML

especially XML developers have been forced to examine the limitations of ASCII,
and have worked with Unicode in HTML documents, even if they didn’t know that
they were (HTML code generators usually add the Unicode directives to HTML

pages).

Because the XML Recommendation was developed by the W3C, an international
organization which has offices at the Massachusetts Institute of Technology (MIT)
in the United States, the European Research Consortium for Informatics and
Mathematics (ERCIM) in France, and Keio University in Japan, Unicode was chosen
as the standard text format to accommodate the world’s languages, instead of just
English. Most developers are used to seeing UTF-8 or sometimes UTF-16 in the
encoding attribute of an XML document, but this is just the tip of the iceberg.

UTF stands for Universal Character Set Transformation Format, and the number 8 or
16 refers to the number of bits that the character is stored in. Each 8- or 16-bit con-
tainer represents the value of the character in bits as well as the identity of each
character and its numeric value. UTF-8 is the most common form of XML encoding;
in fact, an XML document that does not specify an encoding type must adhere to
either UTF-8 or UTF-16 to be considered a well-formed XML 1.0 document. Using
UTF-8, UTF-16, and the newer UTF-32, XML editors, generators and parsers can
identify and work with all major world languages and alphabets, including non-Latin
alphabets such as Middle Eastern and Asian alphabets, scripts, and languages. This
includes punctuation, non-Arabic numbers, math symbols, accents, and so on.

Unicode is managed and developed by a non-profit group called the Unicode
Consortium. For more information on encoding and a listing of encoding types for
XML, the Unicode consortium and the W3C has published a joint report, available
at the Unicode Consortium site:
http://www.unicode.org/unicode/reports/tr20.

Aside from UTF declarations for XML document encoding, any ISO registered
charset name that is registered by the Internet Assigned Numbers Authority (IANA)
is an acceptable substitute. For example, an XML 1.0 document encoded in
Macedonian would look like this in the XML declaration:

<?xml version="1.0" encoding="JUS_I.B1.003-mac"?>

A list of currently registered names can be found at
http://www.ilana.org/assignments/character-sets.

Element and Attribute Structure

Under the optional XML declarations, every XML document contains a single-value
root element, represented in this case by the rootelement element:

<rootelement>

Chapter 1 4 XML Concepts

Other elements and text values can be nested under the root element, but the root

element must be first in the list and unique in the document. This can be compared
to a computer hard drive, which contains one root directory, with files and/or sub-

directories under the root directory.

Next in the sample XML document are the nested elements, attributes, and text, as
illustrated by the nested firstelement under the root element in our example:

<firstelement position="1">
<levell children="0">This is level 1 of the nested
elements</levell>

</firstelement>

The firstelement has an attribute called position with a value of 1. The
position attribute provides additional data related to firstelement. In this case
it indicates that the original sorting position of the first element in the XML document
is 1. If the XML document data is altered and the order of the elements is rearranged
as part of that alteration, the position element may be useful for reordering the ele-
ment, or could be changed when the document is altered to reflect a new position of
the element in the XML document, regardless of the element name. In general,
attributes are great for adding more information and descriptions to the values of ele-
ments, and the text associated with elements, as shown in the previous example.

Nested under the firstelement element is the 1evell element, which contains
an attribute, called children. The element name is used to describe the nesting
level in the XML document, and the value of the children attribute is used to
describe how many more levels of nesting are contained under the 1evell ele-
ment, in this case, no more nested levels (0). The phrase This is level 1 of
the nested elements represents a text data value that is part of the 1evell ele-
ment. Text data contains values associated with a tag.

The second element under the root element is called secondelement and is a
variation of the firstelement element. Let’s compare the firstelement and
secondelement elements to get a better sense of the structure of the document:

<secondelement position="2">
<levell children="1">
<level2>This is level 2 of the nested
elements</level2>
</levell>
</secondelement>

Like the firstelement, the secondelement has an attribute called position
this time with a value of 2. Nested under the secondelement element is another
levell element. The existence of this element illustrates the fact that well-formed
XML documents can have more than one instance of the same element name. The
only exception to this is the root element, which must be unique.

11

12

Part | 4+ Introducing XML

Also, like the firstelement element, the levell element also has an attribute
called children. The 1evell element is again used to describe the nesting level in
the XML document, and the attribute is used to describe how many more levels of
nesting are contained under the 1evell element. In this case, the children
attribute indicates that there is one more nesting level (1) inside the 1evell ele-
ment. The phrase This is level 2 of the nested elements inside the
level?2 element represents text data for the 1evel2 element.

Last but not least, to finish the XML document, the rootelement tag is closed:

</rootelement>

XML Document Syntax

Another important aspect of a well-formed XML document is the document syntax.
XML represents data and not content or layout like other markup languages such as
HTML. Data has very strict structure and format rules. XML also has very strict
rules about the syntax used to represent that data. Developers who are used to
coding with the somewhat forgiving syntax of HTML will have some adjustments to
make when dealing with XML syntax.

For starters, XML element names must start and end with the same case. This is not
well-formed XML:

<level2>This is level 2 of the nested elements</Level2>

The tag name started with <level2> must be closed with </level2>, not
</Level2>, to be considered well-formed XML.

Quotes must be used on all attribute names. Something like this will not be consid-
ered well-formed XML:

<secondelement position=2>

Attributes must be formatted with single or double quotes to be considered well-
formed XML:

<secondelement position="2">
Comments should always follow the SGML comment tag format:

<! —--Comment tags should always follow this format when in XML
documents-->

Element tags must always be closed. HTML and other forms of markup are some-
what forgiving, and can often be left open or improperly nested without affecting the
content or display of a page. XML parsers and other tools that read and manipulate
XML documents are far less forgiving about structure and syntax than browsers.

Chapter 1 4 XML Concepts

XML Namespaces

Namespaces are a method for separating and identifying duplicate XML element
names in an XML document. Namespaces can also be used as identifiers to describe
data types and other information. Namespace declarations can be compared to
defining a short variable name for a long variable (such as pi=3.14159....) in pro-
gramming languages. In XML, the variable assignment is defined by an attribute
declaration. The variable name is the attribute name, and the variable value is the
attribute value. In order to identify namespace declarations versus other types of
attribute declarations, a reserved xmlns: prefix is used when declaring a names-
pace name and value. The attribute name after the xmlns: prefix identifies the
name for the defined namespace. The value of the attribute provides the unique
identifier for the namespace. Once the namespace is declared, the namespace name
can be used as a prefix in element names.

Listing 1-2 shows the very simple XML document I reviewed in Listing 1-1, this time
with some namespaces to differentiate between nested elements.

Listing 1-2: A Very Simple XML Document with Namespaces

<?xml version="1.0" encoding="UTF-8"7?>
<rootelement>
<firstelement
xmlns: fe="http://www.benztech.com/schemas/verybasic"
position="1">
<fe:levell children="0">This is level 1 of the nested
elements</fe:levell>
</firstelement>
<secondelement
xmlns:se="http://www.benztech.com/schemas/verybasic"
position="2">
<se:levell children="1">
<se:level2>This is level 2 of the nested
elements</se:level2>
</se:levell>
</secondelement>
</rootelement>

In this example, | am using two namespaces as identifiers to differentiate two
levell elements in the same document. The xmlns: attribute declares the name-
space for an XML document or a portion of an XML document. The attribute can be
placed in the root element of the document, or in any other nested element.

In our example, the namespace name for the firstelement element is fe, and the
namespace name for the secondelement is se. Both use the same URL as the value
for the namespace. Often the URL in the namespace resolves to a Web page that

13

14 Part | 4 Introducing XML

provides documentation about the namespace, such as information about the data
encoding types identified in the namespace. However, in this case, we are just using
the namespace to defined prefixed for unique identification of duplicate element
names. The URL does resolve to an actual document, but is just used as a place-
holder for the namespace name declarations.

Tip Although the namespace declaration value does not need to be a URL or resolve

to an actual URL destination, it is a good idea to use a URL anyway, and to choose

4 a URL that could resolve to an actual destination, just in case developers want to
add documentation for the namespace to the URL in the future.

N

When to use namespaces

Namespaces are optional components of basic XML documents. However, name-
space declarations are recommended if your XML documents have any current or
future potential of being shared with other XML documents that may share the
same element names. Also, newer XML-based technologies such as XML Schemas,
SOAP, and WSDL make heavy use of XML namespaces to identify data encoding
types and important elements of their structure. I'll be showing many more exam-
ples of namespaces being used in context to identify elements for XML document
data encoding, identification, and description as the examples progress through
the book.

XML Data Validation

As I've shown you so far in this chapter, there are very strict rules for the basic
structure and syntax of well-formed XML documents. There are also several formats
within the boundaries of well-formed XML syntax that provide standardized ways of
representing specific types of data.

For example, NewsML offers a standard format for packaging news information in
XML. NewsML defines what the element name should be that contains the title,
publication date, headline, article text, and other parts of a news item. NewsML
also defines how these elements should be arranged, and which elements are
optional. NewsML documents are well-formed XML, and they also conform to
NewsML specifications.

The validity of an XML document is determined by a Document Type Definition
(DTD) or an XML Schema. There are several formats for data validation to choose
from. A good listing for XML validation formats can be found at http: //www.
oasis-open.org/cover/schemas.html. However, the most common and offi-
cially W3C sanctioned formats are the Document Type Definition (DTD) and the
W3C Schema, which [will focus on in this chapter.

Chapter 1 4 XML Concepts

XML documents are compared to rules that are specified in a DTD or schema. A
well-formed XML document that meets all of the requirements of one or more speci-
fications is called a valid XML Document.

ﬁlote XML documents do not validate themselves. XML validation takes place when a
-~ document is parsed. Most of today’s parsers have validation built-in to the core
functionality, and usually support W3C Schema and DTD validation, and may sup-
port other types of validation, depending on the parser. In addition, defining a vari-
able or calling a different class in the parser can often disable validation by
ignoring DTD and/or Schema directives in the XML document. Parsers or parser
classes that don't support validation are called nonvalidating parsers, and parsers

or classes that support validation are called validating parsers.

For example, the NewsML specification is defined and managed by the International
Press Telecommunications Council (IPTC). The IPTC has published a DTD that can
be used by news providers to validate NewsML news items (Reuters and other
news providers have NewsML-compatible news feeds). If a member of the press
wants to produce NewsML formatted news items, they can download the DTD from
the IPTC Website at http: //www.iptc.org. Once the DTD is downloaded, XML
developers can validate their NewsML output against the DTD using a validating
parser.

Listing 1-3 shows the same simple XML document in Listing 1-1, but this time there
is a DTD and a Schema reference in the document.

Listing 1-3: A Very Simple XML Document with a Schema and
DTD Reference

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE rootelement SYSTEM "verysimplexml.dtd">
<rootelement xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:noNamespaceSchemalLocation="verysimplexml.xsd">
<firstelement position="1">
<levell children="0">This is level 1 of the nested
elements</levell>
</firstelement>
<secondelement position="2">
<levell children="1">
<level2>This is level 2 of the nested
elements</level2>
</levell>
</secondelement>
</rootelement>

16

Part | 4+ Introducing XML

It is not common to see both DTD and Schema references in a single document that
verify the same structural rules, but it’s a good example of the fact that you can
combine Schema and DTD references in a single document. References to a DTD
and a schema can occur when an XML document is made up of two or more source
documents. The DTD and schema references maintain all of the structure rules that
were present in the original document. Dual references can also be used when ille-
gal XML characters are represented in an XML document by entity references. I'll
describe entity references in more detail later in this chapter.

i&/‘x The following section of this chapter is intended to give you an introductory
Reference

overview of DTDs and W3C Schemas. For more detail on XML document validation
with real-world examples, please see Chapter 3.

Validating XML documents with DTDs

Document Type Definition (DTD) is the original way to validate XML document
structure and enforce specific formatting of select text, and probably still the most
prevalent. Although the posting of the XML declaration at the top of the DTD would
lead one to believe that this is an XML document, DTDs are in fact non-well-formed
XML documents. This is because they follow DTD syntax rules rather than XML
document syntax. In Listing 1-3, the reference is to the DTD located in the first ele-
ment under the XML document declaration:

<!DOCTYPE rootelement SYSTEM "verysimplexml.dtd">

Listing 1-4 shows the verysimplexml .dtd file that is referred to in the XML docu-
ment in Listing 1-3.

Listing 1-4: Contents of the verysimplexml.dtd File

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT rootelement (firstelement, secondelement)>
<!ELEMENT firstelement (levell)>
<!ATTLIST firstelement

position CDATA #REQUIRED
>
<!ELEMENT levell (#PCDATA | level2)*>
<!ATTLIST levell

children (0 | 1) #REQUIRED
>
<!ATTLIST secondelement

position CDATA #REQUIRED
>
<!ELEMENT level2 (#PCDATA)>
<!ELEMENT secondelement (levell)>

Chapter 1 4 XML Concepts

Let’s go through this DTD line by line to get to know DTD structure. The first line is
an XML document declaration, which tells parsers the version of XML and the
encoding type for the document. The next line specifies that valid XML documents
must contain a firstelement and the secondelement, which have to be present
under the rootelement, and have to be in the order listed:

<!ELEMENT rootelement (firstelement, secondelement)>

Next, the DTD describes the firstelement. The firstelement must have a
levell element nested directly under the firstelement.:

<!ELEMENT firstelement (levell)>

Next, the DTD specifies an attribute for the firstelement. The ATTLIST declara-
tion tells us that valid XML documents need a position attribute for each instance
of the firstelement (#REQUIRED), and that it is regular character data (CDATR):

<!ATTLIST firstelement
position CDATA #REQUIRED

The next element declaration tells us that the 1evell element can contain one of
two things. The | is equivalent to an or in a DTD. The 1evell element can contain
another nested element called 1evel2, or a value of parsed character data
(PCDATR):

<!ELEMENT levell (#PCDATA | level2)*>

The next ATTLIST declaration tells us that 1evell can have one of two values, 0 or
1:

<!ATTLIST levell
children (0 | 1) #REQUIRED

The ATTLIST declaration for secondlement tells us that valid XML documents
need a position attribute for each instance of the secondelement (#REQUIRED),
and that it is regular character data (CDATR):

<!ATTLIST secondelement

position CDATA #REQUIRED

Following the nesting deeper into the document, a declaration for the 1level2 ele-
ment is defined. The 1evel2 element declaration simply states that the element
must contain a value of parsed character data (PCDATA):

<!ELEMENT level2 (#PCDATA)>

17

18

Part | 4+ Introducing XML

Last but not least, the secondelement is defined, along with a mandatory levell
element nested underneath it:

<!ELEMENT secondelement (levell)>

As you can see from the last few lines of this DTD, the element and attribute decla-
rations do not have to be in the same order as the element and attributes that they
represent. It is up to the parser to reassemble the DTD into something that defines
the relationship of all the elements and enforces all the rules contained in each line
of the DTD.

Validating XML documents with Schemas

The W3C Schema is the officially sanctioned Schema definition. Unlike DTDs, the for-
mat of W3C Schemas follows the rules of well-formed XML documents. The Schema
also allows for much more granular control over the data that is being described.
Because of the XML format and the detailed format controls, Schemas tend to be
very complex and often much longer than the XML documents that they are describ-
ing. Paradoxically, Schemas are often much more easy for developers to read and fol-
low, due to the less cryptic nature of the references in Schemas versus DTDs.

References to schemas are defined by creating an instance of the XMLSchema-
instance namespace. Here is the Schema declaration in the XML document in
Listing 1-3:

<rootelement xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" xsi:noNamespaceSchemal.ocation="verysimplexml.xsd">

In this case, the namespace declaration reference to http: //www.w3.0org/2001/
XMLSchema-instance resolves to an actual document at that location, which is a
brief description of the way that the W3C Schema should be referenced. The
noNamespaceSchemaLocation value tells us that there is no predefined names-
pace for the Schema. This means that all of the elements in the XML document
should be validated against the schema specified. The location of the Schema I am
using is verysimplexml.xsd. Because there is no path defined, the file containing the
schema should be located in the same directory as the XML file to be validated by
the Schema.

You can also define the schema location, and map it to a specific namespace by
using the schemal.ocation attribute declaration instead of noNamespace
SchemalLocation. If you do so, you have to declare a namespace that matches the
schemalLoocation attribute value. The declaration must be made before you refer-
ence the schema in a schemaLocation attribute assignment. Here’s an example of
a schemaLocation assignment in a root element of an XML document:

<rootelement

xmlns: fe="http://www.benztech.com/schemas/verybasic"
xsi:schemalocation="http://www.benztech.com/schemas/verybasic
"

Chapter 1 4 XML Concepts

Listing 1-5 shows the verysimplexml .xsd file that is referred to in the XML docu-
ment in Listing 1-3.

Listing 1-5: Contents of the verysimplexml.xsd File

<?xml version="1.0" encoding="UTF-8"7?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">
<xs:element name="firstelement">
<xs:complexType>
<Xs:sequence>
<xs:element ref="levell"/>
</xs:sequence>
<xs:attribute name="position" type="xs:boolean"
use="required" />
</xs:complexType>
</xs:element>
<xs:element name="levell">
<xs:complexType mixed="true">
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element ref="level2"/>
</xs:choice>
<xs:attribute name="children" use="required">
<xXs:simpleType>
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="0"/>
<xs:enumeration value="1"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
</xs:element>
<xs:element name="level2" type="xs:string"/>
<xs:element name="rootelement">
<xs:complexType>
<Xs:sequence>
<xs:element ref="firstelement"/>
<xs:element ref="secondelement"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="secondelement">
<xs:complexType>
<Xs:sequence>
<xs:element ref="levell"/>
</xs:sequence>
<xs:attribute name="position" type="xs:byte"
use="required" />
</xs:complexType>
</xs:element>
</xs:schema>

19

20 Part | 4+ Introducing XML

I'll go through this code line by line to introduce readers to the W3C Schema XSD
format. After the declaration, the next line refers to the xs namespace for XML
Schemas. The reference URL, http: //www.w3.0org/2001/XMLSchema, actually
resolves to the W3C Website and provides documentation for Schemas, as well as
reference materials for data types and Schema namespace formatting.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">

The first element definition describes the firstelement as a complex data type,
that the element contains one nested element called 1evell, and an attribute
called position, and that the attribute is required.

<xs:element name="firstelement">
<xs:complexType>
<Xs:sequence>
<xs:element ref="levell"/>
</xs:sequence>
<xs:attribute name="position" type="xs:boolean"
use="required"/>
</xs:complexType>
</xs:element>

The next element describes the 1evell element, that it is an optional element
(minOccurs="0"), and that the 1levell element can occur an unlimited number of
times in the document (maxOccurs="unbounded"). Nested in the 1evell element
is a reference to the 1evel2 element, just as it is in the document. Next, the chil-
dren attribute is specified as required, and defined as a simple Schema data type
called NMTOKEN value for the base attribute, which is, for the purposes of this
schema, a string. The children string must be one of two predefined values, "0"

and "1", as defined by the enumeration values nested inside of the restriction ele-
ment.

<xs:element name="levell">
<xs:complexType mixed="true">
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element ref="level2"/>
</xs:choice>
<xs:attribute name="children" use="required">
<xs:simpleType>
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="0"/>
<xs:enumeration value="1"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
</xs:element>

Chapter 1 4 XML Concepts

Because the 1evel2 element has no attributes or nested elements, it can be
described in one line and referred to as a nested element in the 1evell element via
the ref= reference:

<xs:element name="level2" type="xs:string"/>
<xs:element ref="level2"/>

As with the DTD example, the element and attribute declarations in a W3C Schema
do not have to be in the same order as the element and attributes that they repre-
sent in an XML document. Like the DTD, it is up to the parser to reassemble the
Schema into something that defines the relationship of all the elements and
enforces all the rules contained in each line of the Schema, regardless of the order.
The next element in this Schema example is the rootelement. The rootelement
must have a firstelement and a secondelement nested under it to be consid-
ered a valid XML document when using this Schema. The previous definitions for
the firstelement, secondelement, and all the nested elements underneath
them are defined earlier in the Schema.

<xs:element name="rootelement">
<xs:complexType>
<Xs:sequence>
<xs:element ref="firstelement"/>
<xs:element ref="secondelement"/>
</xs:sequence>
</xs:complexType>
</xs:element>

The schema defines the secondelement, which must contain a nested 1levell ele-
ment, and have an attribute named position, this time a byte value.

<xs:element name="secondelement">
<xs:complexType>
<Xs:sequence>
<xs:element ref="levell"/>
</xs:sequence>
<xXs:attribute name="position" type="xs:byte"
use="required" />
</xs:complexType>
</xs:element>

Finally, the closing of the schema tag indicates the end of the schema.

</xs:schema>

21

22 Part| + Introducing XML

Special Characters and Entity References

The W3C XML Recommendation also supports supplements to the default encod-
ing. Special characters in a well-formed XML document can be referenced via a
declared entity, Unicode, or hex character reference. Entity references must start
with an ampersand (&), Unicode character references start with an ampersand and
a pound sign (&#), and hexadecimal character references start with an ampersand,
pound sign, and an x (&#x). All entity, Unicode, and hexadecimal references end
with a semicolon (;).

Listing 1-6 shows a simple XML document that uses Entity, Unicode, and Hex refer-
ences to generate a copyright symbol ((c)) and a registered trademark symbol
((r)) in an XML document.

Listing 1-6: Entity, Unicode, and Hex Character References in
an XML Document

<?xml version="1.0" encoding="UTF-8"7?>
<!DOCTYPE rootelement SYSTEM "specialcharacters.dtd">
<rootelement>
<entityreferences>© ®</entityreferences>
<unicodereferences>© ®</unicodereferences>
<hexreferences>© ®</hexreferences>
</rootelement>

The values in the unicodereferences and hexreferences elements are the
Unicode and hex values that represent the symbols. Both follow the character refer-
ence rules outlined earlier. The addition of a DTD is necessary for the entity refer-
ences in the entityreferences element. The values for the entity references
must be defined outside of the XML document. Listing 1-7 shows the specialcharac-
ters.dtd file, including the entity definitions for © and ®. This very basic
DTD defines the structure of the document, and also defines two entity references
and their values. I've created a Hex and a Unicode reference to illustrate that entity
references in XML documents can refer to either format. The first ENTITY tag in the
DTD defines the copy reference as the hex character reference $A9. The value fol-
lows XML rules for formatting a hex character reference, which makes the hex value
"© ". The second ENTITY tag refers to the Unicode character 174, formatted
as "® " according to XML document Unicode character reference rules.

Chapter 1 4+ XML Concepts 23

Listing 1-7: The specialcharacters.dtd File with Entity
Definitions for © and ®

<?xml version="1.0" encoding="UTF-8"7?>

<!ENTITY copy "©">

<!ENTITY reg "®">

<!ELEMENT rootelement (entityreferences, unicodereferences,
hexreferences) >

<!ELEMENT entityreferences (#PCDATA)>

<!ELEMENT hexreferences (#PCDATA)>

<!ELEMENT unicodereferences (#PCDATA)>

Listing 1-8 shows the output from the XML document, with the resolved character
references. This is what the document looks like when the character and entity ref-
erences are rendered by a Microsoft Internet Explorer 6 browser.

Listing 1-8: MSIE Rendered Character and Entity References
Using the specialcharacters.dtd File

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE rootelement (View Source for full doctype...)>

<rootelement>
<entityreferences>(c) (r)</entityreferences>
<unicodereferences>(c) (r)</unicodereferences>
<hexreferences> (c) (r)</hexreferences>

</rootelement>

Using entity references as variables

Entity references can also be used as variables and combined with other entity ref-
erences in a DTD, which is a handy way of standardizing certain declarations and
other unalterable components of an XML document. For example, an entity refer-
ence called copyline can be created in a DTD like this:

<!ENTITY copy "©">
<!ENTITY copyline "© Benz Technologies, Inc, all rights
reserved; ">

24

Part | 4+ Introducing XML

When a reference to the scopyline; entity is made in an XML document, the out-
put would look like this:

(c) Benz Technologies, Inc, all rights reserved

Using this technique ensures that XML document validation imposes a standard for-
mat for certain important pieces of text in an XML document, as well as the struc-
ture of the document.

Reserved character references

All of the character reference formats defined earlier include an ampersand. So how
do you represent an ampersand in XML documents? To accommodate ampersands
and four other special characters that are part of the XML core syntax special
reserved character references are defined. Less than and greater than symbols
(which are used to define XML elements), and quotes (which are used to define
attribute values) are supported via special predefined character substitutions with-
out any Entity, Unicode, or Hex references needed. An ampersand (&) is used at the
beginning and a semicolon (;) is placed at the end of the reference. Table 1-1 shows
the reserved character entity and its reference.

Table 1-1

Reserved Character Entities and References
Entity Reference Special Character
& ampersand (&)
&apos apostrophe or single quote (')
> greater-than ()
< less-than (<)
" double quote (*)

XML 1.1

XML 1.1 represents an incremental development of the W3C XML recommendation.
The new recommendation is actually split into two significant recommendations,
XML 1.1 and XML Namespaces 1.1. Most of the new features are “behind the
scenes” enhancements, which will have little or no effect on most XML applications.
For example, the new way of handling line-endings in XML 1.1 documents will prob-
ably affect developers who are coding XML 1.1 parsers or XML 1.1 development

Chapter 1 4 XML Concepts

tools. They will probably not, however, significantly affect developers who are using
XML 1.1 parsers or development tools to develop XML applications.

XML 1.1 new features

New character sets accommodation for evolving Unicode specifications form the
base of new features for XML 1.1. Since the first W3C XML document recommenda-
tion was released in 1998, Unicode has expanded to accommodate much more of
the alphabets and characters of the world. This was addressed to some extent in
the second edition of the XML Recommendation in 2000, but the newer recommen-
dation goes beyond the second edition to redefine what a well-formed document is,
based on new Unicode standards.

Defining XML 1.1 documents

The version number in the optional XML declaration defines XML 1.1 documents,
like this:

<?xml version="1.1">

Any document that does not specifically state the XML document version as 1.1 is
treated as an XML 1.0 document. XML 1.1 documents are backward compatible with
XML 1.0 documents. There is an exception: Some new Unicode characters that XML
1.1 processors recognize as part of well-formed element, attribute, and namespace
names are not accepted by XML 1.0 document syntax rules. These characters could
already be used in XML 1.0 text and attribute values. XML 1.1 officially adds these
characters and character sets into structural items of XML documents — element
names, attribute names, and namespaces.

XML 1.1 character sets

A more inclusive philosophy is the basis of XML 1.1. This is a reaction to the evolu-
tion of Unicode specifications, which has outpaced XML recommendation updates.
Instead of the XML 1.0 approach of defining which characters cannot be included
within XML documents and considering markup with undefined characters as not
well formed, XML 1.1 instead defines which characters can specifically not be
included in well-formed XML documents and considers any undefined characters as
part of well-formed XML. This makes it easier to accommodate developing Unicode
specifications. This rule applies to all XML markup, including elements, attributes,
and namespaces. XML 1.0 documents will be limited to the character set defined in
Unicode 2.0, and XML 1.1 documents theoretically should handle any Unicode from
2.0 to the current 3.2 and beyond.

New characters and the new philosophy will be supported by the requirement of
normalization in XML 1.1 document parsed entities. This means that XML 1.1 pro-
cessors that generate data will have to conform to the W3C Character Model for the

25

26

Part | 4+ Introducing XML

World Wide Web 1.0 (CHARMOD), currently at the “Working Draft” stage of the W3C
Recommendation process, and XML 1.1. Next, the character data should be
resolved into one of five formats: Cdata, CharData, content, name, or nmtoken.
Parsers will have to verify normalization based on the same character model.

XML 1.1 line-end characters

Another feature of XML 1.1 is the capability to handle line-end characters generated
in IBM mainframe file formats, which has been a long-standing issue between XML
documents generated and shared across ASCII and EBCDIC-based platforms. XML
1.1 parsers are required to recognize and accept EBCDIC line-end characters (#x85)
and the Unicode line separator (#x2028). These values should be converted to one
of the XML 1.0 ASCII line-end characters-—linefeed (decimal 10, #xA), or carriage
return (decimal 13, #xD).

The place that most XML developers may see and/or use the XML 1.1 line-end and
character set rules will be when including hard-coded values in character or entity
references. For example, if you want to hard-code a carriage return in an XML 1.0
document, the following hex character reference can be used:

<?xml version="1.0" encoding="UTF-8"?>
<LineEndExample>An example of a hard codednew
line</LineEndExample>

The results look like this when parsed:

<?xml version="1.0" encoding="UTF-8"?>
<LineEndExample>An example of a hard coded
new line</LineEndExample>

In XML 1.1, you could also hard-code an EBCDIC value to be used on IBM mainframe
systems. When parsed on non-IBM mainframe systems, the line end should be
replaced with an XML 1.0 ASCII value.

<?xml version="1.1" encoding="UTF-8"?>
<LineEndExample>An example of a hard coded…IBM new
line</LineEndExample>

These results look like this when parsed:

<?xml version="1.1" encoding="UTF-8"7?>
<LineEndExample>An example of a hard coded
IBM new line</LineEndExample>

Namespaces for XML 1.1The essential difference between the XML Namespaces 1.0
and 1.1 recommendations is the ability to “undeclare” a previously defined name-
space declaration and its associated prefix. As with XML 1.1 updates, this is a

Chapter 1 + XML Concepts 27

change that will mostly affect XML parser and development tool developers, rather
than the average XML application developer.

Being able to “undeclare” a namespace provides a more flexible and efficient way of
managing and reusing namespaces and their prefixes. Namespaces are applicable to
any nested elements above the namespace declaration. Being able to remove a pre-
fix and/or re-declare it in another part of a large XML document has benefits in
parser performance. It also provides an out for a document that may have the same
namespace prefix defined to different namespaces.

Namespaces for XML 1.1 is a separate document at the W3C but is closely linked to
the XML 1.1 Recommendation. XML 1.0 documents use XML Namespace 1.0 rules,
and XML 1.1 documents use XML Namespace 1.1 recommendation rules.

XML 1.1 references

More information on XML 1.1 can be found at http://www.w3.org/TR/2002/
CR-xm111-20021015/, the namespaces for XML 1.1 working draft can be found at
http://www.w3.org/TR/2002/WD-xml-names11-20020905/, and the CHAR-
MOD working draft can be found at http: //www.w3 .org/TR/charmod. Also, all
of the links are located on the W3C XML core Working Group page at http: //www.
w3 .org/XML/Activity#core-wg.

Summary

In this chapter, I've kept the examples to a minimum to illustrate the basics of tech-
nologies that make up the XML world. The concepts introduced here will be
extended with real-world examples throughout the rest of the book.

I've also introduced you to the real changes in the XML 1.1 Recommendation. These
changes will affect parsers and generators and those who develop them the most.
XML 1.1 parsers will probably contain normalizing and non-normalizing parser
classes for conversions of line endings and character sets, just as most XML 1.0
parsers contain validating and non-validating parser classes.

4 An introduction to XML

4+ XML structure

4+ Working with well-formed XML documents

4 Validating XML documents

4+ Character and entity references

4 Changes in XML 1.1 and XML Namespaces 1.1

28 Part| 4 Introducing XML

In the next few chapters, I'll dive much deeper into XML documents, and the com-
ponents that make up well-formed XML documents, by showing some real-world
examples of documents, how they are generated, how they can be combined, and
how namespaces can track element parts of combined documents.

¢+ ¢

CHAPTER

XML Documents

+ + + +

In the last chapter, I provided those of you who are new to .
XML with an overview and history of XML and what it can In This Chapter

be used for. I covered an overview XML document syntax and
structure rules. I also provided some information on the latest An example XML
XML version, XML 1.1. Most developers probably found the document
last chapter a bit dry, but as I've said before, a good grasp of
the basic XML concepts and theory are a necessary part of Elements and
XML. Skipping over the basics means missing pieces of the attributes
puzzle throughout the rest of the book.

XML document
Now that I've shown you the basics, you can start applying structure and syntax
some of this knowledge with real-world, practical examples.
This chapter expands on the theory and concepts introduced International XML
in the previous chapter. I'll introduce you to two example doc- with xml:lang
uments that contain many of the issues that confront an XML
programmer. The first document is a compilation of XML from Keeping your space
three sources. The second document separates and identifies with xm1 : space

the three parts of the document using XML namespaces.
) . XML namespaces
Along the way I'll introduce you to some predefined XML

attributes. I'll show you how to specify languages using the
xml : 1ang attribute, and how to preserve space and linefeed
settings in text data using the xml : space attribute.

Element name tips

+ + o+

An Example XML Document

Let’s get right into an example. Listing 2-1 shows an example
XML document that provides some very good examples of
real-life XM document development issues. The example doc-
ument is an assembly of XML documents from three sources.
The first part of the document is a custom XML format that
describes quotations. The quotations are from Shakespeare’s
Macbeth. After the list of selected quotes from William
Shakespeare, then goes on to list three books that contain the
quotes that are available for purchase from Amazon.com, and
a Spanish translation of Macbeth, Romeo and Juliet, Hamlet,
and other volumes that are available from http: //www.
elcorteingles.es. It should be noted that Amazon.com
provides a service that returns XML documents based on a

30

Part | 4+ Introducing XML

URL query, and the format that Amazon returns is what the elements nested under
the Amazon element is based on. The elcorteingles book listing format and the
quote listing, as well as other parts of the document that I've added to illustrate
several features of XML element and attributes, are all developed as part of the
quote application that I will be developing as this book progresses.

Listing 2-1: An Example XML Document

<?xml version="1.0" encoding="IS0-8859-1"?>
<quotedoc>
<quotelist author="Shakespeare, William" quotes="4">
<gquote source="Macbeth" author="Shakespeare,
William">When the hurlyburly's done, / When the battle's
lost and won.</quote>
<gquote source="Macbeth" author="Shakespeare,
William">Out, damned spot! out, I say!-- One; two; why,
then 'tis time to do't ;--Hell is murky!--Fie, my lord,
fie! a soldier, and afeard? What need we fear who knows
it, when none can call our power to account?--Yet who
would have thought the old man to have had so much blood
in him?</quote>
<quote source="Macbeth" author="Shakespeare, William">Is
this a dagger which I see before me, the handle toward
my hand? Come, let me clutch thee: I have thee not, and
vet I see thee still. Art thou not, fatal vision,
sensible to feeling as to sight? or art thou but a
dagger of the mind, a false creation, proceeding from
the heat-oppressed brain?</quote>
<quote source="Macbeth" author="Shakespeare, William">To-
morrow, and to-morrow, and to-morrow, creeps in this
petty pace from day to day, to the last syllable of
recorded time; and all our yesterdays have lighted fools
the way to dusty death. Out, out, brief candle! Life's
but a walking shadow; a poor player, that struts and
frets his hour upon the stage, and then is heard no
more: it is a tale told by an idiot, full of sound and
fury, signifying nothing. </quote>
<quote/>
</quotelist>
<catalog items="4">
<Amazon items="3">
<product>
<ranking>1</ranking>
<title>Hamlet/MacBeth</title>
<asin>8432040231</asin>
<author>Shakespeare, William</author>

<small_image>http://images.Amazon.com/images/
P/8432040231.01.T222727277.jpg</small_image>
<list_price>$7.95</1list_price>

Chapter 2 4+ XML Documents

<release_date>19910600</release_date>
<binding>Paperback</binding>
<availability/>
<tagged_url>http://www.Amazon.com: 80/exec/obidos/
redirect?tag=associateid&
benztechnologies=9441&
camp=1793& 1ink_code=xml& path=ASIN/8432040231
</tagged_url>
</product>
<product>
<ranking>2</ranking>
<title>MacBeth</title>
<asin>1583488340</asin>
<author>Shakespeare, William</author>

<small_image>http://images.Amazon.com/images/P/
1583488340.01.T%Z222272727.jpg</small_image>
<list_price>$8.95</1list_price>
<release_date>19991200</release_date>
<binding>Paperback</binding>
<availability/>
<tagged_url>http://www.Amazon.com:80/exec/obidos/
redirect?tag=associateid&benztechnologies=9441
& camp=1793& link code=xml&path=ASIN/
1583488340</tagged_url>
</product>
<product>
<ranking>3</ranking>
<title>William Shakespeare: MacBeth</title>
<asin>8420617954</asin>
<author>Shakespeare, William</author>

<small_image>http://images.Amazon.com/images/P/
8420617954.01.T%222272727.jpg</small_image>
<list_price>$4.75</list_price>
<release_date>19810600</release_date>
<binding>Paperback</binding>
<availability/>
<tagged_url>http://www.Amazon.com:80/exec/obidos/
redirect?tag=associateid&benztechnologies=9441
& camp=1793& link code=xml&path=ASIN/
8420617954</tagged_url>
</product>
</Amazon>

<elcorteingles items="1">
<product xml:lang="es">
<titulo>Romeo y Julieta/Macbeth/Hamlet/Otelo/La
fierecilla domado/El suefio de una noche de verano/
El mercader de Venecia</titulo>

Continued

32

Part | 4+ Introducing XML

Listing 2-1 (continued)

<isbn>8484036324</isbn>
<autor>Shakespeare, William</autor>
<imagen>http://libros.elcorteingles.es/producto/
verimagen_blob.asp?ISBN=8449503639</imagen>
<precio>7,59 €</precio>
<fecha_de_publicacidén>6/04/1999
</fecha_de_publicacidn>
<Encuadernacién>Piel</Encuadernacidn>
<librourl>http://libros.elcorteingles.es/producto/
libro_descripcion.asp?CODIISBN=8449503639</librourl>
</product>
</elcorteingles>
</catalog>
</quotedoc>

XML Document Structure and Syntax

Let’s start at the top and review the structure of the document, the element and
attributes, and the syntax, applying what you learned in Chapter 1 into a real-world
XML document context:

<?xml version="1.0" encoding="IS0-8859-1"?>

The XML declaration at the top of the document is an example of one of the most
common formats of an XML declaration, with an XML version of 1.0 and an encod-
ing style of ISO-8859-1 (Latin-1). The most common encoding format is UTF-8, but
documents that contain certain characters used in Western European languages,
such as Spanish accented characters, won’t show correctly in browsers that have
Western European encoding as the default if the XML document is formatted as
UTF-8. Some non-English author’s names and book titles can’t be written to HTML
without character transformation because they may include those special charac-
ters, so it’s better to use the more specific ISO-8859-1 encoding to handle display
correctly in browsers.

Keep in mind that the XML declaration is optional and is an optional element in a
well-formed XML document. If the XML declaration is not present, the default XML
version is 1.0, and the default encoding is UTF-8.

<gquotedoc>

Chapter 2 4+ XML Documents

The quotedoc element is the root element for this document. As mentioned in

the previous chapter, there can only be one root element in a well-formed XML
document.

<quotelist author="Shakespeare, William" quotes="4">

The quotelist element defines not only the list of quotes that are nested inside
the quotelist, but the attributes tell us that the author of the quotes in the quotelist
is William Shakespeare, and that there are four quotes in the list. Although
attributes can be used for many purposes, using them to define and extend descrip-
tions of data, as I have here, is the best use.

Some relational databases and other XML data sources have chosen to use
attributes to contain actual data values instead of data descriptions, which can be a
mistake. When choosing between using elements or attributes for data storage, keep
in mind that attributes in their native format are only intended to contain a single
value, while element structures can contain multiple values through nested ele-
ments. Also, elements can represent structures in documents through nesting, and
can be extended, while attributes are limited to the element they are contained in.

<quote source="Macbeth" author="Shakespeare,
William">When the hurlyburly's done, / When the battle's
lost and won.</quote>
<quote source="Macbeth" author="Shakespeare,
William">Out, damned spot! out, I say!-- One; two; why,
then 'tis time to do't ;--Hell is murky!--Fie, my lord,
fie! a soldier, and afeard? What need we fear who knows
it, when none can call our power to account?--Yet who
would have thought the old man to have had so much blood
in him?</quote>
<quote source="Macbeth" author="Shakespeare, William">TIs
this a dagger which I see before me, the handle toward
my hand? Come, let me clutch thee: I have thee not, and
vet I see thee still. Art thou not, fatal vision,
sensible to feeling as to sight? or art thou but a
dagger of the mind, a false creation, proceeding from
the heat-oppressed brain?</quote>
<quote source="Macbeth" author="Shakespeare, William">To-
morrow, and to-morrow, and to-morrow, creeps in this
petty pace from day to day, to the last syllable of
recorded time; and all our yesterdays have lighted fools
the way to dusty death. Out, out, brief candle! Life's
but a walking shadow; a poor player, that struts and
frets his hour upon the stage, and then is heard no
more: it is a tale told by an idiot, full of sound and
fury, signifying nothing. </quote>

33

34

Part | 4+ Introducing XML

The rest of the quotelist contains the actual quotes. We’ve chosen to include more
information in attributes for each quote in case the document is parsed or trans-
formed and added to another document. This way, as long as the element structure
stays intact, the quote will always have information on the author and the book
associated with it, no matter where the element ends up.

The quotes in this document are also a great example of the syntax rules that apply
to elements but don’t apply to text in XML documents. Note that most of the quotes
have characters in the text that would generate errors if the same characters were
in the element names, but are permissible as part of well-formed XML in text values.
The second quote can also be adapted to show a good example of what attributes
can contain, in this modified element:

<author quote="Out, damned spot! out, I say!-- One; two; why,
then 'tis time to do't ;--Hell is murky!--Fie, my lord, fie! a
soldier, and afeard? What need we fear who knows it, when none
can call our power to account?--Yet who would have thought the
0ld man to have had so much blood in him?">Shakespeare,
William</author>

Believe it or not, despite all the characters which may look to the naked eye like
nonstandard characters that a parser would choke on in the quote attribute of the
author element in the preceding example, this attribute is well-formed XML. The
semicolons by themselves, the question marks, the commas, the dashes, and the
exclamation points do not cause a problem for the W3C XML 1.0 recommendation.
The only character that could potentially cause a problem is the apostrophe, or sin-
gle quote, but because they are contained inside two double quotes, they pass the
test for well-formed XML as well. The same rule works in reverse for double quotes
that are contained in single quotes.

However, despite the fact that the quote contained in an attribute is well-formed
XML, this does not mean that it is a good idea. In general, although parsers are get-
ting better at parsing attributes and schemas are good at enforcing attribute rules,
both are better at handling elements than they are attributes, so key pieces of pay-
load data in XML documents should always be contained in text values, and items
that help define and describe the data should be associated to the text data via
attributes.

</quotelist>
<catalog items="4">

Next, | complete the quotelist section of the document by closing the quote ele-
ment, and start the catalog section of the document by opening the catalog tag. The
items attribute tells us that there are four listings in the catalog related to the
Macbeth quotes.

<Amazon items="3">

Chapter 2 4+ XML Documents

The items attribute in the nested Amazon element of the catalog tells us that there
are three items in the catalog that are available though links at Amazon.com. Next,
the products are listed in the order that they were returned from a query to the
Amazon XML feed site URL:

<product>
<ranking>1</ranking>
<title>Hamlet/MacBeth</title>
<asin>8432040231</asin>
<author>Shakespeare, William</author>

<small_image>http://images.Amazon.com/images/P/
8432040231.01.T722222727.jpg</small_image>
<list_price>$7.95</list_price>
<release_date>19910600</release_date>
<binding>Paperback</binding>
<availability/>
<tagged_url>http://www.Amazon.com:80/exec/obidos/
redirect?tag=associateid&benztechnologies=9441
& camp=1793& link code=xml&path=ASIN/
8432040231</tagged_url>
</product>

<product>
<ranking>2</ranking>
<title>MacBeth</title>
<asin>1583488340</asin>
<author>Shakespeare, William</author>

<small_image>http://images.Amazon.com/images/P/
1583488340.01.TZ222272727.jpg</small_image>
<list_price>$8.95</1list_price>
<release_date>19991200</release_date>
<binding>Paperback</binding>
<availability/>
<tagged_url>http://www.Amazon.com:80/exec/obidos/
redirect?tag=associateid&benztechnologies=9441
& camp=1793& link_ code=xml& path=ASIN/
1583488340</tagged_url>
</product>

<product>

<ranking>3</ranking>

<title>William Shakespeare: MacBeth</title>

<asin>8420617954</asin>

<author>Shakespeare, William</author>



<small_image>http://images.Amazon.com/images/P/
8420617954.01.T22%27222%.Jjpg</small_image>

35

36

Part | 4+ Introducing XML

<list_price>$4.75</list_price>
<release_date>19810600</release_date>
<binding>Paperback</binding>
<availability/>
<tagged_url>http://www.Amazon.com:80/exec/obidos/
redirect?tag=associateid&benztechnologies=9441
& camp=1793& link code=xml&path=ASIN/
8420617954</tagged_url>

</product>

Each product listing contains a reference to a single book at the Amazon.com
Website, and is in the standard, unmodified format of all XML documents that are
returned from the site. Amazon also publishes a DTD and Schema for the generated
data, but I will use my own validation formats for the documents that I produce. |
will cover data validation in much more detail in the next chapter.

The XML format closely mirrors the information for the books that are on display in
HTML documents at Amazon.com. The ranking tells us the order in which the items
were returned from the Amazon.com search. The title is the book title. The ASIN is
Amazon’s unique identifier for a product, in the case of books; the ASIN is equiva-
lent to the book’s International Standard Book Number (ISBN), the unique identifier
for all books in print. Next is a listing for the author, a link to small and regular size
book cover images on the Amazon.com Website, the list price, the release date, the
type of binding for the book, an indicator for availability, and a link to the HTML
page for the book on the Amazon.com Website.

There are three important things to note in the Amazon product elements: empty
elements, SML housekeeping, and entity references and special characters.

Empty elements

Note that the availability element takes this format:
<availability/>

This format for empty elements is added to Amazon.com book listings, but a value
is not provided. Logic would dictate that an unused element should not be included
in the output, but in the case of XML documents, unused and empty elements are
often kept in XML output to accommodate a predefined data structure that is speci-
fied for data validation in a DTD or Schema.

XML housekeeping

The layout of the XML for each product is an example of good XML design. The
sequence of the elements and the element names are logical, and all of the items
that are represented on the Amazon HTML page for a book are equally represented

Chapter 2 4+ XML Documents

in XML. The lack of attributes in the elements is probably due to the very simple
string data types represented in the document.

Entity references and special characters

It’s important to note the ampersand entity references (&) in the tagged_URL
elements:

<tagged_url>http://www.Amazon.com:80/exec/obidos/redirect?tag=
associateid&benztechnologies=9441& camp=1793& link__
code=xml& path=ASIN/8420617954</tagged_url>

The ampersands are an important part of the URL queries on the Amazon site and
are used to separate parameters that are passed to Amazon.com as part of the
query. Code on the Amazon.com site parses the URL that is passed and uses the
parameters to execute the query and retrieve the data. However, the ampersands in
the text value of the target_url elements also cause the XML document not to be
well formed. To remedy this, the predefined XML & entity reference that I dis-
cussed in the special characters section of the previous chapter is used to store the
XML, and when the document is parsed the original ampersands are replaced to
look like this:

http://www.Amazon.com: 80/exec/obidos/redirect?tag=associateid&
benztechnologies=9441&camp=1793&1link_ code=xml&path=ASIN/
8420617954

Next, closing the Amazon tag completes the listing of books at the Amazon site:

</Amazon>

International XML with xml:lang

The next item in the list is the elcorteingles listing of one book, as indicated by
the items attribute:

<elcorteingles items="1">

http://www.elcorteingles.es is a Spanish language Website, based in Spain,
that sells a variety of items, including Spanish translations of popular books and
classics. We've added the elcorteingles reference to show the multilingual fea-
tures of XML and provide an example of handling special characters in an XML
document.

37

38

Part | 4+ Introducing XML

The XML document format we've chosen for the Spanish translation of Shakespeare’s
most popular works is based on the Amazon format, but the element names have
been translated to Spanish. The elcorteingles and the product reference remain
in English, because that information is universal across any language that the book
record could be in, and I'm a native English speaker, so the universal language I've
chosen in my documents is English. However, the rest of the document is in Spanish,
so it makes sense that the elements for the Spanish text data are in Spanish too, in
case this document ends up being reused in a Spanish language application or
Website.

The language of the product element for the elcorteingles listing is defined by
using one of the predefined XML attributes, xm1 : 1ang:

<product xml:lang="es">

Unicode renders the text based on a certain predetermined byte format, and

xml : lang tells parsers to handle the text defined in a specific xm1 : 1ang element
as using a special set of instructions for a specific language. Parsers will continue to
follow those specific language rules in nested elements and attributes until either
the element tag is closed or another xm1l : 1ang attribute is encountered.

Language codes can be defined in a variety of ways, some completely standardized,
as in the case of the International Organization of Standardization (ISO) 639 lan-
guage codes (make sure you use the two character ISO 639 codes and not the three
character ISO 639-2 codes) and the ISO 3166 country codes, of which any combina-
tion is a legal xm1 : 1ang language identifier, a registered IANA name tag (which can
be linguistic or computer languages), or you can make one up, using an x- or an X-
as a prefix, as long as the name hasn’t already been registered as part of the ISO or
[ANA languages. A complete listing of ISO language codes and country codes can
be found at http: //www.1iso.org, and the I[ANA registered language names can
be found at http://www.iana.org.

<titulo>Romeo y Julieta/Macbeth/Hamlet/Otelo/La fierecilla
domado/El suefilo de una noche de verano/ El mercader de
Venecia</titulo>
<isbn>8484036324</isbn>
<autor>Shakespeare, William</autor>
<imagen>http://libros.elcorteingles.es/producto/
verimagen_blob.asp?ISBN=8449503639</imagen>
<precio>7,59 €</precio>
<fecha_de_publicacidén>6/04/1999</fecha_de_publicacidn>
<Encuadernacién>Piel</Encuadernacidn>
<librourl>http://libros.elcorteingles.es/producto/
libro_descripcion.asp?CODIISBN=8449503639</librourl>

The titulo element is the book title, and the isbn element is the book’s
International Standard Book Number (ISBN), the unique identifier for all books in
print, regardless of language or country. Next is a listing for the author (autor), a link
to a small book cover image (imagen) on the elcorteingles.es Website, the list

Chapter 2 4 XML Documents 39

price (precio), the publication date (fecha_de_publicacién), the type of binding
for the book, and a link to the HTML page for the book on the elcorteingles.es
Website (1ibrourl).

One item worthy of note in this book record is that all the accented characters in
the Spanish book record were accepted as part of the default [ISO-8859-1 (Latin-1)
character encoding for this document. However, one character provides us with
another review of the entity references in the “Special Characters and Entity
References” section of Chapter 1. The price (precio) of the book has an entity ref-
erence to the euro symbol, which is part of the price listing for Europe, but is a
character that is unsupported by the document’s ISO-8859-1 (Latin-1) character
encoding. The entity reference to the $20AC hex character is combined with the
XML entity reference format for hex characters (&#x):

<precio>7,59 €</precio>
And when the precio element is parsed, it looks like this:
<precio>7,59 un</precio>

Next, the product element tag for the elcorteingles listing is closed. Because
the product element defined the xm1 : 1ang as Spanish (es), when it is closed, the
default language of the document is restored.

</product>
</elcorteingles>

Last but not least, the catalog and the quotedoc element tags are closed, which
completes the quotedoc document:

</catalog>
</quotedoc>

Keeping Your Space with xml:space

Aside from xml1 : lang, there is one more important predefined attribute in XML
documents that can help maintain layout of source data that is being transported
by XML: xml : space. For example, the original format for the third quote in the
quotelist in Listing 2-1 is:

Is this a dagger which I see before me,

The handle toward my hand? Come, let me clutch thee:--
I have thee not, and yet I see thee still.

Art thou not, fatal vision, sensible

To feeling as to sight? or art thou but

A dagger of the mind, a false creation,

Proceeding from the heat-oppressed brain?

40 Part | 4+ Introducing XML

However, the XML document that | am using has stripped away the line formatting,
and looks like this:

Is this a dagger which I see before me, the handle toward my
hand? Come, let me clutch thee: I have thee not, and yet I see
thee still. Art thou not, fatal vision, sensible to feeling as
to sight? or art thou but a dagger of the mind, a false
creation, proceeding from the heat-oppressed brain?

Because Shakespeare text is often formatted in a very particular way, the loss of the
original formatting, and the inability of XML to restore the formatting to its original
condition, is a problem. To maintain the text spacing through XML document
manipulation and future reformatting, the xml: space="preserve" attribute can
be used to make sure that the spacing and the line formats stay intact:

<guote source="Macbeth" author="Shakespeare, William"
xml : space="preserve">

Is this a dagger which I see before me,

The handle toward my hand? Come, let me clutch thee:--
I have thee not, and yet I see thee still.

Art thou not, fatal vision, sensible

To feeling as to sight? or art thou but

A dagger of the mind, a false creation,

Proceeding from the heat-oppressed brain?

</quote>

The xml : space="default" attribute can also be defined, but just for fun because
it doesn’t tell the parser to do anything it wouldn’t do anyway. Unfortunately, even
when the space attribute is set to "preserve”, the retention of text formatting is
up to the parser, as there is nothing in the W3C XML document recommendation
that specifically requires the xml : space attributes to be respected. This means
that some parsers may ignore the xml : space, but most are good XML citizens and
respect the text formatting if the "preserve" attribute is set.

One more item of note: The space that is defined around text but part of the text
formatting is referred to as “whitespace” in XSL and parsing lingo, which I will be
covering later in this book.

XML Namespaces

As mentioned in Chapter 1, XML namespaces are a method for separating and iden-
tifying XML elements that may have the same element name on the same page.
Namespaces can also be used as specifications to describe specific types of data
and other atrributes that are contained inside elements that use that namespace.
I've added namespaces to the example in Listing 2-2 to illustrate how you can iden-
tify different segments of an XML document as different grouped entities using
namespaces.

Chapter 2 4+ XML Documents

Listing 2-2: An Example XML Document with Namespaces

<?xml version="1.0" encoding="IS0-8859-1"?>

<quotedoc xmlns:gtlist="http://www.benztech.com/xsd/quotelist"

xmlns:azlist="http://www.benztech.com/xsd/amazonlist"
xmlns:ellist="http://www.benztech.com/xsd/elcorteingleslist">
<gtlist:quotelist author="Shakespeare, William" quotes="4">
<gtlist:quote source="Macbeth" author="Shakespeare,
William">When the hurlyburly's done, / When the battle's
lost and won.</gtlist:quote>
<gtlist:quote source="Macbeth" author="Shakespeare,
William">Out, damned spot! out, I say!-- One; two; why,
then 'tis time to do't ;--Hell is murky!--Fie, my lord,
fie! a soldier, and afeard? What need we fear who knows
it, when none can call our power to account?--Yet who
would have thought the old man to have had so much blood
in him?</gtlist:quote>
<gtlist:quote source="Macbeth" author="Shakespeare,
William">Is this a dagger which I see before me, the
handle toward my hand? Come, let me clutch thee: I have
thee not, and yet I see thee still. Art thou not, fatal
vision, sensible to feeling as to sight? or art thou but
a dagger of the mind, a false creation, proceeding from
the heat-oppressed brain?</gtlist:quote>
<gtlist:quote source="Macbeth" author="Shakespeare,
William">To-morrow, and to-morrow, and to-morrow, creeps
in this petty pace from day to day, to the last syllable
of recorded time; and all our yesterdays have lighted
fools the way to dusty death. Out, out, brief candle!
Life's but a walking shadow; a poor player, that struts
and frets his hour upon the stage, and then is heard no
more: it is a tale told by an idiot, full of sound and
fury, signifying nothing. </gtlist:quote>
<gtlist:quote/>
</gtlist:quotelist>
<catalog items="4">
<azlist:amazon items="3">
<azlist:product>
<azlist:ranking>l</azlist:ranking>
<azlist:title>Hamlet/MacBeth</azlist:title>
<azlist:asin>8432040231</azlist:asin>
<azlist:author>Shakespeare, William</azlist:author>
<azlist:image>http://images.amazon.com/images/
P/8432040231.01.MZZZ727727 . jpg</azlist:image>
<azlist:small_ image>http://images.amazon.com/images/P
/8432040231.01.T2222227.jpg</azlist:small_image>
<azlist:list_price>$7.95</azlist:list_price>
<azlist:release_date>19910600</azlist:release_date>
<azlist:binding>Paperback</azlist:binding>
<azlist:availability/>

Continued

41

42

Part | 4+ Introducing XML

Listing 2-2 (continued)

<azlist:tagged_url>http://www.amazon.com:80/exec/
obidos/redirect?tag=associateid&
benztechnologies=9441& camp=1793&
link_code=xmlé&path=ASIN/8432040231

</azlist:tagged_url>
</azlist:product>
<azlist:product>

<azlist:ranking>2</azlist:ranking>
<azlist:title>MacBeth</azlist:title>
<azlist:asin>1583488340</azlist:asin>
<azlist:author>Shakespeare, William</azlist:author>
<azlist:image>http://images.amazon.com/images/P/
1583488340.01.MZZZZ27277.jpg</azlist:image>
<azlist:small_image>http://images.amazon.com/images
/P/1583488340.01.T%22222%7.jpg</azlist:small_image>
<azlist:1list_price>$8.95</azlist:1list_price>
<azlist:release_date>19991200</azlist:release_date>
<azlist:binding>Paperback</azlist:binding>
<azlist:availability/>
<azlist:tagged_url>http://www.amazon.com:80/exec
/obidos/redirect?tag=associateid&
benztechnologies=9441& camp=1793&
link code=xml&path=ASIN/1583488340
</azlist:tagged_url>

</azlist:product>
<azlist:product>

<azlist:ranking>3</azlist:ranking>
<azlist:title>William Shakespeare:
MacBeth</azlist:title>
<azlist:asin>8420617954</azlist:asin>
<azlist:author>Shakespeare, William</azlist:author>
<azlist:image>http://images.amazon.com/images/P/
8420617954 .01 .MZZ2222727%.jpg</azlist:image>
<azlist:small_image>http://images.amazon.com/images
/P/8420617954.01.T22222727.jpg</azlist:small_image>
<azlist:list_price>$4.75</azlist:list_price>
<azlist:release_date>19810600</azlist:release_date>
<azlist:binding>Paperback</azlist:binding>
<azlist:availability/>
<azlist:tagged_url>http://www.amazon.com:80/exec/
obidos/redirect?tag=associateid&
benztechnologies=9441& camp=1793&

link code=xmlé&path=ASIN/8420617954
</azlist:tagged_url>

</azlist:product>
</azlist:amazon>
<ellist:elcorteingles.es items="1">

<ellist:product xml:lang="es">

<ellist:titulo>Romeo y Julieta/Macbeth/Hamlet/Otelo/
La fierecilla domado/El suefio de una noche de
verano/ El mercader de Venecia</ellist:titulo>

Chapter 2 4+ XML Documents

<ellist:1isbn>8484036324</ellist:isbn>
<ellist:autor>Shakespeare, William</ellist:autor>
<ellist:imagen>http://libros.elcorteingles.es/
producto/verimagen_blob.asp?ISBN=8449503639
</ellist:imagen>
<ellist:precio>7,59 €</ellist:precio>
<ellist:fecha-de-publicacién>6/04/1999</ellist:fecha-
de-publicacidn>
<ellist:Encuadernacién>Piel</ellist:Encuadernacidén>
<ellist:librourl>http://libros.elcorteingles.es/
producto/libro_descripcion.asp?CODIISBN=8449503639
</ellist:librourl>
</ellist:product>
</ellist:elcorteingles.es>
</catalog>
</quotedoc>

In this example, the XML document uses three namespaces as identifiers to differ-
entiate three separate sections of grouped data in the same document. The xmlns:
attribute declares the namespace for an XML document or a portion of an XML doc-
ument. The attributes that declare namespaces can be placed in the root element of
the document, as in this case, or in any nested element:

xmlns:gtlist="http://www.benztech.com/xsd/quotelist"
xmlns:azlist="http://www.benztech.com/xsd/amazonlist"
xmlns:ellist="http://www.benztech.com/xsd/elcorteingleslist"

The document is divided into three separate sections: one for the quote listing,
which will be identified by the gt 11 st Namespace, one for the Amazon list of
books, which uses the az1ist namespace prefix, and one for the elcorteingles list,
which is identified by the e11ist namespace prefix.

In the document itself, the segments of the document that correspond to the
namespaces are identified by XML element prefixes. For example, the prefix for the
quote list looks like this:

<gtlist:quotelist author="Shakespeare, William" quotes="4">

Closing tags must also contain a corresponding Namespace prefix for well-formed
XML:

</gtlist:quotelist>

Often the URL in the namespace also resolves to a Website that provides documen-
tation about the namespace, or information about the encoding types identified in
the namespace, and so on. However, in this case, the URLs do not resolve to an
actual document, but are used as a placeholder when declaring namespace names,
which can be used at a future date for documentation if it is needed.

43

44

Part | 4+ Introducing XML

When to use namespaces

The namespaces in this example perform the basic function of namespaces to act
as identifiers to group together logical segments of the XML document. Other XML-
based technologies such as XML Schemas, SOAP, and WSDL make heavy use of XML
namespaces to identify data encoding types and important elements of their struc-
ture. I'll be showing many more examples of namespaces being used in context to
identify elements for data validation in the next chapter, and examples of names-
paces used for encoding, and descriptions of SOAP and WSDL documents in the
Web Services section of the book. For now, let’s look at the namespaces and how
namespaces affect XML document structure.

Namespaces are useful in identifying sections of documents that are being parsed,
transformed, or manipulated in some other way. The parser or transformation
engine can identify groups of elements and attributes by their namespace prefix
instead of by their element values alone, and this helps to keep logical portions of
an XML document together during manipulation.

URIs, URLs, and URNs

In order to understand namespaces, developers must first understand one of their
basic components, URIs. HTTP URIs (Uniform Resource Identifiers) are a format
specification for Uniform Resource Locators (URLs), which anyone who uses the
Web is probably already familiar with, and Uniform Resource Names (URNs), which
they may not be. The main difference is that URLs are used to specify a location-
specific resource on the Web, such as http: //www.ibm.com, while URNs are used
to describe any value, such as a relative /servlet subdirectory or a variable name.
URNs and URLs can be assigned to a URL In the case of namespaces, URNs are usu-
ally used to mask a complicated Namespace or value for later reference, similar to
the way DNS replaces an IP address with a URL.

For example, we could have used the following URNs for namespace references:

xmlns:gtlist="http://www.benztech.com/xsd/quotelist"
xmlns:azlist="fred"
xmlns:ellist="This is a urn, part of a uri"

The URIs in the declarations here are qtlist, azlist, and ellist. The first namespace
declaration, assigned to the gtlist, is clearly a URL. The second assignment to the
azlist is a URN. The last namespace declaration assigned to the ellist URI is a valid
URN, but is formatted to make an important point. The URN value of the namespace
can contain anything that the W3C namespace Recommendation allows, but
because the URI will be used in element names, it has to adhere to the W3C XML
document element name rules for characters. ellist is fine as a URI, but a URI for-
matted as ellist is not well-formed XML.

After defining URLs and URNSs to the namespaces, the next task for developers it to
assign the URIs to elements in the XML document. We've added the qtlist, azlist, and
ellist URIs as prefixes to specific elements in the sample document in Listing 2-2.

Chapter 2 + XML Documents 45

It’s worth noting that we specifically excluded the root quotedoc and the catalog
elements in the document from Namespaces, because they are not part of any logi-
cal segment of the document, but just contain the logical segments. Therefore, any-
thing that happens to them during XML document manipulation does not affect the
other logical groupings that they contain.

More information on namespaces, including features in the new namespaces for
XML 1.1, currently at the “Working Draft” stage of the XML Recommendation
process, can be found at http://www.w3.0org/TR/2002/WD-xml-names11-
20020905.

Element Name Tips

A discussion of element and attribute names in the real world would not be complete
without a mention of a couple of important element and attribute formatting issues.
We'’ve added a couple of XML booby traps into the ellist Namespace grouping:

<ellist:elcorteingles.es items="1">
<ellist:product xml:lang="es">
<ellist:titulo>Romeo y Julieta/Macbeth/Hamlet/Otelo/La
fierecilla domado/El suefio de una noche de verano/ El mercader
de Venecia</ellist:titulo>
<ellist:1isbn>8484036324</ellist:isbn>
<ellist:autor>Shakespeare, William</ellist:autor>

<ellist:imagen>http://libros.elcorteingles.es/producto/verimage
n_blob.asp?ISBN=8449503639</ellist:imagen>
<ellist:precio>7,59 €</ellist:precio>
<ellist:fecha-de-publicacidén>6/04/1999</ellist:fecha-
de-publicacidén>
<ellist:Encuadernacién>Piel</ellist:Encuadernacidén>

<ellist:1librourl>http://libros.elcorteingles.es/producto/libro_
descripcion.asp?CODIISBN=8449503639</ellist:librourl>
</ellist:product>
</ellist:elcorteingles.es>

The dangers lurking in this segment of the XML document look perfectly normal
and are technically part of well-formed XML documents, but are accidents waiting
to happen. The first one is hidden in this line:

<ellist:elcorteingles.es items="1">

Note that the element name contains a period, which resolves the element name to
the elcorteingles.es Website. While this is acceptable as well-formed XML, it is
a problem for some destination data formats, which may recognize this element

name as the es method of the elcorteingles class, and try to resolve it as such.

46

Part | 4+ Introducing XML

Also, most relational databases will have formatting issues with this element name
if it is intended to be added to a RDBMS system as a field or item name.

The second problem is here:

<ellist:fecha-de-publicacién>6/04/1999</ellist:fecha-de-
publicacién>

The dash that is substituting spaces in the fecha de publicacién (publication
date) element name has similar issues to the period in the previous example. In this
case, the destination system accepting the value may try to subtract the values
from each other, or if the element name is intended to become a field name in an
RDBMS system, the dashes would probably cause errors.

In each case, it’s best and safest to go with underscores to define the elements:
<ellist:elcorteingles_es items="1">

<ellist:fecha_de_publicacién>6/04/1999</ellist: fecha-de-
publicacién>

The preceding examples are also well-formed XML and will probably not have any
issues when arriving at their intended destination.

Summary

In this chapter, I expanded on the theory in the previous chapter to show some
real-world applications of XML via practical examples, but this is only half of the
XML document story.

4 An introduction to real-world XML document structure and syntax

4 Specifying the language of XML data using xm1 : lang

4 Formatting text data using xml : space

4 Real-world XML namespace examples

4 Entity references in test data— URLs

4 Tips for naming elements and attributes
In the next chapter I'll show you how to validate XML documents using DTDs, and
Schemas. I'll show you how to make sure that XML documents not only conform to

XML document syntax and structure specifications, but also make sense from a
data point of view.

+ 0+

CHAPTER

XML Data
Format and

Validation

In the last chapter, you were introduced to XML syntax and
the requirements of well-formed XML using real-world
example XML documents. This chapter will build on the exam-
ple XML documents introduced in Chapter 2 to describe ways
to make sure that XML documents are not just well formed,
but also contain data in a predefined format, and how to
enforce the rules that make up the predefined format.

XML is an excellent transport medium for sharing data across
systems and platforms. However, well-formed XML documents
that adhere only to the basic XML syntax rules are very easy
to generate at the source, but usually very hard to read at
their destination without some kind of a description of the
structure represented in the XML document. This is where
XML validation comes in.

XML document formatting rules that are in addition to the
basic XML syntax rules are described and enforced through a
process called XML validation. XML validation uses a separate
document that is passed with the XML document, or pub-
lished and stored separately at a URL. The validation docu-
ment describes the data structure and format that is
contained in the XML document.

XML validation documents are usually produced at the same
time and from the same source as an XML document. XML
documents can reference the validation document as part of
the elements and/or attributes in that document, and are used
by parsers to make sure that the XML document meets the
criteria described in the validating document. If the XML doc-
ument is well formed and the parser is able to determine that
the XML document meets the structure and format require-
ments described in the validating document, the document is
said to be valid XML.

¢+ s+
In This Chapter

An infroduction to
validating XML data

How to apply DTDs
to XML documents

Understanding DTD
structure and syntax

How to apply W3C
Schemas to XML
documents

Understanding W3C
Schema structure and
syntax

Development tips and
tricks for DTDs and
Schemas

Techniques for
flexible DTD and

Schema structures

+ + o+

48

Part | 4+ Introducing XML

The two most common types of data validation are Document Type Definitions
(DTDs) and W3C XML Schemas. DTDs and Schemas are documents that describe
the contents of XML documents and are used for XML validation. DTDs are text
documents that describe data formats in other XML documents but are not format-
ted in XML. Schemas are the next generation of data validation formats, and like
DTDs they describe data formats in other XML documents, but unlike DTDs,
Schemas themselves are formatted in XML. Schemas can also go into much more
detail in describing the structure and format of XML.

The concept of valid XML can extend from a single document format shared
between two organizations with a common validation document, to a published
validation format for specific types of data represented as XML.

For example, even though the W3C reviews and declares industry Schema stan-
dards as recommendations, there is no official central registry of XML validation
documents. XML.org has published a DTD/Schema registry that comes close, at
http://www.xml.org/xml/registry.jsp. A search of “News” at the XML.org
DTD/Schema registry returns a link to XMLnews.org at http: //www.xmlnews .
org, the publishers of the NewsML format. NewsML is a standardized XML format
for news content developed by the International Press Telecommunications Council
(IPTC), a consortium of news providers, including Associated Press, Reuters, Dow
Jones, the Newspaper Association of America, the New York Times, and many other
household-name news providers. Part of NewsML is two DTDs. The XMLNews-Meta
DTD describes requirements for valid metadata related to a news item, and the
XMLNews-Story DTD describes the structure of a NewsML story. Third-party news
content developers can use these DTDs to create and share NewsML formatted
news stories between Websites and content syndicators, vastly improving compati-
bility for News content delivery on the Web.

The XML.org DTD/Schema registry also provides a great example of that old saying
that “The great thing about standards is that there are so many of them.” It doesn’t
take a lot of imagination to see that anyone who controls the most popular valid
XML format for an industry can wield a lot of power over that industry as XML
develops. Competing standards bodies as well as competing companies are pushing
to make their own brand of valid XML the “standard” for an industry, and as a result
there are several competing formats vying for first place in the valid XML popular-
ity contest. This has resulted in several valid XML formats for many key industries
to be listed side by side in the XML.org DTD/Schema registry. It’s up to the devel-
oper to decide which one suits their needs, if any, based on industry support, ease
of reference, and quality of documentation.

The proliferation of standards is complicated by the fact that version control of XML
validation document references is difficult; once thousands of documents have been
produced that conform to a certain DTD or Schema, it’s very difficult to re-factor the
old documents to conform to a new Schema. For this reason alone it’s likely that
DTDs will be around for many years to come, despite more data control, better read-
ability, and more advanced features in Schemas.

Chapter 3 + XML Data Format and Validation 49

XML Parsers for Data Validation

There is no valid XML without a parser, just a reference to a validation document in
an XML document. XML parsers read an XML document and split apart the ele-
ments, attributes, and text data to create a representation of the document that can
be used for integration into other data types. A parser’s first task is to check an
XML document’s syntax and make sure the document is well formed. The second
task for some parsers is to look for a validation document reference in the XML
document and validate the XML document based on the document description

in the validation document. Parsers that perform the validation step are called
validating parsers, while parser that don’t are called non-validating parsers.

- Cross- For a full description of parsers, including a listing of validating and non-validating
Reference) 1, arsers, please see to Chapter 7, “XML Parsing Concepts.”

Document Type Definitions

DTDs (Document Type Definitions) were originally developed as part of SGML, and
then extended to the W3C HTML recommendation to declare which specification an
HTML document uses. Web browsers, HTML editors, and other programs that vali-
date the syntax of HTML documents use an optional reference at the top of an
HTML page to identify the HTML version for page rendering and validation pur-
poses. DTDs were extended to function as XML validation documents as part of the
W3C XML 1.0 recommendation in 1998.

Original DTD development was done by hand, and many DTDs are still edited this
way. Hand-crafting DTDs using a text editor that doesn’t check syntax and testing
DTD development by running a validating parser against the XML document and
watching for errors is, thankfully, becoming an anachronism. There are now many
tools on the market that can help developers generate DTDs based on sample docu-
ments, and DTD editors that can check syntax while a document is being created.
A good listing of DTD editors can be found on the XML.com Website at http://
www . xml . com/pub/pt/2. Most of the DTD tools listed are free or have free trial
downloads available. Most of the DTDs in this chapter were edited using Altova’s
xmlspy 5 Enterprise edition. A trial version xmlspy can be downloaded from
http://www.altova.com.

Listing 3-1 shows the DTD that I will be using as an example for this chapter. The
AmazonMacbethSpanish.dtd is referenced and validates the contents of the
AmazonMacbethSpanishwithDTDref.xml document.

YA The xmlprogrammingbible.com Website.

Wn All of the DTDs and XML documents in this chapter can be downloaded from the
N/ Web

50 Part | 4+ Introducing XML

Listing 3-1: Contents of AmazonMacbethSpanish.dtd

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSPY v5 rel. 2 U (http://www.xmlspy.com) by
Brian Benz (Wiley) -->
<!ELEMENT quotedoc (quotelist, catalog)>
<!ELEMENT quotelist (quote+)>
<!ATTLIST quotelist
author CDATA #REQUIRED
quotes CDATA #REQUIRED
>
<!ELEMENT quote (#PCDATA)>
<!ATTLIST quote
source CDATA #IMPLIED
author CDATA #IMPLIED
>
<!ELEMENT catalog (amazon, elcorteingles)>
<!ATTLIST catalog
items CDATA #REQUIRED
>
<!ELEMENT amazon (product+)>
<!ATTLIST amazon
items CDATA #REQUIRED
>
<!ELEMENT elcorteingles (product)>
<!ATTLIST elcorteingles
items CDATA #REQUIRED
>
<!ELEMENT product (ranking?, (title | titulo)+, (asin | isbn)+,

(author | autor)+, (image | imagen)+, small image?, (list_price
| precio)+, (release_date | fecha_de_ publicacién)+, (binding |
Encuadernacidn)+, availability?, (tagged_url | librourl) +) >

<!ATTLIST product

xml:lang CDATA #IMPLIED
>
<!ELEMENT Encuadernacidén (#PCDATA)>
<!ELEMENT asin (#PCDATA)>
<!ELEMENT isbn (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT autor (#PCDATA)>
<!ELEMENT availability (#PCDATA)>
<!ELEMENT binding (#PCDATA)>
<!ELEMENT fecha_de_publicacién (#PCDATA)>
<!ELEMENT image (#PCDATA)>
<!ELEMENT imagen (#PCDATA)>
<!ELEMENT librourl (#PCDATA)>
<!ELEMENT list_price (#PCDATA)>
<!ELEMENT precio (#PCDATA)>
<!ELEMENT ranking (#PCDATA)>
<!ELEMENT release_date (#PCDATA)>

Chapter 3 + XML Data Format and Validation 51

<!ELEMENT small_image (#PCDATA)>
<!ELEMENT tagged_url (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT titulo (#PCDATA)>

Applying DTDs

The AmazonMacbethSpanish.dtd is referenced by adding a DOCTYPE declaration
to the AmazonMacbethSpanishwithDTDref .xml document:

<!DOCTYPE quotedoc SYSTEM "AmazonMacbethSpanish.dtd">

The ' DOCTYPE element is called a Document Type Declaration. This is not to be
confused with the Document Type Definition that is contained in a DTD document,
despite the same DTD acronym. There can be only one Document Type Declaration
in an XML document, and the declaration must be placed below the XML declara-
tion if there is one, and above all the other elements in the document. Validating
parsers look for the declaration in that spot only, and validate the data based on
the DTD reference.

The next item after ! DOCTYPE is the element name for the Document Type
Declaration. The element name is mandatory, and should always match the root
element in the document. The element name specified in the Document Type
Declaration becomes the starting point for a parser to validate the XML document
using the DTD.

PUBLIC and SYSTEM source references

There are two possible sources for Document Type Declarations, SYSTEM and
PUBLIC.

The most widely used Declaration source is SYSTEM. Then SYSTEM is used, the ref-
erence to the DTD can be a URL or a file system reference. For example, if the DTD
is located in the c:\temp directory of the developer’s workstation, the reference
would look like this:

"C:/temp/AmazonMacbethSpanish.dtd"
Or if the workstation has access to the Web, the original DTD could be referenced at

"http://xmlprogrammersbible.com/DTDs/AmazonMacbethSpanish.dtd"

Either format is a valid DTD reference, as long as the file path resolves to well-formed
DTD document.

52

Part | 4+ Introducing XML

The second type of Document Type Declaration source is PUBLIC and is rarely
used. You probably just need to know about PUBLIC sources in case you see one in
an older XML document or documentation. PUBLIC sources refer to relative or
mapped directories where the DTD can be located, and are usually for use within an
organization or as part of a VPN. PUBLIC sources must also have a backup SYSTEM
source, and are therefore generally redundant. For example, a Document Type
Declaration with a PUBLIC source would combine our two previous examples:

<IDOCTYPE quotedoc PUBLIC “C:/Program Files/Altova/XMLSPY/Examples/
XMLBible/AmazonMacbethSpanish.dtd” “http://xmlprogrammersbible.com/DTDs/
AmazonMacbethSpanish.dtd”>

Note that the SYSTEM source is not specifically declared, but implied, based on the
relative positioning in the declaration, just after the PUBLIC declaration.

Including DTDS in XML documents

The standalone attribute of the XML declaration has not been covered in the
book so far, and for good reason. Like the PUBLIC source DTD declaration, it’s
another legacy DTD feature that can be used, but is not recommended. It is only
mentioned here so you can recognize it if you see it in older XML documents or as
part of an older validation system. To most novice XML developers, simple XML
documents with a simple DTD embedded in them looks like a good idea, because
the validation criteria can be transported with the XML data as a unit to the desti-
nation. But including DTDs in standalone XML documents makes the documents
bloated and hard to read, and represent a maintenance nightmare if a centralized
DTD is ever implemented or edited, and actually defeats the purpose of validating
data in the first place. XML validation should be done against a standardized DTD
that validates all documents. If each XML document has its own DTD based on the
data in that document, it is always valid, even if it no longer suits the purpose of the
destination application.

To include a DTD in an XML document, use the standalone attribute:
<?xml version="1.0" encoding="IS0-8859-1" standalone="vyes"?>

The standalone attribute in the XML declaration tells parsers that everything
needed for this document is contained in the document. The standalone attribute
is optional, and rarely used. Not including the standalone attribute is the same as
declaring standalone="no" in the XML declaration, meaning that if there is a ref-
erence to a validation document, it is outside of the current XML document.

XML documents with the standalone attribute do not specify a SYSTEM or PUB-
LIC source. Instead, the DTD is nested between square brackets in the Document
Type Declaration:

Chapter 3 4+ XML Data Format and Validation 53

<?xml version="1.0" encoding="IS0-8859-1" standalone="yes"?>
<!DOCTYPE quotedoc
[<!ELEMENT quotedoc (quotelist, catalog)>.......]

Note that the root element name for the XML document must still be declared,
even in a standalone XML document. After the DTD, the root element starts the
XML document:

<quotedoc>
<quotelist author="Shakespeare, William" quotes="4">.....

The combination of the XML document from Chapter 2 and the DTD from Listing 3-1.

WW The above example has been truncated for brevity. The full example document is a

N/ Web

The file name is AmazonMacbethSpanishwithinternalDTD.xml, and can be down-
loaded from the xmlprogrammersbible.com Website.

DTD structure

Now that you have an understanding of how to reference a DTD, the next step is to
understand how DTDs describe XML documents. The first element in a DTD is usu-
ally an XML declaration, even though most of the other elements in a DTD do not
look like well-formed XML. This is due to the special syntax rules for DTD docu-
ments. Each element in a DTD must have an exclamation mark as the first character
in the element name. All other XML syntax rules apply to the element name.

DTD declarations

There are four declarations that can be used in DTDs: ELEMENT, ATTLIST, ENTITY,
and NOTATION. Although the elements conform to the rules of well-formed XML, in
a DTD elements that start with a ! are referred to as DTD declarations. This is to
separate the description of XML documents from the documents themselves, and
also because one of the four declaration types is called ELEMENT, and references to
the ELEMENT element would make DTD documentation start to sound like Monty
Python’s “Department of redundancy department” sketch.

The ELEMENT declaration describes XML document elements and optional nested
elements. The ATTLIST declaration describes XML document attributes and
optional values. The ENTITY declaration describes special characters and refer-
ences to variables, and is the same as the entity references in XML documents that I
discussed in Chapter 2. The Notation declaration is used to contain references to
external data such as URLs to an image in a DTD. In addition, comments can be con-
tained in a DTD using the same format as XML document comments.

It’s worth noting that the DTD [am using in this example is edited, but not gener-
ated by, xmlspy. While xmlspy has a very good facility for generating DTDs, proba-
bly the best on the market, in this case a DTD already existed that was much

54

Part | 4+ Introducing XML

simpler than the one generated by xmlspy. Naturally, the simpler and more read-
able DTD was chosen and cleaned up using xmlspy’s editor. The moral of the story
is that even though many tools can generate DTDs, developers still need to know
something about DTD structure if they want to make sure that the DTD that was
generated is doing the best job possible in validating XML document data, or to
repurpose a generated DTD if there is a problem with it. In other words, you can’t
skip this chapter just because you know about tools that generate DTDs!

The example DTD in Listing 3-1 starts with an XML declaration then contains a com-
ment that tells us that this DTD was edited using xmlspy. Note that the DTD com-
ment format is the same as an XML document comment format:

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSPY v5 rel. 2 U (http://www.xmlspy.com) by
Brian Benz (Wiley) -->

Next is a declaration for the root quotedoc element. The quotedoc element speci-
fies two nested elements in an element list. The quotelist and catalog elements
have to be present, and have to be in the order specified in the list under the
guotedoc element, as specified by the comma separator:

<!ELEMENT quotedoc (quotelist, catalog)>

There are five ways to represent element structures in DTD documents, as shown in
Table 3-1.

Table 3-1
DTD Element Structures
Representation Description
<IELEMENT quotedoc ANY > The quotedoc element is mandatory, but

any type of well-formed XML can be nested
under quotedoc element, in any order.

<!ELEMENT quotedoc EMPTY> The quotedoc element is mandatory, but
cannot have any other elements nested under
it. Attributes can be defined for the
quotedoc element.

<IELEMENT quotedoc (#PCDATA)> The quotedoc element is mandatory, and
can contain only text data, not nested
elements. PCDATA stands for Parsed Character
Data. Attributes can be defined for the
quotedoc element. This format is known as
the text-only content model.

Chapter 3 4+ XML Data Format and Validation 55

Representation Description

<IELEMENT quotedoc (quotelist, catalog)> The quotedoc element is mandatory and can

<IELEMENT quotedoc (quotelist | catalog)> contain only the elements specified, not text
values. Attributes can be defined for all
elements and text can be contained in nested
elements, if the declaration for that element
permits it. This format is known as the
element-only content model.

Comma-separated element lists are called
sequence lists, and the XML document
element order must match the order of the
elements listed.

Lists separated by the vertical bar (]) are called
choice lists and the vertical bar is equivalent to
a logical “or” operator, meaning one of the
elements in the list must be present under the
quotedoc element.

<IELEMENT quotedoc The quotedoc element is mandatory and
can
(#PCDATA | quotelist, catalog)> contain the elements specified and/or text

values. Attributes can be defined for all
elements and text can be contained in nested
elements as well, if the declaration for that
element permits it. This format is known as
the mixed content model.

The next line in the DTD provides an example of the element cardinality, as speci-
fied by the “+” cardinality operator:

<!ELEMENT quotelist (quote+)>
There are four ways to specify how many times an element can appear under the

current element, represented by three cardinality operators and a default rule, as
shown in Table 3-2.

56 Part| 4 Introducing XML

Table 3-2

DTD Cardinality Operators

Cardinality Rule

Description

<IELEMENT quotelist (quote+)>

<IELEMENT quotelist (quote?>

<IELEMENT quotelist (quote*)>

<!ELEMENT quotelist (quote)>

The quote element is a required child element of
the quotelist element. There can be one or
more quote child elements under the
quotelist element.

The quote element is an optional child element of
the quotelist element. If it is present, there can
be only one quote child element under the
quotelist element.

The quote element is an optional child element of
the quotelist element. If it is present, there can
any number of quote child elements under the
quotelist element.

(default) The quote element is a required child
element of the quotelist element. There can be
only one quote child element under the
quotelist element.

Next in the example DTD is the attribute list for the quotelist element, which
indicates that there are two required attributes containing character data:

<!ATTLIST quotelist

author CDATA #REQUIRED
quotes CDATA #REQUIRED

>

Table 3-3 shows the list of keywords that control attributes in DTDs, which are
called attribute declaration keywords.

Table 3-3

DTD Attribute Declaration Keywords

Declaration Keyword

Description

No declaration Keyword (default)
author CDATA
quotes CDATA “0”

#IMPLIED
author CDATA #IMPLIED

The author attribute is optional. If no
quotes attribute value is specified when
the document is parsed, a 0 value can be
added to the XML document.

The author attribute is optional.

Chapter 3 4 XML Data Format and Validation

Declaration Keyword Description

#FIXED
author CDATA #FIXED “Shakespeare, William”

The author attribute is optional in the
XML document but is specified in the DTD.
When the XML document is parsed, the
author attribute value is checked to
make sure it matched the value specified
in the DTD. If there is no attribute value in
the XML document, the value is
automatically supplied from the DTD
instead of generating a parser error.

#REQUIRED
author CDATA #REQUIRED

The author attribute is required and must
be supplied in the XML document.

In addition to the attribute declaration keywords, there are several additional ways
to control the type of data that are contained in the attribute value. CDATA is the
most common data type for DTDs. IDs are used occasionally, and the rest of the
data types are used and seen infrequently, but it’s good to know about them, just in
case you have a need for them or have to understand a DTD that uses them. Table
3-4 shows the available list of attribute data types in DTDs, and compatible
attribute declaration keywords.

Table 3-4
DTD Attribute Data Types
Data Type Description
CDATA Character data. The most common
author CDATA attribute description. All types of attribute

author CDATA “Shakespeare, William”

author CDATA #IMPLIED

author CDATA #FIXED “Shakespeare, William”
author CDATA #REQUIRED

NMTOKEN/NMTOKENS

author NMTOKEN

author NMTOKEN “William Shakespeare”

author NMTOKEN #IMPLIED

author NMTOKENS #IMPLIED

author NMTOKEN #FIXED “William Shakespeare”
author NMTOKEN #REQUIRED

author NMTOKENS #REQUIRED

declaration keywords can be used with
cdata.

NMTOKEN is more restrictive than CDATA,
which can contain any character data.
NMTOKEN attribute values must conform
to the rules of well-formed XML names.

NMTOKENS can refer to a multiple value
list of choices that are specified in the
XML document attribute by a single
space. All values must conform to the
rules of well-formed XML names.

Continued

57

Part | 4+ Introducing XML

Table 3-4 (continued)

Data Type

Description

ENTITY/ENTITIES

Entity References:

<IENTITY bookimage SYSTEM “http://
images.amazon.com/images/P/
8432040231.01.MZZZZ77Z.jpg">
<IENTITY small_bookimage SYSTEM
“http://images.amazon.com/images/P/
8432040231.01.TZZZ777Z.jpg">
Attribute references:

<IATTLIST quotelist bookimage ENTITY>

<IATTLIST quotelist bookimages ENTITIES>

NOTATION
<IENTITY w3cwebsite SYSTEM
“http://www.w3c.org”>

<INOTATION text_html SYSTEM
“http://www.iana.org/assignments/
media-types/text/htm|">

<IATTLIST quotelist w3cwebsite
ENTITY text_html NOTATION >

DTD entity attribute data types are similar
to XML document entity references in the
sense that they let you link to data that is
outside the scope of the current
document. Attribute entity references are
most commonly used to link to images
that must be included in an XML
document, but that you want to specify
the location of in a centralized document.
Entities are not parsed, but referenced.

In the XML document, the attribute value
of bookimage can be used to refer to
the entity references show on the left,
instead of the full URL. If the URL
changes, the reference in the DTD can be
updated centrally with the new URL.

References to multiple images are
formatted in an XML document attribute
by using the bookimages attribute
name and specifying entity names
separated by a space.

DTD NOTATION attribute data types
specify methods for handling non-parsed
data, which is represented as Entitles in
attributes. The example on the left shows
an entity declaration that represents the
URL for the W3C home page. Notation for
the Internet Assigned Numbers Authority
(IANA) mime type definition for HTML is
shown in the notation element. The
ATTLIST shows a reference to the
w3cwebsite entity and a reference to
notation for the handling of the entity
reference. Parsers will not parse the
entity, but will pass on the reference and
the notation to the XML document
destination.

Chapter 3 4+ XML Data Format and Validation 59

Data Type Description
ID A unique value of Character data. For
quoteid ID #REQUIRED example, to uniquely identity quotes in

the document. In this example, a quoteid
attribute is attached to each quote
element that uniquely identifies that
quote in the XML document. ID attributes
should never use the #FIXED attribute
declaration, and should not be #IMPLIED,
or optional in any other way, to ensure
each element contains an attribute with a
unique identifier.

IDREF/IDREFS IDREFS can refer to an ID data type in an
XML document on a one-to-one or one-
quotelist ID attribute: to-many basis, and are used to define
relationships between elements that are
<IATTLIST quotelist not explicitly linked together in the
author ID #REQUIRED document through attributes. For
> example, you may want to enforce that a
quotelist contains quotes by a certain
quote IDREF: author or list of authors. The quotelist
could have an ID attribute, as shown on
<IATTLIST quote author IDREF #REQUIRED the left. Next, the quote could refer to the
> quotelist ID for the author name, or in the
-or- second example, to one or more authors
<IATTLIST quote author IDREFS #REQUIRED in the quotelist author ID attribute.
>

In addition to the data types here, a predefined choice list of attribute values can be
manually specified. For example, an attribute that is restricted to be either William
Shakespeare or Geoffrey Chaucer in lastname, firstname format could be explicitly
defined like this:

<!ATTLIST quotelist
author (Shakespeare, William | Chaucer, Geoffrey)
>

Choices are separated by a vertical bar character (1). Note that unlike the ELEMENT
declaration, the commas are not part of the order specification for the choices,
they are treated as a part of a choice in a list.

60

Part | 4+ Introducing XML

While the first few elements provided opportunities to introduce you to the basic
declarations and syntax of DTD documents, the rest of the DTD provides additional
examples of DTD descriptions of XML documents. The next element that is defined
in the DTD is the quote element, which is a child of the quotelist element. The
quote element has two optional attributes, source and author.

<!ELEMENT quote (#PCDATA)>
<!ATTLIST quote
source CDATA #IMPLIED
author CDATA #IMPLIED

The catalog element must contain two elements in sequence, starting with
amazon and ending with elcorteingles. The catalog element has one required
attribute, called i tems, which contains a count of the items in the catalog:

<!ELEMENT catalog (amazon, elcorteingles)>
<!ATTLIST catalog

items CDATA #REQUIRED
>

The amazon element contains one child element called product. The + cardinality
operator indicates that there can be one or more product child elements under
amazon:

<!ELEMENT amazon (product+)>
<!ATTLIST amazon
items CDATA #REQUIRED

The elcorteingles element contains one child element called product. Because
no cardinality operator is specified, there can be only one product child element
under elcorteingles

<!ELEMENT elcorteingles (product)>
<!ATTLIST elcorteingles

items CDATA #REQUIRED
>

The next element declaration is a great example of the combination of the DTD ele-
ment declaration, sequence and choice list operators, and cardinality operators
working in concert to solve a tricky data validation problem. The XML document
supports both English and Spanish translations in nested elements of the product
element. Unfortunately, parsers have no way of automatically recognizing and
translating the element names, so it’s up to the DTD developer to make sure that all
possibilities in both formats are covered as part of the validation process.

Chapter 3 4 XML Data Format and Validation

In this example, all elements that have English and Spanish translations are offered
as choice lists components in a sequence list of nested elements under the
product element. Each translation choice list is completed with the + cardinality
operator outside of the braces that contain the list choices, which means that at
least one instance of the element has to be present in one of the languages, and
more instances are permissible. The Amazon.com product element also contains
some nested elements that the elcorteingles product element does not. Those ele-
ments have been listed in sequence and end with a ? cardinality operator, indicat-
ing that the nested elements are optional, but if they are present they must be in
the sequence specified in the listing. In summary, the product DTD element declara-
tion enforces either an English product listing from Amazon.com, or a smaller
Spanish listing from the elcorteingles.com Website.

<!ELEMENT product (ranking?, (title | titulo)+, (asin | isbn)+,

(author | autor)+, (image | imagen)+, small_image?, (list_price
| precio)+, (release_date | fecha_de_publicacién)+, (binding |
Encuadernacidn)+, availability?, (tagged_url | librourl) +) >

There is one optional attribute for the product element, called xm1 : 1ang. The lan-
guage of the product element for the elcorteingles listing is defined by using the
predefined xml : 1ang attribute. In the DTD this is represented by an optional
attribute for the product:

<!ATTLIST product
xml:lang CDATA #IMPLIED
>

The rest of the elements have no children or attributes and are represented by
PCDATA (Parsed Character Data) element declarations. Parent element declarations
need these element declarations to be in the DTD. The PCDATA declaration indi-
cates a text-only content model, which means that these elements can contain text
and attributes but not nested elements.

<!ELEMENT Encuadernacidén (#PCDATA)>
<!ELEMENT asin (#PCDATA)>

<!ELEMENT isbn (#PCDATA)>

<!ELEMENT author (#PCDATA)>
<!ELEMENT autor (#PCDATA)>
<!ELEMENT availability (#PCDATA)>
<!ELEMENT binding (#PCDATA)>
<!ELEMENT fecha_de_publicacidén (#PCDATA)>
<!ELEMENT image (#PCDATA)>
<!ELEMENT imagen (#PCDATA)>
<!ELEMENT librourl (#PCDATA)>
<!ELEMENT list_price (#PCDATA)>
<!ELEMENT precio (#PCDATA)>
<!ELEMENT ranking (#PCDATA)>
<!ELEMENT release_date (#PCDATA)>

61

62

Part | 4+ Introducing XML

<!ELEMENT small_image (#PCDATA)>
<!ELEMENT tagged_url (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT titulo (#PCDATA)>

While DTDs are still in use and still often the data validation tool of choice for many
XML developers, the W3C Schema promises, and in most cases, delivers, much
more control over data validation than DTDs. In the next section of this chapter, I'll
introduce you to Schemas and show how Schemas are structured and validate XML
data.

W3C XML Schemas

Schemas are an updated document format for XML data validation. Schemas can be
less cryptic than DTDs, but consequently are much more verbose, and are much
easier to grasp for XML developers than DTD syntax because Schemas are more
closely based on XML syntax. Nested elements are represented by nested elements,
and attributes are assigned explicitly as part of the element. Cardinality operators,
attribute data types, and choice lists are replaced by element representations and
attribute keywords, and there is much more control over data types. The XML
Schema 1.0 is an official W3C Recommendation as of May 2001, and XML 1.1 is in
the works at the W3C. More information can be found at http://www.w3 .org/
TR/2001/REC-xmlschema-1-20010502.

A good listing of Schema editors can be found on the XML.com Website at
http://www.xml.com/pub/pt/2. Most of the Schema tools listed are free or
have free trial downloads available. As with the DTD example earlier in this chapter,
this Schema example is edited using Altova’s xmlspy (http://www.altova.com).
[was also able to use xmlspy to translate the DTD used in the previous example to
a Schema that almost worked. As with DTDs, xmlspy’s W3C Schema generator is
probably the best on the market, but there was one crucial item that xmlspy missed
in the DTD to Schema translation that had to be added manually, which I will get
into later in this chapter. The point is that as with DTDs, developers still need to
know something about Schemas structure if they want to make sure that the
Schema generated is the best format possible for validating XML document data,

or to fix a generated Schema if there is a problem with it.

W3C Schema data types

DTDs were developed as part of the original SGML specifications, and extended to
describe HTML markup as well. They are great as a legacy data validation tool, but
have several drawbacks when applied to modern XML documents. DTDs require
that elements be text, nested elements, or a combination of nested elements and
text. DTDs also have limited support for predefined data types.

Chapter 3 4+ XML Data Format and Validation 63

Schemas can support all of the DTD attribute data types (ID, IDREF, IDREFS,
ENTITY, ENTITIES, NMTOKEN, NMTOKENS and NOTATION). CDATA, is replaced by
the primitive string data type. Other data types can be used in a multitude of for-
mats, as shown in Table 3-5

Table 3-5
Schema Data Types

Name Base Type Description
String
String Primitive Any well-formed XML string
normalizedString string Any well-formed XML string that also does

not contain line feeds, carriage returns,

or tabs.
Token normalizedString Any well-formed XML string that does not

contain line feeds, carriage returns, tabs,
leading or trailing spaces, or more than
one space.

language token A valid language id, matching xml:lang
format, which is usually International
Organization of Standardization (1SO)

639 format.
QName Primitive XML namespace qualified name (Qname).
Name token A string based on well-formed element and
tribute name rules.
NCName name The part of a namespace name to the right
of the namespace prefix and colon.
Date
date Primitive Date value in the format YYYY-MM-DD.
time Primitive Time value in the format HH:MM:SS.
dateTime Primitive Combined date and time value in the
format YYYY-MM-DDT HH:MM:SS.
gDay Primitive The day part of a date in the format DD.
Also the national greeting of Australia.
gMonth Primitive The month part of a date in the format MM.
gMonthDay Primitive The month and day part of a date in the

format MM-DD.

Continued

Part | 4+ Introducing XML

Table 3-5 (continued)

Name Base Type Description

gYear Primitive The month part of a date in the format
YYYY.

gYearMonth Primitive The year and month part of a date in the
format YYYY-MM.

duration Primitive Represents a time interval the 1SO 8601
extended format P1YTM1DTT1H1M1S. This
example represents one year, one month,
one day, one hour, one minute, and one
second.

Numeric

number Primitive Any numeric value up to 18 decimal places.

decimal Primitive Any decimal value number.

float Primitive Any 32-bit floating-point type real number.

double Primitive Any 64-bit floating-point type real number.

integer number Any integer.

byte short Any signed 8-bit integer.

short int Any signed 16-bit integer.

int integer Any signed 32-bit integer.

long integer Any signed 64-bit integer.

unsignedByte integer Any unsigned 8-bit integer.

unsignedShort unsignedint Any unsigned 16-bit integer.

unsignedint unsignedLong Any unsigned 32-bit integer.

unsignedLong
positivelnteger

nonPositivelnteger

negativelnteger

nonNegativelnteger

nonNegativelnteger
nonNegativelnteger

integer

nonPositivelnteger

integer

Any unsigned 64-bit integer.
Any integer with a value greater than 0.

Any integer with a value less than or equal
to 0.

Any integer with a value less than 0.

Any integer with a value greater than or
equal to 0.

Chapter 3 4+ XML Data Format and Validation 65

Name Base Type Description

Other

anyURI Primitive Represents a URI, and can contain any URL
or URN.

Boolean Primitive Standard binary logic, in the format of 1, 0,
true, or false.

hexBinary Primitive Hex-encoded binary data

base64Binary Primitive Base64-encoded binary data.

Primitive and derived data types can be extended to create new data types. Data
types that extend existing data types are called user-derived data types.

W3C Schema elements

Data types are formatted as attributes in element declarations of Schema docu-
ments, just as data types are usually defined by attributes in XML documents. Data
types are contained in four types of elements:

4 Element declarations: Describe an element in an XML document.

4+ Simple type definitions: Contain values in a single element, usually with
attributes that define one of the primitive or derived W3C data types, but can
contain user-derived data types as well.

4+ Complex type definitions: A series of nested elements with attributes that
describe a complex XML document structure and primitive, derived, or user-
derived data types.

4 Attribute declarations: Elements that describe attributes and attributes that
define a data type for the attribute.

Element declarations, simple type definitions, complex type definitions, and
attribute declarations are all defined by declaring one or more of the Schema ele-
ments listed in Table 3-6 in a Schema document:

66

Part | 4+ Introducing XML

Table 3-6
Schema Elements

Element Description

all Nested elements can appear in any order. Each child element is
optional, and can occur no more than one time.

annotation Schema comments. Contains applnfo and documentation.
applnfo: Information for parsing and destination applications - must
be a child of annotation.
documentation: Schema text comments; must be a child of
annotation.

any Any type of well-formed XML can be nested under the any element,
in any order. Same as the DTD <!ELEMENT element_name ANY >
declaration.

anyAttribute Any attributes composed of well-formed XML can be nested under
the anyAttribute element, in any order.

attribute An attribute.

attributeGroup Reusable attribute group for complex type definitions.

choice A list of choices, one of which must be chosen. Same as using the

complexContent
complexType
element
extension

field

group
import
include

key

keyref
list

notation

vertical bar character (]) in a DTD choice list.

Definition of mixed content or elements in a complex type.
Complex type element.

Element element.

Extends a simpleType or complexType.

An element or attribute that is referenced for a constraint. Similar to
the DTD IDREF attribute data type, but uses an XPATH expression for
the reference.

A group of elements for complex type definitions.
Imports external Schemas with different Namespaces.
Includes external Schemas with the same Namespace.

Defines a nested attribute or element as a unique key. Same as the
DTD ID attribute data type.

Refers to a key element. Same as the DTD IDREF attribute data type.
A list of values in a simple type element.

Defines the format of non-parsed data within an XML document.
Same as the DTD NOTATION attribute data type.

Chapter 3 + XML Data Format and Validation 67

Element Description

restriction Imposes restrictions on a simpleType, simpleContent, or a
complexContent element.

schema The root element of every W3C Schema document.

selector Groups a set of elements for identity constraints using an XPath
expression.

sequence Specifies a strict order on child elements. Same as using the comma
to separate nested elements in a DTD sequence.

simpleContent Definition of text-only content in a simple type.

simpleType Declares a simple type definition.

union Groups simple types into a single union of values.

unique Defines an element or an attribute as unique at a specified nesting

level in the document.

W3C Schema element and data type restrictions

Aside from the elements listed in Table 3-6, there are several other types of ele-
ments that define constraints on other elements in the Schema.

Data type properties, including constraints, on simple data types, are called facets.
Simple data types can be constrained by fundamental facets, which specify funda-
mental constraints on the data type such as the order of display or the cardinality,
much like using the DTD cardinality operators (+, ?, *), commas and vertical bar
characters were used to predefine DTD element constraints. Constraining facets
extend beyond predefined rules to control behavior based on Schema definitions.
Table 3-7 shows a listing of W3C Schema fundamental facets that constrain simple
data types.

Table 3-7
Schema Element Restrictions
Restriction Description
choice A list of choices predefined in the Schema document. Same as the
DTD enumeration for attribute list data types.
fractionDigits Maximum decimal placed for a value. Integers are 0.
length Number of characters, or for lists, number of list choices.

Continued

68

Part | 4+ Introducing XML

Table 3-7 (continued)

Restriction Description

maxExclusive Maximum up to, but not including the number specified.
maxInclusive Maximum including the number specified.

maxLength Maximum number of characters, or for lists, number of list choices.
minExclusive Minimum down to, but not including the number specified.
minInclusive Minimum including the number specified.

minLength Minimum number of characters, or for lists, number of list choices.
pattern Defines a pattern and sequence of acceptable characters.
totalDigits Number of non-decimal, positive, non-zero digits.

whiteSpace How line feeds, tabs, spaces, and carriage returns are treated when

the document is parsed.

A listing of which constraints apply to which simple data types can be found as part
of the W3C Schema Recommendation at http: //www.w3.org/TR/xmlschema-2 .

Namespaces and W3C Schemas

One of the additional features of Schemas is the ability to handle XML namespaces
as part of the Schema. One of the best examples of this is the XML Schema Schema.
Schema namespaces and data types are defined by a Schema that is referenced by
the root element of every W3C Schema. The namespace declaration looks like this:

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" >

The URL, http://www.w3.0rg/2001/XMLSchema, actually resolves to document
that links to the Schema Schema. The Schema specifies the elements and data types
used in the Schema. It also is a very long Schema document that includes embed-
ded DTDS, imported and included external Schemas, and just about every type of
Schema situation imaginable. This makes it a great start for finding working exam-
ples of Schema structure and syntax.

An example W3C Schema document

Listing 3-2 shows the Schema that [will be using as an example for this chapter. The
AmazonMacbethSpanish.xsd is referenced and validates the contents of the
AmazonMacbethSpanishwithXSDref.xml document.

Chapter 3 4+ XML Data Format and Validation 69

Listing 3-2: Contents of AmazonMacbethSpanish.xsd

<?xml version="1.0" encoding="UTF-8"?>
<!--W3C Schema generated by XMLSPY v5 rel. 2 U
(http://www.xmlspy.com) ——>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified">
<xs:import namespace="http://www.w3.o0rg/XML/1998/namespace"
schemalLocation="http://www.w3.0rg/2000/10/xml.xsd" />
<xs:element name="Encuadernacidén" type="xs:string"/>
<xs:complexType name="amazonType">
<xS:sequence>
<xs:element name="product" type="productType"
maxOccurs="unbounded" />
</Xs:sequence>
<xs:attribute name="items" type="xs:string"
use="required" />
</xs:complexType>
<xs:element name="asin" type="xs:string"/>
<xs:element name="author" type="xs:string"/>
<xs:element name="autor" type="xs:string"/>
<xs:element name="availability" type="xs:string"/>
<xs:element name="binding" type="xs:string"/>
<xs:complexType name="catalogType">
<xs:sequence>
<xs:element name="amazon" type="amazonType"/>
<xs:element name="elcorteingles"
type="elcorteinglesType"/>
</Xs:sequence>
<xs:attribute name="items" type="xs:string"
use="required" />
</xs:complexType>
<xs:complexType name="elcorteinglesType">
<xS:sequence>
<xs:element name="product" type="productType"/>
</Xs:sequence>
<xs:attribute name="items" type="xs:string"
use="required" />
</xs:complexType>
<xs:element name="fecha_de_publicacién" type="xs:string"/>
<xs:element name="image" type="xs:string"/>
<xs:element name="imagen" type="xs:string"/>
<xs:element name="isbn" type="xs:string"/>
<xs:element name="librourl" type="xs:string"/>
<xs:element name="list_price" type="xs:string"/>
<xs:element name="precio" type="xs:string"/>
<xs:complexType name="productType">
<xS:sequence>
<xs:element ref="ranking" minOccurs="0"/>
<xs:choice maxOccurs="unbounded">

Continued

70 Part | 4+ Introducing XML

Listing 3-2 (continued)

<xs:element ref="title"/>
<xs:element ref="titulo"/>
</xs:choice>
<xs:choice maxOccurs="unbounded">
<xs:element ref="asin"/>
<xXs:element ref="isbn"/>
</xs:choice>
<xs:choice maxOccurs="unbounded">
<xs:element ref="author"/>
<xs:element ref="autor"/>
</xs:choice>
<xs:choice maxOccurs="unbounded">
<xs:element ref="image"/>
<xs:element ref="imagen"/>
</xs:choice>
<xs:element ref="small_image" minOccurs="0"/>
<xs:choice maxOccurs="unbounded">
<xs:element ref="1list_price"/>
<xs:element ref="precio"/>
</xs:choice>
<xs:choice maxOccurs="unbounded">
<xs:element ref="release_date"/>
<xs:element ref="fecha_de_publicacidén"/>
</xs:choice>
<xs:choice maxOccurs="unbounded">
<xs:element ref="binding"/>
<xs:element ref="Encuadernacidén"/>
</xs:choice>
<xs:element ref="availability" minOccurs="0"/>
<xs:choice maxOccurs="unbounded">
<xs:element ref="tagged_ url"/>
<xs:element ref="librourl"/>
</xs:choice>
</Xs:sequence>
<xs:attribute ref="xml:lang" type="xs:string"/>
</xs:complexType>
<xs:complexType name="quoteType">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="source" type="xs:string"/>
<xs:attribute name="author" type="xs:string"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:element name="quotedoc">
<xXs:complexType>
<xXs:sequence>

Chapter 3 + XML Data Format and Validation 71

<xs:element name="quotelist" type="quotelistType"/>
<xs:element name="catalog" type="catalogType"/>
</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:complexType name="quotelistType">
<xXs:sequence>
<xs:element name="quote" type="quoteType"
maxOccurs="unbounded" />
</Xs:sequence>
<xs:attribute name="author" type="xs:string"
use="required" />
<xs:attribute name="quotes" type="xs:string"
use="required" />
</xs:complexType>
<xs:element name="ranking" type="xs:string"/>
<xs:element name="release_date" type="xs:string"/>
<xs:element name="small_ image" type="xXs:string"/>
<xs:element name="tagged_url" type="xs:string"/>
<xs:element name="title" type="xs:string"/>
<xs:element name="titulo" type="xs:string"/>
</xs:schema>

Applying Schemas

Referencing Schemas in XML documents is done via namespace declarations in the
root element of the document:

<quotedoc xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance"
xsi:noNamespaceSchemalLocation="AmazonMacbethSpanishwithXSDRef2.
xsd">

In this case, the namespace declaration reference to http: //www.w3.0org/2001/
XMLSchema-instance resolves to an actual document at that location, which

is a brief description of the way that the W3C Schema should be referenced, and

a link to the actual Schema that describes Schema data types, elements, and

other Schema descriptions based on the current W3C Recommendation. The
noNamespaceSchemalocation value tells us that there is no predefined
Namespace for the Schema, but that the location of the Schema is
AmazonMacbethSpanishwithXSDRef2.xsd, which should be in the same directory
as the XML file to be validated by the Schema.

712

Part | 4+ Introducing XML

Schema structure and syntax

The example Schema in Listing 3-2 starts with an XML declaration that contains a
comment that tells you that this Schema was generated using xmlspy. Note that
the Schema comment format is the same as the XML and DTD document comment
formats:

<?xml version="1.0" encoding="UTF-8"?>
<!--W3C Schema generated by XMLSPY v5 rel. 2 U
(http://www.xmlspy.com) -—>

Next, the W3C Schema namespace declaration is shown as part of the root element.
Note that the root element already uses the xs: namespace prefix, which is the
standard prefix for Schema declarations. The element formdefault attribute tells
the parser that every element in this document must be prefixed (qualified) with
the xs namespace in order for the document to be valid:

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified">

You may recall from the introduction to Schemas section in this chapter that a
change to the Schema that was generated by xmlspy was required before the gener-
ated Schema was valid. The generated Schema was based on the DTD example from
earlier in this chapter, and included the predefined xml : 1ang attribute. The gener-
ated XML Schema didn’t recognize the xml : 1ang attribute until this line was added
to the Schema:

<xs:import namespace="http://www.w3.org/XML/1998/namespace"
schemaLocation="http://www.w3.0rg/2000/10/xml.xsd" />

This imported the Schema from http: //www.w3.0rg/2000/10/xml .xsd as part
of the current Schema document. This Schema defines the xml : 1ang, xml : space,
and xml : base elements and prefix names. For xml : 1ang, the declaration defines
the lang attribute as the derived Schema data type language:

<attribute name="lang" type="language">
<annotation>....truncated</annotation>
</attribute>

Once the connection was made between the xml : 1ang data attribute and the lan-
guage derived data type, the xm1 : 1ang attribute was accepted as part of the
Schema elements. Note that the xm1 : prefix did not have to be defined, xm1 : is the
only predefined namespace in xml, according to the W3C Recommendation.

Next, the Encuadernacién (Spanish for binding) element is defined, and assigned
a primitive string data type, in a simple Schema data type:

<xs:element name="Encuadernacidén" type="xs:string"/>

Chapter 3 4 XML Data Format and Validation

Next, a complex data type is declared and named amazonType. It requires that at
least one child product element be present (with another complex data type,
productType), and that there is no limit on how many product child elements are
present. Also, the amazonType has to have one attribute called items, and a value
is required.

<xs:complexType name="amazonType">
<xXs:sequence>
<xs:element name="product" type="productType"
maxOccurs="unbounded" />
</Xs:sequence>
<xs:attribute name="items" type="xs:string"
use="required" />
</xs:complexType>

After that, several other simple data types are defined, bound to Schema data
types. Note that the simple and complex data type declarations do not need to
appear in the order that they are structured in an actual XML document, it’s up to
the parser to make all the necessary links and build a representation of the docu-
ment, regardless of the order of declarations. This goes for DTDs as well.

<xs:element name="asin" type="xs:string"/>
<xs:element name="author" type="xs:string"/>
<xs:element name="autor" type="xs:string"/>
<xs:element name="availability" type="xs:string"/>
<xs:element name="binding" type="xs:string"/>

Next, another complex data type is defined for the catalog element, called
catalogType. It specifies that each element that is assigned to the catalogType
must meet the requirements of the amazonType and an elcorteinglesType
complex data types, in that order, and must have an attribute called i tems, which
must have a value. This is a great example of the advantages of using reusable com-
plex data types in a Schema, rather than defining simple data types. Though the
entire document could be defined in a single complex data type or a series of sim-
ple data types, it’s best to use complex types and restrict each complex type to an
element and its children only, and define another complex data type for further
nesting. For example, if the amazon catalog format changes, only the amazonType
complex data type in this Schema needs to be changed, and does not affect the defi-
nition of the other elements in the Schema:

<xs:complexType name="catalogType">
<xS:sequence>
<xs:element name="amazon" type="amazonType"/>
<xs:element name="elcorteingles"
type="elcorteinglesType" />
</Xs:sequence>
<xs:attribute name="items" type="xs:string"
use="required" />
</xs:complexType>

75

74 Part | 4 Introducing XML

Next, the elcorteinglesType is defined that from the catalogType in the last
code segment. Like the amazonType, it uses the productType to specify the struc-
ture of products.

<xs:complexType name="elcorteinglesType">
<xXs:sequence>
<xs:element name="product" type="productType"/>
</xs:sequence>
<xs:attribute name="items" type="xs:string"
use="required"/>
</xs:complexType>

Then a few more elements are declared as simple data types:

<xs:element name="fecha_de_publicacidén" type="xs:string"/>
<xs:element name="image" type="xs:string"/>

<xs:element name="imagen" type="xs:string"/>

<xs:element name="isbn" type="xs:string"/>

<xs:element name="librourl" type="xs:string"/>

<xs:element name="list_price" type="xs:string"/>
<xs:element name="precio" type="xs:string"/>

The next complex data type declaration is a good interpretation of the DTD require-
ments and was converted to the W3C Schema format by xmlspy. As with the DTD,
this data type was a challenge that xmlspy handled very well. The XML document
supports both English and Spanish translations in nested elements of the product
element. Unfortunately, parsers have no way of automatically recognizing and
translating the element names, so it’s up to the Schema developer to make sure that
all possibilities in both formats are covered as part of the validation process.

In this data type, all elements that have English and Spanish translations are offered
as choice lists components in a sequence list of nested elements under the product
element, as represented in the productType complex data type. Each translation
choice list is completed with a choice element, which means that at least one
instance of the element has to be present in one of the languages. The Amazon.com
product element also contains some nested elements that the elcorteingles prod-
uct element does not. Those elements have been listed in sequence and include a
minOccurs="0" constraint attribute, indicating that the nested elements are
optional, but if they are present they must be in the sequence specified in the listing.

<xs:complexType name="productType">
<xXs:sequence>
<xs:element ref="ranking" minOccurs="0"/>
<xs:choice maxOccurs="unbounded">
<xs:element ref="title"/>
<xs:element ref="titulo"/>
</xs:choice>

Chapter 3 + XML Data Format and Validation 75

<xs:choice maxOccurs="unbounded">
<xs:element ref="asin"/>
<xs:element ref="isbn"/>

</xs:choice>

<xs:choice maxOccurs="unbounded">
<xs:element ref="author"/>
<xs:element ref="autor"/>

</xs:choice>

<xs:choice maxOccurs="unbounded">
<xs:element ref="image"/>
<xs:element ref="imagen"/>

</xs:choice>

<xs:element ref="small_image" minOccurs="0"/>

<xs:choice maxOccurs="unbounded">
<xs:element ref="list_price"/>
<xs:element ref="precio"/>

</xs:choice>

<xs:choice maxOccurs="unbounded">
<xs:element ref="release_date"/>
<xs:element ref="fecha_de_publicacidén"/>

</xs:choice>

<xs:choice maxOccurs="unbounded">
<xs:element ref="binding"/>
<xs:element ref="Encuadernacidén"/>

</xs:choice>

<xs:element ref="availability" minOccurs="0"/>

<xs:choice maxOccurs="unbounded">
<xs:element ref="tagged_ url"/>
<xs:element ref="librourl"/>

</xs:choice>

</Xs:sequence>
<xs:attribute ref="xml:lang" type="xs:string"/>
</xs:complexType>

Next is a definition for the quote segment of the XML document, which is repre-
sented by a complex data type of quoteType. Each quote must contain two
attributes, a source and an author, for each quote. Note that this complex data
type uses an extension element to define two simple data types inside of the
complex data type:

<xs:complexType name="quoteType">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="source" type="xs:string"/>
<xs:attribute name="author" type="xs:string"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>

76 Part | 4+ Introducing XML

The next element in the element nesting structure is the root quotedoc element
description. This complex data type simply states that the quotedoc element must
have two children, quotelist and catalog, each represented by their assigned com-
plex data types:

<xs:element name="quotedoc">
<xs:complexType>
<xs:sequence>
<xs:element name="quotelist" type="quotelistType"/>
<xs:element name="catalog" type="catalogType"/>
</Xs:sequence>
</xs:complexType>
</xs:element>

Next is a complex data type defined for the quotelist, which contains the quotes.
Once again, each element is assigned a corresponding complex data type:

<xs:complexType name="quotelistType">
<Xs:sequence>
<xs:element name="quote" type="quoteType"
maxOccurs="unbounded" />
</Xs:sequence>
<xs:attribute name="author" type="xs:string"
use="required" />
<xs:attribute name="quotes" type="xs:string"
use="required" />
</xs:complexType>

The Schema element declarations are finished with a final list of simple data types
that are needed in the complex data types, and close the root Schema tag:

<xs:element name="ranking" type="xs:string"/>

<xs:element name="release_date" type="xs:string"/>

<xs:element name="small_image" type="xs:string"/>

<xs:element name="tagged_url" type="xs:string"/>

<xs:element name="title" type="xs:string"/>

<xs:element name="titulo" type="xs:string"/>
</xs:schema>

Summary

In this chapter, I introduced you to the concept of data validation and showed you
detailed techniques with examples on developing DTDs and W3C Schemas for vali-
dating your XML documents.

4 Validating XML data

4 Applying DTDs to XML documents

Chapter 3 4 XML Data Format and Validation

4 DTD structure and syntax

4+ Applying W3C Schemas to XML documents

4 W3C Schema structure and syntax

4 Real-world examples of DTD and Schemas
I discussed parsers a little in this chapter, and in the next two chapters you will
become much more acquainted with them, what they do, and how they do it,

including parsing XML documents using the Document Object Model (DOM) and
the Simple API for XML (SAX).

¢+ o+ 4

77

CHAPTER

XML Parsing
Concepts

+ o+ e

In This Chapter

Parsing XML

0ne of the great advantages of using XML data is trans- documents

portability. But up until this point in the book, the
mechanics of how to deliver XML data to another system have About XML parsers
not yet been covered. As explained in Chapter 1, XML alone is P
not data integration. Applications that send and receive XML
data need interfaces to generate XML and to integrate XML
data into applications. XML document parsing is used to inte-
grate XML data with existing applications.

Tree parsers

Event-driven parsers

'-/Note The word parse comes from the Latin pars orationis, mean- Document Object
~ ing "part of speech! In linguistics, parsing is the act of Model (DOM)

breaking down sentences and word structures to establish
relationships and structures of language. These structures Simple API for
are most often represented in a tree structure. Computer- XML (SAX)
based parsing is similar, but is most commonly used to
break down and interpret characters in a string. Since XML DOM versus SAX:
is by definition a set of characters in a string, breaking down when to use what
and separating parts of XML documents is also referred to
as parsing. + + + +

XML document parsing identifies and converts XML elements
contained in an XML document into either nested nodes in a
tree structure or document events, depending on the type of
XML parser that is being used:

4 Document Object Model (DOM) parsing breaks a docu-
ment down into nested elements, referred to as nodes in
a DOM document representation. DOM nodes refer to
documents or fragments of documents, elements,
attributes, text data, processing instructions, comments,
and other types of data that I'll cover in more detail in
Chapter 5.

4 Simple API for XML (SAX) parsing breaks XML docu-
ments down into events in a SAX document representa-
tion. These nodes and events, once identified, can be

Part | 4+ Introducing XML

used to convert the original XML document elements into other types of data,
based on the data represented by the elements, attributes, and text values in
the original XML document.

This chapter will focus on the concepts and theory behind XML document parsing
and manipulation using node tree-based parsers and event-based parsers. After an
introduction to the concepts, Chapters 5 and 6 provide practical examples of pars-
ing an XML document using DOM and SAX.

- Gross- Chapters 4, 5, and 6 provide examples of how parsers work. For examples of how
Reference \ {4 enable XML through Java code, refer to Chapter 16.

Document Object Model (DOM)

The W3C Document Object Model Recommendation is the only XML Document
parsing model that is officially recommended for XML document parsing by the
W3C. The full recommendation can be found at http://www.w3 .org/TR/
DOM-Level-2-HTML. The W3C DOM can be used to create XML documents, navi-
gate DOM structures, and add, modify, or delete DOM nodes. DOM parsing can be
slower than SAX parsing because DOM creates a representation of the entire docu-
ment as nodes, regardless of how large the document is. However, DOM can be
handy for retrieving all the data from a document, or retrieving a piece of data sev-
eral times. The DOM stays resident in memory as long as the code that created the
DOM representation is running.

What is DOM?

The Document Object Mode (DOM) is a tree representation of XML data, with root
and nested elements and attributes in an XML document represented by instances
of nodes inside a single document node. Each node in the DOM tree represents a
matching item in the original XML document. Element, attribute, and text nodes are
nested at multiple levels matching the nested elements at the same level of the XML
document. The DOM root node always matches the root element in an XML docu-
ment, and other nodes in the tree are located by their relationship to the root node.

Listing 4-1 shows the very simple XML document from Chapter 1. In Chapter 1, I
compared the structure of an XML document to the structure of a computer’s hard
drive, with a single root directory that contains subdirectories and files. This com-
parison is perhaps even more applicable to the structure of a DOM node tree. The
DOM nodes map to the directories on a hard drive, with one or more files in some
of the directories. The hard drive starts with a root directory and several subdirec-
tories. Even if there are no files in a directory, the directory has a name and it can
contain subdirectories that contain files. In the same way, element nodes have

Chapter 4 + XML Parsing Concepts

names but no associated value. Element nodes, however, may contain other nodes,
such as attributes or text values. Attribute and text nodes can contain values asso-
ciated with an element node, just like directories can contain files that contain data.

DOM nodes represent all types of data in XML documents. Nodes have nodeType,
nodeName, and nodeValue properties. For example, the parsed DOM node for the
root element has a nodeName of rootelement and is an element nodeType. The
firstelement element is also an element nodetype. Both elements have a
nodeValue of null, as all elements do. The position attribute becomes a node
with an attribute nodeType, a nodeName of position, and a value of 1. The text
value of the 1evell element has a nodeName of #text, a nodeType of text, and a
nodevValue of This is level 1 of the nested elements.

Listing 4-1: A Very Simple XML Document

<?xml version="1.0" encoding="UTF-8"7?>
<rootelement>
<firstelement position="1">
<levell children="0">This is level 1 of the nested
elements</levell>
</firstelement>
<secondelement position="2">
<levell children="1">
<level2>This is level 2 of the nested
elements</level2>
</levell>
</secondelement>
</rootelement>

You can easily visualize XML document structures and DOM structures by using
free tools that are available for download on the Web. Most tools use DOM parsers
to integrate XML document data with their own custom Ul, and display XML docu-
ments using customized document node tree representations. I've included two
good ones in the list below, but you can find more at http://www.xmlsoftware.
com/browsers.html.

4+ The Microsoft XML Notepad is a small, simple XML document editor and
reader for Windows. It’s been a while since it was updated, but it’s still a good,
basic XML editor and viewer. You can download it by going to http: //www.
microsoft.com/xmlnotepad

4+ The IBM XML Viewer is great for viewing XML documents on non-Windows
machines that support Java. You can download it at http://alphaworks.
ibm.com/tech/xmlviewer. It’s a simple tool very similar to XML Notepad
but is better at handling more advanced XML such as namespaces. The trade-
off is that it lacks the basic editing capabilities of the Microsoft XML Notepad.

81

82

Part | 4+ Introducing XML

Figure 4-1 shows an example of the very simple XML document from Listing 4-1 dis-

played in the Microsoft XML Notepad. Note how the tree structure in the parsed

XML document representation resembles the directory structures on a hard drive.

The rootlement and firstelement elements have a nodevValue of null. The
position attribute is an attribute nodeType with and a value of 1. In the XML

Notepad, text values show up as values of their associated elements. The text value

of the 1evell element, for example, is shown as a value of the 1evell element,
even though in reality the text value is a separate DOM node with a nodeType

of text.

@ werysimpleXML.xml XML Notepad =Sk
—_—
Qe =] i[i]m] s Slg) «|+|e]s]+]-|=E &

oy | [Values
= %12 rogt=ement
= (1 Frstehement
® postion
= ket
& dilhen
= (20 secondelement
% poaton 2
= (3 levell
& children 1
W, ez This is level 2 of the nested clements.
Wiew Current XML Source
el weizian="1.0" encodng="UTF-&"7x
<rockelemant:
<hstel=ment: aositorn="1"
<level] chidien="0"This & evel 1 ol the nashed slemanicdevel] >
edlesskemant
csacenddament pogion"2"
cloved chidion="1"
leed This iz level 2 of the: neated dlements< Aevel2:
/e
¢/secondelement:
</ronlelement:
The cumer: }ML defiilion iz wel foimed OE. Hep |
For Help, press F1

Figure 4-1: A very simple XML document displayed in the Microsoft XML Notepad

About DOM 1, DOM 2, and DOM 3

The DOM Level 1 and Level 2 specifications are both W3C Recommendations. Both

specifications are final, and developers that build applications based on either
specification can be assured that the standards are complete and will not be
updated. However, it’s worth noting that DOM Level 1 is not compatible with DOM

Level 2, and there are no guarantees that DOM Level 1 or 2 will be compatible with
DOM Level 3, which is currently winding its way through the recommendation pro-

cess at the W3C. DOM 1 supports basic navigation and editing of DOM nodes in

Chapter 4 + XML Parsing Concepts

HTML and XML documents. DOM 2 extends Level 1 with support for XML name-
spaces, and a few new features that are similar to SAX functionality such as filtered
views, ranges, and events.

Simple API for XML (SAX)

SAX parsing is faster than DOM parsing, but slightly more complicated to code.
XML document representations in SAX don’t follow the same type of directory and
file structure that defines DOM documents. SAX parsing is more appropriately com-
pared to getting information from this chapter of the book by going to the page
where the chapter starts, reading the chapter, and stopping when the chapter ends.
DOM parsers would extract the same information from this chapter by reformatting
the entire book into a DOM format, then reading through the DOM representation of
the book to find the beginning of the chapter, and reading the chapter. In other
words, SAX provides a specific chunk of information that you need from an XML
document, while DOM retrieves and reformats the whole document, and then
extracts the same chunk of information from the reformatted document.

What is SAX?

Like DOM, SAX is used to describe, parse, and manipulate XML documents. Unlike
DOM, SAX breaks a document down into a series of events that represent parts of
an XML document, such as StartDocument, StartElement, EndElement,
ProcessingInstruction, SAXWarning, SAXError, and EndDocument.

SAX is not developed or “recommended” by the W3C, though subsequent DOM
implementations usually borrow useful new features from the more advanced SAX
feature set. In general, SAX is usually ahead of DOM implementations, because the
W3C recommendation process does not hinder SAX development. There is no offi-
cial specification of SAX, just the implementation of the XMLLReader class, which is
only written in Java at this time. There are other implementations of SAX on other
platforms, but these are either a result of bindings to code in the SAX Java archive
file, sax.jar, or a complete rewrite of code that simply mimics the functionality of
SAX Java classes, methods, and properties.

Updates to SAX can be downloaded at http: //www.saxproject.org. The site
also contains information about parser implementations and bindings, and the FAQ
at that site is a fun read. Really.

SAX 1 and SAX 2

Most current parsers implement the SAX2 interfaces. Unlike DOM 1 and 2, SAX 2
parsers are usually backward compatible with SAX 1. SAX 1 supports Navigation

85

84

Part

,ﬁ\lote

I_,ﬁ\lote

| 4+ Introducing XML

around a document and manipulation of content via SAX 1 events via the SAX 1
Parser class. SAX 2 supports namespaces, filter chains, and querying and setting
features and properties via SAX events via the SAX 2 XMLReader interface.

In the previous DOM section of this chapter, [showed you two free tools that parse
an XML document into DOM nodes and display the nodes in a tree-based Ul At the
time of writing, there are unfortunately no simple tools that break down an XML
document into a visual display of SAX events. There is sample code written in Java
and other languages that parse XML documents with SAX and return output of
events to a screen, but no downloadable tools. The code ships with most SAX
parsers. You can find a good list of SAX parsers at the SAX project Website,
http://www.saxproject.org/?selected=1inks.

'C/rtws—/"x I'll cover sample SAX code in more detail in Chapters 14 and 16.
Reference

Listing 4-2 shows an example of the very simple XML document from Listing 4-1
with annotation that identifies each SAX event associated with the original XML
document objects.

SAX parsers represent the rootlement element as the startDocument event,
because it’s the root element of the document.

Remember from Chapter 1 that the XML declaration is optional! This means that
=~ an XML document actually starts at the root element, which is the first element
after the optional XML declaration.

The rootlement element is also represented by the startElement event,
because every event in the document has an associated startElement and
endElement event, including the root element.

The firstelement’s startElement event also contains an attributes object.
The attributes object contains information about one or more attributes associ-
ated with an element. The attributes object contains a single object, with a name
of position and a value of 1. SAX attribute names and values can be retrieved by
using several methods implemented in the SAX attributes interface, which I will
cover in more detail in Chapter 6.

Text values in SAX show up as values of the characters event. The text value

This is level 1 of the nested elements, for example, is a value of the
characters event after the 1evell element startElement event and before
the levell element endElement event.

There is no startCharacters or endCharacters event. SAX parsers see the
-~ characters event as one uninterrupted string between startElement and
endElement events.

Chapter 4 + XML Parsing Concepts

Listing 4-2: A Very Simple XML Document with SAX
Event Listings

<?xml version="1.0" encoding="UTF-8"7?>
<rootelement>
<!--SAX Events:startDocument, startElement-->

<firstelement position="1">
<!--SAX Events:startElement, Attributes=position value=1-->

<levell children="0">
<!--SAX Events:startElement Attributes=children value=0-->

This is level 1 of the nested elements
<!--SAX Event:characters-->

</levell>
<!--SAX Event:endElement-->

</firstelement>
<!--SAX Event:endElement-->

<secondelement position="2">
<!--SAX Events:startElement, Attributes=position value=2-->

<levell children="1">
<!--SAX Events:startElement, Attributes=children value=1-->

<level2>
<!--SAX Event:startElement-->

This is level 2 of the nested elements
<!--SAX Event:characters-->

</level2>
<!--SAX Event:endElement-->

</levell>
<!--SAX Event:endElement-->

</secondelement>
<!--SAX Event:endElement-->

</rootelement>
<!--SAX Events:endDocument, endElement-->

85

86

Part | 4+ Introducing XML

About XML Parsers

Tip

There are several XML parsers on the market, and a fairly complete listing of
parsers can be found at http: //www.xmlsoftware.com/parsers.html. Of all
the parsers on the market, three parsers stand out from the pack in terms of stan-
dards support and general marketplace acceptance: Apache Xerces, IBM XML4J
(XML for Java), and Microsoft’'s MSXML parser.

All of these parsers are available as free downloads. They include a parsing engine
and source code samples. Apache Xerces even includes the source code for the
parsing engine itself. Some of the downloads also include tools and functionality for
other purposes, such as processing XSL transformations.

- Cross- XSL transformations are covered in Chapters 7 and 8.
Reference

The Java API for XML (JAXP) “pluggable interface” from Sun for XML document
parsing is also worthy of mention. The JAXP interface can be used as a front-end for
other parsers. JAXP seeks to mitigate some of the issues surrounding incompatible
and deprecated parser versions.

Parsers generally fall into two categories:

4+ Non-validating parsers check that an XML document adheres to basic XML
structure and syntax rules (well-formed XML).

4 Validating parsers have the option to verify that an XML document is valid
according to the rules of a DTD or schema, as well as checking for a well-
formed document structure and syntax.

The latest versions of Apache Xerces, IBM XML for Java (XML4J), Sun’s JAXP, and
Microsoft’s MSXML parser are all validating parsers, and validation can be enabled
or disabled as needed by developers. All of these downloads also support both the
DOM and SAX interfaces for XML document parsing. Which parsing method is left
up to the developer. I'll cover the pros and cons of each parsing method in the last
section of this chapter.

While the MSXML parser stands alone in its implementation and reuse in
browsers, on servers, and in .Net applications, the Java parsers tend to reuse parts

N

4 of other Java parsers to implement their functionality. For example, the parser in

XML4J is an implementation of the Xerces DOM parser, which IBM heavily con-
tributes to, and has subsequently reused for the DOM parser in XML4J.
Consequently, Java developers have to keep a close watch of the version of parser
they are using to ensure compatibility with their current code implementations.

Chapter 4 + XML Parsing Concepts

Apache’s Xerces

The Xerces parser is a validating parser that is available in Java and C++.
Apparently, the parser was named after the now extinct Xerces blue butterfly, a
native of the San Francisco peninsula. The butterfly was named after Xerxes,
emperor of Persia from 486 to 465 BC, the height of Persian power. Xerces the
emperor is also assumed to be extinct.

The Persian empire under Xerces’ rule stretched from India to parts of Turkey and
Greece. This led to several language and infrastructure integration issues. The solu-
tion to these issues was one of the greatest features of the empire: a royal messag-
ing infrastructure that was used to translate native languages and scripts from over
100 far-flung provinces. Xerces is subsequently the Persian word for king to this day.

Xerces the parser fully supports the W3C XML DOM (Levels 1 and 2) standards, the
DOMS3 standards when they finally become a W3C recommendation, and SAX ver-
sion 2. Xerces is a validating parser, and provides support for XML document vali-
dation against W3C Schemas and DTDs. The C++ version of the Xerces parser also
includes a Perl wrapper and a COM wrapper that works with the MSXML parser.
Xerces can be downloaded at http://xml.apache.org.

g/ﬂ;S_S-/‘X For more details on Xerces and examples of using Xerces in J2EE applications,
eterence

please refer to Chapter 16.

IBM’'s XML4)

The IBM XML for Java (XMLA4J) libraries, with some more recent help from the
Apache Xerces project and Sun (via project Crimson), is the mother of all Java-
based XML parsers, starting with version 1.0 in 1998. IBM and the Apache group
work closely on XML document parsing technologies. Consequently the IBM XML4J
libraries are based on Xerces. The latest version of the XML4lJ libraries support the
W3C XML Schema Recommendation when implementing the validating parser inter-
faces. Parsers include SAX 1 and 2, DOM 1 and 2, and some basic features of the as-
yet-unreleased DOM 3 standard, currently in the recommendation process. XML4J
also adds support for Sun’s JAXP, plus multi-lingual error messages. Recent updates

to XML4J can be downloaded from http://www.alphaworks.ibm.com/tech/xml4j.

g/rt;S_S-/‘X For more details on XML4J and examples of using XML4J in J2EE applications,
eierence

please refer to Chapter 14.

Sun’s JAXP

As readers may have already noticed, not only are there several types of XML
parsers available from a single source, but also several versions of each Parser.
The Java API for XML Processing (JAXP) is designed to smooth over the various

87

88

Part | 4+ Introducing XML

versions of SAX and DOM parsers and their associated incompatibilities through a
single “pluggable” interface. The pluggable interface consists of a set of Java classes
that can be reused to access different back-end parser classes at different levels
without having to change the Java code on the front end of the application.

A document could, for example, currently be parsed using DOM1 or DOM2. When
the new DOM3 recommendation is graduated through the W3C recommendation
process, DOM3 could be plugged into the same application, without having to
change the underlying code when the new parser is added to an application or
server, but still providing the newer performance and functionality.

JAXP can be downloaded from http://java.sun.com/xml/jaxp/.

- Cross- For more details on JAXP and examples of using JAXP in J2EE applications, please
Reference \ refer to Chapter 15.

Microsoft's XML parser (MSXML)

Microsoft’s XML parser is part of Internet Explorer 5.5 or later, and the latest ver-
sion is separated from IE browser code, so that the parser does not have to wait for
the next version of the browser, and vice versa. The MSXML parser was recently
renamed the Microsoft XML Core Services, but is usually still referred to by the
original MSXML acronym. MSXML supports most XML standards and works with
JavaScript (and DHTML), Visual Basic, ASP, and C++, but not Java. MSXML4.x
includes support for DOM, XML Schema definition language for validating parsers,
the Schema Object Model (SOM, a Microsoft invention which parses XML Schemas
into an object model), XSLT, XPath, and SAX. Recent MSXML updates can be down-
loaded from http: //www.microsoft.com/msxml.

- Cross- For more details on Microsoft XML Core Services and examples of using MSXML in
Reference \ \jicrosoft applications, please refer to Chapters 10 and 11.

DOM or SAX: Which Parser to Use?

I've provided an introduction to XML document parsing methods and some of the
parsers that are available on the market today. Building on this knowledge, I'll
review some of the more esoteric issues related to XML document parsing.

The top three questions for XML document parsing are:

4+ What is a validating parser?
4+ Why are there two ways to parse XML documents?

4 Which parsing method should I use?

Chapter 4 + XML Parsing Concepts

It’s fairly easy to answer the first question by explaining validating parsers versus
non-validating parsers. It’s also fairly easy to explain the genesis of the DOM and
SAX parsers for XML, and why there are two. The most difficult thing to explain
about XML document parsing is the last question, “DOM or SAX: which one to use?”

I've already provided an explanation of validating parsers versus non-validating
parsers in the section “About XML Parsers.” I'll provide the easy answer first about
the genesis of two parsers for XML document parsing first. The history leads in to
the more difficult question of which parser to use.

Back in the early days of XML, before the standards had completely gelled and W3C
recommendations were actually recommendations that could be followed or not,
everyone wrote their own XML document parsers. However, as standards emerged,
the W3C XML working group, who create the standards for most of the XML tech-
nologies in the marketplace today, standardized on a DOM parsing model, which
was the most flexible and easiest to understand. This was accepted by the commu-
nity at the time, because XML document structures were usually pretty simple and
small back then, and DOM is very good at efficiently handling small, simple XML
documents. IBM wrote the XML4J parser and handed it over to the Apache group,
which renamed it Xerces. Everyone was happy, for a while.

As XML was rapidly adopted by the IT and business world, XML documents grew
consistently larger and more complex. Xerces and other DOM parsers started to get
bogged down when reading an entire large, complex XML document from start to
finish and converting it to a node tree. Developers tried to make the code and the
methods more efficient, but they consistently ran up against the limitations of the
DOM architecture.

In the meantime, members of the XML-DEV mailing list got together and started
developing a leaner and more efficient model of document parsing that could find
and parse a segment of an XML document. This meant that developers and parsers
could focus on just the necessary parts of an XML document while ignoring irrele-
vant data. This model proved to be very efficient. David Megginson coordinated the
development of the original SAX parser and maintained earlier Java versions.

Because of the speed and efficiency of the SAX parser, it was rapidly adopted by
Java application developers. Though SAX is not a W3C-sanctioned XML recommen-
dation, most of the better features in the SAX parser usually find their way into
subsequent versions of the W3C DOM recommendation, which can be found at
http://www.w3.org/TR/DOM-Level-2-HTML. Current SAX parser code mainte-
nance is being handled by David Brownell, and the current SAX project Website and
parser code can be found at http://www.saxproject.org.

But just because SAX is faster and more efficient than DOM at handling large docu-
ments doesn’t mean SAX is better for every application. SAX is better at parsing
large documents. If your application is using smaller documents or needs to navi-
gate an XML document more than once, DOM parsing is probably more applicable.

89

90

Part | 4+ Introducing XML

SAX is very good at parsing parts of a large document efficiently, but SAX passes
through a document once to collect needed data, and has to start over as more
document data is needed. DOM, on the other hand, holds a node tree in memory
until your application is finished with it, so once a document is parsed, pieces of
the document can be retrieved without having to re-parse the document.

As for which is better for a specific application, individual mileage may vary,
depending on the data you are working with. But in general, there is no downside to
using DOM to parse smaller XML documents that represent unstructured data, such
as a single-item inventory record. If you are working with a large document of struc-
tured data, such as the XML output of an inventor listing with hundreds of thou-
sands of records, SAX is probably the parser method to try first.

Summary

In this chapter I introduced readers to the theories behind parsing XML documents:

4 An overview of XML document parsing
4 Validating versus non-validating parsers
4 Document Object Model (DOM) parsing
4 Simple API for XML (SAX) parsing
4 An introduction to popular XML parsers
4 DOM versus SAX: when to use what
In the next chapter, I'll discuss the details of parsing XML documents using the W3C
Document Object Model (DOM). Chapter 8 will cover the details of parsing XML

documents using the Simple API for XML (SAX). Both chapters will provide practi-
cal examples using the XSL. document examples from our book application.

+ o+«

CHAPTER

Parsing XML
with DOM

Chapter 4 provided a theoretical overview of the con-
cepts behind XML document parsing. This chapter
extends Chapter 4’s basic concepts and provides a deep dive
into XML Document Object Model (DOM) parsing. Chapter 6
provides the same level of detail for SAX parsing.

DOM parsing can initially appear to be a larger topic than it
really is, because of the sheer volume of sources for DOM
information. The number of DOM versions, the volume of
related W3C Recommendation documents, and the addition of
Microsoft’s MSXML classes and methods that are not part of
the W3C DOM all complicate the DOM picture. In this chapter,
[pull everything together into a single reference with a focus
on what’s important to XML programmers. For the most part,
the DOM interfaces and nodes in MXSML and the W3C DOM
are the same, except for the way that they are named. The real
differences begin when you get into the properties and meth-
ods of nodes. For each interface, node, property, and method,
[list the supporting DOM versions (W3C 1.0, 2.0, 3.0, and
MSXML).

The original DOM working drafts provided bindings for Java
and ECMAScript, a standardized version of JavaScript pro-
moted by the European Computer Manufacturers Association.
The Java interface caught on, but the ECMAScript version did
not. Since then, the DOM implementations have been devel-
oped by specific vendors for C, C++, PL/SQL, Python, and Perl.

Currently W3C documents use the Interface Definition
Language (IDL) to represent code examples using DOM node
properties and methods. IDL is an abstract language from the
Object Management Group (OMG) and is not portable to other
languages, such as Java, VB, or JScript.

¢+ 0+ o+
In This Chapter

Understanding DOM

versions

Understanding
differences in
W3C and MSXML

DOM parser
implementations

DOM interfaces
and nodes

DOM node values
The node data type
Properties and
methods for W3C
and MSXML DOM
node data types

+ + + +

92

Part | 4+ Introducing XML

ter covers W3C DOM parsing in detail, but does not cover techniques for writing
code for working with DOM objects. Typically, DOM parsing is enabled by using the
Apache Xerces classes in Java, or using the Microsoft XML Core Services (MSXML)
in applications developed with MS Visual Studio. Java manipulation of DOM
objects, including plenty of Java code examples, can be found in Chapter 16. Using
MSXML for DOM parsing is covered in Chapters 10 and 11.

fﬁj Since the IDL is not particularly practical as a development environment, this chap-
eierence

The W3C defines the specifications for DOM parsing in the W3C DOM
Recommendation. As I outlined in Chapter 4, the W3C DOM can be used to create
XML documents, navigate DOM structures, and add, modify, or delete DOM nodes.
DOM parsing can be slower than SAX parsing because DOM creates a representa-
tion of the entire document as nodes, regardless of how large the document is.
However, DOM can be handy for retrieving all the data from a document, or retriev-
ing a piece of data several times. The DOM stays resident in memory as long as the
code that created the DOM representation is running.

Understanding the DOM

The first Document Object Model for HTML pages was created by the Netscape
browser development team, as a standardized way to access HTML documents
from JavaScript. The original DOM shipped in 1995 with JavaScript in the Netscape
2.0 browser. Microsoft subsequently created a similar DOM for JScript, which was
included in the 1996 Internet Explorer 3.0 release.

DOM creates a representation of HTML and XML documents as a tree-like hierarchy
of Node objects. There is always one root node in a document. Some Node objects
can have child nodes, and are referred to as branch nodes. Other nodes are stan-
dalone nodes with no children, which are commonly referred to as leaf nodes. Some
nodes are colorful with fragrant essences, and are only available in the spring.
These nodes are referred to as blossom nodes. I'm just kidding about the blossom
nodes, but hopefully by now you get the whole “node and tree” concept, including
roots, branches, and leaves.

The W3C DOM 1 Recommendation

In 1997, a World Wide Web Consortium DOM working group was created to provide
a standardized DOM interface for all browsers. The result of this was the first W3C
DOM Recommendation, which can be viewed at http://www.w3 .org/TR/REC-
DOM-Level-1/.

The first DOM Recommendation was developed just as corporate IT shops were
beginning to take notice of XML. Consequently, although most of the recommenda-
tion is applicable to XML objects because of similarities to HTML objects, the DOM 1
Recommendation focus is on HTML page objects. XML is only mentioned by name

Chapter 5 4 Parsing XML with DOM o3

in the abstract of the DOM 1 Recommendation document. DOM 1 consists of a set
of core nodes, which are applicable to HTML pages. Several extended nodes accom-
modate XML document objects. Both types of nodes are listed later in this chapter.

The W3C DOM 2 Recommendation

The 2000 DOM Level 2 Recommendation adds to the functionality defined in DOM
Level 1 core. The following list describes the different Recommendations of DOM
Level 2. At the time of this writing, the DOM Level 2 core specification is the current
W3C DOM Recommendation. The DOM 2 Core Recommendation can be found at
http://www.w3.org/TR/DOM-Level-2-Core.

Five more recommendations are currently associated with the DOM 2 Core
Recommendation. All parsers must follow W3C DOM 2 Core Recommendations. The
rest of the related recommendations are not compulsory for W3C-compliant
parsers. Most parsers, however, do support most or all of the recommendations. I'll
cover how to tell what version and feature sets are supported by a parser a little
later in this chapter, for now you just need to know what each Recommendation is:

4+ The DOM Level 2 Traversal-Range Recommendation defines a set of inter-
faces for traversing node sets and working with ranges of an XML or HTML
document.

4 The DOM Level 2 HTML Recommendation defines HTML 4.01 and XHTML 1.0
document structures.

4 The DOM Level 2 Views Recommendation defines functionality for defining
and manipulating different representations, or views, of an XML or HTML
document.

4 The DOM Level 2 Style Recommendation defines interfaces for dynamically
accessing and manipulating Cascading Style Sheets (CSS).

4+ The DOM Level 2 Events Recommendation defines a standardized set of
interactive browser events for HTML pages and XML document node tree
events.

The W3C DOM 3 Recommendation

DOM 3 is currently under development, and at the time of this writing, most of the
core and related Recommendation documents are in the “Working Draft” stage.
There are three more stages for DOM 3 to go through (Candidate Recommendation,
Proposed Recommendation, and Recommendation) before the full and complete
feature set is published as a W3C Recommendation. We list the features in the cur-
rent DOM 3 Working Draft documents in this chapter, but keep in mind that
although most of these features will be in DOM 3, there is no guarantee that they
will all be present in their current form in the final Recommendation.

o4 Part | 4 Introducing XML

I'll post any changes to the DOM 3 Recommendation and updates to this chapter
as they evolve. The updated text can be downloaded from http://www.
XMLProgrammingBible.com.

There are several DOM 3 Recommendation Working Drafts currently in progress,
which represent DOM 3 modules. DOM modules usually end up as a class or set of
classes in whatever programming language they are developed in. Features in the
modules become subclasses, methods, and properties of the module base classes.

The DOM 3 Core Recommendation Working Draft extends namespace support
methods in DOM 2.

The DOM 3 Events Recommendation Working Draft adds more events on top of
the DOM 2 Events Recommendation. The specific objects and methods are listed
later in this chapter.

DOM 3 also has a very critical new Recommendation for XML programmers: The
DOM 3 Load and Save Recommendation Working Draft enables parsers to load
XML documents using DOM objects exclusively. Currently, in DOM 2, there is no
standardized way to feed a DOM parser an XML document directly from the file sys-
tem. XML document parsing code currently uses whatever methods are available in
the language used to call the parser to load XML documents from a file, and then
feed the loaded document to a parser. Even more important, new DOM 3 objects
can be saved to a file. Currently, in DOM 2, there is no way to extract a manipulated
DOM object and save it to the file system using DOM objects. Nodes can be
extracted and passed to another programming language, where they can be saved
as text or converted to other types of data. DOM 3 provides a standardized way to
save a Node tree directly from the DOM 3 object to a file system.

Another DOM 3 feature that will be very useful for developers is the support of
XPath for navigating and manipulating DOM nodes, courtesy of the DOM 3 XPath
Recommendation Working Draft. XPath provides a standard syntax for accessing
and manipulating the parsed nodes of an XML document. XPath for DOM makes
sense, as W3C XSLT Recommendations also support XPath. DOM support for XPath
streamlines what a developer needs to learn to navigate XML documents when
parsing and transforming XML documents, and will help standardize organizational
code libraries that only have to support one method for navigating XML documents
programmatically.

The DOM 3 Validation Recommendation Working Draft defines interfaces that
enforce validation of new or manipulated documents based on a DTD or Schema.

The DOM 3 Views and Formatting Working Draft builds on the DOM 2 Views
Recommendation. Views and Formatting Recommendation provide standard ways
to update the content of a DOM 3 node tree and related formatting instructions.

Chapter 5 4+ Parsing XML with DOM

Microsoft MSXML DOM enhancements

Microsoft’s XML parser is part of Internet Explorer 5.5 or later. The MSXML parser
is currently called the Microsoft XML Core Services, but is usually still referred to
by the original MSXML acronym. The MSXML parser uses the same DOM interfaces
as W3C parsers. In addition to the W3C objects, MSXML parser has added several
additional methods and properties to the W3C DOM interface methods and proper-
ties. These methods and properties are commonly referred to as Microsoft DOM
extensions or MSXML extensions. MSXML extensions can be used in IE browser
applications and other types of Windows applications that use the MSXML parser
as their DOM parser. They are not supported by other parsers, such as Xerces.

Because MSXML and the Internet Explorer are so widely used, most XML program-
mers need to know about Microsoft’s additional properties and methods. The other
practical reason for knowing which methods and properties are part of the W3C
DOM and which are MXSML extensions is to know what properties and methods are
available in a specific parser, and when you can use them.

The MSXML download includes a great help database will full documentation and
examples for working with the MSXML DOM in JScript, Visual Basic, and C/C++.
Recent MSXML updates can be downloaded from
http://www.microsoft.com/msxml.

YA The by the time this book is in print. We'll post any changes to the MSXML documen-

:W\\\ On We're documenting the MSXML 4.01 parser in this chapter, which may be updated

AN ‘Web

tation and updates to this chapter as they evolve. The updated text can be down-
loaded from.

DOM Interfaces and Nodes

fros

As mentioned in the introduction to this chapter, XML documents that are repre-
sented in DOM are parsed into a tree of root, branch, and leaf nodes. In addition to
nodes, a few DOM interfaces are not extensions of a DOM node, and consequently
are not considered part of the node “family.” Also, unlike some DOM nodes, none of
the DOM interfaces have children.

MSXML DOM node and interface names do not follow the W3C interface naming
standards, even though the interfaces support most of the W3C properties
and methods. For example, the W3C Document node is called IXMLDOM
DocumentNode in the MXSML DOM, and Document in the W3C DOM. The other
key difference between the MSXML DOM and the W3C DOM is error handling.
W3C DOM error handling is implemented in the W3C DOMException interface.
MSXML error handling is implemented through the parseError property of the
IXMLDOMDocumentNode.

.

95

96 Part | 4+ Introducing XML

Table 5-1 shows the current listing of these DOM interfaces.

Table 5-1

DOM Interfaces for HTML and XML Documents

Interface Name

Description

DOMImplementation
Supported by:
W3C DOM 1 2, 3, and MSXML

DOMException
Supported by:
W3CDOM 1, 2,3

Node
Supported by:
W3C DOM 1, 2, 3, and MSXML

The DOMImplementation interface defines the version
of a DOM implementation that a parser supports, and
DOM features that are supported by the parser. The
hasFeature method of DOMImplementation returns true
if the feature is supported, or false if it is not.

An exception is passed to the calling program by a
parser when a parsing exception occurs, such as
modification of a node that can’t be modified, or adding
a node in the wrong place, such as trying to add an Attr
node to an Attr node (XML document attributes can’t
have attributes).

Note: The MSXML DOM does not use the DOMException
class for parsing error reporting. The MSXML ParseError
property of the IXMLDOMDocumentNode object is used
for the same purpose in MSXML implementations.

The Node object is the base of a Document Object
Model, and represents a single node in the document
tree. All DOM nodes inherit properties and methods
from the node object. The node object is not part of a
document node tree. It serves as a properties and
methods container for other node types to inherit from.
Table 5-2 lists and explains all of the types of DOM
nodes.

Chapter 5 4 Parsing XML with DOM o7

Interface Name

Description

Nodelist
Supported by:
W3C DOM 1, 2, 3, and MSXML

NamedNodeMap
Supported by:
W3C DOM 1 2, 3 and MSXML

DOMSelection
Supported by:
MSXML

DOMSchemaCollection
Supported by:
MSXML

CharacterData
Supported by:
W3C DOM 1, 2, 3, and MSXML

The NodelList object represents an editable in-memory
representation of a collection of Node objects. The
NodelList interface is used to contain child nodes of a
W3C DOM node. For example, an XML document
element that has an attribute and a text value is parsed
into an Element node. The Attr node and Text node
associated with the Element node are accessible via a
Nodelist from the element Node. Nodes in a NodelList
are accessible by index number, starting with 0.
NodelLists are useful if programmers know the position
of a node in the structure of a Node tree.

A NamedNodeMap object represents and editable in-
memory representation of a collection of Node objects
that can be accessed by name. The NamedNodeMap
element is used to retrieve a list of attributes, entities,
or any other node that has a name associated with it.
This enables developers to retrieve a node by name,
instead of having to know the position of the node in
the node tree or a NodelList.

A DOMSelection object contains a list of nodes returned
by an XML Path Language (XPath) expression.

A DOMSchemacCollection contains one or more Schema
documents.

The CharacterData object is a base object for
manipulating text. The CDATASection, Comment, and
Text nodes inherit properties and methods from
CharacterData.

98

Part | 4+ Introducing XML

Understanding DOM nodes

Table 5-1 describes the DOM node object from which all DOM nodes are derived.
DOM nodes that represent different types of XML document objects have different
node data types, but all DOM nodes inherit the same properties and methods from
the DOM node object. The only node that differs between the W3C DOM and the
MSXML DOM is element attributes, which are represented by the Attr object in the
W3C DOM and the Attribute object in the MXSML DOM. Table 5-2 shows the node
data types that are part of the DOM Core Recommendation.

Table 5-2
Core DOM Nodes for HTML and XML Documents
Node Name Description
DocumentType Represents a document’s doctype property, which
Children: None can reference a DTD that can contain entity
Supported by: references. The DocumentType object also provides

W3C DOM 1, 2, 3, and MSXML

Processinginstruction
Children: None

Supported by:

W3C DOM 1, 2, 3, and MSXML

Document

Children: Element,
ProcessinglInstruction, Comment,
DocumentType, DocumentFragment.
Supported by:

W3C DOM 1, 2, 3, and MSXML

DocumentFragment

Children: Element,
ProcessinglInstruction, Comment,
Text, CDATASection, EntityReference
Supported by:

W3C DOM 1, 2, 3, and MSXML

Element

Children: Element,
ProcessinglInstruction, Comment,
Text, CDATASection, EntityReference
Supported by:

W3C DOM 1, 2, 3, and MSXML

an interface to any elements with a notation
attribute.

Represents document processing instructions,
including, for example, XML document declarations
and stylesheet references, without the element
delimiters (<? and 7>).

Represents an XML document and serves as the root
node for entry to the rest of the node tree.

Represents part of a DOM Document node tree, or a
new fragment that can then be inserted into a
document. A DocumentFragment can represent a
new node tree, starting with any child of a
Document object.

Represents an XML document element. Attributes
and text values associated with an element become
child leaf nodes of the element in the node tree.

e

Chapter 5 4+ Parsing XML with DOM

99

Node Name

Description

Text

Children: None

Supported by:

W3C DOM 1, 2, 3, and MSXML

CDATASection

Children: None

Supported by:

W3C DOM 1, 2, 3, and MSXML

Attr

Children: Text, EntityReference
Supported by:

W3CDOM 1,2, 3

(MSXML as Attribute)

Comment

Children: None

Supported by:

W3C DOM 1, 2, 3, and MSXML

Notation

Children: None

Supported by:

W3C DOM 1, 2, 3, and MSXML

Entity

Children: Element,
ProcessinglInstruction, Comment,
Text, CDATASection, EntityReference

EntityReference

Children: Element,
ProcessinglInstruction, Comment,
Text, CDATASection

Supported by:

W3C DOM 1, 2, 3, and MSXML

Represents the text of an Element object.

Contains contents of an XML document CDATA
element content in a single node, without trying to
parse it into different types of nodes.

Represents an attribute of an Element object in the
W3C DOM.

Represents an XML document comments, without
the element delimiters (<!-- and -->).

Contains the read-only format for unparsed entities
or notation attribute values, including application
processing instructions.

Represents a parsed or unparsed entity. In non-
validating parsers, the unparsed entity is contained
in the entity node and there are no child nodes. In
validating DOM parsers, the Entity node’s child list
represents the replaced node value.

Represents a parsed or unparsed entity reference. In
non-validating parsers, the reference is contained in
the EntityReference node and there are no child
nodes. In validating DOM parsers, the EntityReference
node’s child list represents the replaced node value.

While NodelLists, NamedNodeMaps, DocumentFragments, DOMSelection, and

DOMSchemacCollection all contain a collection of nodes, they all serve different

purposes. The Nodelist interface contains a list of child nodes at a single level in
the DOM node tree. None of the nodes in a Nodelists have children. The
NamedNodeMap interface contains a list of nodes accessible by name regardless
of their position in a node tree. Node names are accessible by the nodeName
property of a DOM node. A list of DOM nodes with names is shown in Table 5-6. A
DocumentFragment can represent an entire node tree, starting with any child of a

100

Part | 4+ Introducing XML

Document object. DOMSelection and DOMSchemaCollection objects are used in
MSXML only. DOMSelection returns a nodeList from an XPath Expression, while
DOMSchemaCollection can represent one or more parsed XML Schemas.

W3C DOM nodeTypes, constants, nodeNames,

and nodeValues

Each of the DOM nodes listed in Table 5-2 has a NodeType and a constant value

assigned to it. Nodes can be referred to by number or constants. W3C DOM nodes
can also be referenced by using the nodeType, nodeName, and nodeValue proper-
ties of the node interface. Table 5-3 lists all of the W3C DOM node types, with their
nodeType, nodeName, and nodeValue property values.

Table 5-3
Node Constants for XML and HTML Documents
nodeType Constant nodeName nodeValue
1 ELEMENT_NODE element name Null
2 ATTRIBUTE_NODE attribute name Attribute value
3 TEXT_NODE #text Text
4 CDATA_SECTION_NODE #cdata-section CDATA text
5 ENTITY_REFERENCE_NODE entity reference name Null
6 ENTITY_NODE entity name Null
7 PROCESSING _ target name processing
INSTRUCTION_NODE instruction
text
8 COMMENT_NODE #comment Comment text
9 DOCUMENT_NODE #document Null
10 DOCUMENT_TYPE_NODE document type name Null
11 DOCUMENT_FRAGMENT_NODE #document- fragment Null
12 NOTATION_NODE notation name Null

The MSXML DOM nodeTypeString property

The functionality of the MSXML DOM parser and W3C DOM parsers are identical
when dealing with W3C DOM nodes and interfaces, with one important exception.
DOM nodes that are created with and inherit from the MSXML parser DOM Node

Chapter 5 4+ Parsing XML with DOM

101

object support the nodeTypeString property. In addition to the W3C nodeType
and constant values, the nodeTypeString can be used to access all node data
types. Table 5-4 shows the MSXML nodeType, Constant values, and
nodeTypeString values for the corresponding W3C DOM node data types.

Table 5-4

Node Constants for MSXML Node Trees
nodeType Constant nodeTypeString
1 ELEMENT_NODE element
2 ATTRIBUTE_NODE attribute
3 TEXT_NODE text
4 CDATA_SECTION_NODE cdatasection
5 ENTITY_REFERENCE_NODE entityreference
6 ENTITY_NODE entity
7 PROCESSING_INSTRUCTION_NODE processinginstruction
8 COMMENT_NODE comment
9 DOCUMENT_NODE document
10 DOCUMENT_TYPE_NODE documenttype
11 DOCUMENT_FRAGMENT_NODE documentfragment
12 NOTATION_NODE notation

DOM node properties

As illustrated in Table 5-3 by the values for the nodeType, nodeName, and
nodeValue properties, all of the nodes listed in Table 5-2 and many of the inter-
faces listed in Table 5-1 share properties and methods specified by the W3C DOM
Recommendation. Most W3C DOM node properties and methods are also sup-
ported in the MSXML DOM parser, along with several MSXML DOM extensions.

For all properties and methods in this chapter, we're including annotations that
specify if the property or method is supported in the W3C DOM and/or the MSXML
DOM, and which version of W3C DOM is supports the property or method.

The common properties for all node data types are listed in Table 5-5.

102 Partl + Introducing XML

Table 5-5
DOM Node Properties
Property Property Value
Attributes A NamedNodeMap with an attribute list of

Supported by:
W3C DOM 1, 2, 3, and MSXML

baseName
Supported by:
MSXML

childNodes
Supported by:
W3C DOM 1, 2, 3, and MSXML

dataType
Supported by:
MSXML

Definition
Supported by:
MSXML

firstChild
Supported by:
W3C DOM 1, 2, 3, and MSXML

lastcChild
Supported by:
W3C DOM 1, 2, 3, and MSXML

localName
Supported by:
W3C DOM 2 and 3

namespaceURI
Supported by:
W3C DOM 2, 3, and MSXML

nextSibling
Supported by:
W3C DOM 1, 2, 3, and MSXML

nodeName
Supported by:
W3C DOM 1, 2, 3, and MSXML

attributes of the current node.

Returns the Namespace prefix for a namespace.
For example, the baseName of “xmlns:
azlist="http://www.benztech.
com/xsd/amazonlist”isaszlist.

A Nodelist containing the child nodes of the
current node.

Text containing the data type for this node. Data
types can be assigned using a dt: prefix on an
attribute name, and an attribute value that maps
to a standard or schema-defined data type.

Text containing the entity reference definition
from a DTD or Schema.

The first child node of the current node.

The last child node of the current node.

The local name of the node.

Returns the URI for a namespace. For example,
the namespaceURI of “xmlns:azlist="
http://www.benztech.com/xsd/
amazonlist”ishttp://www.
benztech.com/xsd/amazonlist.

The next sibling node of the current node.
(Siblings are nodes that share a parent node.)

The node name of the current node.

Chapter 5 4 Parsing XMLwithbom] (03

Property

Property Value

nodeType
Supported by:
W3C DOM 1, 2, 3, and MSXML

nodeTypedValue
Supported by:
MSXML

nodeTypeString
Supported by:
MSXML

nodeValue
Supported by:
W3C DOM 1, 2, 3, and MSXML

ownerDocument
Supported by:
W3C DOM 1, 2, 3, and MSXML

parentNode
Supported by:
W3C DOM 1, 2, 3, and MSXML

parsed
Supported by:
MSXML

prefix
Supported by:
W3C DOM 2, 3, and MSXML

previousSibling
Supported by:
W3C DOM 1, 2, 3, and MSXML

specified
Supported by:
MSXML

text
Supported by:
MSXML

xml
Supported by:
MSXML

The number of the of the current node type.

The specified node expressed in the named data
type of that node. Data types can be assigned
using a dt: prefix on an attribute name, and an
attribute value that maps to a standard or
schema-defined data type.

A text value representing the node data type.
Table 5-4 lists the nodeTypeString for all DOM
node data types.

The value of the current node. Can also be used
to set attribute values.

The Document node of the node tree.

The parent node of the current node.

The parsed status of a node and child nodes.
Useful for checking to see if parsing is finished on
an XML document before node tree reading and
manipulation begins.

Returns the prefix for a namespace. For example,
the namespaceURI of “xmlns:azlist=
"http://www.benztech.com/xsd/
amazonlist”is xmlns.

The previous sibling node of the current node.
(Siblings are nodes that share a parent node.)

Boolean indicating that the node is a value in the
XML document or the result of an entity
reference.

A concatenated text value of the current node
and its descendants.

An XML representation of the node and its
descendants.

104 Partl + Introducing XML

W3C DOM node methods

DOM node properties can be manipulated using the DOM node methods in

Table 5-6.
Table 5-6
Core DOM Node Methods
Method Description

appendChild (nodeName)
Supported by:
W3C DOM 1, 2, 3, and MSXML

cloneNode (Boolean)
Supported by:
W3C DOM 1 2, 3 and MSXML

isSupported (feature, version)
Supported by:
W3C DOM 2 and 3

hasAttributes ()
Supported by:
W3C DOM 2 and 3

hasChildNodes ()
Supported by:
W3C DOM 1, 2, 3, and MSXML

insertBefore (nodeTolnsert,
nodeName)

Supported by:

W3C DOM 1, 2, 3, and MSXML

Appends a new node to the current node. The
example on the left appends the (nodename)
node to the child nodes of the current node.

Copies the current node. If the Boolean value is
true, the new node contains the current node
and all the child nodes of the current node.

Returns true if a feature and version are
supported. Functionally the same as the
hasFeature in the DOMImplementation interface.

The version of DOM that a parser supports is
found by passing a number to the hasFeature
method: 1.0 for DOM Level 1, 2.0 for Level 2, and
3.0 for Level 3.

DOM feature constants for the hasFeature
method are not version specific, but can be called
using the following syntax:

hasFeature(feature, version)

DOM 2 Constants for features are: Core, XML,
HTML, Views, StyleSheets, CSS, CSS2, Events,
UlEvents, MouseEvents, MutationEvents,
HTMLEvents, Range, and Traversal. Constants are
not case sensitive.

Returns true if the current node has associated
attributes.

Returns true if the current node has child nodes.

Inserts a new node before an existing node. The
example on the left inserts the nodeTolnsert
node before the nodeName node in the node
tree.

Chapter 5 4+ Parsing XML with DOM

Method

Description

normalize()
Supported by:
W3C DOM 2 and 3

removeChild (childNodeName)
Supported by:
W3C DOM 1, 2, 3, and MSXML

replaceChild (newChildNodeName,
oldChildNodeName)

Supported by:

W3C DOM 1, 2, 3, and MSXML

selectNodes ()
Supported by:
MSXML

selectSingleNode ()
Supported by:
MSXML

transformNode (stylesheet)
Supported by:
MSXML

transformNodeToObject
(stylesheet,object)
Supported by:

MSXML

Creates a single concatenated text node out of
any adjacent child text nodes.

Note: This method is supported in the element
interface in DOM 1 and in the node interface in
DOM 2 and 3.

Removes a child node of the current node from a
node tree. In the example on the left, the
childNodeName child node of the current node is
removed from the node tree.

Replaces a child node of the current node with a
new node. In the example on the left, the
newChildNodeName child node of the current
node is replaced with the newChildNodeName
node.

Returns a nodelist that is the result of an XPath
expression.

Returns the first matching node that is the result
of an XPath expression.

Returns the result of an XSL Transformation on
the selected node and its children using a
specified XSLT stylesheet. Chapters 7, 8, and 9
provide more details on XSLT transformations.

Passes the result of an XSL Transformation to a
specified object. Commonly used to pass the
results of an XSLT to a file on the file system.
Chapters 7, 8, and 9 provide more details on XSLT
transformations.

Other DOM node properties and methods

Each data type that inherits from the DOM node supports specific properties and
methods that are unique to that data type. The following node data types can be
assumed to also inherit and support all DOM node properties and methods in
Tables 5-5 and 5-6, unless otherwise specified.

105

106

Part | 4+ Introducing XML

DOMImplementation

DOMImplementation is used in the W3C DOM 1 and MSXML parsers to check for
DOM version and feature support via the hasFeature method. In DOM 2, the
createDocument and creatDocumentType methods allow developers to create
their own document node trees and DTDs in a DOM parser. Table 5-7 shows the
methods for the DOMImplementation interface.

Table 5-7

Methods for the DOMImplementation Interface

Method

Description

hasFeature (feature, version)
Supported by:
W3C DOM 1, 2, 3, and MSXML

createDocument (namespaceURI,
qualifiedName, doctype)
Supported by:

W3C DOM 2 and 3

createDocumentType
(qualifiedName, publicID, systemiID)
Supported by:

W3C DOM 2 and 3

Returns the DOM version and feature sets.

The version of DOM that a parser supports is
found by passing a number to the hasFeature
method: 1.0 for DOM Level 1, 2.0 for Level 2, and
3.0 for Level 3.

DOM feature constants for the hasFeature
method are not version specific, but can be called
using the following syntax:

hasFeature(feature, version)

DOM 2 Constants for features are: Core, XML,
HTML, Views, StyleSheets, CSS, CSS2, Events,
UlEvents, MouseEvents, MutationEvents,
HTMLEvents, Range, and Traversal. Constants are
not case sensitive.

Creates a new document node tree. This node
tree can be created, but not saved directly from a
parser. It needs to be passed to classes in a
programming language that can save to the file
system. A document type definition created with
the DOMImplementation createDocumentType
method can be associated with a document
using the doctype parameter of the
createDocument method.

Creates a new documentType node. The new
documentType node can be use to provide a DTD
for new node trees created with the
DOMImplementation createDocument method.

Chapter 5 4 Parsing XMLwithbom |1 (Q7/

Processinglnstruction

Processing instructions are used to pass information and instructions to proces-
sors outside of the parser environment. In DOM 1, 2, 3, and the MSXML parser, the
processing instruction target can be read and the instructions can be modified.
Table 5-8 shows the properties for the ProcessingInstruction data type.

Table 5-8
Properties for the ProcessingInstruction Data Type

Property Description

data Retrieves contents of the processing instruction and

Supported by: the target. Also used to update the processing

W3C DOM 1, 2, 3, and MSXML instruction. The target cannot be edited, as it is
read-only.

target The processing instruction target.

Supported by:

W3C DOM 1, 2, 3, and MSXML

Document

The property listings of the DOM document class reflects the new direction in the
DOM 3 Recommendations toward filtering data segments and producing smaller,
faster, leaner DOM nodes of document portions, rather than entire XML documents.
Table 5-9 shows the properties for the Document data type.

Table 5-9

Properties for the Document Data Type
Property Description
async True if asynchronous download is permitted by this
Supported by: document.
MSXML
doctype A documentType node that specifies the DTD for an XML
Supported by: document.

W3C DOM 1, 2, 3, and MSXML

documentElement The root element of an XML document.
Supported by:
W3C DOM 1, 2, 3, and MSXML

Continued

108

Part | 4+ Introducing XML

Table 5-9 (continued)

Property

Description

implementation
Supported by:

W3C DOM 1, 2, 3, and MSXML

ondataavailable
Supported by:
MSXML

onreadystatechange
Supported by:
MSXML

ontransformnode
Supported by:
MSXML

parseError
Supported by:
MSXML

preserveWhiteSpace
Supported by:
MSXML

readyState
Supported by:
MSXML

The DOM Implementation for the document.

The event handler for the ondataavailable event. When the
async property is set to true, the ondataavailable property
is used to begin parallel processing of a DOM document
when a specific piece of data is available. The readyState
property is used to check download and parsing status of
an XML document.

An event handler to be called when the readyState
property changes.

An event handler for ontransformnode events in this
document, which is triggered when an XSLT transformation
occurs on a node using the transformNode or
transformNodetoObject method.

Returns an MSXML DOMParseError object that contains
information about the last parsing error. Returns null if
there are no parsing errors. MSXML DOM parsing code
usually checks this property for parsing errors before
proceeding.

If true, XML document whitespace (line feeds, tabs, spaces,
and carriage returns) is preserved. If false, MSXML ignores
any whitespace in the XML document. MSXML respects the
xml:space attribute, so any space designated with the
xml:space attribute is preserved regardless of the
preserveWhiteSpace property value.

The current state of the XML document.

There are four states that the readyState property
represents:

1 The load is in progress; parsing has not yet begun.

2 The document is loaded and parsing has begun, but the
DOM is not yet at a stage that it can be used.

3 The document may or may not be loaded completely,
but enough of the data is parsed, so processing can begin
on what is parsed so far.

4 The document has been completely loaded and parsed,
or the parsing was aborted due to an error.

Chapter 5 4+ Parsing XML with DOM

Property Description

resolveExternals If true, external definitions such as entity and namespace
Supported by: references are resolved when the document is parsed. If
MSXML false, references are not resolved.

url The URL for the current XML document.

Supported by:

MSXML

validateOnParse If true, the parser validates the XML document during
Supported by: parsing.

MSXML

DOM document methods also reflect new directions for DOM Recommendations,
this time into full support for namespaces. Table 5-10 shows the methods for the

Document data type.

Table 5-10
Methods for the Document Data Type
Method Description
abort () Aborts an asynchronous download.
Supported by:
MSXML

createAttribute (attributeName)
Supported by:
W3C DOM 1, 2, 3, and MSXML

createAttributeNS (attributeName,
qualifiedName)

Supported by:

W3C DOM 2 and 3

createCDATASection (textData)
Supported by:
W3C DOM 1, 2, 3, and MSXML

createComment (commentData)
Supported by:
W3C DOM 1, 2, 3, and MSXML

createDocumentFragment()
Supported by:
W3C DOM 1, 2, 3, and MSXML

Creates a new attribute node with the specified
name.

Creates a new attribute node with the specified
name and a namespace prefix using the
Namespace qualified name.

Creates a CDATAsection node that contains the
supplied text data.

Creates a comment node that contains the
supplied text data.

Creates an empty DOM DocumentFragment
object.

Continued

109

110

Part | 4+ Introducing XML

Table 5-10 (continued)

Method

Description

createElement (elementName)
Supported by:
W3C DOM 1, 2, 3, and MSXML

createElementNS (elementName,

qualifiedName)
Supported by:
W3C DOM 2 and 3

createEntityReference
(referenceName)

Supported by:

W3C DOM 1, 2, 3, and MSXML

createNode (Type, name,
namespaceURI)
Supported by:

MSXML

createProcessinginstruction
(target, data)

Supported by:

W3C DOM 1, 2, 3, and MSXML

createTextNode (textData)
Supported by:
W3C DOM 1, 2, 3, and MSXML

getElementByID (elementID)
Supported by:
W3C DOM 2 and 3

getElementsByTagName
(elementName)

Supported by:

W3C DOM 1, 2, 3, and MSXML

getElementsByTagNameNS
(namespaceURI, localName)
Supported by:

W3C DOM 2 and 3

importNode (nodetolmport,
includeChildren)

Supported by:

W3C DOM 2 and 3

Load(url)
Supported by:
MSXML

Creates an element node using the specified
name.

Creates an element node using the specified
name and a namespace prefix using the
Namespace qualified name.

Creates a new EntityReference object with the
supplied name.

Creates a node using the supplied nodeType,
node name, and namespace URI. Valid
nodeTypes are listed in Table 5-3.

Creates a processing instruction node that
contains the supplied target and data.

Creates a text node that contains the supplied
text data.

Returns an element that has a matching ID
attribute value.

Returns a collection of elements that match the
specified name.

Returns a collection of elements that match the
specified name and namespace URL.

Import a node from another document. If the
second parameter is true all child nodes of the
named node are imported as well.

Loads an XML document from the specified URL
location.

Chapter 5 4+ Parsing XML with DOM

Method Description

loadXML Loads a passed XML document in string form.
Supported by:

MSXML

nodeFromID Returns the node that matches the ID attribute.
Supported by: This is an MXSML-specific method that loads any
MSXML node by ID, not just element nodes.

save Saves an XML document to the specified object.
Supported by: The object can be a file name (but not a URL),
MSXML DOMDocument object, or any object that

supports persistence.

documentType

documentType nodes contain DTDs that can either be used for data validation or
to store values for entity references. Table 5-11 shows the properties for the
documentType data type.

Table 5-11

Properties for the DocumentType Data Type
Property Description
dataType Specifies the data type for a node. A full list of
Supported by: DOM dataTypes is available in Table 5-3.
MSXML
entities Returns a namedNodeMap of entity nodes
Supported by: representing entities declared in a DTD.

W3CDOM 1, 2,3

Name Returns the name of the document type.
Supported by:
W3C DOM 1, 2, 3, and MSXML

publicid Returns the public identifier associated with the
Supported by: entity.

W3C DOM 2 and 3

systemid Returns the system identifier associated with the
Supported by: entity.

W3C DOM 2 and 3

internalSubset Returns text containing internal subset
Supported by: declarations.

W3C DOM 2 and 3

111

112 Partl + Introducing XML

nodelList

nodeList does not inherit from the DOM Node interface, and therefore does not
support DOM node properties and methods. All of the properties and methods that
nodeList supports are listed in Tables 5-12 and 5-13, respectively.

Table 5-12 shows the properties for the nodeList data type.

Table 5-12
Properties for the nodelList Data Type
Property Description
Length Indicates the number of items in the collection.
Supported by: Read-only.

W3C DOM 1, 2, 3, and MSXML

Table 5-13 shows the methods for the nodeList data type.

Table 5-13
Methods for the nodelList Data Type
Method Description
Item Facilitates access to individual nodes within the
Supported by: nodelList.
W3C DOM 1, 2, 3, and MSXML
nextNode Returns the next node in the nodelList.
Supported by:
MSXML
reset Resets the iterator to 1, moves the pointer to the
Supported by: first node (item) in the list.
MSXML
namedNodeMap

namedNodeMap does not inherit from the DOM Node interface, and therefore does
not support DOM node properties and methods. All of the properties and methods
that namedNodeMap supports are listed in Tables 5-14 and 5-15, respectively.

Table 5-14 shows the property for the namedNodeMap data type.

Chapter 5 4+ Parsing XML with DOM

Table 5-14
Properties for the namedNodeMap Data Type
Property Description
length Indicates the number of items in the

Supported by:

namedNodeMap

W3C DOM 1, 2, 3, and MSXML

Table 5-15 shows the methods for the namedNodeMap data type. Note the diver-
gence between the W3C DOM method names and the MSXML method names. For
example, there are two namespace-aware methods for getNamedItem. The W3C
DOM implementation calls theirs getNamedItemNS, while MSXML refers to the
same thing as getQualifiedItem. Hopefully, this is a short-term situation.
Personally, I'd like to see the getNamedItem method do the job with an optional
second namespace parameter.

Table 5-15

Methods for the namedNodeMap Data Type

Method

Description

getNameditem (nodeName)
Supported by:
W3C DOM 1, 2, 3, and MSXML

getNameditemNS (nodeName,
qualifiedName)

Supported by:

W3C DOM 2 and 3

getQualifieditem (nodeName)
Supported by:
MSXML

Item()
Supported by:
W3C DOM 1, 2, 3, and MSXML

removeNamedIitem (nodeName)
Supported by:
W3C DOM 1, 2, 3, and MSXML

removeNameditemNS (nodeName,
qualifiedName)

Supported by:

W3C DOM 2 and 3

Returns a node with the specified name.

Returns a node with the specified name and
namespace.

Returns a node with the specified namespace
and attribute name.

Facilitates access to individual nodes within the
namedNodeMap.

Removes a named node from the
namedNodeMap.

Removes an attribute specified by name and
namespace from the collection.

Continued

113

114

Part | 4+ Introducing XML

Table 5-15 (continued)

Method Description

removeQualifieditem (nodeName, Removes the attribute with the specified
qualifiedName) namespace and attribute name.

Supported by:

MSXML

reset() Resets the iterator to 1, moves the pointer to the
Supported by: first node (item) in the list.

MSXML

setNameditem (nodeName) Adds the supplied node to the collection.

Supported by:
W3C DOM 1, 2, 3, and MSXML

setNameditemNS (nodeName, Adds the supplied node to the collection with a
qualifiedName) specific namespace prefix.
Supported by:

W3C DOM 2 and 3

Element

Note that the MSXML DOM does not support the MXSML-specific nodeTypedvalue
property for element nodes that it does for all other nodes. Table 5-16 shows the
property for the element data type.

Table 5-16
Properties for the element Data Type
Property Description
tagName Returns an element name.

Supported by:
W3C DOM 1, 2, 3, and MSXML

Note that aside from the lack of nodeTypedvalue support for element node prop-
erties, there are also a couple of anomalies in the DOM 2 element node methods.
MSXML does not support the hasAttribute method, and DOM 2 does not have a
namespace variant for the removeAttributeNode method. Table 5-17 shows the
methods for the element data type.

Chapter 5 4+ Parsing XML with DOM

Table 5-17

Methods for the element Data Type

Method

Description

getAttribute (attributeName)
Supported by:
W3C DOM 1, 2, 3, and MSXML

getAttributeNS (attributeName,
qualifiedName)

Supported by:

W3C DOM 2 and 3

getAttributeNode (attributeName)
Supported by:
W3C DOM 1, 2, 3, and MSXML

getAttributeNodeNS (attributeName,

qualifiedName)
Supported by:
W3C DOM 2 and 3

getElementsByTagName
(elementName)

Supported by:

W3C DOM 1, 2, 3, and MSXML

getElementsByTagNameNS
(elementName, qualifiedName)
Supported by:

W3C DOM 2 and 3

hasAttribute (attributeName)
Supported by:
W3C DOM 2 and 3

hasAttributeNS (attributeName,
qualifiedName)

Supported by:

W3C DOM 2 and 3

normalize()
Supported by:
W3C DOM 1 and MSXML

Returns an attribute value.

Returns an attribute value within a namespace.

Gets an attribute node.

Gets an attribute node within a namespace.

Returns a list of all elements that match the
supplied name.

Returns a list of all elements that match the
supplied name within a namespace.

Returns true if a node has an attribute.

Returns true if a node has an attribute within a
namespace.

Creates a single concatenated text node out of
any adjacent child text nodes.

Note: The W3C normalize method is part of the
DOM 2 and DOM 3 node interface. MSXML and
DOM 1 implementations still use normalize as
part of the element interface.

Continued

115

116

Part | 4+ Introducing XML

Table 5-17 (continued)

Method

Description

removeAttribute (attributeName)
Supported by:
W3C DOM 1, 2, 3, and MSXML

removeAttributeNS (attributeName,

namespaceURI)
Supported by:
W3C DOM 2 and 3

removeAttributeNode
(attributeName)

Supported by:

W3C DOM 1, 2, 3, and MSXML

setAttribute (attributeName)
Supported by:
W3C DOM 1, 2, 3, and MSXML

setAttributeNS (attributeName,
qualifiedName)

Supported by:

W3C DOM 2 and 3

setAttributeNode (attributeName)
Supported by:
W3C DOM 1, 2, 3, and MSXML

setAttributeNodeNS
(attributeName, qualifiedName)
Supported by:

W3C DOM 2 and 3

Removes the named attribute. If the attribute that
is being removed has a default value, the
attribute is re-created with the default value.

Removes the named attribute within a
namespace. If the attribute that is being removed
has a default value, the attribute is re-created
with the default value.

Removes an attribute node from the current
element.

Sets the value of the named attribute.

Sets the value of the named attribute within a
specific namespace.

Sets or updates the named attribute node in the
current element.

Sets or updates the named attribute node in the
current element within a specific namespace.

Attr

There are only a few properties for the DOM Attr interface and no At tr methods.
Manipulation of DOM attributes is done through the element interface, because all
attributes have to have an associated element. Table 5-18 shows the properties for

the Attr data type.

Chapter 5 + Parsing XMLwithbom 117/

Table 5-18
Properties for the Attr Data Type
Property Description
name Returns an attribute name.

Supported by:
W3C DOM 1, 2, 3, and MSXML

value Returns an attribute value.
Supported by:
W3C DOM 1, 2, 3, and MSXML

ownerElement Returns the element that an attribute belongs to.
Supported by:
W3C DOM 2 and 3

CharacterData and Comment

Comment inherits properties and methods from CharacterData and has no addi-
tional properties or methods, so we’ve listed them together. Table 5-19 shows the
properties for the CharacterData and Comment data types.

Table 5-19
Properties for the CharacterData and Comment Data Types
Property Description
data Returns node character data if there is a character
Supported by: value associated with the node type.

W3C DOM 1, 2, 3, and MSXML

length Returns the number of characters in a string.
Supported by:
W3C DOM 1, 2, 3, and MSXML

Table 5-20 shows the methods for the CharacterData and Comment data types.

Part | 4+ Introducing XML

Table 5-20

Methods for the CharacterData and Comment Data Types

Method

Description

appendData (string)
Supported by:
W3C DOM 1, 2, 3, and MSXML

deleteData (start,
numberofCharacters)
Supported by:

W3C DOM 1, 2, 3, and MSXML

insertData (start, string)
Supported by:
W3C DOM 1, 2, 3, and MSXML

replaceData (start,
numberofCharacters, string)
Supported by:

W3C DOM 1, 2, 3, and MSXML

substringData (start,
numberofCharacters)
Supported by:

W3C DOM 1, 2, 3, and MSXML

Appends a string to the existing string data.

Deletes a substring, string starting at a specific
point in a string and continuing for a specific
number of characters.

Inserts the specified string starting at a specific
point in a string.

Replaces a substring, string starting at a specific
point in a string and continuing for a specific
number of characters.

Returns a substring of a string using a specified
range.

CDATASection and Text

CDATASection and Text nodes also inherit properties and methods from
CharacterData, but both have one additional method — SplitText, so they can’t
be listed with the comment properties and methods without confusion. Because
both the CDATASection and Text nodes have the same properties and methods,

we’ve listed them together.

Table 5-21 shows the properties for the CDATASection and Text data types.

Chapter 5 4+ Parsing XML with DOM

Table 5-21
Properties for the CDATASection and Text Data Types
Property Description
Data Returns node character data if there is a character

Supported by:
W3C DOM 1, 2, 3, and MSXML

Length
Supported by:
W3C DOM 1, 2, 3, and MSXML

value associated with the node type.

Returns the number of characters in a string.

Table 5-22 shows the methods for the data types.

Table 5-22

Methods for the CDATASection and Text Data Types

Method

Description

appendData (string)
Supported by:
W3C DOM 1, 2, 3, and MSXML

deleteData (start,
numberofCharacters)
Supported by:

W3C DOM 1, 2, 3, and MSXML

insertData (start, string)
Supported by:
W3C DOM 1, 2, 3, and MSXML

replaceData (start,
numberofCharacters, string)

Supported by:
W3C DOM 1, 2, 3, and MSXML
splitText

Supported by:
W3C DOM 1, 2, 3, and MSXML

substringData (start,
numberofCharacters)
Supported by:

W3C DOM 1, 2, 3, and MSXML

Appends a string to the existing string data.

Deletes a substring, string starting at a specific
point in a string and continuing for a specific
number of characters.

Inserts the specified string starting at a specific
point in a string.

Replaces a substring, string starting at a specific
point in a string and continuing for a specific
number of characters.

Creates a new sibling text node that starts at a
specific point in a string and continues for a
specific number of characters.

Returns a substring of a string using a specified
range.

119

Part | 4+ Introducing XML

Entity

Entities can be parsed or unparsed in the DOM entity node. Table 5- 23 shows the

properties for the entity data type.

Table 5-23
Properties for the entity Data Type
Property Description
notationName Contains the notation name of an unparsed

Supported by:
W3C DOM 1, 2, 3, and MSXML

publicld
Supported by:
W3C DOM 1, 2, 3, and MSXML

systemid
Supported by:
W3C DOM 1, 2, 3, and MSXML

entity. If the entity is parsed, the notationName is
null.

Returns the public identifier associated with the
entity.

Returns the system identifier associated with the
entity.

Notation

Table 5-24 shows the properties for the Notation data type.

Table 5-24
Properties for the Notation Data Type
Property Description
publicld Returns the public identifier associated with the

Supported by:
W3C DOM 1, 2, 3, and MSXML

systemid
Supported by:
W3C DOM 1, 2, 3, and MSXML

entity.

Returns the system identifier associated with the
entity.

Chapter 5 + Parsing XMLwithbom |2 1]

Summary

In this chapter, I've provided a deep dive into the details of the Document Object
Model (DOM):

4 A history of the DOM

4+ DOM versions and evolution

4 Understanding differences in W3C and MSXML DOM parser implementations

4+ DOM interfaces and nodes

4 DOM node values

4 The node data types

4 Properties and methods for W3C and MSXML DOM node data types
In the next chapter, I'll dive into the details at the other end of the parsing pool: the
Simple API for XML (SAX). SAX is an event-driven interface, which contrasts sharply

with DOM parsing concepts. It is, however, worth the learning curve because of
superior performance over many DOM parsing solutions.

+ o+ ¢

C H AgP T\E R

Parsing XML
with SAX

Chapter 4 provided a theoretical overview of the con-
cepts behind XML document parsing, and Chapter 5 pro-
vided a deep dive into what makes DOM parsing tick. This
chapter extends Chapter 4’s basic concepts and provides a
deep dive into the Simple API for XML (SAX) parsing.

SAX parsing takes a little more of a learning curve to master
when compared to DOM parsing. While DOM nodes can be
directly mapped to corresponding XML source document
objects, SAX events do not provide the same level of direct
comparison.

Once you get around the theory of the event model concepts,
SAX parsing solutions can actually be much easier to imple-
ment than DOM solutions. This is because there is only one
official source for SAX event specifications and documenta-
tion: the SAX project. There is also an MSXML SAX implemen-
tation, which is based on SAX, but rewritten as Microsoft XML
core nodes. But these two sources are relatively simple to
keep on top of when compared to the exponential growth of
W3C DOM Working Drafts that appear with each new DOM
version, and DOM node property and method variants that
appear with every new version of the MXSML DOM parser. For
each event we discuss in this chapter, we list the supporting
SAX versions (SAX 1 and 2, and MSXML), and the differences
in each event between the platforms.

In addition, SAX parsers only have to handle XML documents,
while DOM interfaces must work for HTML and XML docu-
ments. This single-purpose approach greatly streamlines the
interfaces needed to implement a full SAX solution versus the
W3C DOM, which needs to consider HTML objects when
developing new interfaces, properties, and methods.

One other thing that makes SAX solutions simpler to imple-
ment is that they are less diplomatic about the language used
to describe objects and develop parser classes—Java. The
W3C uses the Interface Definition Language (IDL) to represent

¢+ 0+ o+
In This Chapter

Understanding
SAX versions

Understanding
differences in SAX
and MSXML

SAX parser
implementations

SAX interfaces
and events

SAX event values
Properties and
methods for SAX API
and MSXML SAX

events

¢+ ¢+

124

Part | 4+ Introducing XML

DOM code examples. IDL is an abstract language from the Object Management
Group (OMGQG) and is not portable to other languages, such as Java, VB, or Jscript.
Because SAX uses Java as a base for examples and development, it’s much easier to
implement Java solutions using Java-based parsers such as the Apache Xerces
parser. Microsoft has copied SAX objects and events, but they are not implements
in Java.

The W3C defines the specifications for DOM parsing in the W3C DOM recommenda-
tion. As I showed you in Chapter 4 and 5, the W3C DOM can be used to create XML
documents, navigate DOM structures, and add, modify, or delete DOM nodes. DOM
parsing can be slower than SAX parsing because DOM creates a representation of
the entire document as nodes, regardless of how large the document is. However,
DOM can be handy for retrieving all the data from a document, or retrieving a piece
of data several times. The DOM stays resident in memory as long as the code that
created the DOM representation is running.

Understanding SAX

SAX parsing tends to be faster than DOM parsing in most situations, but can also be
more complicated to code. SAX’s event-based parsing model can be compared to
getting information from this chapter of the book by going to the page where the
chapter starts, reading the chapter, and stopping when the chapter ends. DOM
would extract the same information from this book by creating a copy of the book
as a collection of several chapter objects, then looking through the objects to find
this chapter, then extracting information from the chapter. SAX parsers look for a
particular object in an XML document and commit that object to memory as they
pass though the document, using start and end events for that object. As a SAX
parser passes through a document, it passes the objects it collects to the calling
program for reading and manipulation.

Where SAX comes from

Like DOM, SAX is used to describe, parse, and manipulate XML Documents. Unlike
DOM, SAX breaks a document down into a series of events, such as the start of a
document (StartDocument), the start of an element (StartElement), the end of
an element (EndElement), encountering a processing instruction (Processing
Instruction), a condition that requires a warning message (SAXWarning), or
the end of a document (EndDocument).

It’s important to note that SAX is not developed or “recommended” by the W3C,
though evolving DOM implementations often borrow features from more advanced
SAX feature sets. In general, SAX is usually ahead of DOM implementations, because
the W3C recommendation process does not hinder SAX development. There is no
official specification of SAX, just the implementation of the XMLReader class, which
is only written in Java at this time. There are other implementations of SAX on other
platforms, but these are either a result of bindings to code in the SAX archive file,

Tip

Chapter 6 4+ Parsing XML with SAX

sax.jar, or a complete rewrite of code that simply mimics the functionality of SAX
classes, as in the case of the MSXML SAX parser objects, properties, and methods.

Official updates to SAX are implemented in the latest version of the sax.jar file.
This file and associated documentation can be downloaded at http://www.
saxproject.org/. The site also contains information about parser implementa-
tions and bindings, and the FAQ at that site is not only helpful and informative, but
probably the funniest parser API FAQ you’ll ever read. Other implementations of
SAX parsers can be found on the links page of http: //www.saxproject.org/,
and a more or less complete listing of available parsers of all kinds is available at
http://www.xmlsoftware.com/parsers.html.

SAX 1 and SAX 2

Unlike DOM 1 and 2, SAX 2 is backward compatible with SAX 1. Though most cur-
rent Parsers implement the SAX2 interface and its updated feature set, the SAX 1
interface will still work. A SAX 1 driver implements the Parser interface and a SAX 2
Driver implements the XMLReader interface, but SAX 2 parsers still support proper-
ties and methods of the parser interface. SAX 1 supports Navigation around a docu-
ment and manipulation of content via SAX events. SAX 2 enhancements include
support for Namespaces, filter chains, plus querying and setting features and prop-
erties via SAX Events.

Microsoft MSXML SAX extensions

Microsoft’s XML parser is part of Internet Explorer 5.5 or later. The MSXML parser
is currently called the Microsoft XML Core Services, but is usually still referred to
by the original MSXML acronym. The MSXML parser uses the same SAX events as
Java-based SAX parsers such as Xerces, but the MSXML SAX implementation is an
unofficial copy of the SAX project events. The SAX project offers their materials
with no copyright royalty restrictions, so there is no legal issue with the Microsoft
copy, but there are inevitable compatibility issues between original events and
copied events. We’ll highlight the differences in the listing of properties and meth-
ods later in this chapter.

The biggest difference in the MSXML SAX implementation versus other SAX imple-
mentations is that the MSXML 4 SAX parser does not support XML document vali-

o

4 dation against DTDs, just Schemas. On the other hand, the SAX API does not

explicitly support Schema validation, just DTD (though most SAX implementations
including Xerces support Schema validation). If you are developing an XML appli-
cation using MS Visual Studio.Net and your application requires a validating parser
that supports DTDs, you can use a combination of a SAX and DOM parsing using
the MSXML IMXWriter interface to pass a DOM object from SAX to DOM. We cover
the IMXWriter interface later in this chapter. If this doesn't work for your solution,
you'll have to use the MSXML DOM parser or develop/download a third-party SAX
implementation that supports DTD validation and works with your programming
language of choice.

125

126

Part

| 4+ Introducing XML

Just as in the MXSMLDOM implementation, the MSXML SAX parser adds several
additional methods and properties to the W3C DOM interface methods and proper-
ties. These methods and properties are commonly referred to as Microsoft SAX
extensions or MSXML extensions. MSXML extensions can be used in IE browser
applications and other types of Windows applications that use the MSXML

parser as their SAX parser. Other parsers, such as Xerces, do not support these
applications.

Because MSXML and the Internet Explorer are so widely used, most XML program-
mers need to know about Microsoft’s additional properties and methods. The other
practical reason for knowing which methods and properties are part of Java SAX
implementations and which are MXSML extensions is to know what properties and
methods are available in a specific parser, and when you can use them.

The MSXML download includes a great help database will full documentation
and examples for working with the MSXML SAX events in JScript, Visual Basic,
and C/C++. Recent MSXML updates can be downloaded from http: //www.
microsoft.com/msxml.

R>770n We're documenting the MSXML 4.01 parser in this chapter, which may be updated
YA The by the time this book is in print. We'll post any changes to the MSXML documen-

A Web

tation and updates to this chapter as they evolve. The updated text can be down-
loaded from http: //www.XMLProgrammingBible.com.

Interfaces for SAX and MSXML

ﬁ\lote

As with W3C and MSXML DOM implementations, SAX uses a set of interfaces to pro-
vide access to XML document events. Each interface has a number of properties
and methods that [will review later in this chapter. In addition, SAX has several
helper classes for Java implementations, and MSXML has two extension interfaces
for manipulating attributes and writing parsed output.

MSXML SAX interface names do not follow the official SAX interface naming stan-

=~ dards, even though MSXML interfaces support most of the SAX interfaces, proper-
ties, and methods. For example, the SAX XMLReader interface is ISAXXMLReader in
the MXSML SAX implementations.

SAX interfaces are the “official” interfaces that are listed in the SAX API documenta-
tion at http://www.saxproject.org/apidoc. They consist of core interfaces
and extension interfaces.

SAX core interfaces

Chapter 6 4+ Parsing XML with SAX

Complete XML documents are not usually represented in SAX. Individual objects in
XML documents are identified and collected through a series of events. While SAX 1
and 2 are supported by standard SAX implementations such as Xerces, SAX 2
should be used for new development, unless there is a very good reason for using
the older, slower, more limited SAX 1 classes. Also, note that SAX 1 classes are not
supported by MSXML 4. Table 6-1 shows the current listing of SAX 1 and 2 core

interfaces.

Table 6-1

SAX 1 and 2 Interfaces for XML Documents

Interface Name

Description

XMLReader
Supported by:
SAX 2, MSXML

Parser
Supported by:
SAX 1

XMLFilter
Supported by:
SAX 2, MSXML

ContentHandler
Supported by:
SAX 2, MSXML

DocumentHandler
Supported by:
SAX 1

Locator
Supported by:
SAX 2, MSXML

The main interface for SAX 2 XML parsing
functionality.

The main interface for SAX 1 XML parsing
functionality. The Parser interface has been
replaced by the SAX2 XMLReader interface, and
should not be used for new development.

XMLFilters are similar to the XML Reader
interface, except that an XMLFilter source is
another XMLReader object, not an XML document
from the file system. XMLFilters can be used to
quickly and easily produce fragments of
documents. For example, a XMLFllter could be
used to create a representation of an XML
document without any comments, or a document
representation that has all attributes removed.

The main interface for a SAX 2 document'’s
content.

The main interface for a SAX 1 document’s
content. This interface has been replaced by the
SAX2 ContentHandler interface, and should not
be used for new development.

Associates a SAX event with a document location.
Locators provide the line and column in an XML
document that a SAX event takes place.
Information about public and/or system IDs
associated with that location can also be
provided, if there are any.

Continued

127

128 Partl + Introducing XML

Table 6-1 (continued)

Interface Name Description

Attributes The SAX 2 interface for a list of XML attributes.

Supported by:

SAX 2, MSXML

AttributeList The SAX 1 interface for a list of XML attributes.

Supported by: This interface has been replaced by the SAX2

SAX 1 Attributes interface, and should not be used for
new development.

DTDHandler The main interface for a DTD document’s content.

Supported by:

SAX 1 and 2, MSXML Note: The MSXML DOM parser and

(MSXML SAX is non-validating) other SAX parsers, such as Xerces, provide

support for validation and parsing for DTDs and
Schemas. The MSXML 4 SAX parser can parse
DTD documents, but does not provide support for
validating documents using DTDs, just Schemas.
DTD can still be used as containers for entity
references when using the MSXML SAX parser.

EntityResolver The SAX 1 and 2 interface for creating custom
Supported by: methods for resolving entitles. SAX parsers
SAX 1 and 2, MSXML resolve regular entity references with values in

DTDs automatically. The EntityResolver interface
allows developers to create a custom interface to
external values that can be used during SAX

parsing.
ErrorHandler The SAX 1 and 2 interface for handling errors
Supported by: while parsing an XML document.

SAX 1 and 2, MSXML

SAX extension interfaces

Aside from the SAX core interfaces, there are several extension interfaces that are
implemented using the SAX extension API, as described in Table 6-2. SAX extensions
are optional interfaces for SAX parsers. For example, the MSXML parser supports
the DeclHandler and LexicalHandler interfaces, while the Apache Xerces parser
classes support all extension interfaces. They can also be implemented indepen-
dently of the SAX core interfaces. All extensions have been developed using the
SAX 2 extensions API, and are not available in SAX 1.

Chapter 6 4+ Parsing XML with SAX

129

__.}lNote You may see SAX documentation that refers to “SAX Extensions 1.x" This refers to
' gy the SAX 2 Extensions 1.x API, not SAX 1. There is no SAX extension API for SAX 1.

Table 6-2
SAX Extension Interfaces

Interface Name

Description

Attributes2
Supported by:
SAX 2 (Optional)

DeclHandler
Supported by:
SAX 2 (Optional), MSXML

EntityResolver2
Supported by:
SAX 2 (Optional)

LexicalHandler
Supported by:
SAX 2 (Optional), MSXML

Locator2
Supported by:
SAX 2 (Optional)

Checks a DTD to see if an attribute in an XML document
was declared in a DTD, and if the DTD specifies a default
value.

Returns declared values in a DTD for attributes, elements,
and internal and external entities.

Programmatically adds external entity reference subsets to
an XML document that has no subset reference in the
DOCTYPE declaration, or has no DOCTYPE declaration.

Returns information about lexical events in an XML
document. Comments, the start and end of a CDATA
section, the start and end of a DTD declaration, and the
start and end of an entity can be tracked with
LexicalHandler.

Extends the Locator interface to return the encoding and
the XML version for an XML document.

SAX also provides a number of Java helper classes that are used to gain access to
the XMLReader classes, identify input sources, access extension classes, and other
tasks. I'll cover these in mode detail later in the chapter.

MSXML SAX extension interfaces

MSXML has implemented SAX extension classes that support additional functional-
ity for MSXML SAX applications, as described in Table 6-3. SAX schemas gain access
to information via the IMXSchemaDeclHandler interface. The IMXAttributes inter-
face provides the ability to create and edit attribute collections. The IMXWriter
Interface permits writing to the file system.

130 Partl + Introducing XML

Table 6-3

MSXML SAX Extension Interfaces
Interface Name Description
IMXAttributes Provides access to edit, add, and delete attribute names
Supported by: and values.
MSXML
IMXSchemaDeclHandler Provides schema information about an element being
Supported by: parsed, including attributes.
MSXML
IMXWriter Writes parsed XML output to:
Supported by:
MSXML An IStream object: A stream object representing a

sequence of bytes that can be forwarded to another
object such as a file or a screen.

A string (remember, all XML documents are technically
strings).

A DOMDocument object, which can be passed to the
MSXML DOM parser for further processing. For example,
a new XML document could be parsed using SAX for
speed, then sent to the DOM parser for DTD validation.

SAX Methods and Properties

_.f‘\lote

Each of the interfaces listed previously in Tables 6-1, 6-2, and 6-3 contains methods
and properties that are accessible through the SAX API. I've listed them in the same
order that they are listed in Tables 6-1, 6-2, and 6-3. This is the same way that you
would most likely encounter them in a SAX parsing application.

One of the key differences between the SAX API and the MSXML implementation

-~ is that the SAX API relies exclusively on methods for interface functionality. The
MSXML SAX parser has implemented a few properties, but these are not part of
the “official” API, and usually have a SAX method equivalent.

SAX interfaces

SAX interfaces are the “official” interfaces that are listed in the SAX API documenta-
tion at http://www.saxproject.org/apidoc. They consist of core interfaces
and extension interfaces.

Chapter 6 4 Parsing XML with SAX |13]

XMLReader

XMLReader is the main interface for SAX 2 XML parsing functionality. The methods
are described in Table 6-4.

_ilNote MSXML XMLReader Interface methods differ slightly. The SAX setFeature and

gy setProperty methods are the same as the MSXML putFeature and
putProperty methods. Also, the MSXML parseURL method is the same as
using a SAX parse method with a systemID parameter.

Table 6-4

XMLReader Interface Methods
Method Name Description
getContentHandler() Returns the current ContentHandler object, which
Supported by: contains the content of a source XML document.
SAX 2, MSXML
getDTDHandler() Returns the current DTDHandler object, which
Supported by: contains the content of a source DTD.
SAX 2, MSXML
getEntityResolver() Returns the current entityResolver object.
Supported by:
SAX 2, MSXML
getErrorHandler() Returns the current errorHandler object.
Supported by:
SAX 2, MSXML
getFeature(name) Look up the value of a feature flag. Feature flags
Supported by: tell you if your SAX parser supports a specific
SAX 2, MSXML feature, such as namespaces or Schema

validation, or the optional Attributes2 interface.
The MSXML getFeature method also gets the XML
document namespace support, schema validation
support, and a few other features.

SAX properties vary by parser. MSXML SAX parser
properties are listed in the MSXML Core
documentation, under the SAXXMLReader
interface.

SAX feature flags vary by parser. Official SAX
feature flags are listed at http: / /www.
saxproject.org/apidoc/org/xml/sax/
package-summary .html#package_
description.

Continued

132

Part | 4+ Introducing XML

Table 6-4 (continued)

Method Name Description

getProperty(name) Looks up the value of a property. SAX properties
Supported by: tell you a SAX object class supports the default
SAX 2, MSXML class or a custom class for entity declarations,

Parse(InputSource input)
Supported by:
SAX 2, MSXML

parse(systemid)
Supported by:
SAX 2, MSXML

parseURL(URL)
Supported by:
MSXML

setContentHandler
(ContentHandler handler)
Supported by:

SAX 2, MSXML

setDTDHandler(DTDHandler handler)

Supported by:
SAX 2, MSXML

setEntityResolver
(EntityResolver resolver)
Supported by:

SAX 2, MSXML

setErrorHandler
(ErrorHandler handler)
Supported by:

SAX 2, MSXML

lexical handlers, and a few other items. The
MSXML getProperty method also gets the XML
document declaration encoding, version, and
standalone attributes. Otherwise, it's the same as
setProperty in the SAX API.

SAX properties vary by parser. Official SAX
properties are listed at http: / /www.
saxproject.org/apidoc/org/xml/sax/

package-summary.html #package_
description.

Parses the InputSource XML document.

Parses the XML document specified by systemID.

Parses an XML document at the specified URL.

Sets the current ContentHandler object, which
contains the content of a source XML document.

Sets the current DTDHandler object, which

contains the content of a source DTD.

Sets the current entityResolver object.

Sets the current errorHandler object.

Chapter 6 4+ Parsing XML with SAX

Method Name

Description

setFeature(name, boolean value)
Supported by:
SAX 2 , MSXML

putFeature
Supported by:
MSXML, MSXML

setProperty(name, dataType)
Supported by:
SAX 2, MSXML

putProperty(name, dataType)
Supported by:
MSXML

Sets the value of a feature flag. Feature flags tell
you if your SAX parser supports a specific feature,
such as namespaces or Schema validation, or the
optional Attributes2 interface. Similar to
putFeature in the MSXML SAX parser.

SAX feature flags vary by parser. Official SAX
feature flags are listed at http: //www.
saxproject.org/apidoc/org/xml/sax/
package-summary.html#package_
description.

Sets the value of a feature flag. Feature flags tell
you if your SAX parser supports a specific feature,
such as namespaces or Schema validation, or the
optional Attributes2 interface. MSXML also sets
the XML document namespace support, schema
validation support, and a few other features
putFeature. Otherwise, it's the same as setFeature
in the SAX APL.

SAX properties vary by parser. MSXML SAX parser
properties are listed in the MSXML Core documen-
tation, under the SAXXMLReader interface.

Sets the value of a property. SAX properties tell
you a SAX object class supports the default class
or a custom class for entity declarations, lexical
handlers, and a few other items. Similar to
putProperty in the MSXML SAX parser.

SAX properties vary by parser. Official SAX
properties are listed at http: / /www.
saxproject.org/apidoc/org/xml/sax/
package-summary.html#package_
description.

Sets the value of a property. SAX properties tell
you a SAX object class supports the default class
or a custom class for entity declarations, lexical
handlers, and a few other items. MSXML also sets
the XML document declaration encoding, version
and standalone attributes from putProperty. Other-
wise, it's the same as setProperty in the SAX API.

SAX properties vary by parser. MSXML SAX parser
properties are listed in the MSXML Core documen-
tation, under the SAXXMLReader interface.

133

134

Part | 4+ Introducing XML

Parser

Parser is the main interface for SAX 1 XML parsing functionality, as described in
Table 6-5. The Parser interface has been replaced by the SAX2 XMLReader interface
and should not be used for new development. We've included it here so you can
understand legacy applications when upgrading them to SAX 2 Interfaces.

Table 6-5

Parser Interface Methods

Method Name

Description

parse(InputSource source) or
parse(systemid)

Supported by:

SAX 1

setDocumentHandler
(DocumentHandler handler)
Supported by:

SAX 1

setDTDHandler(DTDHandler handler)
Supported by:
SAX 1

setEntityResolver
(EntityResolver resolver)
Supported by:

SAX 1

setErrorHandler
(ErrorHandler handler)
Supported by:

SAX 1

setLocale(locale)
Supported by:
SAX 1

Parses the InputSource document or an XML
document specified by a System ID.

Sets the documentHandler object.

Sets the DTDHandler object.

Sets the entityResolver object.

Sets an errorHandler for an application.

Returns a locale for errors and warnings.

XMLFilter

XMLFilters are similar to the XML Reader interface, except that an XMLFilter source
comes from an existing XMLReader object. XMLFilters can be used to quickly and
easily produce fragments of documents. For example, an XMLFIlter could be used
to create a representation of an XML document without any comments, or a docu-
ment representation that has all attributes removed. Table 6-6 describes the proper-
ties, and Table 6-7 describes the methods.

_:-:f“'““’

_:-:fﬂ"“‘e

Chapter 6 4+ Parsing XML with SAX

The MSXML SAX implementation parent property supports the same functionality
-~ asthe SAX setParent and getParent methods. Also, the MSXML parent prop-
erty is the same as the SAX APl getParent () method.

Table 6-6
XMLFilter Interface Properties

Property Name Description
Parent Sets or gets the XMLReader parent of the
Supported by: XMLFilter.
MSXML

Table 6-7

XMLFilter Interface Methods
Method Name Description
getParent() Gets the XMLReader parent of the XMLFilter.
Supported by:
SAX 2, MSXML
setParent(XMLReader parent) Sets the XMLReader parent of the XMLFilter.
Supported by:
SAX 2, MSXML
ContentHandler

ContentHandler is the main interface for a SAX 2 document’s content. XMLReader
uses ContentHandler to track all of the SAX events for an XML document.

The SAX API ContentHandler interface uses the setDocumentLocator method
-~ to get a locator interface, while MSXML SAX uses the ContentHandler
documentLocator property to do the same thing.

Handling attributes in SAX

Note that there are no startAttribute and endAttribute events in SAX. On
first look at SAX, handling attribute events like other document content events may
seem logical, but attributes are only associated with elements, and there are
enough exceptions when working with groups of attributes to warrant that they
have their own interface. Attributes in SAX are returned by the startElement
event in their own Attributes object, which is manipulated using the attributes
interface. Table 6-8 describes the properties, and Table 6-9 describes the methods.

135

136

Part | 4+ Introducing XML

Table 6-8
ContentHandler Interface Properties

Property Name Description
documentLocator Returns a pointer to the Locator interface, which
Supported by: returns the column number, line number, public
MSXML ID, or system ID for a SAX event.

Table 6-9

ContentHandler Interface Methods

Method Name Description
startDocument() This event is triggered when the parser
Supported by: encounters the beginning of a document.
SAX 2, MSXML
endDocument() This event is triggered when the parser
Supported by: encounters the end of a document.
SAX 2, MSXML
startElement(uri, localName, This event is triggered when the parser
qName, Attributes atts) encounters the beginning of an element.
Supported by:
SAX 2, MSXML

endElement(uri, localName, qName)
Supported by:
SAX 2, MSXML

This event is triggered when the parser
encounters the end of an element.

startPrefixMapping(prefix, uri)
Supported by:
SAX 2, MSXML

Explicitly map a prefix to a URI. This is used with
the startElement and endElement events to map
a prefix to a URI at time of parsing. The prefix
and/or URI do not need to be in the original XML
document.

endPrefixMapping(prefix)
Supported by:
SAX 2, MSXML

characters(char{] ch, start, length)
Supported by:
SAX 2, MSXML

End the explicit mapping of a prefix to a URI.

This event is triggered when the parser
encounters character data.

ignorableWhitespace
(charf] ch, start, length)
Supported by:

SAX 2, MSXML

This event is triggered when the parser
encounters ignorable whitespace in element
content.

__.f‘\lote

Chapter 6 4+ Parsing XML with SAX

Method Name

Description

processinginstruction(target, data)
Supported by:
SAX 2, MSXML

setDocumentLocator(Locator locator)
Supported by:

This event is triggered when the parser
encounters a processing instruction.

Returns a pointer to the Locator interface, which
returns the column number, line number, public

SAX 2 ID, or system ID for a SAX event.
skippedEntity(name) This event is triggered when the parser
Supported by: encounters a skipped entity.
SAX 2, MSXML

DocumentHandler

DocumentHandler is the main interface for a SAX 1 document’s content, as
described in Table 6-10. This interface has been replaced by the SAX2
ContentHandler interface, and should not be used for new development.

The documentHandler interface is associated with the deprecated Parser class.

=~ Neither should be used for new development. We've included the method listing
to help developers debug and upgrade legacy code to the SAX 2 ContentHandler
and XMLReader interfaces.
Table 6-10
DocumentHandler Interface Methods
Method Name Description

characters(char[] ch, start, length)
Supported by:
SAX 1

endDocument()
Supported by:
SAX 1

endElement(name)
Supported by:
SAX 1

ignorableWhitespace
(char[] ch, start, length)
Supported by:

SAX 1

This event is triggered when the parser
encounters character data.

This event is triggered when the parser
encounters the end of a document.

This event is triggered when the parser
encounters the end of an element.

This event is triggered when the parser
encounters ignorable whitespace in element
content.

Continued

157

138 Partl + Introducing XML

Table 6-10 (continued)

Method Name Description
processinginstruction(target, data) This event is triggered when the parser
Supported by: encounters a processing instruction.
SAX 1
setDocumentLocator(Locator locator) Returns a pointer to the Locator interface, which
Supported by: returns the column number, line number, public
SAX 1 ID, or system ID for a SAX event.
startDocument() This event is triggered when the parser
Supported by: encounters the beginning of a document.
SAX 1
startElement This event is triggered when the parser
(name, AttributeList atts) encounters the beginning of an element.
Supported by:
SAX 1

Locator

Locator associates a SAX event with a document location. Locators provide the line
and column in an XML document that a SAX event takes place. Information about
public and/or system IDs associated with that location can also be provided, if
there are any.

The Locator interface is accessible via the ContentHandler interface, as described
in Table 6-11. Use the setDocumentLocator method for SAX API-compliant
parsers such as Xerces, and the documentLocator property in MSXML.

Table 6-11
Locator Interface Methods
Method Name Description
getColumnNumber() Returns the ending column number of a SAX event. XML
Supported by: document columns start at the beginning of a new line. The
SAX 1, 2, and MSXML first column (1) is the first character of a line in an XML

document. The column counts increments by one for each
character in the line, until a line end is encountered.

getLineNumber() Returns the ending line number of a SAX event. Lines in
Supported by: Locators start at 1.
SAX 1, 2, and MSXML

_:-:f“'“‘e

Chapter 6 4+ Parsing XML with SAX

Method Name Description

getPublicld() Returns the public ID of a SAX event.
Supported by:
SAX 1, 2, and MSXML

getSystemid() Returns the system ID of a SAX event.
Supported by:
SAX 1, 2, and MSXML

Attributes

Attributes is the SAX 2 interface for a list of XML attributes. The properties and
methods are described in Table 6-12 and Table 6-13, respectively. Attributes in SAX
are returned by the ContentHandler interface startElement event. They are con-
tained in their own Attributes object.

Calling the MSXML get IndexFromName and get IndexFromQName return the

-~ same results as calling the SAX APl getIndex with a namespace name or a
Qname. The same goes for the SAX getType and getValue methods. Also, the
MSXML length property returns the same result as the SAX getLength ()
method. The only difference is that if there are no attributes.

Table 6-12

Attributes Interface Properties

Property Name Description
Length Returns the count of element attributes, starting at 0.
Supported by:
MSXML

Table 6-13

Attributes Interface Methods

Method Name Description
getindex(qName) Returns the index of an attribute by qualified
or name or namespace name. Attribute indexes
getindex(uri, localName) start at 0.
Supported by:
SAX 2

Continued

139

140

Part | 4+ Introducing XML

Table 6-13 (continued)

Method Name

Description

getindexFromName (uri, localName)
Supported by:
MSXML

getindexFromQName (qName)
Supported by:
MSXML

getLength()
Supported by:
SAX 2

getLocalName(index)
Supported by:
SAX 2 and MSXML

getQName(index)
Supported by:
SAX 2 and MSXML

getType(index)
Supported by:
SAX 2 and MSXML

getType(qName) or
getType(uri, localName)
Supported by:

SAX 2

getTypeFromName (uri, localName)
Supported by:
MSXML

getTypeFromQName (qName)
Supported by:
MSXML

getURI(index)
Supported by:
SAX 2 and MSXML

getValue(index)
Supported by:
SAX 2 and MSXML

Returns the index of an attribute by name.
Attribute indexes start at 0.

Returns the index of an attribute by qualified
name. Attribute indexes start at 0.

Returns the count of element attributes,
starting at 0.

Returns an attribute name from an index.
Attribute indexes start at 0.

Returns an attribute qualified name from an
index. Attribute indexes start at 0.

Returns an attribute type from an index. SAX API
values are “CDATA", “ID", “IDREF", “IDREFS",
“NMTOKEN", “NMTOKENS", “ENTITY”, “ENTITIES",
or “NOTATION" (all in uppercase).

Returns an attribute type from an attribute
qualified name or namespace name. SAX API
values are “CDATA", “ID”, “IDREF”, “IDREFS",
“NMTOKEN”", “NMTOKENS", “ENTITY", “ENTITIES",
or “NOTATION" (all in uppercase).

Returns an attribute type from a namespace
name. SAX API values are “CDATA”, “ID", “IDREF",
“IDREFS”, “NMTOKEN", “NMTOKENS", “ENTITY",
“ENTITIES", or “NOTATION" (all in uppercase).

Returns an attribute type from a qualified name.
SAX API values are “CDATA", “ID”, “IDREF”,
“IDREFS”, “NMTOKEN", “NMTOKENS", “ENTITY",
“ENTITIES", or “NOTATION" (all in uppercase).

Returns an attribute’s namespace URI by index.

Returns an attribute’s value by index.

Chapter 6 4+ Parsing XML with SAX

Method Name Description

getValue(qName) or Returns an attribute’s value by qualified name or
getValue(uri, localName) namespace name.

Supported by:

SAX 2

getValueFromName (qName) Returns an attribute’s value by qualified name.
Supported by:
MSXML

getValueFromQName (uri, localName) Returns an attribute’s value by namespace name.
Supported by:
MSXML

AttributeList

AttributeList is the SAX 1 interface for a list of XML attributes, as described in Table
6-14. As with the Parser and ContentHandler interfaces, AttributeList should not be
used for new development. We’ve included it here to help debug and upgrade SAX 1
code to the SAX 2 XMLReader, ContentHandler, and Attributes interfaces.

Table 6-14

AttributelList Interface Methods
Method Name Description
getLength() Returns the count of element attributes, starting at 0.
Supported by:
SAX 1
getName(i) Returns the name of an attribute by index. Attribute indexes
Supported by: start at 0.
SAX 1
getType(i) Returns the type of an attribute by index. Attribute indexes start at 0.
Supported by:
SAX 1
getType(name) Returns the type of an attribute by name.
Supported by:
SAX 1
getValue(i) Returns the value of an attribute by index. Attribute indexes
Supported by: start at 0.
SAX 1
getValue(name) Returns the value of an attribute by name.

Supported by:
SAX 1

141

1472 Partl + Introducing XML

DTDHandler

DTDHandler is the main interface for a DTD document’s content. Table 6-15
describes the methods.

_.-}lNﬂte The SAX 2 API does not currently supply explicit support for Schema validation.
' -~ However, SAX parser implementations, such as Xerces, provide support for valida-
tion and parsing for Schemas and DTDs.

The MSXML 4 SAX parser can parse DTD documents, but does not provide support
for validating documents using DTDs, just schemas. DTD can still be used as con-
tainers for entity references when using the MSXML SAX parser, but not for data
validation. MSXML developers who want to validate against schemas can use the
MSXML DOM parser, or download/develop a SAX parser that supports schema
validation.

Table 6-15
DTDHandler Interface Methods
Method Name Description
notationDecl(name, publicld, This event is triggered when the parser
systemid) encounters a notation declaration event.

Supported by:
SAX 1, 2, and MSXML

unparsedEntityDecl(name, publicld, This event is triggered when the parser
systemlid, notationName) encounters an unparsed entity declaration event.
Supported by:

SAX 1, 2, and MSXML

EntityResolver

EntityResolver is the SAX 1 and 2 interface for creating custom methods for resolv-
ing entitles, as described in Table 6-16. SAX parsers resolve regular entity refer-
ences with values in DTDs automatically. The EntityResolver interface allows
developers to create a custom interface to external values that can be used during

SAX parsing.
Table 6-16
EntityResolver Interface Methods
Method Name Description
resolveEntity(publicld, systemid) Designate a public ID and/or System ID for
Supported by: resolving external entities. This reference will be

SAX 1, 2, and MSXML called first when resolving external entities.

__.f‘\lote

.

ErrorHandler

Chapter 6 4+ Parsing XML with SAX

ErrorHandler is The SAX 1 and 2 interface for handling errors while parsing an XML
document. Table 6-17 describes the methods.

The SAX warning and the MSXML ignorableWarning are similar in functional-

ity. The SAX API passes a SAXParseException object to the ErrorHandler inter-

face, which contains an error message string, a Locator, and an error code. MSXML
does not support the SAXPArseException class, so it passes the error message
string, Locator, and error code directly to the ErrorHandler interface. We'll cover the
SAXParseException class and several other SAX helper classes in the next part

of this chapter.

Table 6-17

ErrorHandler Interface Methods

Method Name

Description

error
Supported by:
SAX 1, 2, and MSXML

fatalError
Supported by:
SAX 1, 2, and MSXML

warning(SAXParseException
exception)

Supported by:

SAX 1 and 2

ignorableWarning (Locator,
errorMessage, errorCode)
Supported by:

MSXML

This event is triggered when the parser
encounters a recoverable error. Passed values are
(SAXParseException exception) for SAX or
(Locator, errorMessage, errorCode) for MSXML.

This event is triggered when the parser
encounters a non-recoverable error. Passed
values are (SAXParseException exception) for SAX
or (Locator, errorMessage, errorCode) for MSXML.

This SAX API event is triggered when the parser
encounters a warning.

This MSXML event is triggered when the parser
encounters a warning.

SAX helper classes

So far in this chapter you've read all about SAX API interfaces. Interfaces are a great
way to describe features for an application, but interfaces alone do not allow pro-
grammatic access to their properties and methods. To gain programmatic access to
the SAX API interface properties and methods, object classes have to be imple-
mented that support the interfaces. SAX Helper classes are optional classes that are
included in most Java implementations of the SAX parser.

143

144 Parti + Introducing XML

_.-}lNote The SAX Helper classes are only for Java implementations. Currently, MSXML does
' -~ not support helper classes, though they do support some of the functionality
through additional methods in the core interfaces.

XMLReaderFactory

This class has one single purpose, to gain access to the XMLReader interface and
its associated properties and methods. The createXMLReaderFactory method of
the XMLReaderFactory is used by the calling program to create the XMLReader
object. Table 6-18 describes the methods.

Table 6-18
XMLReaderFactory Class Methods
Method Name Description
createXMLReader() Create an XMLReader from system default reader.

The system default reader is the value specified by
the org.xml . sax.driver system property.

createXMLReader(className) Create an XMLReader from a supplied class name.

XMLReaderAdapter

XMLReaderAdapter implements the SAX1 Parser interface for backward compati-
bility. To implement this helper class in your Java applications, just replace any
instances of calls to the Parser interface with calls to the XMLReaderAdapter inter-
face. This interface supports all of the methods of the SAX 2 ContentHandler and
the SAX 1 DocumentHandler interfaces for inter-version compatibility. Table 6-19
describes the methods.

_.-}lNote When using the XMLReaderAdapter class in Java applications, the
' g http://xml.org/sax/features/namespace-prefixes property must
be set to true.

Table 6-19
XMLReaderAdapter Class Methods
Method Name Description
Parse(InputSource source) or Parses the InputSource document or an XML
parse(systemid) document specified by a System ID.

Supported by:
SAX 1 and 2

Chapter 6 4+ Parsing XML with SAX

Method Name

Description

setDocumentHandler
(DocumentHandler handler)
Supported by:

SAX 1

setDTDHandler(DTDHandler handler)
Supported by:
SAX 1

setEntityResolver
(EntityResolver resolver)
Supported by:

SAX 1

setErrorHandler
(ErrorHandler handler)
Supported by:

SAX 1

setLocale(locale)
Supported by:
SAX 1

startDocument|()
Supported by:
SAX 2

endDocument()
Supported by:
SAX 2

startElement(uri, localName,
qName, Attributes atts)
Supported by:

SAX 2

endElement(uri, localName, qName)
Supported by:
SAX 2

startPrefixMapping(prefix, uri)
Supported by:
SAX 2

endPrefixMapping(prefix)
Supported by:
SAX 2

Sets the documentHandler object.

Sets the DTDHandler object.

Sets the entityResolver object.

Sets an errorHandler for an application.

Returns a locale for errors and warnings.

This event is triggered when the parser
encounters the beginning of a document.

This event is triggered when the parser
encounters the end of a document.

This event is triggered when the parser
encounters the beginning of an element.

This event is triggered when the parser
encounters the end of an element.

Explicitly map a prefix to a URI. This is used with
the startElement and endElement events to map
a prefix to a URI at time of parsing. The prefix
and/or URI do not need to be in the original XML
document.

End the explicit mapping of a prefix to a URI.

Continued

145

146

Part | 4+ Introducing XML

Table 6-19 (continued)

Method Name

Description

characters(char[] ch, start, length)
Supported by:
SAX 2

ignorableWhitespace(char[] ch,
start, length)

Supported by:

SAX 2

processinginstruction(target, data)
Supported by:
SAX 2

setDocumentLocator
(Locator locator)
Supported by:

This event is triggered when the parser
encounters character data.

This event is triggered when the parser
encounters ignorable whitespace in element
content.

This event is triggered when the parser
encounters a processing instruction.

Returns a pointer to the Locator interface, which
returns the column number, line number, public
ID, or system ID for a SAX event.

SAX 2
skippedEntity(name) This event is triggered when the parser
Supported by: encounters a skipped entity.
SAX 2
Attributesimpl

AttributesImpl is the implementation class for the SAX 2 Attributes interface. It
supports all the methods of the Attributes interface for retrieving information

about attributes associated with an element. In addition, it has methods that can be

used to add, edit, and remove attributes, as described in Table 6-20.

MSXML implements much of the functionality of the Attributes interface through

the IMXAttributes interface. The optional SAX 2 Attributes 2 extension interface

supports additional functionality. Access to the Attributes 2 interface is through the
Attributes2Impl class. We cover these topics later in this chapter.

Chapter 6 4+ Parsing XML with SAX

Table 6-20

Attributesimpl Class Methods

Method Name

Description

getindex(qName) or
getindex(uri, localName)
Supported by:

SAX 2

getLength()
Supported by:
SAX 2

getLocalName(index)
Supported by:
SAX 2 and MSXML

getQName(index)
Supported by:
SAX 2

getType(index)
Supported by:
SAX 2 and MSXML

getType(qName) or
getType(uri, localName)
Supported by:

SAX 2

getURI(index)
Supported by:
SAX 2 and MSXML

getValue(index)
Supported by:
SAX 2 and MSXML

getValue(qName) or
getValue(uri, localName)
Supported by:

SAX 2

addAttribute(uri, localName,

qName, type, value)
Supported by:
SAX 2

Returns the index of an attribute by qualified name or
namespace name. Attribute indexes start at 0.

Returns the count of element attributes, starting at 0.

Returns an attribute name from an index. Attribute
indexes start at 0.

Return an attribute’s qualified (prefixed) name.

Returns an attribute type from an index. SAX API values
are “CDATA", “ID", “IDREF", “IDREFS", “"NMTOKEN",
“NMTOKENS", “ENTITY”, “ENTITIES", or “NOTATION" (all
in uppercase).

Returns an attribute type from an attribute qualified
name or namespace name. SAX APl values are “CDATA’,
“ID", “IDREF", “IDREFS", “NMTOKEN", “NMTOKENS",
“ENTITY”, “ENTITIES", or “NOTATION” (all in uppercase).

Returns an attribute’s namespace URI by index.

Returns an attribute’s value by index.

Returns an attribute’s value by qualified name or
namespace name.

Add an attribute to the end of the attribute list.

Continued

147

148

Part | 4+ Introducing XML

Table 6-20 (continued)

Method Name

Description

removeAttribute(index)
Supported by:
SAX 2

clear()
Supported by:
SAX 2

setAttribute(index, uri,
localName, qName, type, value)
Supported by:

SAX 2

setAttributes(Attributes atts)
Supported by:
SAX 2

setLocalName
(index, localName)
Supported by:

SAX 2

setQName(index, qName)
Supported by:
SAX 2

setType(index, type)
Supported by:
SAX 2

setURI(index, uri)
Supported by:
SAX 2

setValue(index, value)
Supported by:
SAX 2

Remove an attribute from the attribute list.

Clear the attribute list.

Change the attribute at the specified index position in
the list. Attribute indexes start at 0.

Copy the specified Attributes object to a new Attributes
object. Attribute indexes start at 0.

Set the local name of the attribute at the specified index
position in the list. Attribute indexes start at 0.

Set the qualified name of the attribute at the specified
index position in the list. Attribute indexes start at 0.

Set the type of the attribute at the specified index
position in the list. Attribute indexes start at 0.

Set the namespace of the attribute at the specified
index position in the list. Attribute indexes start at 0.

Set the value of the attribute at the specified index
position in the list. Attribute indexes start at 0.

DefaultHandler

The DefaultHandler class is a grab bag of properties and methods in various
SAX 2 interfaces with all have one thing in common —they are all callback meth-
ods. Callback methods in SAX applications are methods that return something
when they are triggered by an event. The event actions are predefined in the appli-
cation code using these methods. When a SAX parser encounters an event, the
method is triggered, which invokes some kind of action in the application.

Chapter 6 4+ Parsing XML with SAX

DefaultHandler is very useful for developers who are developing a bare-bones
parsing application using SAX. Defaul tHandler implements access to the key
methods of ContentHandler, DTDHandler, EntityResolver, and
ErrorHandler in one class. Table 6-21 describes the methods.

Table 6-21

DefaultHandler Class Methods
Method Name Description
startDocument() This event is triggered when the parser
Supported by: encounters the beginning of a document. Source
SAX 2 Interface is ContentHandler.
endDocument() This event is triggered when the parser
Supported by: encounters the end of a document. Source
SAX 2 Interface is ContentHandler.
startElement(uri, localName, This event is triggered when the parser
qName, Attributes atts) encounters the beginning of an element. Source
Supported by: Interface is ContentHandler.
SAX 2

endElement(uri, localName, qName)
Supported by:
SAX 2

startPrefixMapping(prefix, uri)
Supported by:
SAX 2

endPrefixMapping(prefix)
Supported by:
SAX 2

characters(char[] ch, start, length)
Supported by:
SAX 2

ignorableWhitespace(char|[] ch,
start, length)

Supported by:

SAX 2

processinginstruction(target, data)
Supported by:
SAX 2

This event is triggered when the parser
encounters the end of an element. Source
Interface is ContentHandler.

Explicitly map a prefix to a URI. This is used with
the startElement and endElement events to map
a prefix to a URI at time of parsing. The prefix
and/or URI do not need to be in the original XML
document. Source Interface is ContentHandler.

End the explicit mapping of a prefix to a URI.
Source Interface is ContentHandler.

This event is triggered when the parser
encounters character data. Source Interface is
ContentHandler.

This event is triggered when the parser
encounters ignorable whitespace in element
content. Source Interface is ContentHandler.

This event is triggered when the parser
encounters a processing instruction. Source
Interface is ContentHandler.

Continued

149

Part | 4+ Introducing XML

Table 6-21 (continued)

Method Name

Description

setDocumentLocator
(Locator locator)
Supported by:

SAX 2

skippedEntity(name)
Supported by:
SAX 2

notationDecl(name, publicid,
systemid)

Supported by:

SAX 1,2

unparsedEntityDecl(name,
publicld, systemid, notationName)
Supported by:

SAX 1,2

resolveEntity(publicld, systemid)
Supported by:
SAX 1,2

error
Supported by:
SAX 1,2

fatalError
Supported by:
SAX 1, 2

warning(SAXParseException

Returns a pointer to the Locator interface, which

returns the column number, line number, public

ID, or system ID for a SAX event. Source Interface
is ContentHandler.

This event is triggered when the parser
encounters a skipped entity. Source Interface is
ContentHandler.

This event is triggered when the parser
encounters a notation declaration event. Source
Interface is DTDHandler.

This event is triggered when the parser
encounters an unparsed entity declaration event.
Source Interface is DTDHandler.

Designate a public ID and/or System ID for
resolving external entities. This reference will be
called first when resolving external entities.
Source Interface is EntityResolver.

This event is triggered when the parser
encounters a recoverable error. Passed values are
(SAXParseException exception) for SAX or
(Locator, errorMessage, errorCode) for MSXML.
Source Interface is ErrorHandler.

This event is triggered when the parser
encounters a non-recoverable error. Passed
values are (SAXParseException exception) for SAX
or (Locator, errorMessage, errorCode) for MSXML.
Source Interface is ErrorHandler.

This SAX API event is triggered when the parser

exception) encounters a warning. Source Interface is
Supported by: ErrorHandler.
SAX 1,2

Locatorimpl

LocatorImpl is the implementation class for locator, which associates a SAX
event with a document location. Locators provide the line and column in an XML
document that a SAX event takes place.

Chapter 6 4+ Parsing XML with SAX

The Locator interface is accessible via the ContentHandler interface. Use the
setDocumentLocator method for SAX API-compliant parsers such as Xerces, and
the documentLocator property in MSXML. Table 6-22 describes the methods.

Table 6-22
Locatorimpl Class Methods
Method Name Description
getColumnNumber() Returns the ending column number of a SAX
Supported by: event. XML document columns start at the
SAX 1,2 beginning of a new line. The first column (1) is
the first character if a line in an XML document.
The column count increments by one for each
character in the line, until a line end is
encountered.
getLineNumber() Returns the ending line number of a SAX event.
Supported by: Lines in Locators start at 1.
SAX 1,2
getPublicld() Returns the public ID of a SAX event.
Supported by:
SAX 1, 2
getSystemlid() Returns the saved system identifier.
Supported by:
SAX 2

setColumnNumber(columnNumber)
Supported by:
SAX 2

setLineNumber(lineNumber)
Supported by:
SAX 2

setPublicld(publicid)
Supported by:
SAX 2

setSystemlid(systemid)
Supported by:
SAX 2

Sets the column number of a Locator. XML
document columns start at the beginning of a
new line. The first column (1) is the first character
of a line in an XML document. The column count
increments by one for each character in the line,
until a line end is encountered.

Sets the line number of a Locator. Lines in
Locators start at 1.

Sets the public ID of a Locator.

Sets the system ID of a Locator.

151

152

Part | 4+ Introducing XML

NamespaceSupport

Individual namespaces associated with element events can be accessed by the
startPrefixMapping () and endPrefixMapping () methods in the Content
Handler interface. NameSPaceSupport provides features to globally declare and
track namespaces in a Java application, as described in Table 6-23.

Table 6-23

NameSpaceSupport Class Methods

Method Name

Description

declarePrefix(prefix, uri)
Supported by:
SAX 2

getDeclaredPrefixes()
Supported by:
SAX 2

getPrefix(uri)
Supported by:
SAX 2

getPrefixes()
Supported by:
SAX 2

getPrefixes(uri)
Supported by:
SAX 2

getURI(prefix)
Supported by:
SAX 2

processName(qName, [] parts,
boolean isAttribute)
Supported by:

SAX 2

setNamespaceDeclUris
(boolean value)
Supported by:

SAX 2

isNamespaceDeclUris()
Supported by:
SAX 2

Declare a namespace prefix and associated uri.

Return all prefixes declared in this context in
enumeration format.

Return a prefix associated with a provided uri.

Return all prefixes active in this context in enumeration
format.

Return all prefixes declared for a provided uri in
enumeration format.

Return a uri associated with a provided prefix.

Add a namespace to a name. The parts parameter is a
string array that contains the namespace information.

Turns on and off the ability for processName to declare
namespace attributes.

Checks the current state of the ability for processName
to declare namespace attributes.

.

Chapter 6 4+ Parsing XML with SAX

Method Name Description

pushContext() Starts a new namespace context. Namespaces are in a

Supported by: stack model, which is usually “pushed” at the

SAX 2 startElement event and “popped” at the endElement
event.

popContext() Reverts to the previous namespace context.

Supported by: Namespaces are in a stack model, which is usually

SAX 2 “pushed” at the startElement event and “popped” at the
endElement event.

reset() Resets the NameSpaceSupport object.

Supported by:

SAX 2

XMLFilterimpl

XMLFilterImpl is an implementation class for the XMLFilter interface in Java
applications. XMLFilters are similar to the XML Reader interface, except that an
XMLFilter source comes from an existing XMLReader object. XMLFilters can be
used to quickly and easily produce fragments of documents. Table 6-24 describes

the methods.

XMLFilterImpl implements all of the methods of the ContentHandler,

XMLReader, XMLFilter, DTDHandler, EntityResolver, and ErrorHandler interfaces.
Table 6-24
XMLFilterimpl Class Methods
Method Name Description
startDocument() Filtering is triggered when the parser encounters
Supported by: the beginning of a document. Source interface is
SAX 2, MSXML ContentHandler.
endDocument() Filtering is triggered when the parser encounters
Supported by: the end of a document. Source interface is
SAX 2, MSXML ContentHandler.
startElement(uri, localName, Filtering is triggered when the parser encounters
qName, Attributes atts) the beginning of an element. Source interface is
Supported by: ContentHandler.
SAX 2, MSXML

Continued

153

154 Partl + Introducing XML

Table 6-24 (continued)

Method Name

Description

endElement(uri, localName, qName)
Supported by:
SAX 2, MSXML

startPrefixMapping(prefix, uri)
Supported by:
SAX 2, MSXML

endPrefixMapping(prefix)
Supported by:
SAX 2, MSXML

characters(char|] ch, start, length)
Supported by:
SAX 2, MSXML

ignorableWhitespace(char[] ch,
start, length)

Supported by:

SAX 2, MSXML

processinginstruction(target, data)
Supported by:
SAX 2, MSXML

setDocumentLocator(Locator locator)
Supported by:
SAX 2

skippedEntity(name)
Supported by:
SAX 2, MSXML

getContentHandler()
Supported by:
SAX 2

getDTDHandler()
Supported by:
SAX 2

getEntityResolver()
Supported by:
SAX 2

getErrorHandler()
Supported by:
SAX 2

Filtering is triggered when the parser encounters
the end of an element. Source interface is
ContentHandler.

This is used with the startElement and
endElement events to filter on a namespace
prefix. Source interface is ContentHandler.

End the filtering of a namespace prefix event.
Source interface is ContentHandler.

Filtering is triggered when the parser encounters
character data. Source interface is
ContentHandler.

Filtering is triggered when the parser encounters
ignorable whitespace in element content. Source
interface is ContentHandler.

Filtering is triggered when the parser encounters
a processing instruction. Source interface is
ContentHandler.

Filtering is triggered when the parser encounters
a new document locator event. Source interface
is ContentHandler.

Filtering is triggered when the parser encounters
a skipped entity. Source interface is
ContentHandler.

Returns the current ContentHandler object, which
contains the content of a source XML document.
Source interface is XMLReader.

Returns the current DTDHandler object, which
contains the content of a source DTD. Source
interface is XMLReader.

Returns the current entityResolver object. Source
interface is XMLReader.

Returns the current errorHandler object. Source
interface is XMLReader.

Chapter 6 4+ Parsing XML with SAX

Method Name

Description

getFeature(name)
Supported by:
SAX 2

getProperty(name)
Supported by:
SAX 2

Parse(InputSource input)
Supported by:
SAX 1 and 2

Parse(systemlid)
Supported by:
SAX 1 and 2

setContentHandler
(ContentHandler handler)
Supported by:

SAX 2

setDTDHandler(DTDHandler handler)
Supported by:
SAX 2

setEntityResolver
(EntityResolver resolver)
Supported by:

SAX 2

setErrorHandler
(ErrorHandler handler)
Supported by:

SAX 2

Look up the value of a feature flag. Feature flags
tell you if your SAX parser supports a specific
feature, such as namespaces or Schema
validation, or the optional Attributes2 interface.
Source interface is XMLReader. SAX feature flags
vary by parser. Official SAX feature flags are listed
athttp://www.saxproject.org/
apidoc/org/xml/sax/package-
summary .html#package_description.

Looks up the value of a property. SAX properties
tell you a SAX object class supports the default
class or a custom class for entity declarations,
lexical handlers, and a few other items. Source
interface is XMLReader. SAX properties vary by
parser. Official SAX properties are listed at
http://www.saxproject.org/apidoc/
org/xml/sax/package-summary.html#
package_description.

Parses the InputSource XML document. Source
interface is XMLReader.

Parses the XML document specified by systemID.
Source interface is XMLReader.

Sets the current ContentHandler object, which
contains the content of a source XML document.
Source interface is XMLReader.

Sets the current DTDHandler object, which
contains the content of a source DTD. Source
interface is XMLReader.

Sets the current entityResolver object. Source
interface is XMLReader.

Sets the current errorHandler object. Source
interface is XMLReader.

Continued

155

Part | 4+ Introducing XML

Table 6-24 (continued)

Method Name

Description

setFeature(name, boolean value)
Supported by:
SAX 2

setProperty(name,
java.lang.Object value)
Supported by:

SAX 2

getParent()
Supported by:
SAX 2

setParent(XMLReader parent)
Supported by:
SAX 2

resolveEntity(publicld, systemid)
Supported by:
SAX 2

notationDecl(name,
publicld, systemid)
Supported by:

SAX 2

unparsedEntityDecl(name, publicld,
systemld, notationName)

Supported by:

SAX 2

error(SAXParseException e)
Supported by:
SAX 2

Sets the value of a feature flag. Feature flags tell
you if your SAX parser supports a specific feature,
such as namespaces or Schema validation, or the
optional Attributes2 interface. Source interface is
XMLReader. SAX feature flags vary by parser.
Official SAX feature flags are listed at http: //
www . saxproject.org/apidoc/org/xml/
sax/package-summary.html#package_
description.

Sets the value of a property. SAX properties tell
you a SAX object class supports the default class
or a custom class for entity declarations, lexical
handlers, and a few other items. SAX properties
vary by parser. Source interface is XMLReader.
Official SAX properties are listed at http: //
www . saxproject.org/apidoc/org/xml/
sax/package-summary.html #package_
description.

Gets the XMLReader parent of the XMLFilter.
Source interface is XMLReader.

Sets the XMLReader parent of the XMLFilter.
Source interface is XMLReader.

Designate a public ID and/or System ID for
resolving external entities. This reference will be
called first when resolving external entities.
Source interface is EntityResolver.

Filtering is triggered when the parser encounters
a notation declaration event. Source interface is
DTDHandler.

Filtering is triggered when the parser encounters
an unparsed entity declaration event. Source
interface is DTDHandler.

Filtering is triggered when the parser encounters
a recoverable error. Passed values are
(SAXParseException exception) for SAX or
(Locator, errorMessage, errorCode) for MSXML.
Source interface is ErrorHandler.

frs

Chapter 6 4+ Parsing XML with SAX

Method Name

Description

fatalError(SAXParseException e)
Supported by:
SAX 2

warning(SAXParseException e)
Supported by:
SAX 2

Filtering is triggered when the parser encounters
a non-recoverable error. Passed values are
(SAXParseException exception) for SAX or
(Locator, errorMessage, errorCode) for MSXML.
Source interface is ErrorHandler.

Filtering is triggered when the parser encounters
a warning. Source interface is ErrorHandler.

ParserAdapter

ParserAdapter adds namespace support and other SAX 2 XMLReader interface
features to a SAX 1 parser. To implement this helper class in your Java applications,
call ParserAdapter () to create a new embedded SAX 2 parser object and Parser
Adapter (parserName) to adapt an existing SAX 1 parser. Once the
ParserAdapter is available, it can be used like an XML.LReader object. Table 6-25

describes the methods.

This interface supports all of the methods of the SAX 2 XMLReader and
ContentHandler interfaces (except for startPrefixMapping, endPrefixMapping, and
skippedEntity) for inter-version compatibility. However, most of the Content
Handler methods are intended to be used exclusively by the ParseraAdapter
class to convert the Parser object to an XMLReader object, and should not be
called from applications, even though they are exposed and documented. For this
reason I've excluded all of the adapter implementation methods from the docu-
mentation. Also, getFeature, setFeature, getProperty, and
setProperty are limited (see the notes in the table).

Table 6-25

ParserAdapter Class Methods
Method Name Description
getContentHandler() Returns the current ContentHandler object, which
Supported by: contains the content of a source XML document.
SAX 2, MSXML
getDTDHandler() Returns the current DTDHandler object, which
Supported by: contains the content of a source DTD.
SAX 2, MSXML

Continued

157

158 Partl + Introducing XML

Table 6-25 (continued)

Method Name Description

getEntityResolver() Returns the current entityResolver object.
Supported by:

SAX 2, MSXML

getErrorHandler() Returns the current errorHandler object.
Supported by:

SAX 2, MSXML

getFeature(name) Look up the value of a feature flag. SAX feature
Supported by: flags for ParserAdapter are limited to namespaces
SAX 2, MSXML and namespace-prefixes.

Parse(InputSource input)
Supported by:
SAX 2, MSXML

parse(systemid)
Supported by:
SAX 2, MSXML

setContentHandler
(ContentHandler handler)
Supported by:

SAX 2, MSXML

setDTDHandler(DTDHandler handler)
Supported by:
SAX 2, MSXML

setEntityResolver
(EntityResolver resolver)
Supported by:

SAX 2, MSXML

setErrorHandler
(ErrorHandler handler)
Supported by:

SAX 2, MSXML

setFeature(name, boolean value)
Supported by:
SAX 2, MSXML

Parses the InputSource XML document.

Parses the XML document specified by systemID.

Sets the current ContentHandler object, which
contains the content of a source XML document.

Sets the current DTDHandler object, which
contains the content of a source DTD.

Sets the current entityResolver object.

Sets the current errorHandler object.

Sets the value of a feature flag. SAX feature flags
for ParserAdapter are limited to namespaces and
namespace-prefixes.

ParserFactory

This helper class was implemented in SAX 1 for use with the Parser interface. It is
no longer recommended for new development, but is included here to debug and
upgrade SAX 1 code to SAX 2. Table 6-26 describes the methods.

Chapter 6 4+ Parsing XML with SAX

Table 6-26
ParserFactory Class Methods
Method Name Description
makeParser() Create a new SAX parser using the ‘org.xml.sax.parser’
Supported by: system property.
SAX 1
makeParser(className) Create a new SAX parser object using the class name
Supported by: provided.
SAX 1
AttributeListimpl

AttributeListImpl is the SAX helper class of the SAX 1 interface for a list of
XML attributes. As with the Parser and ContentHandler interfaces, AttributeList
interface should not be used for new development. Consequently, the
AttributeListImpl class should not be used either. We’ve included it here to
help debug and upgrade SAX 1 code to the SAX 2 XMLReader, ContentHandler, and
Attributes interfaces. Table 6-27 describes the methods.

Table 6-27

AttributeListimpl Class Methods
Method Name Description
addAttribute(name, type, value) Adds an attribute to an attribute list.
Supported by:
SAX 1
clear() Clears the attribute list.
Supported by:
SAX 1
getLength() Returns the count of element attributes,
Supported by: starting at 0.
SAX 1
getName(i) Returns the name of an attribute by index.
Supported by: Attribute indexes start at 0.
SAX 1
getType(i) Returns the type of an attribute by index.
Supported by: Attribute indexes start at 0.
SAX 1

Continued

159

160

Part | 4+ Introducing XML

Table 6-27 (continued)

Method Name Description

getType(name) Returns the type of an attribute by name.
Supported by:

SAX 1

getValue(i) Returns the value of an attribute by index.
Supported by: Attribute indexes start at 0.

SAX 1

getValue(name) Returns the value of an attribute by name.
Supported by:

SAX 1

removeAttribute(name) Removes an attribute from the attribute list.
Supported by:

SAX 1

setAttributeList(AttributeList atts) Reset the contents of the attribute list.
Supported by:
SAX 1

SAX extension interfaces

Aside from the SAX core interfaces, there are several extension interfaces that are
implemented using the SAX extension API. SAX extensions are optional interfaces
for SAX parsers. For example, the MSXML parser supports the DeclHandler and
LexicalHandler interfaces, while the Apache Xerces parser classes support all
extension interfaces. They can also be implemented independently of the SAX core
interfaces. All extensions have been developed using the SAX 2 extensions API, and
are not available in SAX 1.

At the beginning of this chapter, you reviewed the SAX extensions at the interface
level. Now let’s review the methods that are contained in the extension interfaces.

You may see SAX documentation that refers to “SAX Extensions 1.x" This refers to
=y the SAX 2 Extensions 1.x API, not SAX 1. There is no SAX extension API for SAX 1.

Attributes2

The Attributes2 interface checks a DTD to see if an attribute in an XML document
was declared in a DTD. It also checks to see if the DTD specifies a default value for
the attribute. This interface is used mainly for data validation. Table 6-28 describes
the methods.

Chapter 6 4+ Parsing XML with SAX

Table 6-28
Attributes2 Interface Methods

Description

Method Name

isDeclared(index) or
isDeclared(qName) or
isDeclared(uri, localName)
Supported by:

SAX 2

Returns true if attribute was declared in the DTD.
isDeclared accepts an index (starting with 0), a
qualified name, or a local name.

isSpecified(index) or
isSpecified(qName) or
isSpecified(uri, localName)
Supported by:

SAX 2

Returns false if the default attribute value was
specified in the DTD. isSpecified accepts an index
(starting with 0), a qualified name, or a local
name.

DeclHandler

The DeclHandler interface returns declaration values in a DTD for attributes, ele-
ments, and internal and external entities. Table 6-29 describes the methods.

Table 6-29

DeclHandler Interface Methods

Method Name

Description

attributeDecl(eName, aName,
type, mode, value)

Supported by:

SAX 2 and MSXML

elementDecl(name, model)
Supported by:
SAX 2 and MSXML

externalEntityDecl(name, publicid,
systemid)

Supported by:

SAX 2 and MSXML

internalEntityDecl(name, value)
Supported by:
SAX 2 and MSXML

Returns a DTD attribute type declaration. Values
returned include any valid DTD values, such as
“CDATA", “ID", “IDREF", “IDREFS", “NMTOKEN",
“NMTOKENS", “ENTITY”, or “ENTITIES", a token
group, or a NOTATION reference.

Returns a DTD element type declaration. Values
returned include any valid DTD values, such as
“EMPTY”, “ANY", order specification, and so on.

Returns a parsed external entity declaration.

Returns a parsed internal entity declaration.

161

162

Part | 4+ Introducing XML

EntityResolver2

EntityResolver2 extends the EntityResolver interface by programmatically adding
external entity reference subsets. This can be useful for automatically adding pre-
defined DTD references to an XML document for validation while parsing. Table 6-30
describes the methods.

Table 6-30
EntityResolver2 Interface Methods
Method Name Description
getExternalSubset(name, baseURI) Returns an external subset for documents
Supported by: without a valid DOCTYPE declaration.
SAX 2
resolveEntity(name, publicid, Allows applications to map external entities to
baseURI, systemlid) XML document inputSources, or map an external
Supported by: entity by URL.
SAX 2
LexicalHandler

LexicalHandler returns information about lexical events in an XML document.
Comments, the start and end of a CDATA section, the start and end of a DTD decla-
ration, and the start and end of an entity can be tracked with LexicalHandler. Table
6-31 describes the methods.

Table 6-31
LexicalHandler Interface Methods

Method Name Description
comment(char[] ch, start, length) This event is triggered when the parser
Supported by: encounters a comment anywhere in the
SAX 2 and MSXML document.
endCDATA() This event is triggered when the parser
Supported by: encounters the end of a CDATA section.
SAX 2 and MSXML
endDTD() This event is triggered when the parser
Supported by: encounters the end of a DTD declaration.

SAX 2 and MSXML

Chapter 6 4+ Parsing XML with SAX

Method Name Description

endEntity(name) This event is triggered when the parser
Supported by: encounters the end of an entity.

SAX 2 and MSXML

startCDATA() This event is triggered when the parser
Supported by: encounters the start of a CDATA section.
SAX 2 and MSXML

startDTD(name, publicid, This event is triggered when the parser
systemid) encounters the start of DTD a declaration.

Supported by:
SAX 2 and MSXML

startEntity(name) This event is triggered when the parser
Supported by: encounters the beginning of internal or external
SAX 2 and MSXML XML entities.

Locator2

Locator2 extends the Locator interface to return the encoding and the XML version
for an XML document. Table 6-32 describes the methods.

Table 6-32

Locator2 Interface Methods
Method Name Description
getXMLVersion() Returns the entity XML version.
Supported by:
SAX 2
getEncoding() Returns the type of character encoding for the entity.
Supported by:
SAX 2

SAX extension helper classes

The SAX extension helper classes provide the same programmatic access to the
SAX Extension interfaces that the SAX helpers do to the SAX Core Interfaces. The
optional SAX 2 Extension API interface properties, methods and object classes have
to be implemented to support these classes.

163

164

Part | 4+ Introducing XML

.

The SAX Extension Helper classes are only for Java implementations. Currently,
MSXML does not support helper classes, though they do support some of the

functionality through additional methods in the core interfaces.

Attributes2impl

The Attributes2Impl helper class is the implementation class of the Attributes2
interface. Attributes2 checks a DTD to see if an attribute in an XML document was
declared in a DTD. It also checks to see if the DTD specifies a default value for the
attribute. It’s used mainly for data validation. Attributes2Ilmpl extends the interface
functionality by letting you add, edit, and delete attributes from lists, as described

in Table 6-33.
Table 6-33
Attributes2Impl Interface Methods
Method Name Description
addAttribute(uri, localName, Adds an attribute to the end of the attribute list, setting
qName, type, value) its “specified” flag to true.
Supported by:
SAX 2

isDeclared(index) or
isDeclared(qName) or

isDeclared(uri, localName)

Supported by:

SAX 2

isSpecified(index) or
isSpecified(qName) or

isSpecified(uri, localName)

Supported by:
SAX 2

removeAttribute(index)

Supported by:
SAX 2

setAttributes(Attributes atts)

Supported by:
SAX 2

setDeclared(index,
boolean value)
Supported by:

SAX 2

Returns true if attribute was declared in the DTD.
isDeclared accepts an index (starting with 0), a qualified
name, or a local name.

Returns false if the default attribute value was specified
in the DTD. isSpecified accepts an index (starting with 0),
a qualified name, or a local name.

Removes an attribute from the attribute list. Attribute
indexes start at 0.

Copy the specified Attributes object to a new Attributes
object.

Set the “declared” flag of a specified attribute. Attribute
indexes start at 0.

Chapter 6 4+ Parsing XML with SAX

Method Name

Description

setSpecified(index,
boolean value)
Supported by:

SAX 2

Set the “specified” flag of a specified attribute. Attribute
indexes start at 0.

DefaultHandler2

The DefaultHandler?2 class extends the SAX2 Defaul tHandler class with prop-
erties and methods from the SAX2 LexicalHandler, DeclHandler, and
EntityResolver2 extension interfaces. Table 6-34 describes the methods.

Table 6-34

DefaultHandler2 Interface Methods

Method Name

Description

attributeDecl(eName, aName, type,
mode, value)

Supported by:

SAX 2

elementDecl(name, model)
Supported by:
SAX 2

externalEntityDecl(name, publicid,
systemid)

Supported by:

SAX 2

internalEntityDecl(name, value)
Supported by:
SAX 2

comment(char|] ch, start, length)
Supported by:
SAX 2

startDTD(name, publicld, systemid)
Supported by:
SAX 2

Returns a DTD attribute type declaration. Values
returned include any valid DTD values, such as
“CDATA", “ID", “IDREF”, “IDREFS”, “NMTOKEN",
“NMTOKENS", “ENTITY”, or “ENTITIES”, a token
group, or a NOTATION reference. Source interface
is DeclHandler.

Returns a DTD element type declaration. Values
returned include any valid DTD values, such as

“EMPTY", "ANY", order specification, etc. Source
interface is DeclHandler.

Returns a parsed external entity declaration.
Source interface is DeclHandler.

Returns a parsed internal entity declaration.
Source interface is DeclHandler.

This event is triggered when the parser
encounters a comment anywhere in the
document. Source interface is LexicalHandler.

This event is triggered when the parser
encounters the start of a DTD declaration. Source
interface is LexicalHandler.

Continued

165

Part | 4+ Introducing XML

Table 6-34 (continued)

Method Name Description

endDTD() This event is triggered when the parser
Supported by: encounters the end of a DTD declaration Source
SAX 2 interface is LexicalHandler.

startCDATA() This event is triggered when the parser
Supported by: encounters the start of a CDATA section. Source
SAX 2 interface is LexicalHandler.

endCDATA() This event is triggered when the parser
Supported by: encounters the end of a CDATA section. Source
SAX 2 interface is LexicalHandler.

startEntity(name)
Supported by:

This event is triggered when the parser
encounters the beginning of internal or external

SAX 2 XML entities. Source interface is LexicalHandler.
endEntity(name) This event is triggered when the parser
Supported by: encounters the end of internal or external XML
SAX 2 entities. Source interface is LexicalHandler.

getExternalSubset(name, baseURI)

Supported by:
SAX 2

resolveEntity(publicld, systemid)

Supported by:
SAX 2

resolveEntity(name, publicid,

Returns an external subset for documents
without a valid DOCTYPE declaration. Source
interface is EntityResolver2.

Allows applications to map an external entity by
URL. Source interface is EntityResolver2.

Allows applications to map external entities to

baseURI, systemld) XML document inputSources, or map an external
Supported by: entity by URI. Source interface is EntityResolver2.
SAX 2

Locator2Impl

Locator2Impl is the implementation class for the Locator2 SAX extension interface.
Locator2 extends the Locator interface to return the encoding and the XML version
for an XML document. Table 6-35 describes the methods.

.

Chapter 6 4+ Parsing XML with SAX

Table 6-35

Locator2impl Interface Methods
Method Name Description
getEncoding() Returns the type of character encoding for the entity.
Supported by:
SAX 2
getXMLVersion() Returns the entity XML version.
Supported by:
SAX 2
setEncoding(encoding) Sets the type of character encoding for the entity.
Supported by:
SAX 2
setXMLVersion(version) Sets the entity XML version.
Supported by:
SAX 2

MSXML Extension Interfaces

This section explains the MSXML extension interfaces.

IMXAttributes

The IMXAttributes extension interface provides access to edit, add, and delete
attribute names and values. Table 6-36 describes the methods.

Many of the methods in IMXAttributes are similar to the Attributes2 SAX API exten-

sion class methods.
Table 6-36
IMXAttributes Interface Methods
Method Name Description
addAttribute (URI, LocalName, Adds an attribute to the end of an attribute list.
QName, Type, Value)
Supported by:
MSXML

Continued

167

Part | 4+ Introducing XML

Table 6-36 (continued)

Method Name

Description

addAttributeFromindex
(attributes, index)
Supported by:

MSXML

clear
Supported by:
MSXML

removeAttribute (index)
Supported by:
MSXML

setAttribute (index, URI, localName,
QName, type, value)

Supported by:

MSXML

setAttributes (attributes)
Supported by:
MSXML

setLocalName (index, localName)
Supported by:
MSXML

setQName (index, QName)
Supported by:
MSXML

setType (index, type)
Supported by:
MSXML

setURI (index, URI)
Supported by:
MSXML

setValue (index, value)
Supported by:
MSXML

Adds the attribute specified by an index value to
the end of an attribute list. Attribute indexes start
with 0.

Clears the attribute list. Attribute indexes start
with 0.

Removes an attribute from the attribute list.
Attribute indexes start with 0.

Sets an attribute in the list. Attribute indexes start
with 0.

Resets the contents of the attribute list.

Sets the local name of a specified attribute.
Attribute indexes start with 0.

Sets the qualified name (QName) of a specified
attribute. Attribute indexes start with 0.

Sets the type of a specified attribute. Attribute
indexes start with 0.

Sets the namespace URI of a specified attribute.
Attribute indexes start with 0.

Sets the value of a specified attribute. Attribute
indexes start with 0.

IMXSchemaDeclHandler

The MSXML IMXSchemaDeclHandler extension interface provides schema informa-
tion about an element being parsed, including attributes. Table 6-37 describes the

methods.

Chapter 6 4+ Parsing XML with SAX

Table 6-37
IMXSchemaDeclHandler Interface Methods
Method Name Description
schemaElementDecl Declares a schema for validation of an element. Assists
Supported by: in MSXML SAX validation when parsing.
MSXML
IMXWriter

IMXWriter writes parsed XML output to:

4+ An IStream object: A stream object representing a sequence of bytes that
can be forwarded to another object such as a file or a screen.

4+ A string (remember, all XML documents are technically strings).

4+ A DOMDocument object: Can be passed to the MSXML DOM parser for further
processing. For example, a new XML document could be parsed using SAX for
speed, then sent to the DOM parser for DTD validation.

The encoding and version properties of IMXWriter are similar to the
getXMLVersion () and getEncoding () methods of the SAX API Locator2
extension interface. Also, one piece of trivia: Note that this is the only SAX interface
that has more properties than methods.

Table 6-38 describes the properties.

Table 6-38
IMXWriter Interface Properties

Property Name Description
byteOrderMark (boolean) Controls the writing of the Byte Order Mark
Supported by: (BOM) for encoding, according to XML 1.0
MSXML specifications.
disableOutputEscaping (boolean) Sets the flag for the disable-output-escaping
Supported by: attribute of the <xsl:text> and <xsl:value-of>
MSXML elements. If True, entity reference symbols and

other non-XML data are passed without entity

resolution.

Continued

169

170 Partl + Introducing XML

Table 6-38 (continued)

Property Name Description

encoding (string) Sets and gets XML document encoding for the
Supported by: written output.

MSXML

Indent (boolean) Sets indentation in the output.

Supported by:

MSXML

omitXMLDeclaration (boolean) If true, the output will not include the XML
Supported by: declaration.

MSXML

output (variant) Sets the destination and the type of IMXWriter
Supported by: output.

MSXML

standalone (boolean) Sets the XML declaration standalone attribute to
Supported by: “yes” or “no.”

MSXML

version (string) Specifies the XML declaration version.
Supported by:

MSXML

Table 6-39 describes the methods.

Table 6-39
IMXWriter Interface Methods
Method Name Description
flush() Flushes the object's internal buffer to its destination (not

for DOMDocument output).

Chapter 6 + Parsing XML withSAX 7]

Summary

In this chapter, I provided a deep dive into the details of the Simple API for XML
(SAX):

4+ A history of SAX

4+ SAX versions and evolution

4 Understanding differences in W3C and MSXML SAX parser implementations

4+ SAX interfaces, extension interfaces, and helper classes

4+ SAX interface event callback methods

4 SAX helper classes for implementing SAX 1 to SAX 2 compatibility

4 Properties and methods for W3C and MSXML SAX interfaces
In the next chapter, we move on to something completely different: Extensible
Stylesheet transformations. The chapters will follow the same format as the parsing

chapters. Chapter 7 is an introduction to XSL and XSLT, while Chapter 8 provides
more information on implementing XSLT and includes working examples.

+ o+ ¢

XSLT Concepts

Chapters 1, 2, and 3 showed you what XML was all about,
how to develop XML documents, and how to make sure

that XML document structures are enforced using data valida-
tion. Chapters 4, 5, and 6 showed you some of the things you

can do with XML documents, namely parsing them for conver-
sion to other types of data.

This chapter will discuss the syntax, structure, and theory of
Extensible Stylesheet Language (XSL) and XSL Transform-
ations (XSLT), with some basic examples for illustration.
Chapter 8 will show you XML and XSLT in real-world examples
and tips for writing XSL stylesheets for XML documents.
Chapter 9 will extend those examples to show you how to use
XSL: Formatting Objects (XSL:FO) with XML documents.

All of the XML document and stylesheet examples
contained in this chapter can be downloaded from the
xmlprogrammersbible.com Website, in the Downloads
section.

Introducing the XSL Transformation
Recommendation

XSL stands for Extensible Stylesheet Language. The XSL
stylesheet XSL Transformation Recommendation describes
the process of applying an XSL stylesheet to an XML docu-
ment using a transformation engine, and also specifies the
XSL language covered in this chapter. XSLT is based on DSSSL
(Document Style Semantics and Specification Language), which
was originally developed to define SGML document output
formatting. XSLT 1.0 became a W3C Recommendation in 1999,
and the full specification is available for review at http: //
www.w3 .0rg/TR/xslt.

The XSLT Recommendation should not be confused with
the very confusingly named Extensible Stylesheet Language
(XSL) Version 1.0 Recommendation, which achieved W3C

CHAPTER

o+ o+ s
In This Chapter
Introduction to XSLT
How XSLT uses XPath
An introduction fo
XSL stylesheet
elements

Useful XPath and
XSIT functions for

stylesheet developers

Extending XSLT with
the help of EXSLT.org

¢+ s+

174

Part | 4+ Introducing XML

Recommendation status on 15 October 2001. This recommendation has more to do
with XSL: Formatting Objects (XSL:FO) than XSL Transformations (XSLT). You can
view the Extensible Stylesheet Language (XSL) Version 1.0 Recommendation at
http://www.w3.org/TR/xs1/. Chapter 9 covers XSL XSL: Formatting Objects,
including most of the W3C Extensible Stylesheet Language 1.0 Recommendation.

Another W3C Recommendation that affects XSLT is the XML Path Language (XPath).
XPath is a tree-based representation model of an XML document that is used in
XSLT to describe elements, attributes, text data, and relative positions in an XML
document. The full recommendation document can be seen at http: //www.

w3 .org/TR/xpath.

Version 2.0 of XSLT and XPath are currently in the Recommendation process, and
are expected to become W3C Recommendations sometime in late 2003. The current
documents and their status can be reviewed at http://www.w3 .org/TR/
xslt20req and http://www.w3.org/TR/xpath20req.

Stylesheet structure and syntax is defined in the W3C XSLT Recommendation docu-
ment, and Transformation engines are based on these definitions. Transformation
engines support a variety of programming languages, usually based on the language
that they are developed in. At time of writing, there is no comprehensive list of
XSLT engines available, but the Open Directory Project provides a good overview at
http://dmoz.org/Computers/Data_Formats/Markup_Languages/XML/
Style_Sheets/XSL/Implementations/. Despite a multitude of XSLT engines
supporting a multitude of languages, mainstream XSLT engines are split into two
platform camps: Java and Microsoft.

One of the first Java transformation engines was the LotusXSL engine, which IBM
donated to the Apache Software Group, where it became the Xalan Transformation
engine. Since then, Apache has developed Xalan Version 2, which implements a
pluggable interface into Xalan 1 and 2, as well as integrated SAX and DOM parsers.
Both of the Java versions of XALAN implement the W3C Recommendations XSLT
and XPath. You can find more information on Xalan at http://xml.apache.org/
xalan-j/index.html.

Microsoft support for XML 1.0 and a reduced implementation of the W3C XSLT rec-
ommendation began with the MS Internet Explorer 5, which also supported the
Document Object Model (DOM), XML Namespaces, and beta support for XML
Schemas. XML and XSL functionality was extended in later browser versions and
separated from the browser into the MSXML parser, more recently renamed the
Microsoft XML Core Services. MSXML is for use in client applications, via Web
browsers, Microsoft server products, and is a core component of the .NET platform.

Chapter 7 + XSLT Concepts |75

How an XSL Transformation Works

Developers create code that identifies an XML source, an XSL stylesheet, and a
transformation output method and destination to a transformation engine, which is
usually described as an XSL processor. Instructions from source code to the XSL
processor perform a transformation using the predefined components. The XSL
processor reads the Source XML document and performs a transformation of the
XML attributes, elements, and text values based on instructions in the XSL
stylesheet.

XSLT stylesheets are well-formed XML documents that conform to W3C standards
for syntax. Output format is specified in the XSL document as well, and can be
HTML, text, or XML.

XSL stylesheets

XSL processors use XSL stylesheets to gather instructions for transforming source
XML documents to output XML documents. Stylesheets describe XML documents
as a series of templates, much like our W3C XML Schema example in Chapter 3
described XML document structures as a series of XML data types. Stylesheets can
be used to change the structure of an XML document by moving, adding, or remov-
ing elements, attributes, and text data from a source XML document.

XSL for attributes and elements

XSL directives and functions combined with XPath functions make up the vocabu-
lary for XSL stylesheet transformations. All of the directives and functions will be
explained a little later in this chapter. Before I get into the full list of directives and
functions, let’s step through a very basic transformation using very basic source,
output, and stylesheet formats. Listing 7-1 shows the very simple XML document
that is based on the first XML document examined in Chapter 1. The document
has a root element and a few nested elements, a few attributes, and a few text data
values.

Listing 7-1: A Very Simple XML Document

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href=
"attributestoelements.xsl"?>
<rootelement>
<firstelement position="1">
<levell children="0">This is level 1 of the nested
elements</levell>

Continued

176 Partl + Introducing XML

Listing 7-1 (continued)

</firstelement>
<secondelement position="2">
<levell children="1">
<level2>This is level 2 of the nested elements</level2>
</levell>
</secondelement>
</rootelement>

The XML document starts with a standard declaration for an XML document, then
contains a second XML declaration that explicitly links the XML document to the
attributestoelements.xsl document. In this case, the XML document has to be in the
same directory as the XSL document for the transformation to take place:

<?xml version="1.0" encoding="UTF-8"7?>
<?xml-stylesheet type="text/xsl"
href="attributestoelements.xsl"?>

This is a minimal XML-stylesheet processing instruction, showing the mandatory
type and the href attributes. Here’s a full listing:

4+ type: Must contain a valid MIME type, and is almost always text/xsl, or some-
times text/xml.

4 href: Must be a valid URI.

4 title: Used for distinguishing between more than one XML-stylesheet process-
ing instruction in the same XML document.

4+ media: A list of values as defined in the W3C HTML Recommendation Version
4.0 and higher. Used in addition to or instead of the title attribute.

4+ charset: Used to specify a separate encoding for a stylesheet. For example,
the XML document may be UTF-8, and the XSL stylesheet could be ISO-8859-1.
Theoretically, the XSLT processor should know how to handle the charset
differences.

4 alternate: For use when more than one XML-stylesheet processing instruction
is in the same XML document. If the attribute value is no, the stylesheet
should be used first. All other stylesheets should have an alternate attribute
value of yes.

There are three ways that transformations happen:
4 Referencing the XSL explicitly: As illustrated in the reference code earlier,

and in Listing 7-1, a reference to a stylesheet can be explicitly declared using
the XML-stylesheet processing instruction. This is useful when automatic

Chapter 7 4+ XSLT Concepts

client-side XSLT transformations are necessary and the client software, usu-
ally a Web browser, is W3C XSLT compliant. Explicit referencing is most com-
monly used for separation of data in XML documents from display
characteristics in XSL stylesheets. The XML is usually transformed to HTML
on a server or in a browser client before the HTML is displayed to a user.

4+ Referencing the stylesheet programmatically: Programs can declare the XML
source, the XSL stylesheet, and the output destination, then invoke an XSLT
processor to perform the transformation. This is the technique used on
servers to separate XML document data from XSL stylesheet HTML display
characteristics in XML-based Websites, where one stylesheet controls the dis-
play of many XML documents. It is also the way that most XML-to-XML and
XML-to-text transformations occur in XML applications.

4+ Embedding XML into an XSL stylesheet: XML data can also be embedded
into an XSL document. This is not recommended for the same reasons that
embedded DTDs are not recommended. This is only mentioned here in case a
developer comes across this technique in a legacy system. Embedded
stylesheets represent a maintenance nightmare if the transformation or the
source data should ever need to be altered, and defeat the purpose of trans-
formations. In most cases, the transformed document can be substituted for
the XML data and stylesheet combination document.

Next is the remainder of the XML document, which consists of a single-value
rootelement element:

<rootelement>

Next are the nested elements, attributes, and text, as illustrated by the nested
firstelement under the root element in our example:

<firstelement position="1">
<levell children="0">This is level 1 of the nested
elements</levell>

</firstelement>

The firstelement has an attribute called position with a value of 1. The
position attribute adds a little more information about the firstelement, in this
case that the original sorting position of the first element in the XML document is 1.
Nested under the “firstelement” element is the 1evell element, which contains
an attribute called children. The element name is used to describe the nesting
level in the XML document, and the attribute is used to describe how many more
levels of nesting are contained under the 1evell element, in this case, no more
nested levels (0). The phrase This is level 1 of the nested elements
represents a textual data value for the 1evell element that the text is nested in.

The secondelement element is a variation of the firstelement element. Let’s
compare the firstelement and secondelement elements to get a better sense
of the structure of the document:

177

178 Partl + Introducing XML

<secondelement position="2">
<levell children="1">
<level2>This is level 2 of the nested
elements</level2>
</levell>
</secondelement>

Like the firstelement, the secondelement has an attribute called position
this time with a value of 2. Nested under the secondelement element is another
levell element. The 1evell element in the secondelement also has an attribute
called children. The 1evell element is again used to describe the nesting level in
the XML document, and the attribute is used to describe how many more levels of
nesting are contained under the 1evell element, in this case, one more nested
level (1). The phrase This is level 2 of the nested elements inside the
level?2 element represents a textual data value for the 1evel2 element.

Last but not least, to finish the XML document, the rootelement tag is closed:
</rootelement>

Listing 7-2 shows a stylesheet that transforms attributes in Listing 7-1 to elements
by matching a pattern and applying a template to items in the source XML docu-
ment that transforms them into a new format in the destination XML document.

Listing 7-2: A Very Simple XSL Stylesheet

<?xml version="1.0" encoding="UTF-8"7?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output method="xml"/>
<xsl:template match="@*">
<xsl:element name="{name() }">
<xsl:value-of select="."/>
</xsl:element>
</xsl:template>
<xsl:template match="*">
<xsl:copy>
<xsl:apply-templates select="*|@*"/>
</xsl:copy>
</xsl:template>
</xsl:stylesheet>

Chapter 7 + XSLT Concepts |79

The XSL stylesheet starts with an optional XML declaration and an attribute that
sets the encoding style for the XSL stylesheet. Encoding style for the transforma-
tion output is handled separately:

<?xml version="1.0" encoding="UTF-8"7?>
Next is the stylesheet Namespace declaration in the root element:

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

The xs1 : prefix is mandatory for well-formed stylesheets, but the stylesheet ele-
ment name can be replaced with transform. However, stylesheet is the element
name that is used most, and therefore transformis recommended only if there is
a good reason for not using stylesheet. For XSLT 1.0, the version attribute is
optional if stylesheet is used as the element name, but must be included if
transformis used. When using stylesheet as the element name, the default ver-
sion is 1.0 if the attribute is not included, which does not impact XSLT transforma-
tions until XSLT 2.0 becomes an official W3C Recommendation.

There is one other Namespace declaration that developers may see in legacy appli-
cations and older stylesheets:

<xsl:Stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl1">

This Namespace declaration was used in older stylesheets to maintain compatibil-
ity with Microsoft IE 5.0 browsers, which supported an older version of the W3C
Recommendation. This Namespace should not be used unless compatibility with
5.0 browsers needs to be maintained.

XSLT Elements

The stylesheet element is used to specify the root element of W3C stylesheets.
XSLT vocabularies are mostly made up of elements that describe template instruc-
tions or types of data that XSLT processors use during transformations. Table 7-1
describes the full listing of XSL elements available to stylesheet developers.

180

Part | 4+ Introducing XML

Table 7-1
W3C XSLT Elements

Element

Description

stylesheet

transform

output

namespace-alias

preserve-space

strip-space

key

import

apply-imports

Defines a root element of a stylesheet. Can be used
interchangeably with transform, but most stylesheets use
stylesheet as a de facto standard.

Defines a root element of a stylesheet. Should only be used to
replace stylesheet as the root element of a stylesheet, but
only if there is a good reason not to use stylesheet.

Defines the format of the output document. html, xml, and text
output methods are predefined. If the output method is xml,
output is well-formed xml, html formats the output as HTML, and
text is any character data, including RTF and PDF files. If no
output method is specified, the XSLT processor usually checks to
see if the document is html-based on html output document tree
node prefixes, and defaults to xml if no other determination can
be made. Must be a child of the stylesheet element.

Several optional attributes can also be used to define the output
version, the encoding type, to include or not include an XML
declaration declaration, define the standalone attribute, define a
doctype, support output document indentation, and indicate a
media type.

Replaces a source document Namespace with a new
Namespace in the output node tree. Must be a child of the
stylesheet element.

Defines whitespace preservation for elements. Must be a child of
the stylesheet element.

Defines whitespace removal for elements. Must be a child of the
stylesheet element.

Adds key values to each node in the result of an XPath
expression. Must be defined as a child of the stylesheet
element. For use with the key function in XPath expressions
(functions are defined in Table 7-4).

Imports an external stylesheet into the current stylesheet. If there
are conflicts between the current stylesheet and the imported
stylesheet, the current stylesheet takes precedence. Must be
defined as a child of the stylesheet element.

Follows the apply-template rules but overrides a stylesheet
template with the template from an imported template.
Normally, the current stylesheet takes precedence over the
imported stylesheet.

Chapter 7 4+ XSLT Concepts

Element Description

Include Includes an external stylesheet in the current stylesheet. If there
are conflicts between the current stylesheet and the included
stylesheet, it's up to the XSLT processor to decide precedence.
Must be defined as a child of the stylesheet element.

template Applies rules in a match or select action. Optional attributes can

apply-templates

call-template

param

with-param

variable

copy

copy-of

If

choose

when

otherwise

for-each

sort

be used for specifying a node-set by match, template name,
processing priority for this template in case of conflicts in the
stylesheet, and an optional QName for a subset of nodes in a
nodeset.

Applies templates to all children of the current node, or a
specified node-set using the optional select attribute.
Parameters can be passed using the with-param element.

Calls a template by name. Parameters can be passed using the
with-param element. Results can be assigned to a variable.

Defines a parameter and a default value in a stylesheet template.
A global parameter can be defined as a child of the
stylesheet element.

Passes a parameter value to a template when call-template or
apply-templates is used.

Defines a variable in a template or a stylesheet. A global variable
can be defined as a child of the stylesheet element.

Copies the current node and any related Namespace only.
Output matches the current node (element, attribute, text,
processing instruction, comment, or Namespace).

Copies the current node, Namespaces, descendant nodes, and
attributes. Scope can be controlled with a select attribute.

Conditionally applies a template if the test attribute expression
evaluates to true.

Makes a choice based on multiple options. Used with when and
otherwise.

An action for choose elements.

A default action for choose elements. Must be the last child of a
choose element

Iteratively processes each node in a node-set defined by an XPath
expression.

Defines a sort key used by apply-templates to a node-set and by
for-each to specify the order of iterative processing of a node set.

Continued

181

182

.

Part | 4+ Introducing XML

Table 7-1 (continued)

Element Description

element Adds an element to the output node tree. Names, Namespaces,
and attributes can be added with the names, Namespaces,
and use-attribute-sets attributes.

attribute Adds an attribute to the output node tree. Must be a child of an

attribute-set

text

value-of

decimal-format

number

fallback

message

processing-
instruction

comment

element.

Adds a list of attributes to the output node tree. Must be a child
of an element.

Adds text to the output node tree.

Retrieves a string value of a node and write it to the output node
tree.

Specifies the format of numeric characters and symbols when
converting to strings. Used with the format-number function
only, not with the number element. (Functions are defined in
Table 7-4.)

Adds a sequential number to the nodes of a node-set, based on
the value attribute. Can also define the number format for the
current node in the output node tree.

Defines alternatives for instructions that the current XSL processor
does not support.

Adds a message to the output node tree. This element can also
optionally stop processing on a stylesheet with the terminate
attribute. Mostly used by developers for debugging stylesheets
and XSLT processors.

Adds a processing instruction to the output node tree.

Adds a comment to the output node tree.

All of the elements in Table 7-1 should be prefixed by xs1 : and follow the format

xsl:elementname.

Next, our sample stylesheet declares the output method for the transformation,
which, in this case, is XML, using the XSLT output element:

<xsl:output method="xml" />

Chapter 7 + XSLT Concepts] 83

The other XSLT 1.0 output options are text or HTML, or a valid prefixed QName that
can be resolved into a URI. For more complete documentation on this element,
please refer to the XSLT element listings in Table 7-1.

Next, the stylesheet goes hunting for all the attributes in the XML document using
the template element and the match attribute:

<xsl:template match="@*">

The match attribute is available with the template and key elements, and is used
to match the pattern specified by the match attribute value. When an XSLT proces-
sor is invoked, the source XML document is parsed into a set of nodes in a tree,
starting with the root element in the document. XSLT uses pattern matching to look
through the document node tree and retrieve nodes that match the patterns speci-
fied. The @* attribute value is an XPath expression and instructs the processor to
look at all child nodes of the root node (*) and find all the attributes (@) in the
source XML document.

XSL and XPath

The match attribute is one of several XSLT pattern-matching attributes that are
used to find nodes in an XML source document. The match attribute is used to
match a pattern in an XML document, for example, to detect the root element, or an
attribute in the second element under the root element. Pattern matching is facili-
tated through XPath expressions, which express the parsed nodes of an XML docu-
ment in tree hierarchy references. XPath follows a syntax that closely mirrors file
system paths but in the context of an XML document. XPath tree representations
break XML documents down into a series of connected root, element, text,
attribute, Namespace, processing instruction, and comment nodes.

Imagine that the XSLT processor parses a document and places each of the ele-
ments in the document into a directory on a file system, and defining attributes,
Namespaces, and text data in each directory with special identifiers. The new file
system starts with the root directory (/), and each descendant element can be
found in a subdirectory under the root. XPath doesn’t work exactly like this, but on
the surface it appears to, and the directory metaphor is a good point of reference
for starting to understand how XPath really does work. Table 7-2 shows the basic
location operators for XPath expressions.

184 Partl + Introducing XML

Table 7-2
XPath Location Operators

Operator Description

The current node

The parent node
/ The root element
// All descendants
@ Attribute identifier
* All child nodes

The location operators are actually abbreviations of commonly used XPath node
axes. Node axes are expressions that relate to the current node and radiate out
from that node in different directions, to locate parents, ancestors, children,
descendants, and siblings, in relation to the current node. Table 7-3 lists and
describes the XPath node axes.

Table 7-3
XPath Node Axes
Axis Description
self The current node
ancestor Ancestors, excluding the current node

ancestor-or-self
attribute

child

descendant
descendant-or-self

following

following-sibling

namespace

parent

The current node and all ancestors

The attributes of the current node
Children of the current node
Descendants, excluding the current node
The current node and all descendants

The next node in the document order, including all descendants
of the next node, and excluding the current node descendants
and ancestors

The next sibling node in the document order, including all
descendants of the sibling node, and excluding the current node
descendants and ancestors

All Namespace nodes of the current node

The parent of the current node

Chapter 7 4+ XSLT Concepts

Axis Description

preceding The previous node in the document order, including all
descendants of the previous node, and excluding the current
node descendants and ancestors

preceding-sibling The previous sibling node in the document order, including all
descendants of the sibling node, and excluding the current node
descendants and ancestors

XPath axes, attributes, and namespaces

XPath axis nodes treat attributes and Namespaces differently than they treat ele-
ments, text values, processing instructions, and comments, depending on the axis
and the current node. This is because attributes and Namespaces in the document
are not part of the hierarchy of elements, text values, processing instructions, and
comments, but are located separately in the node tree.

4 Attributes are only available from element nodes or the root node, not from
other attribute and namespace nodes.

4+ The child, descendant, following, following-sibling, preceding, and preceding-
sibling axes do not contain attributes or Namespaces, and are empty if the
current node is an attribute or a Namespace node.

4+ Attributes of the current node can be accessed using the attribute axis or the
attribute identifier (@), as long as the current node is an element node.

The next few lines in our example stylesheet create a new element based on the
name of the current node in the XML document tree. The current node is set to an
attribute in the XML document, based on the previous line in the XSL stylesheet
(xsl:template match="@*"). However, XPath has limitations on what can be
accessed if the current node is an attribute or Namespace. To get around this limi-
tation, the XSLT name () function is used to pass the name of the current attribute
node to the new element declaration. The XPath location operator representing the
self node (.) is used to pass the value of the attribute into the value of the new ele-
ment using the value-of select element, and then the new element is finished
with a hard-coded closing tag, and the template is finished with the template clos-
ing tag:

<xsl:element name="{name()}">
<xsl:value-of select="."/>
</xsl:element>
</xsl:template>

185

186

Part | 4+ Introducing XML

The name () function is one of many functions that can be used in stylesheets.
Unlike other types of XML, XPath supports five types of data, even though the data

itself remains text.

4+ boolean objects: True or false values.

4+ numbers: Any numeric value.

4 string: Any string.

4+ node-set: A set of nodes selected by an XPath expression or series of

expressions.

4 external object: A set of nodes returned by an XSLT extension function other
than an XPath or XSLT expression. Support for external objects depends on
the XSLT processor support for extensions.

There are also several functions related to each data type that can be used in XSL
stylesheets. Table 7-4 describes the functions supported for each data type.

Table 7-4

Functions by Data Type

Function

Description

Boolean Functions

boolean ()

true ()
false ()

not ()

Number Functions
number ()

round ()

floor ()

ceiling()

sum ()

count ()

Converts an expression to the Boolean data type value and
returns true or false.

Binary true.
Binary false.

Reverse binary true or false: not (true
expression)=false, not (false
expression) =true

Converts an expression to a numeric data type value.

Rounds a value up or down to the nearest integer:
round(98.49) = 98,round(98.5) = 99

Rounds a value down to the nearest integer:
floor(98.9) = 98.

Rounds a value up to the nearest integer:
ceiling(98.4) = 99.

Sums the numeric values in a node-set.

Counts the nodes in a node-set.

Chapter 7 4+ XSLT Concepts

Function

Description

String Functions
string ()
format-number ()

concat ()

string-length ()

contains ()

starts-with ()

translate()

substring()

substring-after ()

substring-before ()

normalize-space ()

Node Set Functions
current ()
position()
key ()

name ()
local-name ()

namespace-uri ()

unparsed-entity-uri ()

id()

Converts an expression to a string data type value.

Converts a numeric expression to a string data type value,
using the decimal-format element values as a guide if the
decimal-format element is present in a stylesheet.

Converts two or more expressions to a concatenated string
data type value.

Counts the characters in a string data type value.

Checks for a substring in a string. Returns Boolean true
or false.

Checks for a substring at the beginning of a string. Returns
Boolean true or false.

Replaces an existing substring with a specified substring in
a specified string data type value.

Retrieves a substring in a specified string data type value
starting at a numeric character position and optionally
ending at a specified numeric length after the starting
point.

Retrieves a substring of all characters in a specified string
data type that occurs after a numeric character position.

Retrieves a substring of all characters in a specified string
data type that occurs before a numeric character position.

Replaces any tab, newline, and carriage return characters in
a string data type value with spaces, then removes any
leading or trailing spaces from the new string.

The current node in a single-node node-set.

The position of the current node in a node-set.

A node-set defined by the key element.

The name of the selected node

The name of a node without a prefix, if a prefix exists.
The full URI of a node prefix, if a prefix exists.

The URI of an unparsed entity via a reference to the source
document DTD, based on the entity name.

A node-set with nodes that match the id value.

Continued

187

188 Partl + Introducing XML

Table 7-4 (continued)

Function Description

generate-id () A unique string for a selected node in a node-set. The
syntax follows well-formed XML rules.

lang () A Boolean true or false depending on if the xml:lang
attribute for the selected node matches the language
identifier provided in an argument.

last () The position of the last node in a node-set.

document () Builds a node tree from an external XML document when
provided with a valid document URL.

External Object Functions (Note: These functions may also apply to other data types.)

system-property () Returns information about the processing environment.

Useful when building multi-version and multi-platform
stylesheets in conjunction with the fallback element.

element-available() A Boolean true or false based on if a processing instruction
or extension element is supported by the XSLT processor.

function-available() A Boolean true or false based on if a function is supported
by the XSLT processor.

The next segment of the sample stylesheet uses the wildcard to create a template
from all child nodes in the document. The copy element is used to copy the con-
tents of the current XML document and apply the predefined templates related to
the attribute match (e*) and the current template match (*) while copying by using
the select attribute of the apply-templates element. After that, the XSL
stylesheet is closed by the stylesheet closing tag.

<xsl:template match="*">
<xsl:copy>
<xsl:apply-templates select="*|@*"/>
</xsl:copy>
</xsl:template>
</xsl:stylesheet>

Listing 7-3 shows the output from the transformation. Note that there are no longer
any attributes or values in the new XML document, just elements and text data. The
attribute template was applied when the copy took place, replacing attributes
with child elements.

Chapter 7 + XSLT Concepts |1 89

Listing 7-3: The transformation output document

<?xml version="1.0" encoding="UTF-8"?>
<rootelement>
<firstelement>
<position>l</position>
<levell>
<children>0</children>
</levell>
</firstelement>
<secondelement>
<position>2</position>
<levell>
<children>1l</children>
<level2/>
</levell>
</secondelement>
</rootelement>

XSLT Extensions with EXSLT.org

As mentioned earlier in this chapter, the W3C XSLT stylesheet Recommendation will
probably be updated from Version 1.0 to Version 2.0 in late 2003. In the meantime,
the 1999 1.0 Recommendation has been showing its age. The 1.0 specification does,
however, leave room for extensions to existing stylesheet structure and syntax via
the external-object data type and the extension-element-prefixes attribute in the
stylesheet and transform elements, and the element-available and function-available
functions. Many XSLT processors now support external extensions, and a good
source of extensions can be found at EXSLT.org. Most extensions take the form of
code that acts as add-in modules to existing XSLT processors and support functions
that can be used as if they were part of the W3C Recommendation, once the mod-
ules are installed. EXSLT.org provides several free-distribution modules, plus setup
instructions and function documentation. Developers are also welcomed to con-
tribute to the group with their own extensions.

190 Partl + Introducing XML

Summary

In this chapter, I provided an introduction to XSL and provided a theoretical
overview of XSLT, XSL stylesheet elements, structure, and syntax, XPath axes, func-
tions, and data types, and a few XSLT-specific functions.

4 The history of XSLT

4 How XSLT works

4 An introduction to XPath

4 XSL stylesheet elements

4+ XPath and XSLT tips and tricks for stylesheet developers

4+ Extending XSLT

4 All about EXSLT.org
In the next chapter, you’ll be putting all the lessons you have learned so far
about XSLT Transformations to use by showing examples for transforming XML

to text and HTML. We’'ll also cover changing the format of XML documents using
transformation.

¢+ o+«

XSL
Transformations

In the last chapter, you were introduced to the theory of
XSLT, XSL stylesheets, and XPath expressions. In this chap-
ter, you'll apply that theory to real-world examples that will
show you how to use XSLT elements, functions, and XPath
expressions to transform XML documents to other formats of
XML, text, and HTML. The next chapter will extend the HTML
examples in this chapter even further by using XSL:FO in our
transformations.

Wb All of the XML document and stylesheet examples con-

A7 V\TIZE tained in this chapter can be downloaded from the
~ xmlprogrammingbible.com Website, in the Downloads

section.

To Begin...

All of the examples in this chapter use the same source XML
file, which is the sample XML document [have used in previ-
ous chapters. This example starts with a list of selected
quotes from William Shakespeare, then goes on to list three
books that contain the quotes that are available for purchase
from Amazon.com, and a Spanish translation of Macbeth,
Romeo and Juliet, Hamlet, and other volumes that are avail-
able from http://www.elcorteingles.es. Amazon.com
provides a service that returns XML documents based on a
URL query, and the 2mazon element is based on this format.
The elcorteingles.com book listing format and the quote
listing, as well as other parts of the document are used to
illustrate several features of XSLT stylesheet transformations.
I convert the source document into HTML, delimited text, and
HTML to show you some advanced XSLT tips and tricks.

CHAPTER

+ + 0+

In This Chapter

Transforming
XML to XML

Transforming
XML to HTML

Transforming
XML to text

XSLT conditions
XSLT variables
XSIT iterations
XSIT sorting

XSLT extensions

and fallbacks

+ o+

192 Partl + Introducing XML

Listing 8-1 shows the XML document, named AmazonMacbethSpanish.xml, which I
will refer back to in the next few examples.

Listing 8-1: The Contents of AmazonMacbethSpanish.xml

<?xml version="1.0" encoding="IS0-8859-1"?>
<quotedoc>
<quotelist author="Shakespeare, William" quotes="4">
<quote source="Macbeth" author="Shakespeare,
William">When the hurlyburly's done, / When the battle's
lost and won.</quote>
<quote source="Macbeth" author="Shakespeare,
William">Out, damned spot! out, I say!-- One; two; why,
then 'tis time to do't ;--Hell is murky!--Fie, my lord,
fie! a soldier, and afeard? What need we fear who knows
it, when none can call our power to account?--Yet who
would have thought the old man to have had so much blood
in him?</quote>
<quote source="Macbeth" author="Shakespeare, William">Is
this a dagger which I see before me, the handle toward
my hand? Come, let me clutch thee: I have thee not, and
yvet I see thee still. Art thou not, fatal vision,
sensible to feeling as to sight? or art thou but a
dagger of the mind, a false creation, proceeding from
the heat-oppressed brain?</quote>
<quote source="Macbeth" author="Shakespeare, William">To-
morrow, and to-morrow, and to-morrow,creeps in this
petty pace from day to day, to the last syllable of
recorded time; and all our yesterdays have lighted fools
the way to dusty death. Out, out, brief candle! Life's
but a walking shadow; a poor player, that struts and
frets his hour upon the stage, and then is heard no
more: it is a tale told by an idiot, full of sound and
fury, signifying nothing. </quote>
<quote/>
</quotelist>
<catalog items="4">
<amazon items="3">
<product>
<ranking>1</ranking>
<title>Hamlet/MacBeth</title>
<asin>8432040231</asin>
<author>Shakespeare, William</author>

<small_image>http://images.amazon.com/images/P/
8432040231.01.T222272%2%.jpg</small_image>
<list_price>$7.95</1list_price>
<release_date>19910600</release_date>
<binding>Paperback</binding>
<availability/>

Chapter 8 + XSL Transformations

<tagged_url>http://www.amazon.com: 80/exec/obidos
/redirect?tag=associateid&benztechnonogies=9441
& camp=1793& 1ink_code=xml&path=ASIN/
8432040231</tagged_url>
</product>
<product>
<ranking>2</ranking>
<title>MacBeth</title>
<asin>1583488340</asin>
<author>Shakespeare, William</author>

<small_image>http://images.amazon.com/images/P/
1583488340.01.TZ2%2%272%277 . jpg</small_image>
<list_price>$8.95</1list_price>
<release_date>19991200</release_date>
<binding>Paperback</binding>
<availability/>
<tagged_url>http://www.amazon.com: 80/exec/obidos/
redirect?tag=associateid&benztechnonogies=9441
Samp ; camp=1793& 1ink_code=xml&path=ASIN/
1583488340</tagged_url>
</product>
<product>
<ranking>3</ranking>
<title>William Shakespeare: MacBeth</title>
<asin>8420617954</asin>
<author>Shakespeare, William</author>

<small_image>http://images.amazon.com/images/P/
8420617954.01.T22%2727277.jpg</small_image>
<list_price>$4.75</1list_price>
<release_date>19810600</release_date>
<binding>Paperback</binding>
<availability/>
<tagged_url>http://www.amazon.com: 80/exec/obidos/
redirect?tag=associateid&benztechnonogies=9441
Samp; camp=1793& 1ink_code=xml& path=ASIN/
8420617954</tagged_url>
</product>
</amazon>
<elcorteingles items="1">
<product xml:lang="es">
<titulo>Romeo y Julieta/Macbeth/Hamlet/Otelo/La
fierecilla domado/El suefio de una noche de verano/
El mercader de Venecia</titulo>
<isbn>8484036324</isbn>
<autor>Shakespeare, William</autor>
<imagen>http://libros.elcorteingles.es/producto/
verimagen_blob.asp?ISBN=8449503639</imagen>

Continued

193

194 Partl + Introducing XML

Listing 8-1 (continued)

<precio>7,59 €</precio>
<fecha_de_publicacién>6/04/1999
</fecha_de_publicacidn>
<Encuadernacién>Piel</Encuadernacidn>
<librourl>http://libros.elcorteingles.es/producto
/libro_descripcion.asp?CODIISBN=8449503639</1librourl>
</product>
</elcorteingles>
</catalog>
</quotedoc>

XML to XML

Transforming XML to other forms of XML is probably the second most common
type of transformation, after XML to HTML transformations. As you learned in
Chapter 7, XSLT processors parse XML documents into document node trees before
transforming them. In an XML to XML transformation, it’s important to identify the
source XML document nodes needed in the source and target of the transformation.

A simple technique using xsl:copy-of

One of the simplest ways to start using XSL is to use the xs1:copy-of element to
create a new XML document using a subset of a larger XML document. Listing 8-2
shows the contents of the XMLtoQuotes.xsl stylesheet. This stylesheet creates a
new XML document containing just the quotes from the sample XML document in
Listing 8-1.

Listing 8-2: The Code for the XMLtoQuotes.xsl Stylesheet

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="1.0">
<xsl:output method="xml"/>
<xsl:template match="/">
<transformedquotes>
<xsl:apply-templates select="/quotedoc/quotelist/*">
</xsl:apply-templates>
</transformedquotes>
</xsl:template>
<xsl:template match="*">
<xsl:copy-of select="."/>
</xsl:template>
</xsl:stylesheet>

Chapter 8 + XSL Transformations

Walking through the transformation, I declare the XSL stylesheet as an XML docu-
ment, and then declare an xs1: Namespace for the XSL elements in the stylesheet.
Next, I specify the output method for the stylesheet as xm1, and also specify the
encoding for the output as 1S0-8859-1, the same as the origin document. Note
that the output encoding differs from the stylesheet encoding. This is a good illus-
tration of the fact that the source XML document, the XSL stylesheet, and the trans-
formation output can all be different encoding types if needed. However, it’s worth
pointing out that most XSLT processors support only UTF-8 and UTF-16 encoding. |
also set the indent attribute to "yes". The indent attribute is one of the optional
and vague attributes that must be recognized but do not necessarily need to be
supported in an XSLT processor. If the indent attribute is set to "yes", the XSLT
processor is supposed to perform rudimentary formatting on the XSLT output.

Stylesheet Output XML Document Result
<?xml version="1.0" encoding= <?xml version="1.0"
"UTF-8"7?> encoding="IS0-8859-1"7?>

<xsl:stylesheet xmlns:xsl=
"http://www.w3.0rg/1999/XSL/
Transform" version="1.0">

<xsl:output method=
"xml" encoding="IS0-8859-1"
indent="yes" />

Once this is done, I specify the output as XML and start XPath pattern matching at
the root element (/). Next, a hard-coded element is added to the output to illustrate
that the output was manipulated by the stylesheet. The original quotes element
becomes a transformedquotes element in the XSLT output. At the root element I
instruct the XSL processor to apply the template to all descendants of the
quotelist element in the source document, which is a child of the quotedoc root
element using the select attribute of the apply-templates element
(select="/quotedoc/quotelist/*">):

Stylesheet Output XML Document Result

<xsl:template match="/"> <transformedguotes>
<transformedquotes>

<xsl:apply-templates select=
"/quotedoc/quotelist/*">

195

196

Part | 4+ Introducing XML

The only template in the stylesheet is called as a result of the apply-templates
element. The template is applied to all XML data in the node-set via the match="*"
attribute of the template element. In this case, the node-set contains all the descen-
dants of the /quotedoc/quotelist element. The xs1:copy-of element makes a
copy of all the nodes in a node-set without exception, including namespaces,
attributes, and so on. The select attribute could limit the copy-of element to a
specific scope, for example all of the attributes in the node-set, but in this case the
select just passes the whole node-set to the transformation output document by
using the XPath current node operator (.):

Stylesheet Output XML Document Result
<xsl:template match="*"> <gquote source="Macbeth"
author="Shakespeare,
<xsl:copy-of select="."/> William">When the hurlyburly's
done, / When the battle's lost
</xsl:template> and won.</quote>

<quote source="Macbeth"
author="Shakespeare,
William">Out, damned spot! out,
I say!-- One; two; why, then
'tis time to do't ;--Hell is
murky!--Fie, my lord, fie! a
soldier, and afeard? What need
we fear who knows it, when

none can call our power to
account?--Yet who would have
thought the old man to have had
so much blood in him?</quote>
<quote source="Macbeth"
author="Shakespeare,
William">Is this a dagger which
I see before me, the handle
toward my hand? Come, let me
clutch thee: I have thee not,
and yet I see thee still. Art
thou not, fatal vision,
sensible to feeling as to
sight? or art thou but a dagger
of the mind, a false creation,
proceeding from the heat-
oppressed brain?</quote>

Chapter 8 + XSL Transformations

Stylesheet Output XML Document Result

<gquote source="Macbeth"
author="Shakespeare,
William">To-morrow, and to-
morrow, and to-morrow,creeps in
this petty pace from day to
day, to the last syllable of
recorded time; and all our
yvesterdays have lighted fools
the way to dusty death. Out,
out, brief candle! Life's but a
walking shadow; a poor player,
that struts and frets his hour
upon the stage, and then is
heard no more: it is a tale
told by an idiot, full of sound
and fury, signifying nothing.
</quote>

Once the template is finished, control is passed back to the template that called the
copy-of template, and the hard-coded transformedquotes closing tag is added to
the XSLT output. Next, the template and the stylesheet closing tags finish the XSLT
process.

Stylesheet Output XML Document Result

</xsl:apply-templates> </transformedquotes>
</transformedquotes>
</xsl:template>......

</xsl:stylesheet>

Listing 8-3 shows the final XSLT transformation output in its entirety.

Listing 8-3: The XSLT Output Document

<?xml version="1.0" encoding="IS0-8859-1"?>
<transformedquotes>

<guote source="Macbeth" author="Shakespeare, William">When
the hurlyburly's done, / When the battle's lost and
won.</quote>

Continued

197

198

Part | 4+ Introducing XML

Listing 8-3 (continued)

<guote source="Macbeth" author="Shakespeare, William">Out,
damned spot! out, I say!-- One; two; why, then 'tis time to
do't ;--Hell is murky!--Fie, my lord, fie! a soldier, and
afeard? What need we fear who knows it, when none can call our
power to account?--Yet who would have thought the old man to
have had so much blood in him?</quote>

<guote source="Macbeth" author="Shakespeare, William">Is this
a dagger which I see before me, the handle toward my hand?
Come, let me clutch thee: I have thee not, and yet I see thee
still. Art thou not, fatal vision, sensible to feeling as to
sight? or art thou but a dagger of the mind, a false creation,
proceeding from the heat-oppressed brain?</quote>

<guote source="Macbeth" author="Shakespeare, William">To-
morrow, and to-morrow, and to-morrow,creeps in this petty pace
from day to day, to the last syllable of recorded time; and all
our yesterdays have lighted fools the way to dusty death. Out,
out, brief candle! Life's but a walking shadow; a poor player,
that struts and frets his hour upon the stage, and then is
heard no more: it is a tale told by an idiot, full of sound and
fury, signifying nothing. </quote>

<quote/>
</transformedquotes>

Advanced techniques using iteration, sorting, and variables

The stylesheet in Listing 8-4 shows you many more advanced techniques to over-
come several common XSLT challenges. This time the stylesheet is building a prod-
uct catalog from the products in the stylesheet. This sounds simple enough, but
there are actually several hurdles to overcome in making this work with the XML
source document that I have to work with. For example, products are nested under
the amazon and the elcorteingles elements, and they need to be grouped
together and sorted as a single list without losing the original structure of the prod-
ucts. Instead of using the xs1:copy-of element to copy a hierarchy, this
stylesheet builds a hierarchy using an iterative for-each element, replaces element
names using variables, and sorts the output by ISBN number.

Listing 8-4: The Code for the XMLtoCatalog.xsl Stylesheet

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet

xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="1.0">
<xsl:output method="xml" encoding="IS0-8859-1" indent="yes"/>

Chapter 8 + XSL Transformations

<xsl:template match="/">
<catalogproducts>
<xsl:apply-templates select="/quotedoc/catalog/*/*">
<xsl:sort select="asin | isbn" data-type="number"
order="ascending"></xsl:sort>
</xsl:apply-templates>
</catalogproducts>
</xsl:template>
<xsl:template match="*">
<catalogproduct>
<xsl:for-each select="*">
<xsl:variable name="isbnname">
<xsl:choose>

<xsl:when test="name()='asin'">isbn</xsl:when>
<xsl:otherwise>
<xsl:value-of select="name()"/>

</xsl:otherwise>
</xsl:choose>
</xsl:variable>
<xsl:element name="{$isbnname}">
<xsl:value-of select="."/>
</xsl:element>

</xsl:for-each>

</catalogproduct>
</xsl:template>
</xsl:stylesheet>

As with the previous example, I'll break up the stylesheet code into pieces and
show the effect that each piece of code has on the output. The initial template dec-
larations are the same as the last example:

Stylesheet Output XML Document Result

<?xml version="1.0" encoding=
"UTF-8"7?>

<xsl:stylesheet xmlns:xsl=
"http://www.w3.org/1999/XSL/
Transform" version="1.0">

<xsl:output method="xml"
encoding="IS0-8859-1" indent=
"yes" />

<xsl:template match="/"> <?xml version="1.0"
encoding="IS0-8859-1"?>

199

200

Part | 4+ Introducing XML

After starting at the root element via the xs1: template element and the match
attribute with a value of /, [hard-code a root element for the new XML document
called catalogproducts. Next, the apply-templates element makes a selection of
all products in the source XML document, which are identified as the grandchildren
of the catalog element, using the abbreviated XPath operators (/gquotedoc/
catalog/*/*). The xs1:sort element is processed next. The data is not exactly
sorted right away, but node-set templates are sorted and processed simultaneously,
based on the sorting criteria. Note that the sorting takes place on the source data
and the original element names, not on the output and any new element names.

Stylesheet Output XML Document Result

<catalogproducts> <catalogproducts>

<xsl:apply-templates select=
"/quotedoc/catalog/*/*">

<xsl:sort select="asin |
isbn" data-type="number" order=
"ascending"></xsl:sort>

The apply-templates element calls the template element. The template ele-
ment contains a wildcard operator (*) that processes all the elements and text in
the node-set that it receives. The for-each select attribute contains the same
value. In a select attribute, however, the same character (*) instructs an XSLT pro-
cessor to transform the child elements of the current node-set only. By passing all
the product elements and their children, but only processing the children, [am able
to maintain the same structure for the product elements and children as they had
in the original document.

The original product structure is maintained, but there are two changes to the
products themselves for the new XML document. First, [rename the product ele-
ment to catalogproduct by adding a hard-coded element to the selected child
elements. The for-each statement will be called each time a new product and its
child elements are called, which will create a new catalogproduct element for
each original product element:

Stylesheet Output XML Document Result
<xsl:template match="*"> <catalogproduct>
<catalogproduct>

<xsl:for-each select="*">

Chapter 8 + XSL Transformations

Next, the ASTIN in the Amazon book records needs to be changed to an ISBN to be
consistent in all products. ASIN is Amazon’s unique ID for all items on their
Website, not just books. However, in this case, our listing only contains books,

so we want to maintain the ISBN identifier on all book records. To change the ASIN
element names to ISBN, | create a new variable called "isbnname" with the
xsl:variable element, then conditionally assign a value to the variable using the
xsl:choose element combined with the xs1 :when and the xs1:otherwise ele-
ments. Multiple xs1:when elements and a single xs1 :otherwise element can
only be children of the xs1 : choose element, and xs1:otherwise must be the
last child element. The xs1:if element can be used for the same effect in a simple
Boolean decision, but if there’s a possibility of adding additional decision condi-
tions in the future, xs1: choose is probably better to use from the start. This code
checks the name of the node using the name () function, and if the name is asin,
the xs1:when element renames it to isbn. The xs1:otherwise element catches
all other conditions and saves the name of the source element to the i sbnname
variable. This variable is used to assign a name to an element for each element in
the source XML document. If the source element was named asin, it’s renamed to
isbn, otherwise the original element name is passed to the new element name:

Stylesheet Output XML Document Result

<xsl:variable name="isbnname"> <isbn>1583488340</isbn>
<xsl:choose>

<xsl:when test="name()=
'asin'">isbn</xsl:when>

<xsl:otherwise>

<xsl:value-of select="name()"/>
</xsl:otherwise>

</xsl:choose>

</xsl:variable>

<xsl:element name="{S$isbnname}">

Next, the value of the current element, if any, is passed to the element as a value,
and then the element tag is closed. The process is repeated for each element that is
a child of a product element in the source document. Each time a new product ele-
ment child node-set is called, the for-each exits, and the catalogproduct ele-
ment closing tag is added to the output document:

201

202

Part | 4+ Introducing XML

Stylesheet

Output XML Document Result

<xsl:value-of select="."/>
</xsl:element>
</xsl:for-each>
</catalogproduct>

</xsl:template>

<catalogproduct>
<ranking>2</ranking>
<title>MacBeth</title>
<isbn>1583488340</isbn>

<author>Shakespeare,
William</author>

</catalogproduct>

Once all of the product elements are processed, control is passed back to the origi-
nal template that made the original apply-templates call. The hard-coded
catalogproducts root element closing tag is added to the XML document, and
processing is finished with the final xs1: template element closing tag:

Stylesheet

Output XML Document Result

</xsl:apply-templates>
</catalogproducts>

</xsl:template>

</catalogproducts>

Listing 8-5 shows the complete output for this stylesheet.

Listing 8-5: The XSLT Output Document

<?xml version="1.0" encoding="IS0-8859-1"?>

<catalogproducts>
<catalogproduct>
<ranking>2</ranking>
<title>MacBeth</title>

<isbn>1583488340</isbn>

<author>Shakespeare, William</author>

<small_image>http://images.amazon.com/images/P/
1583488340.01.TZ222272727.jpg</small_image>

Chapter 8 4 XSL Transformations (03

<list_price>$8.95</list_price>
<release_date>19991200</release_date>
<binding>Paperback</binding>
<availability />
<tagged_url>http://www.amazon.com:80/exec/obidos
/redirect?tag=associateid&benztechnonogies=9441
& camp=1793& link code=xml&path=ASIN/
1583488340</tagged_url>
</catalogproduct>
<catalogproduct>
<ranking>3</ranking>
<title>William Shakespeare: MacBeth</title>
<isbn>8420617954</isbn>
<author>Shakespeare, William</author>

<small_image>http://images.amazon.com/images/P/
8420617954.01.T%222272727.jpg</small_image>
<list_price>$4.75</list_price>
<release_date>19810600</release_date>
<binding>Paperback</binding>
<availability />
<tagged_url>http://www.amazon.com:80/exec/obidos/
redirect?tag=associateid&benztechnonogies=9441&
camp=1793& link_code=xml& path=ASIN/8420617954
</tagged_url>
</catalogproduct>
<catalogproduct>
<ranking>1</ranking>
<title>Hamlet/MacBeth</title>
<isbn>8432040231</isbn>
<author>Shakespeare, William</author>

<small_image>http://images.amazon.com/images/P
/8432040231.01.TZ222727272%7 . jpg</small_image>
<list_price>$7.95</list_price>
<release_date>19910600</release_date>
<binding>Paperback</binding>
<availability />
<tagged_url>http://www.amazon.com:80/exec/obidos
/redirect?tag=associateid&benztechnonogies=9441
& camp=1793& link_ code=xml&
path=ASIN/8432040231</tagged_url>
</catalogproduct>
<catalogproduct>
<titulo>Romeo y Julieta/Macbeth/Hamlet/Otelo/La
fierecilla domado/El suefio de una noche de verano/ El1
mercader de Venecia</titulo>
<isbn>8484036324</isbn>
<autor>Shakespeare, William</autor>

Continued

204 Partl + Introducing XML

Listing 8-5 (continued)

<imagen>http://libros.elcorteingles.es/producto/
verimagen_blob.asp?ISBN=8449503639</imagen>
<precio>7,59 m</precio>
<fecha_de_publicacidén>6/04/1999</fecha_de_publicacidn>
<Encuadernacién>Piel</Encuadernacidn>
<librourl>http://libros.elcorteingles.es/producto/
libro_descripcion.asp?CODIISBN=8449503639</librourl>
</catalogproduct>
</catalogproducts>

More advanced techniques: namespaces,

XSLT extensions, and fallbacks

The stylesheet in Listing 8-6 shows you a few more advanced techniques. This time
the stylesheet creates two namespaces and assigns them to catalog data depending
on the language of the source data, represented by the xm1 : 1ang predefined
attribute.

This stylesheet also shows an example of implementing XSLT extensions. The XSLT
document element is part of the XSLT 2.0 working draft. Currently, the result of XSL
transformations has to be passed to an external processor or object to be written
to a file. The document element adds the ability to produce transformation output
directly to a file without the aid of external objects or processors. The document
element will probably make it into the final XSLT 2.0 Recommendation, but some
XSLT engine developers have already added the functionality into their products as
an extension. EXSLT.org has implemented an extension interface that can be used to
implement the document element into stylesheets. For now, XSLT processors that
support EXSLT.org extensions can use the document element to produce an XML
document, and if not, the fallback element in the stylesheet produces normal

XSLT 1.0 transformation output.

Listing 8-6: The XMLtoCatalogNamespaces.xsl Stylesheet

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="1.0"
xmlns:azlist="http://www.benztech.com/xsd/amazonlist"
xmlns:ellist="http://www.benztech.com/xsd/elcorteingleslist"
xmlns:exsl="http://exslt.org/common" extension-element-
prefixes="exsl">

<xsl:import href="exsl/exsl.xsl"/>

Chapter 8 + XSL Transformations

<exsl:document href="exsloutput.xml" method="xml"
indent="yes">
<xsl:fallback>
<xsl:output method="xml" indent="yes"/>
</xsl:fallback>
</exsl:document>
<xsl:template match="/">
<catalogproducts>
<xsl:apply-templates select="/quotedoc/catalog/*/*[1]">
<xsl:sort select="asin | isbn" data-type="number"
order="ascending" />
</xsl:apply-templates>
</catalogproducts>
</xsl:template>
<xsl:template match="*">
<xsl:variable name="namespaceelementname">
<xsl:choose>
<xsl:when test="@xml:lang='es'">ellist</xsl:when>
<xsl:otherwise>azlist</xsl:otherwise>
</xsl:choose>
</xsl:variable>
<xsl:element
name="{Snamespaceelementname} :catalogproduct">
<xsl:for-each select="*">
<xsl:variable name="isbnname">
<xsl:choose>

<xsl:when test="name()='asin'">isbn</xsl:when>
<xsl:otherwise>
<xsl:value-of select="name()"/>

</xsl:otherwise>
</xsl:choose>
</xsl:variable>
<xsl:element
name="{$namespaceelementname} : { $isbnname} ">
<xsl:value-of select="."/>
</xsl:element>
</xsl:for-each>
</xsl:element>
</xsl:template>
</xsl:stylesheet>

In the interest of brevity, I'll omit most of what I have covered in previous examples.
After the XML declaration, there are few additional namespaces in the xs1:
stylesheet element, and an extension-element-prefixes element. The first
two namespaces are used to differentiate between the data in the XML source docu-
ment that comes from Amazon (az1list) and elcorteingles (ellist).

205

206

Part | 4+ Introducing XML

The exs1 namespace is used to define extension elements in the stylesheet. The
extension-element-prefixes attribute defines the exs1 namespace prefix as
an indicator of extension elements in the stylesheet. If more than one extension
Namespace prefix is being used, the extension-element-prefixes attribute
should contain a whitespace-delimited list of prefixes. The processor does not eval-
uate exs1 elements and expressions as W3C stylesheet elements, but follows the
rules specified in the EXSLT.org specifications and/or via imported stylesheets,
which in this case are imported from the exsl/exsl.xsl stylesheet using the
xsl:import element:

<xsl:stylesheet
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="1.0"
xmlns:azlist="http://www.benztech.com/xsd/amazonlist"
xmlns:ellist="http://www.benztech.com/xsd/elcorteingleslist"
xmlns:exsl="http://exslt.org/common" extension-element-
prefixes="exsl">

<xsl:import href="exsl/exsl.xsl"/>

The imported stylesheet can be downloaded from http://EXSLT. org, in the
downloads section, and implementation instructions for XSLT processor developers
and stylesheet developers are located at the site as well.

Next, the exs1:document element instructs the XSLT processor to create a new
output file in the same directory as the stylesheet, with the name exsloutput.xml.
Note that the esx1 : document element has the same attributes as the xs1:output
element, which makes creating the subsequent fallback element very easy. The
xsl:fallback element is used to provide an alternative for the extension element,
in case the processor does not support the extended element, or there is something
wrong with the extension implementation. The xs1 : fallback element is part of
the W3C XSLT 1.0 Recommendation and must be the child of an extension element.

In this case, the xs1: fallback element specifies that if the XSLT processor is
unable to process the esx1 : document element, the xs1 : output element should
be substituted, reverting the stylesheet to a basic XML-to-XML transformation:

<exsl:document href="exsloutput.xml" method="xml"
indent="yes">
<xsl:fallback>
<xsl:output method="xml" indent="yes"/>
</xsl:fallback>
</exsl:document>

Next, I create a new XML document for transformation output with a hard-coded
root element called catalogproducts.

The xs1:apply-templates select attribute elects all of the grandchildren (/*/*)
of the quotedoc/catalog element that appear in source document order. The [1]
conditional XPath expression instructs the processor to just retrieve the first child
that is encountered for each grandchild. Most developers would probably expect

Chapter 8 + XSL Transformations

that this would retrieve only one set of data, but because there are two grand-
children under the quotedoc/catalog element (amazon/product and elcorteingles/
product), the first grandchild each is selected:

<xsl:template match="/">
<catalogproducts>
<xsl:apply-templates select="/quotedoc/catalog/*/*[1]">
<xsl:sort select="asin | isbn" data-type="number"
order="ascending" />
</xsl:apply-templates>
</catalogproducts>
</xsl:template>

Now that the stylesheet has selected the two grandchildren to process, the name-
spaces for each grandchild must be assigned. One of the main things that sets the
elcorteingles elements apart from the amazon elements in the source document is
the xml :lang attribute, which is set to "es™" for the elcorteingles elements. Using
this difference, an xs1: choose element can assign the correct Namespace to a
local variable named namespaceelementname, which can be reused during the
transformation. If the xml : 1ang attribute exists and is set to "es",the ellist
namespace prefix is assigned; otherwise, the variable defaults to the azlist
Namespace prefix:

<xsl:template match="*">
<xsl:variable name="namespaceelementname">
<xsl:choose>
<xsl:when test="@xml:lang='es'">ellist</xsl:when>
<xsl:otherwise>azlist</xsl:otherwise>
</xsl:choose>
</xsl:variable>

Next, I select all the child elements of the product element and change the product
element name by hard-coding the catalogproduct element name and attaching
the Namespace prefix in the process. Then I select the children of each original
product element with the xs1: for-each element, and change any asin elements
in Amazon records to isbn elements using the i sbnname variable, as I did in the
last example. After defining all the variables needed to create a new element, the
stylesheet creates the new element that combines the current Namespace prefix
with the current variable value to create the new element value with a namespace
prefix attached, and adds the text value associated with the element.

The isbnname variable is reassigned each time a new element is encountered in
the source XML document, courtesy of the select attribute in the xs1: for-each
element. The namespaceelementname is reassigned each time the template finds
a match from the original select attribute at the top of the stylesheet.

<xsl:element
name="{$namespaceelementname}:catalogproduct">
<xsl:for-each select="*">

207

208 Partl + Introducing XML

<xsl:variable name="isbnname">
<xsl:choose>
<xsl:when test="name()='asin'">isbn</xsl:when>
<xsl:otherwise>
<xsl:value-of select="name()"/>
</xsl:otherwise>
</xsl:choose>
</xsl:variable>
<xsl:element
name="{$namespaceelementname} : { $isbnname} ">
<xsl:value-of select="."/>
</xsl:element>
</xsl:for-each>
</xsl:element>
</xsl:template>
</xsl:stylesheet>

Listing 8-7 shows the transformation output, with namespaces attached to each
individual book record, depending on the source.

Listing 8-7: Output from the XMLtoCatalogNamespaces.xsl
Transformation

<?xml version="1.0" encoding="UTF-8"?>
<catalogproducts
xmlns:azlist="http://www.benztech.com/xsd/amazonlist"
xmlns:ellist="http://www.benztech.com/xsd/elcorteingleslist">
<azlist:catalogproduct>
<azlist:ranking>l</azlist:ranking>
<azlist:title>Hamlet/MacBeth</azlist:title>
<azlist:isbn>8432040231</azlist:isbn>
<azlist:author>Shakespeare, William</azlist:author>
<azlist:image>http://images.amazon.com/images/P/
8432040231.01.MZ72%2727277.jpg</azlist:image>
<azlist:small_image>http://images.amazon.com/images/P/
8432040231.01.TZZ227272727%.jpg</azlist:small_image>
<azlist:list_price>$7.95</azlist:1list_price>
<azlist:release_date>19910600</azlist:release_date>
<azlist:binding>Paperback</azlist:binding>
<azlist:availability />
<azlist:tagged_url>http://www.amazon.com:80/exec/
obidos/redirect?tag=associateid&
benztechnonogies=9441& camp=1793&
link_code=xmlé&path=ASIN/8432040231
</azlist:tagged_url>
</azlist:catalogproduct>
<ellist:catalogproduct>
<ellist:titulo>Romeo y Julieta/Macbeth/Hamlet/Otelo/La
fierecilla domado/El suefio de una noche de verano/ El
mercader de Venecia</ellist:titulo>
<ellist:isbn>8484036324</ellist:isbn>

Chapter 8 + XSL Transformations

<ellist:autor>Shakespeare, William</ellist:autor>

<ellist:imagen>http://libros.elcorteingles.es/
producto/verimagen_blob.asp?ISBN=8449503639

</ellist:imagen>

<ellist:precio>7,59 n</ellist:precio>

<ellist:fecha_de_publicacidén>6/04/1999

</ellist:fecha_de_publicacidén>

<ellist:Encuadernacidén>Piel</ellist:Encuadernacidn>

<ellist:librourl>http://libros.elcorteingles.es/producto
/libro_descripcion.asp?CODIISBN=8449503639

</ellist:librourl>

</ellist:catalogproduct>
</catalogproducts>

XML to text

XML to text transformations are paradoxically very simple when implemented for
basic transformations and very complex for detailed requirements. This is usually
due to how an XSLT processor handles whitespace (tabs, new lines, carriage
returns, and spaces) in a document. W3C specifications are very explicit for some
aspects of whitespace, and vague for many others, so it’s usually up to the devel-
oper to be as explicit as possible about how whitespace should be preserved in
transformation output. There are two ways to manipulate whitespace in transfor-
mation output.

You can use the xs1:preserve-space element to preserve the whitespace from
the source XML document, and the xs1:strip-space to remove unwanted
whitespace. For a single element, the normalize-space () function can be used to
strip leading and trailing spaces, and replace any whitespace characters with a sin-
gle space character.

For our fairly simple example, however, the stylesheet is leaving the whitespace as-
is and showing one technique for maintaining other whitespace in the output XML.
Listing 8-8 shows the entire XMLtoCatalogText.xsl stylesheet.

Listing 8-8: The XMLtoCatalogText.xsl Stylesheet

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="1.0">
<xsl:output method="text"/>
<xsl:template match="/">
XML Bible Catalog Example:
<xsl:apply-templates select="/quotedoc/catalog/*/*">

Continued

209

Part | 4+ Introducing XML

Listing 8-8 (continued)

<xsl:sort select="asin | isbn" data-type="number"
order="ascending" />
</xsl:apply-templates>
-End of File-
</xsl:template>
<xsl:template match="*">
<xsl:for-each select="*[text ()]">"<xsl:value-of
select="."/>"<xsl:if test="position()!=last()">,
</xsl:if>
</xsl:for-each>
<xsl:text>
</xsl:text>
</xsl:template>
</xsl:stylesheet>

For this example, I start by changing the output method to text and hard-code an
example explanation as a heading in the text output:

<?xml version="1.0" encoding="UTF-8"7?>
<xsl:stylesheet
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="1.0">
<xsl:output method="text"/>
<xsl:template match="/">
XML Bible Catalog Example:

As in previous examples, the stylesheet sorts the data by the asin/isbn elements
in the original source XML document as the results are processed, even though
these elements will not be in the destination output. When the templates are fin-
ished building the output text, | add an -End of File- indicator to the text:

<xsl:apply-templates select="/quotedoc/catalog/*/*">
<xsl:sort select="asin | isbn" data-type="number"
order="ascending" />
</xsl:apply-templates>
-End of File-
</xsl:template>

The next template of the stylesheet is usually where things get tricky. The
xsl:preserve-space and the xsl:strip-space elements and the normalize-
space () are used to handle whitespace from the source document elements, not
add space in the output. Whitespace that is specified in an XSLT stylesheet has to
be explicitly declared in most places, because XSLT processor engines may handle
arbitrary hard-coding of spaces, carriage returns, tabs, and new lines differently. In
the case of the following example, the xs1 : for-each statement is explicitly

Chapter 8 + XSL Transformations

located in one long line rather than in a nested structure to be sure that an XSLT
processor that uses this stylesheet will not misinterpret a new line that formats an
element as a new line that needs to be added to the output. Conversely, each repre-
sentation of a book record in the source XML document should indicate an end-of
record with a new line, so an xm1 : text element has been added to the stylesheet
under the for-each element, with a hard-coded new line value as an entity refer-
ence (
).

Node selection is limited to text nodes only by using the conditional XPath expres-
sion as part of the select attribute (* [text ()]1). The rest of the output follows
basic delimited text rules, with text values being wrapped with double quotes and
separated by commas. The xs1:1f element checks to see if the element is the last
in the list and does not add the comma unless there are more elements for that
book record:

<xsl:template match="*">

<xsl:for-each select="*[text ()]">"<xsl:value-of
select="."/>"<xsl:if test="position()!=last()">,

</xsl:if>
</xsl:for-each>
<xsl:text>
</xsl:text>

</xsl:template>

</xsl:stylesheet>

Listing 8-9 shows the text file that results from this transformation. Each element
value is delimited with double quotes, and each set of elements is separated by a
new line character.

Listing 8-9: Results of the XMLtoCatalogText.xsl Stylesheet
Transformation

XML Bible Catalog Example:

"2", "MacBeth", "1583488340", "Shakespeare, William",
"http://images.amazon.com/images/P/1583488340.01.MZZZZZ2%Z.Jjpg",
"http://images.amazon.com/images/P/1583488340.01.Tz222272%2%.3pg",
"$8.95", "19991200", "Paperback",

"http://www.amazon.com: 80/exec/obidos/redirect?tag=associateid&
benztechnonogies=9441&camp=1793&1link_ code=xml&path=ASIN/1583488
340"

"3", "William Shakespeare: MacBeth", "8420617954",

"Shakespeare, William",
"http://images.amazon.com/images/P/8420617954.01.Mz2222272%.3pg",
"http://images.amazon.com/images/P/8420617954.01.TZZ2ZZZ2Z.jpg",
"$4.75", "19810600", "Paperback",

"http://www.amazon.com: 80/exec/obidos/redirect?tag=associateid&
benztechnonogies=9441&camp=1793&1link_code=xml&path=ASIN/8420617
954"

Continued

211

212

Part | 4+ Introducing XML

Listing 8-9 (continued)

"1", "Hamlet/MacBeth", "8432040231", "Shakespeare, William",
"http://images.amazon.com/images/P/8432040231.01 .MZZZZZ27Z.Jpg",
"http://images.amazon.com/images/P/8432040231.01.T7222222%Z.3pg",
"$7.95", "19910600", "Paperback",

"http://www.amazon.com: 80/exec/obidos/redirect?tag=associateids&
benztechnonogies=9441&camp=1793&1ink_code=xml&path=ASIN/8432040
231"

"Romeo y Julieta/Macbeth/Hamlet/Otelo/La fierecilla domado/El
sueAto de una noche de verano/ El mercader de Venecia",

"8484036324", "Shakespeare, William",
"http://libros.elcorteingles.es/producto/verimagen_blob.asp?ISB
N=8449503639", "7,59 &4,-", "6/04/1999", "Piel",

"http://libros.elcorteingles.es/producto/libro_descripcion.asp?
CODIISBN=8449503639"
-End of File-

XML to HTML

Just a few years ago, most XML, XSL, and even some HTML development was done
in simple text editors without the aid of customized tools for the job. Because of
the complexity of modern HTML page formats, XML data issues, and XSL stylesheet
development issues, XML to HTML conversions should not be attempted without
the aid of one of the many easy-to-use tools out there for formatting and debugging
XML, XSL, and HTML documents. The tool used to develop and debug the examples
in this chapter is ALtova’s XMLSPy 5 Enterprise Edition. A trial version can be
downloaded from http: //www.xmlspy.com.

For this example, Altova’s XMLSpy stylesheet designer was used to develop the
basic format of the stylesheet, and a few custom touches were added by hand.
Altova’s Stylesheet designer is a separate product from the XMLSpy Ul and is a
good environment for generating stylesheets by example. For the example in this
chapter, a DTD was added to the stylesheet designer, and HTML tables were created
from XML elements and attributes. The Altova stylesheet designer was very impres-
sive, and most of the formatting I needed was facilitated by dragging and dropping
element, attribute, and text nodes from the DTD to an example HTML page. Once
the overall format of the HTML page was completed, the Generate XSLT Stylesheet
option was used to generate a stylesheet called XMLtoCatalogHTML.xsl, which is
based on the original DTD and the target HTML page. There were a few small things
that could not be cleaned up in the stylesheet designer Ul, which does not permit
editing of the stylesheet directly. The stylesheet was saved and reopened in the
XMLSpy’s XML editor, and a few items were added, which are highlighted here.

Chapter 8 + XSL Transformations 13

The full XMLtoCatalogHTML.xsl stylesheet (the generated version is very repetitive
and much too long to print in the book) can be downloaded from the XML
Programmer’s Bible Website. Figure 8-1 shows the HTML output that was generated
by the transformation.

{7 B Fragunnnr's Filile %11 b ATI| Framgele linznenft It et Faplernt BT
Hiz LdH Wiew Fxwarbzs look dlelp =

P @ W B G| Pt e @ @3- B J BB

o 4 Ciliagon R\l sl e Quiahd v B =

Tiam Ynen the murtyburty’s dona, £ Wwhan the battie’s 051 and won.

S‘ukt_s Earg, Oul, damnad spodl ol | sayl-- Ore, twa, aty, Lk F 8, e, and afeard? Whial need we fear who knows it, when
VLarm novie can eall cur pawer b accaunt?--Yet whe. g § m; o in hirr?
51ake seare, | IS & dagger which | see belore me the hand £ P 2 nal, and vel | see thae =il Al thay nct. fatal wsion
Wlarm sensile 1o feeling as 10 sight? or art thou but a o o [2 hesal-aporessed brain?
A .'. Taw, and [-MOraw, and (a-morrow. creeg Iy pace i o L sylabie of recorded Urme: and ai our vestercays have igied foas the
Cil i =7 [+ 3 1 Life's shazow, & poof 2layer, 1hal snes and fess fis haur upon he stage. and then is heard ne mere: it &
Iae vl by 8 ot A 0f 50und and Tury, SIgrifying nath

£ Emar Image smal image | 151 pace | reieaze date | 2indag eveilahily | tagpad un
HaretkecEen FIEA0ZE | Shakespears, Wilkam 580 THEIUGI0 | Paseback AMAZon.com

15E40E040 | Sraki=gusne, Vilkan Ana5 13120 Fumnrhak e cann

BA20G1T P24 | Shakespears, Wilkam 3.7 U UGN Pegeback

arscio |2

Rermea v JuletaMacsenHamlelDieo/La femcila domadiVe] oy { s ¢ | ainariam
suefic de Lra noche de verana’ Bl mercader de Venacia o : |- u

Figure 8-1: HTML output that was generated by the transformation using
XMLtoCatalogHTML.xsl

Most of the code in the sample file will be very familiar to anyone who has worked
with or viewed HTML. However, what happened to get there is probably somewhat
new. For example, the following code segment contains the elements and attributes
that define the stylesheet and start template processing at the root element, just as
in the previous examples. Note that the generated stylesheet does not specify the
output method as HTML, via the xs1 : output element, but lets the processor fig-
ure it out via the HTML tag a few elements down in the stylesheet. This is accept-
able but not recommended for most stylesheets; it’s always best to define the
output method explicitly if possible. Next, there are a few hard-coded HTML tags
defining the HTML head and body. The TEXT and BGCOLOR attributes for the page
were hand-coded after stylesheet generation. The text is set to white, and the page
background is set to black.

214

Part | 4+ Introducing XML

The rest of this segment of the stylesheet takes the XSLT processor on a trip though
the node tree to get to the quotedoc/quotelist/quote element, before defining
a table heading (thead) for the table that will display the quotes from the XML doc-
ument. Elements are added using a combination of the xs1 : text element, the
disable-output-escaping attribute, which suppresses an XSLT processor’s nor-
mal conversion of illegal XML characters to their entity reference equivalent. In this
case, the less than (<) and greater than (>) symbols need to be wrapped around the
body tag to make it a well-formed HTML element. Once this is done, the table can
be formatted.

<?xml version="1.0" encoding="UTF-8"7?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="/">
<html>
<head>
<title>XML Programmer's Bible XML to HTML
Example</title>
</head>
<body title="XML Programmeré's Bible XML to HTML
Example" TEXT="000000" BGCOLOR="#000000">
<xsl:for-each select="quotedoc">
<xsl:for-each select="quotelist">
<xsl:for-each select="quote">
<xsl:1f test="position()=1">
<xsl:text disable-output-
escaping="yes">< table
border="0"></xsl:text>
</xsl:1if>
<xsl:1if test="position()=1">
<thead>
<tr>
<td style="background-color:white;
padding-bottom:5; padding-left:5;
padding-right:5; padding-top:5">

The next challenge was to get the URLSs for images and links that are stored in the
XML document formatted to be displayed and active on the HTML page. This was
done by wrapping some hard-coded element and tribute values around existing
templates. Here’s what the generated stylesheet values for the images looked like
before they were altered:

<td style="background-color:white;
padding-bottom:5; padding-left:5;
padding-right:5; padding-top:5">
<xsl:for-each select="small_image">
<span style="background-color:white;
font-family:Arial; font-size:small">

Chapter 8 + XSL Transformations

<xsl:apply-templates/>

</xsl:for-each>
</td>

In this case, the original elements were simply passed to the HTML page as table
data using the xs1:apply-templates element. However, the small_image ele-
ment contains a URL that could be used to display an image, so adding an HTML
img element with an src attribute that links to the image for display on the page
would probably be a better use for the data. To convert the URL to an image refer-
ence, the image element is wrapped around the value using the xs1:element ele-
ment, and the src attribute becomes the new location for the source XML
document URL:

<td style="background-color:white;
padding-bottom:5; padding-left:5;
padding-right:5; padding-top:5">
<xsl:for-each select="small_image">
<span style="background-color:white;
font-family:Arial; font-size:small">
<xsl:element name="img">
<xsl:attribute name="src">
<xsl:apply-templates/>
</xsl:attribute>
</xsl:element>

</xsl:for-each>
</td>

The same technique was applied to link URLs as well. Instead of just passing URLs
to the table as content, the URLs in the source XML document are converted to
active links in the HTML page by adding an HTML element and a related href
attribute, which is passed the value of the source document URL:

<td style="background-color:white;
padding-bottom:5; padding-left:5;
padding-right:5; padding-top:5">
<xsl:for-each select="tagged_url">
<span style="background-color:white;
font-family:Arial; font-size:small">
<xsl:element name="a"> <xsl:attribute
name="href"> <xsl:apply-templates/>
</xsl:attribute>Amazon.com
</xsl:element>

</xsl:for-each>
</td>

215

216 Partl + Introducing XML

Summary

In this chapter, you built on your introduction to XSLT in Chapter 7 and illustrated
several techniques for transforming various formats of XML to other formats of
XML, text, and HTML. I also reviewed ways to generate and format stylesheets that
convert XML to HTML using XMLSpy.

4+ XML to XML transformations

4+ XML to HTML transformations

4 XML to text transformations

4+ Advanced XSLT topics: conditions, variables, iteration, and sorting

4 XSLT extensions and fallbacks
In the next chapter, I'll expand on this knowledge to transform XML documents

using XSL: Formatting Objects (XSL:FO) to convert XML documents to PDF files,
PostScript, and other nonstandard document formats.

¢+ ¢

XSL Formatting
Objects

XSL Formatting Objects (XSL:FO) provides the capability
to dynamically format XML documents as “camera-

ready” artwork or printable pages. For example, let’s say that
a publishing house maintains content as standardized XML
documents. The source XML document can be transformed
into HTML and displayed on a Website, using techniques we
showed you in Chapters 7 and 8. With XSL:FO, the same
source XML document can also be the basis for a print ver-
sion of the article.

In Chapter 7, we applied the XSL theory covered in Chapter 6
to transform a sample XML file to other formats of XML, text,
and HTML. To do this, we used XSLT elements, functions, and
XPath expressions to perform the transformations. This chap-
ter will extend our HTML example from Chapter 8 further by
using XSL:FO in an XSL transformation to gain more control
over the output format. We’re using the same source XML
document, named AmazonMacbethSpanish.xml, for the exam-
ple in this chapter. This time, however, we're transforming an
XML document to a Portable Document format (PDF) file.

The XML document and XSL:FO Stylesheet examples con-
tained in this chapter can be downloaded from the
http://www.xmlprogrammingbible.com Website, in the
Downloads section.

CHAPTER

¢+ s+
In This Chapter

Transforming
XML documents to
PDF format

About the W3C
Extensible Stylesheet
Language (XSL)
Recommendation
XSL:FO syntax

FOP processors

Handling images in
XSL:FO

¢+ s+

Understanding XSL Formatting
Objects

The W3C stylesheet working group has actually produced two
parts to the Extensible Stylesheet Language Recommendation.
Chapter 7 introduced the XSL Stylesheet Transformation
(XSLT) 1.0 Recommendation, which describes the process of

218

Part | 4+ Introducing XML

applying an XSL stylesheet to an XML document using a transformation engine.
XSLT is based on DSSSL (Document Style Semantics and Specification Language),
which was originally developed to define SGML document output formatting.

XSLT 1.0 became a W3C Recommendation in 1999, and the full specification is
available for review at http: //www.w3.0org/TR/xslt. The second part of the
XSL 1.0 Recommendation is called Extensible Stylesheet Language (XSL) 1.0. XSL 1.0
achieved W3C Recommendation status on 15 October 2001. The 2001 XSL 1.0
Recommendation has more to do with XSL: Formatting Objects (XSL:FO) than XSL
transformations (XSLT). The Extensible Stylesheet Language (XSL) Version 1.0
Recommendation can be viewed at http://www.w3.o0rg/TR/xsl/.

XSL Formatting Objects (XSL:FO) is the biggest part of the 2001 XSL
Recommendation, so most developers refer to the XSL 1.0 Recommendation as
XSL:FO, which describes the page formatting part of the Recommendation docu-
ment. XSL:FO is a page description language that converts an XML document into
an electronic presentation format. To create a useful presentation, you need to be
able to assign page events to the part of an application that will display content on
a screen. That’s relatively hard to do with a single, unframed XML or HTML docu-
ment that flows from top to bottom without page start, end, and column markers.

XSL:FO addresses page structure issues by breaking down a page into headers,
footers, left and right margins, columns, and lines. XSL:FO Regions contain text
blocks, and text blocks can contain just about any type of content that can be
displayed as text.

When the XSL:FO Recommendation was released in 2001, there were high hopes
among XML developers that browsers would implement XSL:FO adapters. Such a
feature would provide developers with much more control over page layouts than
any competing formatting standards today. HTML, XHTML, and CSS, for example,
are great for rapidly developing content and separating presentation from data, but
none of them can provide developers with the same layout control of a Windows
client application, or other type of application that supports rich text formats.

Alas, currently there are no XSL:FO adapters or plug-ins on the market for main-
stream browsers, though some niche browsers do support XSL:FO page formatting.
There has been, however, a great deal of interest in one aspect of XSL:FO: trans-
forming XML data to PDF files. Most of the activity in XSL:FO revolves around pro-
ducing PDFs from XML data, which is the example covered later in this chapter.

Adobe Portable Document Format (PDF) is a universal file format that preserves all
the fonts, formatting, graphics, and color of any source document, regardless of the
application and platform used to create it. Adobe PDF files are compact and can be
shared, viewed, navigated, and printed — but by default, not edited — by anyone
with free Adobe Acrobat Reader software or any other compatible reader (MS Word
2003 supports reading and editing of PDFs). When a solution requires a document
that can be easily and efficiently transported and printed without loss of the origi-
nal document format, PDF is the most common format chosen.

Chapter 9 4 XSL Formatting Objects 2719

Understanding FOP Servers

XSL Transformations need an XSLT processor to make transformations happen. In
the same way, XSL:FO processing requires a FOP (Formatting Objects Processor)
engine to make XSL:FO processing happen. XML that is formatted with XSL:FO tags
is fed into a FOP, which produces a print-ready document. XSL:FO theoretically sup-
ports the display output in a number of common output standards: Portable
Document Format (PDF), Hewlett-Packard PCL Printer Format, PostScript, Rich Text
Format (RTF), Standard Vector Graphics (SVG), Java AWT events (content is
described and displayed as graphics), the Maker Interchange Format (MIF) for
Adobe FrameMaker, and text.

The original and most popular FOP server is the Apache FOP server, which is dis-
tributed as open source software, and can be found at http://xml .apache.
org/fop. The engine can be downloaded and run from a command prompt, or inte-
grated with one of several XSL:FO editors on the market, a partial list of which can
also be found at http://www.xmlsoftware.com/xslfo.html. Alist of other
XSL:FO tools, including several FOP servers for several platforms and languages,
can be viewed at http://www.xmlsoftware.com/xslfo.html.

Converting XML to PDF

As we’ve indicated earlier in this chapter, currently the most popular task for
XSL:FO is to transform and display XML data in PDF format. On top of that, the
most popular FOP engine is the Apache FOP processor. With this in mind, we’ve put
together an example that converts an XML document to a PDF using the Apache
FOP server.

Although the Apache FOP server can be run from the command line, there are sev-
eral editing tools that integrate the FOP server for syntax checking, previewing, and
debugging. As we did in previous chapters, we're using XMLSpy to develop a
stylesheet and preview it using Acrobat (a free trial version of XMLSpy can be
found at http://www.xmlspy.com). The Apache FOP engine, or any other engine
that can be run from the command line, can be easily integrated with XMLSpy.

When compared to XSL, XSL:FO stylesheets are even more verbose and complex,
which is one of the factors that has hampered XSL:FO marketplace adoption so far.
On top of this, there are numerous formatting options for XSL:FO output that you’ll
be tempted to fuss with. The simple example that later in this chapter results in a
two-page PDF that shows a table with a few rows of data in it. The XSL:FO output
for this document generates a 378-line stylesheet. We highly recommend using a
FOP-compliant editor to create XSL:FO stylesheets, to save you time and sanity.
Figure 9-1 shows the XMLSpy Stylesheet designer displaying the contents of the
XSL:FO stylesheet. XMLSpy supports previewing an XML document in an IE browser
and an Adobe PDF client directly in the Ul, which is a great time saver for iterative
development.

220 Partl + Introducing XML

& Shyls ICProgram FilssiovalXMESPYERamplss XM bl XML P DF <ps] * [KML TG Tor Browser previcw: CrTogram Fiissnioy... /e
Hle Edit Insert Jable Authentic HTML Import Properties lTgols Help
S o | Te WY S
mal (S
; | |88
: Fd IJ::LmemRoc . = a
50 cuelods r-AmazonMacbethSpanish.xml Transformed to a PDF using
=4} queleid
= aur XSL:F O
% e I ey
+4) quis
74} catakg source author
¥ T Gobal Templatea

Em=(contents)@=l Emm(contents) @ | (rest-of-contents)
title asin author |image small_image
Eﬁ?nt@ms] k=r(contents)@nl kswy(contents) e |y B ey | Eslme(contents el

TEXT 5TYLE - y S e

T - T 3 .J: (amazon {catelg] (qas ."— tedan 2 Fatelag Rlararg .}pr.\i,n,\ : i i

fortaze lamer w2 titulo isbn | autor imagen | precio

ferisiyi= x]- t +

et B = (contents) @@ | Em({contents) i(contents)@l = = = E=(contents’
P —— il e
WW < produc] « Serenghes celaing] < quolecus] 4]
[ElOCKETrE

= I [l<] | »
-
Cokr | Ted | Poaton | L4 | v| |L|# ['\Oesign | Document | ¢ KSLT Stytesheet 5, HTUL Prevew . XSLFQ), POF Freview |

[2pen an =wsting document [

Figure 9-1: Working with the XMLSpy Stylesheet Designer

Figure 9-2 shows the final result of the transformation and FOP processing, saved
on the file system as a PDF and opened in the Adobe Acrobat PDF reader.

Let’s review the XSL:FO stylesheet, named XMLtoPDF.xsl, which we’re using for this
example. It transforms our sample AmazonMacbethSpanish.xml document into a
PDF. We'll break it down by segment for you so you can get a better understanding
of what is happening in each piece when it is passed to a FOP server.

YA The because at 378 lines, it's simply too long, and all three of the tables in the exam-

Wn We haven't included the entire stylesheet in the printed version of the book
A ‘Web

ple output use the same functionality, so the final two-thirds of the stylesheet has
no new information. As mentioned before, the XSL:FO stylesheet can be quite ver-
bose, so if you have an XML editor available on a nearby computer that formats
and color-codes XSL stylesheets and is XSL:FO compliant, you can download the
full file at http: / /www.XMLProgrammingBible.com and follow along with
the descriptions here.

Chapter 9 + XSL Formatting Objects 0]

ila Edit msm Tools View Window Help =
BES&- #Hd-E < rn ¢ [@a-TGlom - BEED 2|8

Untats Frrm— D T Ry
et ek

Uty R ——

7 rnn
bl K ey P,y b
b et o sk £7 bt reed etk
e 4 sy e o o e 1
aczana?. o aks mal o fragh il ol
rania ksl raeh boed s

Uity EER—— bl g i Liom Lt i Boelisith

Untaty R ——

-- an b rags [T [FETSI [(e

[rm— bhzanwin | shobaser il 43 tmim | opeect

ETS i akn 3 FSTTRY [PINFI [F— [T [T

Ui, [E=T fr— [[ETEC Py

Woa| 1of2 b AixBSn O = B

Figure 9-2: PDF output that was generated by the XSL:FO transformation using
XMLtoCatalogHTML.xsl

The first part of the document is a straightforward XML declaration, followed by an
xs1 and fo namespace declaration. XSL-FO uses the xmlns:fo = "http://
www.w3 .0org/1999/XSL/Format namespace to identify Formatting Object ele-
ments. This can be confusing, because the part of the Recommendation that
includes XSL:FO is the 2001 XSL Recommendation, the full text of which can be
found at http://www.w3.org/TR/xs1.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns: fo="http://www.w3.0rg/1999/XSL/Format">

Next, an XSL variable declaration defines the layout of the page by using 1ayout-
master-set as a variable name. A layout-master-set is a container for one or
more page masters. This example has one page master, with a name of default-
page-master. default-page-master defines parameters for global page layout
settings, such as page margins and page sizes. Note that in this example we use a
landscape page format by simply reversing the default portrait page measurements
(page-height="11in" page-width="8.5in") to landscape (page-height=
"8.5in" page-width="11in").

2272 Partl + Introducing XML

Page masters contain regions of a page, which define information for the header,
footer, and body of the page. The region-before and region-after regions
contain header information, and in this case act as a page header and footer. The
extent attribute of region-before and region-after indicate the actual size
of the header and footer. In this case, the extent is set to 0, meaning that the
header and footer on this page are just there to contain header and footer margins,
not content. The body region never has an extent attribute, because its extent is
whatever is left of the page when all of the page margins and header/ information
are set within the page layout.

ﬁlote The page-height and page-width specify the outside bounds of a printable page,
-~ and are offset by any margins. For example, an 8.5 inch page-width and an 11
inch page-height with top, bottom, left, and right margins of 1 inch results in a
printable area of 7.5 inches X 10 inches on the page output. Additionally, margins
in the region-before, region-after, and region-body specify other off-
sets to the page layout that separate printable output in regions of the page.

<xsl:variable name="fo:layout-master-set">
<fo:layout-master-set>
<fo:simple-page-master master-name="default-page-master" page-
height="8.5in" page-width="11in" margin-top="0.79in" margin-
bottom="0.79in" margin-left="0.6in" margin-right="0.6in">
<fo:region-before margin-right="0.6in" extent="0cm"/>
<fo:region-body margin-top="0cm" margin-bottom="0cm" font-
family="Helvetica, Times,Courier" font-size="14pt" line-
height="16pt"/>
<fo:region-after extent="0cm"/>
</fo:simple-page-master>
</fo:layout-master-set>
</xsl:variable>

Next is a standard XSLT template element with a match attribute that we covered in
Chapters 7 and 8. That’s a good reminder that this is still an XSL stylesheet, despite
all of the XSL:FO formatting taking place. The next line is the fo:root element,
which is the root element of a XSL:FO output document format. Next, the layout-
master-set variable that defined earlier in the stylesheet is passed to the output
during transformation.

A couple of empty block, start-content, and £1ow elements are defined next.
These are empty because their region-before and region-after containers
are empty. £1low represents text that will flow from one page to another, and
static-content represents text that will be the same on every page.

<xsl:template match="/">
<fo:root>
<xsl:copy-of select="S$fo:layout-master-set"/>
<fo:page-sequence master-reference="default-page-master">
<fo:static-content flow-name="xsl-region-before">
<fo:block/>

Chapter 9 4+ XSL Formatting Objects

</fo:static-content>

<fo:static-content flow-name="xsl-region-after">
<fo:block/>

</fo:static-content>

The next line is a result of typing text values into the XMLSpy stylesheet designer.
Based on the placement of the text, the stylesheet designer decided that the text
was part of the output body, which places it at the top of the first page of the PDF
output. The output displays a title that says “AmazonMacbethSpanish.xml
Transformed to a PDF using XSL:FO.”

A manual font size change generates the inline font-size element, which con-
trols in-line font changes in body text. In-line fonts are fonts that may change inside
a text block. For example, italics in a sentence that is otherwise regular text consti-
tutes two in-line fonts, italic and regular, for that sentence. Because the in-line
font-size is a single value, it can be inherited from the previously defined
fo:region-body font value. Note the XML s&apos entity references, which are
converted to single quotes in the final output.

<fo:flow flow-name="xsl-region-body">
<fo:block>
<fo:inline font-size="inherited-property-value ('
font-size') + 4pt">AmazonMacbethSpanish.xml Transformed to
a PDF using XSL:FO</fo:inline>

Next comes the processing of the quotes in the table. An xs1: for-each processes
all of the quotes, each of which starts with a quote element. For each quote ele-
ment encountered, XSL:FO creates a new table row. In each row, for each new ele-
ment encountered, the FO processor creates a table column.

The select statements contain XPath expressions that iterate through each value
under the quotelist/quote element in the source XML document. A three-
column table header is created, and columns are defined to contain values from the
XML document.

<xsl:for-each select="quotedoc">
<fo:block>
<fo:leader leader-pattern="space"/>
</fo:block>
<xsl:for-each select="quotelist">
<xsl:for-each select="quote">
<xsl:if test="position()=1">
<fo:table width="100%" space-before.optimum="4pt"
space-after.optimum="4pt">
<fo:table-column/>
<fo:table-column/>
<fo:table-column/>
<fo:table-header>
<fo:table-row>

223

224 Partl + Introducing XML

For each table column, a table-cell is defined. Table cell borders are solid black
and match the white background of the page.

<fo:table-cell background-color="white" padding-
after="5pt" padding-before="5pt" padding-
end="5pt" padding-start="5pt" border-
style="so0lid" border-width="1pt" border-
color="black">

Each table-cell contains a block, which contains information about the format-
ting of that block. Next, content is placed in the block. The first row of the table is
the table header, so a hard-coded text description is passed to the table header
row. The first two headings have values (source and author) .

<fo:block>
<fo:inline background-color="white" font-
size="inherited-property-value (' font-
size') - 2pt">source</fo:inline>
</fo:block>
</fo:table-cell>
<fo:table-cell background-color="white" padding-
after="5pt" padding-before="5pt" padding-
end="5pt" padding-start="5pt" border-
style="solid" border-width="1pt" border-
color="black">
<fo:block>
<fo:inline background-color="white" font-
size="inherited-property-value (' font-
size') - 2pt">author</fo:inline>
</fo:block>
</fo:table-cell>

The third column heading is intentionally left blank. There is a definition for the
table-cell, but the block is blank. The block tag still needs to be included to
meet XSL:FO requirements, even if it is empty.

<fo:table-cell background-color="white" padding-
after="5pt" padding-before="5pt" padding-
end="5pt" padding-start="5pt" border-
style="so0lid" border-width="1pt" border-
color="black">
<fo:block/>
</fo:table-cell>
</fo:table-row>
</fo:table-header>
<fo:table-body>

Chapter 9 4+ XSL Formatting Objects

Next, another row is defined for the table using the table-row element.

<xsl:for-each select="../quote">
<fo:table-row>

This row matches the characteristics of the heading row, but this time referenced
values from the original XML document are passed instead of hard-coded values.

<fo:table-cell background-color="white"
padding-after="5pt" padding-before="5pt"
padding-end="5pt" padding-start="5pt"
height="24pt" border-style="solid" border-
width="1pt" border-color="black">

The value of the source attribute is placed in the table-cell using the XPath
@source reference expression to get the value of the attribute (value-of-
select=.). The block defines the display for the cell, and inherits the font-size
from the previously defined size value.

<fo:block>
<xsl:for-each select="@source">
<fo:inline background-color="white" font-
size="inherited-property-
value (' font-size') - 2pt">
<xsl:value-of select="."/>
</fo:inline>
</xsl:for-each>
</fo:block>
</fo:table-cell>

The value of the author attribute is placed in the table-cel1 using the XPath
@author reference expression. Font attributes are unchanged from the previous
cell.

<fo:table-cell background-color="white"
padding-after="5pt" padding-before="5pt"
padding-end="5pt" padding-start="5pt"
height="24pt" border-style="solid" border-
width="1pt" border-color="black">
<fo:block>
<xsl:for-each select="@author">
<fo:inline background-color="white" font-
size="inherited-property-
value (' font-size') - 2pt">
<xsl:value-of select="."/>
</fo:inline>
</xsl:for-each>
</fo:block>
</fo:table-cell>

225

226 Partl + Introducing XML

The text value of the quote is placed in the table-cell using the XPath text ()
reference expression. No value-of-select expression is needed this time,
because there is only one value returned by text () - text. Font attributes are
unchanged from the previous cell.

<fo:table-cell background-color="white"
padding-after="5pt" padding-before="5pt"
padding-end="5pt" padding-start="5pt"
height="24pt" border-style="solid" border-
width="1pt" border-color="black">
<fo:block>
<fo:inline background-color="white" font-
size="inherited-property-value (' font-
size') - 2pt">
<xsl:apply-templates select="text()"/>
</fo:inline>
</fo:block>
</fo:table-cell>

Once all of the quotes in the source XML document have been added to their own
row in the three-column table, the table tags and the for-each are closed, ending
this table in the XSL:FO output.

</fo:table-row>
</xsl:for-each>
</fo:table-body>

</fo:table>
</xsl:if>

</xsl:for-each>

</xsl:for-each>

</xsl:for-each>

Next comes the processing of the book listing values from the original XML docu-
ment. An xs1: for-each processes all of the book listings, each of which starts
with a quotedoc element. XSL:FO creates a new table row for each book listing,
which is located under the quotedoc/catalog/amazon/product or quotedoc/
catalog/elcorteingles/product element. In each row, for each new element
encountered, the FO processor creates a table column. The table rows and columns
repeat in the same pattern for the rest of the stylesheet, except for one graphic ref-
erence, which we will point out a little later.

The select statements contain XPath expressions that iterate through each value
under the quotedoc/catalog/amazon/product or quotedoc/catalog/
elcorteingles/product element in the source XML document. As in the previ-
ous table, a table header is created for each of the nine columns in the new table.
Columns are defined to contain values from the XML document.

<xsl:for-each select="quotedoc">
<xsl:for-each select="catalog">
<xsl:for-each select="amazon">

Chapter 9 4+ XSL Formatting Objects

<xsl:for-each select="product">

<xsl:if

test="position()=1">

<fo:table width="100%" space-before.optimum="4pt"
space-after.optimum="4pt">

<fo:
<fo:
<fo:
<fo:
<fo:
<fo:
<fo:
<fo:
<fo:
<fo:

table-column column-width="148pt"/>
table-column/>
table-column/>
table-column/>
table-column/>
table-column/>
table-column/>
table-column/>
table-column/>
table-header>

<fo:table-row>

For each column in the table, a table-cell is defined. To match the previous
table, cell borders are solid black and match the white background of the page.

<fo:table-cell background-color="white"
padding-after="5pt" padding-before="5pt"
padding-end="5pt" padding-start="5pt"
height="36pt" width="148pt" border-
style="so0lid" border-width="1pt" border-
color="black">

Each table-cell contains a block, which contains information about the format-
ting of that block. The first row of the table is the table header, so a hard-coded
text description is passed to each column heading in the row. The first column

heading is title.

<fo:block>
<fo:inline background-color="white" font-
size="inherited-property-value (' font-
size') - 2pt">title</fo:inline>
</fo:block>
</fo:table-cell>
<fo:table-cell background-color="white"
padding-after="5pt" padding-before="5pt"
padding-end="5pt" padding-start="5pt"
height="36pt" border-style="solid" border-
width="1pt" border-color="black">
<fo:block>

The second column heading is asin.

<fo:inline background-color="white" font-
size="inherited-property-value (' font-
size') - 2pt">asin</fo:inline>
</fo:block>
</fo:table-cell>

227

228

Part | 4+ Introducing XML

<fo:table-cell background-color="white"
padding-after="5pt" padding-before="5pt"
padding-end="5pt" padding-start="5pt"
height="36pt" border-style="solid" border-
width="1pt" border-color="black">

The third column heading is author.

<fo:block>
<fo:inline background-color="white" font-
size="inherited-property-value (' font-
size') - 2pt">author</fo:inline>
</fo:block>
</fo:table-cell>
<fo:table-cell background-color="white"
padding-after="5pt" padding-before="5pt"
padding-end="5pt" padding-start="5pt"
height="36pt" border-style="solid" border-
width="1pt" border-color="black">

The fourth column heading is image.

<fo:block>
<fo:inline background-color="white" font-
size="inherited-property-value (' font-
size') - 2pt">image</fo:inline>
</fo:block>
</fo:table-cell>
<fo:table-cell background-color="white"
padding-after="5pt" padding-before="5pt"
padding-end="5pt" padding-start="5pt"
height="36pt" border-style="solid" border-
width="1pt" border-color="black">

The fifth column heading is small_image.

<fo:block>
<fo:inline background-color="white" font-
size="inherited-property-value (' font-
size') - 2pt">small_image</fo:inline>
</fo:block>
</fo:table-cell>
<fo:table-cell background-color="white"
padding-after="5pt" padding-before="5pt"
padding-end="5pt" padding-start="5pt"
height="36pt" border-style="solid" border-
width="1pt" border-color="black">

Chapter 9 4+ XSL Formatting Objects

The sixth column heading is 1ist_price.

<fo:block>
<fo:inline background-color="white" font-
size="inherited-property-value (' font-
size') - 2pt">list_price</fo:inline>
</fo:block>
</fo:table-cell>
<fo:table-cell background-color="white"
padding-after="5pt" padding-before="5pt"
padding-end="5pt" padding-start="5pt"
height="36pt" border-style="solid" border-
width="1pt" border-color="black">

The seventh column heading is release_date.

<fo:block>
<fo:inline background-color="white" font-
size="inherited-property-value (' font-
size')-2pt">release_date</fo:inline>
</fo:block>
</fo:table-cell>
<fo:table-cell background-color="white"
padding-after="5pt" padding-before="5pt"
padding-end="5pt" padding-start="5pt"
height="36pt" border-style="solid" border-
width="1pt" border-color="black">

The eighth column heading is binding.

<fo:block>
<fo:inline background-color="white" font-
size="inherited-property-value (' font-
size') - 2pt">binding</fo:inline>
</fo:block>
</fo:table-cell>
<fo:table-cell background-color="white"
padding-after="5pt" padding-before="5pt"
padding-end="5pt" padding-start="5pt"
height="36pt" border-style="solid" border-
width="1pt" border-color="black">

The ninth column heading is availability.

<fo:block>
<fo:inline background-color="white" font-
size="inherited-property-value (' font-
size') -
2pt">availability</fo:inline>
</fo:block>

229

2350

Part | 4+ Introducing XML

</fo:table-cell>
</fo:table-row>
</fo:table-header>

Next, a table-body is defined for the table. Each value that matches the
.. ./product XPath expression creates a new row in the table-body.

<fo:table-body>
<xsl:for-each select="../product">

A new row is defined for the table using the table-row element. This row matches
the characteristics of the heading row, but as in the last table; referenced values
from the original XML document are passed instead of hard-coded heading values.
The values that appear under each column heading are selected using XPath
expressions and placed in their cell blocks.

<fo:table-row>
<fo:table-cell background-color="white"
padding-after="5pt" padding-before="5pt"
padding-end="5pt" padding-start="5pt"
width="148pt" border-style="solid" border-
width="1pt" border-color="black">
<fo:block>
<xsl:for-each select="title">
<fo:inline background-color="white"
font-size="inherited-property-
value (' font-size') - 2pt">
<xsl:apply-templates/>
</fo:inline>
</xsl:for-each>
</fo:block>
</fo:table-cell>
<fo:table-cell background-color="white"
padding-after="5pt" padding-before="5pt"
padding-end="5pt" padding-start="5pt"
border-style="s0lid" border-width="1pt"
border-color="black">
<fo:block>
<xsl:for-each select="asin">
<fo:inline background-color="white"
font-size="inherited-property-
value (' font-size') - 2pt">
<xsl:apply-templates/>
</fo:inline>
</xsl:for-each>
</fo:block>
</fo:table-cell>

Chapter 9 4+ XSL Formatting Objects

<fo:table-cell background-color="white"
padding-after="5pt" padding-before="5pt"
padding-end="5pt" padding-start="5pt"
border-style="s0lid" border-width="1pt"
border-color="black">
<fo:block>
<xsl:for-each select="author">
<fo:inline background-color="white"
font-size="inherited-property-
value (' font-size') - 2pt">
<xsl:apply-templates/>
</fo:inline>
</xsl:for-each>
</fo:block>
</fo:table-cell>

We've removed a few of the table-cell and block references for the rest of this table
because they are all the same, with different values, and we're pretty sure you get
the idea by now. All of the cell references in this table are basically the same, except
for the next one. In this case, we are passing the literal value of URLSs to the output
as image references. The image references in this case link to the Amazon Website
and display a small graphic of the book cover in the output. This is facilitated
through the fo:external-graphic element, which creates a src attribute for the
image. The src attribute refers to the source for the graphic reference, which in
this case is the value of the content in the cell, accessed via the xs1:value-of-
select element.

<fo:table-cell background-color="white"
padding-after="5pt" padding-before="5pt"
padding-end="5pt" padding-start="5pt"
border-style="s0lid" border-width="1pt"
border-color="black">
<fo:block>
<xsl:for-each select="image">
<fo:external-graphic space-
before.optimum="4pt" space-
after.optimum="4pt">
<xsl:attribute
name="src">url ('<xsl:value-of
select="."/>")</xsl:attribute>
</fo:external-graphic>
</xsl:for-each>
</fo:block>
</fo:table-cell>

The actual stylesheet continues on for several hundred more lines and is a repeat of
what you’ve seen so far. The complete file can be downloaded at http: //www.
XMLProgrammingBible.com.

231

2372 Partl + Introducing XML

Summary

In this chapter, you were introduced to XSL:FO and the Apache FOP server, and
learned about:

4+ The difference between the 1999 XSLT and 2001 XSL W3C recommendations

4 The history of XSL:FO

4+ FOP servers

4 The Apache FOP Server

4 Output formats for XSL:FO

4 Using XSL and XSL:FO to produce PDF output

4+ Formatting options for XSL:FO output documents
This chapter concludes the introduction to XML concepts. Now that you have a
solid understanding of the fundamentals of XSML, DTD, Schemas, Parsing, XSL, and
XSL:FO, you will move on to apply these concepts to practical use. The next part of
the book covers the use of XML in Microsoft Windows applications, including more
details on the Microsoft Core Services (MSXML), and working with XML in MS office

applications. After that, we’ll cover the “other” side of XML: working with XML in
J2EE.

+ o+ ¢

Microsoft Office
and XML

Part I provides examples of generating XML from MS
access data as well as creating an Excel spreadsheet
from an XML data source. These examples illustrate MS-
Specific techniques for parsing and generating MS-Derived
XML. We review the sample code in the chapters line-by line
so that previous VBA/VB code knowledge is not necessary
to understand and work with the examples.

1]

+ 4+ o+
In This Part

Chapter 10
Microsoft XML Core

Services

Chapter 11
Working with the
MSXML DOM

Chapter 12
Generating XML from
MS Access Data

Chapter 13
Creating an Excel
Spreadsheet from an
XML Data Source

+ 0+ o+

CHAPTER

Microsoft XML
Core Services

+ o+ e

In This Chapter

.) . . How to install
icrosoft is a strong presence in both its use and pro- MSXML
motion of XML for building business and consumer

applications. Many if not all of the applications Microsoft
develops for the software market use XML in some way. In like
manner, Microsoft has crafted its Windows platform and
development tools while giving XML an increasingly promi-
nent role.

How to implement
side-by-side versions

Basic features and
an introduction fo

This chapter is about the services Microsoft has provided for the DOM

working with XML on Windows, its MSXML component library.)

The focus here is on Microsoft’s pre-NET software develop- New objects added
ment environment, COM. The .NET XML toolset is extensive fo MSXML

enough to require a separate discussion, which it does in

other chapters of this book. In this chapter you will learn + + + +
about how to install MSXML and get started using its core fea-

tures. You will learn about how MSXML is versioned and how

to keep things straight when side-by-side versions are

installed. You will learn about how it parses and what new

objects have been most recently added.

Getting Started

Early on, Microsoft introduced its XML parser and made it
available via download. However, it was really an adjunct util-
ity. Additionally, its faithful adherence to the evolving W3
standard XML was sometimes not without error. As time has
passed, Microsoft has worked with other major software ven-
dors in the evolution of the XML standard itself and its uses.
Microsoft has also made significant advances to the simple
XML parser that was once an optional download. In this chap-
ter, we will take a closer look at the Microsoft XML parser con-
tained in MSXML (version 4.1 as of this writing). The latest
version of the parser offers significant advances over the pre-
vious versions. We will not explore a complete side-by-side
comparison of the versions here, because our focus is mainly

236

Part Il ¢+ Microsoft Office and XML

on the latest, greatest version of the parser itself. However, we will point out a few
significant issues as they arise in order to save you time when either installing or
upgrading your MSXML version.

Microsoft’s MSXML supplies a generous class library that makes it possible to do a
lot of things with XML. At the heart of XML is the capability to easily read and
manipulate data. But the changing nature of Web applications means that a decent
XML toolset must make it possible to send XML content to a variety of displays and
to convert it to a variety of structures. At the same time, the need for data integrity
is critical to any serious application. Additionally, the toolset must be approach-
able, easy to use, and straightforward in its implementation. Given these and other
requirements in the real world, MSXML provides the following:

4 A rich Document Object Model (DOM) for doing simple and advanced
operations with XML

4 An XSLT processor that allows you to write code for converting XML content

4 Support of schemas using XSD, DTDs, and XDR

4 Support for SAX (Simple XML API)

4+ New objects for using XML on the Web

But first things first. Before any of these benefits are accessible, you need to get
MSXML installed.

System requirements and installation

With newer versions of the Windows operating system, MSXML comes installed.
This should tell you something about what customers have requested to be pre-
installed and what dependencies Windows programs have on XML. Windows XP
comes with MSXML installed as does Windows.NET. Nonetheless, you may want to
install MSXML on an operating system that does not yet have it installed, or you
may want to explicitly update the version running on your operating system. It may
seem obvious, but just in case someone out there is still running a 16-bit Microsoft
0OS, you need a 32-bit OS to run the MSXML services. That’s the bare minimum
requirement. Candidates for an MSXML installation include:

4 Windows 98
4 Windows Millennium
4 Windows NT 4.0

4 Windows XP
4 Windows.NET

Chapter 10 4 Microsoft XML Core Services

Installing Microsoft Core XML Services (MSXML) is pretty easy. You need to down-
load MSXML from Microsoft’s MSDN Website (http://msdn.microsoft.com).
Go to the Downloads area of the site to find the download for Microsoft XML Core
Services. This download (fortunately provided in many languages) will contain both
the core MSXML files and the MSXML SDK. When you run the installation package,
you will be able to choose what you want to install. To do this, you will need to
choose a custom installation (a good choice no matter what you install on your
computer) instead of using the standard installation set. If you decide to customize,
you will be presented with two main features of the installation as shown in Figure
10-1. On your development workstation, it is a good idea to install the SDK, which
includes documentation and an IDL and header files for use with C++.

& Microsoft XML Parser and SDK Setup

Custom Setup —,
Seleck the way you want Features to be installed, e_"c)
Clhick on the icans in the tres below to change the way features wil be instaled.

Microsaft XML Parser

This Feature requires 1573KE on your hard drive,

[Reset] [Disk. Usage | | < Back | | Install Mows] [Cancel |

Figure 10-1: Choosing to install the SDK and/or the
XML parser

While these files are useful for developer workstations, you would not want to use
this installation package for deployments on production servers and workstations.
If you build an application that depends on MSXML, you should use the redis-
tributable package titled “CAB File for Redistribution” on the Microsoft Website.
This package will contain the bare minimum files you need on a production
machine to leverage MSXML. Figure 10-2 shows the list of files contained in the
redistributable cab file.

237

238 Partll + Microsoft Office and XML

® C:\cab\msxml4.cab E“EJEI

File Edit View Favorites Tools ™ ;1.'

@ Back = 2> | I? /.-) search

b3

=5 |U C:\eabmexml4.cab :| Go

(B
& msxml4.inf
%] mexmida.di
%] masmir.di

Figure 10-2: Files found in the
redistributable cab file

Core files and versions

The heart and soul of MSXML is in one file: msxml.dll (shown in Figure 10-2 as the
versioned msxml4.dll). Now, this is where knowing a little about Microsoft’s ver-
sioning for XML is important. The very first version of the parser includes the file
msxml.dll. The second major version of the parser (actually version 2.6) includes
msxml2.dll, the third and fourth—you guessed it — msxml3.dll and msxml4.dll,
respectively. These versions are particularly important because Microsoft permits
side-by-side installations of the various versions of MSXML. The advantage is that a
single developer workstation can be used to create applications that target the dif-
ferent parsers. Thus, an application used to target the accounting department
where the workstations have MSXML 3.0 installed for the foreseeable future can be
created on the same workstation that is used to create an application targeting the
corporate Web servers that have MSXML 4.0 installed. This flexibility, while quite
useful, also introduces a few complexities about which you should know. The chief
potential problem occurs when developers decide to use version-independent
ProgIDs and GUIDs.

You should be aware that if you want to load a DOMDocument in MSXML 4.0 and
you want to use that specific version of the class when you load it, then you should
use the version class name, like this: DOMDocument40, even though there is also
another class name, DOMDocument, available to you. In other words, unexpected
things can happen when creating an instance of the MSXML DOM using a version
independent ProgID, as shown in Listing 10-1.

Listing 10-1: Creating an Instance of an Object in MSXML

Dim oDOM as Object
Set oDOM=new MSXML2 .DOMDocument

Chapter 10 4 Microsoft XML Core Services

The result of this code would be that oDOM would contain an instance, not of
DOMDocument40 but of a DOMDocument for version 3.0 or lower. In other words,
referencing the generic component class name, DOMDocument, does not actually
reveal what class is actually being used. What would happen if the developer
thought the target machine only had MSXML 2.0 installed, but the machine really
had version 3.0 installed? With either version installed, the above statement will
work. However, if version 3.0 is installed but the developer really intended the code
to use only the features of version 2.0, the above instancing statement would actu-
ally pick up whatever the latest installed version is and use that. On one hand,
there is a benefit to this. Developers can write code that automatically starts
employing the latest, greatest MSXML version on a target machine without having
to update the code libraries they have installed to use MSXML. But this adaptability
comes at a price. As you can imagine, this automatic sensing of the newest version
could also cause to break; for example, if the version 2.0 compatible code tries to
use a method or property that has a different signature in the newer version or that
has been removed altogether. While this can happen in a compiled Windows pro-
gram, it is actually more likely in ASP applications where developers are forced to
exclusively use late-bound objects in a scripted environment. Many ASP developers
were disappointed to find that after installing MSXML 3.0, their code broke, and
they could not immediately tell why:.

With MSXML 4.0, Microsoft responded to the concerns that version-independent
ProgID’s and GUIDs introduced, so they drew the line and made MSXML 4.0 ProgID
and GUID version dependent. What this means is that if you go to version 4.0, you
need to make it clear in the language you are using, even if you are using late-bound
objects. To be sure, some developers have complained about having to do a little
more work, but at the end of the day, it makes for cleaner, more explicit code and
reduces the chance for unexpected results in a production environment. Our dis-
cussion will focus on this version of the parser, and you should keep these version-
ing issues in mind as you develop applications and consider their deployment on
different workstations.

One last aspect of this issue to keep in mind is the tight integration between
MSXML and Microsoft Internet Explorer. Internet Explorer relies on MSXML for pro-
cessing XML that it requests and retrieves. Microsoft Internet Explorer 4.0 was the
first browser to have XML support built right in. In version 4.0 of the browser,
Microsoft shipped a very basic DOM-based XML parser called MSXML 1.0. As XML
standards evolved, Microsoft added and improved MSXML features, and today it is
much more than just a parser. The default parser for Internet Explorer is MSXML
2.0. Installing IE 5.5 means that you are also installing MSXML 2.0. In other words, IE
5.5 has a built-in dependency on this version of the parser, and just installing the
newer parser will not change this. Fortunately, Microsoft has provided a nice little
utility to help you point your browser to a newer version of the parser. It is called
xmslinst.exe. However, this is not supported with respect to version 4.0 of the
parser. In other words, when you install IE, it will not automatically use the latest
version, and, while you can make it dependent, Microsoft does not recommend
doing so.

239

240

Part Il ¢+ Microsoft Office and XML

Figure 10-2 also shows two other libraries. The msxml4a.dll file is an ANSI resource
file. This file is installed only on Windows 98 or Windows ME because they both
lack the ANSI support upon which MSXML depends. In a similar way, the
Msxml4r.dll is the Unicode equivalent version of the resource file, and would not be
installed on Windows 98 or Windows ME platforms as it is used mainly for Windows
NT platform machines. If you are running Windows 2000 or Windows XP, you typi-
cally will need just the MSXML4.dll on the target machine to run your code.

As just mentioned, the main workhorse of MSXML is the msxml4.dll. The standard
MSXML 4.0 installation will place the DLL in the following location:
%SystemRoot%\System32\msxml4.dll. The library is actually comparatively small,
just 1.7MB, but it actually does quite a few things. Using this parser, you have the
ability to parse XML, use XSL and XSLT. You can send XML documents using the
HTTP protocol and use the SAX API. As you can tell from reading this book, the
bread and butter of XML is just parsing, searching, and transforming structured
data. That is what this parser does well.

Identifying components

Before introducing the core classes of MSXML, it is important to know how to refer-
ence them in code. Basically, there are three main ways to access a component on
the Windows platform: ProgIDs, GUIDs, and component class names (defined in the
actual IDL by the original developers). If you are programming in Visual Basic 6 or
earlier (or are using COM Interop in .NET), the language will expose all public
objects using the component class name that the original creators of MSXML 4.0
put in the IDL when they wrote it. In other words, the creators of MSXML 4.0 at
Microsoft called their object DOMDocument40 for MSXML 4.0, DOMDocument30 for
version 3.0, and so on. That means you can address that object in VB 6 as
DOMDocument40 or Msxml2.DOMDocument40. Additionally, MSXML2 was the
library name given in the IDL. You only need the latter notation when you need to
resolve ambiguity with another object of the same name in another library (or
within your own project). This is the naming convention, accessing the actual com-
ponent class names, when you are using a language that can bind to the type
library information or the header files create by the IDL. However, there are times
when this is not possible. For example, VBScript is not a typed language, and all
objects are late-bound, meaning that the type library information is not accessible
until the script is interpreted and runs. Traditional ASP applications are typically
coded in VBScript, and so using the component class name, DOMDocument40,
when instancing an object is not permitted. The same is true when using JScript in
an ASP application. Simply put, these languages know nothing about the names you
used in the IDL. We need another naming convention then.

While one can always use the component’s GUID (Globally Unique Identifier) to
access the class, these are long and make for hideous code. Fortunately, Microsoft
also provides another name called the ProgID. A ProgID is a name found in the
Windows registry (found in HKEY_CLASSES_ROOT) that maps over to the GUID rep-
resenting the component class. So, for example, the ProgIDs for MSXML are
“Msxml2.DOMDocument.4.0” and so on. In a scripted environment, you can gain
access to a desired component by using this ProgID name.

Chapter 10 4+ Microsoft XML Core Services 24]

Keep in mind that the version-independent issues already mentioned apply whether
one is using the component class name, the GUID, or the ProgID. In other words,
irrespective of what mechanism you choose to access a class, if you do not specifi-
cally target version 4.0 of that class, you will have no guarantee that the resulting
object instance will be of the correct version.

Parsing and Features Overview

With each release of its MSXML services, Microsoft offers new features and fixes
some of the known bugs. Some of the improvements in MSXML 4.0 include support
for XML schemas. In previous versions of MSXML, schemas were not supported.
This is not all that surprising given that XML schemas had not yet become even a
W3 recommendation until the spring of 2001. Thus, there was still no widely
accepted standard way, either an official standard or a practical standard, to vali-
date XML documents. DTDs were reasonably popular, but with known limitations
(see Chapter 3 for more on XML validation). XDR did not look like it could provide
the full breadth of features that XML schemas have come to provide, so it has not
been fully embraced either. Given the nascent stage of XML and the lack of a

clear winner in the schema department, and probably for other reasons as well,
Microsoft did not add schema support until version 4.0 of MSXML. The XML schema
support in MSXML 4.0 is pretty thorough. Of course, XSDs can be used for validating
in the DOM, but they can also be used with XPATH and XSLT (see Chapter 4).

Another improvement made in version 4 is in performance. Microsoft claims a four-
fold increase in performance for XSLT processing. This is because they made signifi-
cant enhancements to the XSLT engine that ships with MSXML. Microsoft also
claims a two-fold increase in performance when doing normal parsing of docu-
ments. This is the result of changes made to the parser that ships with MSXML.
These changes accompany fixes for known problems, and extended support for the
SAX2 API. Additionally, so that C++ developers can make SAX components more
easily, there is the SaxAppWizard utility for Microsoft Visual Studio. The primary
benefit of the wizard is that it sets up the main structure SAX applications just as
console or WFC applications are developed when creating a new project.

Parsing

The MSXML parser is chiefly responsible for parsing XML in the DOM, parsing XSL
instructions, and validating XML structures using schemas. If a parser is doing its
job, developers will not give it much thought. The API should be all developers
need to think about as they work with XML content. In this way, you can focus on
how an application works and interacts with the data, thus being insulated, to some
extent, from the innerworkings of the XML content. In this light, there are two basic
types of XML parsing modes to accommodate different development needs: validat-
ing or nonvalidating. Simply put, nonvalidating parsing means that the parser does
not validate the document structure against a DTD, even though the parser may

242

Part Il ¢+ Microsoft Office and XML

know there is a DTD present. As a generality, you typically want to validate the XML
in a business application so as to ensure its integrity. This is one of the main func-
tions of parsing and can be specified using the new validateOnParse property of the
DOM.

The job of the MSXML parser, then, is to get the content out of the XML document
and make it accessible via the appropriate API. Figure 10-3 shows this relationship.

CXl\/IL > Available data
ontent \

Figure 10-3: The MSXML parser consumes the XML data so they can be
used via the DOM or SAX.

You notice here how both APIs are referenced. This is because parsing XML is really
just confirming the content’s intelligibility. This is only half of the story. The other
half is actually getting to the intelligible data in code. That is the job of the API. You
will use the fundamental classes of MSXML to do this, and this is where you focus
your energy as a developer.

Fundamental classes

Before looking at some of the lesser-known features of MSXML 4.0, we will first look
at the bread-and-butter classes it offers. There are many classes defined in the
library that support 27 COM interfaces, five major XML-related technologies, and a
host of utility features. Our focus is on the DOM, SAX, XSL, XSD, and some new
classes recently added.

Document Object Model

The root object in the XML object model, according to the specification, is the
DOMDocument40 object. This is the one you will use most often to do the bulk of
your work with XML. The MSXML DOM (Document Object Model) implements both

Chapter 10 4 Microsoft XML Core Services

fundamental and extended interfaces and also provides additional methods to sup-
port XSL Transformations (XSLT), XPath, namespaces, and data types. In essence,
the fundamental interfaces are those required for adherence to the XML 1.0 stan-
dard. However, fidelity to the standard need not get in the way of making some of
the functions in the specification easier to use for developers. Hence, designers of a
parser are at liberty to implement extended interfaces, ones that make it easier to
access some of the basic functions of the XML specification. Microsoft’s parser
does implement some of these, and most developers agree that they are welcome
additions.

Gaining access to the various classes in MSXML is fairly straightforward. The class
names in MSXML are specified in this way: MSXML2.classname. For example, the
principal class in the entire library, the DOMDocument40, is accessible via this
name: MSXML2.DOMDocument40. But this name cannot be used when coding an
ASP application in script. Not only this, but in both the scripted and non-scripted
environments, the name you choose can give you unexpected results if you use a
version-independent class name or ProgID. Earlier, we discussed how Microsoft
dropped version-independent ProgIDs and GUIDs from MSXML 4.0, but there is a lit-
tle more to the story, especially in a scripted environment. Understanding better
how Microsoft’s naming schemes work for component class libraries will be very
beneficial and eliminate confusion when you are coding both in a compiled lan-
guage or in script.

The main interfaces that give you access to various aspects of the DOM are as
follows:

4+ DOMDocument40

4+ IXMLDOMNode

4+ IXMLDOMNodelList

4+ IXMLDOMNamedNodeMap

Using an instance of the DOMDocument40 class you can create new documents
from scratch, load existing XML strings or streams, load XML documents from the
file system or a URL, transform one XML file into another, and save XML content to
the file system or a URL. The DOM object then exposes instances of
IXMLDOMNode, which can be accessed via instances of IXMLDOMNodeList.
IXMLDOMNamedNodeMap permits you to gain access to node attributes by using
the name of the attribute instead of its ordinal number. All of the MSXML classes
under the hood take care of the W3 XML standard compliance for you.

While Chapter 11 delves into the DOM more fully, a brief introduction is useful here.
First, let’s load a DOMDocument4(object using a simple file. Listing 10-2 shows the
code used to get an instance of the object and fill it with the contents of the local file.

243

244

Part Il ¢+ Microsoft Office and XML

Listing 10-2: Loading XML Content

Dim oDOM As DOMDocument40
Set oDOM = New DOMDocument40
oDOM.Load ("c:\XMLBible\quotes.xml")

Once loaded, all of the functions and features provided by DOMDocument40 are
accessible to your code. You could also reference the file using a valid URL instead
of the local file path. UNC paths are equally acceptable. You can use the Save
method to persist XML to a file, URL, or UNC path as well. When the MSXML parser
loads an XML document into a DOM, it reads it from start to finish and creates a log-
ical model of nodes from the structures and content contained in the XML docu-
ment. The document itself is a node that contains all of the other nodes, primarily
the root element, which, in turn, contains all the rest of the content in the docu-
ment. If there are errors in the source XML, the Document object cannot parse the
entire file properly, and it posts parsing errors. Unless you look for the errors, all
you will notice is that the Document object will be empty. However, the object does
expose an object that lets you figure out precisely what caused the error, the
parseError object. Figure 10-4 shows the output from the parseError object
after an error has occurred.

Eroe; -107 2896763
Fostior: 208
Line: &
Usze MXHTML Charseter 8
Reasore & name contained an irvvalid character.

Use Mx=ML | Souce Test: </quote>

URL: file:///c./<MLBible/quotes xmi

Figure 10-4: Error information provided by the
MSXML parser

Listing 10-3 is the code used to post this error information to a Windows form
application.

Listing 10-3: Discovering and Reporting Parse Errors

Dim oDOM As DOMDocument40
Set oDOM = New DOMDocument40

Chapter 10 + Microsoft XML Core Services 245

oDOM.Load ("c:\XMLBible\quotes.xml")
With oDOM.parseError
txtResult.Text = "Error: " & _
CStr (.errorCode) & vbCrLf
txtResult.Text = txtResult.Text & _

"Postion: " & CStr(.filepos) & vbCrLf
txtResult.Text = txtResult.Text & _

"Line: " & CStr(.Line) & vbCrLf
txtResult.Text = txtResult.Text & _

"Character: " & CStr(.linepos) & vbCrLf

txtResult.Text txtResult.Text & _

"Reason: " & CStr(.reason) & vbCrLf
txtResult.Text = txtResult.Text & _

"Source Text: " & CStr(.srcText) & vbCrLf
txtResult.Text = txtResult.Text & _

"URL: " & CStr(.url) & vbCrLf

End With

While accessing files is common, it is becoming increasingly common to use XML in
memory. XML can be loaded from streams and output to streams rather than to and
from actual files. Listing 10-4 displays the code used to create a new XML document
entirely from scratch using methods of the Document object.

Listing 10-4: Creating XML Content from Scratch

Dim oDOM As DOMDocument40

Dim oElRoot As IXMLDOMElement
Dim oNode As IXMLDOMNode

Dim oNode2 As IXMLDOMNode

Set oDOM = New DOMDocument40

oDOM. insertBefore _
oDOM.createProcessingInstruction ("xml",
"version=""1.0"""), _
oDOM.childNodes.Item(0)

Set oElRoot = oDOM.createNode (
NODE_ELEMENT, "quotes", "")
Set oDOM.documentElement = oElRoot

Set oNode = oDOM.createNode(_
NODE_ELEMENT, "quote", "")

oElRoot .appendChild oNode

246

Part Il ¢+ Microsoft Office and XML

The resulting XML, however simple, is well-formed XML and is shown here:

<?xml version="1.0"?>
<guotes><quote/></quotes>

Notice how the processing instruction contains double quotes. The MSXML parser
will actually permit single quotes here, but it is preferable to use double quotes
whenever possible. This is worth mentioning because, in the code sample, you can
see how double sets of double quotes are used so that the resulting XML loaded in
the document contain a single set of double quotes. Keep this fact in mind when
using strings as names for elements or for text when loading from a database or
some other source.

Another feature of the DOMDocument40 class is the ability to use schema defini-
tions using XSDs and transforming XML data structures and output formatting
using XSL stylesheets. Support for XSDs was added with version 4.0, while support
for XSL did exist in previous versions. However, the performance of XSL and XSLT
was improved in this version of MSXML, and the output of transformation has
become more reliable. Support for DTDs continues as part of MSXML.

Other objects

There are many other classes available in MSXML. Notably, there is support for
SAX, XSD, and XSL. SAX, as explained in Chapter 9, is an event-based way of getting
at XML content. SAX is particularly useful when the content being accessed is quite
large or when the code you are writing wants to have greater distance from the
source XML structure. The key with SAX is to remember that it merely produces
events as it steps through the XML source content. You must provide code and
objects that listen to and respond to these events. Listing 10-5 shows using SAX to
create an XML document that gets loaded into a DOM object.

Listing 10-5: Using SAX to Produce a Content in the DOM

Dim oDOM As New MSXML2 .DOMDocument40
oDOM.validateOnParse = True

Dim oXMLWriter As New MXXMLWriter40

Dim oSAXEvents As IVBSAXContentHandler
Dim oSAXAttributes As New SAXAttributes40
Set oSAXEvents = oXMLWriter
oXMLWriter.output = oDOM
oXMLWriter.indent = True
oSAXEvents.startDocument

0SAXEvents.startElement "", "", "quotes", oSAXAttributes
O0SAXAttributes.addAttribute "", "", "type", "CDATA", "general"
OoSAXEvents.startElement "", "", "quote", oSAXAttributes

oSAXAttributes.Clear
oSAXEvents.startElement "", "", "source", oSAXAttributes

Chapter 10 4 Microsoft XML Core Services

0SAXEvents.characters "Mark Twain"

oSAXEvents.endElement "", "", "source"
oSAXEvents.startElement "", "", "text", oSAXAttributes
0SAXEvents.characters "When in doubt, tell the truth."
oSAXEvents.endElement "", "", "text"
oSAXEvents.endElement "", "", "quote"
oSAXEvents.endElement "", "", "quotes"

oSAXEvents.endDocument

In this listing, there are other objects being used, but don’t worry about them just
yet. The focus here is on the events raised by the use of the SAX event handler. As
elements and attributes are added and completed, the events are raised to what-
ever is listening for these events. In this case, it is an instance of the MXXMLWriter
class. It receives the events and hands its output off to the DOM. To be truthful, all
of this content can be created with the DOM directly, but using SAX is in some ways
a simpler manner of doing so.

The ability to change the way XML is presented or structured is made possible via
MSXML'’s support for XSL. Chapter 11 deals with XSL using Microsoft’s XML Core
Services in greater detail, but suffice it to say here that MSXML is able to transform
XML content because it has a powerful XSL processor on board. The easiest way to
begin using XSL is to reference a stylesheet in your XML source file, in this way:
<?xml-stylesheet type="text/xsl" href="quotes0l.xsl"?>. This state-
ment should follow the initial processing instruction in your source XML file. As the
file is parsed by MSXML, the XSL file will be accessed, and the instructions in the
XSL file will be applied to the XML file as it is processed.

Schema files, for validating XML content according to your own rules, are refer-
enced in much the same way. The difference is that the XSD reference is usually
made inside the root element of the XML document. For example, this statement
<guotes xmlns="po.xsd"> references an XSD in the same directory as the
source XML file. As the parser processes the source XML, it will look to the schema
definition in the XSD and report an error if the XML does not conform to the rules
of the XSD.

New objects

There are new objects in MSXML 4.0, such as the MXHTMLWriter, MXNamespace
Manager, and MXXMLWriter. The first is used to create HTML output from an XML
source. The MxXNamespaceManager class defines methods that let you manage and
track namespace declarations in your documents and resolve them either in the
current context or in the context of a specific DOM node. The latter one, MXXML
Writer, was used in the sample that showed how to use the SAX API. It was used
to produce XML content which was then loaded into the DOM. Let’s take another
look in Listing 10-6 at the code and focus on how MXXMLWriter was used, repre-
sented as the oXMLWriter object.

247

Part Il ¢+ Microsoft Office and XML

Listing 10-6: Outputting XML Using MXXMLWriter

Set oSAXEvents = oXMLWriter
oXMLWriter.output = oDOM
oXMLWriter.indent = True
oSAXEvents.startDocument

0SAXEvents.startElement "", "", "quotes", oSAXAttributes
oSAXAttributes.addAttribute "", "", "type", "CDATA", "general"
0SAXEvents.startElement "", "", "quote", oSAXAttributes
0SAXAttributes.Clear

oSAXEvents.startElement "", "", "source", oSAXAttributes
oSAXEvents.characters "Mark Twain"

oSAXEvents.endElement "", "", "source"
oSAXEvents.startElement "", "", "text", oSAXAttributes
oSAXEvents.characters "When in doubt, tell the truth."
oSAXEvents.endElement "", "", "text"
oSAXEvents.endElement "", "", "quote"
oSAXEvents.endElement "", "", "quotes"

oSAXEvents.endDocument

What makes the instance of MXXMLWriter work is that it is set equal to an instance

of a SAX event handler. Therefore, as new elements are created and other content is
added, the respective events are handed off to MXXMLWriter so that a more acces-

sible representation of the data becomes available. The MXXMLWriter can only pro-
duce parsable XML, not HTML. But producing HTML is a common need, so MSXML

also provides the MXHTMLWriter.

The MXHTMLWriter lets applications create HTML output directly using a stream of
SAX events, much in the same way that the <xs1:output> element in XSLT can
generate HTML from a result tree. The main benefit of this is that Active Server
Pages can be developed that read XML using a SAX reader and then send the data
to the buffer as HTML in one smooth operation. Of course, the MXHTMLWriter can
also be used to create HTML manually.

Following, in Listing 10-7, is a simple example that uses this object to write out
HTML. In this sample, an instance of the MXHTMLWriter40 class is used to dynami-
cally assemble both the HTML elements with some actual page data. The oContent
object is defined as an instance of the ITVBSAXContentHandler class and is used
to actually construct the content.

Listing 10-7: Producing HTML Using the MXHTMLWriter

Dim oXMLWriter As MXHTMLWriter40

Dim oSAXEvents As IVBSAXContentHandler
Dim oSAXReader As SAXXMLReader40
'Create the object instances

Chapter 10 + Microsoft XML Core Services 249

Set oXMLWriter = New MXHTMLWriter40

Set oSAXReader New SAXXMLReader40

Set oSAXEvents oXMLWriter

'Begin creating a document from scratch
OoSAXEvents.startDocument

oSAXEvents.startElement "", "", "HTML", Nothing
oSAXEvents.characters "this is dynamically written HTML"
oSAXEvents.endElement "", "", "HTML"

oSAXEvents.endDocument
oSAXReader.parse oXMLWriter.output

In this example, the output is not XML at all, although it could have been made XML
using the MXXMLWriter instead. Selecting HTML as the output demonstrates the
flexibility of the objects. The SAXXMLReader object is used to actually do the final
parsing before the content is rendered.

Summary

In this chapter, you have been introduced to the Microsoft Core XML Services, com-
monly referred to as MSXML. There are some specific system requirements you
need to know before you install MSXML, the main one being which operating sys-
tem can support the different versions. If you are running Windows 2000 or greater,
things are much easier, and upgrading to a newer OS is recommended if you are
running Windows 9x or Windows ME anyway. You also learned in this chapter about
the various versions of MSXML. You saw how the files that provide the core ser-
vices have changed as versions have been released, and you learned about the sig-
nificant changes Microsoft made with version 4.0. The main one to remember is
that version-independent GUIDs and ProgIDs are no longer possible with version 4.0
and above.

This chapter introduced you to how Microsoft uses GUIDs, ProgIDs, and component
names as ways to correctly address classes when you are using instances of them in
code. You learned the correct way to code your applications to ensure that you get
object instances of the correct underlying version if you have side-by-side versions
of MSXML installed. You also learned about the registry entries and other Windows-
related details that will help you troubleshoot applications that use MSXML.

With this kind of housekeeping out of the way, the chapter introduced you to pars-
ing and the main features of MSXML. Without a doubt, the DOM is the object you
will most likely use with the greatest frequency. However, there are other very use-
ful features such as the SAX event handler, support for XSL, and XSD. Furthermore,
you have learned about a couple of new classes introduced with version 4.0,
MXXMLWriter and MXHTMLWriter, for aiding in working with XML on the Web.

+ o+ ¢

Working with
the MSXML
DOM

In order for your programs to access the content of XML
documents, the parser must read the XML and make sense
of them. If the content is in a file, the parser processes the file
and converts it into an XML document object in memory by
the XML parser. The resulting document object contains a
hierarchical tree that contains the data and structure of the
information contained in the XML document. This tree of
information can be accessed and modified using the DOM API.

In Microsoft’s COM world, the Document Object Model (DOM)
is your vehicle to process XML documents using compiled
applications or scripts. The DOM allows programs and scripts
to dynamically access and update the content, structure, and
style of documents.

The main function of MSXML's DOM implementation lets you
load existing XML from file or in memory. You can then access
and work with the data structures contained within the docu-
ment. Finally, you can complete the cycle of working with XML
by saving the document as a file or sending to another appli-
cation as a stream or in-memory structure. It is not an under-
statement to say that nearly everything you will ever do with
MSXML will use the DOM.

In this chapter, you will learn how to work with the DOM in
applications, the most commonly used methods and proper-
ties of the DOM, how to load XML, and how to persist it for
use in other systems or for later consumption.

CHAPTER

¢+ s+
In This Chapter

Basic functions of
the DOM

Accessing databases
to create DOM
content

Transforming
XML content

Controlling the DOM
using Visual Basic
and JavaScript

+ o+ e

252

Part Il ¢+ Microsoft Office and XML

Introduction

It has already been said that the DOM is the focus of working with XML. The DOM is
what gives you access to the members of the IXMLDOMDocument interface. In the
previous introduction to MSXML, it was mentioned that the component class name
for the DOM is DOMDocument40, with the version number included so as to make
clear in your code which underlying version of MSXML you are using. Keep in mind
that in a compiled-language environment, this is the preferable manner in which
you should gain reference to the DOM. However, you can also use the ProgID in a
scripted environment or when using code where the type library information is not
accessible to the application. For the most part, the listings in this chapter will use
the component class name. Now let’s look at how to use the DOM.

DOM members

The object model of the DOM is fairly extensive, exhibiting a large number of prop-
erties and methods, but only two events. The properties list shown in Figure 11-1
contains a number of simple properties and others that are collections. For exam-
ple, the attributes, child nodes, namespaces, and schemas are properties that
return collections of their respective items.

| C:\Quotes.xml

Ble Edit Vew Favorites Tools Help i
- B 2 ﬂ g ;\, p) search :/» Favorites @' Media
Address @ C:\Quotes.ml b Go

<?xml version="1.0" encoding="UTF-8" 7>
- «Quotes>
- <QuoteTable>
<Date=03/30/1998</Date>
<Source=Joke-Of-The-Day</Source>
- <Quote>
- <I[CDATA[
S5hould you trust a stockbroker
who's married to & travel agent?
1=
=/Quote>
<Quotekey=HNEY-4TTL67 </Quotakay >
</QuoteTable> ~
4 r
€] Dane " My Computer
—

Figure 11-1: The node structure of an XML file that
will be searched using selectNodes

Other notable properties include:

4 documentElement: The root element of the entire XML document
4+ errorCode: Reveals the error code of the last encountered parsing error

4+ filepos: The precise position in the file where an error occurred

Chapter 11 + Working with the MSXML DOM

4 firstChild: Returns the very first child node of a node in the document

4 lastChild: Returns the very last child node of a node in the document

4 line: Specifies the line where an error occurred

4 linepos: Specifies the character position in a line where an error occurred
4+ nodeType: Specifies the type of a node (attribute, element, text, and so on)
4 nodeValue: Sets or returns the value of a node

4+ ownerDocument: Returns the overall parent document in which a node is
contained

4+ text: Returns the text content of a node

4+ xml: Returns the XML of a node and all of its descendants
Which properties are of greatest use to you will, of course, depend on the type of
applications you are creating. You should consult the XML SDK document for the

meaning and purpose of some of the more obscure properties as you encounter
them.

There are a number of methods exposed by the DOM, and for the most part they
are designed to help you manipulate and navigate the content of an XML document.
Some of the more prominent methods are summarized as follows:

4+ appendChild: Appends a new child node to a target node

4 createAttribute: Creates a new attribute for a specified element

4+ createElement: Creates a new element node with a specified name. The
element must then be appended as a child of another node.

4+ createNode: Creates a new node which can be appended to another node.
This node can be of different types (attribute, element, text, and so on).

4 createProcessingInstruction: Creates a processing instruction such as <? xml
version="1.0"?>

4+ createTextNode: Creates a new node, but it is only of the text type.

4+ getElementsByTagName: Gets all of the elements in a document that have the
tag name passed to the method. They are returned as a collection of elements
in an IXMLDOMNodelList.

4+ hasChildNodes: Specifies whether the target node has children or not
4 load: Loads XML content from a persistent source

4 loadXML: Loads XML content from a source in memory

4+ removeChild: Removes and returns a node from a list of child nodes
4 save: Persists XML content of the DOM to a file

4+ selectNodes: Returns a collection of nodes from a starting point. You must
provide a pattern to look for in the descendants of the target node.

253

254

Part Il ¢+ Microsoft Office and XML

4+ selectSingleNode: Returns a single node from a starting point. You must pro-
vide a pattern to look for in the descendants of the target node. It returns the
first node to match the pattern.

4+ transformNode: Transforms a target node and all of its descendants using
provided XSL instructions and returns the result as a string

4+ transformNodeToObject: Transforms a target node and all of its descendants
using provided XSL instructions and returns the result as an object

We are going to explore detailed examples of loading, selecting, and transforming
XML content using methods of the DOM as these are probably the most common
tasks you will want to perform with the DOM. Before doing so, however, this is a
good time to mention the two events that can be raised by the DOM:
ondataavailable and onreadystatechanged.

The first event, ondataavailable, is useful when loading XML content asyn-
chronously. You may want to begin processing the data as soon as they are avail-
able in the DOM. This event will let your code know when the data can be accessed
for processing. The second method, onreadystatechanged, fires whenever the
state of the readystate property has changed. The readystate property tells
you what the current state of the document is. Its possible values are:

4 Loading: The loading process is under way. You cannot do much with the
document at this point.

4 Loaded: The document is ready to be parsed, and the object model is not yet
available.

4+ Interactive: The data have been partially read and parsed, and what has been
read and parsed can now be accessed in the object model as read only.

4 Completed: The document is completely ready in the object model.

Loading XML content

Two methods, Load and 1o0adXML, are ones that make many of the other properties
and methods meaningful. The L.oad function populates the XML document from a
location you specify. The location can refer to a UNC pathname, a URL, or a local
file system path. Listing 11-1 shows accessing an XML file using a URL.

Listing 11-1: Loading XML Content in the DOM

Dim oDOM As DOMDocument40

Set oDOM = New DOMDocument40

oDOM.Load ("http://localhost/xmlbible" _
& "/chapterll/quotes.xml")

txtResult.Text = oDOM.xml

Chapter 11 + Working with the MSXML DOM

The alternative approach is to use the 1oadxML method, which loads the document
using a string. In Listing 11-2, a string is used to load the document. In this case, the
string is loaded dynamically as records are retrieved from a database. You need not
worry too much about the data access code included here as it may differ depend-
ing on the type of database you are accessing. In this listing, a Microsoft SQL Server
database is accessed to retrieve quote data.

Listing 11-2: Loading XML Content from a Database

Dim rs As Recordset

Dim cn As Connection

Dim oDOM As DOMDocument40
Dim str As String

Set rs = New Recordset
Set cn New Connection

cn.Open "Provider=SQLOLEDB;"
& "Data Source=(local);" _
& "Initial Catalog=quotes;" _
& "User ID=User;Password=7Secret9x;"
rs.Open "SELECT Date, Source, " _
& "Quote FROM QuoteTable",
cn, adOpenForwardOnly,

adLockReadOnly
If Not rs.EOF Then
str = "<?xml version=""1.0"" ?><quotes>"
While Not rs.EOF
str = str & "<quote>"
str str & "<date>" _

rs("Date") .Value _
"</date>"
str & "<source>"
rs ("Source") .Value _
& "</source></quote>"
rs.MoveNext
Wend
str = str & "</quotes>"
rs.Close
cn.Close
End If
Set rs = Nothing
Set cn = Nothing
Set oDOM = New DOMDocument40
oDOM. loadXML str

str

I & R |

Taking a closer look at the XML-oriented aspects of the code, you see that a simple
string variable is used to hold all of the XML tags and data that will be assembled

255

256

Part Il ¢+ Microsoft Office and XML

along the way. The first item that must be included is the XML declaration. Notice
how the double quotes are used around the version number in this string. Of
course, each language will differ, but here, in Visual Basic 6.0, the two double
quotes are needed to ensure that when the XML is loaded into the DOM, there will
be a single set of quotes around the version number. This technique applies to all
cases where a single set of double quotes is needed in the final XML output.

Next the code adds a root element to the XML file, in this case <quotes>. One of
the most common problems is forgetting to include this root element with an
accompanying close tag somewhere else in the code. Because the XML content is
being assembled as part of a logical loop, it is sometimes difficult to keep things
straight, so making sure you thoroughly test your code before deploying it will help
in detecting omissions of this sort.

The code enters a loop that begins to load the bulk of the data. These data are the
main quotes contained in the data table. In this example, a Microsoft ADO recordset
is used to retrieve data values. Keep in mind that you are assembling a large string,
and some of the data types of fields being retrieved may not be string data types.
You should take care to convert values when necessary. In Listing 11-2, implicit con-
versions are used so that the code is less cluttered, thus making it easier to see the
XML operations. However, the best practice for production code is to handle the
data type conversions explicitly. Additionally, you should trap errors and recover
from problems in the code gracefully so that, despite problems that may arise, you
still end up with a well-formed XML file when the code finishes executing.

In the code you have just seen, the string is assembled from data retrieved directly
from the database, and the names of the elements are hard coded. However, even

the names of the elements could be dynamic by making a slight adjustment to the
structured code loop, as shown in Listing 11-3.

Listing 11-3: Generate XML Content from Any Table

If Not rs.EOF Then

str = "<?xml version=""1.0"" ?><" & _
rs (1) .Properties ("BASETABLENAME") .Value _
& "s>"

While Not rs.EOF
str = str & "<" & _
rs(l) .Properties ("BASETABLENAME") .Value _
& ">"
str = str & "<" & rs(l).Name & ">" _
& rs(l) .Value _

& "</" & rs(l).Name & ">"

Chapter 11 + Working with the MSXML DOM

str = str & "<" & rs(2).Name & ">" _
& rs(2).Value _
& "</" & rs(2).Name & "></" _
& rs(l) .Properties ("BASETABLENAME") .Value _
& ">"
rs.MoveNext
Wend
str = str & "</" _
& rs(l).Properties ("BASETABLENAME") .Value _
& "s>"
rs.Close
cn.Close
End If

What makes code like this particularly powerful is that it can produce well-formed
XML by using records from many different types of queries or data sources without
altering the code. Taking a closer look, you can see that no names for the elements
are included in the code. Instead, a property of the ADO recordset is used to
retrieve the table name. It is probable that other data access technologies provide a
similar technique to acquire this information when accessing a data source. Here,
the BASETABLENAME property is used to acquire the table name. This will become
the root element for the XML content. As the code progresses, fields are referenced
ordinally in the recordset rather than by name as in Listing 11-2. The flexibility of
this code can be tested by changing the statement used to retrieve the data from
the database. Different field names can be used there, or a different table in a differ-
ent database can be referenced altogether.

One of the challenges in loading code in this fashion is that the XML content could

be very, very large. Unfortunately, in Visual Basic 6.0, while the string data type can
contain a lot of data, it is not very efficient in doing so. Each language differs, so be
aware of how well your code performs.

Selecting nodes

Once XML content is loaded into the DOM, you will want to get to certain areas of
the data hierarchy as quickly and as easily as possible. Two wonderfully flexible
methods, selectNodes and selectSingleNode, will help you do so. The first of
these methods is accessible via a target node. From that node, the method will
return all descendant nodes that can be found to match a pattern you provide to
the method. In the following example in Listing 11-4, the method is used to find all
nodes that have a name of Source. Keep in mind that these searches are case sen-
sitive, as is always the case when working with XML elements. You can also use
more sophisticated search expressions to find nodes that match irrespective of
case, using wild-card searches and much, much more.

258

Part Il ¢+ Microsoft Office and XML

Listing 11-4: Selecting Specific Nodes in the DOM

Dim oDOM As Msxml2.DOMDocument40

Dim oNL As IXMLDOMNodeList

Set oDOM = New DOMDocument40

oDOM.Load "C:\Quotes.xml"

oDOM. setProperty _
"SelectionLanguage", "XPath"

Set oNL = oDOM.documentElement. _
selectNodes ("//Source")

In this code sample, the source file has the structure shown earlier in Figure 11-1.
The root node is Quotes, and there are a number of child nodes named QuoteTable.
Each QuoteTable node contains a Source element that contains the text of a quote.

A portion of the result of the method search in Listing 11-4 is shown in Listing 11-5.
Notice how the list shows only nodes with the name of Source.

Listing 11-5: Results of the selectNodes Method

<Source>Joke-0f-The-Day</Source>
<Source>Pat Newberry</Source>
<Source>Tammy Vanoss</Source>
<Source>Joke-0f-The-Day</Source>
<Source>Tammy Vanoss</Source>
<Source>Joke-0f-The-Day</Source>

But what would happen if the structure of the XML were not so regular? In other
words, notice how the current structure is very predictably
Quotes/QuoteTable/Source. Each QuoteTable element contains elements for
Date, Source, Quote, and QuoteKey. However, Figure 11-2 shows a revised struc-
ture where one of the QuoteKey elements in just one of the QuoteTable nodes
contains an additional Source element. Without changing the code, this irregularly
placed element can still be found, and it will be grouped with the rest of the nodes
that follow the more predictable structure.

The list of nodes containing Source elements is shown in shortened form in List-
ing 11-6. Notice how the results do not distinguish where a node came from in the
source hierarchy. All that matters is whether the node matched the search pattern.

Chapter 11 + Working with the MSXMLDOM 259

| C:\Quotes.xml

HBle Edit View Favorites Took Help ¥
) £] ﬂ g ;\. Pl) search :/» Favorites @' Mediz
Address |[2] C:\Quotes.xml ko Go

~
<?xml version="1.0" encoding="UTF-8" 7>
- «Quotes>
- <QuoteTable>
<Date=02/30/2001</Date>
<Source=Anyone</Source>
<Quote=Whatever></Quote:
- <QuoteKey>
HNEY-4GGL67
<Source=This is an element that does not fit
the regular structure </Source=
=/Quotekey>
</QuoteTable>
<QuoteTable> ~
4 r

Qbm 1 ' My Computer

Figure 11-2: Revised XML structure with an oddly
placed element

Listing 11-6: Results of a selectNodes Search Including an
Irregularly Structured Element

<Source>Anyone</Source>

<Source>This is an element that does not fit the regular
structure</Source>

<Source>Joke-0f-The-Day</Source>

<Source>Tammy Vanoss</Source>
<Source>Joke-0f-The-Day</Source>

<Source>Tammy Vanoss</Source>

The reason why this irregularity in the hierarchy is returned is because in the pat-
tern passed to the selectNodes method, we used the double-slash, like this:
“//Source. Double-slashes are a way of telling the query processor that we want
to find matches to our pattern irrespective of structure. If we changed it like this:
QuoteTable/Source, the irregular element would not be found. This is because
we are deliberately telling the DOM to only find Source elements directly below
QuoteTable elements. If we changed the pattern like this, QuoteTable//Source,
our element would once again be found. Any descendant of QuoteTable that is
named Source would be found.

260

Part Il ¢+ Microsoft Office and XML

Similar to the selectNodes method is the selectSingleNode method. The
pattern-matching rules are the same in both cases. The main difference is that with
the latter method, the first node that matches the search pattern is returned, and
the process stops right there.

Transforming using XSL

One of the strengths of the code that loads data from into the DOM from a database
(as in the earlier section on loading XML) is that the final XML output can be pretty
much of any structure you desire. The code does the work of transforming the data
in the database into a different structure and format. But what if the data were not
in a database and were in a file instead? This is a common occurrence, and XML
would truly lose a lot of its strength if it were unable to provide the capability to do
with XML files what we have done here with a database table. Fortunately, the DOM
object exposes a set of methods and objects that make it possible to transform
XML content from one structure to another or from one structure to a completely
different mechanism of display. Chapter 4 deals with XSL specifically, whereas here
we will look at how to use MSXML to transform XML files.

There are two fundamental ways to tell the MSXML XSLT processor to do a transfor-
mation. One is to use the TransformNode or TransformNodeToObject methods
of the DOM. The second is to reference a valid XSL document in an XML file. To
start, take a look at the XML in Listing 11-7. It shows a portion of the XML file that
will be transformed using the DOM.

Listing 11-7: Resulting XML from XSL Instructions

<Quotes>
<QuoteTable>
<Date>03/30/1998</Date>
<Source>Joke-0f-The-Day</Source>
<Quote><! [CDATA[Should you trust a stockbroker
who's married to a travel agent?]]></Quote>
<QuoteKey>HNEY-4TTL67</QuoteKey>
</QuoteTable>
<QuoteTable>
<Date>03/30/1998</Date>
<Source>Tammy Vanoss</Source>
<Quote>FEach day I try to enjoy something
from each of the four food groups:
the bonbon group, the salty-snack group</Quote>
<QuoteKey>HNEY-4TTL6G</QuoteKey>
</QuoteTable>
</Quotes>

Chapter 11 + Working with the MSXML DOM

The actual XML file contains many more quotes than are shown here, and we have

another system that will consume these data. However, in order to use the data,

they need to be in a different structure. Listing 11-8 shows the contents of the XSL.

Listing 11-8: Stylesheet Content to Transform XML

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:template match="Quotes">

<citations>

<xsl:apply-templates select="QuoteTable" />

</citations>

</xsl:template>

<xsl:template match="QuoteTable"><citation>

<quote_date><xsl:value-of select="Date"/></quote_date>

<text><xsl:value-of select="Quote"/></text>

</citation>

</xsl:template>

</xsl:stylesheet>

The XSL here looks for the root node and transforms it into a new node
<citations>. Then the second template creates new element names with the

same data in the original file. Listing 11-9 shows how the DOM is used to transform

the XML into the new structure.

Listing 11-9: Transforming Using the DOM

Dim DOM1 As MSXML2 .DOMDocument40

Dim DOM2 As MSXML2 .DOMDocument40

Dim DOM3 As MSXML2 .DOMDocument40

Set DOM1 = New MSXMLZ2 .DOMDocument40
Set DOM2 = New MSXML2 .DOMDocument40
Set DOM3 = New MSXML2.DOMDocument40
DOM1.Load ("C:\QuoteTable_plain.XML")
DOM2 .Load ("C:\Quotes02.xsl")

DOM1 . transformNodeToObject DOM2, DOM3
DOM3 .save "C:\QuoteTable_02.xml"

This code creates three instances of the DOM. The first loads the content of the

XML data file. The second loads the content of the XSL file. The third file is merely a
container to hold the results of the transformation of the XML. The resulting XML is

shown in Listing 11-10.

261

262 Partll + Microsoft Office and XML

Listing 11-10: Resulting XML from a Transformation

<?xml version="1.0" encoding="UTF-16"7?>
<citations>
<citation>
<quote_date>03/30/1998</quote_date>
<text>Should you trust a stockbroker
who's married to a travel agent?</text>
</citation>
<citation>
<quote_date>03/30/1998</quote_date>
<text>Each day I try to enjoy something
from each of the four food groups:
the bonbon group, the salty-snack grou</text>
</citation>
<citation>
<quote_date>03/30/1998</quote_date>
<text>Is boneless chicken considered to be an
invertebrate?</text></citation></citations>

The second primary technique for processing files using XSLT with MSXML is to ref-
erence the style sheet in the XML data file. There is nothing notably different in the
syntax with Microsoft’s parser. You'll need to reference the XSL file using a state-
ment such as this: <?xml-stylesheet type="text/xsl"
href="quotes01.xs1"?>. When the XML file loads, instead of loading the XML
data directly, the contents of the source will be processed according to the instruc-
tions of the XSL file. Other than that, there is no resultant difference between using
this technique or using the DOM’s TransformNodeToObject method.

As Chapter 4 explains, you can use XSL stylesheets not only to transform XML
structure, but also to alter the final presentation output. Listing 11-11 shows XSL
that produces HTML as the final output. The source XML file contains a reference to
this stylesheet, so the final output is as shown in Figure 11-1.

Listing 11-11: Stylesheet for Transforming Content

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output indent="yes" omit-xml-declaration="yes" />

<xsl:template match="Quotes">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head><title>Quotes

</title></head><body>

<table BORDER="1" CELLPADDIUNG="0" CELLSPACING="1">

Chapter 11 + Working with the MSXML DOM

<tr bgcolor="blue"><th>Date</th><th>Quote</th></tr>
<xsl:apply-templates select="QuoteTable" />
</table></body></html>

</xsl:template>

<xsl:template match="QuoteTable">
<tr><td><xsl:value-of select="Date"/></td>
<td><xsl:value-of select="Quote"/></td></tr>
</xsl:template>

</xsl:stylesheet>

Building XML-Based Applications

Now that you are more familiar with the DOM, it’s time to leverage the object model
in a more comprehensive way. The following example is a browser-based solution
that uses XML, XSL, and HTML to produce a simple, dynamic menu. The scripting is
all done with JavaScript, and there is some HTML style usage. There are a few dif-
ferent files that make up the solution. They are as follows:

4+ WorkWithMenus.html: Contains the HTML and JavaScript routines

4+ menus.xml: Contains menu elements that contain information for standard
menus on our Web page

4 menuitems.xml: Contains menu elements that contain information for
custom menus

4 transform_menus.xsl: Contains XSL instructions to transform the XML menu
elements into standard HTML that can be displayed on the Web page

The Web page HTML content is as shown in Listing 11-12. Essentially, the HTML
contains one TextArea element that is used to show the content of the XML after a
new element has been dynamically added to it. Also, there are two SPAN elements
contained in a separate column. The initial view of the page is shown in Figure 11-3.

Listing 11-12: HTML Content in Browser-Based Solution

<body>
<table>
<tr>
<td></td>
<td>
<table>
tr>

Continued

263

264 Partll + Microsoft Office and XML

Listing 11-12 (continued)

<td colspan="2"
onclick="ConfigureMenus ('Information')" id="Information"
name="Information">
Information</td>
</tr>
<tr>
<td colspan="2"
onclick="ConfigureMenus ('Contact')" id="Contact"
name="Contact">
Contact</td>
</tr>
</table>

<textarea cols="80" id="txtXML" name="txtXML"
rows="11"></textarea>
</td>
</tr>
</table>
</body>

A Work with menus - Microsoft Internet Explorer EJ@EJ
Ble Edt Wew Favorites Tools Help o
L] ™ A » »
O © (1A G P Jrrowes @ @ BB B i
Information
Contact
&] Done § My Computer

Figure 11-3: Initial view of example Web page

What is significant about the SPAN elements is that when they are clicked, they call
a function defined in JavaScript called ConfigureMenus. This function accepts one
parameter that is the ID of the SPAN that was clicked.

Chapter 11 + Working with the MSXML DOM

The script of the ConfigureMenus procedure is shown here in Listing 11-13. This
procedure loads the menus.xml file into a DOM object. This file contains elements
that hold the data we will use for standard menus (see Listing 11-14).

Listing 11-13: Script of the ConfigureMenus Function

function ConfigureMenus (menultem)

{

var objNode;
var objDOM=new ActiveXObject ("Msxml2.DOMDocument") ;
var objChildNode;
var nIndex;
var strElementName;
var strElementValue;
var root;
var str;
var objTransformedDOM=
new ActiveXObject ("Msxml2.DOMDocument") ;
objDOM.async = false;
objDOM. load ("menus.xml") ;
nIndex = 2;
root = objDOM.documentElement;
objNode=GetMenultem (menultem) ;
objChildNode =
root.insertBefore (objNode,

root.childNodes.item(nIndex)) ;

txtXML.value=root.xml;
str=GetTransformed (objDOM) ;
menu.outerHTML =str

The XML file is rather simple, containing a root element with two child elements.
Each child element has menuID, menucaption, and href attributes. These
attributes are useful for the final HTML display on the Web page. The href attribute
will be used as the hyperlink in an anchor tag. The menucaption attribute is used
as the text of the anchor tag.

Listing 11-14: Contents of the menus.xml File

<menus>

<menu menulID="getdata" menucaption="Get Data"
href="http://http://www.wiley.com" />

<menu menulD="sendmessage" menucaption="Send Message"
href="http://http://www.wiley.com" />

</menus>

265

266

Part Il ¢+ Microsoft Office and XML

After loading the menus.xml file, the ConfigureMenus function calls another pro-
cedure, GetMenuItemn, to get an xml node that will contain XML data that corre-
spond to which item was clicked on the page. For example, if the user clicks on the
SPAN with the text Information, the GetMenuTItem procedure will find an XML
element in another file and return that element as a node to the ConfigureMenus
procedure. The text of GetMenuItem function is shown in Listing 11-15.

Listing 11-15: Script of the GetMenultem Function

function GetMenultem (menultem)
{
var objNode;
var objDOM=new ActiveXObject ("Msxml2.DOMDocument") ;
var objChildNode;
var nlIndex;
var strElementName;
var strElementValue;
var root;
objDOM.async = false;
objDOM. load ("menuitems.xml") ;
objNode =
objDOM. selectSingleNode
("menus/menu[@menuID = '" + menultem + "']");
return (objNode) ;

The GetMenuItem functions loads the content of the menuitems.xml file. This file
is nearly identical to the menus.xml file, but the data are different. The premise is
that this file contains elements that are not used as part of the standard menus.
Rather than returning all of the elements in the document, however, the function
only returns the one that matches a search criteria. The function uses the
selectSingleNode method and looks for only the menu item whose menuID
attribute matches the value passed to the procedure. This value is the same as the
text in the SPAN attribute.

With the XML node returned, the ConfigureMenus function calls another function,
GetTransformed, and passes the DOM object to it. The function returns an HTML
string that is then appended to the Web page. The GetTransformed procedure is
shown in Listing 11-16.

Chapter 11 + Working with the MSXMLDOM 267/

Listing 11-16: Contents of the GetTransformed Function

function GetTransformed (objDOM)

{

var objXSL=new ActiveXObject ("Msxml2.DOMDocument") ;
objXSL.load("transform_menus.xsl");

str = objDOM.transformNode (objXSL) ;

return (str);

}

This procedure loads the contents of the transform_menus.xsl file whose contents
are shown in Listing 11-17. What is significant in this file is that it does not output
XML. It actually produces HTML by using a couple of simple templates.

Listing 11-17: Contents of the transform_menus.xsl
Instructions

<?xml version="1.0"?>

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output indent="yes" omit-xml-declaration="yes" />

<xsl:template match="menus">

<TABLE CELLPADDING='1l' CELLSPACING='0' BORDER='1l'>

<xsl:apply-templates select="menu"/>

</TABLE>

</xsl:template>

<xsl:template match="menu">

<xsl:variable name="hrefvalue" select="./@href"/>
<TR><TD>
<xsl:value-of select="./@menucaption"/>
</TD></TR>

</xsl:template></xsl:stylesheet>

The XSL instructions include the declaration of a variable, "hrefvalue", which is

used by the template to embed the value of the href attribute of the element as an
attribute of the HTML anchor tag. The result of a transformation is shown in Listing
11-18. The actual data will differ, of course, depending on what a user has clicked.

268 Partll + Microsoft Office and XML

Listing 11-18: Results of an XSL Transformation in the
Browser Example

<TABLE CELLPADDING="1" CELLSPACING="0" BORDER="1">

<TR><TD>Get Data
</TD></TR>

<TR><TD>Get Info
</TD></TR>

<TR><TD>Send Message
</TD></TR>

</TABLE>

Once the GetTransformed function returns the string containing the HTML result of
the transformation, a simple DHTML method is used to display the HTML. Figure 11-4
shows the resulting Web page after choosing the "Contact" SPAN on the page. Once
this is clicked, the ConfigureMenus procedure loads the supplemental XML element
and transforms the entire XML content to produce an HTML table.

2} Work with menus - Microsoft Internet Explorer | [z
File Edit WView Favortes Took Help >

3 ac > ﬂ E] I) search -_.'f"!--Fawines @reis & - F L E] Ei B e

Information
Contact
<menus> |
Gﬂ Data <menu menuID="getdata”™ menucaption="Get Data™
e href="htcp://http://www.wiley.com" />
|Send Message <menu menuID="sendmessage” menucaption="Send Message™
|Contact href="htctp://http://www.wiley.com" />
<menu menuID="Contact™ menucaption="Contact™
href="htcp://www.sharepoinczealot.com/contact. hom"/>
</menua>
E ' My Computer

Figure 11-4: View of Web page after making a selection

Notice how the content of the XML is also shown on the Web page, providing you
with a peek at what the JavaScript has assembled along the way. What this example
shows is how MSXML can be used to create dynamic content in a Web page using
methods of the DOM and simple JavaScript.

Chapter 11 + Working with the MSXMLDOM 269

Summary

This chapter has introduced you to the MSXML DOM object library. Clearly there
are many properties and methods, and these have been explained to you. However,
a particular emphasis has been placed on loading XML, finding specific elements in
the content, and transforming the content to produce new XML or HTML. The rea-
son these characteristics of the DOM have been favored over others is because
they are most likely targets of your code in the bulk of your applications.

Undoubtedly, if you create enough XML applications, you will use an increasing
number of the properties and methods that have received less emphasis here. As
you do, you will find that the DOM object model is surprisingly flexible and easy to
use. You will want to use its ability to reports errors so that your applications can
gracefully handle problems that arise. You will also want to use more sophisticated
search expressions when selecting nodes, and you may want to persist XML as part
of a complete solution.

¢+ 4

CHAPTER

Generating
XML from -
MS Access Data ~m-coee

Importing and
exporting data with
Microsoft Access

Microsoft’s XML support in its Office technologies con- Working with
tinues to grow, and Microsoft Access has XML sup- elements and
port that reflects the changing use of Access and databases attributes
generally. With Office XP, Access enhanced its capability to
export and import data by fully embracing the XML standard Validating and
and embedding XML support in its application features and displaying data
programmability features.
,]]]] Using Access XML
/' Note This chapter will deal exclusively with Access 2002, the ver- data with other
-~ sion released with Office XP. It was possible to cause previ- applications l